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Abstract. This is a review of some developments in the theory of Eisenstein series since
Corvallis. The talk closely follows [Lap22].

1. Introduction: a story about SL2

We begin with a picture that is familiar to everyone. Let H be the hyperbolic upper half
plane with SL2(R) action. Let Γ = SL2(Z) with X = Γ\H, the automorphic space. Let

N =

󰀫󰀣
1 x

0 1

󰀤󰀏󰀏󰀏󰀏󰀏x ∈ R

󰀬
⊂ SL2(R), Γ∞ := N ∩ Γ.

Consider their respective actions on H, given by the horizontal translations. One gets

Y = Γ∞\H ≃ R>0 × (Z\R), Z = N\H ≃ R>0.

We have two natural projections

Y

X Z
The right map is proper because the fibers are just the circles in Z\R. One can define a
constant term from functions on X to functions on Z, by first pulling back to Y and then
pushing forward to Z.

Upshot. Keep in mind that X is the target space we are to work with, and Z is basically
an auxiliary space.

Consider the constant term

F(X ) −→ F(Y) −→ F(Z), f 󰀁−→
󰁝

Z\R
f(x+ iy)dx, y > 0.

Here the function space F(·) could be for instance L1
loc, L

∞, or C∞ (but not Cc or L2)1. We
list out some analytic properties for this.

(1) The adjoint to this operator is

(∗) Cc(Z) −→ Cc(X ), f 󰀁−→
󰁛

γ∈Γ∞\Γ

f(γz), z ∈ H.

(2) The space Z (unlike X ) admits a left action by the torus

T =

󰀫󰀣
t

t−1

󰀤󰀏󰀏󰀏󰀏󰀏 t ∈ R>0

󰀬
⊂ SL2(R).

Date: July 11, 2022.
1The point here is that F(·) cannot contain compactly supported functions. Otherwise it is not compatible

with the adjoint operator which preserves the compactness of supports.
1
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Note: this induces an action of T on Cc(Z).
(3) At first approximation, the theory of Eisenstein series aims to give a spectral de-

composition/expansion of (∗) with respect to the action of T on Cc(Z).

The simplest Eisenstein series (introduced by Mass in 1949) is

E(z; s) =
󰁛

γ∈Γ∞\Γ

Im(γz)s+
1
2 =

󰁛

(m,n)∈Z2\{(0,0)}
gcd(m,n)=1

ys+
1
2

|mz + n|2s+1
,

where z = x+ iy. Roughly, this is a real analytic version of the modular forms considered by
Eisenstein (with s the role of the weight). The series converges for Re(s) > 1/2. It admits
a meromorphic continuation to C and a functional equation s 󰀁→ −s.

Ultimately, the theory of Eisenstein series gives the non-discrete part of the spectral
decomposition of L2(X ) (equipped with the action of the Laplace operator ∇2).2

Backgrounds. In the 1980s Joseph Bernstein came up with a new, simpler proof of the
meromorphic continuation of the Eisenstein series. It is based on a general “soft” principle
of meromorphic continuation. Its main feature is that it completely avoids the role of L2(X ).3

Indeed, no spectral theory is used beyond rudimentary Fredholm theory for Banach
spaces. Lapid’s first goal is to explain this proof, following [BL19].

Remark 1.1. The normalized Eisenstein series

E∗(z; s) =
󰁛

(m,n)∈Z2\{(0,0)}

ys+
1
2

|mz + n|2s+1
= ζ(2s+ 1)E(z; s)

can be analytically continued exactly as Riemann did for ζ(s) (using Poisson summation
formula). It has a simple pole at s = 1 and a functional equation

π−sΓ(s)E∗(z; s) = πsΓ(−s)E∗(z;−s).

This method is too special. Bernstein’s proof is fundamentally different (and gives another
proof of the meromorphic continuation of ζ(s)).

2. Meromorphic continuation of Eisenstein series

In the upcoming context we introduce the proof of Bernstein for the analytic continuation
for E∗(z; s).

