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1. Locally symmetric spaces and Shimura varieties

1.1. Locally symmetric spaces. Let G be a semisimple algebraic group over Q, for exam-
ple SLn, Sp2n, or SO(p, q). We would like to present some “nice enough” whose cohomology
is related to automorphic representations of G. A good reference for locally symmetric
spaces is the introductory paper [Ji06] by Ji.

To simplify the presentation, we will assume here that G(R) is connected. Let K∞ be a
maximal compact subgroup of G(R), and let X = G(R)/K∞. If Γ is a discrete subgroup of
G(R) such that Γ\G(R) (or equivalently Γ\X) is compact and Γ acts properly and freely on
X,1 then there is a classical connection between the cohomology of Γ\X and automorphic
representations of G(R), called Matsushima’s formula (see Matsushima’s paper [Mat67]).
We will state a modern reformulation in Section 3, but roughly it relates the Betti numbers
of Γ\X and the multiplicities of representations of G(R) in L2(Γ\G(R)).

In fact, Matsushima’s paper deals with semi-simple real Lie groups. Here, we have an
algebraic group defined over Q, so we have a particularly nice way to produce discrete sub-
groups of G(R). Remember that a subgroup Γ of G(Q) is called an arithmetic subgroup
if there exists a closed embedding G ⊂ GLN such that, setting G(Z) = G(Q)∩GLN (Z), we
have that Γ ∩ G(Z) is of finite index in Γ and in G(Z).2 If Γ is small enough, then it acts
properly and freely on X ([Ji06, Proposition 5.5]), so the quotient Γ\X is a real analytic
manifold. Also, the quotient Γ\G(R) is compact if and only if G is anisotropic (over Q),
which means that G has no nontrivial parabolic subgroup defined over Q ([Ji06, Theorem
5.10]). (A subgroup of G is parabolic if it contains a Borel subgroup B of G.) If Γ\X is not
compact but G(R) has a discrete series, then there is an extension of Matsushima’s formula,
due to Borel and Casselman in [BC83], that involves L2 cohomology of Γ\X; see Section 3.

We actually would like to see automorphic representations of G(A) (not just G(R)) in the
cohomology of our spaces, so we will use adelic versions of Γ\X. Let K be an open compact
subgroup of G(Af ); for example, if we have chosen an embedding G ⊂ GLN , then we could
take

K = G(Af ) ∩Ker(GLN (!Z) → GLN (Z/nZ)),

for some positive integer n (these are called principal congruence subgroups). Let

MK = G(Q)\X ×G(Af )/K,

where the group K acts by right translations on the factor G(Af ), and the group G(Q)

acts by left translations on both factors simultaneously. Choose a system of representatives
(xi)i∈I of the (finite) quotient G(Q)\G(Af )/K, and set

Γi = G(Q) ∩ xiKx−1
i

for every i ∈ I. Then the Γi are arithmetic subgroups of G(Q), and we have

MK =
"

i∈I

Γi\X,

1This holds for example if Γ is torsion free, which happens when Γ is small enough.
2We can check that this definition does not depend on the embedding G ⊂ GLN , see [Ji06, Proposition

4.2].
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so MK is a real analytic manifold if K is small enough. But now we have an action of G(Af )

on the projective system (MK)K⊂G(Af ), so we get an action on lim−→K
H∗(MK), where H∗

is any “reasonable” cohomology theory, for example Betti cohomology. If G is anisotropic
over Q, then Matsushima’s result can be reformulated to give a description of this action in
terms of irreducible representations of G(A) appearing in L2(G(Q)\G(A)), and there is also
a version of the Borel-Casselman generalization.

There is another way to think about the action of G(Af ) on (MK)K⊂G(Af ), which does
not involve a limit on K. Fix a Haar measure on G(Af ) such that open compact subgroups
of G(Af ) have rational volume (this is possible because these groups are all commensurable);
then every open subset of G(Af ) has rational volume. The Hecke algebra of G is the space
HG of locally constant functions with compact support from G(Af ) to Q; if f, g ∈ HG, then
the convolution product f ∗ g still has rational values by the choice of Haar measure, so
convolution defines a multiplication on HG. For every open compact subgroup K of G(Af ),
the Hecke algebra at level K is the subalgebra HG,K of bi-K-invariant functions in HG;
we have HG =

#
K HG,K .

Fix K small enough. Then H∗(MK) is basically the set of K-invariant vectors:

H∗(MK) = lim−→
K′⊂G(Af )

H∗(MK′)K ,

so it has an action of HG,K .3 We can describe this action using Hecke correspondences: let
g ∈ G(Af ), let K ′ be an open compact subgroup of G(Af ) such that K ′ ⊂ K ∩gKg−1, then
we have a Hecke correspondence

(T1, Tg) : MK′ MK ×MK

(x, h) ((x, h), (x, hg)),

and T1, Tg are both finite covering maps if K is small enough. Up to a scalar,4 the action
1KgK on H∗(MK) is given by pulling back cohomology classes along T1, then pushing them
forward along Tg.

