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Overview

For dual pairs (G,H) = (Sp(W ),O(V )), (U(W ),U(V ))...

Theta Correspondence Lift Automorphic Forms on G to

Applications

Classical Automorphic Forms on H

Langlands functionality

Geometric Cohomology classes on Sh(H) Hodge conjecture

(Kudla–Millson ’80s) Tate conjecture

Arithmetic Algebraic cycles on Sh(H) BSD conjecture

(Kudla’s program ’90s) Beilinson-Bloch conjecture
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Unitary dual pair (G,H)

• F/F0: quadratic extension of number fields.
• W : the standard split skew-hermitian space of dimension 2n over F , i.e., W = F 2n

with skew-hermitian matrix wn =
( 0 1n
−1n 0

)
.

• G = U(W ), a quasi-split unitary group over F0 (“= U(n, n)”)
• V : hermitian space of rank m over F with hermitian form ( , ).
• H = U(V ): a unitary group over F0 in m-variables (“= U(m)”).
• P = MN ⊆ G: the standard Siegel parabolic subgroup stabilizing the maximal

isotropic subspace F n ⊕ 0n ⊆ W = F 2n.

M =

{
m(a) =

(
a 0
0 t ā−1

)
: a ∈ ResF/F0 GLn

}
,

N =

{
n(b) =

(
1n b
0 1n

)
: b ∈ Hermn

}
.

Chao Li (Columbia) Geometric and arithmetic theta correspondences July 26, 2022



Unitary dual pair (G,H)

• F/F0: quadratic extension of number fields.
• W : the standard split skew-hermitian space of dimension 2n over F , i.e., W = F 2n

with skew-hermitian matrix wn =
( 0 1n
−1n 0

)
.

• G = U(W ), a quasi-split unitary group over F0 (“= U(n, n)”)

• V : hermitian space of rank m over F with hermitian form ( , ).
• H = U(V ): a unitary group over F0 in m-variables (“= U(m)”).
• P = MN ⊆ G: the standard Siegel parabolic subgroup stabilizing the maximal

isotropic subspace F n ⊕ 0n ⊆ W = F 2n.

M =

{
m(a) =

(
a 0
0 t ā−1
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Weil representation

• A = AF0 : the ring of adeles of F0.
• η : A×/F×0 → C×: the quadratic character associated to F/F0.
• Fix χ : A×F → C× a character such that χ|A× = ηm.
• W := ResF/F0 (V ⊗F W ).
• χ determines a splitting homomorphism

G(A)× H(A)→ Mp(WA)

lifting the natural homomorphism G(A)× H(A)→ Sp(WA).

• An additive character ψ : A/F0 → C× gives rise to a distinguished representation
ωψ = ⊗ωψv of Mp(WA).

• (χ, ψ) gives rise to a Weil representation ω = ωχ,ψ = ⊗vωχv ,ψv of G(A)× H(A).
• ω has an explicit realization on S (V (A)n), the space of Schwartz functions,

known as the Schrödinger model: for ϕ ∈ S (V (A)n) and x ∈ V (A)n,

ω(m(a))ϕ(x) = χ(det a)| det a|m/2
F ϕ(x · a), m(a) ∈ M(A),

ω(n(b))ϕ(x) = ψ(tr b (x, x))ϕ(x), n(b) ∈ N(A),

ω(wn)ϕ(x) = γn
V · ϕ̂(x), wn =

( 0 1n
−1n 0

)
,

ω(h)ϕ(x) = ϕ(h−1 · x), h ∈ H(A).

• (x, x) = ((xi , xj ))1≤i,j≤n ∈ Hermn(A) is the moment matrix.
• ϕ̂ is the Fourier transform of ϕ.

Chao Li (Columbia) Geometric and arithmetic theta correspondences July 26, 2022



Weil representation
• A = AF0 : the ring of adeles of F0.
• η : A×/F×0 → C×: the quadratic character associated to F/F0.
• Fix χ : A×F → C× a character such that χ|A× = ηm.
• W := ResF/F0 (V ⊗F W ).
• χ determines a splitting homomorphism

G(A)× H(A)→ Mp(WA)

lifting the natural homomorphism G(A)× H(A)→ Sp(WA).
• An additive character ψ : A/F0 → C× gives rise to a distinguished representation
ωψ = ⊗ωψv of Mp(WA).

• (χ, ψ) gives rise to a Weil representation ω = ωχ,ψ = ⊗vωχv ,ψv of G(A)× H(A).
• ω has an explicit realization on S (V (A)n), the space of Schwartz functions,

known as the Schrödinger model: for ϕ ∈ S (V (A)n) and x ∈ V (A)n,

ω(m(a))ϕ(x) = χ(det a)| det a|m/2
F ϕ(x · a), m(a) ∈ M(A),

ω(n(b))ϕ(x) = ψ(tr b (x, x))ϕ(x), n(b) ∈ N(A),

ω(wn)ϕ(x) = γn
V · ϕ̂(x), wn =

( 0 1n
−1n 0

)
,

ω(h)ϕ(x) = ϕ(h−1 · x), h ∈ H(A).

