
HIDA THEORY ON p-ADIC MODULAR FORMS

LECTURES BY BIN ZHAO

Abstract. We give an introduction to Hida’s construction of analytic families of ordinary
p-adic modular forms and their associated Galois representations. We will explain Hida’s
control theorems for ordinary p-adic modular forms and show how these theorems have been
useful in relating certain Hecke algebras with universal Galois deformation rings. We will also
explain examples and open problems on these topics.
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Part 1. Introduction.

We begin with some setups. For convenience, we fix throughout the course an odd prime p

(whereas the Hida theory is valid for p = 2 as well). Fix field embeddings i∞ : Q ↩→ C together
with ip : Q ↩→ Cp. The p-adic valuation and norm on Cp are normalized such that vp(p) = 1
and |p|p = p−1.
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2 HIDA THEORY ON P -ADIC MODULAR FORMS

1. The p-adic family of Eisenstein series

Let k > 2 be an even integer and consider the Eisenstein series Ek(z) ∈ Mk(SL2(Z);C) of
weight k defined as

Ek(z) = G(k)
2ζ(k) , Gk(z) =



(c,d)∈Z2\{(0,0)}

1
(cz + d)k

.

For any point z lying in the upper-half complex plane, the Eisenstein series admits a q-expansion
in q = e2πiz as follows:

Ek(z) = ζ(1 − k)
2 +



n1
Gk−1qn,

where the coefficients are given by

σk−1(n) =


d>0,d|n

dk−1.

Note that all coefficients in the q-expansion of Ek(z) are rational, and we can view these σ’s as
p-adic numbers for prime p.

Keynote Goal. We aim to interpolate the coefficients above in the p-adic sense for various k.

Naively, one can attempt to extend the function k → σk−1(n) and k → ζ(1 − k)/2 to
continuous functions Zp → Zp. For this, consider first the nonconstant coefficients and it
suffices to consider the associations k → dk for a positive integer d. But in a sequel, it is clearly
impossible to interpolate the map k → dk when p | d. (More detailedly, fix k1 ∈ Z and vary
k2 > k1; observe that vp(pk1 − pk2) = k1. So the coefficient function depends badly on k.) Such
a phenomenon indicates us to remove those divisor d’s of n divisible by p in the expansion of
σk−1(n). This leads us to consider the modified coefficients

σ
(p)
k−1(n) =



d>0
p∤d|n

dk−1.

To make these coefficients meaningful, we consider the p-stabilization of the Eisenstein series
Ek(z),

E
(p)
k (z) = Ek(z) − pk−1Ek(pz) = ζp(k)

2 +


n1
σ

(p)
k−1(n)qn ∈ Mk(Γ0(p);C),

where ζp(k) = (1 − pk−1)ζ(1 − k). It is a general phenomenon that p-adic family of modular
forms interpolate p-stabilized Hecke eigenforms. For example, the following result explains how
the modified coefficients σ

(p)
k−1(n) depends p-adic continuously on the weight k.

⋄ If k1 ≡ k2 (mod pα−1(p − 1)) for some α  1, then σ
(p)
k1−1(n) ≡ σ

(p)
k2−1(n) (mod pα) for

each n.
It turns out that the correct track to step in the world of p-adic modular forms is to view the

weight k as a continuous homomorphism κk : Z×
p → C×

p via z → zk.

Definition 1.1. A p-adic weight is a continuous homomorphism κ : Z×
p → C×

p . The weight
space W is the rigid analytification of the Iwasawa algebra Zp[[Z×

p ]]; that is, when L ⊆ Cp is a
closed subfield, we have the L-valued points

W(L) = {κ : Z×
p → L× continuous homomorphism}.

Remark 1.2. Here comes a geometric interpretation of the weight space W. Consider the natural
factor isomorphism

Z×
p

∼= ∆ × (1 + pZp)
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where ∆ is the torsion subgroup of Z×
p , and 1+pZp is a topologically cyclic subgroup (and hence

we fix a topological generator u = 1 + p ∈ 1 + pZp of it). Denote ωκ : ∆ → Z×
p the Teichmüller

character induced by the isomorphism above. There exists a bijection
W(Cp) = Homcont(Z×

p ,C×
p ) ∆∨ × D1 =


χ∈∆∨ D1

κ (κ|∆, wκ).

Here we define wκ := κ(u)−1. On the right-hand set, ∆∨ = Hom(∆,Z×
p ) is the character group

of ∆, and D1 = {z ∈ Cp : |z|p < 1} is the rigid open unit disc in Cp.
Therefore, in the rigid-geometric sense, W is the disjoint union of p − 1 copies of open unit

disc indexed by the characters of ∆. The condition k1 ≡ k2 (mod pα−1(p − 1)) means that the
weights κk1 and κk2 belong to the same disc and their coordinates are close to each other.

Let k be a positive integer and denote wk = wκk
= uk − 1 the p-adic weight of k. Consider

the p-adic logarithm function log : 1 + pZp → pZp, which induces an analogue

ϕ : 1 + pZp −→ Zp, x → log x

log u

Fix x ∈ ∆∨ an even character, i.e. a character such that χ(−1) = 1. Then χ = wa for some
even 0  a  p − 2. Let k  4 be an even integer such that k ≡ a (mod p − 1). Take any
d ∈ Z×

p
∼= ∆ × (1 + pZp), whose image is (d0, d1) via this isomorphism. Then

dk = dk
0 · dk

1 = χ(d0) · (uϕ(d1))k = χ(d0) · (1 + wk)ϕ(d1),

and therefore
σ

(p)
k−1(n) =



d>0
p∤d|n

dk−1 =


p∤d|n

1
d

χ(d0)(1 + wk)ϕ(d1).

Recall that for each α ∈ Zp we have a power series expansion

(1 + X)α =


n0


α

n


Xn ∈ Zp[[X]].

Define
Aχ(n; X) :=



p∤d|n

χ(d0)
d

(1 + X)ϕ(d1) ∈ Zp[[X]].

Then we particularly obtain
Aχ(n; wk) = σ

(p)
k−1(n)

for each admissible k. Also, recall that the L-series for character χ is defined as

L(s, χ) =


n1
χ(n)n−s.

Proposition 1.3 ([Hid93, §3.6]). For any (even) character χ : ∆ → Z×
p , there exists a power

series Φχ(X) ∈ Zp[[X]] such that for any k  2,

Φχ(wk) = Φχ(uk − 1) =


(1 − (χw−k)(p) · pk−1) · L(1 − k, χw−k), χ ∕= id,

(uk − 1)(1 − (χw−k)(p) · pk−1) · L(1 − k, χw−k), χ = id.

Granting this proposition, by definition we get

Aχ(0; X) =


Φχ(X)/2, χ ∕= id,

Φχ(X)/2X, χ = id.

The generalized Eisenstein series with respect to χ is defined as

Eχ(X) =
∞

n=0
Aχ(n; X)qn ∈ Frac(Zp[[X]])[[q]].
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The relation ship with the p-adic Eisenstein series defined before is given by

Eχ(uk − 1) = E
(p)
k (z)

for all k  4 such that k ≡ a (mod p − 1).

Fix now a finite extension K over Qp. Denote O its ring of integers and F its residue field
(by choosing a uniformizer). Let Λ = O[[1 + pZp]] be a choice of an O-lattice. A priori there is
a natural isomorphism Λ ∼= O[X]] by corresponding [u] to 1 + X.

Definition 1.4 (First definition of adic form). A formal series

F (X) =
∞

n=0
A(n; X)qn ∈ Λ[[q]]

is a Λ-adic form of character χ (of tame level 1) if its q-expansion F (uk −1) gives the q-expansion
of a modular form in Mk(Γ0(p), χw−k; O) for almost all positive integers k. Also, F (X) is further
called a Λ-adic cusp form if F (uk − 1) is a cusp form for almost all k.

In fact, there would be three aspects to generalize Definition 1.4:
(a) May allow another tame level;
(b) May allow higher conductor at p;
(c) Can replace Λ by a finite free Λ-algebra, namely, the Hecke algebra for Λ.

Let I be the integral closure of Λ in a finite field extension of Frac(Λ). For any k  1 with a
finite character ε : 1 + pZp → Q×

p , define an O-algebra homomorphism ϕk,ε : Λ = O[[1 + pZp]] →
Qp corresponding to the character 1 + pZp → Q×

p that sends z to zk · ε(z).
• A point ϕ ∈ Spec(I)(Qp) = HomO(I,Qp) is called arithmetic if ϕ|Λ = ϕk,ε for some

k, ε.
• When k  2, ϕ is called a classical point.

Definition 1.5 (Generalized definition of adic form). A formal series F (q) =


n0 Anqn

with An ∈ I is called an I-adic form of tame level N with respect to Dirichlet character
χ : (Z/NpZ)× → Q×

p , if for almost all classical points ϕ : I → Qp with ϕ|Λ = ϕk,ε, the image
ϕ(F (q)) ∈ Qp[[q]] gives the q-expansion of a modular form in Mk(Γ0(Npr), εχw−k;Qp).

Example 1.6. (1) The generalized Eisenstein series Eχ(X) ∈ Λ[[q]] is a Λ-adic form when
χ : ∆ → Z×

p is nontrivial. Else when χ = id, we have X · Eχ(X) being a Λ-adic form.
(2) For f ∈ Mk(Γ0(p), χ0; O), the product f · Eχ(X) ∈ Λ[[q]] is a Λ-adic form when f is a

cusp form. Indeed, this f · E is a Λ-adic cusp form.

We are really interested in those modular forms carrying some arithmetic information. In
particular, we mostly care about p-adic family of Hecke eigenforms.

2. The ordinary part of spaces of modular forms

Let N > 0 be an integer with an associated Dirichlet character χ : (Z/NZ)× → Q×. For a
Z[χ]-subalgebra A in C, we consider the space

Mk(Γ0(N), χ; A) =


f =
∞

n=0
a(n; f)qn : a(n; f) ∈ A


⊆ Mk(Γ0(N), χ;C).

One can define Mk(Γ1(N); A) and Sk(Γ1(N); A) similarly for A.

Proposition 2.1. The space Mk(Γ1(N);C) (resp. Mk(Γ0(N), χ;C)) has a C-basis in Mk(Γ1(N);Z)
(resp. Mk(Γ0(N), χ;Z[χ])).

Proof. Refer to [Hid00, III, Proposition 3.1.1] for a geometric proof and to [Hid93, §5.4] for an
explicit construction when N is a power of p. □
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We introduce some notations as follows. For a subring A of Cp, we define
Mk(Γ1(N); A) = Mk(Γ1(N);Z) ⊗Z A,

Sk(Γ1(N); A) = Sk(Γ1(N);Z) ⊗Z A.

For a Z[χ]-subalgebra A of Cp, we define
Mk(Γ0(N), χ; A) = Mk(Γ0(N), χ;Z[χ]) ⊗Z A,

Sk(Γ0(N), χ; A) = Sk(Γ0(N), χ;Z[χ]) ⊗Z A.

Definition 2.2. When A is a Z[χ]-subalgebra of C, define

Hk(Γ0(N), χ; A) = A[T (n)]n∈N ⊆ EndA(Mk(Γ0(N), χ; A)),

and similarly for hk(Γ1(N); A) ⊆ EndA(Sk(Γ1(N); A)).
When A is a Z[χ]-subalgebra of Cp, define

Hk(Γ0(N), χ; A) = Hk(Γ0(N), χ;Z[χ]) ⊗Z[χ] A,

hk(Γ1(N); A) = hk(Γ1(N);Z[χ]) ⊗Z[χ] A.

