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Abstract. Depending on your point of view, Shimura varieties are a special kind of
locally symmetric spaces, a generalization of moduli spaces of abelian schemes with extra
structures, or the imperfect characteristic 0 version of moduli spaces of shtuka. They play
an important role in the Langlands program because they have many symmetries (the
Hecke correspondences) allowing us to link their cohomology to the theory of automorphic
representations, and on the other hand they are explicit enough for this cohomology to
be computable.

The goal of these lectures is to give an introduction to Shimura varieties, to present
some examples, and to explain the conjectures on their cohomology (at least in the
simplest case).

1. Motivation: Matsushima’s formula

In a non-historical sense, Matsushima’s formula is one of many reasonable aspects
to understand the motivation to care about Shimura varieties. Matsushima proved some
results about the homology of the following objects in the case where they are compact.

1.1. Basic notions.

• Let G be a connected reductive group over Q.
Caution: you might prefer to image G = GLn but this is not going to work so well
for Shimura varieties as we will discover in a short while. Yet you can still think about
G = GL2 but not G = GL3 for some reason.

• Denote K∞ ⊂ G(R) the maximal compact subgroup modulo center. Then
there is a symmetric space X = G(R)/K∞, which is a nice Riemann manifold.
In this case, we can pretend G to be semisimple. But in general, we do not need this
assumption anymore. Morally, there will be a canonical way to choose K∞.

• Suppose Γ ⊂ G(Q) is an arithmetic subgroup which is torsion-free. Hence
there is a locally symmetric space Γ\X.
The arithmeticity loosely means some similarity to G(Z). However, note that G(Z) can-
not be well-defined because it depends on an embedding G ↩→ GLn for some sufficiently
large n. Actually, Γ here is commensurable with some choice of G(Z) that does not
depend on the choice. The torsion-freeness is necessary; note that Γ is automatically
torsion-free if it is small enough.

The problem is to discover when these objects are compact. In fact,

⋄ Γ\X is compact ⇐⇒ G/Z(G) is anisotropic over Q (i.e., G/Z(G) have no proper
parabolic subgroup).

Date: July 11, 2022.
1



2 SOPHIE MOREL (NOTES BY WENHAN DAI)

Do not be confused because we are not assuming that G is semisimple. Alternatively, if G
is actually semisimple, it is the same as saying that G(R) (or Γ) is compact. Simply in the
reductive case, we must modulo the center Z(G).

Example 1.1. Here we do not want G(R) to be anisotropic, but we want G to be anisotropic
over Q. For a nontrivial example, we could take

G = D×,

where D/Q is a division algebra.

1.2. An adelic reformulation of Matsushima’s formula. The work of Matsushima1

related the Betti numbers, say dimHi(Γ\X), to automorphic forms on G(R) when Γ\X is
compact. But he only worked with some semisimple groups.

In the present context, we are to introduce the stuffs that are going to appear in Mat-
sushima’s formula.

(1) Recall that the Adeles over Q is the restricted product of all completions with respect
to all places of Q, i.e.,

A =
󰁜

v

′
Qv = Af × R,

breaking into the finite and the infinite parts. Moreover, the finite Adeles

Af = Ẑ⊗Z Q,

which is a locally compact topological ring.
(2) Fix a Haar measure on G. Now we introduce a nice Hilbert space:

L2
G := L2(G(Q)\G(A)/AG)

G(A)

equipped with an action of G(A) given by right translations. The only ambiguity lies in
the description of AG: if SG = Z(G)split is the split center of G, then AG := SG(R)◦ is
just the connected component in SG(R). (The upshot for this construction is to make
sure that the quotient G(Q)\G(A)/AG has a finite volume.

(3) We now concern about a set of discrete automorphic representations of G(A). This is,
by definition,

Π(G) := {irreducible representations π of G(A) that are direct factors of L2
G}

Also, for each π ∈ Π(G), we define

m(π) := the multiplicity of π while appearing in L2
G.

The factorization A = Af × R renders that G(A) = G(Af )×G(R), and hence leads to
two representations, say πf and π∞, respectively. Then for each π ∈ Π(G), which is an
irreducible automorphic representation of G(A),

π = πf ⊗ π∞.

