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HYPERSPHERICAL HAMILTONIAN VARIETIES
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Recently, Ben-Zvi–Sakellaridis–Venkatesh proposed a duality in the relative Langlands
program [BZSV], in which the main player is a class of Hamiltonian G-varieties M called
hyperspherical varieties. These are the expanded notes based on two seminar talks about
the structure theory of their new proposal.

We try to first introduce the motivations of their work and then describe the connection
between symplectic geometry and representation theory at an explicit level. The notes
also contain a vague discussion on certain technicalities for the cornerstone theory of
relative Langlands duality. We primarily focus on providing a refined overview of the
background, as an addendum of their paper, but it may result in a lack of rigor.

The main references besides [BZSV] are [Gan23, §9–§13], [BZ23, §11–§17], and [GW23,
§1–§6]. As for more backgrounds of [BZSV] beyond the present notes, [GW09, GN10,
Zhu17, Zhu18, BZCHN23] are particularly recommended. We claim responsibility for all
mistakes while disclaiming any originality.
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1. Motivations

1.1. Background on periods and L-functions. Over a global field F , let G be a
reductive group containing a subgroup H. Denote [H] = H(F )\H(AF ) ⊂ G(F )\G(AF ) =

[G] the locally symmetric spaces as automorphic quotients. A fundamental question in
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the automorphy theory is to study the H-period integral. More precisely, let π be a
(tempered) cuspidal automorphic representation of G(AF ) and define the period for any
ϕ ∈ π as the integral

PH(ϕ) :=



[H]

ϕ(h) dh.

Some of the central themes of the (relative) Langlands program are as follows:

(a) Characterize the nonvanishing of certain automorphic periods PH(ϕ).
(b) Whenever PH(ϕ) ∕= 0, relate it to certain (special value of) L-function.

There is a corresponding problem of (a) at the local level, called the H-distinction problem:

(Dist) Classify irreducible smooth representations of G which possess nonzero H-invariant
periods.

Our first goal of this introductory section is to explain why hyperspherical variety of
[BZSV] is the natural object to investigate when we aim to attack both (a) and (b).
To begin with (b), the notion of spherical varieties arises from trying to construct a
generic recipe of understanding when a subgroup H leads to a useful period. Moreover, to
integrate the considerations of (a) and (b) into a unified problem, drawing inspiration from
the historical work of others, [BZSV] establishes the concept of hyperspherical varieties.
In a sequel, hyperspherical varieties serve as the key object in addressing local problems
around (Dist).

Given a representation V of G∨, one can associate it an automorphic L-function L(π, V, s)

with the variable s ∈ C by considering the characteristic polynomials of conjugacy classes
in G∨ that act on V. Since the G∨-conjugacy classes carry the information of Hecke
eigenvalues (which further correspond to conjugacy classes of V∨), it can be reasonable to
match L(π, V, s) with L(ρ, V, s), the L-function for a Galois representation ρ depending
on V.

Conjecturally, at the global level, the classical Langlands correspondence asserts the
following picture, in which the automorphic L-function L(π, V, s) serves an intermediate
role, linking up the automorphic period PH(ϕ) and (the special value of) the Galois L-
function L(ρ, V, s).

(Automorphic side) (Galois side)

Automorphic periods PH(ϕ) Galois L-functions L(ρ, V, s)

Data on [H] ⊂ [G] Data on V

Data on G Data on G∨

≈ ≈

Question 1.1. Is there a conjectural correspondence between data on G and data on G∨,
realizing the classical Langlands correspondence at a certain restricted level? How do we
describe the objects carrying the information about G or G∨?

Here comes the spoiler:

In [BZSV], we can enlarge the (global) correspondence between PH(ϕ)

and L(ρ, V, s) to that between hyperspherical Hamiltonian G-varieties
and hyperspherical Hamiltonian G∨-varieties. The rigorous correspon-
dence is realized via the automorphic quantization and the spectral quan-
tization on both sides respectively.
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Rather, before explaining such a rough answer to Question 1.1, note that there can be
many explicit evidences of the correspondence between automorphic periods and Galois
L-functions.

Example 1.2 (Waldspurger formula and Whittaker period formula).

(1) Let E be a quadratic extension of the number field F . Take

H = ResE/F Gm ⊂ PGL2 = G

as reductive groups over F , where ResE/F denotes the Weil restriction of scalar.
It turns out that H is the maximal torus in G. Morally, Waldspurger [Wal85]
proved the formula

PH(ϕ)
2 ∼ L(πE , 1/2),

up to some local factors. Here L(πE , s) stands for the standard L-function of the
base-change πE of π to PGL2,E .

(2) Let F be a number field. Set G = SL2 and thus G(AF ) is the two-fold metaplectic
cover of SL2(AF ). In SL2, take the subgroup N =


1 ∗
0 1


and let H = Hχ be the

subgroup of matrices in N twisted by some fixed character χ of F\AF . Then for
the cuspidal automorphic representation π of G(AF ), the global Whittaker period
is written as

PH(ϕ) =



[H]

ϕ(h) dh =



F\AF

ϕ

1 h
0 1


· χ(h) dh

for any ϕ ∈ π. Roughly, up to some local factors, the Whittaker period formula
dictates that

PH(ϕ)
□ ∼ L(π, 1/2),

where the “doubling period” PH(ϕ)
□ resembles PH(ϕ)

2 in terms of (1). This
formula (cf. [Qiu13]) on metaplectic SL2 generalizes (1), relating the Fourier co-
efficients of half-integral-weight modular forms to the central L-values of integral-
weight modular forms.

Innocently, since we are able to define the period for each pair [H] ⊂ [G], it seems ad
hoc when we opt for specific periods only in terms of Example 1.2. However, people are
primarily interested in certain nice periods in the sense that their (conjectural) corre-
sponding L-functions have nice analytic properties, such as admitting a decomposition of
the Euler product. Also, we may expect conversely a general principle that nice properties
of L-functions come from realizations as periods. This is why we care about which period
to be realized.

1.2. Multiplicity-freeness and spherical varieties. To attack the H-distinction prob-
lem (Dist), one may naturally consider first decomposing an automorphic representation
of G after restricting to H, and then detecting the properties of H-invariant periods de-
fined by those restricted subrepresentations. But when we work with infinite-dimensional
representations of G, such a process hardly makes sense. Fortunately, the meaning of the
first step, namely decomposing restricted representations of G, can be assigned in a precise
way, by using the Plancherel decomposition for unitary representations of G restricted to
H. Such a phenomenon is called the branching law.

The local Gan–Gross–Prasad conjecture, which is a theorem now, considers such
branching laws for certain pairs (G,H) of classical groups over a local field F . We choose
one situation to depict with more details as follows.
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Example 1.3 (Multiplicity one property). Let Π and π be irreducible admissible auto-
morphic representations of SOn+1(F ) and SOn(F ), respectively. The question of interest
for Gan–Gross–Prasad is the understanding of

HomSOn(F )(Π,π) ∼= HomSOn(F )(Π⊗ π∨,C)
∼= HomSOn+1(F )×SOn(F )(S(X),Π∨ ⊗ π),

where X = SOn(F )\(SOn+1(F ) × SOn(F )). In the context of H-distinction problem
(Dist), note that π appears in Π if and only if HomSOn(F )(Π,π) ∕= 0. For this, historically,
the first important result proved is the multiplicity one property (cf. [AGRS10, SZ12])

mult(Π,π) := dimF HomSOn(F )(Π,π)  1.

Before the full multiplicity one theorem was proved, even finite dimensionality of the
multiplicity spaces was not known, which were later answered in greater generality by
Sakellaridis–Venkatesh [SV17].

Motivated by Example 1.3, we make the definition of multiplicity-free property. Recall
first that a homogeneous G-space is of the form H\G; it is naturally equipped with the
G-variety structure whenever G is an algebraic variety.

Definition 1.4 (Spherical varieties). A homogeneous G-variety X = H\G is called a
spherical variety if it satisfies the multiplicity-free condition, i.e., any irreducible character
of H appearing in some irreducible representation of G has multiplicity at most 1.

Write B for the Borel subgroup of G and X(T)+ for the group of dominant characters
with respect to B. Then the multiplicity-free condition in Definition 1.4 is equivalent to
the following:

⋄ For each λ ∈ X(T)+, the coordinate ring F[X], as a G-module, satisfies

multλ(F[X]) := dimF HomG(F[X](λ),F[X])  1,

where F[X](λ) is the simple G-module of the highest weight λ.

Remark 1.5. A priori people define an arbitrary G-variety X to be spherical if the
Borel subgroup B ⊂ G has an orbit as an open subvariety of X; or alternatively, say
X has finitely many B-orbits. These alternative descriptions can be equivalent to the
multiplicity-free condition whenever X is a homogeneous space.

1.3. Theta correspondence and Adams’ conjecture. Our goal of this subsection is
to claim that:

The relative Langlands duality in [BZSV], using the quantization, encom-
passes theta correspondence (or the Howe duality) and Adams’ conjecture,
which are results in the style of local-global compatibility.

Such an idea is enlightened by Wee Teck Gan’s CUHK talk in 2023.
Respectively, let V and W be a quadratic space and a symplectic space over a global

field F . We will see in §2.2.3 that there is a family of Weil representations of O(V ) ×
Sp(W ), written as {ΩV,W,ψ} and characterized by global characters ψ : F\AF → S1. Since
there is a natural map

iV,W : O(V )× Sp(W ) −→ Sp(V ⊗W ),

one may expect to pullback a certain representation from Sp(V ⊗ W ) along iV,W to
realize ΩV,W,ψ. However, such a pullback is exclusively available from Mp(V ⊗W ), the
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metaplectic cover of Sp(V ⊗W ), which is still seen as a craggy enigma so far. Considering
C([O(V ) × Sp(W )]), the space of smooth functions on the automorphic quotient, there
would be an equivariant map

ΩV,W,ψ
θ−→ A(Mp(V ⊗W )) −→ C([O(V )× Sp(W )])

given by the “formation of theta series” (cf. [Gan23, §3–§4]).

