2023 Fall — Algebra and Number Theory 2

SOLUTION TO PROBLEM SET 2

LECTURER: KOJI SHIMIZU

TA: WENHAN DAI

Problem 1. Prove that the multiplicative group K^{\times} of the non-archimedean local field $K = \mathbb{F}_p((t))$ has a non-closed subgroup of finite index.

Solution. Since t is a uniformizer we have an isomorphism

$$K^{\times} \cong \mathbb{F}_p^{\times} \times U \times t^{\mathbb{Z}}, \qquad U = 1 + t \mathbb{F}_p[\![t]\!].$$

We first claim that the map

$$\prod_{\mathbb{Z}>0} \{0, 1, \dots, p-1\} \longrightarrow U, \quad (a_n)_{n>0} \longmapsto \prod_{n>0} (1+t)^{a_n}$$

is a bijection of sets. To see this, note that since $\prod_{n>0}(1+t)^{a_n}$ becomes a finite product modulo $1+t^m \mathbb{F}_p[\![t]\!]$ for every m, the infinite product converges in U, and thus the above map is well-defined. Conversely, any $f(t) \in U$ is written uniquely of the above form $\prod_{n>0}(1+t)^{a_n}$. Namely, write $f(t) = 1+b_1^{(1)}t+b_2^{(1)}t^2+\cdots$ with $b_i^{(1)} \in \{0,1,\ldots,p-1\}$ and set $a_1=b_1^{(1)}$. Then $f(t)(1+t)^{-a_1}$ is of the form $1+b_2^{(2)}t^2+b_3^{(2)}b^3+\cdots$ with $b_i^{(2)} \in \{0,1,\ldots,p-1\}$, and thus set $a_2=b_2^{(2)}$. Repeating this gives $(a_n) \in \prod_{\mathbb{Z}>0}\{0,1,\ldots,p-1\}$ with $\prod(1+t^n)^{a_n}=f(t)$ and the uniqueness can be seen by induction on n. Next we see that the subgroup

$$U^p \coloneqq \{x^p \mid x \in U\} = 1 + t^p \mathbb{F}_p\llbracket t^p \rrbracket$$

since $x \mapsto x^p$ is a ring endomorphism of K. Regard U/U^p as an \mathbb{F}_p -vector space. The above claim gives an isomorphism of \mathbb{F}_p -vector spaces

$$\prod_{\mathbb{Z}_{>0} \setminus p\mathbb{Z}_{>0}} \mathbb{F}_p \xrightarrow{\sim} U/U^p, \quad (a_n) \longmapsto \prod_{n>0} (1+t^n)^{a_n} \mod U^p.$$

Since $\bigoplus_{\mathbb{Z}_{>0}\setminus p\mathbb{Z}_{>0}} \mathbb{F}_p$ is a proper \mathbb{F}_p -vector subspace of $\prod_{\mathbb{Z}_{>0}\setminus p\mathbb{Z}_{>0}} \mathbb{F}_p$, take an \mathbb{F}_p -linear surjection

$$\alpha \colon \prod_{\mathbb{Z}_{>0} \setminus p\mathbb{Z}_{>0}} \mathbb{F}_p \longrightarrow \mathbb{F}_p, \qquad \text{Ker} \, \alpha \supset \bigoplus_{\mathbb{Z}_{>0} \setminus p\mathbb{Z}_{>0}} \mathbb{F}_p.$$

Set

$$U' \coloneqq \operatorname{Ker}(U \to U/U^p \xrightarrow{\alpha} \mathbb{F}_p).$$

Then U' is a subgroup of U of index p. We claim that U' is not a closed subgroup of U, equivalently, $1 + t^m \mathbb{F}_p[\![t]\!] \not\subset U'$ for every m. In fact, take $f(t) \in U \setminus U'$ and write $f(t) = \prod_{n>0} (1+t^n)^{a_n}$ as above. Then $f(t) \prod_{0 < n < m} (1+t^n)^{-a_n} = \prod_{n \ge m} (1+t^n)^{-a_n} \in 1+t^m \mathbb{F}_p[\![t]\!]$. Since $\prod_{0 < n < m} (1+t^n)^{-a_n} \in U'$, we conclude $f(t) \prod_{0 < n < m} (1+t^n)^{-a_n} \in (1+t^m \mathbb{F}_p[\![t]\!]) \setminus U'$. Consider

$$N \coloneqq \mathbb{F}_p^{\times} \times U' \times t^{\mathbb{Z}} \subset K^{\times}.$$

By construction, N is a subgroup of K^{\times} of index p. Since $U' = N \cap U$ is not closed, N is not a closed subgroup of K^{\times} .