In both cases, define
mk(Γ0(N), χ; A) = {f ∈ Mk(Γ0(N), χ; Frac(A)) : a(n; f) ∈ A for all n  1},

sk(Γ1(N); A) = {f ∈ Sk(Γ1(N); Frac(A)) : a(n; f) ∈ A for all n  1}.

Theorem 2.3 ([Hid93, §5.3, Theorem 1]). Let A be a Z[χ]-subalgebra of C or Cp. Then the
pairing

〈·, ·〉 : Hk(Γ0(N), χ; A) × mk(Γ0(N), χ; A) A

(h, f) a(1, f/h)
is perfect and induced isomorphisms

HomA(Hk(Γ0(N), χ; A), A) ∼= mk(Γ0(N), χ; A)
HomA(hk(Γ1(N); A), A) ∼= sk(Γ1(N); A).

Recall that K is a finite extension of Qp with ring of integers O and residue field F.

Lemma 2.4. Let A be a commutative O-algebra which is free of finite rank over O with the
p-adic topology. For any x ∈ A, the limit limn→∞ xn! exists in A and gives an idempotent of A.

Proof. Assume first A = OL for some finite extension L/K, with q equal to the cardinality of
the residue field kL. Then for each a ∈ O×

L ,

aqr(q−1) ≡ 1 (mod mr+1
L ) =⇒ lim

n→∞
an! = 1.

For each a ∈ mL, it follows that an! → 0 as n → ∞.
Now assume A ⊗O K is semisimple. Then it is isomorphic to a finite product of Li’s, where

each Li is a finite extension over K. For any x ∈ A, the image of x via the isomorphism
A ⊗O K ≃

k
i=1 Li lands in

k
i=1 OLi . The assertion follows from the argument when A = OL.

In general, suppose A ⊗O K is a finite-dimensional K-algebra. By Wedderburn theorem,
A ⊗O K = N ⊕ S for N the nilradical of A ⊗ K, and S a semisimple K-subalgebra of A ⊗O K.
For each x ∈ A we write x = m + s, where m is nilpotent and s ∈ S. From the previous
argument we see the limit exists:

lim
n→∞

sn! = lim
n→∞

spr(q−1).

Assume mj = 0 for some integer j > 0. Then

(s + m)pr(q−1) = spr(q−1) +
j−1

i=1


pr(q − 1)

i


spr(q−1)−imi
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and for each 1  i  j − 1,

vp


pr(q − 1)

i


 r − vp(j!).

This further deduces limn→∞ xn! = limn→∞ sn! is an idempotent. □

Let N be a prime-to-p integer and r  0. Consider the Dirichlet character

χ : (Z/Npr+1Z)× → O×

and apply Lemma 2.4 to u(p) ∈ Hk(Γ0(Npr+1, χ; O)) (or alternatively, hk(Γ1(Npr+1; O)), the
limit

e = lim
n→∞

u(p)n!

which is called the Hida ordinary projector, exists in Hk(Γ0(Npr+1, χ; O)) and is idempotent.
Take any Hecke eigenform f ∈ Mk(Γ0(Npr+1), χ; O) and a u(p)-eigenvalue ap. Then

f |e =


f, |ap|p = 1,

0, |ap|p < 1.

When f |e = f , we say f is p-ordinary.

Definition 2.5. We define the ordinary part of Hecke algebra and spaces of modular forms and
cusp forms as

Hord
k (Γ0(Npr+1, χ; O)) = eHk(Γ0(Npr+1, χ; O)),

Mord
k (Γ0(Npr+1, χ; O)) = Mk(Γ0(Npr+1, χ; O))|e,

Sord
k (Γ0(Npr+1, χ; O)) = Sk(Γ0(Npr+1, χ; O))|e.

And define similarly for hk, mk, and sk.

Lemma 2.6. The perfect pairing of Theorem 2.3

〈·, ·〉 : Hk(Γ0(Npr+1), χ; O) × mk(Γ0(Npr+1), χ; O) −→ O

restricts to the ordinary part, and stays perfect as well.

Remark 2.7. For the ordinarily restricted pairing, we get an idempotent factorization

Hk(Γ0(Npr+1), χ; O) = Hord
k (Γ0(Npr+1), χ; O) × (1 − e)Hk(Γ0(Npr+1), χ; O).

Here the image of u(p) in the first factor is a unit, and that in the second factor is a topological
nilpotent element.

Similarly, for a Dirichlet character χ : (Z/NZ)× → O×, we can use the Hecke T (p)-operator
(see Definition 4.3(2)) in Hk(Γ0(N), χ; O) (resp. hk(Γ0(N), χ; O)) to define an idempotent e0 in
Hk(Γ0(N), χ; O) (resp. hk(Γ0(N), χ; O)), and then define the ordinary part of Hecke algebras
and spaces of modular forms Hord

k (Γ0(N), χ; O), etc..

Note that we have a natural bijection

Homcont(Z×
p , O×) ∼= HomO-alg(O[[Z×

p ]], O).

Let ν : Z×
p → O× be the character defined via inclusion. For any k  1, we also use νk to denote

the corresponding O-algebra homomorphism O[[Z×
p ]] → O corresponding to the character νk.

Let Λ = O[[1 + pZp]] be the Iwasawa algebra as before, and fix an isomorphism Λ ∼= O[[X]] by
sending [u] = [1 + p] to 1 + X. We may also view νk as a character of 1 + pZp by restriction.
Then νk(Ψ(X)) = Ψ(uk − 1) ∈ O for all Ψ(X) ∈ O[[X]]. The main theorem is the following.
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Theorem 2.8 (Hida). Let χ : (Z/NZ)× → O× be the Dirichlet character. Then there is a
finitely generated projective O[[Z×

p ]]-module S(Γ0(N), χ; Λ), called the space of ordinary Λ-adic
cusp forms of level Np∞, which carries an action of Hecke operators such that we have the
following Hecke equivariant isomorphisms:

S(Γ0(N), χ; Λ) ⊗O[[Z×
p ]],νk O ∼= Sord

k (Γ0(Np), χ; O) ∼= Sord
k (Γ0(N), χ; O), k  3,

S(Γ0(N), χ; Λ) ⊗Λ,νk O ∼=
p−2

i=0
Sord

k (Γ0(Np), χωi; O), k  2.

Remark 2.9. One subtlety of this main result lies in that it fails in general for k  1. Also, the
reader should be careful that the isomorphism

Sord
k (Γ0(Np), χ; O) ∼= Sord

k (Γ0(N), χ; O)

for the first case above is not induced naively by the inclusions

Sord
k (Γ0(N), χ; O) ↩→ Sk(Γ0(N), χ; O) ↩→ Sk(Γ0(Np), χ; O).

This is because the Hecke operator action on Sk(Γ0(N), χ; O) is by T (p), whereas it is by U(p) on
Sk(Γ0(Np), χ; O). In fact, newforms in Sk(Γ0(Np), χ; O) has U(p)-eigenvalues ±


χ(p)·p(k−2)/2.

Part 2. Cohomological approach to modular forms

3. Preliminaries on group cohomology

The presented cohomological approach is good at proving the following fundamental theorem
on ordinary families.

Theorem 3.1. Let χ : (Z/NZ)× → Q×
p be a Dirichlet character. Suppose there is a field K

containing Qp(χ). Then for any k  2 we have

rankO(Sord
k (Γ0(Np), χω−k; O)) = rankO(S2(Γ0(Np), χω−2; O)),

rankO(Mord
k (Γ0(Np), χω−k; O)) = rankO(M2(Γ0(Np), χω−2; O)).

Let Γ be a torsion-free congruence subgroup of SL2(Z), for example, Γ = Γ1(N) for some
N  4. Let H denote the upper-half complex plane. Consider the modular curve Y (Γ) = Γ\H
as well as its compactification X(Γ). Take the set S = X(Γ)\Y (Γ). Then for any point s ∈ S

we define Γs to be the stabilizer of s in Γ. The assumptions above imply that Γs is cyclic, and
we take a generator πs of it. Finally, let P be the set of all Γ-conjugates of πs for all s ∈ S.

Definition 3.2. Let R be a commutative ring, G a group, and M a left R[G]-module.
(1) Define Hi(G, −) = Ri(−)G to be the ith derived functor of (−)G, where (−)G is the

functor from the category of R[G]-modules to that of R-modules by sending M to MG.
In particular, H0(G, M) = MG. We list the cocycle conditions below:

• Z1(G, M) = {f : G → M | ∀g, g′ ∈ G, f(gg′) = f(g) + gf(g′)},
• B1(G, M) = {f : G → M | ∃m ∈ M, ∀g ∈ G, f(g) = gm − m},
• Z2(G, M) = {f : G×G → M | ∀g1, g2, g3 ∈ G, g1f(g2, g3)−f(g1g2, g3)+f(g1, g2g3)−

f(g1, g2) = 0},
• B2(G, M) = {f : G×G → M | ∃h : G → M, ∀g1, g2 ∈ G, f(g1, g2) = d1(h)(g1, g2) =

g1h(g2) − h(g1g2) + h(g1)},
and Hi(G, M) = Zi(G, M)/Bi(G, M) for i = 1, 2. Also, the differential map of the
corresponding complex di : Ci(G, M) → Ci+1(G, M) is given as

d0(m)(g) = gm − m,
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and for i  1,

di(f)(g1, . . . , gi+1) =g1 · f(g2, . . . , gi+1) + (−1)i+1f(g1, . . . , gi)

+
i

j=1
(−1)jf(g1, . . . , gjgj+1, . . . , gi+1).

(2) For G = Γ, we define the parabolic cohomological cycles and boundaries as

Z1
P (Γ, M) = {f ∈ Z1(G, M) | ∀π ∈ P, f(π) ∈ (π − 1)M} ⊆ Z1(Γ, M),

B2
P (Γ, M) = {f = d1(h) | h : Γ → M, ∀π ∈ P, h(π) ∈ (π − 1)M} ⊆ B2(Γ, M).

Then define the parabolic cohomology via

H1
P (Γ, M) = Z1

P (Γ, M)/B1(Γ, M),
H2

P (Γ, M) = Z2(Γ, M)/B2
P (Γ, M).

In fact, there is an exact sequence (see [Hid93, Appendix, Proposition 2])

0 → H1
P (Γ, M) → H1(Γ, M) →



s∈S

H1(Γs, M) → H2
P (Γ, M) → H2(Γ, M) → 0.

As a consequence, if R → A is a flat homomorphism, then

H1
P (Γ, M ⊗R A) = H1

P (Γ, M) ⊗R A,

Hi(Γ, M ⊗R A) = Hi(Γ, M) ⊗R A.

Proposition 3.3 ([Hid93, §6.1, Proposition 1]). Recall that Γ is a torsion-free congruence
subgroup of SL2(Z). For any Γ-module M , we have

H2
P (Γ, M) ∼= M/DM, H2(Γ, M) = 0.

Here DM =


r∈Γ(r − 1)M .

Let ϕ : H → G be a group homomorphism. For any R-module M , there is an induced
R[H]-module from M via ϕ. We consider

H0(G, M) H0(H, M)

MG HG.

=

This gives a natural transformation called restriction, written as

Resn : Hn(G, −) −→ Hn(H, −).

Again, if ϕ : H → G is a subgroup of finite index d in G. Let {r1, . . . , rd} be a set of
representatives of G/H. then there is a norm map

NG/H(m) =
d

i=1
ri(m) : MH −→ MG.

Formally, this again induces the corestriction functor

Coresn : Hn(H, −) −→ Hn(G, −).

