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Overview

For dual pairs (G,H) = (Sp(W ),O(V )), (U(W ),U(V ))...

Theta Correspondence Lift Automorphic Forms on G to Applications

Classical Automorphic Forms on H Langlands functionality

Geometric Cohomology classes on Sh(H) Hodge conjecture

(Kudla–Millson ’80s) Tate conjecture

Arithmetic Algebraic cycles on Sh(H) BSD conjecture

(Kudla’s program ’90s) Beilinson-Bloch conjecture
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Summary

Theta Siegel–Weil formula Inner product formula

Clas. θ(g, h, ϕ) I(g, ϕ)
·

= E(g, s0, ϕ) 〈θϕ(φ), θϕ(φ)〉H
·

= L(s0 + 1
2 , π)

Geo. [Z (g, ϕ)] vol\[Z (g, ϕ)]
·

= E(g, s0, ϕ
V ) 〈θKM

ϕ (φ), θKM
ϕ (φ)〉X(C)

·
= L(s0 + 1

2 , π)

Ari. Z (g, ϕ) ? ?
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Kudla’s modularity conjecture

The modularity of classical and geometric theta functions motivates Kudla to
conjecture the modularity of arithmetic theta functions.

Conjecture (Kudla’s modularity)
The formal generating function Z (g, ϕ)K converges absolutely and defines an element
in Am/2,χ(G(A))⊗ CHn(XK )C.

Remark

• Conjecture is known for n = 1. For n > 1, the modularity follows from the
convergence [Liu, 2011].

• Conjecture is known when F = Q(
√
−d) for d = 1, 2, 3, 7, 11 [Xia, 2021].

• Conjecture was originally formulated for orthogonal Shimura varieties over Q. The
case n = 1 was proved by [Borcherds, 1999], where the special case of Heegner
points on modular curves dates back to [Gross–Kohnen–Zagier, 1987]. The
general case n > 1 was proved by [Zhang 2009, Bruinier–Raum 2015].

• For orthogonal Shimura varieties over totally real fields, Conjecture is known for
n = 1 [Yuan–Zhang–Zhang 2009, Bruinier 2012]. For n > 1, the modularity follows
from the convergence [Yuan–Zhang–Zhang 2009].
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Example: Generating series of Heegner points

Example (E = 37a1 = X +
0 (37) : y2 + y = x3 − x)

• E(Q) ∼= Z with a generator P = (0, 0).
• E corresponds to the modular form f ∈ S2(37),

f =
∑
n≥1

anqn = q−2q2−3q3+2q4−2q5+6q6−q7+6q9+4q10−5q11−6q12−2q13+· · ·

• Table of Heegner points Z (d) of discriminant −d :

d 3 4 7 11 12 16 27 · · · 67 · · ·
Z (d) (0,−1) (0,−1) (0, 0) (0,−1) (0, 0) (1, 0) (−1,−1) · · · (6,−15) · · ·

where Z (d) = c(d) · P.

Miracle. The coefficients cd appear as the Fourier coefficients of φ ∈ S+
3/2(4 · 37),

φ =
∑
d≥1

c(d)qd = − q3 − q4 + q7 − q11 + q12 + 2q16 + 3q27 + · · · − 6q67 + · · · ,

which maps to f under the Shimura–Waldspurger–Kohnen correspondence

θ : S+
3/2(4N)→ S2(N), θ(φ) = f .

So
∑
d≥1

Z (d) · qd = φ · P ∈ S+
3/2(4 · 37)⊗ E(Q)C

is a modular form valued in E(Q)C.
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Arithmetic theta lifting

• Assume Kudla’s modularity conjecture. It gives an arithmetic theta distribution

Z : S (Vn
f )→ A (G(A))⊗ CHn(X )C, ϕ 7→ Z (−, ϕ).

It is G(Af )× H(Af )-equivariant, where H(Af ) acts on CHn(X )C via the Hecke
correspondences.

• Using Z (g, ϕ) as an integral kernel allows one to

lift automorphic forms on G to algebraic cycles on X
• For φ ∈ Am/2,χ(G(A)), define the arithmetic theta lift

Θϕ(φ)K := 〈Z (g, ϕ)K , φ〉G =

∫
[G]

Z (g, ϕ)φ(g)dg ∈ CHn(XK )C.

• When varying K ⊆ H(Af ) it defines a class

Θϕ(φ) := (Θϕ(φ)K )K ∈ CHn(X )C.

• Then we obtain an G(Af )× H(Af )-equivariant linear map

Θ : S (Vn
f )⊗ π∨m/2,χ → CHn(X )C, (ϕ, φ̄) 7→ Θϕ(φ).

• Define the arithmetic theta lift ΘV(π) ⊆ CHn(X )C of π to be its image.
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Modularity problem in arithmetic Chow groups

• Kudla also proposed the modularity problem in arithmetic Chow groups,
where arithmetic intersection theory takes place [Gillet–Soulé,
Burgos Gil–Kramer–Kühn].