2.1. Basic notions.

2.1.1. Analytic functions in HLCTVSs. Let C be a complex, Hausdorff, locally convex topo-
logical vector space (HLCTVS). Let C′ be the space of continuous linear forms on C.

Definition 2.1. A function f : Cn → C is analytic if for every µ ∈ C′, the scalar function

〈µ, f(s)〉 : Cn −→ C

2It was developed by Selberg (1950s) and Langlands (1960s) by forming eigenfunctions with respect to
∇2. Their proofs are a bit involved. Also, the theory of Eisenstein series is not limited to arithmetic lattices.
At least the theory has an analytic aspect and the rough geometry of Γ\H is in need.

3“The bed of Procrustes”, as Langlands refers to it.
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is analytic.4

If C is Fréchet space, this definition is equivalent to strong analyticity, or to having a
convergent Taylor series. In practice, analyticity is not very sensitive to the topology of C.

Let U ∕= ∅ be the complement of a closed analytic set in Cn. In particular, U is dense in
Cn.

Definition 2.2. Let f : U → C be an analytic function. We say that f is meromorphic
on Cn if for every s0 ∈ Cn there exists a polydisc D around s0 and a holomorphic function
0 ∕≡ g : D → C such that the function

g(s)f(s) : U ∩D −→ C

extends holomorphically to D.

Example 2.3. Let F be another HLCTVS. Let L(C,F) be the space of continuous linear
operators from C to F (with the topology of pointwise convergence).

An analytic family of operators is a function A : Cn → L(C,F) such that the scalar
function

s 󰀁−→ 〈µ,A(s)v〉
is analytic for all v ∈ C and µ ∈ F′.

The composition of two analytic families of operators is analytic by Hartog’s Theorem
on separate holomorphicity.

2.1.2. Analytic systems of linear equations. A system Ξ of linear equations (SLE) in v ∈ V

takes the form
µi(v) = ui, i ∈ I,

where for every i ∈ I, ui is a vector in a vector space Ui and µi : V → Ui is a linear operator.
We write Sol(Ξ) for the set of solutions of Ξ in V . Suppose that C and Fi are HLCTVSs. If
for every i ∈ I,

ui : Cn → Fi, µi : Cn → L(C,F)

depend analytically on s ∈ Cn, then we say that the system Ξ(s), with s ∈ Cn on v ∈ C,

µi(s)(v) = ui(s), i ∈ I

is an analytic system linear equations (ASLE). Without loss of generality, Ci = C for all i.

2.2. Fredholm theory. A rough form of principle of meromorphic continuation is
read as follows.

⋄ Suppose that an ASLE Ξ = Ξ(s) has a unique solution v(s) for an open set of s’s.
Then v(s) admits meromorphic continuation to Cn.

Unfortunately, this is not always the case. We have to impose some conditions.

Definition 2.4. We say that an ASLE Ξ is of finite type if there exists a finite-dimensional
vector space L and an analytic family λ(s) of injective operators L → C such that Sol(Ξ(s)) ⊂
Imλ(s) for all s.

4Of course, we can replace Cn by any complex analytic manifold.
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We can similarly speak about systems that are locally of finite type (LFT).

Theorem 2.5 (Principle of meromorphic continuation, PMC). Let Ξ = (Ξ(s))s∈Cn be an
ASLE on a HLCTVS C. Assume that Ξ is LFT. Let

S = {s ∈ Cn | the system Ξ(s) admits a unique solution v(s)}.

Suppose that S has nonempty interior. Then

(1) Cn\S is a closed analytic subset of Cn.
(2) v is holomorphic on S.
(3) v is meromorphic on Cn.

The proof is a simple application of Cramer’s rule.
A basic tool for proving local finiteness is Fredholm theory.

Example 2.6 (A system of Fredholm type). Suppose that µs, νs : H1 → H2 are two analytic
families of bounded operators between Hilbert spaces. Suppose that for all s, µs is a strict
embedding and νs is a compact operator.

Then the homogeneous equation
µsv = νsv

on v ∈ H1 is LFT.