1This is not the original result by Matsushima but a reformulation instead. More precisely, now we are
doing automorphic forms on G(A) instead of G(R) so one may need to talk about the identical formulation
about this.
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(4) Assume G/Z(G) is anisotropic. Then, by the previous fact,

G(Q)\G(A)/AG is compact.

And we obtain a factorization

L2
G =

󰁦󰁐

π∈Π(G)

πm(π).

All these automorphic representations in Π(G) are also capital in the course (because
there are no parabolics).

(5) There is another slight adelic variance of the space, which is called the adelic locally
symmetric spaces,

MK := G(Q)\(X ×G(Af )/K),

where K is an open compact subgroup of G(Af ) over finite adelic points. This space
MK looks like a different beast for those who have never seen it before, but actually, it
is basically the same object as Γ\X. In the double coset, K acts by right translation on
G(Af ) and G(Q) acts on both factors simultaneously by left multiplication (and hence
it acts diagonally).

Remark. If we write G(Af ) as a finite union of double classes like

G(Af ) =
󰁊

i∈I

G(Q)xiK,

then
MK =

󰁊

i∈I

Γi\X, Γi = xiKx−1
i ∩G(Q).

So the open compact subgroup of G(Af ) is like the adelic version of arithmetic subgroup
of G(Q) (for which we want it to be a little bit more restricted). In case when K is
small enough, all these Γi are going to be torsion-free. However,

lim←−K
MK = G(Q)\X ×G(Af ).

G(Af )

We are interested in the Betti cohomology with C-coefficients, say

Hi := lim−→
K

Hi(MK) = lim−→
K

Hi
Betti(MK ,C)

which is again equipped with a G(Af )-action. Here comes some comment on the G(Af )-
actions before stating Matsushima’s formula. Think about these actions at finite levels
(namely, without taking injective limits). For some fixed open compact K0, the injective
limit Hi is the K0-fixed points in Hi(MK0) – the action is not given by G(Af ) but by
something in the Hecke algebra of level K instead2.

(6) Denote g = Lie(G(R)). Due to some quite strong condition at ∞, we can select some
infinite part π∞ of a fixed automorphic representation π satisfying that it has a nontrivial
(g,K)-cohomology. In Lie theory, there is a computable invariant, called the relative

2See the notes for the previous talk. More precisely, this is the algebra of locally πK -invariant functions
with compact supports on G(Af ).
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Lie algebra cohomology that will be used in the formula (yet we choose to omit the
explanation).

Theorem 1.2 (Matsushima). Assume G is anisotropic modulo the center, i.e., G/Z(G) is
anisotropic. As a G(Af )-representation,

Hi ≃
󰁐

π∈Π(G)

πf ⊗Hi(g,K∞;π∞)m(π).

In short, the formula dictates two key-points as follows.

⋄ The only representations of G(Af ) that appear in Hi are the finite parts of auto-
morphic representations πf say.

⋄ We obtain an explicit way to calculate their multiplicities m(π). These multiplicities
are given by the product of multiplicities of π in L2

G.

Alternatively, there is a finite-level version for Theorem 1.2.

Theorem 1.3 (Finite-level Matsushima). As HK := Cc(K\G(Af )/K,C)-modules3,

Hi(MK) ≃
󰁐

π∈Π(G)

πK
f ⊗Hi(g,K∞;π∞)m(π)

where πK
f is the K-invariant factors in πf .

Note that the right hand side of Theorem 1.3 is the same as that of Theorem 1.2. But
we have to use another different cohomology theory for the left hand side.

2. Locally symmetric spaces as complex algebraic varieties

2.1. Story of modular curves on GL2. Set G = GL2. Note that GL2 is not anisotropic
group but as we have remarked above, there is a generalization of Matsushima’s formula to
GL2. Then for any fixed open compact K,

MK = moduli curve

= moduli space of elliptic curves plus some extra structures.

Then the MK is exactly the set of C-points of an algebraic variety defined over Q. (Whereas
MK is not necessarily an algebraic variety over C.) Hence the Betti cohomology

Hi(MK) GalQ

admits an absolute Galois action of GalQ := Gal(Q/Q). By fixing an isomorphism C ≃ Qℓ,

lim−→K
Hi

Betti(MK ,C) ≃ lim−→K
Hi

ét(MK,Q,Qℓ) .