• (x, x) = ((xi , xj ))1≤i,j≤n ∈ Hermn(A) is the moment matrix.
• ϕ̂ is the Fourier transform of ϕ.

Chao Li (Columbia) Geometric and arithmetic theta correspondences July 26, 2022



Weil representation
• A = AF0 : the ring of adeles of F0.
• η : A×/F×0 → C×: the quadratic character associated to F/F0.
• Fix χ : A×F → C× a character such that χ|A× = ηm.
• W := ResF/F0 (V ⊗F W ).
• χ determines a splitting homomorphism

G(A)× H(A)→ Mp(WA)

lifting the natural homomorphism G(A)× H(A)→ Sp(WA).
• An additive character ψ : A/F0 → C× gives rise to a distinguished representation
ωψ = ⊗ωψv of Mp(WA).

• (χ, ψ) gives rise to a Weil representation ω = ωχ,ψ = ⊗vωχv ,ψv of G(A)× H(A).
• ω has an explicit realization on S (V (A)n), the space of Schwartz functions,

known as the Schrödinger model: for ϕ ∈ S (V (A)n) and x ∈ V (A)n,

ω(m(a))ϕ(x) = χ(det a)| det a|m/2
F ϕ(x · a), m(a) ∈ M(A),

ω(n(b))ϕ(x) = ψ(tr b (x, x))ϕ(x), n(b) ∈ N(A),

ω(wn)ϕ(x) = γn
V · ϕ̂(x), wn =

( 0 1n
−1n 0

)
,

ω(h)ϕ(x) = ϕ(h−1 · x), h ∈ H(A).

• (x, x) = ((xi , xj ))1≤i,j≤n ∈ Hermn(A) is the moment matrix.
• ϕ̂ is the Fourier transform of ϕ.

Chao Li (Columbia) Geometric and arithmetic theta correspondences July 26, 2022



Classical theta lifting

• Associated to ϕ ∈ S (V (A)n), define the (two-variable) theta function

θ(g, h, ϕ) :=
∑
x∈V n

ω(g, h)ϕ(x) =
∑
x∈V n

ω(g)ϕ(h−1x), g ∈ G(A), h ∈ H(A).

By Poisson summation, θ(g, h, ϕ) is automorphic: invariant under G(F0)× H(F0).
• Using θ(g, h, ϕ) as an integral kernel allows one to lift automorphic forms on G to

automorphic forms on H (and vice versa).
• For a cuspidal automorphic form φ ∈ A (G(A)), define the theta lift θϕ(φ) of φ:

θϕ(φ)(h) := 〈θ(−, h, ϕ), φ〉G =

∫
[G]

θ(g, h, ϕ)φ(g)dg.

Then θϕ(φ) ∈ A (H(A)).
• π: a cuspidal automorphic representation of G(A).
• Get an G(A)× H(A)-equivariant linear map

θ : S (V (A)n)⊗ π∨ → A (H(A)), (ϕ, φ̄) 7→ θϕ(φ).

• Define the global theta lift ΘV (π) ⊆ A (H(A)) of π to be its image, an
H(A)-subrepresentation of A (H(A)).

• Theory of theta correspondence provides a rather complete description of ΘV (π).
Key tools: Siegel–Weil formula and Rallis inner product formula.
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Theta integral and Eisenstein series

• Associated to ϕ ∈ S (V (A)n), consider the theta integral

I(g, ϕ) :=

∫
[H]

θ(g, h, ϕ) dh,

When I(g, ϕ) converges absolutely, it gives an automorphic form on G(A).
• Get a G(A)-equivariant distribution

I : S (V (A)n)→ A (G(A)), ϕ 7→ I(−, ϕ).

• Associated to ϕ ∈ S (V (A)n), there is a standard Siegel–Weil section
Φϕ(g, s) ∈ IndG(A)

P(A)(χ| · |
s
F ):

Φϕ(g, s) := ω(g)ϕ(0) · | det a(g)|s−s0
F ,

where
s0 := (m − n)/2.

• Define the (hermitian) Siegel Eisenstein series

E(g, s, ϕ) :=
∑

γ∈P(F0)\G(F0)

Φϕ(γg, s), g ∈ G(A).

• If E(g, s, ϕ) is homomorphic at s = s0, also get a G(A)-equivariant distribution

E(s0) : S (V (A)n)→ A (G(A)), ϕ 7→ E(−, s0, ϕ).
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Siegel–Weil formula

Theorem (Siegel–Weil formula, [Siegel, Weil, Ichino, Yamana...])
Assume that the pair (V ,W ) satisfies Weil’s convergence condition. Then

I(g, ϕ)
·

= E(g, s0, ϕ).