• Let ĈH
n
(XK ) be the arithmetic Chow group of a suitable (compactified) regular

integral model XK of XK .

• Elements in ĈH
n
(XK ) are represented by (Z , (gZ ,σ)σ:F ↪→C):

(1) Z is codimension n cycle on XK .
(2) gZ ,σ is a Green current for Zσ(C).

• The problem seeks to define canonically an explicit arithmetic generating function
Ẑ(τ, ϕ) valued in ĈH

n
(X )C which lifts Z (τ, ϕ) under the restriction map

ĈH
n
(X )→ CHn(X ),

and such that Ẑ(τ, ϕ) is modular.
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Integral model XK of (a variant of) XK : special case F0 = Q

• Consider the special case F0 = Q and there is a global self-dual hermitian lattice Λ
over OF such that K ⊆ H(Af ) is the stabilizer of Λ⊗ Af .

• For an OF -scheme S, define XK (S) as the groupoid of (A0, ι0, λ0,A, ι, λ,FA):
• A is an abelian scheme over S.
• ι is an action of OF on A satisfying the Kottwitz condition of signature (m − 1, 1),

det(T − ι(a)| Lie A) = (T − a)m−1(T − ā)) ∈ OS[T ], a ∈ OF .

• λ is a principal polarization of A whose Rosati involution induces a 7→ a on ι(OK ).
• (A0, ι0, λ0) is a triple analogous to (A, ι, λ), but of signature (1, 0).
• FA ⊆ Lie A is an OF -stable OS-module local direct summand of rank m − 1,

satisfying the Krämer condition: OF acts on FA via the structure morphism and
acts on the line bundle Lie A/FA via the conjugate of the structure morphism.

• At every geometric point s of S, there is an isomorphism of hermitian
OF ,`-modules

HomOF (T`A0,s,T`As) ' HomOF (Λ0,Λ)⊗ Z`
for any prime ` different from the residue characteristic of s.

• Λ0 is a fixed self-dual hermitian lattice of rank 1 over OF .
• HomOF

(Λ0,Λ) has a natural hermitian module structure given by
(x , y) := y∨ ◦ x ∈ EndOF

(Λ0) ⊆ F and similarly for the left-hand-side.

Then S 7→ XK (S) is represented by a Deligne–Mumford stack XK regular over
Spec OF , semistable above ramified places and smooth everywhere else.
Its generic fiber is the product of XK and a 0-dimensional Shimura variety.
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• λ is a principal polarization of A whose Rosati involution induces a 7→ a on ι(OK ).
• (A0, ι0, λ0) is a triple analogous to (A, ι, λ), but of signature (1, 0).
• FA ⊆ Lie A is an OF -stable OS-module local direct summand of rank m − 1,

satisfying the Krämer condition: OF acts on FA via the structure morphism and
acts on the line bundle Lie A/FA via the conjugate of the structure morphism.

• At every geometric point s of S, there is an isomorphism of hermitian
OF ,`-modules

HomOF (T`A0,s,T`As) ' HomOF (Λ0,Λ)⊗ Z`
for any prime ` different from the residue characteristic of s.

• Λ0 is a fixed self-dual hermitian lattice of rank 1 over OF .
• HomOF

(Λ0,Λ) has a natural hermitian module structure given by
(x , y) := y∨ ◦ x ∈ EndOF

(Λ0) ⊆ F and similarly for the left-hand-side.

Then S 7→ XK (S) is represented by a Deligne–Mumford stack XK regular over
Spec OF , semistable above ramified places and smooth everywhere else.
Its generic fiber is the product of XK and a 0-dimensional Shimura variety.

Chao Li (Columbia) Geometric and arithmetic theta correspondences July 27, 2022



Integral model XK of (a variant of) XK : special case F0 = Q
• Consider the special case F0 = Q and there is a global self-dual hermitian lattice Λ

over OF such that K ⊆ H(Af ) is the stabilizer of Λ⊗ Af .
• For an OF -scheme S, define XK (S) as the groupoid of (A0, ι0, λ0,A, ι, λ,FA):
• A is an abelian scheme over S.
• ι is an action of OF on A satisfying the Kottwitz condition of signature (m − 1, 1),

det(T − ι(a)| Lie A) = (T − a)m−1(T − ā)) ∈ OS[T ], a ∈ OF .
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Special divisors in arithmetic Chow groups

• For (A0, ι0, λ0,A, ι, λ,FA) ∈ XK (S), define the module of special homomorphisms

Λ(A0,A) := HomOF (A0,A),

equipped with a natural hermitian form (x , y) ∈ OF is given by

(A0
x−→ A λ−→ A∨

y∨−−→ A∨0
λ−1

0−−→ A0) ∈ EndOF (A0) = ι0(OF ) ' OF .