G(Af )×Gal(Q/Q)

3Here we are working with a cocompact assumption. It turns out that we are safe to concentrate only
on the cocompact case due to Bill Casselman’s generalization for this to non-cocompact locally symmetric
spaces, under a condition that is going to be satisfied for Shimura varieties (which is basically the fact
that G(R) has a discrete series). Later, we will see examples that are not always cocompact, so everything
generalizes in the appropriate way.
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There is a G(Af )-action for the étale cohomology for the following reason. One can basically
descend all these MK ’s to algebraic varieties over Q. Then the actions of G(Af ) is given by
the Hecke correspondence4. Also, because the actions of G(Af ) are all defined over Q (or
locally, defined over Qp’s except for Q∞), they commute with the GalQ-actions.

If we have an automorphic representation π that comes from a modular form, then we
take a 2-dimensional Galois representation of GalQ (à la Deligne):

σ(π) := H1[πf ],

where [πf ] denotes the πf -isotypic component. Via the global Langlands correspondence, it
turns out to be the representation GL(π) that corresponds to π. If we restrict σ(π) to some
local Galois group Gal(Qp/Qp), the result would correspond to the component of π at the
place p (finite or infinite), very neatly via the local Langlands correspondence.

Upshot. From a geometric aspect, we summarize the known information for GL2.

⋄ By Matsushima’s formula, the automorphic representations appear in the Betti coho-
mology of adelic locally symmetric spaces MK ’s, and hence in the étale cohomologies
via the isomorphism given by the Galois action.

⋄ If the geometric stuff MK happens to be an algebraic variety over C, then we will see
no automorphic representations in the Betti cohomology but something looks like
the global Langlands correspondence (normalizing in an appropriate way) instead.

Keynote Questions. The condition goes very nice when G = GL2. Is there a more general
picture for other reductive groups? More precisely, we have two questions.

(a) When is Γ\X (or MK) an algebraic variety over C?
Spoiler: the answer will be “when MK is a Shimura variety”.

(b) When it is, can we descend it to Q or another number field?
There’s another subtlety in (b). A priori even if the algebraic variety is defined over
a number field, there could still be several ways to define it. Then a nice way for
definition is in need. In particular, as in the GL2 case, we would like the action of
G(Af ) to also descend to the number field.

2.2. Hermitian symmetric domains. This part is to answer Question (a) above. Recall
our statement: choose a maximal compact subgroup K∞ and define the symmetric space
X = G(R)/K∞. X is equipped with a Hermitian metric.

Definition 2.1. We say that X is a Hermitian symmetric domain (HSD) if X has a
complex structure and a Hermitian metric such that G(R) acts by holomorphic isometries.

Note that a Hermitian metric is just the analogue of a Riemannian metric. But now, the
tangent spaces of X are vector spaces so we have to give a scalar product on each of them
that varies holomorphically.

Example 2.2 (Siegel upper-half space). This can be view as a higher-dimensional Poincaré
upper-half plane. Let d 󰃍 1 be a positive integer. Take

h+d = {X ∈ Md(C) | Xt = X, Im(X) > 0}

4The Hecke correspondence automatically algebraizes if MK is a Shimura variety.
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to be the set of those d× d complex symmetric matrices whose imaginary part are positive
definite. It can be checked that h+1 = H, the upper-half plane. Also, there is a symplectic
action

h+d Sp2d(R), where Sp2d =

󰀫
g ∈ GL2d

󰀏󰀏󰀏󰀏󰀏 g
t

󰀣
0 Id

−Id 0

󰀤
g =

󰀣
0 Id

−Id 0

󰀤󰀬
.

Then Sp2d is a group scheme over Z. Usually we choose the anti-diagonal symplectic form
because it is easier to write the parabolic subgroups down. But we do not concern about
compactifications here (so it does not matter). One can check that Sp2 = SL2. The explicit
action is defined by

󰀣
A B

C D

󰀤
X = (AX +B)(CX +D)−1, A,B,C,D ∈ Md(C).

As an exercise, you are supposed to check the transitivity of this action.
Recall that in the d = 1 case, we take the fundamental domain to be StabSL2(R)(i). Here

the maximal compact subgroup can be chosen as

K∞ = StabSp2d(R)(iId) = O2d ∩ Sp2d(R).