Remark
If the Weil’s convergence condition is not satisfied, one can still naturally define I(g, ϕ)
via regularization and it is a long effort starting with [Kudla–Rallis] to generalize the
Siegel–Weil formula outside the convergence range and for all reductive dual pairs of
classical groups. See [Gan–Qiu–Takeda] for the most general Siegel–Weil formula.

Example
Take (G,H) = (Sp(2),O(V )) with V = (Q2, x2 + y2).
Take ϕ = ⊗ϕv with ϕp = 1Z2

p
and ϕ∞(x , y) = e−π(x

2+y2) is the Gaussian.
The Siegel–Weil formula recovers∑

x,y∈Z

qx2+y2
= 1 + 4

∑
n≥1

∑
d|n

χ(d)

 qn

an identity of modular forms in M1(4, χ), where χ : (Z/4Z)×
∼−→ {±1}. It easily implies

Fermat’s theorem:

A prime p 6= 2 is of the form p = x2 + y2 if and only if p ≡ 1 (mod 4).
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Doubling zeta integrals

• W� := W ⊕ (−W ) skew-hermitian space of dimension 4n over F .
• G� := U(W�), a quasi-split unitary group over F0 in 4n-variables.
• For ϕ1, ϕ2 ∈ S (V (A)n), have a Siegel Eisenstein series E(g, s, ϕ1 ⊗ ϕ2) on G�.
• π cuspidal automorphic representation of G(A).
• For φ1, φ2 ∈ π, define the global doubling zeta integral

Z (s, φ1, φ2, ϕ1, ϕ2) :=

∫
[G]×[G]

φ1(g1)φ2(g2)·E((g1, g2), s, ϕ1⊗ϕ2)χ−1(det g2) dg1dg2.

• When ϕi = ⊗vϕi,v and φi = ⊗vφi,v it factors into local doubling zeta integrals

Z (s, φ1, φ2, ϕ1, ϕ2) =
∏

v

Zv (s, φ1,v , φ2,v , ϕ1,v , ϕ2,v ).

• When all the data are unramified at a finite place v with 〈φ1,v , φ2,v 〉 = 1, we have

Zv (s, φ1,v , φ2,v , ϕ1,v , ϕ2,v ) =
L(s + 1/2, πv × χv )

b2n,v (s)
.

• L(s + 1/2, πv × χv ) is the doubling L-factor [Harris–Kudla–Sweet, Lapid–Rallis,
Yamana,...]

• bk,v (s) :=
∏k

i=1 L(2s + i, ηk−i
v ) is a product of Hecke L-factors.
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Rallis inner product formula

• Define the normalized local doubling zeta integral

Z \v (s, φ1,v , φ2,v , ϕ1,v , ϕ2,v ) :=

(
L(s + 1/2, πv × χv )

b2n,v (s)

)−1

·Zv (s, φ1,v , φ2,v , ϕ1,v , ϕ2,v ),

then Z \v (s, φ1,v , φ2,v , ϕ1,v , ϕ2,v ) = 1 for almost all v .
• Combining with the doubling seesaw and the Siegel–Weil formula for the pair

(V ,W�), one arrives at the Rallis inner product formula,

Petersson inner product of theta lifts←→ special value of standard L-functions

Theorem (Rallis inner product formula, [Rallis, J.-S. Li, ...])
Assume that the pair (V ,W�) satisfies Weil’s convergence condition. Let π be a
cuspidal automorphic representation of G(A). Then for any φi = ⊗vφi,v ∈ π,
ϕi = ⊗vϕi,v ∈ S (V (A)n) (i = 1, 2),

〈θϕ1 (φ1), θϕ2 (φ2)〉H
·

=
L(s0 + 1/2, π × χ)

b2n(s0)
·
∏

v

Z \v (s0, φ1,v , φ2,v , ϕ1,v , ϕ2,v ).

Here s0 = (m − 2n)/2 as in the Siegel–Weil formula for the pair (V ,W�).
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Theta dichotomy in the equal rank case

• Take m = 2n (two spaces V ,W have equal rank) and χ = 1.
• The special point s0 = 0 corresponds to the center of the function equation of the

Eisenstein series, and central L-values L(1/2, π).
• By the Rallis inner product formula:

global theta lifting ΘV (π) 6= 0⇐⇒ L(1/2, π) 6= 0, and
∏

v Z \v (0) 6= 0.
• Theta dichotomy: there exists a unique local hermitian space Vv = Vv (πv ) of rank

n over Fv such that Z \v (0) 6= 0.
• Epsilon dichotomy [Harris–Kudla–Sweet, Gan–Ichino] pins it down when v -∞:

Z \v (0) 6= 0⇐⇒ ε(Vv ) = ωπv (−1) · ε(1/2, πv , ψv ),

• ε(Vv ) = ηv ((−1)m(m−1)/2 det(Vv )) ∈ {±1} is the local Hasse invariant
• ε(1/2, πv , ψv ) ∈ {±1} is the central value of the doubling epsilon factor
• ωπv is the central character of πv .