Lemma 3.4. The composite

Coresn ◦ Resn : Hn(G, −) −→ Hn(G, −)

is the multiplication-by-d map.

Proof. See [Ser79, VII, §7, Proposition 6]. □
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4. On Eichler–Shimura isomorphism

For any nonnegative integer n and commutative ring R, define

L(n; R) := {P (X, Y ) ∈ R[X, Y ] | P (X, Y ) is homogeneous of degree n}.

We define a left action of the semigroup M2(Z) ∕=0 = M2(Z) ∩ GL2(Q) by


a b

c d


(P (X, Y )) = P


X Y

 
a b

c d


= P (aX + cY, bX + dY ).

Let N be a positive integer. Consider its associated Dirichlet character χ : (Z/NZ)× → R×.
Denote L(n, χ; R) for the R-module L(n; R) but in additional with an action of Γ0(N) via


a b

c d


(P (X, Y )) = χ(d) · P (aX + cY, bX + dY ).

This action extends to


a b

c d


∈ M2(Z) ∕=0 : c ≡ 0 mod N, (d, N) = 1


.

Now for z0 ∈ H with f ∈ Mk(Γ;C), we define a map ϕz0(f) : Γ → L(k − 2;C) via

ϕz0(f)(γ) :=
 γ(z0)

z0

f(z)(Xz + Y )k−2dz ∈ L(k − 2;C), γ ∈ Γ.

This map admits the following properties:
• ϕz0(f) ∈ Z1(Γ, L(k − 2;C));
• ϕz0(f) − ϕz′

0
(f) ∈ B1(Γ, L(k − 2;C)) for another z′

0 ∈ H;
• ϕz0(f)(πs) ∈ (πs − 1)L(Γ, L(k − 2;C)) when f ∈ Sk(Γ;C).

Therefore, we get a well-defined map

ϕ : Mk(Γ;C) −→ H1(Γ, L(k − 2;C))

which induces
ϕ : Sk(Γ;C) −→ H1

P (Γ, L(k − 2;C)).

Theorem 4.1 (Eichler–Shimura). For any k  2 and a torsion-free congruence subgroup Γ ⊆
SL2(Z), the Eichler–Shimura map

Mk(Γ;C) ⊕ Sk(Γ;C) H1(Γ, L(k − 2;C))
(f, g) ϕ(f) + ϕ(g)

is an isomorphism of C-vector spaces. It restricts to an isomorphism

Sk(Γ;C) ⊕ Sk(Γ;C) −→ H1
P (Γ, L(k − 2;C)).

Corollary 4.2. Fix an integer N  4.
(1) The map

Sk(Γ1(N);C) H1
P (Γ1(N), L(k − 2;R))

f Re(ϕ(f))
is an isomorphism of R-vector spaces.

(2) For the Dirichlet character χ : (Z/NZ)× → C×, we have isomorphisms of C-vector
spaces:

Mk(Γ0(N), χ;C) ⊕ Sk(Γ0(N), χ;C) ∼= H1(Γ0(N), L(k − 2, χ;C)),

Sk(Γ0(N), χ;C) ⊕ Sk(Γ0(N), χ;C) ∼= H1
P (Γ0(N), L(k − 2, χ;C)).

For a matrix α =


a b

c d


∈ M2(Z) ∕=0, we denote αι = det(α) · α−1 =


d −b

−c a


.
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Definition 4.3. Let R be a commutative ring and Γ ⊆ SL2(Z) be a congruence subgroup.
(1) Fix some α ∈ M2(Z) ∕=0. Let M be an R[Γ]-module whose Γ-action extends to the

semigroup generated by Γ and α. Fix a decomposition ΓαΓ =
n

i=1 Γαi. Define a map

τα : H1(Γ, M) → H1(Γ, M)

as follows:

τα(f)(γ) =
n

i=1
αι

i · f(γi), f ∈ Z1(Γ, M), γ ∈ Γ.

Here γi is defined via the equality αiγ = γiαji for some (unique) ji ∈ {1, . . . , m}.
(2) Assuming Γ = Γ1(N) for N  4. Fix another positive integer n. Set

∆ =


α =


a b

c d


∈ M2(Z) : a ≡ 1 mod N, c ≡ 0 mod N, det(α) = n


.

Then M has an action of ∆ι. Fix a decomposition ∆ =
m

j=1 ΓαjΓ. We define the
Hecke T -operator

Tn : H1(Γ, M) −→ H1(Γ, M), T (n) =
m

i=1
ταj .

In particular, when n = p is a prime, we have

T (p) = ταp , αp =


1 0
0 p


.

One can easily check that the map

ϕ : Mk(Γ;C) −→ H1(Γ1(N), L(k − 2;C))

is Hecke equivariant, i.e. it is compatible with Hecke operators on the source and target. To
verify this, we can show that

γι

 z2

z1

f(z)(Xz + Y )k−2dz


=

 z2

z1

f |γ(z)(Xz + Y )k−2dz

for γ ∈ M2(Z) with det(γ) > 0 and

f |γ(z) = det(γ)k−1(cz + d)−kf


az + b

cz + d


.

Remark 4.4. Indeed, one can define the T (n)-operator on Hi(Γ, M) for all i  0. However, we
almost work for i = 1 (and hardly for i = 2).

Corollary 4.5. Let L and L′ be the quotients of H1
P (Γ, L(n;Z)) and H1(Γ, L(n;Z)) by their

maximal torsion subgroups, respectively. Then

L ∼= im(H1
P (Γ, L(n;Z)) −→ H1

P (Γ, L(n;R)),
L′ ∼= im(H1(Γ, L(n;Z)) −→ H1(Γ, L(n;R)),

and
L ⊗Z R = H1

P (Γ, L(n;R)),
L′ ⊗Z R = H1(Γ, L(n;R)).

Thus we can identify L as a Z-lattice of the R-vector space Sk(Γ;C) with k = n + 2.

Definition 4.6. (1) Let A be a subring of C. Define hk(Γ1(N); A) to be the A-subalgebra
of EndA(L ⊗Z A) generated by Hecke operators T (n).

(2) Let A be a subring of Cp. Define hk(Γ1(N); A) = hk(Γ1(N);Z) ⊗Z A.
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It turns out that when A = O, we have T (p) ∈ hk(Γ1(N); O), and then the ordinary projector
e. Under the above definition, we have

Hk(Γ1(N); A) = Hk(Γ1(N);Z) ⊗Z A,

hk(Γ1(N); A) = hk(Γ1(N);Z) ⊗Z A.

Also, there are natural homomorphisms between A-algebras:
Hk(Γ1(N); A) −→ Hk(Γ0, χ; A),
hk(Γ1(N); A) −→ hk(Γ0, χ; A).

5. Proof of Theorem 3.1

Theorem 5.1. For all primes p  3 such that (N, p) = 1, and integers r  1,
rankZp

Sord
k (Γ1(Npr);Zp) < C(N, p, r)

are bounded, and the boundaries C(N, p, r) are independent of k  2.

Proof. Write Γ = Γ1(Npr) and n = k − 2 for simplicity. Let L′ be the image of H1(Γ, L(n;Z))
in H1(Γ, L(n;R)), then L = L′ ∩ H1

P (Γ, L(n;R)). Then L is a lattice in H1
P (Γ, L(n;R)). We set

Lp = L ⊗Z Zp. So
• hk(Γ;Z) is a Z-subalgebra of EndZ(L), and
• hk(Γ;Zp) is a Zp-subalgebra of EndZp(Lp).

It follows that hord
k (Γ;Zp) is a subalgebra of EndZp(eLp). Therefore, it suffices to show that

rankZp eLp has a bound which is independent of k  2.
A priori there is a short exact sequence of Zp[Γ]-modules

0 −→ L(n;Zp) p−→ L(n;Zp) −→ L(n;Fp) −→ 0.

It induces a long exact sequence

· · · −→ H1(Γ, L(n;Zp)) p−→ H1(Γ, L(n;Zp)) −→ H1(Γ, L(n;Fp)) −→ · · ·
and hence

Ker(H1(Γ, L(n;Zp)) ⊗Zp Fp ↩→ H1(Γ, L(n;Fp))) = 0.

Note that L ↩→ L′ and L/pL ↩→ L′/pL′. Then Γ, L(n;Zp))⊗ZpFp ↠ L′/pL′ is surjective. It boils
down to show that dimFp eH1(Γ, L(n;Fp)) is independent of k. For this, we aim to establish an
isomorphism

eH1(Γ, L(n;Fp)) ∼= eH1(Γ, L(0;Fp)) = eH1(Γ,Fp).
Define

ϕ : L(n;Fp) −→ Fp, P (X, Y ) −→ P (0, 1).
It can be checked that ϕ is Γ = Γ1(Npr)-equivariant. Moreover, Ker ϕ is generated by monomials
of forms Xn−iY i for all i = 0, . . . , n − 1. Then there is a short exact sequence of Fp[Γ]-modules:

0 −→ Ker(ϕ) −→ L(n;Fp) −→ Fp −→ 0.

It induces a long exact sequence
· · · −→ H1(Γ, Ker(ϕ)) −→ H1(Γ, L(n;Fp)) −→ H1(Γ,Fp) −→ H2(Γ, Ker(ϕ)) −→ · · · .

Note that the operators αp =


1 0
0 p


and αι

p =


p 0
0 1


acts on Xn−iY i via

αι
p(Xn−iY i) = (pX)n−iY i,

and then αι
p · Ker(ϕ) = 0. Thus, for i = 1, 2,

T (p) · Hi(Γ, Ker(ϕ)) = 0.

Finally, by applying e to the long exact sequence above, we see
eH1(Γ, L(n;Fp)) ∼= eH1(Γ,Fp).
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This completes the proof. □

Lemma 5.2. Fix a prime p  5. For any O[Γ0(Np)]-module M , we have H2(Γ0(Np), M) = 0.

Proof. Take Γ = Γ0(Np) ∩ Γ1(p), which is a torsion-free congruence subgroup with index
[Γ0(Np) : Γ] = p − 1. By Lemma 3.4, the following composition or restriction and corestriction
is the multiplication-by-(p − 1) map, and hence an isomorphism.

H2(Γ0(Np), M) H2(Γ, M) H2(Γ0(Np), M).

0 0

Res2

×(p−1)
≃

Cores2

= =

So it follows that H2(Γ0(Np), M) = H2(Γ, M) = 0 by Proposition 3.3. □

Set n = k − 2 as before. Let ψ : (Z/NpZ)× → O× be a Dirichlet character. From the exact
sequence of O[Γ0(Np)]-modules

0 −→ L(n, ψ; O) π−→ L(n, ψ; O) −→ L(n, ψ;F) −→ 0,

we have a long exact sequence:
· · · H0(Γ0(Np), L(n, ψ;F))

H1(Γ0(Np), L(n, ψ; O)) H1(Γ0(Np), L(n, ψ; O)) H1(Γ0(Np), L(n, ψ;F))

H2(Γ0(Np), L(n, ψ; O)) = 0.

π

Hence H1(Γ0(Np), L(n, ψ; O))⊗O F ∼= H1(Γ0(Np), L(n, ψ;F)), and by applying the idempotent
e associated to the T (p)-operator, we get an isomorphism

eH1(Γ0(Np), L(n, ψ; O)) ⊗O F ∼= eH1(Γ0(Np), L(n, ψ;F)).
From the short exact sequence, there is also a surjective map (after applying e again)

eH0(Γ0(Np), L(n, ψ;F)) ↠ eH1(Γ0(Np), L(n, ψ; O))[π].
By definition, the T (p)-operator on H0(Γ0(Np), L(n, ψ;F)) is given by

T (p)(Xn−jY j) =
p−1

i=0


1 i

0 p

ι

· (Xn−jY j) =
p−1

i=0
(pX)n−j(−iX + Y )j .