• The special divisors are indexed by T ∈ Herm1(OF0 )≥0 = Z≥0.
• When T > 0, define special divisor Z(T )K to be S 7→ {(A0, ι0, λ0,A, ι, λ,FA, x)}

(1) (A0, ι0, λ0,A, ι, λ,FA) ∈ XK (S),
(2) x ∈ Λ(A0,A) such that (x , x) = T ,

which is represented by a Deligne–Mumford stack finite and unramified over XK .
• Z∗(T )K : its Zariski closure on the canonical toroidal compactification X ∗K .
• One can further define a total special divisor Z tot(T )K by adding an explicit

boundary divisor to Z∗(T )K . Using regularized theta lifts of harmonic Maass
forms, Z tot(T )K is equipped with an automorphic Green function, thus gives

Ẑ tot(T )K ∈ ĈH
1
(X ∗K ).

• When T = 0, define

Ẑ tot(0)K = L̂∨K + (Exc,− log | disc(F )|) ∈ ĈH
1
(X ∗K )

• L̂∨K is the metrized dual tautalogical line bundle over X ∗K .
• Exc is an effective vertical divisor supported above ramified places, equipped

with the constant Green function − log | disc(F )|.
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Ẑ tot(T )K ∈ ĈH
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Modularity in arithmetic Chow groups: the divisor case

Define the generating function in the arithmetic Chow group ĈH
1
(X ∗K )

Ẑ tot(τ)K :=
∑
T≥0

Ẑ tot(T )K · qT , τ ∈ H1.

Theorem (Bruinier–Howard–Kudla–Rapoport–Yang 2017)
The formal generating function Ẑ tot(τ)K defines an elliptic modular form valued in

ĈH
1
(X ∗K ) of weight m, level | disc F | and character ηm.

Remark

• The proof of Theorem uses the arithmetic theory of Borcherds products to
generate enough relations between Z tot(T )K . Key ingredients are the computation
of Borcherds divisors at bad places and boundary.

• For F0 6= Q, a version of Theorem is proved in [Qiu 2022] by a different method.
• A version of Theorem is proved in [Howard–Madapusi Pera 2020] for (open)

orthogonal Shimura varieties over Q.
• One can also use Kudla’s Green function (depending on a parameter

y = Im(τ) ∈ R>0) in place of the automorphic Green function to obtain a
nonholomorphic modular form. This is a consequence of Theorem and the
modularity of the difference of the two generating functions [Ehlen–Sankaran].
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Ẑ tot(T )K · qT , τ ∈ H1.

Theorem (Bruinier–Howard–Kudla–Rapoport–Yang 2017)
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Applications of modularity for arithmetic divisors

(1) Theorem allows one to construct arithmetic theta lifts valued in ĈH
1
(X ∗K ).

[BHKRY] prove formulas relating the arithmetic intersection of these arithmetic
theta lifts and small/big CM points to the central derivative of certain convolution
L-functions of two elliptic modular forms.

(2) Theorem is used in the proof of arithmetic fundamental lemma over Qp in [Zhang].

(3) Variants over general totally real fields also play a key role for the arithmetic
fundamental lemma over p-adic fields [Mihatsch–Zhang] and the arithmetic
transfer conjecture [Zhiyu Zhang] within the framework of the arithmetic
Gan–Gross–Prasad conjectures for unitary groups.

(4) Theorem for orthogonal Shimura varieties is used in
[Shankar–Shankar–Tang–Tayou] on the Picard rank jumps of K3 surfaces over
number fields.

(5) The proof of the averaged Colmez conjecture in
[Andreatta–Goren–Howard–Madapusi Pera] relies on relating arithmetic
intersection of special divisors on orthogonal Shimura varieties and big CM points
to central derivatives of certain L-functions.
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Modularity in arithmetic Chow groups: higher codimension case

• The modularity problem in arithmetic Chow groups remains open in higher
codimension n > 1.

• When n > 1, even when T > 0 the special cycle Z(T , ϕ) in general has the wrong
codimension due to improper intersection in positive characteristics, and the
consideration of derived intersection is necessary to obtain the correct class
Ẑ(T , ϕ) in arithmetic Chow groups.

• It is also subtle to find the correction terms at places of bad reduction and at
boundary (both issues already appear when n = 1) and to find the correct
construction of Green currents to ensure modularity.

• The forthcoming works of Howard–Madapusi Pera and Madapusi Pera address
some of these issues when n > 1.
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Arithmetic Siegel–Weil formula

• If the arithmetic theta function Ẑ(τ, ϕ) ∈ ĈH
n
(XK )C can be constructed, then we

may apply the arithmetic volume

v̂ol : ĈH
n
(XK )C → C, Ẑ 7→ d̂eg(Ẑ · (c1(L̂∨K ))dimXK−n)

and try to relate v̂ol(Ẑ(τ, ϕ)) to the special derivatives of Siegel Eisenstein series.