Construction 1.6 (Theta lifting). For each φ ∈ ΩV,W,ψ, the image of θ(φ) along the
right map above (which will be made explicit in Construction 2.10) is a function on
[O(V ) × Sp(W )], and thus can be used as a kernel function to transfer functions on
[O(V )] to those on [Sp(W )].

More precisely, suppose that σ ⊂ Acusp(Sp(W )) is a cuspidal representation of Sp(W )(AF ).
Then for φ ∈ ΩV,W,ψ and f ∈ σ, we define

θ(φ, f)(h) :=



[Sp(W )]

θ(φ)(gh) · f(g) dg,

for g ∈ Sp(WAF
) and dg denoting the Tamagawa measure. Then we set

Θ(σ) := 〈θ(φ, f) : φ ∈ ΩV,W,ψ, f ∈ σ〉 ⊂ A(O(V )).

This is an O(VAF
)-submodule of the space of automorphic forms on O(V ) and we call it

the global theta lifting of σ. One may also switch the positions of Sp(W ) and O(V ) to
define the global theta lifting of Acusp(O(V )) that lands in A(Sp(W )).

The first basic property about theta lifting, according to [Gan23], is the following
finiteness result. Here we consider G = O(V )× Sp(W ) as before.

Proposition 1.7 (Finiteness, by Howe [How89] and Kudla [Kud86]). Given the notations
above, for any π ∈ Irr(O(V )) and σ ∈ Irr(Sp(W )),

(1) Θ(π) ⊂ A(Sp(W )) has finite length, and
(2) dimHomG(ΩV,W,ψ,π ⊗ σ) < ∞.

The Howe duality theorem refines the finiteness results of Proposition 1.7. It was first
shown by Howe [How89] in the archimedean case, by Waldspurger [Wal90] in the p-adic
case with p ∕= 2, and in general in [Min08, GT16, GS17].

Theorem 1.8 (Howe duality). The Weil representation ΩV,W,ψ is strongly multiplicity-
free, i.e., for any π ∈ Irr(O(V )) and σ1,σ2 ∈ Irr(Sp(W )),

(1) dimHomG(ΩV,W,ψ,π ⊗ σi)  1, and
(2) if HomG(ΩV,W,ψ,π ⊗ σi) ∕= 0 for i = 1, 2, then σ1

∼= σ2.

On the other hand, we introduce Adams’ conjecture in another flavor. Note that for
G = O(V )× Sp(W ) we have

G∨ = O(2m)× SO(2n+ 1),

with m = dimV and n = dimW .

Conjecture 1.9 (Adams, [Ada89]). Suppose Π = π ⊗ σ ∈ Irr(G) is of Arthur type with
A-parameter ψ : W ′

F × SL2 → G∨. If Π occurs in the Weil representation ΩV,W,ψ, namely
HomG(ΩV,W,ψ,Π) ∕= 0, then there exists a spherical variety X with X∨ = O(2m), such
that the A-parameter ψ factors through X∨ × SL2 as follows:
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W ′
F × SL2 G∨ O(2m) SO(2n+ 1)

X∨ × SL2 O(2n) SO(2n+ 1− 2m).

ψ
= ×

ιX

×

From the insight of Sakellaridis–Venkatesh [SV17], we can see the desired maps ιX
in Adams’ conjecture are encoded by the geometry of spherical varieties (see also §3.5),
which admits a description of multiplicity-freeness appeared in Howe duality. If there
were a larger context encompassing Theorem 1.8 and Conjecture 1.9, then there would be
a hidden connection between the geometry of spherical varieties and Weil representation.
In [BZSV], we consider further hyperspherical varieties, which are spherical varieties
satisfying a stronger condition. Hopefully, the Howe duality can be understood as a
phenomenon of relative Langlands duality. Moreover, we expect that the L-parameters
and A-parameters in the usual sense can be classified by the geometry of hyperspherical
Hamiltonian G-varieties.

1.4. Derived geometric Satake and Hamiltonian actions. This subsection mainly
refers to [BZ23, §11–§17]. Let G be a reductive group over an algebraically closed field F.
Recall the definition of loop group and positive loop group associated with G as

LG(R) := G(R((t))) and L+G(R) := G(R[[t]])

for a k-algebra R. Let GrG = LG/L+G be the affine Grassmannian associated with G.
Let Shv(−) be a “topological” sheaf theory on F-schemes. For examples, we can use

Betti sheaves if F = C, or D-modules if F is of characteristic 0, or étale Qℓ-sheaves for
ℓ not equal to the characteristic of F. Let e be the coefficient field of our sheaf theory,
which is always an algebraically closed field of characteristic 0. Let G∨ be the dual group
over e. Recall the geometric Satake equivalence.

Theorem 1.10 (Geometric Satake equivalence). There is an equivalence of e-linear sym-
metric monoidal categories

(PervL+G(GrG), ∗) ∼= (Rep(G∨),⊗).

The monoidal structure on PervL+G(GrG) comes from the convolution structure on

HeckeG := L+G\LG/L+G = B(L+G)×B(LG) B(L+G).

However, this does not explain the commutativity of the convolution product. It only
gives a E1-structure. To get a symmetric monoidal category, we need an E3-structure.
We still need an E2-structure. This can be seen as follows. If our base field is C, and we
take Betti sheaf theory. We have

GrG = Map((D,D∗), (BG, ∗))

where D = SpecC[[t]] and D∗ = SpecC((t)) are respectively the formal disk and the
punctured formal disk. Up to homotopy, we can rewrite this as

GrG ≃ Map((R2,R2 −D0), (BG, ∗)) = Ω2(BG) = ΩG ≃ ΩGc,

where D0 = {x ∈ R2 : |x| < 1} is the unit dick, and Gc is the compact real form of G. In
fact, the homotopy equivalence GrG ≃ ΩGc can be made to be a homeomorphism. This
shows that the affine Grassmannian is homeomorphic to a double loop space and hence
naturally has a E2-product on the underlying topological space. This is the origin of the
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missing E2-structure. In the algebraic zoo, we certainly cannot use the argument above.
The solution is to use the factorization property of GrG. Basically, it allows you to vary
and collapse points on a curve C over F.

One may expect that the geometric Satake equivalence can be upgraded to an equiv-
alence of derived categories. This is possible, but the answer is not the naive one taking
QC(BG), the category of quasi-coherent sheaves, on the right-hand side.

Theorem 1.11 (Derived Satake equivalence). There is an equivalence of (E3-)monoidal
categories

Shv(HeckeG) ∼= QC!((pt×G∨ pt)/G∨) ∼= (Sym(g∨[2])-mod)G
∨

where QC! is a modified version of QC.

We can view derived Satake equivalence as an equivalence of local line operators of the
4-dimensional topological field theories (TFT) AG and BG∨ . For this, we shall restrict to
the Betti setting. We work with ∞-categories in the rest of the present section. Roughly
a TFT is a symmetric monoidal functor

Z : Bord□2,4 −→ C

where

• Bord□2,4 is the 2-category where objects are 2-manifolds, morphisms are bordisms
between 2-manifolds (i.e. 3-manifolds with boundaries) and 2-morphisms are 2-
bordisms between 2-manifolds (i.e. 4-manifolds with corners). The notation □ is
certain conditions on the bordisms (oriented, etc.).

• C is a symmetric monoidal 2-category (usually taken to be dgCatC, the (∞, 2)-
category of C-linear cocomplete stable ∞-categories).

We take C = dgCatC. Then Z(M2) is a C-linear dg-category. Monoidality of Z ensures
that Z(∅) = VectC is the category of C-vector spaces.

A meta-version of geometric Langlands should say that there is an equivalence of two
TFTs

AG
∼= BG∨ ,

which will be described later.
Consider the 2-sphere S2. By definition Z(S2) is a dg-category. We can endow Z(S2)

with a natural E3-monoidal structure as follows. Consider the bordism defined by a 3-
dimensional ball with two small balls inside removed. It can be viewed as a bordism from
S2 ⊔ S2 to S2. Thus it defines an algebra structure on S2 and the structure turns out
to be E3. Hence Z(S3) inherits a natural E3-monoidal structure. The monoidal category
Z(S2) is called the category of line operators of Z.

Given a 2-manifold M2 and a point x ∈ M2, we have an action of Z(S2) on the category
Z(M2) defined as follows. Consider the identity bordism M2 × I on M . Digging a hole
at the point (x, 1

2 ) ∈ M2 × I defines a bordism from M ⊔ S2 to M . It induces the action
map Z(S2) ⊗ Z(M2) → Z(M2). These actions vary locally constantly on the surface
M . As a result, we obtain an action of the factorization homology


M2 Z(S2) on Z(M2).

The factorization homology

M2 Z(S2) is defined as the “quotient” of


x∈M2 Z(S2) by

the relation that the objects vary locally constantly on the surface.
Similarly, the 3-sphere S3, viewed as a bordism between empty spaces, is mapping to a

complex in VectC = EnddgCatC(VectC). It carries a natural E4-algebra structure as above.
The E4-algebra Z(S3) is called the algebra of local operators of Z. If M3 is a 3-manifold,
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we have an action of

M2 Z(S3) on Z(M3). The relation between local operators and line

operators is

Z(S3) = HomZ(S2)(Z(D3),Z(D3)) = EndZ(S2)(1Z(S2)).