In particular, we have T (p)(Xn−jY j) = 0 for 0  j < n. On the other hand, note that T (p)(Y n)
has no Y n-term as we are in L(n, ψ;F). So we have

T (p)2H0(Γ0(Np), L(n, ψ;F)) = 0 =⇒ eH0(Γ0(Np), L(n, ψ;F)) = 0
=⇒ eH1(Γ0(Np), L(n, ψ; O))[π] = 0.

It follows that eH1(Γ0(Np), L(n, ψ; O)) is torsion-free as an O-module. Combining this with
the isomorphism on eH1’s, we attain

rankO eH1(Γ0(Np), L(n, ψ; O)) = dimF eH1(Γ0(Np), L(n, ψ;F)).
As in the proof of Theorem 5.1, we consider the following map

ϕ : L(n, ψ;F) −→ L(0, ψωn;F), P (X, Y ) −→ P (0, 1).
Again it is straightforward to check that ϕ is Γ0(Np)-equivariant. So we have an exact sequence
of F[Γ0(Np)]-modules:

0 −→ Ker(ϕ) −→ L(n, ψ;F) ϕ−→ L(0, ψωn;F) −→ 0.
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It induces a long exact sequence of cohomology groups:

· · · H1(Γ0(Np), Ker(ϕ)) H1(Γ0(Np), L(n, ψ;F)) H1(Γ0(Np), L(0, ψωn;F))

H2(Γ0(Np), Ker(ϕ)) = 0.

Moreover, as in the proof of Theorem 5.1, we have

T (p) · H1(Γ0(Np), Ker(ϕ)) = 0.

Applying the idempotent e to the above exact sequence, we obtain an isomorphism

eH1(Γ0(Np), L(n, ψ;F)) ∼= eH1(Γ0(Np), L(0, ψωn;F)).

Consequently, the rank-dimension formula above together with this isomorphism render that

rankO eH1(Γ0(Np), L(n, ψ; O)) = rankO eH1(Γ0(Np), L(0, ψωn; O)).

Now let ψ = χω−k. By Eichler–Shimura isomorphism, we have

rankO Mord
k (Γ0(Np), χω−k; O) + rankO Sord

k (Γ0(Np), χω−k; O)

= rankO eH1(Γ0(Np), L(n, χω−k; O))
= rankO eH1(Γ0(Np), L(0, χω−2; O))

= rankO Mord
2 (Γ0(Np), χω−2; O) + rankO Sord

2 (Γ0(Np), χω−2; O).

On the other hand, it follows from the proof of [Hid86a, Lemma 5.3] that the rank of the space

Eord
k (Γ0(Np), χω−k; O) := Mord

k (Γ0(Np), χω−k; O)/Sord
k (Γ0(Np), χω−k; O)

is independent of k. In fact, [Hid86a, §5] gives an explicit basis of eEk(Γ1(Npr);Q) consisting of
Eisenstein series and we can deduce the results for Eord

k (Γ0(Np), χω−k; O) by computing these
Eisenstein series.

Therefore for k  2, we conclude that

rankO Sord
k (Γ0(Np), χω−k; O) = rankO Sord

2 (Γ0(Np), χω−2; O),

rankO Mord
k (Γ0(Np), χω−k; O) = rankO Mord

2 (Γ0(Np), χω−2; O).

So we complete the proof of Theorem 3.1.

Part 3. Geometric approach to modular forms

There are at least three approached for the interpolation result of Hida.
(1) Computations on group cohomology [Hid86a].
(2) Geometric interpretation of (p-adic) modular forms (which will be defined later) [Hid86b].
(3) Λ-adic forms (due to Wiles).

This course follows an adopted version of (2) as it has the potential to generalization to
automorphic forms on some Shimura varieties. The philosophy is to view the modular forms as
global sections of the structure sheaf on some modular curves.

6. Geometric modular forms

6.1. Basic definitions and properties.

Definition 6.1 (Level structure). Let π : E → S be an elliptic curve. For any integer N  1,
denote E[N ] the kernel of multiplication-by-N morphism [N ]E : E → E.

(1) Assume that N is invertible on S, i.e. S is a Z[ 1
N ]-scheme.
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(a) A Γ(N)-level structure on E/S is an isomorphism

φΓ(N) : (Z/NZ)2
S

→ E[N ]

of finite flat group schemes over S. Here GS is the constant group scheme on S

defined by some abelian group G.
(b) A Γ1(N)-level structure on E/S is an injective morphism

φΓ1(N) : Z/NZ
S

↩→ E[N ].

(c) A Γ0(N)-level structure on E/S is a subgroup scheme C/S of E[N ] which is cyclic
of order N , i.e. C becomes isomorphic to Z/NZ

S
after a finite étale extension of

S.
(2) Let p be a prime (not necessarily invertible on S). A Γ0(p)-level structure on E/S is a

finite flat subgroup scheme H/S in E/S of rank p.

Remark 6.2. If S is a Z[ 1
N , ζN ]-scheme, and if we denote

eN : E[N ] × E[N ] −→ µN

the canonical Weil pairing on E/S, then we say that a Γ(N)-structure φΓ(N) on E/S has
determinant ζN whenever

eN (φΓ(N)(1, 0), φΓ(N)(0, 1)) = ζN ∈ µN (S).

An arithmetic Γ(N)-level structure on E/S is an isomorphism

ψΓ(N) : µN,S × Z/NZ
S

∼−→ E[N ]

of finite flat group schemes over S such that the pairing induced by Cartier duality on the left
hand side corresponds to the Weil pairing eN on the right hand side.

Definition 6.3 (Tate curve). The affine equation

Tate(q) : y2 + xy = x3 + a4(q)x + a6(q), a4(q), a6(q) ∈ Z[[q]]

defines an elliptic curve over the ring of finite-tailed Laurent series Z((q)), which is called the
Tate curve.

We list some properties of the Tate curve in the following proposition and refer to [KM16,
§8.8] (and even the references given there) for more details.

Proposition 6.4. (1) The Tate curve Tate(q) has a nowhere vanishing invariant 1-form

ωcan = dx

2y + x
,

which is called the canonical differential. It is a basis of ωTate(q)/Z((q)).1
(2) The Tate curve has discriminant and j-invariant as follows

∆ = q


n1
(1 − qn)24, j = 1

q
+ 744 + · · · .

(3) There is a unique isomorphism of formal groups over Z((q)), written as

φcan : Tate(q) ∼−→ Gm, ωcan −→ dx

x
.

1For any elliptic curve f : E → S over S, the canonical sheaf of invariant differentials is ωE/S = f∗Ω1
E/S

.



HIDA THEORY ON P -ADIC MODULAR FORMS 15

(4) There is a unique short exact sequence for every N  1 in the category of sheaves of
abelian groups on the fppf site of SpecZ((q))

0 −→ µN
αN−→ Tate(q)[N ] βN−→ Z/NZ −→ 0

of finite flat group schemes over Z((q)). Moreover, for any Z((q))-algebra R and ζ ∈
µN (R), x ∈ Tate(q)[N ](R), we have

φcan(αN (ζ)) = ζ, eN (αN (ζ), x) = ζβN (x).

(5) When K = C or any local field, for q0 ∈ K such that |q0| < 1, there exists an isomor-
phism

K×/qZ0
∼−→ Tate(q)(K).

(6) Let N  1 be an integer. Define

Tate(qN ) : y2 + xy = x3 + a4(qN )x + a6(qN ).

Then all N -torsion points in Tate(qN ) are defined over Z[ζN ][[q]] ⊂ Z[ζN , 1
N ][[q]].

Definition 6.5 (Geometric modular forms). Fix N  1 and Γ ∈ {Γ(N), Γ1(N), Γ0(N)}. Let
R0 be a Z[ 1

N , ζN ]-algebra. A (meromorphic) modular form f of weight k ∈ Z and level Γ over
R0 is a rule which assigns an element f(E/R, ω, φΓ) ∈ R to any triple (E/R, ω, φΓ), consisting
of

• E/R, an elliptic curve, where R is an R0-alebra,
• ω, a basis of ωE/R = f∗Ω1

E/R, and
• φΓ, a Γ-level structure on E/R.

Moreover, f is required to satisfy the following conditions:
(a) f only depends on the isomorphism class of the triple (E/R, ω, φΓ).
(b) f is homogeneous of degree −k in ω, i.e.,

f(E/R, λω, φΓ) = λ−kf(E/R, ω, φΓ)

for any λ ∈ R×.
(c) f commutes with base changes; in other words, for any homomorphism g : R → R′

between R0-algebras, we have

f(E/R′, ωR′ , φΓ,R′) = g(f(E/R, ω, φΓ)).

For a modular form f as above, the evaluation f((Tate(q), ωcan)R0) ∈ Z((q))⊗ZR0 of f on the pair
(Tate(q), ωcan)R0 is called the q-expansion of f . Here the index R0 means the base change of the
Tate curve and its canonical differential from Z((q)) to Z((q))⊗ZR0. Also, a meromorphic modular
form f is called holomorphic if its q-expansion lies in the subring Z[[q]] ⊗Z R0 of Z((q)) ⊗Z R0.

Definition 6.6 (Modular scheme). Let Γ ∈ {Γ(N), Γ1(N), Γ0(N)} as before. Consider the
following functor

PΓ : Sch Sets

S


(E/S, φΓ)


E/S is an elliptic curve, and

φΓ is a Γ-level structure on E/S


/ ∼= .

This modular functor obtains the following representabilities:
• When N  3, the functor PΓ(N) is represented by an affine smooth scheme YΓ(N)/Z[ 1

N ].
• When N  4, the functor PΓ1(N) is represented by an affine smooth scheme YΓ1(N)/Z[ 1

N ].
However, the functor PΓ0(N) is never representable as it is not rigid due to the element

−I2 ∈ Γ0(N). More unfortunately, this is not the only obstruction to the representability of
PΓ0(N). For example, if we consider for a prime p  5 that
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P ′
Γ0(N) : SchZp Sets

S


(E/S, φΓ0(N), ω)


(E/S, φΓ0(N)) ∈ PΓ0(N)(S)

ω is a basis of ωE/S


/ ∼=,

then its representability will depends on the number N mod 12. The main reason is that over
a field of character 2 or 3, elliptic curves have large automorphism groups. We refer to [Kat73,
Chapter 1] for a treatment to handle small levels and the Γ0(p)-level structure.