• However, the definition of Ẑ(τ, ϕ) is rather subtle when n > 1.
• The special derivatives are nonholomorphic modular forms, and thus for

comparison it is better to construct nonholomorphic generating function.
• Assume that m = n, so s0 = 0 in the Siegel–Weil formula for the pair (V ,W ). In

this special case, the arithmetic volume is simply the arithmetic degree and we
can define the nonsingular terms in the generating function in a more explicit way.

• Even for nonsingular terms, the relation to Siegel Eisenstein series is more
complicated due to places of bad reduction, a phenomenon first discovered by
[Kudla–Rapoport] via explicit computation in the context of Shimura curves
uniformized by the Drinfeld p-adic half plane.
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Integral model XK : general F0

• Come back to that the totally real field F0 is general.
• From now on assume that F/F0 is split at all places above 2, and if v ramified in F

then v is unramified over Q.
• Assume that K =

∏
v -∞ Kv ⊆ H(Af ) and Kv ⊆ H(F0,v ) is given by

• the stabilizer of a self-dual hermitian lattice Λv ⊆ Vv if v is nonsplit in F ,
• a principal congruence subgroup of Hv (F0,v ) ' GLn(F0,v ) if v is split in F .

Have a regular integral model XK of (a variant of) XK [Rapoport–Smithling–Zhang].
• XK is smooth above inert places and semistable above ramified places.
• When F0 = Q and K is the stabilizer of a self-dual hermitian lattice, the regular

integral model XK recovers what we defined before.
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Arithmetic degrees (m = n)

• Let ϕ = ϕ1 ⊗ · · · ⊗ ϕn ∈ S (Vn
f )K be a factorizable Schwartz function such that

ϕv = 1(Λv )n at all v nonsplit in F .
• Let T ∈ Hermn(F0) be nonsingular with diagonal entries t1, . . . , tn ∈ F0.
• Associated to (T , ϕ) we have an arithmetic special cycle Z(T , ϕ)K over XK .
• For v -∞, define the local arithmetic intersection number

IntT ,v (ϕ) := χ(Z(T , ϕ)K ,OFv
,OZ(t1,ϕ1)K ,OFv

⊗L · · · ⊗L OZ(tn,ϕn)K ,,OFv
) · log qv .

• For v | ∞, Using the Green current given by the star product of Kudla’s Green
functions, also define its local arithmetic intersection number IntT ,v (y, ϕ) at infinite
places, which depends on an additional parameter y = im(τ) ∈ Hermn(F0,∞)>0.

• Combining all the local arithmetic numbers together, define the arithmetic degree

d̂egT (y, ϕ) :=
1

vol([XK ])

∑
v -∞

IntT ,v (ϕ) +
∑
v|∞

IntT ,v (y, ϕ)

 .

• Form the generating function of arithmetic degrees

d̂eg(τ, ϕ) :=
∑

T∈Hermn(F0)

det T 6=0

d̂egT (y, ϕ)qT .
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Modified central derivative of Eisenstein series

• Associated to
ϕV := ϕ⊗ ϕ∞ ∈ S (Vn),

where ϕ∞ is the Gaussian function, get a incoherent Eisenstein series E(τ, s, ϕV).
• Central value E(τ, 0, ϕV) = 0 by the incoherence. Consider its central derivative

Eis′(τ, ϕ) :=
d
ds

∣∣∣∣
s=0

E(τ, s, ϕV).

• To match the arithmetic degree, we need to modify Eis′(τ, ϕ) by central values of
coherent Eisenstein series at places of bad reduction.

• For v ramified, let vV be the coherent hermitian space over AF nearby V at v ,
namely (vV)w ' Vw exactly for all places w 6= v .

• Consider the central value
v Eis(τ, ϕ) := E(τ, 0, ϕ

vV)

of a coherent Eisenstein series for an explicit ϕ
vV := ϕv ⊗ ϕ̃v ⊗ ϕ∞ ∈ S ((vV)n).

• Define the modified central derivative

∂Eis(τ, ϕ) := Eis′(τ, ϕ) +
∑

v ramified

v Eis(τ, ϕ).

• It has a decomposition into Fourier coefficients

∂Eis(τ, ϕ) =
∑

T∈Hermn(F0)

∂EisT (τ, ϕ).

Chao Li (Columbia) Geometric and arithmetic theta correspondences July 27, 2022



Modified central derivative of Eisenstein series
• Associated to

ϕV := ϕ⊗ ϕ∞ ∈ S (Vn),

where ϕ∞ is the Gaussian function, get a incoherent Eisenstein series E(τ, s, ϕV).

• Central value E(τ, 0, ϕV) = 0 by the incoherence. Consider its central derivative

Eis′(τ, ϕ) :=
d
ds

∣∣∣∣
s=0

E(τ, s, ϕV).