In the example above, recall that strict embedding means that there exists constants
C1, C2 > 0 such that

C1󰀂v󰀂 󰃑 󰀂µs(v)󰀂 󰃑 C2󰀂v󰀂, ∀v ∈ H1.

A practical way to prove that an operator A : H1 → H2 between Hilbert spaces is compact
is to show that it is Hilbert–Schmidt. This means that

󰁛
󰀂Aei󰀂2 < ∞

for any orthonormal basis ei of H1.

Example 2.7. Let A : H → L2(X,µ) be a bounded operator from a separable Hilbert space
H to an L2-space. Then the following are equivalent.

• A is Hilbert–Schmidt;
• for almost all x ∈ X, the evaluation evx(u) := Au(x) is bounded on H and x 󰀁→
󰀂evx󰀂 ∈ L2(X,µ).

2.3. The equation that E(z; s) satisfies. We take the setups as follows. Consider a real
Lie group G = SL2(R) together with its maximal compact subgroup K = SO(2). Then the
upper-half plane H = G/K. Also, for the modular subgroup Γ = SL2(Z) in G, we define

X = Γ\H = SL2(Z)\SL2(R)/SO(2).

Also denote

Fumg := the space of functions of uniform moderate growth on X .

This means that there exists N > 0 such that

|Xf(z)| ≪X (Im(z))N , Im(z) >
1

2
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for every X ∈ U(g)K . The Eisenstein series

E(z; s) =
󰁛

γ∈±Γ∞\Γ

Im(γz)s+
1
2 =

1

2

󰁛

(m,n)∈Z2,
gcd(m,n)=1

ys+
1
2

|mz + n|2s+1

converges for Re(s) > 1/2 and defines a function in Fumg(X ).
Consider the holomorphic system Ξ(s) with s ∈ C on ψ ∈ Fumg(X ) given by the following

three sets of linear equations:

(a) δ(h)ψ = ĥ(s)ψ for all h ∈ C∞
c (G//K);

(b) (Ta − a−s)(Cψ(y)− ys+
1
2 ) ≡ 0 for all a > 0;

(c) (ψ, f)X = 0 for every cusp form f on X .

The list of notations appeared above is in the following.

• Denote by C∞
c (G//K) the algebra of smooth, bi-K-invariant, compactly supported

functions on G.
• This algebra acts on the right on L1

loc(H). We denote this action by f 󰀁→ δ(h)f .
• Let ĥ(s) be the eigenvalue of the eigenfunction (Im(z))s+

1
2 under δ(h). It can be

computed explicitly.
• Denote Cf the constant term

Cf(y) =

󰁝

Z\R
f(x+ iy)dx, y > 0.

• For a > 0 denote by Ta the normalized shift operator on functions on R>0 given by

Taf(y) = a−
1
2 f(ay).

These operators pairwise commute.
• (·, ·)X is the pairing with respect to the measure µ = dxdy

y2 on X .

It is easy to check that the Eisenstein series satisfies Ξ(s) for Re(s) > 1/2. Note that the
non-homogeneous equation (b) amounts to the equation

CE(y; s) = ys+
1
2 +m(s)y−s+ 1

2 , y > 0

for some function m(s). (We do NOT need to know anything about m(s).)5 In order to
apply PMC (Theorem 2.5), we show the following two statements.

(1) For Re(s) > 1/2, the Eisenstein series E(z; s) is the unique function of uniform
moderate growth satisfying the equations (b) and (c).

(2) The ASLE (a) and (b) (already for a single a > 0) is LFT.

Proposition 2.8 (Uniqueness). Fix s with Re(s) > 1/2. Suppose that ψ ∈ Fumg(X ) satisfies

(∗) (Ta − a−s)(Cψ(y)− ys+
1
2 ) ≡ 0 for all a > 0,

and

(∗∗) (ψ, f)X = 0 for every cusp form f on X .

5Ultimately, it can be computed as

m(s) =
√
π

Γ(s)ζ(2s)

Γ(s+ 1
2
)ζ(2s+ 1)

.
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Then ψ = E(z; s).