1.4.1. A-side. The A-side should take a Riemannian surface C to the category

AG(C) = Shv(BunG(C)).

We have AG(S
2) = Shv(BunG(P1)) ∼= Shv(HeckeG) because P2 and D ×D∗ D are “homo-

topic”. It follows that the line operators on the A-side are exactly the spherical Hecke
category.

Local operators for AG are given by

AG(S
3) = EndShv(HeckeG)(1) = H∗

L+G(pt) = H∗
G(pt) = Sym(h∨[−2])W .

1.4.2. B-side. The B-side can be made much more explicit. We will ignore the difference
between QC and QC! in the sequel. It should take a Riemannian surface C to the category

BG∨(C) = QC(LSG∨(C))

where LSG∨(C) is the moduli stack of G∨-local systems on C. Apply to S2. Note that
S2 is glued from two disks along a circle. Using that Maplc(S

1, BG∨) = G∨/G∨, we have

LSG∨(S2) = Maplc(pt×S1 pt, BG∨) = BG∨ ×G∨/G∨ BG∨ = (pt×G∨ pt)/G∨.

The underlying classical stack of LSG∨(S2) is simply BG. If we choose some coordinates,
we can write

(pt×G∨ pt)/G∨ = (pt×g∨ pt)/G∨ = Spec(∧•(g∨,∗[1]))/G∨.

Local operators for BG∨ are given by

BG∨(S3) = End∧•(g∨,∗[1])(C)G
∨
= Sym(g∨[−2])G

∨
= Sym(h∨[−2])W .

Therefore the local operators on the A-side and B-side are equal. Koszul duality shows
that

∧•(g∨,∗[1])-mod ∼= Sym(g∨[−2])-mod.

Let C be a Riemann surface. Fix a point x ∈ C. We should have an action of
(Sym(g∨[−2])-mod)G

∨
on BG∨(C). Or equivalently, the category BG∨(C) is linear over

g∨,∗[2]/G∨. We first consider the non-derived version. Restricting to a point x ∈ C, we
obtain a morphism

LSG∨(C) −→ BG∨.

Hence we get a tensor action of QC(BG) on QC(LSG∨)(C). Integrating over C, we ob-
tain an action of


C
QC(BG∨) on QC(LSG∨(C)). In fact, the factorization homology

C
QC(BG∨) is equal to QC(LSG∨(C)). The same story works for the A-side. The result

is the spectral action of QC(LSG∨(C)) on Shv(BunG(C)).
In the derived setting, we obtain an action of the factorization homology


C
BG∨(S2) BG∨(C).

A result of Beraldo shows that

C
BG∨(S2) is equal to the deformation quantization of

the shifted cotangent bundle T ∗[1]LSG∨(C). Hence the line operators detect the singular
support of sheaves on LSG∨(C).
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1.4.3. Hamiltonian spaces. Symplectic geometry enters the story naturally as an En-
algebra can be viewed as a deformation quantization of a Pn-algebra, which is roughly an
n-shifted Poisson algebra if n is odd. We can view g∨,∗[2]/G∨ as a 3-shifted symplectic
stack. This is because T ∗(BG∨) = g∨,∗[−1]/G∨ is a symplectic stack.

Hamiltonian spaces over G are related to boundary theories in TFTs. Let Z be a TFT,
a boundary theory is a morphism T between the trivial TFT and Z. For example, a
boundary theory for the trivial 4-dimensional TFT is equivalent to a 3-dimensional TFT.
Hence T (S2) will be a E3-algebra. On the level of cohomology, it is just a graded Poisson
algebra. Hence SpecH∗(T (S2)) is a graded Poisson variety. The Poisson product has
degree −2. On the other hand, from a graded symplectic space M (where the symplectic
form has degree 2), there is a 3-dimensional TFT called the Rozansky–Witten theory
associated with M .

Now consider the case that Z is not trivial. Then T (S2) is an E3-algebra in the
category Z(S2). This defines an affine morphism

Spec(T (S2)) −→ Spec(Z(S2))

compatible with Poisson products, where Spec(Z(S2)) is the 1-affine spectrum.
Apply the above discussion to the case Z = BG∨ . From a boundary theory T of BG∨ ,

we get an affine morphism

M/G∨ −→ g∨,∗[2]/G∨

which is compatible with Poisson structures. This is same to a graded Hamiltonian G-
space. Conversely, from a graded Hamiltonian G∨-action on a symplectic space, we can
construct a Rozansky–Witten boundary theory for BG∨ .

2. Hamiltonian spaces and quantization

In the following, we work over an algebraically closed field F of characteristic 0. Refer-
ring to [Gan23, §11] and [GW23], we plan to dedicate this section to revealing the hidden
connection between

Symplectic Geometry Representation Theory .?

2.1. Hamiltonian G-varieties.

2.1.1. Symplectic manifolds. In classical mechanics, the phase space of a classical system
(i.e. the moduli of all possible states of the given system) is modeled by a symplectic
manifold (M,ω), where M is a smooth variety over F and ω is a non-degenerate closed
symplectic 2-form on M . The symplectic form gives an identification

ιω : TM
∼−→ T ∗M

of tangent and cotangent bundles of M .
Denote by F(M) the space of rational F-valued functions on M . The space F∞(M) of

smooth F-valued functions on M is called the space of observables of the system. Any
function f ∈ F∞(M) gives a 1-form df . By contraction with ω we get a vector field Xf on
M . The symplectic form ω induces a Poisson bracket on F∞(M) (namely a Lie bracket
which is a derivation in each variable) via

{f1, f2} := ω(Xf1 ,Xf2),
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making (F∞(M), {·, ·}) a Poisson algebra. In general, a manifold M for which F∞(M)

is equipped with a Poisson algebra structure is called a Poisson manifold. Geometri-
cally, a Poisson manifold admits a foliation whose leaves are symplectic manifolds. Many
constructs and results in symplectic geometry continue to hold in the setting of Poisson
manifolds and our discussion will happen in this broader framework.

2.1.2. Moment maps and Hamiltonian G-varieties. Let M be a symplectic variety. The
group G acts on M by symplectomorphisms, i.e. the action preserves the symplectic form
ω.

Definition 2.1. A moment map for M is a G-equivariant morphism

µ : M −→ g∗

satisfying the condition:

• For X ∈ g, the identity
ω(X,−) = dµX

holds, where X is the vector field defined by differentiating the G-action on M

and µX is the function on M defined by µ composing with X : g∗ → Ga.

The condition above can be rewritten as follows:

• We have the following maps

g {Vector fields on M}

O(M)

X →X

f →Xf

compatible with Lie brackets or Poisson brackets. Giving a moment map is equiv-
alent to giving a G-equivariant lifting g → O(M) compatible with Lie brackets.

Definition 2.2. A Hamiltonian G-space is a symplectic G-variety M equipped with a
G-equivariant moment map µ : M → g∗.

Example 2.3 (Examples of Hamiltonian spaces).

(1) (Cotangent bundle). Let X be a smooth variety together with a G-action. The
cotangent bundle M = T ∗X carries a natural symplectic structure defined as
follows: Let θ be the tautological 1-form on M . Then ω = −dθ is a symplectic
form on M . Then M is naturally a Hamiltonian G-space. The moment map
µ : M → g∗ is dual to the action map g → TX.

(2) Let (V,ω) be a symplectic vector space. Take G = Sp(V ). Then V is naturally a
Hamiltonian G-space. The moment map is defined by

µ : V sp∗(V )

m (Z → 1
2ω(Zm,m))

for m ∈ V and Z ∈ sp(V ).
(3) (Whittaker space). Assume G is reductive. Let U be a maximal unipotent sub-

group of G. Let ψ : U → Ga be a generic additive character. Define M as the
left quotient by U of the preimage of dψ under T ∗G → u∗. It is a twist of the
cotangent bundle of U\G. As suggested by the construction, the Whittaker space
captures the Whittaker models studied in representation theory.
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(4) Consider T ∗G with G × G-action via left and right multiplication (denoted by
Gl × Gr). Then T ∗G ∼= g∗ × G with action (gl, gr) · (ξ, g) = (Ad(g−1

l )ξ, g−1
l ggr).

The moment map is
µ : g∗ × G g∗l × g∗r

(ξ, g) (−ξ,Ad(g)ξ).

(5) (Coadjoint orbit). Let O ⊂ g∗ be a coadjoint orbit. It carries a natural Symplectic
structure defined as follows: Let ξ ∈ O be a point. There is an isomorphism
TξO ∼= g/gξ where gξ is the centralizer of ξ in g. Define a bilinear form ωξ on g

by the formula

ωξ(X,Y) = ξ([X,Y]), ∀X,Y ∈ g.

Then ωξ descends to a symplectic form on g/gξ. Varying ξ along O, we obtain a
non-degenerate 2-form ωO on O which can be checked to be closed. Therefore O
is naturally a symplectic variety with G-action. The moment map for O is simply
the inclusion O ↩→ g∗.

2.1.3. Grading on Hamiltonian G-spaces. In most of the examples, the Hamiltonian spaces
we encountered admit natural gradings. Following [BZSV], we write Ggr = Gm for the
multiplicative group used for grading.

Definition 2.4. A Hamiltonian G-space M is graded if it is endowed with a Ggr-action
commuting with G-action, preserving the symplectic form ω up to square character (i.e.
ω(λ · X,λ · Y) = λ2ω(X,Y)), and compatible with the grading on g∗ given by scalar
multiplying by square character.

