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Problem 1. Prove that the multiplicative group K× of the non-archimedean local field K = Fp((t))

has a non-closed subgroup of finite index.

Solution. Since t is a uniformizer we have an isomorphism

K× ∼= F×
p × U × tZ, U = 1 + tFp[[t]].

We first claim that the map


Z>0

{0, 1, . . . , p− 1} −→ U, (an)n>0 −→


n>0

(1 + t)an

is a bijection of sets. To see this, note that since


n>0(1 + t)an becomes a finite product modulo
1 + tmFp[[t]] for every m, the infinite product converges in U , and thus the above map is well-defined.
Conversely, any f(t) ∈ U is written uniquely of the above form


n>0(1 + t)an . Namely, write f(t) =

1 + b
(1)
1 t + b

(1)
2 t2 + · · · with b

(1)
i ∈ {0, 1, . . . , p − 1} and set a1 = b

(1)
1 . Then f(t)(1 + t)−a1 is of the

form 1 + b
(2)
2 t2 + b

(2)
3 b3 + · · · with b

(2)
i ∈ {0, 1, . . . , p− 1}, and thus set a2 = b

(2)
2 . Repeating this gives

(an) ∈


Z>0{0, 1, . . . , p− 1} with

(1+ tn)an = f(t) and the uniqueness can be seen by induction on

n. Next we see that the subgroup

Up := {xp | x ∈ U} = 1 + tpFp[[t
p]]

since x → xp is a ring endomorphism of K. Regard U/Up as an Fp-vector space. The above claim
gives an isomorphism of Fp-vector spaces



Z>0\pZ>0

Fp
∼−→ U/Up, (an) −→



n>0

(1 + tn)an mod Up.

Since


Z>0\pZ>0
Fp is a proper Fp-vector subspace of


Z>0\pZ>0

Fp, take an Fp-linear surjection

α :


Z>0\pZ>0

Fp −→ Fp, Kerα ⊃


Z>0\pZ>0

Fp.

Set
U ′ := Ker(U → U/Up α−−→ Fp).

Then U ′ is a subgroup of U of index p. We claim that U ′ is not a closed subgroup of U , equivalently,
1 + tmFp[[t]] ∕⊂ U ′ for every m. In fact, take f(t) ∈ U\U ′ and write f(t) =


n>0(1 + tn)an as above.

Then f(t)


0<n<m(1 + tn)−an =


nm(1 + tn)−an ∈ 1 + tmFp[[t]]. Since


0<n<m(1 + tn)−an ∈ U ′,
we conclude f(t)


0<n<m(1 + tn)−an ∈ (1 + tmFp[[t]])\U ′. Consider

N := F×
p × U ′ × tZ ⊂ K×.

By construction, N is a subgroup of K× of index p. Since U ′ = N ∩U is not closed, N is not a closed
subgroup of K×.

□
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Problem 2. Let K be a non-archimedean local field with charK ∕= 2 and let (−,−)v : K
× ×K× →

{±1} denote the local symbol defined in the class and [Ser79, p. 208] for n = 2. Show that for each
a, b ∈ K×, (a, b)v = 1 if and only if there exists x, y, z ∈ K such that z2 = ax2 + by2.1 (Hint: Use
[Ser79, p. 208, Prop. 7(iii)].)

Solution. By [Ser79, p. 208, Prop. 7(iii)], (a, b)v = 1 if and only if b is a norm in K(
√
a)/K. Observe

that the norm of s + t
√
a ∈ K(

√
a) with s, t ∈ K is s2 − at2. So if b is a norm, write b = s2 − at2.

Then x = t, y = 1, and z = s satisfy z2 = ax2 + by2. Conversely, if there exists x, y, z ∈ K such that
z2 = ax2 + by2, set s = z/y ∈ K and t = x/y ∈ K. Then b is the norm of s+ t

√
a.

□

Problem 3. Let p  3. For each n  1, let µn := {ζ ∈ Qp | ζn = 1}.
(a) Show µp−1 ⊂ Qp.
(b) Show Qp(µp) = Qp( p−1

√
−p), where p−1

√
−p denotes a root of xp−1 + p = 0 in Qp.