Proof. Let ψ′ = ψ − E(z; s) ∈ Fumg(X ). Then Cψ′ is proportional to y
1
2−s by (∗), hence

bounded on y 󰃍 1/2. By rapid decay of ψ′ − Cψ′, for y 󰃍 1/2, ψ′ is bounded. By Γ-
invariance, ψ′ is bounded on X . Therefore, Cψ′ is bounded on R>0. Since Re(s) > 1/2, we
infer that Cψ′ ≡ 0, so that ψ′ is cuspidal. By (∗∗), ψ′ ≡ 0 as required. □

2.4. Local finiteness. We model the equations on an auxiliary Hilbert space, replacing the
complicated space X by a simpler one which approximates it at the cusp.

• Let Z = Γ∞\H.
• Take S = {z ∈ Z | y > c0}, where c0 > 0 is chosen so that the projection p : S → X

is actually onto.
• For N > 0 consider the Hilbert space HN (S) = L2(S; y−2Nµ).
• The pullback f 󰀁→ f̃ by p gives rise to a Hilbert space HN (X ) of functions on X

with a strict embedding HN (X ) → HN (S).
• Fumg(X ) is the union over N of the smooth part of HN (X ).
• Any f ∈ HN (S) admits an orthogonal decomposition f = Cf + fcusp in which
Cfcusp ≡ 0.

Fix a > 1 and h ∈ C∞
c (G//K).

Proposition 2.9 (Local Finiteness). The following ASLE on f ∈ HN (X ) is of Fredholm
type for |Re s| < N and ĥ(s) ∕= 0.

ĥ(s)f̃cusp = 󰁪δ(h)f,

ĥ(s)(Cf)|[c0,c0a2] = C(δ(h)f)|[c0,c0a2],

(Ta − as)(Ta − a−s)(Cf) = 0.

More precisely, the operator

HN (X ) → HN (S)⊕ L2(R>c0 , y
−2N dy

y2
)⊕ L2([c0, c0a

2])

f 󰀁→ (f̃cusp, (Ta − as)(Ta − a−s)(Cf), (Cf)|[c0,c0a2])

resp., f 󰀁→ (󰁪δ(h)fcusp, 0,C(δ(h)f)|[c0,c0a2])

is a strict embedding (resp., Hilbert–Schmidt).

The first statement boils down to the elementary fact that the operator

L2(R+, e
−2rxdx) → L2(R+, e

−2rxdx)⊕ L2([0, 1]),

f 󰀁→ (f(x+ 1)− λf(x), f |[0,1])

is a strict embedding provided that er > |λ|. The second statement is standard.

3. A more general picture over number fields

3.1. The general statement (in broad strokes). These go on reductive groups over
number fields.
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Notation 3.1. Say G is a reductive group over a number field F . Fix a minimal parabolic
subgroup P0 of G defined over F . Let Ω be the Weyl group of G. Fix a “good” maximal
compact subgroup K of G(A). Define

P := the finite set of standard parabolic subgroups of G defined over F.

For any P ∈ P let XP := P (F )U(A)\G(A). Denote mP (g) the M(A)-part of g ∈ G(A) in
the Iwasawa decomposition. Denote ∆′

P ⊂ ∆0 the set of simple roots whose restriction to
Lie(U) is nontrivial.

Fix P ∈ P and an automorphic form ϕ on XP . For a quasi-character λ of M(A)/M(A)1,
the Eisenstein series

E(g,ϕ,λ) =
󰁛

γ∈P (F )\G(F )

ϕ(γg)mP (γg)
λ

converges absolutely if Re(λ) ≫ 0 (that is, Re〈λ,α∨〉 ≫ 0 for all α ∈ ∆′
P ) and defines an

automorphic form on XG = G(F )\G(A).