Using the notation in [BZSV], if we write M∨ for the dual Hamiltonian variety of M ,
then Definition 2.4 means that M is equipped with a commuting Ggr action of weight 2
on M∨ → g∗.

Example 2.5 (Graded Hamiltonian spaces). The examples in Example 2.3 can be up-
graded to graded Hamiltonian spaces as follows:

(1) The grading on M = T ∗X is given by square character acting on fibers.
(2) The grading on V is given by the usual scalar multiplying.
(3) The Whittaker space is a vector bundle over U\G. We let λ ∈ Ggr acts by the

left multiplying by λ2ρ∨
on U\G and scalar multiplying by λ2 on fibers.

2.2. Hamiltonian reduction and quantization. The upcoming context in this sub-
section is mostly copied from [GW23, §3] and [Gan23, §11].

2.2.1. Hamiltonian reduction. Symplectic reduction, also known as Hamiltonian reduc-
tion à la Marsden–Weinstein [Lan95], is constructed as the procedure that transfers the
essential physical information carried by a Hamiltonian G-variety (M,ω) along the mo-
ment map µ : M → g∗, just so the representability of M as a phase space of classical
mechanic systems is preserved. Following the convention of [BZSV], we use the notion of
Hamiltonian reduction (resp. induction) instead of symplectic reduction (resp. induction)
in the present notes, to emphasize the dependence on the Hamiltonian structure (i.e., on
the moment map).

The philosophy behind the construction of [BZSV] postulates that many standard
operations in symplectic geometry correspond to standard operations in representation
theory (see Proposition 3.4 later for an explicit realization). We shall review two of the
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most pertinent ones, say Hamiltonian reduction and Hamiltonian induction, which corre-
spond respectively to the formation of coinvariant spaces (or, more generally, multiplicity
spaces) and induction of representations.

Definition 2.6 (Hamiltonian reduction). Let M be a Hamiltonian G-space with moment
map µ. Let O ⊂ g∗ be a coadjoint G-orbit. The fiber product µ−1(O) = M×g∗ O inherits
a G-action. The Hamiltonian reduction is defined to be the quotient symplectic stack1

M///OG := µ−1(O)//G = M ×G
g∗ O.

The symplectic form on M///OG is inherited from M : Let ω be the non-degenerate 2-form
on M///OG determined by the condition

p∗ω = i∗ω − µ∗ωO,

where p : µ−1(O) → M///OG is the projection, i : µ−1(O) → M is the inclusion, and ωO is
the symplectic form on O defined in Example 2.3 (5). Then (M///OG,ω) is a symplectic
space. If O = {0} is the trivial orbit, we abbreviate

M///G := M///{0}G.

Example 2.7. If X is a smooth G-variety, then

T ∗X///G = T ∗(X/G).

Example 2.8 (Twisted cotangent bundle). Let X be a graded G-variety. Let Ψ → X be
a G×Ggr-equivariant Ga-torsor, where G acts on Ga trivially and Ggr acts on Ga via the
square character. We get a Hamiltonian Ga-space T ∗Ψ with a moment map T ∗Ψ → g∗a.
Note that the moment map is equivariant for the trivial G×Ggr-action on g∗a. It follows
that

T ∗(X,Ψ) := T ∗Ψ///{1}Ga

is a graded Hamiltonian G-space.
Apply this construction to the case X = U\G where U is a unipotent subgroup in G

and Ψ = U0\G where U0 is the kernel of a generic character ψ : U → Ga. We recover the
Whittaker bundle in Example 2.3 (3).

2.2.2. The rough idea of quantization. Recall our philosophy that associates an object
from symplectic geometry with a group representation (and vice-versa). Morally,

The (geometric) quantization is the process that arises a unitary repre-
sentation of G from an arbitrary Hamiltonian G-space M .

Namely, it is the functor

H : Sp†G(F) Vect(C)

M VM

from the (groupoid) category of finite-dimensional symplectic G-manifolds over F satis-
fying the Lagrangian involution condition † (which is a specific compatibility), to the
category of finite-dimensional C-vector spaces.

More precisely, regarding (M,ω) as the phase space of classical mechanics, suppose
we want to pass to quantum mechanics. This basically means replacing M by P(VM ),
the projectivization of a Hilbert space VM associated to M . The smooth functions on
P(VM ) are Hermitian operators on VM , so we can replace F∞(M) by Herm(VM ) after the

1We only use this construction when the action is free, and hence we can take the GIT quotient.
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quantization process. In fact, the quantum spectra of the classical observables F∞(M)

are given by the eigenvalues of elements in Herm(VM ).
Since M is a Hamiltonian G-space, the natural G-action on M induces a G-action via

unitary operators on VM . In a sequel, the Hilbert space VM is a unitary representation of
G. The following context is about the precise construction of VM .

2.2.3. Weil representation as quantization. We first introduce Weil representation as a
heuristic example. The rough idea is as follows. Suppose Ξ is a symplectic vector space
equipped with the symplectic form ω. Every symplectic structure on Ξ is isomorphic to
one of the form Ξ = X⊕X∗. The subspace X is not unique, and a choice of X is called a
polarization. The subspaces that give such an isomorphism are called Lagrangians, and
the natural projection Ξ → X∗ along X is a Lagrangian fibration. The Weil represen-
tation is exactly the unitary representation of Sp(Ξ) realized on L2(X∗), which is also a
quantization of the Hamiltonian Sp(Ξ)-space Ξ.

Let V be a finite-dimensional quadratic space over F, born with the quadratic form
q : V → F and associated with the symmetric bilinear form 〈v1, v2〉V := q(v1 + v2) −
q(v1) − q(v2).2 Let W be a finite-dimensional symplectic vector space over F, equipped
with the symplectic form 〈·, ·〉W . Then the tensor product space Ξ = V ⊗W inherits a
natural symplectic form 〈·, ·〉Ξ = 〈·, ·〉V ⊗〈·, ·〉W . Since the isometry groups of V,W,Ξ are
respectively O(V ), Sp(W ), Sp(Ξ), we get a natural map

iV,W : O(V )× Sp(W ) −→ Sp(V ⊗W ) = Sp(Ξ)

and the restriction of iV,W to O(V ) or Sp(W ) is injective. The images of O(V ) and Sp(W )

along iV,W are mutual centralizers of each other in Sp(Ξ).
Moreover, there is a unique nonlinear metaplectic double cover of Sp(Ξ), denoted by

Mp‡(Ξ), which further extends by pushing out along µ2 ↩→ S1 as follows:

1 µ2 Mp‡(Ξ) Sp(Ξ) 1

1 S1 Mp(Ξ) Sp(Ξ) 1.

It turns out that the images of O(V ) and Sp(W ) are also mutual centralizers of each
other in Mp(Ξ). The main reason for considering the metaplectic groups is that if F is
a local field, Mp(Ξ) has a finite family of distinguished smooth genuine representations,
which are the Weil representations {ωΞ,ψ}ψ. Each Weil representation in this family is
parametrized by a nontrivial additive character ψ : F → S1, with the provision that

ωΞ,ψ
∼= ωΞ,ψ′ ⇐⇒ ψ′(−) = ψ(a2 · (−)) for some a ∈ F×.

We sketch the idea of doing this:

A quantization of the Sp(W ) × O(V )-Hamiltonian space Ξ = V ⊗W is
exactly a Weil representation ΩV,W,ψ, as explained in the following.

Suppose now F is the prescribed global field F . Each nontrivial adelic character
ψ : F\AF → S1 uniquely characterizes an abstract Weil representation ωψ of Mp(ΞAF

),
which can be realized on S(X∗

AF
). A basic property is that Mp(ΞAF

) splits uniquely
over Sp(WF ), which allows us to consider the space A(Mp(Ξ)) of automorphic forms on
Mp(ΞAF

). As a result, it admits a natural equivariant map

2For simplicity, we shall assume that disc(V ) is trivial in F×/F×2.
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θ : S(X∗
AF

) A(Mp(Ξ))

φ


x∗∈X∗
F

(ωψ(−)(φ))(x∗).

given by “averaging over rational points”. This map is called the formation of theta series
as the function θ(φ)(−) is the automorphic incarnation of theta functions in the classical
sense.

Now given the morphism iV,W : O(V ) × Sp(W ) → Sp(Ξ), we wonder whether it can
be lifted to Mp(Ξ) both locally and globally. This has to do with pulling back a Weil
representation ωΞ,ψ of Sp(Ξ) to a representation of O(V ) × Sp(W ) along iV,W . The
technicalities in addressing this question are omitted and we summarize the results here:

(i) When 2 | dimF V , the desired lift, denoted by i•,•V,W , exists both locally and glob-
ally, fitting in the pullback diagram

O(V )× Sp(W ) Mp(Ξ)

O(V )× Sp(W ) Sp(Ξ)

i•,•V,W

i◦,◦V,W

in which we write i◦,◦V,W = iV,W before the lifting.
(ii) When 2 ∤ dimF V , the morphism iV,W fails to lift on Sp(W ) rather than on O(V ),

i.e., we exclusively have the following pullback diagram

O(V ) Mp(Ξ)

O(V )× Sp(W ) Sp(Ξ)

i•,◦V,W

i◦,◦V,W

in which the left vertical morphism is the natural subgroup embedding.

To avoid redundant arguments, we assume 2 | dimF V from now on. Note that i•,•V,W

in (i) is uniquely characterized by the identity map of O(V ) × Sp(W ) as the pullback.
However, if we choose to twist the identity map on O(V )-component by the global char-
acter ψ : F\AF → S1, the lift of i◦,◦V,W would not be canonical, even if the lift i◦,•V,W on
Sp(W )-component is unique and independent of ψ. If this is the case to be described, we
define

i•,◦V,W,ψ : O(V ) −→ Mp(Ξ)

to be the pullback in (i), with changing the identity map on O(V ) to the twist-by-ψ map.