We can also ask whether there is more structure on the spaces Γ\X (or MK). For
example, suppose that G = SL2 and K∞ = SO(2). Then, for Γ an arithmetic subgroup
of SL2(Z), the space Γ\X is a modular curve, so it is (the set of complex points of) an
algebraic variety defined over a function field F , and we can use the commuting actions of
Hecke correspondences and of the absolute Galois group of F on its étale cohomology to
construct some instance of the global Langlands correspondence for SL2 or GL2.

In order to generalize this picture, we first to know when the spaces Γ\X or MK are the
set of C-points of an algebraic variety, and whether this algebraic variety is defined over a
number field. As we will see later, another advantage over MK over Γ\X is that, when the
answer to the above question is “yes”, then the MK for K varying tend to all be defined over
the same field, while this is not the case for the Γ\X.

Remark 1.1. The first step is to check whether Γ\X has the structure of a complex manifold,
and there are obvious obstructions to that. For example, if G = SL3 and K∞ = SO(3),

3In fact, we can recover the action of G(Af ) on lim−→K′⊂G(Af )
H∗(MK′ ) from the action of HG,K on MK

for every K small enough.
4Make scalar precise.
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then Γ\X is 5-dimensional as a real manifold, so it cannot have the structure of a complex
manifold. In fact, there is no structure of complex manifold on Γ\X for G = GLd with
d ! 3, as we will now see.

Choose a G(R)-invariant Riemannian metric on X = G(R)/K∞ (such a metric is unique
up to rescaling on each irreducible factor). Then X is a symmetric space, that is, a
Riemannian manifold such that:

(a) The group of isometries of X acts transitively on X;
(b) For every p ∈ X, there exists a symmetry sp of X (i.e. an involutive isometry) such

that p is an isolated fixed point of sp.

Moreover, the symmetric space X is of noncompact type, that is, it has negative curvature.
For Γ a small enough arithmetic subgroup of G(Q), the Riemannian manifold Γ\X is a
locally symmetric space; in particular, it does not satisfy condition (a) anymore, and it
satisfies a variant of condition (b) where we only ask for the symmetry to be defined in a
neighborhood of the point. See Ji’s notes [Ji06] for a review of locally symmetric spaces.

We say that X is a Hermitian symmetric domain if it admits a G(R)-invariant
Hermitian metric. See Section 1 of Milne’s notes [Mil05] for a review of Hermitian symmetric
domains.

Example 1.2 (Siegel upper half space). Let d be a positive integer. The Siegel upper
half space h+d is the set of symmetric d × d complex matrices in Y ∈ Md(C) such Im(Y )

is positive definite; if d = 1, then this is just the usual upper half plane. Then the Siegel
upper half space h+d is a Hermitian symmetric domain. The proofs of the basic properties
of h+d can be found in Siegel’s paper [Sie43].

We first need to see h+d as a symmetric space. Let Sp2d be the symplectic group of the

symplectic form with matrix

$
0 Id

−Id 0

%
, where Id ∈ GLd(Z) is the identity matrix. For

every commutative ring R, we have

Sp2d(R) =

&
g ∈ GL2d(R)

'''''
tg

$
0 Id

−Id 0

%
g =

$
0 Id

−Id 0

%(
.