Date: December 19, 2023.

Problem 2. Let K be a non-archimedean local field with char $K \neq 2$ and let $(-, -)_v \colon K^{\times} \times K^{\times} \to \{\pm 1\}$ denote the local symbol defined in the class and [Ser79, p. 208] for n = 2. Show that for each $a, b \in K^{\times}$, $(a, b)_v = 1$ if and only if there exists $x, y, z \in K$ such that $z^2 = ax^2 + by^2$.¹ (Hint: Use [Ser79, p. 208, Prop. 7(iii)].)

Solution. By [Ser79, p. 208, Prop. 7(iii)], $(a, b)_v = 1$ if and only if b is a norm in $K(\sqrt{a})/K$. Observe that the norm of $s + t\sqrt{a} \in K(\sqrt{a})$ with $s, t \in K$ is $s^2 - at^2$. So if b is a norm, write $b = s^2 - at^2$. Then x = t, y = 1, and z = s satisfy $z^2 = ax^2 + by^2$. Conversely, if there exists $x, y, z \in K$ such that $z^2 = ax^2 + by^2$, set $s = z/y \in K$ and $t = x/y \in K$. Then b is the norm of $s + t\sqrt{a}$.

Problem 3. Let $p \ge 3$. For each $n \ge 1$, let $\mu_n := \{\zeta \in \overline{\mathbb{Q}}_p \mid \zeta^n = 1\}$.

- (a) Show $\mu_{p-1} \subset \mathbb{Q}_p$.
- (b) Show $\mathbb{Q}_p(\mu_p) = \mathbb{Q}_p(\sqrt[p-1]{-p})$, where $\sqrt[p-1]{-p}$ denotes a root of $x^{p-1} + p = 0$ in $\overline{\mathbb{Q}}_p$.
- (c) Consider the following isomorphisms

$$\overline{\sigma} \colon (\mathbb{Z}/p\mathbb{Z})^{\times} \xrightarrow{\cong} \operatorname{Gal}(\mathbb{Q}_p(\mu_p)/\mathbb{Q}_p); \quad a \longmapsto (\overline{\sigma}_a \colon \zeta_p \mapsto \zeta_p^a)$$

with $\zeta_p \in \mu_p$, and

$$\theta_0 \colon \operatorname{Gal}(\mathbb{Q}_p(\mu_p)/\mathbb{Q}_p) \xrightarrow{\cong} (\mathbb{Z}/p\mathbb{Z})^{\times}; \quad g \longmapsto g(\pi)/\pi,$$

with $\pi \in \mathbb{Z}_p[\mu_p]$ a uniformizer. Here the second map θ_0 is defined in [Ser79, p. 67, Prop. 7] and is an isomorphism since $\mathbb{Q}_p(\mu_p)/\mathbb{Q}_p$ is a tamely ramified extension of degree p-1. Show $\theta_0 \circ \overline{\sigma} = \text{id}$.

- Solution. (a) Notice that all p solutions of $T^p T$ are exactly all p elements of the residue field \mathbb{F}_p of \mathbb{Q}_p . It follows that the primitive polynomial $T^{p-1} - 1$ splits in \mathbb{F}_p . On the other hand, it has derivative $(p-1)T^{p-2} \neq 0$, and hence is separable over \mathbb{F}_p . By Hensel's lemma [Lan94, p. 43], each root in \mathbb{F}_p lifts to \mathbb{Z}_p and then $T^{p-1} - 1$ splits in \mathbb{Q}_p . Therefore, $\mu_{p-1} \subset \mathbb{Q}_p$.
- (b) We know that $\mathbb{Q}_p(\mu_p)/\mathbb{Q}_p$ is a ramified extension of degree p-1 with ring of integers $\mathbb{Z}_p[\mu_p]$ and a uniformizer $\pi: \zeta_p - 1$ for a primitive *p*-th root of unity ζ_p . Since the image of *p* in $\mathbb{Q}_p^{\times}/(\mathbb{Q}_p^{\times})^{p-1}$ is of order p-1, we have $[\mathbb{Q}_p(\sqrt[p-1]{-p}):\mathbb{Q}_p] = p-1$ by Kummer theory. Hence it suffices to show $\sqrt[p-1]{-p} \in \mathbb{Q}_p(\mu_p)$. The minimal polynomial of π over \mathbb{Q}_p is given by $((X+1)^p - 1)/X$, which is written of the form

$$X^{p-1} + p(a_{p-2}X^{p-2} + \dots + a_1X + a_0), \quad a_i \in \mathbb{Z}_p, \ a_0 = 1.$$