• To match the arithmetic degree, we need to modify Eis′(τ, ϕ) by central values of
coherent Eisenstein series at places of bad reduction.

• For v ramified, let vV be the coherent hermitian space over AF nearby V at v ,
namely (vV)w ' Vw exactly for all places w 6= v .

• Consider the central value
v Eis(τ, ϕ) := E(τ, 0, ϕ

vV)

of a coherent Eisenstein series for an explicit ϕ
vV := ϕv ⊗ ϕ̃v ⊗ ϕ∞ ∈ S ((vV)n).

• Define the modified central derivative

∂Eis(τ, ϕ) := Eis′(τ, ϕ) +
∑

v ramified

v Eis(τ, ϕ).

• It has a decomposition into Fourier coefficients

∂Eis(τ, ϕ) =
∑

T∈Hermn(F0)

∂EisT (τ, ϕ).

Chao Li (Columbia) Geometric and arithmetic theta correspondences July 27, 2022



Modified central derivative of Eisenstein series
• Associated to

ϕV := ϕ⊗ ϕ∞ ∈ S (Vn),

where ϕ∞ is the Gaussian function, get a incoherent Eisenstein series E(τ, s, ϕV).
• Central value E(τ, 0, ϕV) = 0 by the incoherence. Consider its central derivative

Eis′(τ, ϕ) :=
d
ds

∣∣∣∣
s=0

E(τ, s, ϕV).

• To match the arithmetic degree, we need to modify Eis′(τ, ϕ) by central values of
coherent Eisenstein series at places of bad reduction.

• For v ramified, let vV be the coherent hermitian space over AF nearby V at v ,
namely (vV)w ' Vw exactly for all places w 6= v .

• Consider the central value
v Eis(τ, ϕ) := E(τ, 0, ϕ

vV)

of a coherent Eisenstein series for an explicit ϕ
vV := ϕv ⊗ ϕ̃v ⊗ ϕ∞ ∈ S ((vV)n).

• Define the modified central derivative

∂Eis(τ, ϕ) := Eis′(τ, ϕ) +
∑

v ramified

v Eis(τ, ϕ).

• It has a decomposition into Fourier coefficients

∂Eis(τ, ϕ) =
∑

T∈Hermn(F0)

∂EisT (τ, ϕ).

Chao Li (Columbia) Geometric and arithmetic theta correspondences July 27, 2022



Modified central derivative of Eisenstein series
• Associated to

ϕV := ϕ⊗ ϕ∞ ∈ S (Vn),

where ϕ∞ is the Gaussian function, get a incoherent Eisenstein series E(τ, s, ϕV).
• Central value E(τ, 0, ϕV) = 0 by the incoherence. Consider its central derivative

Eis′(τ, ϕ) :=
d
ds

∣∣∣∣
s=0

E(τ, s, ϕV).

• To match the arithmetic degree, we need to modify Eis′(τ, ϕ) by central values of
coherent Eisenstein series at places of bad reduction.

• For v ramified, let vV be the coherent hermitian space over AF nearby V at v ,
namely (vV)w ' Vw exactly for all places w 6= v .

• Consider the central value
v Eis(τ, ϕ) := E(τ, 0, ϕ

vV)

of a coherent Eisenstein series for an explicit ϕ
vV := ϕv ⊗ ϕ̃v ⊗ ϕ∞ ∈ S ((vV)n).

• Define the modified central derivative

∂Eis(τ, ϕ) := Eis′(τ, ϕ) +
∑

v ramified

v Eis(τ, ϕ).

• It has a decomposition into Fourier coefficients

∂Eis(τ, ϕ) =
∑

T∈Hermn(F0)

∂EisT (τ, ϕ).

Chao Li (Columbia) Geometric and arithmetic theta correspondences July 27, 2022



Modified central derivative of Eisenstein series
• Associated to

ϕV := ϕ⊗ ϕ∞ ∈ S (Vn),

where ϕ∞ is the Gaussian function, get a incoherent Eisenstein series E(τ, s, ϕV).
• Central value E(τ, 0, ϕV) = 0 by the incoherence. Consider its central derivative

Eis′(τ, ϕ) :=
d
ds

∣∣∣∣
s=0

E(τ, s, ϕV).

• To match the arithmetic degree, we need to modify Eis′(τ, ϕ) by central values of
coherent Eisenstein series at places of bad reduction.

• For v ramified, let vV be the coherent hermitian space over AF nearby V at v ,
namely (vV)w ' Vw exactly for all places w 6= v .

• Consider the central value
v Eis(τ, ϕ) := E(τ, 0, ϕ

vV)

of a coherent Eisenstein series for an explicit ϕ
vV := ϕv ⊗ ϕ̃v ⊗ ϕ∞ ∈ S ((vV)n).

