2023 Fall — Algebra and Number Theory 2

SOLUTION TO PROBLEM SET 1

LECTURER: KOJI SHIMIZU
TA: WENHAN DAI

Problem 1. For each of the following, give one example and explains briefly why your example works.

(a) A local ring A such that its maximal ideal is generated by a non-nilpotent element but A is
not a discrete valuation ring.

(b) A finite separable extension L/K of complete discrete valuation fields whose residue field
extension kz,/k is not separable.

Solution. There would be various examples for (a) and we propose two of them below.

(a) The following comes a natural object from p-adic geometry.
(al) Let q be an algebraically closed complete p-adic field with residue field Fp (for example,
C= @p). Let v be the normalized p-adic valuation on C' and write O¢ for the ring of integers
of C. Fix a real number 0 < r < 1 such that r = v(7) for some 7 € O¢. Consider the ideal

I={zxe€0c:v(x) 2r}COc.

We take A := Z, + I. Then A is a ring and I is an ideal of A. Since both Z, and I are
complete and I is characterized by the closed condition v(w) > r, A is closed complete in Oc.
We verify that A satisfies the desired local properties.
o We have natural maps A — O¢ and Oc — F,. Let f: A — F, be their composite.
Then from the construction f(I) = 0 and f(Z,) = F,. It follows that the surjection
A — T, has kernel equal to I. So

A/l = (Z,+ 1)/ ~F,.

In other words, I is a maximal ideal of A.
o Each x € A—I must satisfy v(x) = 0, and is thus invertible. So I is the unique maximal
ideal of A.
Then A is a local ring; its unique maximal ideal I is generated by the non-nilpotent element
m € O¢. Clearly, v(A) is not discrete in Rxo U {oo}.
Recall that each discrete valuation ring is by definition a noetherian local ring. It is thus natural
to consider dropping the noetherian condition and create a localization.
(a2) Consider the ring

R=7[X1,Xo,..]

with infinitely many variables. Fix a prime p € Z. Then (p) is a principal prime ideal in R.
We can localize R at (p) to get

A= Ry = (R - (p) 'R={f/g € L(X1,Xa,...): pt g}

Clearly, A is a local ring. We verify other desired properties on A.
o By a property of localization, the maximal ideal of A is pR,), generated by one non-
nilpotent element p € R(;).
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o Let ¢: R — A, r — r/1 be the natural localization map. Notice that in R each ideal
in the infinite strictly ascending chain p(X;) C p(X1,X2) € --- is contained in pR. So
o((pX1)) € p((pX1,pX2)) € --- is also an infinite strictly ascending chain of ideals in
A. Tt follows that A is not noetherian.

(b) Over the local function field F,((t)), the ring of Laurent power series, denoted by

K =F,(6)(T),

is a complete discrete valuation field. We have the ring of integers and the residue field

Ox =Fp(O)[T],  k=TF,(2),

respectively. Consider the polynomial
f(X)=XP+TX —t e Og[X].

We make the following observations:
o After modulo T, we have f(X) = X? —t € k[X], where k is a complete discrete valuation
ring with uniformizer ¢. Then XP — ¢ is irreducible by the Eisenstein criterion.
o By computing the derivative f/(X) =T # 0, we see f(X) is separable over K.
Thus, L :== K[X]/(f(X)) is a finite separable extension of K. Then L is also a discrete valuation
field, complete with respect to the induced topology from K, with the residue field

k= KX/ (F(X)) = Fp(¢)[X]/(XP —t) = k(t/7).

Consequently, kz/k = k(t'/?)/k is not separable, because the minimal polynomial f(X) = XP? —t
satisfies f (X) = 0 over k.

O

Problem 2. Let K be a field. A non-trivial non-archimedean absolute value on K is a function
|-]: K — Ry satisfying for z,y € K: (i) |zy| = |z| - |ly|; (ii) |z + y| < max{|z|,|y|}; (iii) |z| = 0 if and
only if x = 0; (iv) |K| 2 {0,1}. An absolute value defines a topology on K in a usual way.

Now let |- |; and |- |2 be two non-trivial non-archimedean absolute values on K. Show that they give
the same topology if and only if there exists p > 0 such that |z|o = |z|] for every z € K.