We give a description of the modular scheme YΓ(N) for N  3 following [Kat73, §1.4–1.5].
The case for the modular scheme YΓ1(N) for N  4 is similar and can be found in [KM16]. The
modular scheme YΓ(N) is finite and flat of degree #(GL2(Z/NZ)/{±1}) over the affine j-line
Z[ 1

N ][j] (the coarse moduli scheme for the functor PΓ(1)), and étale over the open subscheme
Z[ 1

N ][j, (j(j −1728))−1]. The normalization of the projective j-line P1/Z[ 1
N ] in YΓ(N) is a proper

smooth curve XΓ(N) over Z[ 1
N ], and is called the natural compactification of YΓ(N). We have

decompositions

YΓ(N) ×Z[ 1
N ] Z


1
N

, ζN


=



ζ

Y ζ
Γ(N),

XΓ(N) ×Z[ 1
N ] Z


1
N

, ζN


=



ζ

Xζ
Γ(N)

of the base changes on the left-hand side of YΓ(N) (resp. XΓ(N)) into disjoint unions of ϕ(N)
affine (resp. proper) smooth geometrically connected curves Y ζ

Γ(N) (resp. Xζ
Γ(N)) over Z[ 1

N , ζN ].
These curves are bijective with the primitive Nth roots of unity, and for any primitive Nth root
of unity ζ, the corresponding curve Y ζ

Γ(N) represents the functor

Pζ
Γ(N) : Sch Sets

S {(E/S, φΓ(N))}/ ∼=,

where E/S is an elliptic curve and φΓ(N) is a level Γ(N)-structure on E/S with determinant ζ.
The complement XΓ(N)\YΓ(N) is finite étale over Z[ 1

N ] and after base change to Z[ 1
N , ζN ], it

is a disjoint union of sections, which are called cusps of XΓ(N). The cusps are bijective with the
isomorphism classes of level Γ(N)-structure on the Tate curve Tate(qN ) over Z((q))⊗ZZ[ 1

N , ζN ].
Moreover, the completion of XΓ(N) ×Z[ 1

N ] Z[ 1
N , ζN ] at any cusp is isomorphic to Z[ 1

N , ζN ][[q]].
Let E/YΓ(N) be the universal elliptic curve, which extends to a generalized elliptic curve

E/XΓ(N) in the sense of [DR, II, Definition 1.12]. The invertible sheaf ωE/YΓ(N)
extends uniquely

to an invertible sheaf ωE/XΓ(N)
such that its sections over the complement Z[ 1

N , ζN ][[q]] at each
cusp are Z[ 1

N , ζN ][[q]]ωcan (recall that ωcan is the canonical differential on the Tate curve). A
holomorphic modular form of weight k ∈ Z and level Γ(N) over a Z[ 1

N ]-algebra R0 is precisely
a section in

Γ(XΓ(N) ×Z[ 1
N ] R0, ω⊗k

E/XΓ(N)
) = Γ(XΓ(N), (ω⊗k

E/XΓ(N)
) ⊗Z[ 1

N ] R0).

7. Hasse invariant and ordinary loci of modular schemes

7.1. Hasse invariant. Let R be an Fp-algebra and E/R be an elliptic curve. We consider
the absolute Frobenius map on the structure sheaf Fabs : OE → OE , which induces a p-linear
endomorphism F ∗

abs : H1(E, OE) → H1(E, OE) (i.e. F ∗
abs is additive and F ∗

abs(λη) = λpF ∗
abs(η)

for λ ∈ R and η ∈ H1(E, OE)). If ω is an R-basis of ωE/R, let η ∈ H1(E, OE) be the dual basis
under Serre duality. Then there exists an element A(E/R, ω) ∈ R such that

F ∗
abs(η) = A(E/R, ω) · η.
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For λ ∈ R×, if we replace ω by λω, the dual basis in H1(E, OE) should be replaced by λ−1ω.
Then we have

A(E/R, λω) · (λ−1η) = F ∗
abs(λ−1η) = λ−pF ∗

abs(η) = λ−pA(E/R, ω) · η,

and hence
A(E/R, λω) = λ1−pA(E/R, ω).

In particular, the association (E/R, ω) → A(E/R, ω) defines a meromorphic modular form of
weight p − 1 and level 1 over Fp, which is called the Hasse invariant. We list some properties of
Hasse invariant in the following proposition.

Proposition 7.1. (1) For any Fp-algebra R, we have

A((Tate(q), ωcan)R) = 1.

In particular, A(E/R, ω) is a holomorphic modular form;
(2) Let k be an algebraically closed field of characteristic p and E/k be an elliptic curve.

Then A(E/k, ω) = 0 if and only if E is supersingular, i.e. E[p](k) = (0);
(3) For any prime p  5, the Hasse invariant can be lifted to Q∩Zp in the sense that there

is a modular form of weight p − 1 and level 1 over Q ∩ Zp whose q-expansion modulo p

equals 1. In fact, we can choose the Eisenstein series

E = Ep−1 = 1 − 2(p − 1)
Bp−1



n1
σp−2(n)qn

as such a lifting.

7.2. Ordinary loci of modular schemes. Fix a prime p  5. Let W be the ring of integers
of a finite extension of Qp and π ∈ W be a uniformizer. Fix a positive integer N and let
YΓ/W (resp. XΓ/W ) be the base change of the modular curve YΓ (resp. XΓ) to W for Γ ∈
{Γ(N), Γ1(N)}. Here we assume that N is large enough to guarantee the representability of
the corresponding moduli problem. When Γ = Γ(N), we consider the arithmetic Γ(N)-level
structure and we assume that W contains a primitive Nth root of unity. Fix a lift E of the Hasse
invariant as in Proposition 7.1(3). We may regard E as a global section in Γ(YΓ/W, ω

⊗(p−1)
E/YΓ

) or
Γ(XΓ/W, ω

⊗(p−1)
E/XΓ

). Let f : E → YΓ be the universal elliptic curve that extends to a semistable
curve on XΓ, which is still denoted by E. Define Y ord

Γ /W (resp. Xord
Γ /W ) to be the open

subscheme of YΓ/W (resp. XΓ/W ) where the section E is invertible. For m  1, set

Wm = W/πmW, S◦
m = Y ord

Γ ⊗W Wm, Sm = Xord
Γ ⊗W Wm.

Then S◦
m and Sm are affine smooth curves over Wm with geometrically connected fibers. For

any n  1, we have a connected-étale exact sequence of finite flat group schemes over S◦
m:

0 → E◦[pn] → E[pn] → Eét[pn] → 0,

where E◦[pn] is the kernel of [pn] : Ê → Ê of formal group of E, as well as the connected
component of the identity section of E[pn]; also, Eét[pn] is the maximal étale quotient of E[pn]
and the Cartier dual of E◦[pn]. Locally on the étale topology on S◦

m,

E◦[pn] ≃ µpn , Eét[pn] ≃ (Z/pnZ)S◦
m

.

By [Kat73, Theorem 4.2.2], the connected-étale exact sequence extends to Sm. Then Eét[pn]
extends to a finite flat group scheme over Sm, which is isomorphic to Z/pnZ after a finite etale
extension of Sm. We also call such an object a twisted version of Z/pnZ

Sm
.

Definition 7.2. The functor

Tm,n = IsomSm(Z/pnZ,Eét[pn])
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is represented by an affine scheme Tm,n = Spec(Vm,n. For the universal curve f : E → XΓ,
we write ω = ωE/XΓ

and ωm for the restriction of ω to S◦
m and Sm. We make the following

definitions.
(1) Define the space of (true) holomorphic modular forms of weight k as

H0(XΓ/W, ω⊗k).
(2) Define the space of false modular forms of weight k as

H0(S∞, ω⊗k) := lim←−
m

H0(Sm, ω⊗k).

(3) Define the following V to be the space of p-adic modular forms:
Vm,∞ = lim−→

n

Vm,n, V = lim←−
m

Vm,∞.

We will see that there are inclusions
{true modular forms} ⊂ {false modular forms} ⊂ {p-adic modular forms}

and the images of these inclusions are dense with respect to the p-adic topology. We will state
the results in a more general setting.

8. “False” modular forms á la Deligne

Let k be a finite field of characteristic p and consider W = W (k). As before, we take
Wm = W/πmW for any m  1, where π ∈ W is a choice of the uniformizer. Let {Sm/Wm} be
a family of flat affine schemes, such that Sm = Sm+1 ×Wm+1 Wm. Fix S = Xord

Γ /W . Let P be
a rank 1 p-adic étale sheaf on Sm, i.e., an inverse system

P = (Pn = P/pnP)n1,

such that each Pn is a (finite flat) sheaf on Sm such that Pn becomes isomorphic to (Z/pnZ)Sm

for all m  1, after a finite étale base change of Sm. For example, over S we consider the short
exact sequence

0 −→ E◦[pn] −→ E[pn] −→ Eét[pn] = Pn −→ 0
of sheaves on Sm. Let ωm = P ⊗Zp OSm be an invertible coherent sheaf on Sm satisfying
ϕ∗

m(ωm+1) = ωm, where ϕm : Sm → Sm+1 is the natural base change morphism. (For example,
one may take ωm = f∗Ω + E/Sm = ωE/Sm

.)
We define two graded rings

R′
m =



k0
H0(Sm, ω⊗k),

R′
∞ =



k0
lim←−
m

H0(Sm, ω⊗k).

For this, recall that H0(Sm, ω⊗k) denotes the space of Deligne’s false modular forms. For any
m, n  1 we also define the functor

Tm,n : SchSm Sets

(X γ→ Sm) IsomSm((Z/pnZ)X , γ∗Pn).
By definition there is a natural Igusa tower

Tm+1,n+1 Tm+1,n · · · Sm+1

Tm,n+1 Tm,n · · · Sm

Spec(Vm,n+1) Spec(Vm,n) · · ·
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and the group (Z/pnZ)× acts on Tm,n via the formula α(ψn) = α−1ψn.

Claim A. Tm,n is represented by a finite étale Sm-scheme Spec(Vm,n) and
(Z/pnZ)× acts freely on Spec(Vm,n) with the quotient Sm.

Proof of Claim A. To show this, we may assume that Sm is connected. When
Pn is the constant sheaf (Z/pnZ)Sm , the functor is represented by the scheme



α∈(Z/pnZ)×

Sm,

and the other statements follow immediately. For a general Pn, we can find a
finite étale Galois covering S′

m → Sm with Galois group G such that Pn|S′
m

is
constant. Let T ′

m,n be the restriction of the functor Tm,n to SchS′
m

. By the
above discussion, T ′

m,n is represented by a finite étale S′
m-scheme Spec(V ′

m,n).
Since Pn is defined over Sm, the sheaf P ′

n := Pn ×Sm
S′

m carries an action of the
Galois group G which induces an action of G on the functor T ′

m,n and hence
on the scheme Spec(V ′

m,n). The claim follows from standard results in Galois
descent.

We define a homomorphism

β(m) : R′
m → Vm,m = Γ(Tm,m, O) ↩→ Vm,∞

as follows. On γm : Tm,m → Sm we have a “universal isomorphism” ψm : (Z/pmZ)Tm,m →
γ∗

m(Pm) of constant sheaves. The element 1 ∈ Z/pmZ gives a section in Γ(Tm,m, Pm), and
hence an invertible section in Γ(Tm,m, ωm), which is denoted by ωcan(m). Define

β(m)




i

fi


=



i

fi

ωcan(m)⊗i
, fi ∈ Γ(Sm, ω⊗i

m ).

This construction leads to homomorphisms

β(m) : R′
m =



k0
H0(Sm, ω⊗k

m ) → Vm,m ↩→ Vm,∞,

β(∞) : R′
∞ =



k0
lim−→
m

H0(Sm, ω⊗k
m ) → lim−→

m

Vm,∞ = V.

Claim B. β(m) is not injective for each m  1, whereas β(∞) is injective.

Proof of Claim B. In fact, we may regard Vm,m (resp. V ) as the ring of functions
that associates the pair

(γ : X → Sm, ψm : (Z/pmZ)X
∼−→ γ∗Pm)

to some section in Γ(X, OX), being compatible with the base change. The
action of (Z/pmZ)× on the isomorphisms ψm’s (resp. the action of Z×

p on the
isomorphisms φ’s) induces an action of (Z/pmZ)× (resp. Z×

p ) on the ring Vm,m

(resp. V ). Explicitly, for αm ∈ (Z/pmZ)× and fm ∈ Vm,m, we obtain

αm(fm)(γ : X → Sm, ψm) = fm(γ : X → Sm, α−1
m ψm).