• Define the modified central derivative

∂Eis(τ, ϕ) := Eis′(τ, ϕ) +
∑

v ramified

v Eis(τ, ϕ).

• It has a decomposition into Fourier coefficients

∂Eis(τ, ϕ) =
∑

T∈Hermn(F0)

∂EisT (τ, ϕ).

Chao Li (Columbia) Geometric and arithmetic theta correspondences July 27, 2022



Modified central derivative of Eisenstein series
• Associated to

ϕV := ϕ⊗ ϕ∞ ∈ S (Vn),

where ϕ∞ is the Gaussian function, get a incoherent Eisenstein series E(τ, s, ϕV).
• Central value E(τ, 0, ϕV) = 0 by the incoherence. Consider its central derivative

Eis′(τ, ϕ) :=
d
ds

∣∣∣∣
s=0

E(τ, s, ϕV).

• To match the arithmetic degree, we need to modify Eis′(τ, ϕ) by central values of
coherent Eisenstein series at places of bad reduction.

• For v ramified, let vV be the coherent hermitian space over AF nearby V at v ,
namely (vV)w ' Vw exactly for all places w 6= v .

• Consider the central value
v Eis(τ, ϕ) := E(τ, 0, ϕ

vV)

of a coherent Eisenstein series for an explicit ϕ
vV := ϕv ⊗ ϕ̃v ⊗ ϕ∞ ∈ S ((vV)n).

• Define the modified central derivative

∂Eis(τ, ϕ) := Eis′(τ, ϕ) +
∑

v ramified

v Eis(τ, ϕ).

• It has a decomposition into Fourier coefficients

∂Eis(τ, ϕ) =
∑

T∈Hermn(F0)

∂EisT (τ, ϕ).

Chao Li (Columbia) Geometric and arithmetic theta correspondences July 27, 2022



Modified central derivative of Eisenstein series
• Associated to

ϕV := ϕ⊗ ϕ∞ ∈ S (Vn),

where ϕ∞ is the Gaussian function, get a incoherent Eisenstein series E(τ, s, ϕV).
• Central value E(τ, 0, ϕV) = 0 by the incoherence. Consider its central derivative

Eis′(τ, ϕ) :=
d
ds

∣∣∣∣
s=0

E(τ, s, ϕV).

• To match the arithmetic degree, we need to modify Eis′(τ, ϕ) by central values of
coherent Eisenstein series at places of bad reduction.

• For v ramified, let vV be the coherent hermitian space over AF nearby V at v ,
namely (vV)w ' Vw exactly for all places w 6= v .

• Consider the central value
v Eis(τ, ϕ) := E(τ, 0, ϕ

vV)

of a coherent Eisenstein series for an explicit ϕ
vV := ϕv ⊗ ϕ̃v ⊗ ϕ∞ ∈ S ((vV)n).

• Define the modified central derivative

∂Eis(τ, ϕ) := Eis′(τ, ϕ) +
∑

v ramified

v Eis(τ, ϕ).

• It has a decomposition into Fourier coefficients

∂Eis(τ, ϕ) =
∑

T∈Hermn(F0)

∂EisT (τ, ϕ).

Chao Li (Columbia) Geometric and arithmetic theta correspondences July 27, 2022



Modified central derivative of Eisenstein series
• Associated to

ϕV := ϕ⊗ ϕ∞ ∈ S (Vn),

where ϕ∞ is the Gaussian function, get a incoherent Eisenstein series E(τ, s, ϕV).
• Central value E(τ, 0, ϕV) = 0 by the incoherence. Consider its central derivative

Eis′(τ, ϕ) :=
d
ds

∣∣∣∣
s=0

E(τ, s, ϕV).

• To match the arithmetic degree, we need to modify Eis′(τ, ϕ) by central values of
coherent Eisenstein series at places of bad reduction.

• For v ramified, let vV be the coherent hermitian space over AF nearby V at v ,
namely (vV)w ' Vw exactly for all places w 6= v .

• Consider the central value
v Eis(τ, ϕ) := E(τ, 0, ϕ

vV)

of a coherent Eisenstein series for an explicit ϕ
vV := ϕv ⊗ ϕ̃v ⊗ ϕ∞ ∈ S ((vV)n).

• Define the modified central derivative

∂Eis(τ, ϕ) := Eis′(τ, ϕ) +
∑

v ramified

v Eis(τ, ϕ).

• It has a decomposition into Fourier coefficients

∂Eis(τ, ϕ) =
∑

T∈Hermn(F0)

∂EisT (τ, ϕ).

Chao Li (Columbia) Geometric and arithmetic theta correspondences July 27, 2022



Arithmetic Siegel–Weil formula: nonsingular terms

Theorem (Arithmetic Siegel–Weil formula: nonsingular terms)
Let ϕ ∈ S (Vn

f )K be a factorizable Schwartz function such that ϕv = 1(Λv )n at all v
nonsplit in F . Let T ∈ Hermn(F0) be nonsingular. Then

d̂egT (y, ϕ)qT ·
= ∂EisT (τ, ϕ).