Solution. Suppose |- |2 = |- |] for p > 0. For i = 1,2, the neighborhood base of the topology induced
by | - |; consists of open neighborhoods of 0 of form

{zeK:|lz—yh<r}={zeK:|x—yl2 <7’}

for all 0 < r < 1 (and, alternatively, 0 < 7* < 1), as well as their translates. So |- |; and |- |2 give the
same topology, which proves the “if” part.
As for the “only if” part, since ™ — 0 if and only if |z|; < 1 for i = 1,2, we see

{z: |z|; <1} ={z: |z|]2 < 1}.
As | |1 is nontrivial, we can fix some y € K so that |y|; > 1. Set

p =loglylz/log |yl

We aim to show that |z|] = |z| for every 2 € K. Note that for m,n € N,

1 m
O e R P i I
m log | ! ! n

gyl Y"1
m

— ’Z—n <1l = |z]a< |y|1;/m.
2
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Since n/m € Q is arbitrary, we get |y|3 > |z|]2 for s € Rso. Similarly, we also have |y|5 < |z]2.
Combining these, the equality holds and

1/s

= |zt = |2y = [yl..

lyl?

Therefore, we have proved |z|] = |z|y for arbitrary x € K. O

Problem 3. Let K be a complete discrete valuation field with valuation v and let L/K be a finite
field extension of degree n. Then we showed that L admits a unique valuation w such that w|g = v
(here we normalize so that w prolongs v with index 1, not index ey, k).

This exercise outlines another proof of this result by an explicit formula. Define w: L — R U {co} by
1
w(z) = EU(NL/K(-T)) (xel).
It is easy to see w is non-trivial, w|x = v, and w(xy) = w(x) + w(y). We are going to show
w(z +y) =2 min{w(z),w(y)} for z,ye€ L.
Note that the uniqueness of the prolonged norm follows from the property of topological vector spaces

as we saw in the class.

(a) Show that it suffices to prove, for x € L, w(x) > 0 implies w(xz + 1) > 0.
(b) Take any x € L with w(x) > 0. Show w(x + 1) > 0.

Solution. Denote by A and B the valuation rings of K and L, respectively.

(a) Note that w(ab) = w(a) + w(b) for all a,b € L. We fix y,z € L and assume without loss of
generality that w(y) > w(z). Then w(yz~!) > 0. Moreover, the desired inequality is equivalent to

w(y + 2) = min{w(y), w(z)} = w(z),
or alternatively, through dividing by z on both variables,
wlyz"t+1) = 0.

By taking z = yz~! € L, it suffices to show that w(x) > 0 implies w(z + 1) > 0.
(b) Fix x € L satisfying w(x) > 0. Then we have x € B. Let f(X) = X"+ -+ a1 X + ap € K[X]
be the minimal polynomial of z over K, with degree m = [K(z) : K] dividing n = [L : K].
To compute Ny i (x), let i, ..., an be all m roots of f(X) in the algebraic closure of K. So
we have (X —aq)-- (X —am) = X™+ -+ a1 X 4 ap. Comparing the coefficients we obtain
(=1)™(a1 - - - aum) = ag. Thus, by definition of norm,

Nijic(@) = (a1 am)™™ = (=1)ag)™™ = (=1)"ag’™.

It follows from w(x) > 0 that v(Np/x(z)) = 0, and hence v(ag) > 0, namely ap € A. Observe
that f(X — 1) is the minimal polynomial of = + 1.

If ai,...,am € A, then the constant term of f(X —1) lies in A, which further implies w(z+1) >
0. So it boils down to showing f(X) € A[X]. Choose a uniformizer @ of A and write A/(w) for
the residue field. Then there exists some integer r > 0 such that g(X) = w” f(X) € A[X], and

AIX] —25F (4 (w))[X]
9(X) ———— g(X) #0.

Assume 7 > 1 for the sake of contradiction. In this case g(X) has a zero constant term. Hence

we can write g(X) = X°h(X) for some s > 1. Note that g(X) is primitive. By Hensel’s lemma
[Lan94, p. 43| there are lifts ¢(X),h(X) € A[X] of X*, h(X) such that g(X) = t(X)h(X). So
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g(X) must be reducible, which contradicts the irreducibility of f(X). It then forces r = 0 and
f(X) € A[X]. It thus follows that x € B, and hence = + 1 € B. Therefore,

1
O

Problem 4 (Conductor, [Ser79, p. 53, Exercise]). Let C be a subring of B containing A, and having
the same field of fractions as B.

(a) Show that among all the ideals of B contained in C, there is a largest one, and that it is the
annihilator of the C-module B/C; it is denoted f¢,p, the conductor of B in C.