(c) Consider the following isomorphisms

σ : (Z/pZ)×
∼=−→ Gal(Qp(µp)/Qp); a −→ (σa : ζp → ζap )

with ζp ∈ µp, and

θ0 : Gal(Qp(µp)/Qp)
∼=−→ (Z/pZ)×; g −→ g(π)/π,

with π ∈ Zp[µp] a uniformizer. Here the second map θ0 is defined in [Ser79, p. 67, Prop. 7]
and is an isomorphism since Qp(µp)/Qp is a tamely ramified extension of degree p− 1. Show
θ0 ◦ σ = id.

Solution. (a) Notice that all p solutions of T p − T are exactly all p elements of the residue field Fp

of Qp. It follows that the primitive polynomial T p−1 − 1 splits in Fp. On the other hand, it has
derivative (p − 1)T p−2 ∕= 0, and hence is separable over Fp. By Hensel’s lemma [Lan94, p. 43],
each root in Fp lifts to Zp and then T p−1 − 1 splits in Qp. Therefore, µp−1 ⊂ Qp.

(b) We know that Qp(µp)/Qp is a ramified extension of degree p− 1 with ring of integers Zp[µp] and
a uniformizer π : ζp − 1 for a primitive p-th root of unity ζp. Since the image of p in Q×

p /(Q×
p )

p−1

is of order p− 1, we have [Qp( p−1
√
−p) : Qp] = p− 1 by Kummer theory. Hence it suffices to show

p−1
√
−p ∈ Qp(µp). The minimal polynomial of π over Qp is given by ((X + 1)p − 1)/X, which is

written of the form

Xp−1 + p(ap−2X
p−2 + · · ·+ a1X + a0), ai ∈ Zp, a0 = 1.

Consider the polynomial

f(X) = Xp−1 − (ap−2π
p−2 + · · ·+ a1π + a0) ∈ Zp[µp][X].

Its image to the residue field Z[µp]/(π) = Fp is Xp−1 − 1 =


a∈F×
p
(X − a). Hence by Hensel’s

lemma, there exists u ∈ Zp[µp] such that f(u) = 0 and u ∕≡ 0 mod π. The latter condition implies
u ∈ Zp[µp]

×. Set π′ = π/u ∈ Zp[µp]. By construction,

(π′)p−1 =
−p(ap−2π

p−2 + · · ·+ a1π + a0)

ap−2πp−2 + · · ·+ a1π + a0
= −p.

This means p−1
√
−p ∈ Qp(µp).

1This holds in a more general setup if we use the symbol (−,−) instead (see [Ser79, p. 207, Remark 3]).
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(c) For the computation of θ0, we will use the uniformizer π = ζp−1 for a primitive p-th root of unity
ζp. For n  1, we compute

ζnp − 1

ζp − 1
= 1 + ζp + · · ·+ ζn−1

p ≡ 1 mod π.

This implies for a ∈ (Z/pZ)× that σa(π)/π = a ∈ (Z/pZ)×, namely, θ0 ◦ σ = id.
□

Problem 4. Keep the assumption and notation as in Problem 3. Consider the local Artin map
(reciprocity map)

Artp = ( , ∗/Qp) : Q×
p −→ Gal(Qab

p /Qp)

with the arithmetic normalization as in [Ser79]. Write Qp(µp∞) :=


m1 Qp(µpm) and fix the identi-
fication

Z×
p

∼=−→ Gal(Qp(µp∞)/Qp); a −→ (σa : ζpm → ζa mod pm

pm ).

Let u ∈ Z×
p be a primitive (p − 1)st root of unity (which exists by Problem 3(a)). We are going to

show Artp(u)|Qp(µp∞ ) = σu−1 .

(a) Let (−,−)v : Q×
p ×Q×

p → µp−1 denote the local symbol defined in the class and [Ser79, p. 208]
for n = p− 1. Show (u,−p)v = u.

(b) Deduce Artp(u)|Qp(µp) = σu−1 .
(c) Show Artp(u)|Qp(µp∞ ) = σu−1 .

Solution. (a) Choose a primitive (p−1)2-th root of unity ζ ∈ Qp such that ζp−1 = u. Since Qp(ζ)/Qp

is unramified of degree p− 1,

ArtQp
(−p)|Qp(ζ) = Frobvp(−p)

p = Frobp,

where Frobp ∈ Gal(Qp(ζ)/Qp) is the pth power Frobenius map. By [Ser79, p. 208, Prop. 6], we
compute

(u,−p)v =
Art(−p)(ζ)

ζ
=

Frobp(ζ)

ζ
=

ζp

ζ
= ζp−1 = u.