Further assume that ϕ has nonsingular support at two places split in F . Then

d̂eg(τ, ϕ)
·

= ∂Eis(τ, ϕ).

In particular, d̂eg(τ, ϕ) is a (nonholomorphic) hermitian modular form on Hn.

Remark
The proof of this theorem boils down to a local arithmetic Siegel–Weil formula
computing IntT ,v (ϕ) at each place v nonsplit in F :

(1) At v | ∞, proved by [Liu 2011] and [Garcia–Sankaran 2018] independently.

(2) At v -∞ inert, this is the content of the Kudla–Rapoport conjecture. Proved by
[L.–Zhang 2019].

(3) At v -∞ ramified, this is the Kudla–Rapoport conjecture for Krämer models
formulated by [He–Shi–Yang]. Recently proved by [He–L.–Shi–Yang 2022].
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Remarks on Arithmetic Siegel–Weil formula

• The precise formulation of the singular terms of the arithmetic Siegel–Weil
remains an open problem.

• As a special case, the constant term identity should read:
arithmetic volume of XK

·
= logarithmic derivatives of Dirichlet L-functions

Such an explicit arithmetic volume formula was proved by [Bruinier–Howard 2021],
though a precise comparison with the constant term of ∂Eis(τ, ϕ) is yet to be
formulated and established.

• In contrast to classical and geometric theory, the choice of the level K ⊆ H(Af ) in
arithmetic theory is fixed at all nonsplit places v in order to construct a regular
integral model XK . This has prevented us from a full adelic formula so far.

• A related open problem is to formulate and prove an arithmetic Siegel–Weil
formula for more general level K at nonsplit places. The case of minuscule
parahoric levels at inert places was formulated by [Cho 2020].

• The flexibility at split places (due to the regular integral models with Drinfeld level)
allow us to choose ϕ to kill all singular terms on both sides. This flexibility is crucial
for applications (bypassing the need to know the singular terms).

• Over function fields, [Feng–Yun–Zhang 2021a] proved a higher Siegel–Weil
formula for unitary groups in the unramified setting. [Feng–Yun–Zhang 2021b]
further formulated the conjectural singular terms identity using both classical and
derived algebraic geometry.
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formulated and established.

• In contrast to classical and geometric theory, the choice of the level K ⊆ H(Af ) in
arithmetic theory is fixed at all nonsplit places v in order to construct a regular
integral model XK . This has prevented us from a full adelic formula so far.

• A related open problem is to formulate and prove an arithmetic Siegel–Weil
formula for more general level K at nonsplit places. The case of minuscule
parahoric levels at inert places was formulated by [Cho 2020].

• The flexibility at split places (due to the regular integral models with Drinfeld level)
allow us to choose ϕ to kill all singular terms on both sides. This flexibility is crucial
for applications (bypassing the need to know the singular terms).

• Over function fields, [Feng–Yun–Zhang 2021a] proved a higher Siegel–Weil
formula for unitary groups in the unramified setting. [Feng–Yun–Zhang 2021b]
further formulated the conjectural singular terms identity using both classical and
derived algebraic geometry.
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Digression: Beilinson–Bloch conjectures

• X : smooth projective variety over a number field F .
• CHm(X )0 ⊆ CHm(X ): the subgroup of cohomologically trivial cycles.
• Beilinson–Bloch height pairing (conditional)

〈 , 〉BB : CHm(X )0 × CHdim X+1−m(X )0 → R.
• L(H2m−1(X ), s): the motivic L-function for H2m−1(XF̄ ,Q`).

Conjecture (Beilinson–Bloch, 1980s)

(1) (Rank) ords=m L(H2m−1(X ), s)
?
= rank CHm(X )0.

(2) (Leading coefficient) L(r)(H2m−1(X ),m)
?∼ det(〈Zi ,Z ′j 〉BB)r×r

Example (X/K = E/Q and m = 1)

CH1(E)0 ' E(Q), L(H1(E), s) = L(E , s), 〈 , 〉BB = −〈 , 〉NT.

BB recovers the BSD conjecture

Conjecture (Birch–Swinnerton-Dyer, 1960s)

(1) (Rank) ords=1 L(E , s)
?
= rank E(Q).

(2) (Leading coefficient) L(r)(E , 1)
?∼ det(〈Pi ,Pj〉NT)r×r

Theorem (Gross–Zagier, Kolyvagin, 1980s)

ords=1 L(E , s) = 0⇒ rank E(Q) = 0, ords=1 L(E , s) = 1⇒ rank E(Q) = 1.
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Arithmetic inner product

• Come back to m = 2n (equal rank case) and assume V = Vπ is incoherent.
• Use the Beilinson–Bloch height pairing to define an arithmetic inner product on

algebraic cycles.
• Assume that F0 6= Q, thus XK is projective.
• Since dim XK = 2n − 1 we have

〈 , 〉BB : CHn(XK )0 × CHn(XK )0 → R,

which naturally extends to an inner product on CHn(XK )0
C.