• The theta dichotomy associates to π a unique collection of local hermitian spaces
{Vv = Vv (πv )}v such that

∏
v Z ]v (0) 6= 0,

or equivalently, a unique adelic hermitian
space

V = Vπ of rank n over AF .
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Coherent/Incoherent spaces

• Say that V is coherent if V ' V ⊗F AF for some hermitian space V over F , and
incoherent otherwise.

• Define ε(V) :=
∏

v ε(Vv ) ∈ {±1}.
• The Hasse principle implies that V is coherent if and only if ε(V) = +1.
• The epsilon dichotomy implies the equality of signs

ε(Vπ) = ε(1/2, π).

Two cases:
• If ε(1/2, π) = +1, then Vπ is coherent. If Vπ ' V ⊗F AF , then

the global theta lift ΘV (π) 6= 0⇐⇒ L(1/2, π) 6= 0.
Moreover ΘV ′(π) = 0 for all hermitian spaces V ′ of rank n over F different from V
due to local reasons.

• If ε(1/2, π) = −1, then Vπ is incoherent. The global theta lift ΘV (π) = 0 for all
hermitian spaces V of rank n over F due to local reasons.

In the incoherent case:
• There is no global theta lifting associated to the incoherent space V = Vπ and

L(1/2, π) = 0 always.
• It is natural and interesting to study the central derivative L′(1/2, π).
• The Birch–Swinnerton-Dyer conjecture (and generalization by Beilinson–Bloch):

L′(1/2, π) 6= 0 ?←→ non-triviality of algebraic cycles.
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Summary: the Kudla program

When the incoherent space V is totally definite, we will

• Associate to it a unitary Shimura variety X over F .
• Define an arithmetic theta function using its special cycles.
• Define the arithmetic theta lift ΘV(π) ⊆ CHn(X ).
• CHn(X ): the Chow group of algebraic cycles of codimension n on X modulo

rational equivalence.
Analogous to classical theta correspondence (coherent case):

the global theta lift ΘV (π) 6= 0⇐⇒ L(1/2, π) 6= 0,

the Kudla program on arithmetic theta correspondence (incoherent case) aims to
establish an criterion

the arithmetic theta lift ΘV(π) 6= 0 ?⇐⇒ L′(1/2, π) 6= 0.

Key ingredients needed:

• Modularity of arithmetic theta functions
• Arithmetic Siegel–Weil formula
• Arithmetic inner product formula

These were conjectured by Kudla in ’90s and were largely settled for quaternionic
Shimura curves over Q, cumulating in the monograph [Kudla–Rapoport–Yang 2006].
These conjectures for Shimura varieties of higher dimension were seemingly far from
reach at that time, yet recent years have witnessed advances on all of them.
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Unitary Shimura varieties: Coherent Perspective

• From now on: F/F0 is a CM extension of a totally real number field.
• V a hermitian space over F of rank m and H = U(V ).
• Fix an embedding σ : F ↪→ C. Assume V is standard indefinite: V has signature

(m − 1, 1) at the real place of F0 induced by σ, and signature (m, 0) at all other
real places.

• There is a system of unitary Shimura varieties X = {XK} indexed by neat open
compact subgroup K ⊆ H(Af ).

• Each XK is a smooth quasi-projective scheme of dimension m − 1 over F ⊆ C,
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Unitary Shimura varieties: Incoherent Perspective

• V an incoherent hermitian space of rank m over AF .
• Assume V is totally definite: V has signature (m, 0) at all real places.
• For any embedding σ : F ↪→ C, we have a unique standard indefinite hermitian

space V , depending on σ, such that Vv has signature (m − 1, 1) at the real place
of F0 induced by σ, and Vv ' Vv at all other places of F0.

• Theory of conjugation of Shimura varieties: the Shimura variety XK can be
intrinsically defined over F (without being viewed as a subfield of C).

• Thus a totally definite incoherent hermitian space V over AF gives a system of
unitary Shimura varieties X = {XK} canonically defined over F .

Remark (Dichotomy)

• Geometric invariants of XK (over the algebraically closed field C), a choice of the
embedding σ : F ↪→ C is involved. The coherent space V (A) associated to V
should play a canonical role and special values of analytic quantities ought to
appear.

• Arithmetic invariants of XK (over the number field F ), no choice of the embedding
σ : F ↪→ C is involved. The incoherent space V should play a canonical role and
special derivatives of analytic quantities ought to appear.
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Special cycles: proper intersection

• V standard indefinite and V the associated totally definite incoherent space.
• Vf := V ⊗F0 Af ' V⊗A Af .
• For any y ∈ V with (y , y) > 0, its orthogonal complement Vy ⊆ V is a standard

indefinite hermitian space rank m − 1 over F .
• Xy the system of unitary Shimura varieties associated to Hy := U(Vy ) ⊆ H.
• Define the special divisor Z (y)K to be the Shimura subvariety

Z (y)K := (Xy )K∩Hy (Af ) → XK .