(b) With the notation as in Problem 3, it follows from [Ser79, p. 208, Prop. 6] and (a) that

θ0(Artp(u)|Qp(µp)) =
Artp(u)|Qp(µp)(

p−1
√
−p)

p−1
√
−p

= (−p, u)v = (u,−p)−1 = u−1.

By Problem 3(c), we conclude Artp(u)|Qp(µp) = σu−1 .
(c) Since up−1 = 1, the order of Artp(u)|Qp(µp∞ ) ∈ Gal(Qp(µp∞)/Qp) divides p − 1. However, the

order of Artp(u)|Qp(µp) is p − 1 by (b). Hence the order of Artp(u)|Qp(µp∞ ) is exactly p − 1. By
Hensel’s lemma as the proof of Problem 3(a), µp−1 ⊂ Z×

p → (Z/pZ)× is bijective. Hence there
is a unique element of order p− 1 in Gal(Qp(µp∞)/Qp) whose image in Gal(Qp(µp)/Qp) is σu−1 .
Since both Artp(u)|Qp(µp∞ ) and σu−1 satisfy this property, we conclude Artp(u)|Qp(µp∞ ) = σu−1 .

□

Problem 5. Let K = Fp(t) and let AK denote its adèle ring. Show that K is discrete in AK and the
quotient AK/K is compact (with respect to the quotient topology).

Solution. Note that AK is a locally compact topological ring. For this, one can first show that A is
a Hausdorff space. Let S be a finite subset of places containing all non-archimedean places. For any
distinct x, x′ ∈ K, there exists a place w such that xw ∕= x′

w. Since Kw is Hausdorff, there exists
an open neighborhood U =


v∈S Uv ×


v/∈S Ov ∋ x and U ′ =


v∈S U ′

v ×


v/∈S Ov ∋ x′, such that
w ∈ S and Uw ∩U ′

w = ∅, where Uv, U
′
v are open subsets of Kv. It follows that U ∩ U ′ = ∅. Next, since

each Ov is a subring of Kv, the addition and multiplication on AK are continuous, and hence AK is a
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topological ring. As for local compactness, note that each Ov is compact, and thus each Kv is locally
compact, and so also is AK by Tychonoff’s theorem.

We first show that the diagonal map K → AK , x → (x)v makes K a discrete subring of AK .
The diagonal map is well-defined, because each x ∈ K lies in Ov for almost all places v, and then
(x)v ∈

′
v Kv = AK .

Step I. Set R := Fp[t] ⊂ K. Recall that the places of K correspond exactly to the maximal ideals
of R and the valuation v∞ := − deg : f(t)/g(t) → deg g − deg f . To see this, note that the maximal
ideals of R and − deg define inequivalent valuations of K. Conversely, let v be a normalized valuation
of K and let Rv (resp. mv) be its valuation ring (resp. maximal ideal). Then R ∩ Rv is a subring of
R containing Fp.

• If R ∩ Rv = Fp, then v(t−1) > 0. For f(t) = ant
n + · · · + a1t + a0 ∈ R with an ∕= 0,

write f(t) = tn(an + · · · + a1t
−(n−1) + a0t

−n). Then v(an + · · · + a1t
−(n−1) + a0t

−n) =

min{an, . . . , a0t−n} = v(an) = 0, and thus v(f) = nv(t). By the multiplicativity of v, we see
v(f/g) = (deg g − deg f)v(t−1) for f, g ∈ R. Since v is normalized, we conclude v = − deg.

• If Fp ⊊ R ∩Rv, then t ∈ R ∩Rv since Rv is integrally closed. Hence R ⊂ Rv and R ∩mv is a
nonzero prime ideal, namely, a maximal ideal of R.

Each maximal ideal of R is generated by a unique irreducible monic polynomial P ∈ R, so write
vP : K → Z ∪ {∞} for the corresponding normalized valuation. Observe that if x ∈ K satisfies
vP (x)  0 for every such P , then x ∈ R.

Step II. We show that K is discrete in AK . Consider an open subset

U = OKv∞
× (tOKvt

)×


P ∕=t

OKvP
⊂ AK .

The preceding observation shows

K ∩ U = {f ∈ R | deg f  0, f ∈ tR} = {0}.

Since AK is a topological ring, we conclude K ∩ (x + U) = {x} for every x ∈ K with x + U open in
AK . This means that K is discrete in AK .