• Define the arithmetic inner product

〈 , 〉XK : CHn(XK )0
C × CHn(XK )0

C → C, (Z1,Z2) 7→ 〈Z1,Z2〉BB

vol([XK ])
.

• Again compatible when varying K and defines an inner product 〈 , 〉X on CHn(X )0
C.
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Arithmetic inner product formula

Assumptions. Let π be a cuspidal automorphic representation of G(A).

(1) For v |∞, πv is the holomorphic discrete series with Harish-Chandra parameter
{m−1

2 , m−3
2 , . . . , −m+3

2 , −m+1
2 }.

(2) For v -∞, πv is tempered.

(3) For v -∞ nonsplit in F , πv is spherical with respect to the stabilizer of O2n
Fv .

Under Assumption, the arithmetic theta lift Θϕ(φ) is cohomologically trivial and we can
apply the arithmetic inner product 〈 , 〉X .

Theorem (Arithmetic inner product formula [L.–Liu, 2020,2021])
Assume Assumptions. Assume that ε(π) = −1. Assume that Kudla’s modularity holds.
Then for any φi = ⊗vφi,v ∈ π ∩An(G(A)), ϕi = ⊗vϕi,v ∈ S (Vn

f ) (i = 1, 2),

〈Θϕ1 (φ1),Θϕ2 (φ2)〉X
·

=
L′(1/2, π)

b2n(0)
·
∏

v

Z \v (0, φ1,v , φ2,v , ϕ
V
1,v , ϕ

V
2,v ).

In particular,
L′(1/2, π) 6= 0 =⇒ ΘV(π) 6= 0,

and the converse also holds if 〈 , 〉X is nondegenerate.
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Remarks on arithmetic inner product formula

Remark
Theorem is the first Gross–Zagier type formula proved in arbitrarily high dimension.
There are also concrete examples of π satisfying Assumptions coming from symmetric
power lift of modular elliptic curves [Newton–Thorne, Clozel–Thorne, Kim–Shahidi, ...]

Remark. When

• π: spherical at all finite places,
• φ ∈ π: holomorphic newform such that (φ, φ)π = 1,
• ϕ: characteristic function of self-dual lattices at all finite places.

Then

〈Θϕ(φ),Θϕ(φ)〉X = (−1)n · L′(1/2, π)

b2n(0)
· C[F0:Q]

n ,

where Cn = 2−2nπn2 Γ(1)···Γ(n)
Γ(n+1)···Γ(2n)

is an archimedean doubling zeta integral computed by
[Eischen–Z. Liu].

• Riemann hypothesis predicts L′(1/2, π) ≥ 0.
• Beilinson’s Hodge index conjecture predicts (−1)n〈Θϕ(φ),Θϕ(φ)〉X ≥ 0.

Compatible with our formula!
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Application to the Beilinson–Bloch conjecture

Theorem (L.–Liu 2020, 2021)
Assume Assumptions. Let CHn(X )0

mπ the localization of CHn(X )0
C at the maximal ideal

mπ of the spherical Hecke algebra of H(Af ) (away from all ramification) associated to
π. Then the implication

ords=1/2 L(s, π) = 1 =⇒ rank CHn(X )0
mπ ≥ 1

holds when the level subgroup K ⊆ H(Af ) is sufficiently small.

Remark
[Disegni–Liu 2022] proved a p-adic arithmetic inner product formula,

p-adic height pairing of Θϕ(φ)
·

= derivative of cyclotomic p-adic L-function Lp(π)

As an application, they prove implications of the form

central order of vanishing of Lp(π) is 1 =⇒ rank H1
f (F , ρπ(n)) ≥ 1.

This verifies part of the p-adic Bloch–Kato conjecture.

Remark
[Xue 2019] used the arithmetic inner product formula in the case n = 1 to prove
endoscopic cases of the arithmetic GGP conjecture for U(2)× U(3).

One also expects similar applications to endoscopic cases of arithmetic GGP
conjecture for U(m)× U(m + 1).
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Summary

Theta Siegel–Weil formula Inner product formula

Clas. θ(g, h, ϕ) I(g, ϕ)
·

= E(g, s0, ϕ) 〈θϕ(φ), θϕ(φ)〉H
·

= L(s0 + 1
2 , π)

Geo. [Z (g, ϕ)] vol\[Z (g, ϕ)]
·

= E(g, s0, ϕ
V ) 〈θKM

ϕ (φ), θKM
ϕ (φ)〉X(C)

·
= L(s0 + 1

2 , π)

Ari. Z (g, ϕ)
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