Consider the polynomial

$$f(X) = X^{p-1} - (a_{p-2}\pi^{p-2} + \dots + a_1\pi + a_0) \in \mathbb{Z}_p[\mu_p][X].$$

Its image to the residue field $\mathbb{Z}[\mu_p]/(\pi) = \mathbb{F}_p$ is $X^{p-1} - 1 = \prod_{a \in \mathbb{F}_p^{\times}} (X - a)$. Hence by Hensel's lemma, there exists $u \in \mathbb{Z}_p[\mu_p]$ such that f(u) = 0 and $u \neq 0 \mod \pi$. The latter condition implies $u \in \mathbb{Z}_p[\mu_p]^{\times}$. Set $\pi' = \pi/u \in \mathbb{Z}_p[\mu_p]$. By construction,

$$(\pi')^{p-1} = \frac{-p(a_{p-2}\pi^{p-2} + \dots + a_1\pi + a_0)}{a_{p-2}\pi^{p-2} + \dots + a_1\pi + a_0} = -p$$

This means $\sqrt[p-1]{-p} \in \mathbb{Q}_p(\mu_p).$

¹This holds in a more general setup if we use the symbol (-, -) instead (see [Ser79, p. 207, Remark 3]).

(c) For the computation of θ_0 , we will use the uniformizer $\pi = \zeta_p - 1$ for a primitive *p*-th root of unity ζ_p . For $n \ge 1$, we compute

$$\frac{\zeta_p^n - 1}{\zeta_p - 1} = 1 + \zeta_p + \dots + \zeta_p^{n-1} \equiv 1 \mod \pi.$$

lies for $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ that $\overline{\sigma}_a(\pi)/\pi = a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$, namely, $\theta_0 \circ \overline{\sigma} = \mathrm{id}$.

Problem 4. Keep the assumption and notation as in Problem 3. Consider the local Artin map (reciprocity map)

$$\operatorname{Art}_p = (\ , */\mathbb{Q}_p) \colon \mathbb{Q}_p^{\times} \longrightarrow \operatorname{Gal}(\mathbb{Q}_p^{\operatorname{ab}}/\mathbb{Q}_p)$$

with the arithmetic normalization as in [Ser79]. Write $\mathbb{Q}_p(\mu_{p^{\infty}}) \coloneqq \bigcup_{m \ge 1} \mathbb{Q}_p(\mu_{p^m})$ and fix the identification

$$\mathbb{Z}_p^{\times} \xrightarrow{\cong} \operatorname{Gal}(\mathbb{Q}_p(\mu_{p^{\infty}})/\mathbb{Q}_p); \quad a \longmapsto (\sigma_a \colon \zeta_{p^m} \mapsto \zeta_{p^m}^{a \mod p^m}).$$

Let $u \in \mathbb{Z}_p^{\times}$ be a primitive (p-1)st root of unity (which exists by Problem 3(a)). We are going to show $\operatorname{Art}_p(u)|_{\mathbb{Q}_p(\mu_p\infty)} = \sigma_{u^{-1}}$.

- (a) Let $(-, -)_v : \mathbb{Q}_p^{\times} \times \mathbb{Q}_p^{\times} \to \mu_{p-1}$ denote the local symbol defined in the class and [Ser79, p. 208] for n = p 1. Show $(u, -p)_v = u$.
- (b) Deduce $\operatorname{Art}_p(u)|_{\mathbb{Q}_p(\mu_p)} = \overline{\sigma}_{u^{-1}}$.
- (c) Show $\operatorname{Art}_p(u)|_{\mathbb{Q}_p(\mu_n\infty)} = \sigma_{u^{-1}}$.

This impl

Solution. (a) Choose a primitive $(p-1)^2$ -th root of unity $\zeta \in \overline{\mathbb{Q}}_p$ such that $\zeta^{p-1} = u$. Since $\mathbb{Q}_p(\zeta)/\mathbb{Q}_p$ is unramified of degree p-1,

$$\operatorname{Art}_{\mathbb{Q}_p}(-p)|_{\mathbb{Q}_p(\zeta)} = \operatorname{Frob}_p^{v_p(-p)} = \operatorname{Frob}_p,$$

where $\operatorname{Frob}_p \in \operatorname{Gal}(\mathbb{Q}_p(\zeta)/\mathbb{Q}_p)$ is the *p*th power Frobenius map. By [Ser79, p. 208, Prop. 6], we compute

$$(u,-p)_v = \frac{\operatorname{Art}(-p)(\zeta)}{\zeta} = \frac{\operatorname{Frob}_p(\zeta)}{\zeta} = \frac{\zeta^p}{\zeta} = \zeta^{p-1} = u.$$