Step III. Finally, we show that AK/K is compact. Since K is a discrete subgroup of AK , the
quotient AK/K is Hausdorff. Set

Z =


v

OKv ⊂ AK ,

where v runs over all the places of K. Since each OKv compact, so is Z by Tychonoff’s theorem. We
claim K + Z = AK . For this, take any (xv) ∈ AK . By definition, there are only finitely many v’s
with v(xv) < 0. Let P1, . . . , Pk be all the irreducible monic polynomials such that vi(xvi) < 0 where
vi := vPi . Since Pi is a uniformizer of Ovi , there exists fi ∈ R such that xvi − fiP

vi(xvi
)

i ∈ Ovi .
Set f =

k
i=1 fiP

vi(xvi
)

i ∈ K. Since Pi ∈ O×
vP

for P ∕= Pi, we see xvP
− f ∈ OKvP

for every
irreducible monic polynomial P . Consider xv∞ − f ∈ Kv∞ = Fp((t

−1)). Choose g ∈ R such that
xv∞ −f −g ∈ OKv∞

= Fp[[t]]. Since xvP
−f −g ∈ OKvP

, we conclude (xv)−f −g ∈ Z with f +g ∈ K.
This means K+Z = AK . Since Z → AK/K is continuous and surjective with Z compact, we conclude
that AK/K is compact.

□

Problem 6. Let K be a global field and let IK denote its idèle group. Show that the inverse map
IK → IK ;x → x−1 is not continuous if IK is equipped with the induced topology IK ⊂ AK from the
adèle ring.
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Solution. Let SK (resp. SK,∞, resp. SK,fin) denote the set of places (resp. infinite places, resp. finite
places) of K. Recall that the following subsets of AK form an open neighborhood basis of 0:

U =


v∈SK,∞

Uv ×


v∈S

pnv ×


v∈SK,fin\S

OKv ,

where Uv is an open neighborhood of 0 ∈ Kv and S ⊂ SK,fin is a finite subset. In particular, the
sets of the form V := (1 + U) ∩ IK for such U ’s form an open neighborhood basis of 1 ∈ IK with
respect to the induced topology IK ⊂ AK . To show that the inverse map on IK is not continuous
with respect to the induced topology, it suffices to see that V −1 is not open in IK with respect to
the induced topology. Assume the contrary. Since 1 ∈ V −1, there exists an open neighborhood U ′ =

v∈SK,∞
Uv×


v∈S′ pn

′

v ×


v∈SK,fin\S′ OKv of 0 ∈ AK of the above form such that (1+U ′)∩IK ⊂ V −1.
Take v ∈ SK,fin\(S∪S′) and set x = (1, . . . , 1,πv, 1, . . .) ∈ IK , where πv is the uniformizer of Kv placed
in the v-component. Then x ∈ 1 + U ′ but x−1 = (1, . . . , 1,π−1

v , 1, . . .) /∈ 1 + U since π−1
v /∈ OKv . This

shows x ∈ (1 + U ′) ∩ IK\V −1, and we obtain contradiction.
□

Problem 7. Recall that K× embeds into IK diagonally for every global field K.

(a) Show that Q× and


p Z×
p × R>0 generate IQ, and Q× ∩ (


p Z×

p × R>0) = {1}.
(b) Let K = Q(

√
−5). Show that IK is not generated by K× and


v∈SK,fin

O×
Kv

× C×.

Solution. (a) Take any (xv) ∈ IQ. By definition, there are only finitely many primes p with vp(xp) ∕= 0.
Hence q′ = sgn(x∞) · q′ ∈ Q×, where sgn(x∞) = x∞/|x∞| ∈ {±1}. Then by construction,

q · (xv) ∈


p

Z×
p × R>0.

This means that Q× and


p Z×
p × R>0 generate IQ. Next take q ∈ Q× with q ∈


p Z×

p × R>0.
Since vp(q) = 0 for every prime p, we see q ∈ Z× must be equal to ±1. Since q ∈ R>0, we conclude
q = 1, namely, Q× ∩


p Z×

p × R>0


= {1}.

(b) Let IK denote the ideal group and consider

f : IK −→ IK , (xv) −→


v

pv(xv)
v ,

where pv is the maximal ideal of OK corresponding to the finite place v. By definition of IK , f is
well-defined and surjective. Moreover, Ker f =


v∈SK,fin

O×
Kv

× C× and f(K×) is the subgroup
PK of principal ideals. In particular, f induces an isomorphism

IK
K× 

v∈SK,fin
O×

Kv
× C×

∼−→ IK/PK .