Proposition 3.2 (Cuspidal exponents of Eisenstein series). For any Q = L ⋉ V ∈ P, we
have

Ecusp
Q (E(ϕ,λ)) ⊂ {w(λ+ µ) | w ∈ Ω⊃Q(P ), µ ∈ Ecusp

Pw
(ϕ)}

where

• Ecusp
R (φ) is the set (with multiplicities) of cuspidal exponents of φ along a parabolic

subgroup R ⊂ P .
• Ω⊃Q(P ) = {w ∈ Ω right ΩM -reduced | wMw−1 ⊃ L}.
• For any w ∈ Ω ⊃ Q(P ), Pw is the standard parabolic subgroup of P with Levi

subgroup w−1Lw.

This follows from the computation of the constant term of E(ϕ,λ) along Q using Bruhat
decomposition (a global analogue to the geometric lemma of Bernstein–Zelevinsky).

The computation of the constant term gives more information. While most of the terms
involve nontrivial intertwining operators and should be treated as unknown (apart from
their exponents), the term corresponding to w = e is simply the constant term CQϕ of ϕ
itself (interpreted as 0 if Q ∕⊂ P ).

3.2. Uniqueness property for automorphic forms. Denote by Ccusp
Q φ the cuspidal pro-

jection of CQφ.

Proposition 3.3 (Uniqueness property). The exponents of the difference Ccusp
Q E(ϕ,λ) −

Ccusp
Q ϕ are contained (as a multiset) in

{w(λ+ µ) | w ∈ Ω⊃Q(P )\{e}, µ ∈ Ecusp
Pw

(ϕ)}.

Moreover, this property determines E(ϕ,λ) uniquely, at least if Re(λ) ≫ 0.

This uniqueness property follows from a general result on automorphic forms which is a
strengthening of a basic result of Langlands.

Proposition 3.4. Let φ be an automorphic form on XG, not identically zero. Then, there
exists Q ∈ P and λ ∈ Ecusp

Q (φ) such that Reλ + ρQ lies in the closure of the positive Weyl
chamber.
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This is proved by reducing it to a corank one statement, where the argument is very
similar to the SL2 case explained above.

The deduction of the uniqueness statement for E(ϕ,λ) follows by observing that if Reλ ≫
0 and w ∈ Ω⊃Q(P )\{e}, then wReλ is far from the positive Weyl chamber of Q.

For the local finiteness we need an additional set of equations. They are of the form

δ(hi(λ))ψ = ci(λ)ψ, i ∈ I,

where for each i ∈ 1, hi(λ) is a holomorphic family of functions in C∞
c (G(A)) and ci(λ), i ∈ I

are holomorphic functions with no common zeros. By a basic result of Harish–Chandra, such
equations are satisfied by any holomorphic family of automorphic forms.

Assume for simplicity that the center of G is F -anisotropic.

Proposition 3.5 (The shape of the equations). The following ASLE on f ∈ Fumg(X ) is
LFT:

δ(h(s))f = f, Dα(s)(Taα
)(CPα

f) = 0 for every α ∈ ∆0.

Here, h(s) is a holomorphic family of functions in C∞
c (G(A)) (for s in a complex analytic

manifold) and for every α ∈ ∆0,

• Dα(s) is a holomorphic family of monic polynomials in one variable of degree mα;
• Pα is the maximal parabolic subgroup of G corresponding to α;
• Taα

is the normalized left translation by a fixed element aα of the center of the Levi
part of Pα such that |α(aα)| > 1.

As in the SL2 case, to prove this we pass to an auxiliary ASLE on a weighted Hilbert
space Hλ(X ) for a certain parameter λ ∈ a∗0.

3.3. Weighted Hilbert spaces. Setups. Here are some sorts of the weighted L2-space.

(a) Fix a Siegel domain S of P0(F )\G(A) such that the projection p : S → X is onto.
(b) Define a weighted L2-space

Hλ(S) = L2(S,mP0(x)
−2λdx).

(c) The pullback f 󰀁→ fS by p gives rise to a Hilbert space Hλ(X ) of functions on X
with a strict embedding in Hλ(S).

(d) We have Fumg(X ) =
󰁖

λ H
λ
∞(X ).