(b) With the notation as in Problem 3, it follows from [Ser79, p. 208, Prop. 6] and (a) that

$$\theta_0(\operatorname{Art}_p(u)|_{\mathbb{Q}_p(\mu_p)}) = \frac{\operatorname{Art}_p(u)|_{\mathbb{Q}_p(\mu_p)}(\sqrt[p-1]{-p})}{\sqrt[p-1]{-p}} = (-p, u)_v = (u, -p)^{-1} = u^{-1}.$$

By Problem 3(c), we conclude $\operatorname{Art}_p(u)|_{\mathbb{Q}_p(\mu_p)} = \overline{\sigma}_{u^{-1}}$.

(c) Since $u^{p-1} = 1$, the order of $\operatorname{Art}_p(u)|_{\mathbb{Q}_p(\mu_p\infty)} \in \operatorname{Gal}(\mathbb{Q}_p(\mu_p\infty)/\mathbb{Q}_p)$ divides p-1. However, the order of $\operatorname{Art}_p(u)|_{\mathbb{Q}_p(\mu_p)}$ is p-1 by (b). Hence the order of $\operatorname{Art}_p(u)|_{\mathbb{Q}_p(\mu_p\infty)}$ is exactly p-1. By Hensel's lemma as the proof of Problem 3(a), $\mu_{p-1} \subset \mathbb{Z}_p^{\times} \to (\mathbb{Z}/p\mathbb{Z})^{\times}$ is bijective. Hence there is a unique element of order p-1 in $\operatorname{Gal}(\mathbb{Q}_p(\mu_p\infty)/\mathbb{Q}_p)$ whose image in $\operatorname{Gal}(\mathbb{Q}_p(\mu_p)/\mathbb{Q}_p)$ is $\overline{\sigma}_{u^{-1}}$. Since both $\operatorname{Art}_p(u)|_{\mathbb{Q}_p(\mu_p\infty)}$ and $\sigma_{u^{-1}}$ satisfy this property, we conclude $\operatorname{Art}_p(u)|_{\mathbb{Q}_p(\mu_p\infty)} = \sigma_{u^{-1}}$.

Problem 5. Let $K = \mathbb{F}_p(t)$ and let \mathbb{A}_K denote its adèle ring. Show that K is discrete in \mathbb{A}_K and the quotient \mathbb{A}_K/K is compact (with respect to the quotient topology).

Solution. Note that \mathbb{A}_K is a locally compact topological ring. For this, one can first show that \mathbb{A} is a Hausdorff space. Let S be a finite subset of places containing all non-archimedean places. For any distinct $x, x' \in K$, there exists a place w such that $x_w \neq x'_w$. Since K_w is Hausdorff, there exists an open neighborhood $\mathcal{U} = \prod_{v \in S} U_v \times \prod_{v \notin S} \mathcal{O}_v \ni x$ and $\mathcal{U}' = \prod_{v \in S} U'_v \times \prod_{v \notin S} \mathcal{O}_v \ni x'$, such that $w \in S$ and $U_w \cap U'_w = \emptyset$, where U_v, U'_v are open subsets of K_v . It follows that $\mathcal{U} \cap \mathcal{U}' = \emptyset$. Next, since each \mathcal{O}_v is a subring of K_v , the addition and multiplication on \mathbb{A}_K are continuous, and hence \mathbb{A}_K is a

topological ring. As for local compactness, note that each \mathcal{O}_v is compact, and thus each K_v is locally compact, and so also is \mathbb{A}_K by Tychonoff's theorem.

We first show that the diagonal map $K \to \mathbb{A}_K$, $x \mapsto (x)_v$ makes K a discrete subring of \mathbb{A}_K . The diagonal map is well-defined, because each $x \in K$ lies in \mathcal{O}_v for almost all places v, and then $(x)_v \in \prod'_v K_v = \mathbb{A}_K$.

Step I. Set $R \coloneqq \mathbb{F}_p[t] \subset K$. Recall that the places of K correspond exactly to the maximal ideals of R and the valuation $v_{\infty} \coloneqq -\deg: f(t)/g(t) \mapsto \deg g - \deg f$. To see this, note that the maximal ideals of R and $-\deg$ define inequivalent valuations of K. Conversely, let v be a normalized valuation of K and let R_v (resp. \mathfrak{m}_v) be its valuation ring (resp. maximal ideal). Then $R \cap R_v$ is a subring of R containing \mathbb{F}_p .