Then as a real manifold,
h+d ≃ Sp2d(R)/K∞.

It has a complex structure and Sp2d(R) does act by holomorphic maps.

Bounded Realization. Up to the scalar by a positive number, every bounded domain in a
finite-dimensional C-vector space has a canonical Bergman metric. The problem now lies in
that h+d is an unbounded domain, and the bounded realization progress is intended to realize
it as a bounded domain in the same C-vector space.

We claim that there is a conformal (i.e., holomorphic and bijective) equivalence

h+d
∼−→ Dd := {X ∈ Md(C) | Xt = X, IdX

∗X > 0}

X 󰀁−→ (iId −X)(iId +X)−1.

Note that Dd (the higher-dimensional version of the unit disc) is again an open subset of
the finite-dimensional C-vector space of symmetric matrices. But this time it is bounded.
Indeed, when d = 1, we have D1 = D and the map is the conformal equivalence from H to
D.

2.3. Classification of Hermitian symmetric domains in terms of real groups.

Theorem 2.3. Suppose that G(R) is connected adjoint5. Then X is a Hermitian symmetric
domain if and only if there exists a morphism of Lie groups

u : U(1) → Gad(R)

satisfying the following conditions6.

5One can always reduce the situation to this case. On this assumption, G(R) is going to be the group of
diffeomorphisms of X.

6In some references, there seems to be a third condition saying that u(i) is not trivial on any factor of
G(R). But this can be implied by (a) and (b).
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(a) The only characters of U(1) that appear in the algebra LieG(C), whose actions are
given by Ad ◦ u, are 1, z, and z−1.

(b) Int(u(i)) is a Cartan involution of G(R). That is,

{g ∈ G(C) | g = u(i)gu(i)−1is compact}

Moreover, we can choose some u such that

K∞ = CentG(R)(u),

the centralizer of u in G(R). Hence one may always assume K∞ having this form. So

X = G(R)/K∞ = {G(R)-conjugacy classes of u}.

Example 2.4. Since Sp2d is not adjoint, we consider G = PSp2d, which shares the same
symmetric space as Sp2d does. Take

u : U(1) → PSp2d(R), a+ ib 󰀁→
󰀣
aId −bId
bId aId

󰀤
.

We point out that the condition in Theorem 2.3 is very strong for G(R). For example,
you can check that there is no Cartan involution for G = PGLn with n 󰃍 3.

Remark 2.5. The G(R) having such a u are all classified by the classification of real simple
Lie groups7. More precisely, the isomorphism classes of irreducible HSDs are classified by
the spacial nodes on connected Dynkin diagrams (see [Mil17]). For example,

• as for the factors of type A of G(R), we cannot have GLn in this situation but can
only have unitary groups PSU(p, q);

• there are no irreducible HSDs of type G2, F4, or E8.

2.4. The structure of algebraic variety on locally symmetric spaces. We then in-
troduce a big theorem of Baily and Borel (about the compactification) to finish the answer
to Question (a).

Theorem 2.6 (Baily–Borel, Borel). If X is a Hermitian symmetric domain, then for an
arbitrary arithmetic subgroup Γ of G(Q), there is, on Γ\X, a unique structure of quasi-
projective algebraic variety over C.

Some (historical and philosophical) explanations for this theorem.

• What Baily–Borel did is that they constructed an open embedding of Γ\X into
a projective algebraic variety called the Baily–Borel compactification or minimal
Satake compactification.

• The upshot of Borel’s exclusive proof is that if one has an algebraic variety Y over
C, then any holomorphic map Y → Γ\X is automatically an algebraic and rational
map. Borel did this by assuming Y is smooth but the resolution of singularities
works well.

• In particular, the structure is unique. This also implies that our Hecke correspon-
dence is algebraic.

7See Milne’s notes Introduction to Shimura varieties, page 20.
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Remark 2.7. In Theorem 2.6 of Baily and Borel, we take no condition for Γ. If Γ is torsion-
free, then Γ\X is smooth (by natural means). But if not, then Γ\X is an algebraic variety
with some pretty mild singularities. This is because one can always take a smaller torsion-
free subgroup Γ′ ⊂ Γ of finite index to get a smooth quasi-projective algebraic variety Γ′\X,
and then Γ\X is a quotient of Γ′\X by a finite group.