Note that Sp2 = SL2. We make Sp2g(R) act on h+d by the following formula:
$
A B

C D

%
· Y = (AY +B)(CY +D)−1,

$
A B

C D

%
∈ Sp2d(R),

where A,B,C,D are d × d matrices (see page 9 of [Sie43]). Then this action is transitive
(see page 9 of [Sie43]). Let K∞ be the stabilizer in Sp2d(R) of iId ∈ h+d . Then K∞ =

O(2d) ∩ Sp2d(R) (this is easy to check directly), so it is a maximal compact subgroup of
Sp2d(R),5 and we have

h+d ≃ Sp2d(R)/K∞

5In fact, we have an isomorphism (with X,Y ∈ GLd(R)):

U(d)
∼−→ K∞, X + iY %−→

!
X Y

−Y X

"
.
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as real analytic manifolds.
Also, the space h+d is an open subset of the complex vector space of symmetric matrices

in Md(C), so it has an obvious structure of complex manifold. It remains to construct
a Sp2d(R)-invariant Hermitian metric on h+d . Let Dd be the set of symmetric matrices
A ∈ Md(C) such that Id−A∗A is positive definite; this is a bounded domain in the complex
vector space of symmetric matrices in Md(C), hence is equipped with a canonical Hermitian
metric called the Bergman metric, which has negative curvature (see for example, [Mil05,
Theorem 1.3]); in particular, this metric is invariant by all holomorphic automorphisms of
Dd. Now note that we have an isomorphism

h+
d

∼−→ Dd, X )−→ (iId −X)(iId +X)−1

(whose inverse sends A ∈ Dd to i(Id − A)(Id + A)−1), see [Sie43, pp. 8-9]. We can give a
formula for the resulting Hermitian metric on h+

d : up to a positive scalar, it is given by

ds2 = Tr(Im(Y )−2dY Im(Y )−1dY )

(see formula (28) on page 17 of [Sie43]).
The isomorphism h+

d ≃ Dd is called a bounded realization of h+
d .

We can give a complete classification of Hermitian symmetric domains (cf. [Mil05, The-
orem 1.21]), in terms of real algebraic groups:

Theorem 1.3. Suppose that G(R) is connected and adjoint. The locally symmetric space X

is a Hermitian symmetric domain if and only if there exists a morphism of real Lie groups
u : U(1) → G(R) such that:

(a) The only characters of U(1) that appear in its representation Ad ◦ u on Lie(G(R))
are 1, z, and z−1;

(b) Conjugation by u(i) is a Cartan involution of G(R), which means that {g ∈ G(C) |
g = u(i)gu(i)−1} is compact;

(c) The projection of u(i) to a simple factor of G(R) is never equal to 1.

Moreover, we can choose u such that K∞ is the centralizer of u in G(R), which means that
X is isomorphic to set of conjugates of u by elements of G(R).

We explain the construction of the morphism u. Suppose that X is a Hermitian symmetric
domain, and let p ∈ X. For every z ∈ C with |z| = 1, multiplication by z on TpX preserves
the Hermitian metric and sectional curvatures, so there exists a unique isometry up(z)

of D fixing p and such that Tpup(z) is multiplication by z. The uniqueness implies that
up(z)up(z

′) = up(zz
′) if |z| = |z′| = 1, so we get a morphism of groups from U(1) to the

group of isometries of X, which is equal to G(R)0ad.

Example 1.4. (1) If G = Sp2d, let h : C× → G(R) be defined by

h(a+ ib) =

$
aId −bId
bId aId

%
.

Then we can take u : U(1) → PSp2d(R) given by u(z) = h(
√
z). Note that u does

not lift to a morphism from U(1) into G(R).
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(2) If G = PGLn with n ! 3, then the centralizer of a character u : U(1) → G(R) cannot
be a maximal compact subgroup of G(R) (exercise), so the locally symmetric space
of maximal compact subgroups of G(R) is not Hermitian.

Theorem 1.3 puts some pretty strong restrictions on the root systems of the simple factors
of G(R), see Theorem 1.25 of [Mil05] and the table following it. In particular, the type A

simple factors of G(R) must be of the form PSU(p, q), and G(R) can have no simple factor
of type E8, F4 or G2.

The natural next step would be to wonder for which Hermitian symmetric domains X

the quotients Γ\X are algebraic varieties, but in fact it turns out that the answer is “for all
of them”, as was proved by Baily and Borel [BB66].

Theorem 1.5 (Baily-Borel). Suppose that X = G(R)/K∞ is a Hermitian symmetric do-
main. Then, for any torsion free arithmetic subgroup Γ of G(Q), the quotient Γ\X has a
canonical structure of algebraic variety over C.

The very rough idea is that the sheaf of automorphic forms on Γ\X of sufficiently high
weight will define an embedding of Γ\X into a projective space.