- If $R \cap R_v = \mathbb{F}_p$, then $v(t^{-1}) > 0$. For $f(t) = a_n t^n + \dots + a_1 t + a_0 \in R$ with $a_n \neq 0$, write $f(t) = t^n(a_n + \dots + a_1 t^{-(n-1)} + a_0 t^{-n})$. Then $v(a_n + \dots + a_1 t^{-(n-1)} + a_0 t^{-n}) =$ $\min\{a_n, \dots, a_0 t^{-n}\} = v(a_n) = 0$, and thus v(f) = nv(t). By the multiplicativity of v, we see $v(f/g) = (\deg g - \deg f)v(t^{-1})$ for $f, g \in R$. Since v is normalized, we conclude $v = -\deg$.
- If $\mathbb{F}_p \subsetneq R \cap R_v$, then $t \in R \cap R_v$ since R_v is integrally closed. Hence $R \subset R_v$ and $R \cap \mathfrak{m}_v$ is a nonzero prime ideal, namely, a maximal ideal of R.

Each maximal ideal of R is generated by a unique irreducible monic polynomial $P \in R$, so write $v_P \colon K \to \mathbb{Z} \cup \{\infty\}$ for the corresponding normalized valuation. Observe that if $x \in K$ satisfies $v_P(x) \ge 0$ for every such P, then $x \in R$.

Step II. We show that K is discrete in \mathbb{A}_K . Consider an open subset

$$U = \mathcal{O}_{K_{v_{\infty}}} \times (t\mathcal{O}_{K_{v_t}}) \times \prod_{P \neq t} \mathcal{O}_{K_{v_P}} \subset \mathbb{A}_K$$

The preceding observation shows

$$K \cap U = \{ f \in R \mid \deg f \leq 0, \ f \in tR \} = \{ 0 \}.$$

Since \mathbb{A}_K is a topological ring, we conclude $K \cap (x + U) = \{x\}$ for every $x \in K$ with x + U open in \mathbb{A}_K . This means that K is discrete in \mathbb{A}_K .

Step III. Finally, we show that \mathbb{A}_K/K is compact. Since K is a discrete subgroup of \mathbb{A}_K , the quotient \mathbb{A}_K/K is Hausdorff. Set

$$Z=\prod_{v}\mathcal{O}_{K_{v}}\subset\mathbb{A}_{K},$$

where v runs over all the places of K. Since each \mathcal{O}_{K_v} compact, so is Z by Tychonoff's theorem. We claim $K + Z = \mathbb{A}_K$. For this, take any $(x_v) \in \mathbb{A}_K$. By definition, there are only finitely many v's with $v(x_v) < 0$. Let P_1, \ldots, P_k be all the irreducible monic polynomials such that $v_i(x_{v_i}) < 0$ where $v_i \coloneqq v_{P_i}$. Since P_i is a uniformizer of \mathcal{O}_{v_i} , there exists $f_i \in R$ such that $x_{v_i} - f_i P_i^{v_i(x_{v_i})} \in \mathcal{O}_{v_i}$. Set $f = \sum_{i=1}^k f_i P_i^{v_i(x_{v_i})} \in K$. Since $P_i \in \mathcal{O}_{v_P}^{\times}$ for $P \neq P_i$, we see $x_{v_P} - f \in \mathcal{O}_{K_{v_P}}$ for every irreducible monic polynomial P. Consider $x_{v_{\infty}} - f \in K_{v_{\infty}} = \mathbb{F}_p(t^{-1})$. Choose $g \in R$ such that $x_{v_{\infty}} - f - g \in \mathcal{O}_{K_{v_{\infty}}} = \mathbb{F}_p[t]$. Since $x_{v_P} - f - g \in \mathcal{O}_{K_{v_P}}$, we conclude $(x_v) - f - g \in Z$ with $f + g \in K$. This means $K + Z = \mathbb{A}_K$. Since $Z \mapsto \mathbb{A}_K/K$ is continuous and surjective with Z compact, we conclude that \mathbb{A}_K/K is compact.

Problem 6. Let K be a global field and let \mathbb{I}_K denote its idèle group. Show that the inverse map $\mathbb{I}_K \to \mathbb{I}_K; x \mapsto x^{-1}$ is not continuous if \mathbb{I}_K is equipped with the induced topology $\mathbb{I}_K \subset \mathbb{A}_K$ from the adèle ring.