And for α ∈ Z×
p and f ∈ V ,

α(f)(γ : X → S, ψ) = f(γ : X → S, α−1ψ).

Under the above interpretations, the homomorphism β(m) identifies H0(Sm, ω⊗k)
with the subspace of functions in Vm,m on which (Z/pmZ)× acts via the char-
acter α → αk. In particular,

β(m)(H0(Sm, ω⊗k)) = β(m)(H0(Sm, ω⊗(k+(p−1)pm−1))) ⊂ Vm,m,
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and hence β(m) is not injective.
On the other hand, β(∞) identifies lim−→m

H0(Sm, ω⊗k) with the subspace
of functions in V on which Z×

p acts via the character α → αk for all k  0.
Recall that Tm,n = Spec(Vm,n) is finite étale over Sm, and hence Vm,n is a flat
Wm-algebra. Therefore, Vm,∞ = lim−→n

Vm,n is also a flat Wm-algebra. Since
V = lim←−m

Vm,∞ we see that V is p-adically complete, i.e.,

V ∼= lim−→
m

V/πmV, V/πmV ∼= Vm,∞.

Also, V is flat as a W -algebra, i.e. V is π-torsion-free. Combining with the
above interpretation of β(∞), we see that β(∞) : R′

∞ → V is injective.

Since V and R′
∞ are flat W -algebras, we have the following commutative diagram of inclu-

sions:

R′
∞ V

R′
∞[ 1

p ] V [ 1
p ],

β(∞)

β(∞)

Theorem 8.1. Define D′ = β(∞)(R′
∞[ 1

p ]) ∩ V . Then the natural inclusion ι : D′ → V induces
an isomorphism

ιm : D′/πmD′ ∼−→ V/πmV, m  1.

In other words, V is the p-adic completion of D′.

Proof. It follows from the definition of D′ that V/D′ is W -flat. Hence the exact sequence

0 → D′ → V → V/D′ → 0

remains exact when tensoring with Wm over W . Hence ιm : D′/πmD′ → V/πmV is injective.
To show the surjectivity, by Nakayama lemma, it suffices to show that

ι1 : D′/πD′ −→ V/πV ∼= V1,∞

is surjective. Pike some f ∈ V1,n ⊂ V1,∞ and choose one of its lift F ∈ lim−→l
Vl,n of f ∈ V1,n.

Here the integer m is sufficiently large such that m > n and πm−1/(pn − 1)! ∈ W (namely, m

has a non-negative p-adic valuation). It boils down to show that

πm−1 · F ∈ β(∞)(R′
∞) + πmV

as this implies that F ∈ D′ + πV . Let Fm be the image of F under the morphism

lim←−
l

Vl,n → Vm,n ↩→ Vm,m.

So it is enough to show that πm−1Fm ∈ β(m)(R′
m), or equivalently, the inclusion

πm−1Vm,n ⊂ β(m)(R′
m) ⊂ Vm,m.

For this, we first assume that Pm is the constant sheaf given by Z/pmZ on Sm = Spec A. Then,
due to the representability argument before,

Tm,m =


α∈(Z/pmZ)×

Sm, Vm,m =


α∈(Z/pmZ)×

Am = Maps((Z/pmZ)×, Am),

where Am = Γ(Sm, O) is a Z/pmZ-algebra. Note that the invertible sheaf ωm is trivial on Sm,
and hence

R′
m =



k0
H0(Sm, ω⊗k) ∼= Am[X].



HIDA THEORY ON P -ADIC MODULAR FORMS 21

Under this isomorphism, the map β(m) : R′
m → Vm,m is just to interpret the polynomials over

Am as functions on (Z/pmZ)× with values in Am (this makes sense since pmAm = 0 as Am is a
Wm = W/πmW -algebra), and the inclusion Vm,n ↩→ Vm,m becomes the natural inclusion

Maps((Z/pnZ)×, Am) −→ Maps((Z/pmZ)×, Am), m > n.

We need to show that

πm−1Maps((Z/pnZ)×, Am) = Maps((Z/pnZ)×, πm−1Am) ⊂ Im(β(m)).

Notice that πm−1Am is an F-vector space. The space Maps((Z/pnZ)×,F) admits a Mahler
basis, whose elements are of the form


x
i


with 0  i  pn − 1. Since

Maps((Z/pnZ)×, πm−1Am) = Maps((Z/pnZ)×,F) ⊗F πm−1Am,

we see that any element of πm−1Maps((Z/pnZ)×, Am) is of the form
pn−1

i=0
ai


z

i


, ai ∈ πm−1Am.

It follows from our choice of m that

πm−1


z

i


∈ W [X], 0  i  pn − 1,

and hence πm−1Fm ∈ β(m)(R′
m).

Now we consider the general case. We can find a finite étale covering Spec A → Sm = Spec Am

such that P|Spec A is constant. From the above discussion, we have

πm−1 · Vm,n ⊗Am A ⊂ β(m)(R′
m ⊗Am A),

i.e. the map
πm−1 : Vm,n ⊗Am A −→ Vm,m ⊗Am A/β(m(R′

m ⊗Am A))
is the zero map. Since A is faithfully flat over Am, we see that

πm−1 : Vm,n −→ Vm,m/β(m)(R′
m)

is the zero map, i.e. πm−1 · Vm,n ⊂ β(m)(R′
m). □

Now assume that M is a proper smooth scheme over W , whose fibers are geometrically
connected curves. For example, one may take M = MΓ/W . Denote Mm = M ⊗W Wm.
Suppose there exists a finite set Ω of closed points of M1, such that S1 = M1\Ω is still affine.
We obtain an invertible sheaf ω on M and a p-adic étale sheaf P = (P/pnP)n1 on Sm of rank
1 such that ω induces the sheaf P ⊗Zp OSm on Sm. Notice that ω⊗(p−1) is trivial on S1 as we
have canonical isomorphisms

(P ⊗Zp OS1)⊗(p−1) ∼= (P/pP)⊗(p−1) ⊗Z/pZ OS1 , (P/pP)⊗(p−1) ∼= Z/pZ.

Let A ∈ H0(S1, ω⊗(p−1)) be the section corresponding to 1 ∈ Z/pZ under this isomorphism.

Theorem 8.2. Suppose that A extends to a section A ∈ H0(M, ω⊗(p−1)) which vanishes at
points of Ω. Define

R∞ =


k0
H0(M, ω⊗k).

Then we have
R∞ ⊂ R′

∞ ⊂ V.

Set D = R∞[ 1
p ] ∩ V . The inclusions D ⊂ D′ ⊂ V induces isomorphisms

D/πmD ∼= D′/πmD′ ∼= V/πmV, m  1.
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Proof. The inclusion D ⊂ D′ follows from

H0(M, ω⊗k) = lim←−
m

H0(Mm, ω⊗k
m )

and the injection H0(Mm, ω⊗k
m ) ↩→ H0(Sm, ω⊗k

m ) for every m  1. By the same argument as
in the proof of Theorem 8.1, we see that D/πmD → V/πmV is injective for all m  1. Again
by Nakayama lemma, it suffices to show D/πD → D′/πD′ is surjective. The invertible sheaf ω

on M1 has positive degree since H0(M1, ω⊗(p−1)) has a nonzero section A which has zeros. We
choose an integer ν > 0 large enough so that

deg(ω⊗ν(p−1)|M1) > 2g − 2,

where g is genus of M1. Then the section Aν ∈ H0(M1, ω⊗ν(p−1)) lifts to a section E ∈
H0(M, ω⊗ν(p−1)) (the obstruction of this lifting lies in H1(M1, ω⊗ν(p−1)), which is zero by our
assumption on ν). We view E ∈ R∞ as an element in V under the inclusion R∞ ⊂ R′

∞ ⊂ V ,
and we have E ∈ 1 + πV . In fact, it is enough to show E mod π ≡ 1 in V/πV = V1,∞, and
this follows from the construction of the section A which shows that the image of A in V1,1 is
the function 1. The open subscheme Sm of Mm is defined by the open subset where the global
section E ∈ H0(M, ω⊗ν(p−1)) is invertible. So we have

H0(Sm, ω⊗k
m ) = lim−→

n

H0(Mm, ω⊗k+nν(p−1))
En

.

Now we can prove the surjectivity of the map D/πD → D′/πD′. Given an element f ∈
R′

∞ ∩ πmV (or equivalently, 1
pm f ∈ R′

∞[ 1
p ] ∩ V = D′), we need to show that there exits g ∈ D

such that
f ≡ g mod πm+1V.

Clearly we may assume that
f = fi ∈ lim←−

m

H0(Sm, ω⊗i
m )

for some i  0. By the formula above, we can find

g ∈ H0(Mm, ω⊗(i+Npmν(p−1))), N ≫ 0,

such that fi ≡ g/ENpm mod πm+1R′
∞. Since E ∈ 1 + πV , we have 1/ENpm ∈ 1 + πm+1V . It

follows fi − g ∈ πm+1V , i.e. f ∈ R∞ + πm+1V and hence D/πD → D′/πD′ is surjective. □

Now we give a rough idea on how to construct the desired Λ-adic forms under the above
abstract setting. Recall that

V = lim←−
m

V/πmV = lim←−
m

Vm,∞

is a flat W -algebra and Wm,∞ = V/πmV is a flat Wm-algebra. We set

V = lim−→
m

V/πmV = lim−→
m

1
πm

V/V,

which is a π-divisible W -module. We have defined an action of Z×
p on V and it induces actions

of Z×
p on V/πmV for m  1. We regard V as a discrete W -module and its Pontryagin dual

V∗ := HomW (V, K/W ) = lim←−
m

HomW (V[πm], 1
πm

W/W )

is equipped with the profinite topology and then a compact W [[Z×
p ]]-module. Also, recall that

ν : Z×
p → W × is the inclusion character. For a W -module M with a W -linear action of Z×

p and
k  1, we denote by M [νk] the submodule of M on which Z×

p acts via the character νk. Under
this notation, we have

V[νk] = lim←−
m

Vm,∞[νk] = lim←−
m

Vm,m[νk],
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here the last equality uses the fact that Vm,∞ is a Wm-module. Note that we have shown that
the image of the homomorphism β(m) : H0(Sm, ω⊗k

m ) → Vm,m equals Vm,m[νk].
Now assume that we have a W -linear idempotent map e : V → V which is compatible with

the action of Z×
p . We make the following two assumptions on e:

(1) e(Af) = A · e(f) for all f ∈ H0(S1, ω⊗k
1 ) and all k;

(2) dimK eH0(M/K, ω⊗k) is bounded independently of k.
The following (2’) is impulsed as a stronger version of (2) which will be used to make Theorem
8.4 more transparent.

(2′) dimK eH0(M/K, ω⊗k) depends only on k (mod p − 1) for k  k0, with some given
positive integer k0.

Recall that we have an isomorphism β(m) : H0(Sm, ω⊗k
m ) → Vm,m[νk]. Obtaining this, we

claim:
⋄ dimF eH0(S1, ω⊗k

1 ) is finite and bounded independently of k  1.
In fact, one can consider the injective map by multiplying As as follows:

As : H0(S1, ω⊗k
1 ) −→ H0(S1, ω

⊗k+s(p−1)
1 ).

Let {f1, . . . , f l} be a set of linearly independent sections in eH0(S1, ω⊗k) that can be lifted
to fi ∈ H0(S1, ω⊗k) for each i. By assumption (1) above, the sections {e(Es · fi)}i=1,...,l are
linearly independent over K in H0(S, ωk+s(p−1)). On the other hand, we know that

Es · fi ∈ H0(M/K , ω⊗k+s(p−1))quads ≫ 0.