(e) The space Hλ(S) admits a Harish–Chandra decomposition

Hλ(S) = ⊕P ∈ PHλ
cusp(SP )

where SP is the image of S under the projection to U(A)P0(F )\G(A).
(f) For any f ∈ Hλ(X ) denote by fS

P , P ∈ P the components of fS with respect to this
decomposition.

Proposition 3.6. The following ASLE on f ∈ Hλ(X ) is of Fredholm type (and in particular,
LFT) provided that λ is sufficiently positive.

Dα(s)(Taα)(f
S
P ) = 0 for all α ∈ ∆′

P , fS
P |S′

P
= (δ(h(s))f)SP |S′

P

for every P ∈ P, where S ′
P = SP \

󰁖
α∈∆′

P
amα
α SP . More precisely, for every P ,
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(1) The operator Hλ(SP ) → Hλ(SP )
∆′

P ⊕ Hλ(S ′
P )

f 󰀁−→ ((Dα(s)(T∂α
)(f))α∈∆′

p
, f |S′

p
)

is a strict embedding, if e〈λ,H0(aα)〉 > |r| for an arbitrary root r of Dα(s).
(2) The operator

Hλ(X ) −→ Hλ(S ′
P ), f 󰀁−→ (δ(h(s))f)SP |S′

P

is Hilbert–Schmidt6.

Remark 3.7. (1) The proof gives meromorphic continuation for intertwining operators
and functional equations

E(M(w,λ)ϕ, wλ) = E(ϕ,λ),

M(w2w1,λ) = M(w2, w1λ)M(w1,λ).

(2) The case of a global function field (i.e., positive characteristic) is easier. (Use an
algebraic version of the PMC. The uniqueness result suffices. No further analysis is
needed.)

Questions.

(1) It would be desirable to have a more robust statement for Eisenstein series induced
from smooth automorphic forms (i.e., z-finite, but not necessarily K-finite, function
of uniform moderate growth).

With the approach described, this would entail a more flexible form of the PMC
(relaxing the LFT condition). There are other approaches to extend the meromorphic
continuation from the K-finite case to the smooth case.

(2) Is there a version of the PMC that guarantees that the solution is a function of finite
order?

4. Spectral decomposition of L2(G(F )\G(A))

For any P ∈ P denote by AP the space of automorphic forms on XP ,

A2
P = {ϕ ∈ AP | δ−

1
2

P ϕ(·g) ∈ L2(AMM(F )\M(A)), ∀g ∈ G(A)}.

This is an inner product space with respect to integration over AM\XP . Its completion is

Ind
G(A)
P (A) L

2
disc(AMM(F )\M(A)).

By the functional equations, for any w ∈ Ω(P,Q) the intertwining operators

M(w,λ) : A2
P −→ A2

Q, λ ∈ a∗P,C

are unitary (and in particular, holomorphic) on ia∗P and extend to isometries

Ind
G(A)
P (A) L

2
disc(AMM(F )\M(A)) −→ Ind

G(A)
Q(A) L

2
disc(ALL(F )\L(A)).

6Due to Gelfand–Piatetski–Shapiro.
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Theorem 4.1 (Langlands). The bilinear map

f,ϕ ∈ C∞
c (ia∗p)×A2

P 󰀁−→ Ef⊗ϕ =

󰁝

ia∗
p

f(λ)E(ϕ,λ)dλ,

which is suitably normalized, induces an isometry of Hilbert spaces

Θ :

󰀣
󰁐

P

L2(ia∗P ; Ind
G(A)
P (A) L

2
disc(AMM(F )\M(A)))

󰀤

Ω

−→ L2(XG)

where the Ω-coinvariants space on the left-hand side is isomorphic to the closed subspace
defined by the relations

fQ(wλ) = M(w,λ)fP (λ), λ ∈ i∗P , w ∈ Ω(P,Q).