Solution. Let S_K (resp. $S_{K,\infty}$, resp. $S_{K,\text{fin}}$) denote the set of places (resp. infinite places, resp. finite places) of K. Recall that the following subsets of \mathbb{A}_K form an open neighborhood basis of 0:

$$U = \prod_{v \in S_{K,\infty}} U_v \times \prod_{v \in S} \mathfrak{p}_v^n \times \prod_{v \in S_{K,\mathrm{fin}} \setminus S} \mathcal{O}_{K_v}$$

where U_v is an open neighborhood of $0 \in K_v$ and $S \subset S_{K,\text{fin}}$ is a finite subset. In particular, the sets of the form $V \coloneqq (1+U) \cap \mathbb{I}_K$ for such U's form an open neighborhood basis of $1 \in \mathbb{I}_K$ with respect to the induced topology $\mathbb{I}_K \subset \mathbb{A}_K$. To show that the inverse map on \mathbb{I}_K is not continuous with respect to the induced topology, it suffices to see that V^{-1} is not open in \mathbb{I}_K with respect to the induced topology. Assume the contrary. Since $1 \in V^{-1}$, there exists an open neighborhood U' = $\prod_{v \in S_{K,\infty}} U_v \times \prod_{v \in S'} \mathfrak{p}_v^{n'} \times \prod_{v \in S_K,\text{fin} \setminus S'} \mathcal{O}_{K_v}$ of $0 \in \mathbb{A}_K$ of the above form such that $(1+U') \cap \mathbb{I}_K \subset V^{-1}$. Take $v \in S_{K,\text{fin}} \setminus (S \cup S')$ and set $x = (1, \ldots, 1, \pi_v, 1, \ldots) \in \mathbb{I}_K$, where π_v is the uniformizer of K_v placed in the v-component. Then $x \in 1 + U'$ but $x^{-1} = (1, \ldots, 1, \pi_v^{-1}, 1, \ldots) \notin 1 + U$ since $\pi_v^{-1} \notin \mathcal{O}_{K_v}$. This shows $x \in (1+U') \cap \mathbb{I}_K \setminus V^{-1}$, and we obtain contradiction.

Problem 7. Recall that K^{\times} embeds into \mathbb{I}_K diagonally for every global field K.

- (a) Show that \mathbb{Q}^{\times} and $\prod_{p} \mathbb{Z}_{p}^{\times} \times \mathbb{R}_{>0}$ generate $\mathbb{I}_{\mathbb{Q}}$, and $\mathbb{Q}^{\times} \cap (\prod_{p} \mathbb{Z}_{p}^{\times} \times \mathbb{R}_{>0}) = \{1\}.$
- (b) Let $K = \mathbb{Q}(\sqrt{-5})$. Show that \mathbb{I}_K is not generated by K^{\times} and $\prod_{v \in S_{K, \text{fin}}} \mathcal{O}_{K_v}^{\times} \times \mathbb{C}^{\times}$.
- Solution. (a) Take any $(x_v) \in \mathbb{I}_{\mathbb{Q}}$. By definition, there are only finitely many primes p with $v_p(x_p) \neq 0$. Hence $q' = \operatorname{sgn}(x_{\infty}) \cdot q' \in \mathbb{Q}^{\times}$, where $\operatorname{sgn}(x_{\infty}) = x_{\infty}/|x_{\infty}| \in \{\pm 1\}$. Then by construction,

$$q \cdot (x_v) \in \prod_p \mathbb{Z}_p^{\times} \times \mathbb{R}_{>0}.$$

This means that \mathbb{Q}^{\times} and $\prod_{p} \mathbb{Z}_{p}^{\times} \times \mathbb{R}_{>0}$ generate $\mathbb{I}_{\mathbb{Q}}$. Next take $q \in \mathbb{Q}^{\times}$ with $q \in \prod_{p} \mathbb{Z}_{p}^{\times} \times \mathbb{R}_{>0}$. Since $v_{p}(q) = 0$ for every prime p, we see $q \in \mathbb{Z}^{\times}$ must be equal to ± 1 . Since $q \in \mathbb{R}_{>0}$, we conclude q = 1, namely, $\mathbb{Q}^{\times} \cap (\prod_{p} \mathbb{Z}_{p}^{\times} \times \mathbb{R}_{>0}) = \{1\}$.