Remark 2.9. One can describe this splitting concretely using the Schrödinger model (cf.
[Gan23, §2.4]). Choose a symplectic polarization W = W⊕W∗ so that Ξ† = V ⊗W∗ is a
maximal isotropic subspace of Ξ = V ⊗W . According to the construction of Schrödinger
models, we are in case able to realize the Weil representation ωΞ,ψ on the space S(Ξ†) of
Schwarz–Bruhat functions on Ξ†. In this model, the action of i•,◦V,W,ψ(O(V )) is geometric:

(hφ)(−) = φ(h−1 · (−)), ∀h ∈ i•,◦V,W,ψ(O(V )), φ ∈ S(Ξ†).

Construction 2.10 (Splitting symplectic Weil representation on metaplectic cover).

(1) In the local setting, we simply construct the Weil representation

ΩV,W,ψ := ωΞ,ψ ◦ i•,•V,W,ψ

of O(V )× Sp(W ) via pulling back the Weil representation of Mp(Ξ).
(2) In the global setting, one obtains by restriction of functions an equivariant map
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ΩV,W,ψ = S(Ξ†
AF

) A(Mp(Ξ)) C([O(V )× Sp(W )]),θ i•,•,∗V,W,ψ

where the target is the space of smooth functions on [O(V )]×[Sp(W )] = O(VF )\O(VAF
)×

Sp(WF )\Sp(WAF
).

Remark 2.11 (Anomaly, cf. [GW23, Remark 3.7]). Note that the Weil representation
is not a representation of Sp(Ξ) but of the metaplectic cover Mp(Ξ). In the language
of [BZSV], this is because Ξ has anomaly (which can be detected via Betti or étale
cohomology), and anomalous varieties are at present excluded from the expectations of
the duality of hyperspherical varieties. This phenomenon is one of the deep mysteries of
nature.

2.2.4. Quantization of Hamiltonian reduction. Since there would be some natural ob-
struction to quantizing the Poisson variety g∗, the strategy to determine the quantization
of a Hamiltonian reduction M///OG (cf. Definition 2.6) is to work with the space of func-
tions. It follows from the same philosophy in algebraic geometry that motivates us to
consider sheaves on schemes.

Given the Hamiltonian G-variety (M,ω) we write H(M,ω) = (ρM , VM ) as the resulting
quantization along the functor H. Here ρM is the unitary representation landing in
Herm(VM ). Indeed, ρM is exactly the quantization of µ∗ : F∞(g∗) → F∞(M), which
is the pullback of the moment map µ : M → g∗. Consider that, under the equivariant
G-actions,

F∞(M///OG) = F∞((M ×g∗ O)//G) = F∞(M ×g∗ O)G = (F∞(M)⊗F∞(g∗) F∞(O))G.

If VM///O G is the Hilbert space quantizing M///OG, then one must have Herm(VM///O G) =

H(F∞(M///OG)). Then we take the following heuristic computation (in which we have
used the duality of vector spaces liberally):

H(F∞(M///OG)) = H((F∞(M)⊗F∞(g∗) F∞(O))G)

= (Herm(VM )⊗H(F∞(g∗)) Herm(VO))
G

= (V∗M ⊗ (VM ⊗ V∗O)G ⊗ VO)
G

= HomG(V
∗
O ⊗ VM , (VM ⊗ V∗O)G)

= Herm((VM ⊗ V∗O)G).

Hence, we arrive at the conclusion: the quantization of the Hamiltonian reduction (M×g∗

O)//G is

H(M///OG) = (VM ⊗ V∗O)G.

This space is essentially the (dual of the) multiplicity space of the irreducible representa-
tion VO in VM .

2.3. Theta correspondence via quantization of Hamiltonian reduction. Recall
from §1.3 that the relative Langlands duality hopefully encompasses both Howe duality
(Theorem 1.8) and Adams’ conjecture (Conjecture 1.9). However, the theory of theta
correspondence does not arise from a spherical variety and so does not really fit into the
framework of Adams’ conjecture. But it does not go very far from these.

We use the same notations as in §2.2.3 and copy the following context from [Gan23,
§10.4, §11.9]. Write o(V ) = LieO(V ) and pick a coadjoint orbit O ⊂ o(V )∗. This
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corresponds to choosing an (irreducible) representation π of O(2m). The Hamiltonian
reduction

M///OG = (M ×o(V )∗ O)//O(V )

amounts to extracting the multiplicity space of the π-isotropic component of the Weil
representation ΩV,W,ψ. As one has the commuting action of Sp(W ), M///OG is a symplectic
Sp(W )-variety, whose quantization is the multiplicity space

Θ(π) = (ΩV,W,ψ ⊗ π∨)O(V ),

namely the big theta lifting of π (see Construction 1.6).

2.4. Hamiltonian induction. Let H ⊂ G be a subgroup. Hamiltonian induction will
take a Hamiltonian H-space to a Hamiltonian G-space. Under geometric quantizations,
Hamiltonian induction corresponds to the (L2-)induction of representations.

Definition 2.12 (Hamiltonian induction). Let S be a Hamiltonian H-space. The Hamil-
tonian induction is defined as

h-indGH(S) := (S × T ∗G)///H.

Here T ∗G is considered as a Hamiltonian H-space via the left multiplication. The G-action
on h-indGH(S) is induced from the right multiplication on T ∗G.

We can rewrite the Hamiltonian induction as

h-indGH(S) = S ×H
h∗ T ∗G.

Using the identification T ∗G = g∗ × G from Example 2.3 (4), we can further rewrite the
Hamiltonian induction as

h-indGH(S) = (S ×h∗ g∗)×H G

where H acts on g∗ via h : ξ → ad(h−1)ξ. The moment map on h-indGH(S) is induced from
g∗ ×H G → g∗. We see that h-indGH(S) is a fiber bundle over H\G.

If S is a graded Hamiltonian H-space, we can endow h-indGH(S) with a natural grading
using the diagonal action of Ggr on S × T ∗G.

2.4.1. Frobenius reciprocity. There is a “Frobenius reciprocity” for Hamiltonian induc-
tions, parallel to the usual Frobenius reciprocity in representation theory. It should take
place in the category of Hamiltonian spaces and Lagrangian correspondences. For two
symplectic spaces M and N , a Lagrangian correspondence from M to N is a correspon-
dence

M◦ ←− L −→ N,

where M◦ is the variety M equipped with opposite symplectic form, and L ↩→ M◦ ×N

is a Lagrangian subspace. The composition of two Lagrangian correspondence should be
taken as a fiber product. However, due to the issues of non-transversal intersections, we
should really consider the category of shifted symplectic spaces in the derived world. We
shall not go into this.

Let H ⊂ G be a subgroup and S be a Hamiltonian H-space. Denote L := S ×h∗ g∗.
Then L embeds into h-indGH(S) as the fiber over 0 ⊂ H\G. Note that the restriction of
the symplectic form on h-indGH(S) to L is equal to the pullback of the symplectic form on
S to L. It follows (by dimension counting) that

ιS : (h-indGH(S))
◦ ←− L −→ S
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is a Lagrangian correspondence. This Lagrangian correspondence is H-equivariant and
compatible with the moment map in the sense that the following two compositions are
equal:

L −→ h-indGH(S) −→ g∗ −→ h∗ and L −→ S −→ h∗.

Now let M be a Hamiltonian G-space with an H-equivariant Lagrangian correspondence

α : M◦ ←− L −→ S

compatible with moment maps in the above sense. Then there is a natural G-equivariant
Lagrangian correspondence

β : M◦ ←− L×H G −→ h-indGH(S)

compatible with moment maps such that α = β ◦ ιS .

3. Structure theory of relative Langlands duality

We still work over F, an algebraically closed field of characteristic 0.

3.1. Hyperspherical Hamiltonian G-spaces. We need first to describe the coisotropic
condition before defining the hyperspherical G-varieties.

3.1.1. Coisotropicity and multiplicity-freeness.

Definition 3.1 (Coisotropicity, cf. [BZSV, §3.5.1]).

(1) A symplectic G-variety (M,ω) is coisotropic if the field F(M)G of G-invariant
rational functions on M is commutative with respect to the Poisson bracket.

(2) A G-action on the symplectic G-variety M is coisotropic if there exists an open
dense subset U ⊂ M with Gu being a coisotropic subvariety for every u ∈ U .

Lemma 3.2. A homogeneous Hamiltonian G-variety (M,ω) is coisotropic if and only if
it has a coisotropic G-action.

Proof. We use the following fact: One can check by definition of the Poisson bracket that
Definition 3.1 (1) is equivalent to

(TxM)⊥,ω := {v ∈ TxM : ω(v, Tx(Gx)) = 0} ⊂ TxM, ∀x ∈ M,

where the left-hand side is namely the orthogonal subspace of TxM with respect to ω.
Working over R without loss of generality, we define for every z ∈ g the map fz : M → R
via fz(x) = µ(x)(z), where µ : M → g∗ is the moment map. Note that given any f ∈
F(M)G, we have

{f, fz} = ω(Xf ,Xfz ) = 0, ∀z ∈ g.

Assume M carries a coisotropic G-action, and there is thus a generic orbit Gη for some
η ∈ M being coisotropic. Therefore, for each z ∈ g and f1, f2 ∈ F(M)G, the vanishing
{f1, f1,z} = {f2, f2,z} = 0 corresponds to Xf1 ,Xf2 ∈ (TηGη)

⊥,ω ⊂ TηGη. It follows
that {f1, f2}(u) = ω(Xf1 ,Xf2)(u) = 0 as functions on M , where u ∈ U runs through
the open dense subset implicated in Definition 3.1 (2). Consequently, F(M)G is Poisson-
commutative.