It follows that
dimF eH0(S1, ω⊗k

1 )  D

if D satisfies for all k that dimK eH0(M/K , ω⊗k)  D. We also observe that dimK eH0(M/K , ω⊗k)
only depends on k modulo p − 1 for k ≫ 0.

The idempotent map e : V → V induces an idempotent map e : V/πmV → V/πmV for every
m  1 and hence induces idempotent maps e on V and V∗. Set Vord = e · V and V∗

ord = e · V∗.
For any k  1, we observe that

(a) V∗
ord ⊗W [[Z×

p ]],νk W is the Pontryagin dual of Vord[νk]
(b) V∗

ord ⊗W [[Z×
p ]],νk W ⊗W W/πW is the Pontryagin dual of Vord[νk][π] (this is isomorphic

to a finite-dimensional F-vector space eH0(S1, ω⊗k
1 ) via β(1)).

Lemma 8.3 (Topological Nakayama lemma). Let (A,m) be a complete local ring and M be a
profinite A-module. If there exists a closed ideal a of A such that M/aM is finitely generated
over A/f , then M is a finitely generated A-module, and the minimal number of generators of
M over A is equal to that of M/aM over A/a. In particular, if M/aM = 0, then M = 0.

Since V∗
ord is a profinite W [[Z×

p ]]-module, we write

ν∗
ord =



χ∈∆∨

V∗
ord[χ],

where V∗
ord[χ] is the Λ = W [[1 + pZp]]-submodule of V∗

ord on which ∆ acts via the character
χ : ∆ → W ×. For each integer k  1 that corresponds to weight κk such that κk|∆ = χ,
we have a finite-dimensional F-vector space (V∗

ord[χ] ⊗Λ,νk W ) ⊗W F ≃ V∗
ord[χ] ⊗Λ F. By

topological Nakayama lemma (c.f. Lemma 8.3), V∗
ord[χ] is finitely generated as a Λ-module,

and dimF eH0(S1, ω⊗k
1 ) only depends on χ := κk|∆. Suppose it is generated over Λ by dχ =

dimF V∗
ord[χ] ⊗Λ F elements. Then there is a surjective Λ-linear ϕ : Λdχ ↠ V∗

ord[χ], and ϕ spe-
cializes to weight κk via νk : Λ → W , written as

ϕ ⊗Λ,νk W : : W dχ
∼−→ V∗

ord[χ] ⊗Λ,νk W.
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It turns out that this is an isomorphism for all k  1. Then so also is ϕ. Hence V∗
ord[χ] is a free

Λ-module of finite rank dχ.
Since dimF eH0(S1, ω⊗k

1 ) is finite, we see

eH0(S1, ω
⊗k+s(p−1)
1 ) = eH0(M1, ω

⊗k+s(p−1)
1 ), s ≫ 0.

Also, every element in eH0(S1, ω⊗k
1 ) lands in H0(M1, ω

⊗k+s(p−1)
1 ) after multiplying a sufficiently

large power Es. Hence we have

eH0(S, ω⊗k ⊗ K/W ) = eH0(MΓ/W , ω⊗k ⊗ K/W ) = Vord[νk] = lim−→
m

eVm,m[νk], k ≫ 0.

For such a k, we summarize the above discussion in the following theorem:

Theorem 8.4. Suppose the existence of the idempotent e and the assumptions (1) and (2)
before. Then V∗

ord is a finitely generated projective W [[Z×
p ]]-module which satisfies

V∗
ord ⊗W [[Z×

p ]],νk W ∼= HomW (eH0(M/W , ω⊗k), W ).

For every character χ ∈ ∆∨, V∗
ord[χ] is a free Λ-module of rank dχ. Under the stronger assump-

tion (2′), the same result holds for all k  k0.

Also, notice that with M = MΓ, eH0(M/W , ω⊗k) is the ordinary part of Hecke algebra.

9. p-adic families of ordinary modular forms

We introduce some notations. Denote pAlg/W the category of p-ordinary complete W -
algebras. Define the functor for n  0 that

Eord
Γ,n : pAlg/W Sets

R





(E/R, φΓ, φpn)



E is an elliptic curve over R,

φΓ is the Γ-level structure,

and φpn : µpn ↩→ E





/ ∼= .

For n = 0, we obtain a universal elliptic curve Eord
Γ,0 /W = Y ord

Γ/W as well as a finite étale covering

Eord
Γ,n −→ Eord

Γ,n
∼= Y ord

Γ/W ,

which further extends to the smooth compactification

Eord
Γ,n −→ Xord

Γ/W .

Now let E → S := Xord
Γ/W be the generalized elliptic curve. We obtain a natural exact sequence

0 E◦[pn] E[pn] Eét[pn] 0

Cn Pn

= =

as group schemes over Xord
Γ = S. We denote Sm = S ×W Wm. Then points of Spec(Vm,n) can

be interpreted as isomorphisms over Sm between Pn and Z/pnZ.

Theorem 9.1. For each m  1, we obtain

Eord
Γ,n

∼= Spec(Vm,n) = IsomSm(Pn,Z/pnZ).

This further gives an isomorphism ψ : Pn
∼−→ Z/pnZ over A.

Proof. This follows from the properties of Cartier duality. If Spec A is an affine scheme over
Sm such that there exists an isomorphism ψ : Pn,A

∼−→ (Z/pnZ)Spec A, we can take the Cartier
dual of the morphism E[pn]APn,A

∼= (Z/pnZ)Spec A and get an injective morphism µpn ↩→ E[pn]
over A. This gives an A-valued point of Spec(VΓ,m,n). Since Cartier duality is perfect, we can
reverse the above process and get the desired isomorphism. □
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By post-composing ψ with E[pn] → Pn and taking the Cartier duality, we can recover the
morphism µpn ↩→ E[pn] over A.

Corollary 9.2. Let f : E → Sm be the generalized elliptic curve defined above. Denote 0: Sm →
E the zero section of f . Then we obtain a canonical isomorphism

f∗ΩE/Sm
= ωE/Sm

∼= Pm ⊗Zp OSm .

Proof. By definition we write f∗ΩE/Sm
∼= 0∗ΩE/Sm

. On the other hand, Cm is an Sm-subscheme
of E[pm]. We are to use the following essential fact at work:

⋄ Let A be a Z/pmZ-algebra and set µpm = Spec A[T ]/((1 + T )pm − 1) as a scheme over
A. Then Ωµpm /A is an invertible sheaf on µpm/A.

Consequently, ΩCm/Sm
is an invertible sheaf on Cm, with a surjection

ΩE/Sm
⊗OE OCm −→ ΩCm/Sm

.

Then we get a surjection between pullbacks along the zero section, read as
0∗ΩE/Sm

−→ 0∗ΩCm/Sm

which is further an isomorphism. By Cartier duality, we have Pm = Hom(Cm,Gm). For any
morphism φ : Cm → Gm = SpecZ[t, t−1], we get a section φ∗(dt/t) ∈ ΩCm/Sm

by writing Gm =
Spec(Z[T, T −1]) ×Z Sm. As a mimic of Hodge–Tate map, we get a surjective morphism

Pm ⊗Z/pmZ OSm
ΩCm/Sm

φ φ∗ 
dt
t



∼=

that is indeed an isomorphism. Therefore, as desired,
ωE/Sm

∼= f∗ΩE/Sm
∼= 0∗ΩE/Sm

Pm ⊗Zp OSm .

□

Let A ∈ pAlg/W . We set
VΓ/A = lim←−

n

VΓ/W ⊗W A/pnA.

Each f ∈ VΓ/W is a rule which assigns an element f(E/R, φΓ, φp∞) to every triple (E/R, φΓ, φp∞)
defined over a p-adically complete A-algebra R satisfying:

(1) f(E/R, φΓ, φp∞) only depends on the isomorphism class of the triple (E/R, φΓ, φp∞);
(2) f(E/R, φΓ, φp∞) commutes with arbitrary base change;
(3) For any level Γ-structure φΓ on the Tate curve Tate(qN ), if we let φcan

p∞ : µp∞ → Tate(qN )
be the natural morphism, then we have

f(Tate(qN ), φΓ, φcan
p∞ ) ∈ A ⊗Z Z[[q]].

If the element f(Tate(qN ), φΓ, φcan
p∞ ) further belongs to q · A ⊗Z Z[[q]], then f is called a p-adic

cusp form of level Γ.

Theorem 9.3 (Density theorem). For any W -algebra A, we define

M(Γ; A) :=


k0
H0(MΓ/A, ω⊗k).

Then the following subset of VΓ[ 1
p ]:

M(Γ; K) ∩ VΓ/W

is dense in VΓ/W with respect to the p-adic topology. This p-adic topology coincides with the
topology induced by the notion |f | = supn |a(n; f)|p for each f ∈ VΓ/W . Also,

f(Tate(qN ), φΓ, φp∞) =


n0
a(n; f)qn
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for any fixed level-Γ structure on Tate(qN ).

Proof. Following the recipe provided by [Kat73], the second statement follows from the fact
that Spec(Vm,n) is an irreducible smooth scheme over Sm, as well as the following fact. If f is
a global section of a coherent sheaf on an irreducible smooth curve M over Wm, which is 0 on
the formal completion at a closed point of M , then f ≡ 0. □

We now give an explicit expression of the inclusion

β : M(Γ; A) =


k0
H0(MΓ/A, ω⊗k) −→ VΓ/A

for a p-adically complete W -algebra A.
Suppose that we are given a triple (E/A, φΓ, φp∞ : µp∞ ↩→ E). The invariant differential

dt/t on Gm = Spec(Z[T, T −1]) induces an invariant differential ωcan on µp∞ . For m  1, we set
Am = A/pmA, and let Cm/A be the identity component of the finite flat group scheme E[pm]/A.
The morphism φp∞ induces an isomorphism mupm

∼−→ E◦[pm] over A. As we see in the proof
of Corollary 9.2 before, we have isomorphisms 0∗Ωµpm /Am

∼= 0∗ΩE/Am
∼= ωE/Am

. The invariant
differential ωcan on µp∞ then gives a basis of the Am-module ωE/Am

. Then taking inverse limit
for m, we get a basis of ωE/A, which is denoted by φp∞,∗ωcan. Then β is defined as

β(f)(E/A, φΓ, φp∞) = f(E/A, φΓ, φp∞,∗ωcan).

In particular, if f ∈ H0(M/A, ω⊗k) then we have β(f) ∈ VΓ/A[νk].

10. Hecke operators

Let ℓ be a prime number and R be a ring such that ℓ−1 ∈ R. Fix a prime-to-ℓ integer N . Let
E be an elliptic curve over R. Suppose there exists a finite étale ring homomorphism R → R′

such that over R′, we have E[ℓ]R′ ∼= (Z/ℓZ)2
R′ . It turns out that E[ℓ]R′ has ℓ + 1 finite flat

subgroup schemes of rank ℓ over R′. Let H ⊂ E[ℓ] be such a group scheme. Let π : E → E/H

be the natural projection and πt : E/H → E be its dual map.
For a triple (E/R, ω, φΓ(N)) consisting of an elliptic curve E/R, a basis ω of ωE/R, and

a level-Γ(N) structure φΓ(N) over R, we define another triple (ER′/H, ω′
H , φΓ(N),H), where

ER′/H is the quotient of ER′ by H, ω′
H is the basis of ω(ER′ /H)/R′ defined by π∗(ω′

H) = ω,
and φΓ(N),H : (ER′/H)[N ] ∼= (Z/NZ)2

R′ is the level structure on ER′/H defined over R′ via the
commutative diagram:

ER′ [N ] (ER′/H)[N ]

(Z/NZ)2
/R′ .