• For any x ∈ Vf with (x , x) ∈ F>0, there exists y ∈ V and h ∈ H(Af ) such that
y = hx . Define the special divisor Z (x)K to be the Hecke translate of a Shimura
subvariety

Z (x)K := (Xy )hKh−1∩Hy (Af )
→ XhKh−1

·h−→ XK .

• For any n ≤ dim XK and any x = (x1, . . . , xn) ∈ Vn
f with (x, x) ∈ Hermn(F0)>0,

define the special cycle (of codimension n)

Z (x)K = Z (x1)K ∩ · · · ∩ Z (xn)K → XK ,

here ∩ denotes the fiber product over XK .
• It only depends on the F -span Vx of {x1, . . . , xn} in Vn

f and we write
Z (Vx)K := Z (x)K .
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Special cycles: improper intersection

• When (x, x) ∈ Hermn(F0)≥0 but is singular, the intersection
Z (x1)K ∩ · · · ∩ Z (xn)K → XK is improper (wrong codimension).

• LK : the tautological line bundle on XK , with complex uniformization

LK (C) = H(F0)\[L × H(Af )/K ],

where L is the tautological line bundle on D ⊆ P(V ⊗F C).
• If (x , x) > 0, then the excess intersection formula implies that

Z (x)K · Z (x)K = Z (x)K · c1(L∨K ) ∈ CH2(XK ).

Here c1(L∨K ) ∈ CH1(XK ) is the first Chern class of the dual line bundle of LK .
• This motivates us to define

Z (x)K := Z (Vx)K · c1(L∨K )n−dimF Vx ∈ CHn(XK ),

which is an element in the Chow group of correct codimension.
• For a K -invariant Schwartz function ϕ ∈ S (Vn

f )K and T ∈ Hermn(F0)≥0, define
the weighted special cycle

Z (T , ϕ)K =
∑

x∈K\Vn
f

(x,x)=T

ϕ(x)Z (x)K ∈ CHn(XK )C.
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Arithmetic theta function

• Define arithmetic theta function (or Kudla’s generating function)

Z (τ, ϕ)K =
∑

T∈Hermn(F )≥0

Z (T , ϕ)K · qT ,

as a formal generating function valued in CHn(XK )C, where

τ ∈ Hn = {x + iy : x ∈ Hermn(F0,∞), y ∈ Hermn(F0,∞)>0}

lies in the hermitian half space and qT :=
∏

v|∞ e2πi tr Tτv .

• More adelically, define

Z (g, ϕ)K :=
∑

T∈Hermn(F )≥0

Z (T , ωf (gf )ϕ)K · ω∞(g∞)ϕ∞(T ), g ∈ G(A)

• ϕ∞ ∈ S (Vn
∞) is the standard Gaussian function ϕ∞(x) :=

∏
v e−2π tr(x,x)

• ω∞(g∞)ϕ∞(T ) makes sense: ω∞(g∞)ϕ∞ factors through moment map
x 7→ (x, x).

• It is the formal Fourier expansion of

Z (g, ϕ)K =
∑

x∈K\Vn
f

ω(g)(ϕ⊗ ϕ∞)(x) · Z (x)K ,

• Z (g, ϕ)K is compatible under pullback when varying K ⊆ H(Af ) and thus defines a
formal sum Z (g, ϕ) := (Z (g, ϕ)K )K valued in CHn(X )C := lim−→K

CHn(XK )C.
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Geometric modularity

• Extract geometric invariant of Z ∈ CHn(XK ) by its Betti cohomology class

[Z ] ∈ H2n(XK (C),Z)

of the complex manifold XK (C).
• The arithmetic theta function Z (g, ϕ)K gives a geometric theta function

[Z (g, ϕ)K ] valued in H2n(XK (C),C)

whose Fourier coefficients encodes the information about the geometric
intersection numbers of special cycles.

• There are many hidden symmetry and relations between these geometric
invariants of special cycles, as encoded by the geometric modularity theorem.

Theorem (Geometric modularity [Kudla–Millson])
The formal generating function [Z (g, ϕ)K ] converges absolutely and defines

[Z (g, ϕ)K ] ∈ Am/2,χ(G(A))⊗ H2n(XK (C),C).

Here Ak,χ(G(A)) ⊆ A (G(A)) denotes the (adelization of) holomorphic hermitian
modular forms on Hn of parallel weight k and character χ.

Remark
In fact [Kudla–Millson] proves a much more general theorem, applicable to the
generating function of special cohomology classes for locally symmetric spaces
associated to any U(p, q) or O(p, q).
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Geometric modularity: proof ingredient

• The proof replies on the Kudla–Millson Schwartz forms

ϕKM,v0 ∈ S (V n
v0 )⊗ Ωn,n(D),

• v0 is the real place of F0 induced by the fixed embedding σ : F ↪→ C,
• Ωa,b(D) is the space of smooth differential forms on D of type (a, b).