(b) Show that fo/p = (B* : C*), i.e., that fo,p is the set of all x € L such that xC* C B*.

(c) Suppose that C*, considered as a fractional C-ideal, is invertible; let ¢ be its inverse (so that
¢C* = (). Deduce from (b) the formula

fC/B = C'@B}A.

Solution. Let K and L be the fields of fractions of A and B, respectively. By assumption L is also the
field of fraction of C.

(a) Let I C B be an ideal such that I =1-B C C. Then
Amn¢c(B/C)={be B:bBC C} D I.

Since Anng(B/C) is an ideal of C, it is the largest ideal fo/p with the desired property.
(b) For each z € fo/p we have bx € C for every b € B. Thus, for each ¢* € C*,

TI‘L/K((Z).T)C*) = TI'L/K(b(ZL'C*)) € B.

It follows that xc* € B* and then xC* C B*, which implies fo,p C (B* : C*).
Conversely, take any = € (B* : C*) and we have xC* C B*. So

Therefore, xB C C and z € f¢/p. This proves fo/p = (B* : C*).
(c) Using (b) together with the relation ¢C* = C, we see that

z €fop <= 2C* CB* <= ac ' CDp), <= r€c-Dp),.

This proves fo,p = ¢- ’)DB}A.

O

Problem 5 (Structure of separable closures, [Ser79, p. 71, Exercise 2]). Suppose that K is a perfect
field.! Let K, be the separable closure of K, and let G = Gal(K,/K) be its Galois group. Let G and
(1 be the inertia subgroup and the wild inertia subgroup in G, respectively.

(a) Let K, be the separable closure of K. Show that G/Go = Gal(K/K).
(b) For every integer n > 1, let p, be the group of n-th roots of unity in K. If m divides n,

let foun: fin — fm be the homomorphism x — z/™

system (fn; fmn)-
(i) Show that Go/G1 is (canonically) isomorphic to p.

, and let p be the projective limit of the

(ii) Deduce that it is (non-canonically) isomorphic to the product [ Z, of the groups of ¢-adic
integers, ¢ running through the set of primes distinct from the characteristic of K.

(iii) Show that the isomorphism Go/G; = p is compatible with the operations of G/G( on
Go/G; and on u.

IUnlike the modern notations, in Problem 5 we assume K is a local field and denote by K its residue field (rather

than the algebraically closure).
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(¢) Deduce from the above the structure of the group G/G; when K is a finite field.

Solution. For every finite Galois extension L/K in K, write G := Gal(L/K).
(a) By [Ser79, p. 71, Exercise 1], we have Gy = @L G, o under the identification G = @L G’,, where
both limits are taken over all finite Galois extensions L/K in K. In particular, we see
Ko = JLC%o.
L
Since G , is the inertia subgroup for L/K, LCT0 is the maximal unramified extension of K
inside L. It follows that K& is the maximal unramified extension K, of K (in K;). Hence
G/Go = Gal(KS° /K) = Gal(K,,/K) = Gal(K/K) by [Ser79, p. 54, Corollary 1].
(b) Let p denote char K if char K > 0 and 1 if char K = 0. We start with two observations.
— For each n > 1, if we write n = mn’ with m a power of p and (m,n’) = 1, we have p, = .
In particular, p is identified with the project limit of the system (i, fmn)(n,p)=1. Moreover,
if (n,p) = 1, we can identify p, = p,(K;) with p,(K,.) by Hensel’s lemma.?
— Let M be a finite extension of K, and let © € Op; be a unit. Then for each n > 1 with
(n,p) = 1, there exists a € Oy such that o’ = u: since the residue field of M is separably
closed, the polynomial X™ —u has a (simple) root in the residue field, and every such root lifts
to a root of X™ —u in Oy by Hensel’s lemma (as in the footnote of the preceding paragraph).
(i) Asin (a), we see
K& = L%,
L
where L runs over all finite Galois extensions L/K in K.
Fix such L and write L1 = LCz.1. Note that L1 is the maximal tamely ramified extension
of K inside L, and thus the ramification index for LG /K, say m, is prime to char K. It
follows that the composite K, L; is a finite tamely ramified extension over K, of degree m.
We claim KL = Kur(w}(/m) for any uniformizer wy of K. In fact, take any uniformizer
wg of K and @’ of Ly, respectively. Then K, L1 = Ky (w') and u = wg/w™ is a unit
of Ok,.1,- Since (m,p) = 1, the second observation at the beginning implies that there
exists « € Ok, , such that a™ = wu. In particular, aw’ gives an m-th root of wg and
Kyl = Ky (w') = Kur(w}(/m). Moreover, since X* —w g has no root in K, for every a > 1,
Kummer theory tells

Gal(Ky (/™)) K) ———— i (K
g g(@™) fwl™

is a group isomorphism which is independent of the choice of a uniformizer wg and an m-th
1/m
root wy .