φΓ(N)

π

φΓ(N),H

One can also define a Γ1(N)-level structure on ER′/H from a level Γ1(N)-structure on E/R by
a similar construction.

Let f be a modular form of weight k and level Γ = Γ(N) or Γ1(N) over R. We define

(f |T (ℓ))(E/R, ω, φΓ) = 1
ℓ



H⊂E[N ]/R′

f(ER′/H, , ω′
H , φΓ,H),

where the sum is taken over all finite flat subgroup schemes of rank ℓ of E[ℓ]/R′ . We can deduce
from the q-expansion principle that (f |T (ℓ))(E/R, ω, φΓ) ∈ R and it is independent of the choice
of R′. Hence (f |T (ℓ)) is a modular form of weight k and level Γ over R. This T (ℓ) is called the
Hecke operator on the space of modular forms of weight k and level Γ over R.

More generally, if ℓ is not invertible in R yet not a zero divisor, we may define first T (ℓ) on
modular forms of weight k and level Γ over R[ 1

ℓ ], and then show that T (ℓ) leaves modular forms
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over R stable. Moreover, if ℓ | N and Γ = Γ1(N), notate the image of level-Γ structure by C

via φΓ : Z/NZ → E, and henceforth

(f |U(ℓ))(E/R, ω, φΓ) = 1
ℓ



H⊂E[N ]/R′

f(ER′/H, , ω′
H , φΓ,H),

where H runs over all finite flat subgroup schemes of E[ℓ]R′ such that H ∩ C = (0).
Let p  5 and A be a p-adic W -algebra. We define the Hecke U(p)-operator on VΓ/A as

follows. Consider the short exact sequence of finite flat group schemes over R:

0 −→ µp
φp−→ E[p] ψp−→ Eét[p] −→ 0

as well as the triple (E/R, φΓ, φp∞ : µp∞ → E). Suppose these are defined over a finite étale
extension R′ of R such that over R′, there are exactly p finite flat subgroup schemes H of E[p],
just so ψp : H → Eét[p] is an isomorphism. For such an H, let φp∞,H be the composite

φp∞,H : µp∞,R′
φp∞
−→ ER′ −→ ER′/H.

For each f ∈ VΓ/A, we define

(f |U(p))(E/R, φΓ, φp∞) = 1
p



H⊂E[p]/R′

f(E/R′, φΓ,H , φp∞,H).

However, the following map for Γ = Γ(N) is not Hecke-equivariant:

βnaive :


k0
H0(MΓ/W , ω⊗k) −→ VΓ/W ,

because the left-hand side carries the T (p)-operator whereas the right-hand side carries the
U(p)-operator. Instead, one should replace the map above with

β :


k0
H0(MΓ∩Γ1(p)/W , ω⊗k) −→ VΓ/W ,

where the left-hand side is a subgroup of


k0 H0(MΓ/W , ω⊗k). Now both sides carry the
U(p)-operator, and β is Hecke-equivariant.

Proposition 10.1. The Hecke operators T (ℓ) for ℓ ∤ Np, and U(ℓ) for ℓ | Np on VΓ/W , give
continuous endomorphisms on VΓ/W and VΓ,m,n/Wm

for all m, n.

Proof. The statement follows from the q-expansion principle and a careful computation of Hecke
operators on Tate curves. We refer to [Kat73, §1.12] for a careful discussion. We give a list of
formulas of the Hecke operators on p-adic modular forms in the case of Γ1(N)-level structure.
Fix a triple (Tate(qN ), φΓ1(N), φp∞). For f ∈ VΓ/W , we denote by a(n; f) the qn-coefficient of
the q-expansion to f(Tate(qN ), φΓ1(N), φp∞). For ℓ ∤ Np, we define

(f |ℓ)(Tate(qN ), φΓ1(N), φp∞) = f(Tate(qN ), ℓ · φΓ1(N), ℓ−1 · φp∞).
Under the above notations, we have for ℓ ∤ Np that

a(n; (f |T (ℓ))) = a(ℓn; f) + ℓ−1a(n/ℓ; (f |ℓ)),
and for ℓ | Np that

f(n, (f |U(ℓ))) = a(ℓn; f).
□

Corollary 10.2. The limit e = limn→∞ U(p)n! exists and gives an idempotent in VΓ/W .

Proof. It follows from the fact that the limit limn→∞ U(p)n! exists in

M(Γ; K) =


k0
H0(MΓ/K , ω⊗k)

and Theorem 9.3. □
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11. Analytic family of p-adic ordinary modular forms

The space VΓ/W of p-adic modular forms is a flat W -module with an action of Z×
p . A p-adic

modular form f ∈ VΓ/W is of weight s ∈ Zp if z(f) = zs · f for all z ∈ 1 + pZp. Recall that we
fix a topological generator u = 1 + p of 1 + pZp and an isomorphism Λ = W [[1 + pZp]] → W [[X]],
sending [u] to 1 + X.

Definition 11.1. A formal series
Φ(X, q) =



n0
a(n; Φ)(X)qn ∈ Λ[[q]]

is called an Λ-adic modular form if Φ(us−1, q) is a p-adic modular form of weight s for all s ∈ Zp.
The set of p-adic modular forms {Φ(us − 1, q)}s∈Zp is called a family of p-adic modular forms.
A Λ-adic modular form Φ (or the family {Φ(us − 1, q)}s∈Zp) is called arithmetic if Φ(uk − 1, q)
is a (true) modular form for almost all positive integer k. We call Φ a Λ-adic cusp form if
Φ(us − 1, q) is a p-adic cusp form for all s ∈ Zp.

Recall that Λ = W [[X]] can be identified with the space of bounded measures
Meas(Zp; W ) := HomW (C(Zp, W ), W )

over Zp with values in W via the formula


Zp

(1 + X)sdφ(z) =
∞

n=0



Zp


z

n


dφ(z) · Xn.

Denote the right-hand side by φ(X). Here saying a measure φ is bounded means that




Zp

f(x)dφ(z)


p

 |f |p = sup
z∈Zp

|f(z)|p.

Under the homeomorphism Zp → 1+pZp via z → uz, we can identify Λ with Meas(1+pZp; W ).
In particular, let X = us − 1 in the above formula, we have



1+pZp

tsdφ(t) = φ(us − 1).

We can generalize the above notion to bounded measures on 1 + pZp, with values in VΓ/W ↩→
W [[q]] as the letter spaces are equipped with the norm |f |p = supn0 |a(n; f)|p for f =


n0 a(n; f)qn.

Then a Λ-adic form Φ can be identified with a bounded measure on 1+pZp with values in VΓ/W

and it satisfies 

1+pZp

xsdΦ =


n0
a(n; Φ)(us − 1) · qn, ∀s ∈ Zp.

If T : VΓ/W → VΓ/W is a bounded W -linear map, then for any Λ-adic form Φ, T ◦ dΦ is also a
bounded measure on 1 + pZp with values in VΓ/W , and it corresponds to a Λ-adic form (Φ|T ).
In particular, we get a Z×

p -action and Hecke operators on the space of Λ-adic forms.

Definition 11.2. Let A be a p-adically complete W -algebra. A p-adic modular form f ∈ VΓ/A

is called p-ordinary if f ∈ eVΓ/A. A Λ-adic form Φ is p-ordinary if Φ(us − 1, q) ∈ VΓ/W is
p-ordinary for all s ∈ Zp.

We denote by Mord(Γ, Λ) (resp. Sord(Γ, Λ)) for the space of p-ordinary Λ-adic forms (p-
ordinary Λ-adic cusp forms) with level Γ. We also denote by Hord(Γ, Λ) (resp. hord(Γ, Λ))
for the Λ-subalgebra of EndΛ(Mord(Γ, Λ)) (resp. EndΛ(Sord(Γ, Λ))) generated by all the Hecke
operators.

Theorem 11.3 (Vertical control theorem). Under the above notations, we have
(1) Hord(Γ, Λ) ∼= V∗

ord, and Hord(Γ, Λ) ⊗Λ,νk W ∼= Hord
k (Γ ∩ Γ1(p), W ) for k  2.

(2) Mord(Γ, Λ) ∼= HomΛ(V∗
ord, Λ).
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(3) Mord(Γ, Λ) is free of finite rank over Λ.
(4) For k  2, the specialization Φ → Φ(uk −1, q) induces an isomorphism Mord(Γ, Λ)⊗Λ,νk

W ∼= Mord
k (Γ ∩ Γ1(p), W ).

(5) All p-ordinary Λ-adic forms are arithmetic.

Proof. For any n  0, the map a(n) : Vord → K/W which assigns f ∈ eVΓ/W to its coefficient
of qn is an element of V∗

ord. Consider the map

(∗) Homλ(V∗
ord, Λ) −→ Λ[[q]], φ −→



n0
φ(a(n))qn =: Φ(X, q).

Since V∗
ord is a finite free Λ-module, we have

HomΛ(V∗
ord, Λ) ⊗Λ,νk W ∼= HomW (V∗

ord ⊗W,νk W, W )
∼= HomW (HomW (Mord

k (Γ ∩ Γ1(p)), W ), W )
∼= Mord

k (Γ ∩ Γ1(p)).
If we write down the above isomorphism explicitly, we see that the power series Φ(X, q) defined
in (∗) satisfies Φ(uk − 1, q) ∈ Mord

k (Γ ∩ Γ1(p), W ) for all k  2. Hence t he map in (∗) gives an
isomorphism

HomΛ(V∗
ord, Λ) ∼−→ Mord(Γ, Λ).

This proves (2). The other statements follow from the duality between the space of ordinary
Λ-adic forms and its Hecke algebra. □

Remark 11.4. We may consider the subspace Vord,cusp ⊂ Vord of elements whose constant terms
of the q-expansions are 0. The above theorem holds if we replace M(Γ, Λ) (resp. V∗

ord) by
S(Γ, Λ) (resp. V∗

ord,cusp).

References
[DR] P. Deligne and M. Rapoport. Les Schémas de Modules de Courbes Elliptiques, pages 143–316. Modular

Functions of One Variable II. Springer Berlin Heidelberg, Berlin, Heidelberg.
[Hid86a] Haruzo Hida. Galois representations into GL2(Zp[[X]]) attached to ordinary cusp forms. Inventiones

mathematicae, 85(3):545–613, 1986.
[Hid86b] Haruzo Hida. Iwasawa modules attached to congruences of cusp forms. Annales scientifiques de l’école

normale supérieure, 19(2):231–273, 1986.
[Hid93] Haruzo Hida. Elementary theory of L-functions and Eisenstein series, volume 26. Cambridge University

Press, Cambridge [England], 1993.
[Hid00] Haruzo Hida. Geometric modular forms and elliptic curves. World Scientific, Singapore; River Edge,

NJ, 2000.
[Kat73] Nicholas M. Katz. p-adic Properties of Modular Schemes and Modular Forms, volume 350 of Lecture

Notes in Mathematics, pages 70–189. Springer, 1973.
[KM16] Nicholas M. Katz and Barry Mazur. Arithmetic Moduli of Elliptic Curves, volume 108 of Annals of

Mathematics Studies. Princeton University Press, 2016.
[Ser79] Jean P. Serre. Local fields, volume 67. Springer-Verlag, New York, 1979.

School of Mathematical Sciences, Peking University, 100871, Beijing, China
Email address: daiwenhan@pku.edu.cn


