$x \in K$.

Problem Set

Your solutions need to be typed by ET_EX or written neatly and scanned properly. You must submit them via Tsinghua University's Web Learning by 11:59 pm on Tuesday, October 31. No late submission will be accepted.

You are encouraged to discuss the problems with your classmates, but you must write your solutions on your own and acknowledge collaborators/cite references if any. Failure to do so will be treated as academic dishonesty.

- 1. For each of the following, give one example and explains briefly why your example works.
 - (a) A local ring A such that its maximal ideal is generated by a non-nilpotent element but A is not a discrete valuation ring.
 - (b) A finite separable extension L/K of complete discrete valuation fields whose residue field extension k_L/k is not separable.
- 2. Let K be a field. A non-trivial non-archimedean absolute value on K is a function |·|: K → ℝ_{≥0} satisfying for x, y ∈ K: (i) |xy| = |x| · |y|; (ii) |x + y| ≤ max{|x|, |y|}; (iii) |x| = 0 if and only if x = 0; (iv) |K| ⊋ {0,1}. An absolute value defines a topology on K in a usual way. Now let |·|₁ and |·|₂ be two non-trivial non-archimedean absolute values on K. Show that they give the same topology if and only if there exists ρ > 0 such that |x|₂ = |x|₁^ρ for every
- 3. Let K be a complete discrete valuation field with valuation v and let L/K be a finite field extension of degree n. Then we showed that L admits a unique valuation w such that $w|_{K} = v$ (here we normalize so that w prolongs v with index 1, not index $e_{L/K}$).

This exercise outlines another proof of this result by an explicit formula. Define $w \colon L \to \mathbb{R} \cup \{\infty\}$ by

$$w(x) = \frac{1}{n} v \left(N_{L/K}(x) \right) \quad (x \in L).$$

It is easy to see w is non-trivial, $w|_K = v$, and w(xy) = w(x) + w(y). We are going to show

$$w(x+y) \ge \min\{w(x), w(y)\} \quad \text{for} \quad x, y \in L.$$

Note that the uniqueness of the prolonged norm follows from the property of topological vector spaces as we saw in the class.

- (a) Show that it suffices to prove, for $x \in L$, $w(x) \ge 0$ implies $w(x+1) \ge 0$.
- (b) Take any $x \in L$ with $w(x) \ge 0$. Show $w(x+1) \ge 0$. Hint: let $f(X) = X^m + a_{m-1}X^{m-1} + \cdots + a_1X + a_0 \in K[X]$ be the minimal polynomial of x (so $m \mid n$). Express w(x) in terms of a_m and n. Similarly, using the fact that f(X-1) is the minimal polynomial of x + 1, express w(x+1) in terms of a_i 's.

- 4. [Ser79, p. 53, Exercise].
- 5. [Ser79, p. 71, Exercise 2]. You may use the result of Exercise 1 without proof.
- 6. [Ser79, p. 72, Exercise 5].
- 7. [Ser79, p. 116, Exercise].
- 8. [Ser79, p. 119, Exercise 1].

References

[Ser79] Jean-Pierre Serre, *Local fields*, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979, Translated from the French by Marvin Jay Greenberg.