By considering finite Galois extensions containing K (w}{/m) for (m,p) = 1, we conclude

1 1/m
ES = | Ku(@{™.

(m,p)=1

Combining this with the canonical isomorphisms Gal(Kur(W}(/m) JK) = (Kar) &2 fim, we
obtain the canonical isomorphisms
G/Go = Gal(KS' /Kyy) = lim  Gal(Ku(@y™)/Ku) = m  pim(Ku) = p.
(m,p)=1 (m,p)=1
Here, in the last equality, we used the first observation at the beginning and an easy comparison
of the transition maps. Note that K; = K& is the maximal tamely ramified extension and

2Since Ok,, is the direct limit of Og/’s for finite unramified extensions K’/K and each O is complete, Hensel’s
lemma also holds for O, . By a similar argument, Hensel’s lemma holds for Oj; for every finite extension M of Kur
(see also [Ser79, p. 89, Lemma 6]).
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the above argument (together with [Ser79, p. 89, Lemma 6]) shows that every finitely tamely
ramified extension of K, is of the form Kur(w}{/m) for a uniformizer wg of K and (m,p) = 1.

For each prime ¢ # p, fix a compatible system (s, (2, (s3, . . .) where each (p is a primitive £"-
t gk
R A5
i=1"1

for distinct primes ¢; # p and k; € Z~¢, and set (. = H:Il Cpri- Then ¢, is a generator of the

th root of unity satisfying ((yn+1)* = (. For each integer r with (r,p) = 1, write r = [

cyclic group pu, and CI/ - G for every r' dividing r. Hence these choices {(,}(p)=1 give
isomorphisms i, 2 Z/rZ = Z/I¥ 7 x - x Z/0¥ 7 that are compatible with transition maps
when varying r. Therefore,

Go/Gr = p=~ lm (Z/VZx - x Z/t;'T) = || Ze-
(r,p)=1 0#p
Here the second isomorphism is non-canonical as it depends on choices of primitive roots of
unity.
For any 0 € G/Gy and g € G/G1, the action of o on g is defined as 0.g = ogo~!. With the no-

1/m 1/m

tation as in (i), note o~ !(wwg)'/™ is an m-th root of wg and thus g(o ™! (wy! ))/U‘l(w%m) =

g(w}(/m)/w%m. Hence we compute
— m 1/my 1/m m
ogo  wd™ _olg@d ™o @™) 1 (g(W}{ ))
1/m 1/m 1/m 1/m !
wy! o(wy") K K

Since g(w}(/m) / w%m is an m-th root of unity, this equality yields the desired compatibility

by taking the inverse limit over m with (m,p) = 1.

(c) Since K is a finite field, write K = F,, for some p-power integer ¢. By (a) we have

GGy = Gal(F,/F,) = 7,

where the topological generator 1 € 7 corresponds to the arithmetic Frobenius o:  +— z? in

G/Gy = Gal(F,/F,). Using the compatibility of (b)(iii), the action of G/G¢ on Gy/G1 is defined
by the group homomorphism ¢: G/Gy — Aut(Go/G1); this can be determined by the image of o,

which sends any g € Gy/G; to g%, because o acts on iy, = pm(F,) by the ¢-th power map and
thus

— m 1/m 1/m 1/m
g0~ (@i >:U<g<wK/ >>:<g<wK/ >)q:gq<w;{ )
wl/m wl/m wl/m wl/m :
K K K K

This gives the semi-direct product

G/G1 = (G/Go) %, (Go/Gr) ~ L x [ ] Z,
L#£p

for which 1 € Z acts on [1ep Ze by multiplication-by-g.

To summarize, if we assume K is finite, then we have the following tower.

K
> G1 (pro-p wild inertia)
1/m
Go Ko = Upnpys Kur(@il™)
I
Ky = U(m,p):l K (pim)
7

K

Here K, (resp. Ky) is the maximal unramified (resp. tamely ramified) extension of K in Kj.
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Problem 6 (Artin—Schreier extension, [Ser79, p. 72, Exercise 5]). Let ex be the absolute ramification
index of K, and let n be a positive integer prime to p and (strictly) less than per /(p — 1); let y be an

element of valuation —n.