(b) Let I_K denote the ideal group and consider

$$f \colon \mathbb{I}_K \longrightarrow I_K, \quad (x_v) \longmapsto \prod_v \mathfrak{p}_v^{v(x_v)},$$

where \mathfrak{p}_v is the maximal ideal of \mathcal{O}_K corresponding to the finite place v. By definition of \mathbb{I}_K , f is well-defined and surjective. Moreover, $\operatorname{Ker} f = \prod_{v \in S_{K, \operatorname{fin}}} \mathcal{O}_{K_v}^{\times} \times \mathbb{C}^{\times}$ and $f(K^{\times})$ is the subgroup P_K of principal ideals. In particular, f induces an isomorphism

$$\frac{\mathbb{I}_K}{K^{\times} \prod_{v \in S_{K, \mathrm{fin}}} \mathcal{O}_{K_v}^{\times} \times \mathbb{C}^{\times}} \xrightarrow{\sim} I_K / P_K.$$

Since $(2, 1 + \sqrt{-5}) \in I_K$ is not principal, $I_K/P_K \neq 0$. This means that \mathbb{I}_K is not generated by K^{\times} and $\prod_{v \in S_{K, \text{fin}}} \mathcal{O}_{K_v}^{\times} \times \mathbb{C}^{\times}$.

Problem 8. For $n \ge 1$, let $\mathbb{Q}(\mu_n)$ denote the cyclotomic field generated by *n*th roots of unity and let $N: \mathbb{I}_{\mathbb{Q}(\mu_n)} \to \mathbb{I}_{\mathbb{Q}}$ be the norm map. Construct explicitly a group isomorphism

$$\mathbb{I}_{\mathbb{Q}}/(\mathbb{Q}^{\times}N(\mathbb{I}_{\mathbb{Q}(\mu_n)})) \xrightarrow{\cong} (\mathbb{Z}/n\mathbb{Z})^{\times}.$$

Moreover, describe the image in $(\mathbb{Z}/n\mathbb{Z})^{\times}$ of the following idèles:

- (a) $\pi_p = (1, ..., 1, p, 1, ..., 1)$ (*p* sits in the \mathbb{Q}_p -component) for (p, n) = 1;
- (b) c = (1, 1, ..., -1) (-1 sits in the \mathbb{R} -component and the other entries are 1).

You may use any result on the image of the local norm map $N_{\mathbb{Q}_p(\mu_n)/\mathbb{Q}_p} \colon \mathbb{Q}_p(\mu_n) \to \mathbb{Q}_p$ as long as you state it correctly.

Solution. Set $K = \mathbb{Q}(\mu_n)$. If n = 1, 2, then $K = \mathbb{Q}$, and hence there exists a unique isomorphism $\mathbb{I}_{\mathbb{Q}}/(\mathbb{Q}^{\times}N(\mathbb{I}_{\mathbb{Q}(\mu_n)})) \xrightarrow{\cong} (\mathbb{Z}/n\mathbb{Z})^{\times}$ as both are the trivial group. Assume $n \ge 3$ and write $n = q_1^{e_1} \cdots q_r^{e_r}$ for distinct primes with $e_i > 0$. Then K has no real places and is unramified outside $Q := \{q_1, \ldots, q_r\}$. Let v be a place of \mathbb{Q} and w a place of K above v. From what we know about N_{K/\mathbb{Q}_p} , we have the following.

(i) If $v = \infty$, we have

$$N_{K_w/\mathbb{R}}(K_v^\infty) = \mathbb{R}_{>0}.$$

(ii) If v = p is a prime, we have

$$N_{K_w/\mathbb{Q}_p}(\mathcal{O}_{K_v}^{\times}) = \begin{cases} \mathbb{Z}_p^{\times}, & p \notin Q, \\ 1 + q_i^{e_i} \mathbb{Z}_{q_i}, & p = q_i. \end{cases}$$

By Problem 7(a), the inclusion $\prod_p \mathbb{Z}_p^{\times} \times 1 \to \mathbb{I}_{\mathbb{Q}}$ induces an isomorphism

$$\alpha \colon \frac{\mathbb{I}_{\mathbb{Q}}}{\mathbb{Q}^{\times} \prod_{p} 1 \times \mathbb{R}_{>0}} \xrightarrow{\sim} \prod_{p} \mathbb{Z}_{p}^{\times}$$

Under this isomorphism, we see

$$\beta \colon \mathbb{I}_{\mathbb{Q}}/(\mathbb{Q}^{\times}N(\mathbb{I}_{\mathbb{Q}(\mu_n)})) \xrightarrow{\sim} \prod_{p \notin Q} \mathbb{Z}_p^{\times}/\mathbb{Z}_p^{\times} \times \prod_{i=1}^k \mathbb{Z}_{q_i}^{\times}/(1+q_i^{e_i}\mathbb{Z}_{q_i}) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$$