• The Schwartz form ϕKM,v0 is Hv0 (R)-invariant and closed at any x ∈ V n
v0 .

• Define
ϕ̃∞ = ϕKM,v0 ⊗

⊗
v|∞,v 6=v0

ϕv ∈ S (V n
∞)⊗ Ωn,n(D),

where ϕv ∈ S (V n
v ) is the Gaussian function.

• Define
ϕ̃V := ϕ⊗ ϕ̃∞ ∈ S (V (A)n)⊗ Ωn,n(D)

and the Kudla–Millson theta function

θKM(g, h, ϕ) :=
∑
x∈V n

ω(g)ϕ̃V (h−1x), g ∈ G(A), h ∈ H(Af ),

which gives a closed (n, n)-form on XK (C) at any g ∈ G(A).
• By the Poisson summation, θKM(g, h, ϕ) defines a (nonholomorphic) automorphic

form valued in closed (n, n)-forms on XK (C).
• θKM(g, h, ϕ) represents the (holomorphic) series [Z (g, ϕ)K ] in H2n(XK (C),C)

(in particular, the nonholomorphic terms in θKM(g, h, ϕ) are exact forms).
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Summary

Theta Siegel–Weil formula Inner product formula

Clas. θ(g, h, ϕ) I(g, ϕ)
·

= E(g, s0, ϕ) 〈θϕ(φ), θϕ(φ)〉H
·

= L(s0 + 1
2 , π)

Geo. [Z (g, ϕ)] ? ?

Ari. Z (g, ϕ)
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Geometric theta lifting

• Geometric modularity gives an geometric theta distribution

Z : S (Vn
f )→ A (G(A))⊗ H2n(X (C),C), ϕ 7→ [Z (−, ϕ)].

It is G(Af )× H(Af )-equivariant, where H(Af ) acts on H2n(X (C),C) via the Hecke
correspondences.

• Using [Z (g, ϕ)] as an integral kernel allows one to
lift automorphic forms on G to cohomology classes on X (C)

• For φ ∈ Am/2,χ(G(A)), define the geometric theta lift or Kudla–Millson lift

θKM
ϕ (φ)K := 〈[Z (g, ϕ)K ], φ〉G =

∫
[G]

[Z (g, ϕ)]φ(g)dg ∈ H2n(XK (C),C).

• When varying K ⊆ H(Af ) it defines a class

θKM
ϕ (φ) := (θKM

ϕ (φ)K )K ∈ H2n(X (C),C) := lim−→
K⊆H(Af )

H2n(XK (C),C).

• Let π be a cuspidal automorphic representation of G(A) such that
πm/2,χ := π ∩Am/2,χ(G(A)) 6= 0.

• Then we obtain an G(Af )× H(Af )-equivariant linear map

θKM : S (Vn
f )⊗ π∨m/2,χ → H2n(X (C),C), (ϕ, φ̄) 7→ θKM

ϕ (φ).

• Define the geometric theta lift ΘKM
V (π) ⊆ H2n(X (C),C) of π to be its image.

Chao Li (Columbia) Geometric and arithmetic theta correspondences July 26, 2022



Geometric theta lifting
• Geometric modularity gives an geometric theta distribution

Z : S (Vn
f )→ A (G(A))⊗ H2n(X (C),C), ϕ 7→ [Z (−, ϕ)].

It is G(Af )× H(Af )-equivariant, where H(Af ) acts on H2n(X (C),C) via the Hecke
correspondences.

• Using [Z (g, ϕ)] as an integral kernel allows one to
lift automorphic forms on G to cohomology classes on X (C)

• For φ ∈ Am/2,χ(G(A)), define the geometric theta lift or Kudla–Millson lift

θKM
ϕ (φ)K := 〈[Z (g, ϕ)K ], φ〉G =

∫
[G]

[Z (g, ϕ)]φ(g)dg ∈ H2n(XK (C),C).

• When varying K ⊆ H(Af ) it defines a class

θKM
ϕ (φ) := (θKM

ϕ (φ)K )K ∈ H2n(X (C),C) := lim−→
K⊆H(Af )

H2n(XK (C),C).

• Let π be a cuspidal automorphic representation of G(A) such that
πm/2,χ := π ∩Am/2,χ(G(A)) 6= 0.

• Then we obtain an G(Af )× H(Af )-equivariant linear map

θKM : S (Vn
f )⊗ π∨m/2,χ → H2n(X (C),C), (ϕ, φ̄) 7→ θKM

ϕ (φ).

• Define the geometric theta lift ΘKM
V (π) ⊆ H2n(X (C),C) of π to be its image.

Chao Li (Columbia) Geometric and arithmetic theta correspondences July 26, 2022



Geometric theta lifting
• Geometric modularity gives an geometric theta distribution

Z : S (Vn
f )→ A (G(A))⊗ H2n(X (C),C), ϕ 7→ [Z (−, ϕ)].