Conversely, assume M is a coisotropic G-variety. Given a regular point x ∈ M , there is
an open neighborhood W of Gx together with finitely many functions f1, . . . , fk ∈ F(M)G,
satisfying df1 ∧ · · · ∧ dfk ∕= 0 and

Gx = {w ∈ W : f1(w) = · · · = fk(w) = 0}.
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Note that a priori Xfi ∈ (TxM)⊥,ω for each i = 1, . . . , k. On the other hand, the
assumption leads to {fi, fj} = 0, and hence Xfi ∈ TxM . Since all Xfi are independent in
W , we see Gx is a coisotropic subvariety as desired. □

Lemma 3.3. Let X be a normal G-variety. Then X is spherical if and only if F(X)B = F,
namely any B-invariant rational function on X is constant.

Proof. If X is spherical then by definition F(X)B is a multiplicity free nontrivial G-
module, and hence F(X)B = F. Conversely, we suppose that F(X)B = F. By a theorem
of Rosenlicht [Gro97, Theorem 19.5] (cf. [Gan18, Theorem 2.8]), B-orbits in general
position can be separated by B-invariant functions, that is, there exists a B-stable affine
open subset U ⊂ X such that for all x, y ∈ U with Bx ∕= By there exists f ∈ F(U)B such
that f(x) ∕= 0 and f(y) = 0. On the other hand, f must be a constant; therefore, U is a
single B-orbit. This completes the proof that X is spherical. □

Notice that the coisotropic condition in Definition 3.1 concerns dynamics on a sym-
plectic manifold. On the other hand, the multiplicity-free condition in Definition 1.4 has
a representation-theoretic flavor. It turns out that these two conditions are strongly re-
lated. The upcoming result can serve as a specific bridge connecting symplectic geometry
and representation theory. The proof is adapted from some ingredients of [Gan18, §2].

Proposition 3.4. Suppose homogeneous Hamiltonian G-variety (M,ω) satisfies the multiplicity-
free condition in Definition 1.4. Then M is coisotropic. In particular, if X is a spherical
variety then T ∗X is coisotropic.

Proof. Since M is a homogeneous space, it is quasi-affine, and F(M) is the fractional
field of coordinate ring F[M ]. Let f = p/q ∈ F(M)B for p, q ∈ F[M ]. We may assume
p, q lie in F [M ](B), the subspace of B-eigenfunctions. Let V be the subspace of F[M ]

generated by the B-orbit of q, then V is finite-dimensional (see [PV94, Lemma 1.4] for the
detailed reason). Since it is B-stable, Lie–Kolchin theorem (see [Spr98, Theorem 6.3.1]
for example) dictates that it contains a B-eigenvector q′. Write q′ =


i ξi(bi.q) with

ξi ∈ F and bi ∈ B. Denote p′ =


i ξi(bi.p). Then f = bi.f = (bi.p)/(bi.q) for all i, and
hence f = p′/q′. It follows that p′ ∈ F[M ]B as well. Clearly, p′ and q′ have the same
weight, hence they are proportional because F[M ] is multiplicity-free by assumption, and
f is a constant. Therefore, F(M)B = F and the Poisson-commutativity of F(M)G follows
directly. This completes the proof. □

Remark 3.5. One may naturally expect a converse of Proposition 3.4, which implies that
if M is coisotropic then it is multiplicity-free. However, it fails to be valid in general, and
the converse result appears to be a more complicated description in [BZSV, Proposition
3.6.3], using the language of distinguished polarization and Hamiltonian induction. In
fact, M = T ∗X admits a distinguished polarization and we have the equivalence between
coisotropicity and multiplicity-freeness for M .

Proposition 3.6. Suppose X is a smooth quasi-affine G-variety. Then X is spherical if
and only if T ∗X is coisotropic.

Proof. The proof is suggested by Zeyu Wang. By Proposition 3.4, assuming T ∗X is
coisotropic, it suffices to prove that X is spherical. Denote µ : T ∗X → g∗ for the moment
map. Fix A ⊂ B ⊂ G to be a maximal torus and a Borel subgroup of G. Denote
F(X)(B) ⊂ F(X) to be the B-eigenfunctions. For each f ∈ F(X)(B), denote χf ∈ X∗(A)
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to be the corresponding eigencharacter. Denote X∗(AX) ⊂ X∗(A) to be the sublattice
generated by χf for all f ∈ F(X)(B), which defines a toric quotient A ↠ AX . Let
P(X) be the stabilizer of general B-orbits in X with its unipotent radical U(X). Write
aX = LieAX , a = LieA, and u(X) = LieU(X). Define WX to be the little Weyl group in
the sense of [Kno94, §3], which is a subquotient of the Weyl group W of G. We identify
g and g∗ by means of an invariant scalar product. Choose f1, . . . , fn ∈ F(X)(B) ⊂ F(X)U

to be a transcendental basis of F(X)U/F and consider maps

An ×X◦ T ∗X g∗

T ∗X//G a∗X//WX a∗//W

s µ

χ

ϕ

in which s is defined on an open subset X◦ ⊂ X by sending ((ai), x) to
n

i=1 ai ·
(dfi)x/fi(x).

Our goal is to construct an open B-orbit in X. By (a variant of) [BZSV, Proposition
5.3], the condition T ∗X being coisotropic is equivalent to that the generic fiber of χ ◦ µ
contains an open G-orbit. On the other hand, [Kno94, Lemma 3.4] dictates that the
generic fiber of ϕ is connected. Therefore, the generic fiber of ϕ is a G-orbit. Also, µ ◦ s
factors through u⊥ ⊂ g∗.

Without loss of generality, we may assume that χf1 , . . . ,χfm form a basis of X∗(AX)Q
for some m  n. It follows that the composition map Am × X → T ∗X → a∗X//WX is
dominant. Consequently, G · s(Am ×X◦) is dense in T ∗X. We claim that B · s(Am ×X◦)

is open in µ−1(u⊥). In fact, by our choice of P(X), fi are also eigenvectors of P(X).
Therefore, we know B · s(Am ×X◦) = P(X) · s(Am ×X◦) hence codimB · s(Am ×X◦) 
dimU(X). On the other hand, [Kno94, Theorem 2.3] implies that U(X) acts freely on
general U-orbits of X hence we know codimµ−1(u⊥) = dimU(X). Combining these, the
claim is proved.

If we replace X by X//U in the result above, we see

A · s(Am × (X◦//U)) ⊂ T ∗(X//U)

is a open subset, which implies that X//U has an open dense A-orbit. By definition, X//U

is a toric variety and therefore X is spherical. □

3.1.2. Hyperspherical G-varieties. As we have claimed before, the main player of the
relative Langlands duality is the class of Hamiltonian G-varieties over F, satisfying the
hyperspherical condition as follows.

Definition 3.7. A hyperspherical G-variety is a Hamiltonian G-variety M such that:

(i) M is smooth and affine, equipped with a grading (see Definition 2.4) via a com-
muting Gm-action;

(ii) M further satisfies several technical conditions as mentioned in [BZSV, §3.5.1];
(iii) M is coisotropic (rather than multiplicity-free, cf. §3.1.1).

We emphasize that condition (iii) is the punchline of Definition 3.7. The relation be-
tween coisotropicity and multiplicity-freeness in Proposition 3.4 and Remark 3.5 dictates
that a hyperspherical G-variety M can be regarded as an object arising from representa-
tion theory as well as that from symplectic geometry.
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3.2. Whittaker induction. We introduce the operation of Whittaker inductions for
Hamiltonian spaces, which are roughly “twisted Hamiltonian inductions”. Given the data
of a subgroup H ⊂ G and a homomorphism SL2 → G that commutes with H, the Whittaker
induction takes (graded) Hamiltonian H-spaces to (graded) Hamiltonian G-spaces. In the
following, we introduce several possible motivations to consider Whittaker inductions.

⋄ The graded structure of the Hamiltonian G-space output by Hamiltonian induc-
tion is inappropriate for the purpose of relative Langlands duality, and a modifi-
cation called shearing is thus in need. The procedure of Whittaker induction is
partially defined by the shearing.

⋄ In usual practice, a Hamiltonian H-space M is possibly identified with certain
symplectic H-representation SM ; in this case, the Whittaker induction is simply
a vector bundle over H\G.

⋄ More generally, the Tannakian duality M∨ of M conjecturally assembles all the
dual data and turns out to be a Whittaker induction of SM . Further, M∨ defines
the correct L-sheaf LM∨ as desired.

Before giving the definition of Whittaker inductions, we recall the parallel stories of
Whittaker models for representations. Fix a G-invariant perfect pairing κ on g. Let
γ = {e, h, f} ⊂ g be the sl2-triple defined by the morphism SL2 → G. Denote Mγ the
centralizer of γ in G.

3.2.1. Generalized Whittaker model. Let F be a non-archimedean local field. Assume
G, H are defined over F . We write G = G(F ) and H = H(F ) for the locally compact
topological groups of F -points. Fix a nontrivial unitary character ψ : F → C×.

The Lie algebra g decomposes with respect to the adjoint h-action

g =


j∈Z
gj .

Note that e ∈ g2 and f ∈ g−2. Write

u :=


j>0

gj , l := g0, u :=


j<0

gj , p :=


j0

gj = l⊕ u.