Let us determine the images of π_p and c under

$$\gamma \colon \mathbb{I}_{\mathbb{Q}} \longrightarrow \mathbb{I}_{\mathbb{Q}}/(\mathbb{Q}^{\times}N(\mathbb{I}_{\mathbb{Q}(\mu_n)})) \xrightarrow{\beta} (\mathbb{Z}/n\mathbb{Z})^{\times}.$$

For any place v of \mathbb{Q} , let $i_v \colon \mathbb{Q}_v = \mathbb{Q}_v \times \prod_{v' \neq v} 1 \hookrightarrow \mathbb{I}_{\mathbb{Q}}$ denote the inclusion. So

$$\pi_p = i_p(p), \quad c = i_\infty(-1).$$

Similarly, for any subset $S \subset S_{\mathbb{Q}, \text{fin}}$ of the primes, let $i_S \colon \prod_{p \in S} \mathbb{Z}_p^{\times} = \prod_{p \in S} \mathbb{Z}_p^{\times} \times \prod_{v \notin S} 1 \hookrightarrow \mathbb{I}_{\mathbb{Q}}$ denote the inclusion.

(a) For p with (n, p) = 1, namely, $p \notin Q$, we have

$$p = i_p(p) \cdot i_Q(p) \cdot i_{S_{\mathbb{Q}, \mathrm{fin}} \setminus (Q \cup \{p\})}(p) \cdot i_\infty(p)$$

as elements of $\mathbb{I}_{\mathbb{Q}}$ since $p \in \mathbb{Z}_q^{\times}$ for $q \neq p$. By definition, as p > 0,

$$\gamma(p) = 1, \quad \gamma(i_{S_{\mathbb{Q}, \mathrm{fin}} \setminus (Q \cup \{p\})}(p)) = 1, \quad \gamma(i_{\infty}(p)) = 1.$$

Hence

$$\gamma(\pi_p) = \gamma(i_p(p)) = \gamma(i_Q(p))^{-1} = p^{-1} \in (\mathbb{Z}/n\mathbb{Z})^{\times}.$$

(b) Similarly to (a),

$$-1 = i_Q(-1) \cdot i_{S_{\mathbb{Q}, \text{fin}} \setminus Q}(-1) \cdot i_\infty(-1),$$

and we compute

$$\gamma(c) = \gamma(i_{\infty}(-1)) = \gamma(i_Q(-1))^{-1} = -1 \in (\mathbb{Z}/n\mathbb{Z})^{\times}.$$

Note that the global Artin map

 $\operatorname{Art}_{\mathbb{Q}} \colon \mathbb{I}_{\mathbb{Q}} \longrightarrow \operatorname{Gal}(\mathbb{Q}^{\operatorname{ab}}/\mathbb{Q})$

induces an isomorphism

$$\operatorname{Art}_{\mathbb{Q}(\mu_n)/\mathbb{Q}} \colon \mathbb{I}_{\mathbb{Q}}/(\mathbb{Q}^{\times}N(\mathbb{I}_{\mathbb{Q}(\mu_n)})) \xrightarrow{\sim} \operatorname{Gal}(\mathbb{Q}(\mu_n)/\mathbb{Q})$$

and the cyclotomic theory gives an isomorphism

$$\sigma \colon (\mathbb{Z}/n\mathbb{Z})^{\times} \xrightarrow{\sim} \operatorname{Gal}(\mathbb{Q}(\mu_n)/\mathbb{Q}), \quad a \longmapsto (\sigma \colon \zeta_n \mapsto \zeta_n^a).$$

Consider the diagram

By the above computation, we see this diagram is commutative if the local Artin map $\operatorname{Art}_{\mathbb{Q}_p} : \mathbb{Q}_p^{\times} \to \operatorname{Gal}(\mathbb{Q}_p^{\operatorname{ab}}/\mathbb{Q}_p)$ satisfies $\operatorname{Art}_{\mathbb{Q}_p}(p)|_{\mathbb{Q}_p^{\operatorname{ur}}} = (x \mapsto x^{-p})$ under the identification $\operatorname{Gal}(\mathbb{Q}_p^{\operatorname{ur}}/\mathbb{Q}_p) = \operatorname{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p)$, namely, if one uses the geometric normalization for $\operatorname{Art}_{\mathbb{Q}_p}$.

References

- [Lan94] Serge Lang. Algebraic Number Theory, volume 110 of Graduate Texts in Mathematics. Springer-Verlag, New York, 3rd edition, 1994.
- [Ser79] Jean-Pierre Serre. Local Fields, volume 67 of Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg.

QIUZHEN COLLEDGE, SHUANGQING, TSINGHUA UNIVERSITY, 100084, BEIJING, CHINA *Email address:* dwh23@mails.tsinghua.edu.cn