It is G(Af )× H(Af )-equivariant, where H(Af ) acts on H2n(X (C),C) via the Hecke
correspondences.

• Using [Z (g, ϕ)] as an integral kernel allows one to
lift automorphic forms on G to cohomology classes on X (C)

• For φ ∈ Am/2,χ(G(A)), define the geometric theta lift or Kudla–Millson lift

θKM
ϕ (φ)K := 〈[Z (g, ϕ)K ], φ〉G =

∫
[G]

[Z (g, ϕ)]φ(g)dg ∈ H2n(XK (C),C).

• When varying K ⊆ H(Af ) it defines a class

θKM
ϕ (φ) := (θKM

ϕ (φ)K )K ∈ H2n(X (C),C) := lim−→
K⊆H(Af )

H2n(XK (C),C).

• Let π be a cuspidal automorphic representation of G(A) such that
πm/2,χ := π ∩Am/2,χ(G(A)) 6= 0.

• Then we obtain an G(Af )× H(Af )-equivariant linear map

θKM : S (Vn
f )⊗ π∨m/2,χ → H2n(X (C),C), (ϕ, φ̄) 7→ θKM

ϕ (φ).

• Define the geometric theta lift ΘKM
V (π) ⊆ H2n(X (C),C) of π to be its image.

Chao Li (Columbia) Geometric and arithmetic theta correspondences July 26, 2022



Geometric theta lifting
• Geometric modularity gives an geometric theta distribution

Z : S (Vn
f )→ A (G(A))⊗ H2n(X (C),C), ϕ 7→ [Z (−, ϕ)].

It is G(Af )× H(Af )-equivariant, where H(Af ) acts on H2n(X (C),C) via the Hecke
correspondences.

• Using [Z (g, ϕ)] as an integral kernel allows one to
lift automorphic forms on G to cohomology classes on X (C)

• For φ ∈ Am/2,χ(G(A)), define the geometric theta lift or Kudla–Millson lift

θKM
ϕ (φ)K := 〈[Z (g, ϕ)K ], φ〉G =

∫
[G]

[Z (g, ϕ)]φ(g)dg ∈ H2n(XK (C),C).

• When varying K ⊆ H(Af ) it defines a class

θKM
ϕ (φ) := (θKM

ϕ (φ)K )K ∈ H2n(X (C),C) := lim−→
K⊆H(Af )

H2n(XK (C),C).

• Let π be a cuspidal automorphic representation of G(A) such that
πm/2,χ := π ∩Am/2,χ(G(A)) 6= 0.

• Then we obtain an G(Af )× H(Af )-equivariant linear map

θKM : S (Vn
f )⊗ π∨m/2,χ → H2n(X (C),C), (ϕ, φ̄) 7→ θKM

ϕ (φ).

• Define the geometric theta lift ΘKM
V (π) ⊆ H2n(X (C),C) of π to be its image.

Chao Li (Columbia) Geometric and arithmetic theta correspondences July 26, 2022



Geometric theta lifting
• Geometric modularity gives an geometric theta distribution

Z : S (Vn
f )→ A (G(A))⊗ H2n(X (C),C), ϕ 7→ [Z (−, ϕ)].

It is G(Af )× H(Af )-equivariant, where H(Af ) acts on H2n(X (C),C) via the Hecke
correspondences.

• Using [Z (g, ϕ)] as an integral kernel allows one to
lift automorphic forms on G to cohomology classes on X (C)

• For φ ∈ Am/2,χ(G(A)), define the geometric theta lift or Kudla–Millson lift

θKM
ϕ (φ)K := 〈[Z (g, ϕ)K ], φ〉G =

∫
[G]

[Z (g, ϕ)]φ(g)dg ∈ H2n(XK (C),C).

• When varying K ⊆ H(Af ) it defines a class

θKM
ϕ (φ) := (θKM

ϕ (φ)K )K ∈ H2n(X (C),C) := lim−→
K⊆H(Af )

H2n(XK (C),C).

• Let π be a cuspidal automorphic representation of G(A) such that
πm/2,χ := π ∩Am/2,χ(G(A)) 6= 0.

• Then we obtain an G(Af )× H(Af )-equivariant linear map

θKM : S (Vn
f )⊗ π∨m/2,χ → H2n(X (C),C), (ϕ, φ̄) 7→ θKM

ϕ (φ).

• Define the geometric theta lift ΘKM
V (π) ⊆ H2n(X (C),C) of π to be its image.

Chao Li (Columbia) Geometric and arithmetic theta correspondences July 26, 2022



Geometric theta lifting
• Geometric modularity gives an geometric theta distribution

Z : S (Vn
f )→ A (G(A))⊗ H2n(X (C),C), ϕ 7→ [Z (−, ϕ)].

It is G(Af )× H(Af )-equivariant, where H(Af ) acts on H2n(X (C),C) via the Hecke
correspondences.