Let P be the parabolic subgroup of G with Lie algebra p. Write P = LU for the Levi
decomposition corresponding to p = l⊕ u. Denote also

u+ =


j2

gj .

It integrates to a unipotent subgroup U+ of G. We call the sl2-triple γ even if u = u+,
or equivalently all weights of g are even, or equivalently the image of −1 ∈ SL2 in G is
central.

Assume γ is even. Write κf : u+ → Ga for the additive character u → κ(f, u), where
κ : g

∼−→ g∗ is the fixed isomorphism as before. Write U = U(F ) and U+ = U+(F ).
There is a natural character

χγ,ψ : U+ C×

exp(u) ψ(κf (u))

for all u ∈ u+(F ).

Definition 3.8 (Whittaker model). Assume γ is even. The Whittaker representation is
the induced representation

Wγ,ψ := IndGHU (χγ,ψ).



HYPERSPHERICAL HAMILTONIAN VARIETIES 21

For π an irreducible smooth admissible representation of G, the Whittaker model of π is
the space

Wγ,ψ(π) := HomG(Wγ,ψ,π
∨) = HomHU (π,χγ,ψ).

If γ is not even (i.e. g ∕= 0), by sl2-theory, there would be an isomorphism g1 ∼= g−1

induced by the ad(f)-action. It induces a H-equivariant symplectic form κ1 on g1 by the
formula

κ1(x, y) = κ(ad(f)x, y) = κ(f, [x, y]).

Consider the Heisenberg group Hγ = g1 × F with multiplication (x, 0) · (y, 0) = (x +

y, 1
2κ1(x, y)). There is a group homomorphism

U Hγ

exp(v) exp(u) (v,κf (u))

αγ

where v ∈ g1 and u ∈ u+, realizing Hγ as a quotient U/U ′, where U ′ = exp(Ker(κf |u+)).
Let ωψ be the unique smooth irreducible unitary representation of Hγ with central

character ψ. Therefore U acts on ωψ via αγ . Since κ1 is stable under H-action, we get
an action of H on ωψ, where H is a metaplectic cover of H. For a genuine representation
ρ of H, ρ⊗ ωψ descends to a representation of HU .

Definition 3.9 (Generalized Whittaker model). Define the generalized Whittaker repre-
sentation as

Wγ,ρ,ψ := IndGHU (ρ⊗ ωψ).

For π an irreducible smooth admissible representation of G, the generalized Whittaker
model of π is the space

Wγ,ρ,ψ(π) := HomG(Wγ,ρ,ψ,π
∨) = HomHU (π, ρ⊗ ωψ).

In the even case, ωψ = χγ,ψ, and we can take ρ = 1. Then we recover the Whittaker
model in Definition 3.8.

3.2.2. Construction of Whittaker inductions.

Construction 3.10. By the discussion in the previous section, we know that the quotient
vector space u/u+ is endowed with an H-invariant symplectic form κ1. We define the
Hamiltonian HU-space (u/u+)f as follows:

• The underlying symplectic space is (u/u+,κ1).
• H acts on (u/u+)f by the adjoint action.
• U acts by translation on u/u+ = U/U+.
• The moment map for H is as in Example 2.3 (2).
• The moment map for U is the shift-by-f map

u/u+ ∼= (u/u+)
∗ ξ →ξ+f−−−−−−→ u∗.

Now we can define the Whittaker induction.

Definition 3.11. Let S be a Hamiltonian H-space. The Whittaker induction of S via
H× SL2 → G is the Hamiltonian induction

M := h-indGHU(S),

where S is the Hamiltonian HU-space S := S × (u/u+)f .
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Comparing with Definition 3.9, we see that the Whittaker induction corresponds pre-
cisely to the generalized Whittaker model under geometric quantization:

◦ The Hamiltonian H-space S corresponds to the representation ρ.
◦ The Hamiltonian HU-space (u/u+)f corresponds to the Weil representation ωψ.
◦ The Hamiltonian induction corresponds to the usual induction in representation

theory.

Example 3.12. Assume that S is trivial and the sl2-triple is even. We see that the
Whittaker induction is equal to

h-indGHU(∗f )
where ∗f is the trivial Hamiltonian HU-space with moment map sending the point to
κf ∈ (h + u)∗. In particular, we recover the Whittaker space in Example 2.3 (3) if H is
trivial and γ is a principal sl2.

3.2.3. Grading on a Whittaker induction. We define the natural Ggr-action on the Whit-
taker induction provided that the Hamiltonian H-space is graded. We can write the
Whittaker induction as

M = (S × (u/u+)f )×HU
(h+u)∗ (g∗ × G).

Let ϖ : Gm → G be the cocharacter λ → λh, where h ∈ g is the element in the given
sl2-triple. The Ggr-action on the Whittaker induction can be defined as follows:

• Ggr acts on S via the given grading.
• Ggr acts by scalar multiplication on (u/u+)f .
• Ggr acts on g∗ via the composition of the square character and the left coadjoint

action of ϖ on g∗.
• Ggr acts on G via left multiplication by ϖ.

One can check that this defines a grading on M . There is also a more conceptual definition
of the grading via shearing.

Definition 3.13 (Sheared Hamiltonian spaces). Let ϖ : Ggr → Aut(G) be a homomor-
phism, i.e. G is a graded group. A Hamiltonian G-space M is sheared if the there is
a Ggr-action on M that is compatible with the grading on G and the moment map
µ : M → g∗ is Ggr-equivariant, where the grading on g∗ is given by the composition of
the square character and the ϖ-action.

Example 3.14. We collect the following examples of sheared Hamiltonian spaces.

(1) If ϖ : Ggr → Aut(G) is trivial, then a sheared Hamiltonian G-space is equivalent
to a graded Hamiltonian G-space.

(2) Consider ∗ as a Ga-space. Let Ggr act on Ga by the square character. Define the
moment map ∗ → 1 ∈ g∗a. The resulting Hamiltonian Ga-space, denoted by ∗1, is
sheared.

(3) Let W be a symplectic vector space. Let H = W ⋉Ga be the Heisenberg group.
Let Ggr act on W by scalar multiplication and act on Ga by the square char-
acter; this defines a grading on H. Suppose H acts on a symplectic space W by
translation. The morphism

W −→ W ⊕ g∗a
∼= W ∗ ⊕ g∗a = Lie(H)∗, x −→ (x, 1)

defines a moment map for this action. Then W with scalar action by Ggr is a
sheared Hamiltonian H-space.
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(4) Let notations be as in Section 3.2.2. By the above example, (u/u+)f is a sheared
Hamiltonian HU-space. Here the grading on H is trivial and the grading on U is
defined through the adjoint action by (λ → λh) : Gm → G.

(5) Assume the grading on G is given by the right adjoint action by a cocharac-
ter ϖ : Gm → G. Then graded Hamiltonian G-spaces are equivalent to sheared
Hamiltonian G-spaces via a twisting of gradings. Let M be a graded Hamiltonian
G-space. We obtain a sheared Hamiltonian G-space by altering the grading with
the action of ϖ on M .

Now the process of Whittaker induction can be depicted as follows:

Graded Hamiltonian H-spaces Sheared Hamiltonian HU-spaces

Graded Hamiltonian G-spaces Sheared Hamiltonian G-spaces

×(u/u+)f

h-indG
HU

where the lower horizontal arrow is the inverse operation of Example 3.14 (5).

3.2.4. Vectorial cases. We will see later that all the Hyperspherical variety are Whittaker
induction from a symplectic H-vector space. In this case, the geometry of the Whittaker
induction is simple. It can be realized as a vector bundle over H\G.

Lemma 3.15 (Slodowy slices). There is an isomorphism

U× (f + ge)
∼−→ f + u⊥+

via the adjoint action of U on f + ge. Here ge is the centralizer of e.

Proof. We sketch a proof of this lemma. It follows from sl2-theory that [u, f ] ∩ ge = 0

and the map u → [u, f ] via x → [x, f ] is an isomorphism. A dimension counting shows
that u⊥+ = [u, f ]⊕ ge. Hence the action map

α : U× (f + ge) → f + u⊥+

induces an isomorphism on the tangent space at (1, f). Consider the action ρ of Gm on g

given by ρ(λ)(x) = λ2ad(λh)(x). The ρ-action stabilizes f + ge and f + u⊥+ and contracts
them to f . Let Gm acts on U via conjugation by λ → λh. Then α is Gm-equivariant and
the Gm-actions contracts both spaces to a point. Moreover, α induces an isomorphism
on tangent spaces at contraction points. Now it follows from a geometric result that such
a map is an isomorphism. □

3.2.5. Simplifying Whittaker induction. We note that

(S × (u/u+)f )×(h+u)∗ g∗ = {(s, x) ∈ S × g∗ : µ(s)|h = x|h, x|u+ = κf}.

The latter condition is equivalent to x ∈ f + u⊥+. If follows that

(S × (u/u+)f )×(h+u)∗ g∗ = S ×h∗ (f + u⊥+)
∼= (S ×h∗ (f + ge))× U,

where the second isomorphism is given by the Slodowy slice and is HU-equivariant. It
follows that as G-spaces, we have an isomorphism

h-indGHU(S × (u/u+)f ) ∼= (S ×h∗ (f + ge))×H G.

The morphism f + ge → h∗ is surjective with fiber isomorphic to h⊥ ∩ (f + ge). After
choosing a H× SL2-eqiuivariant splitting of g∗ → h∗, we obtain an isomorphism

S ×h∗ (f + ge) ∼= S × (h⊥ ∩ (f + ge)).
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We see that there is an isomorphism

h-indGHU(S) ∼= V ×H G, V = S ⊕ (h⊥ ∩ ge)

compatible with G-actions, where the right hand side is an vector bundle over H\G.
Moreover, this isomorphism can be made to be compatible with Ggr-actions, if we endow
V with the Ggr-action as follows:

• Ggr acts by scalar multiplication on S.
• Ggr acts with weight 2 + t on the weight t part of ge.