(a) Show that the Artin-Schreier equation
2P —xz=y

is irreducible over K, and defines an extension L/K which is cyclic of degree p.
(b) Let G = Gal(L/K). Show that G,, = G and G, 1 = {1}.

Solution. Let a be a root of P — x — y in the algebraic closure of K. Take f(z) to be an irreducible
factor of 2P — x — y such that f(a) =0 and then set L = K[z]/(f(x)).

Denote by Ay, the valuation ring of L. Choose wg and wy, as uniformizers in K and L, respectively.
Write v for the normalized wg-adic valuation on K and vy, the prolonging of v to L of index 1. By
assumption v(y) = —n < 0 and v(p) = ek.

(a) Following the hint, we consider:
Claim. Suppose « is a root of P — x —y in L. Then the other p — 1 roots in L
are exactly a + z; for 1 < i < p—1 with z; € Ay, satisfying that z; =7 mod wp,.

Proof of Claim. Motivated by this, begin with the equation (a+2)? — (a+2) =y,
for which we can replace y with a? — « to get

p—1
p_ D\ i p—i _
(*) z Z+Z (i>a z 0.

i=1
If one assumes v(a)) > 0, then v(y) = v(a? — a) > min{v(a?),v(a)} > 0, contra-
dicting to the given condition v(y) = —n < 0. So v(a) < 0 (namely o ¢ Ar) and
hence
v(y) = v(a? —a) = v(a?) = pv(a).
It follows that v(a) = —n/p, and then

P\ i\ _ p , _ _in
(€)= (()) -2
By assumption n < pex /(p — 1), so for each i € {1,...,p — 1},
. i —1—i
v p ') >ex — r _ P Z6K>O.
7 p—1 p—1

Therefore, after modulo wk on both sides of (x), the coefficients (p)ai vanish;

i

this equation further becomes
ZP — 2 =0mod wy.

Clearly, all p solutions of this equation are exactly 0,1,...,p—1 € Ar/wr. By
Hensel’s lemma, these solutions respectively lift to zg, 21, ..., 2,1 € Ar such that
zi = tmod wy. From the assumption that « is already a root, zp = 0. This
proves the claim.

From the argument above we have v(a) = —n/p, and « ¢ K by pt{n. But

_ne(L/K)

vp(a) =e(L/K)v(a) = ez

)

where e(L/K) is the ramification index of L over K. Again, p{n shows that p | e(L/K). On the
other hand, by construction f(z) is the minimal polynomial of a, so

p = deg(a” —z —y) > deg f(x) = [L: K] > e(L/K).
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These can deduce p = [L : K| = e(L/K). Then f(z) = 2 — x — y, and hence the Artin—Scherier
equation is irreducible.

Therefore, L is the splitting field of a? —z —y € K|z|. Since P — x — y has nonzero derivative
in K, it must be separable. So L/K is Galois and Gal(L/K) has order p. Since each group of
prime order is cyclic, we complete the proof.

As ptn, there is a pair of integers (r, s) such that rp — sn = 1 by elementary number theory. We
may assume 0 < s < p by replacing s with its mod p residue if necessary. For « a root as in (a),
v(wga') =rv(wk) + sv(a) =1 — o 1
p p
Thus, the uniformizer wy, of L can be taken as wha®, and we have A;, = Ag[wy]. It remains to
compute vy (o(wr)—wpr). By (a), L/K is totally ramified of index p. We obtain for o: a — a+z;
that
vp(o(wr) — wr) = pv(o(@wka®) — wka®)
=pv(@k) +o((a+2)° —a”))
=p(r+v((a+ z)° —a?)).
To proceed on, one makes the following observation:

s—1
(a+2)°—a® =z + Z (Z) akziF,
k=1

S

with v(z;) = 0, v(a) < 0; from the assumption 0 < s < p, we also have v ((;)) = v(s) = 0 when
1 <k <s—1. Hence v((a+ z)° —a®) = v(sa®"1z;) = v(a®!), and then
vp(o(wp) —wr) =plr+v(@™ ) =pr—(s—1)n=n+1.
By definition, we get G,, = G and G,,+1 = {1}.
g

Problem 7 (Shapiro’s lemma, [Ser79, p. 116, Exercise]). Let H be a subgroup of G, and let B be an
H-module.