• Using [Z (g, ϕ)] as an integral kernel allows one to
lift automorphic forms on G to cohomology classes on X (C)

• For φ ∈ Am/2,χ(G(A)), define the geometric theta lift or Kudla–Millson lift

θKM
ϕ (φ)K := 〈[Z (g, ϕ)K ], φ〉G =

∫
[G]

[Z (g, ϕ)]φ(g)dg ∈ H2n(XK (C),C).

• When varying K ⊆ H(Af ) it defines a class

θKM
ϕ (φ) := (θKM

ϕ (φ)K )K ∈ H2n(X (C),C) := lim−→
K⊆H(Af )

H2n(XK (C),C).

• Let π be a cuspidal automorphic representation of G(A) such that
πm/2,χ := π ∩Am/2,χ(G(A)) 6= 0.

• Then we obtain an G(Af )× H(Af )-equivariant linear map

θKM : S (Vn
f )⊗ π∨m/2,χ → H2n(X (C),C), (ϕ, φ̄) 7→ θKM

ϕ (φ).

• Define the geometric theta lift ΘKM
V (π) ⊆ H2n(X (C),C) of π to be its image.

Chao Li (Columbia) Geometric and arithmetic theta correspondences July 26, 2022



Geometric Siegel–Weil formula

• To extract numerical invariants from cohomology classes, assume that V is
anisotropic, thus XK is projective. Have a degree map

deg : H2 dim XK (XK ,C)→ C.
• For n ≤ dim XK = m − 1, define the geometric volume

vol : H2n(XK (C),C)→ C, [Z ] 7→ deg([Z ] ∪ [c1(L∨K )]dim XK−n).

When n = 0, obtain the geometric volume vol([XK ]) of the Shimura variety XK .
• Define the normalized geometric volume

vol\ : H2n(XK (C),C)→ C, [Z ] 7→ vol([Z ])

vol([XK ])
.

Then vol\([Z (g, ϕ)K ]) is independent of the choice of K .
• vol\([Z (g, ϕ)]) can be viewed as a geometric realization of the theta integral

I(g, ϕ) and produces a G(Af )-equivariant distribution analogous to I:

vol\ : S (Vn
f )→ A (G(A)), ϕ 7→ vol\[Z (−, ϕ)].

Theorem (Geometric Siegel–Weil formula [Kudla])
Let s0 = (m − n)/2. For any ϕ ∈ S (Vn

f ),

vol\([Z (g, ϕ)]
·

= E(g, s0, ϕ
V ).

Here ϕV ∈ S (V (A)n) is constructed from Schwartz form ϕ̃V ∈ S (V (A)n)⊗ Ωn,n(D).
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Geometric inner product formula

• Assume that 2n ≤ dim XK = m − 1. Define the geometric inner product

〈 , 〉XK (C) : H2n(XK (C),C)× H2n(XK (C),C)→ C, ([Z1], [Z2]) 7→ vol\([Z1] ∪ [Z2]).

• Again compatible when varying K and defines an inner product

〈 , 〉X(C) : H2n(X (C),C)× H2n(X (C),C)→ C
• Combining the geometric Siegel–Weil formula and the Rallis inner product formula:

Theorem (Geometric inner product formula)
Let s0 = (m − 2n)/2. Assume πm/2,χ := π ∩Am/2,χ(G(A)) 6= 0. Then for any
φi = ⊗vφi,v ∈ πm/2,χ, ϕi = ⊗vϕi,v ∈ S (Vn

f ) (i = 1, 2),

〈θKM
ϕ1 (φ1), θKM

ϕ2 (φ2)〉X(C)
·

=
L(s0 + 1/2, π × χ)

b2n(s0)
·
∏

v

Z \v (s0, φ1,v , φ2,v , ϕ
V
1,v , ϕ

V
2,v ).

Example
When 2n = m − 1, θKM

ϕi (φi ) comes from a middle dimensional cycle and s0 = 1/2:

geometric intersection number of θKM
ϕi (φi ) = near central value L(1, π × χ)

Remark
Geometric theta correspondence [Kudla–Millson, Funke–Millson, ...] have many
applications to the cohomology of Shimura varieties and locally symmetric spaces.
For example, [Bergeron–Millson–Moeglin] proved the Hodge conjecture and the Tate
conjecture for XK , in codimension ≤ 1

3 dim XK or ≥ 2
3 dim XK .
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Summary

Theta Siegel–Weil formula Inner product formula

Clas. θ(g, h, ϕ) I(g, ϕ)
·

= E(g, s0, ϕ) 〈θϕ(φ), θϕ(φ)〉H
·

= L(s0 + 1
2 , π)

Geo. [Z (g, ϕ)] vol\[Z (g, ϕ)]
·

= E(g, s0, ϕ
V ) 〈θKM

ϕ (φ), θKM
ϕ (φ)〉X(C)

·
= L(s0 + 1

2 , π)

Ari. Z (g, ϕ) ? ?
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