Langlands proved this theorem in his treatise on Eisenstein series. His argument is a tour
de force. Lapid will explain a simpler approach, due to Delorme [Del20] (combined with a
technical simplification). It uses as input

⋄ the meromorphic continuation of Eisenstein series, and
⋄ another key idea of Bernstein from the 1980s (“on the support of the Plancherel

measure”).

The method is analogous to the Plancherel formula in the local case (Harish–Chandra,
Waldspurger) extended to symmetric spaces by Delorme around 2000. This was revisited
and extended by Sakellaridis–Venkatesh, but we will not discuss it here.

For simplicity we will assume that the Eisenstein series for ϕ ∈ A2
P is holomorphic on

ia∗P . In fact, it is not necessary to assume this – it eventually follows from the proof.

Definition 4.2. An automorphic form ϕ ∈ AP is tempered if there exists k such that

|ϕ(g)| ≪ e〈ρ,H(g)〉(1 + 󰀂H(g)󰀂)k, ∀g ∈ AMS.

Equivalently, every exponent λ ∈ EQ(ϕ), Q ⊂ P is subunitary (i.e., Reλ is a sum of simple
roots ∆P

Q with non-positive coefficients.)

We denote by Atemp
P the space of tempered automorphic forms. Then A2

P ⊂ Atemp
P . And

if ϕ ∈ A2
P , then E(ϕ,λ) ∈ Atemp

G for all λ ∈ ia∗P . Moreover, for any φ ∈ A2
P and ψ ∈ Atemp

P

the tempered distribution p(φ,ψ) on ap

f ∈ S(aP ) 󰀁−→ 〈φ · (f ◦HP ),ψ〉XP

is a polynomial exponential whose exponents are unitary and contained in the set EP (ϕ) +
EP (ψ).

Definition 4.3. Let ϕ ∈ Atemp
G . The weak constant term ϕweak

P is the part of ϕP

corresponding to the exponents λ with Reλ = 0.

We have ϕweak
P ∈ Atemp

P . If ϕ ∈ A2
G, then ϕweak

P ≡ 0 for all proper P . For any ψ ∈ Atemp
G ,

ψ ≡ 0 ⇐⇒ p(ϕ,ψweak
P ) ≡ 0 for every P ∈ P and ϕ ∈ A2

P .
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Key statement. For any p ∈ PEunit(aP ) (i.e., a polynomial exponential with unitary
exponents) denote by ∂(p) the convolution (on C∞

c (ia∗P )) by the Fourier transform of p,
viewed as a finitely supported distribution on ia∗P .

Proposition 4.4. Let ϕ ∈ A2
P . Then, for any ψ ∈ Atemp

G and f ∈ C∞
c (ia∗P ) we have

󰀭󰁝

ia∗
P

f(λ)E(ϕ,λ)dλ,ψ

󰀮

XG

= ∂(p(ϕ,ψweak
P ))f(0).

In particular, if ψ ∈ A2
G and P ⊊ G, then 〈E(ϕ,λ),ψ〉XG

= 0.

The left-hand side is well defined since the “wave packet”
󰁝

ia∗
p

f(λ)E(ϕ,λ)dλ

is in the Harish–Chandra Schwartz space of XG.

Why is this enough?

(1) First, by Bernstein, only tempered automorphic forms may contribute to L2(X ).
The proposition therefore implies that the wave packets span a dense subspace of
L2(X ).

(2) Second, if ψ = E(ϕ′, µ) with ϕ′ ∈ A2
Q and µ ∈ ia∗Q∗ , then,

ψweak
P =

󰁛

w∈Ω⊃Q(P )

EP (M(w−1, µ)ϕ′, w−1µ),

Hence,
p(ϕ,ψweak

P ) =
󰁛

w∈Ω(Q,P )

p(ϕ, (M(w, µ)ϕ′)wµ).

Thus,
󰀭󰁝

ia∗
p

f(λ)E(ϕ,λ)dλ,ψ

󰀮

XG

=
󰁛

w∈Ω(Q,P )

f(wµ)〈ϕ,M(w, µ)ϕ′〉AM\XP
.