Since (2, 1+
√
−5) ∈ IK is not principal, IK/PK ∕= 0. This means that IK is not generated by K×

and


v∈SK,fin
O×

Kv
× C×.

□

Problem 8. For n  1, let Q(µn) denote the cyclotomic field generated by nth roots of unity and let
N : IQ(µn) → IQ be the norm map. Construct explicitly a group isomorphism

IQ/(Q×N(IQ(µn)))
∼=−→ (Z/nZ)×.

Moreover, describe the image in (Z/nZ)× of the following idèles:

(a) πp = (1, . . . , 1, p, 1, . . . , 1) (p sits in the Qp-component) for (p, n) = 1;
(b) c = (1, 1, . . . ,−1) (−1 sits in the R-component and the other entries are 1).

You may use any result on the image of the local norm map NQp(µn)/Qp
: Qp(µn) → Qp as long as you

state it correctly.
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Solution. Set K = Q(µn). If n = 1, 2, then K = Q, and hence there exists a unique isomorphism
IQ/(Q×N(IQ(µn)))

∼=−→ (Z/nZ)× as both are the trivial group. Assume n  3 and write n = qe11 · · · qerr
for distinct primes with ei > 0. Then K has no real places and is unramified outside Q := {q1, . . . , qr}.
Let v be a place of Q and w a place of K above v. From what we know about NK/Qp

, we have the
following.

(i) If v = ∞, we have
NKw/R(K

∞
v ) = R>0.

(ii) If v = p is a prime, we have

NKw/Qp
(O×

Kv
) =


Z×
p , p /∈ Q,

1 + qeii Zqi , p = qi.

By Problem 7(a), the inclusion


p Z×
p × 1 → IQ induces an isomorphism

α :
IQ

Q× 
p 1× R>0

∼−→


p

Z×
p .

Under this isomorphism, we see

β : IQ/(Q×N(IQ(µn)))
∼−→



p/∈Q

Z×
p /Z×

p ×
k

i=1

Z×
qi/(1 + qeii Zqi)

∼= (Z/nZ)×.

Let us determine the images of πp and c under

γ : IQ −→ IQ/(Q×N(IQ(µn)))
β−−→ (Z/nZ)×.

For any place v of Q, let iv : Qv = Qv ×


v′ ∕=v 1 ↩→ IQ denote the inclusion. So

πp = ip(p), c = i∞(−1).

Similarly, for any subset S ⊂ SQ,fin of the primes, let iS :


p∈S Z×
p =


p∈S Z×

p ×


v/∈S 1 ↩→ IQ denote
the inclusion.

(a) For p with (n, p) = 1, namely, p /∈ Q, we have

p = ip(p) · iQ(p) · iSQ,fin\(Q∪{p})(p) · i∞(p)

as elements of IQ since p ∈ Z×
q for q ∕= p. By definition, as p > 0,

γ(p) = 1, γ(iSQ,fin\(Q∪{p})(p)) = 1, γ(i∞(p)) = 1.

Hence
γ(πp) = γ(ip(p)) = γ(iQ(p))

−1 = p−1 ∈ (Z/nZ)×.

(b) Similarly to (a),
−1 = iQ(−1) · iSQ,fin\Q(−1) · i∞(−1),

and we compute

γ(c) = γ(i∞(−1)) = γ(iQ(−1))−1 = −1 ∈ (Z/nZ)×.

Note that the global Artin map
ArtQ : IQ −→ Gal(Qab/Q)

induces an isomorphism

ArtQ(µn)/Q : IQ/(Q
×N(IQ(µn)))

∼−→ Gal(Q(µn)/Q)

and the cyclotomic theory gives an isomorphism

σ : (Z/nZ)× ∼−→ Gal(Q(µn)/Q), a −→ (σ : ζn → ζan).

Consider the diagram
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IQ Gal(Qab/Q)

(Z/nZ)× Gal(Q(µn)/Q).

ArtQ

γ g →g|Q(µn)

σ
∼

By the above computation, we see this diagram is commutative if the local Artin map ArtQp
: Q×

p →
Gal(Qab

p /Qp) satisfies ArtQp
(p)|Qur

p
= (x → x−p) under the identification Gal(Qur

p /Qp) = Gal(Fp/Fp),
namely, if one uses the geometric normalization for ArtQp .

□
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