Example 3.16. Consider the case when H and S are trivial. Assume the SL2-triple is
even. The Whittaker induction is equal to the Whittaker twisted bundle T ∗(U\G,Ψ) in
Example 2.8. By the above discussion, we see that there is an isomorphism

T ∗(U\G,Ψ) ∼= G× ge

of graded G-spaces.

3.3. The main theorem on hyperspherical structures. The upcoming main struc-
ture theorem states that hyperspherical G-varieties always come from some Whittaker
induction.

Theorem 3.17 ([BZSV, Theorem 3.6.1]). For a hyperspherical Hamiltonian G-space M ,
there exist

• a reductive subgroup H of G,
• an SL2-action on G restricting to H, giving rise to a homomorphism ι : H×SL2 →
G, and

• a symplectic H-vector space S,

such that

M ≃ (Whittaker induction of S along ι).

Proof sketch of Theorem 3.17. Recall that a Whittaker induction is roughly a “twisted
Hamiltonian induction”. The main idea of the proof in [BZSV, §3.6] is natural —

Compare M with a Hamiltonian induction h-indGHU(S) with some sym-
plectic space S by using the Lagrangian correspondence. To character-
ize the H-actions, first detect the weight decomposition of TxM under
G×Ggr-actions, and then focus on the subspace of weight 1.

We sketch out the proof in a faithful guideline as follows.

Step I (Graded structure of TxM via weight decomposition). We fix a point x ∈ M

and take M0 = Gx. Note that the image of TxM0 along the extended moment map
TxM → g∗ is a subalgebra of g∗. Thus TxM0 = g/h for some subalgebra h of g, and
gf = Stabg(f) ⊂ g for each f ∈ g∗. There is a natural filtration on TxM :

0 ⊂ TxM0 ∩ (TxM0)
⊥ = gf/h ⊂ TxM0 = g/h ⊂ TxM0 + (TxM0)

⊥ = (gf/h)
⊥ ⊂ TxM.

Recall from §3.2.3 that we obtain the cocharacter ϖx : Gm → G via λ−h → λ, and hence
Gm acts on M by the pair (λ−h,λ) ∈ G×Ggr. Up to the choice of x, we define M+ ⊂ M

as the subscheme of points that the Gm-action contracts to x. Accordingly,
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◦ The tangent space TxM+ admits a weight decomposition via the G×Ggr-action,
in which all direct summands are of positive weights (so that the notation M+ is
reasonable).3

◦ There is a noncanonical isomorphism TxM+ ≃ M+ of symplectic G-schemes.

Combining these, we detect the weights of subquotients and subspaces of TxM as follows:

Sub/Subquotient-spaces gf/h g/gf TxM0 TxM/TxM0 TxM+ TxM/(gf/h)
⊥

Weights  0 {0, 1}  1  1  1  2

Here g/gf = (g/h)/(gf/h) = (TxM0)/(gf/h). From the table we see

S := (gf/h)
⊥/TxM0

must be of weight 1. If we denote by (g/gf )1 the component of weight 1 in g/gf , then

S = S ⊕ (g/gf )1 = S ⊕ (u/u+)

is the whole subspace of weight 1 in TxM .

Step II (Using TxM to investigate M+). The goal is to prove that the following
commutative diagram is Cartesian.

M+
S

g∗ (h+ u)∗

Λ

x −→0

µ

Here the right vertical map is the moment map for HU acting on S and Λ is an HU⋊Gm-
equivariant morphism. In particular, we have an isomorphism

Υ : M+
∼−→ S ×(h+u)∗ g∗.

For this, the following ingredients are required:

(Λ) The starting point is the natural differential map4 Λ : M+ → TxM+, along which
the image of M+ has weight 1, and hence Λ(M+) ⊂ S. This leads to the map
Λ : M+ → S, which we still denote by Λ as an abuse of notation.

(µ) On the other hand, the moment map µ : M → g∗ admits a canonical lifting to
TxM , denoted by µ : TxM → g∗, just so µ(S) = h∗ ⊂ g∗. Also, Kerµ = TxM

⊥
0

and Imµ = h⊥. Hence there is an exact sequence of vector spaces:

0 −→ TxM
⊥
0 −→ TxM

µ

−−−→ g∗ −→ g∗/h⊥ −→ 0.

(Υ) In fact, the nature of µ1 = µ|S : S → h∗ deduces that we can translate Υ to the
level of tangent spaces, written as

Υ : TxM+ −→ Tµ1(x)(
S ×(h+u)∗ g∗) = S ⊕ (hu)⊥.

By construction, Υ exactly annihilates (TxM+)2, the subspace of TxM+ of
weight  2.

3Caution. We have TxM/TxM0 ⊂ TxM+, yet the equality possibly fails to hold. Indeed, TxM+ =

(TxM/TxM0) ⊕ (u/u+). Further, notice from the table that subspaces of TxM0 are not exclusively of
nonpositive weights.

4Caution. This Λ does not equal the prescribed noncanonical isomorphism TxM+ ≃ M+.
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Note also that (TxM
⊥
0 )2 = (TxM/TxM0)

∗,2. Using this, based on (µ) and (Υ) above,
one can check

KerΥ = (TxM+)2 = (TxM)2 = h⊥2 = (h+ u)⊥.

Step III (Trivializing the Lagrangian correspondence on M+). Since Υ is an isomor-
phism by Step II, we have a Lagrangian correspondence

M◦ ←− M+ −→ S

in the sense of §2.4.1. Applying the Hamiltonian induction from HU to G, it further
induces

M◦ ϖ←−− M+ ×HU G
∼−−→ h-indGHU(S).

Again, the right morphism above is an isomorphism as Υ is an isomorphism. It remains
to show that ϖ on the left is a G-equivariant isomorphism. To complete this final step,
we need:

◦ Luna’s lemma [Lun73, Lemme, p.89] (deduced from Zariski’s main theorem),
asserting that if we can check several geometric conditions (such as affineness)
then ϖ is finite.

◦ The fact that #ϖ−1(m0) = 1 for each m0 ∈ M◦
0 , namely ϖ has trivial fiber on

M0◦.

These imply that ϖ is a finite étale morphism of degree 1, and hence an isomorphism.

Now the proof is almost completed and the remaining ambiguity lies in the SL2-action
on G and the G×Ggr-action on both sides of the claimed isomorphism in Theorem 3.17.
Such a capstone argument is rather subtle just so we choose to omit it.

3.4. The converse of Theorem 3.17. We may expect the converse structure theorem
of Whittaker inductions; that is, the Whittaker induction of S along ι : H × SL2 → G in
Theorem 3.17 is automatically hyperspherical. For this, it suffices to check that such a
Whittaker induction is coisotropic (or equivalently, multiplicity-free).

Proposition 3.18 (The structure of Whittaker inductions). Keep the same assumptions
as before. Let M be the Whittaker induction of S along ι as in Theorem 3.17. Then

(1) M is affine.
(2) M satisfies the technical conditions by [BZSV, §3.5.1] implied in Definition 3.7,

and hence is hyperspherical.

Proof. Note that (2) is simply a paraphrase of [BZSV, Proposition 3.6.3]. For (1), M as
in §3.2.3 can be written as (S×h∗ (f+ge))×HG, where ge is the centralizer of e, considered
as a subspace of g∗ via κ. This requires a simplification on the Whittaker induction, see
§3.2.5 (cf. [GW23, §4.2] and [GG02, Lemma 2.1]) for more details. □

3.5. Remarks on relative Langlands parameters and BSZV duality. The sub-
stantials about the homomorphism ι : H × SL2 → G in Theorem 3.17 are as follows. We
introduce both the original and the relative versions of the incarnation of Langlands
parameter in various contexts.

(a) (Langlands and Arthur). Over a global field F , one will hopefully classify all discrete
automorphic representations of G(AF ) anyway. If so, there is an extension of the
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Langlands conjecture due to Arthur, in which a discrete automorphic representation
π should have a parameter

ιπ : LF × SL2(C) −→ LG = G∨ ⋊WQ,

where WQ is the Weil group and LF is the conjectural “Langlands sheaf” that contains
huge amounts of geometric data yet we know very little about it.

(b) (Sakellaridis–Venkatesh). Using spherical varieties, [SV17] associates to a spherical
variety X = H\G the explicit data about Langlands dual group X∨, consisting of a
spherical parameter

ιX : X∨ × SL2 −→ G∨

and a graded finite-dimensional (typically) symplectic representation VX of X∨ (cf.
[Gan23, §1]). The representation VX of X∨ is the main ingredient allowing one to
form the automorphic L-function which controls the relevant period. See [SV17] or
[GW18, §1] for more details.

(c) (Ben-Zvi–Sakellaridis–Venkatesh). From Theorem 3.17, we see any hyperspherical
G-variety can be determined from a finite-dimensional symplectic H-vector space S

(seen as a symplectic H-representation), together with the homomorphism

ι : H× SL2 −→ G

with the condition that H ⊂ ZG(ι(SL2)) being a spherical subgroup.

Note that the data in (b) and (c) above are very similar:

(ιX : X∨ × SL2 → G, VX) (ι : H× SL2 → G, S).

Indeed, the Whittaker induction of (ιX , VX) is the hyperspherical G∨-variety M∨ over C
with M = T ∗X. Such a phenomenon serves as the cornerstone of [BZSV].
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