One way to prove the key statement (Proposition 4.4) is using Arthur’s truncation oper-
ator ΛT . Assume for simplicity that the center of G is F -anisotropic.

Lemma 4.5. For any φ,ψ ∈ AG the function

〈ΛTφ,ψ〉XG
= 〈φ,ΛTψ〉XG

is a polynomial exponential in T whose exponents are contained in the set
󰁞

P

(EP (ϕ) + EP (ψ)).

In particular, if φ,ψ ∈ Atemp
G , then the exponents are subunitary. In this case, we denote

by 〈ΛTφ,ψ〉unitXG
the unitary part of this polynomial exponential.

Proposition 4.6. Let ψ ∈ Atemp
G and ϕ ∈ A2

P . Fix T ∈ a0. Then, as a distribution on ia∗P ,
〈ΛTE(ϕ, ·),ψ〉unitXG

is equal to
󰁛

Q

󰁛

w∈Ω(P,Q)

∂(p(M(w,w−1·)ϕ,ψweak
Q ))(󰁦χT

w) ◦ w
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where χT
w = (−1)#{α∈∆Q|w−1α<0} times the characteristic function of the projection to aQ

of the set

T +

󰀫
󰁛

α∈∆0

cαα
∨ | cα > 0 ⇐⇒ w−1α < 0

󰀬
.

In particular, if ψ ∈ A2
G and P ∕= G, then

〈ΛTE(ϕ,λ),ψ〉unitXG
≡ 0.

Here,
∂ : C∞(ia∗Q)⊗ PEunit(aQ) −→ End(D(ia∗Q))

is the linear map (rather than homomorphism) with C∞(ia∗Q) acting by multiplication and
p ∈ PEunit(aQ) acting by convolution by p̂.

Remark 4.7. Taking ψ to be an Eisenstein series, we obtain Arthur’s asymptotic inner
product of truncated Eisenstein series. (Arthur’s original proof used Langlands’s work.)

The key statement (Proposition 4.4) follows from the last proposition by taking the limit
in T as minα∈∆0

〈α, T 〉 → ∞, since the limit (as tempered distributions) of χT
w is the constant

function 1 if w = e (and Q = P ) and 0 otherwise.

Proposition 4.8. For any ϕ ∈ AP and Reλ ≫ 0, ΛTE(ϕ,λ) is the sum over Q ∈ P and
w ∈ Ω⊃Q(P ) of

󰁛

γ∈Q(F )\G(F )

ΛT,Q(M(w,λ)ϕPw)wλ(γg)χw(HQ(γg)− T ).

Here, ΛT,Q is a relative truncation operator and χw is the function on aQ given by

χw(X) =

󰀫
(−1)|DQ,+(X)| if (∗) holds ,

0 otherwise

where DQ,+(
󰁓

α∈∆Q
xαα

∨) = {α ∈ ∆Q | xα > 0} and the condition (∗) is

DQ,+(X) = {α ∈ ∆Q | w−1α < 0 or w−1α ∈ ∆P
Pw

and 〈α, X〉 󰃑 0}.

In particular, χw(·− T ) = χT
w if w ∈ Ω(P,Q).

Remark 4.9. If ϕ is cuspidal, this was Langlands’s original ad hoc definition of truncation
of Eisenstein series. Subsequently, Arthur realized (in the late 1970s) that one can define a
truncation operator on the space of locally L1 functions on XG.

How to conclude the Proposition 4.6 from Proposition 4.8? χw can be expressed as a linear
combination of characteristic functions of simplicial cones. Thus, its Laplace transform is
a rational function with hyperplane singularities. Using the last proposition and simple
geometric properties of χw, we can compute the inner product 〈ΛTE(ϕ,λ),ψ〉XG

as a sum
of contributions over Q ∈ P and w ∈ Ω⊃Q(P ). One sees that only w ∈ Ω(P,Q) may
contribute to 〈ΛTE(ϕ,λ),ψ〉unitXG

. This contribution can be computed explicitly, and yields
the penultimate proposition.

To be continued in Lecture 2/2.
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