(a) Let B* be the group of maps ¢ of G into B such that ¢(hs) = he(s) for all h € H; show that
B* = HomZ[H] (Z[G], B)

Make B* into a G-module by setting (s¢)(g) = ¢(gs). Let 8: B* — B be the homomorphism defined
by 0(¢) = ¢(1).

(b) Show that € is compatible with the inclusion H — G.
(¢) Show that the homomorphisms

HY(G, B*) —s HY(H, B)

associated to this pair of maps are isomorphisms.

Solution. (a) We aim to show the map

HOmz[H](Z[G],B) —— B*
o ———— dla

is an isomorphism of groups. This can be done through the following verifications.
o For each h € H C Z[H] and ¢ € Homy)(Z[G], B), as functions on s € G,

¢la(hs) = ¢(hs) = ho(s) = hola(s).
Hence the above map is a well-defined group homomorphism, compatible with the H-action

from the right side.
o Given ¢ € B* and n € Z, we define
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$:7Z[G) ————— B

> ongg —— > ngp(g),
where ng € Z for each g € G. For any > myh € Z[H| with mj, € Z, we use the homomorphism
property and ¢(hg) = h¢(g) to deduce that

thh-ang = th'¢ h-ang

heH geG heH geG
= § mph - ¢ § ngg
heH e

So ¢ is an element of Homgyy(Z[G], B) with ¢ = ¢|q € B*.
o Since G generates Z[G] as a Z-module, if ¢|¢ = 0 for some ¢ € Homy x| (Z[G], B), then ¢ = 0
as well.
Therefore, the given map is a well-defined bijective homomorphism of groups, and hence an iso-
morphism.
(b) It suffices to compute the image of H-action on B* along 6. For each h € H,

O(he) = (hp)(1) = p(1-h) = (h- 1) = hep(1) = hi(p),

and the compatibility follows from this.
(¢) If B is co-induced from an abelian group A for H, i.e.,

B = Homg(Z[H], A),

then by (a),

Z[G], B)

Z|G], Homy(Z[H], A))

G| ®zm) Z[H], A)

GJ, A).

Here we have used the tensor-Hom adjoint property to deduce the third equality.® Hence B* i

co-induced as well. This implies HY(G, B*) = H(H, B) = 0 for ¢ > 1. From 0: B* — B we have
the induced homomorphism

B* = Homz[H](
= Homgg(

= Homg(Z|
[

= Homy(Z

9¢: (B*)¢ = H(G,B*) —— HY(H,B) = BH

Y o(1).
Take ¢ € (B*)“ such that ¢(1) = 0. By G-invariance, 0 = (1) = (99)(1) = (1 -g) = ©(g)
for all g € G. This implies ¢ = 0 and shows the injectivity. For surjectivity, given any b € BY
we define pp: G — B, g +— b. Then (spp)(9) = vu(gs) = b = vp(g) for all s € G. This shows
that ¢, is G-invariant, and it lies in (B*)“ (after a Z-linear extension to the Z[H]-invariant map

op: Z|G] — B). So the surjectivity follows. Thus, ¢ is an isomorphism.
Therefore, for ¢ > 0, we can identify the universal §-functors H(G, (—)*) and H?(H, (—)), from

Modg to Modg, with each other. This completes the proof.

(|

3The adjoint formalism [Eis95, §2.2, §A5.2.2] is as follows. Let R be a ring. Let M, N be R-modules. Let A be an
abelian group. Then there is an isomorphism of R-modules
¢: Homp(M, Homz (N, A)) = Homz(M ®r N, A), [+ ¢(f),

with ¢(f)(m ® n) = f(m)(n). Here the target of ¢ is an R-module via the R-action (r¢))(m ® n) = ¥(m ® nr). In
practice we are taking R = Z[H] as a group ring, together with R-modules M = Z[G], N = Z[H], and A the same as in
the problem.



10 SOLUTION TO PROBLEM SET 1

Problem 8 ([Ser79, p. 119, Exercise 1]). Granting the fact (cf. [Ser79, p. 119, Proposition 6]) that
HY(G, A) 2= H9(H, A) £ HI(G, A)

equals the multiplication-by-n map, where n = #(G/H), let ¢ be such that H(H, A) = 0. Show that

nx =0 for all z € HY(G, A).

Solution. The map [n]: H1(G,A) — H1(G, A), = — nx, factors through Cor: 0 — H?(G, A). So the
result follows. 0
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