In the context of adelic version, for every open compact subgroup K of G(Af ), the MK

has a unique structure of complex algebraic variety and it is quasi-projective.

3. Siegel Modular Varieties

The upcoming task is to descend the algebraic variety over C to those over number fields.
So we concern about which ones admit the descent, and how shall we do for this. The
example of Siegle modular varieties would guide us to the answer (by [DMK94]).

Loosely speaking, Siegle modular varieties are the higher-dimensional generalizations of
modular curves. In the case of GL2, as the story goes, say what happens with modular
curves is the Siegel upper-half plane basically parametrizes elliptic curves obviously. We
are to do the similar thing for parametrizing abelian varieties (as higher-dimensional elliptic
curves).

The reference of the following discussions is [Mum08]. Fix an integer d 󰃍 2. Let A be an
abelian variety8 over C of dimension d. By abuse of notation for convenience, we identify A

with its C-points A(C). Then

Lie(A) ≃ Cd, A ≃ Lie(A)/Λ

for some lattice
Λ ≃ π1(A) ≃ H1(A,Z),

which is a free Z-module of rank 2d. The question is that not all quotients of Cd/Λ in the
form of complex tori are going to be algebraic as abelian varieties. In fact, a complex torus
is isomorphic to some abelian variety if and only if it is polarizable9. Consider

A∨ = Lie(A∨)/Λ∨,

where by definitions,

Lie(A∨) := {semilinear forms l on Lie(A)},
Λ∨ := {l ∈ Lie(A∨) | Im l(Λ) ⊂ Z}.

Proposition 3.1. We have the following bijection:

󰀋
polarizations λ : A → A∨󰀌

󰀫
positive definite Hermitian forms H

on Lie(A) such that ImH(Λ× Λ) ⊂ Z

󰀬
.

λ Hλ

λH : v 󰀁→ H(v, ·) H

8Recall that an abelian variety over C is a connected compact complex Lie group. Then the exponential
map exp : Lie(A) → A induces the universal cover.

9Equivalently, say there is a Riemann form on Cd/Λ. The Riemann form is some positive definite
Hermitian form satisfying some further conditions.
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It turns out that each polarization of A is in the form of λH for some H. The Weil pairing
is induced from this, say

A[n]×A[n] A[n]×A∨[n] µn(C)

(v, w) exp(−2πinH(v, w))

ψλH

id×λH

where A[n] := {P ∈ A | [n]P = O} denote the n-torsion points (and similarly for A∨[n]).

Proposition 3.2. At the level of sets, the upper-half space is in bijection with the set of
equivalence classes of the following triples:

h+d ←→ {(A,λ, ηZ)}/ ∼ .

Here

• A is an abelian variety over C of dimension d;
• λ : A

∼→ A∨ is a principal polarization (i.e., a polarization that is an isomorphism);
• ηZ : H1(A,Z) ∼→ Z2d is a symplectic isomorphism10 (called the level structure);
• two triples (A,λ, ηZ) ∼ (A′,λ′, η′Z) are equivalent if there is a quasi-isogeny α : A →
A′ between abelian varieties that are compatible with the polarization and the level
structure; that is, α satisfies η′Z = α∗ ◦ ηZ and λ′ = α∨ ◦ λ ◦ α.

Proof. It suffices to write down the map explicitly. For each τ ∈ h+d , we define its image by
the triple (Aτ ,λτ , ητ,Z). Here

• Aτ = Cd/(Zd + τZd) is the higher-dimensional complex torus;
• λτ = λHτ , where Hτ = (Im τ)−1 (recall that the imaginary part of τ is always a

positive definite matrix);
• ητ,Z : H1(A,Z) = Zd + τZd → Z2d such that for all 1 󰃑 i 󰃑 d,

ητ,Z : ei 󰀁→ ei, τei 󰀁→ ei + d.

It can be check that Aτ on this construction is truly an abelian variety because it obtains
a polarization λτ and is isomorphic to a complex torus. The trick for proof is to use, for
example, the Kodaira embedding theorem, to deduce that the polarization does define the
projective embedding of Aτ . □

To be continued in Lecture 2/3.
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