Remember that we did not just want the locally symmetric spaces Γ\X to be algebraic
varieties, we also wanted them to be defined over a number field, and we would ideally like
the number field in question to only depend on G and K∞. For this, it will actually be
easier to work with reductive groups instead of semi-simple groups. As a motivation for
this, and for the definition of Shimura varieties, we now spend some more time on the case
of the symplectic group.

1.2. The Siegel modular variety. See the end of this subsection (1.3.5) for some back-
ground on abelian schemes.

1.3. The Siegel upper half space as a moduli space of abelian varieties over C.
We use the notation of Example 1.2. It is well-known that h+1 parametrizes elliptic curves
over C: an element τ ∈ h+1 is sent to the elliptic curve Eτ = C/(Z + Zτ), and Eτ ≃ Eτ ′

if and only if τ, τ ′ ∈ h+1 they are conjugated under the action of SL2(Z) = Sp2(Z); so we
can recover τ from Eτ and the data of a symplectic isomorphism H1(Eτ ,Z) ≃ Z2 where
Z2 is equipped with the standard symplectic form. We want to give a similar picture for
higher-dimensional abelian varieties; in fact, the analogy works best if we consider abelian
varieties with a principal polarization (Definition 1.29).

We first introduce some notation about symplectic spaces and recall the definition of the
(general) symplectic group as a group scheme over Z. If R is a commutative ring, we denote

by ψR the perfect symplectic pairing on R2d with matrix

$
0 Id

−Id 0

%
. So we have

ψR((x1, . . . , xd, y1, . . . , yd), (x
′
1, . . . , x

′
d, y

′
1, . . . , y

′
d)) =

d)

i=1

xiy
′
i −

g)

i=1

x′
iyi.

The general symplectic group GSp2d is the reductive group scheme over Z whose points
in a commutative ring R are given by

GSp2d(R) = {g ∈ GL2d(R) | ∃c(g) ∈ R×, ∀v, v′ ∈ R2d, ψR(gv, gv
′) = c(g)ψR(v, v

′)}.
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The scalar c(g) is called the multiplier of g ∈ GSp2d(R). Sending g to c(g) defines a
morphism of group schemes c : GSp2d → GL1, whose kernel Sp2d is called the symplectic
group.

Example 1.6. We have GSp2 = GL2 in which c = det, and Sp2 = SL2.

1.3.1. Complex abelian variety. Let A be complex abelian variety of dimension d; we identify
A and its set of complex points. Then A is a connected complex Lie group of dimension
d, so we have A ≃ Lie(A)/Λ, with Lie(A) ≃ Cd the universal cover of A and Λ = π1(A) =

H1(A,Z) ≃ Z2d a lattice in the underlying R-vector space. Let A∨ be the dual abelian
variety, i.e., the space of degree 0 line bundles on A (see Definition 1.27). We can identify
Lie(A∨) with the space of antilinear forms on Lie(A) and H1(A

∨,Z) with the subspace Λ∨ of
forms whose imaginary part takes integer values on Λ (see [Mum08, §9]). For every positive
integer n, we have

A[n] =
1

n
Λ/Λ, A∨[n] =

1

n
Λ∨/Λ∨,

and the canonical pairing A[n]×A∨[n] → µn(C) is given by

(v, u) )→ e−2iπn Im(u(v))

(see [Mum08, §24]). We then have a bijection between the set of polarizations on A and the
set of positive definite Hermitian forms6 H on C2d such that the symplectic form Im(H)

takes integer values on Λ; given such a form H, the corresponding isogeny λH from A to A∨

is given on C-points by:

λH : Lie(A)/Λ Lie(A∨)/Λ∨

w (v )→ H(v, w)).

It follows that the Weil pairing (see Remark 1.30(2)) corresponding to λH is the map

A[n]×A[n] µn(C)
(v, w) e−2iπn Im(H(v,w)).

Note that we have v, w ∈ 1
nΛ, so Im(H(v, w)) ∈ 1

n2Z.
In particular, the polarization λH is principal if and only if Λ is self-dual with respect to

the symplectic form Im(H), that is,

Λ = {w ∈ Lie(A) | ∀v ∈ Λ, Im(H(v, w)) ∈ Z}.

In that case, the symplectic Z-module (Λ, Im(H)) is isomorphic to Z2d with the form ψZ.
Let *Md be the set of isomorphism classes of triples (A,λ, ηZ), where A is a complex

abelian variety of dimension d, λ is a principal polarization on A, and ηZ is an morphism
of symplectic spaces from H1(A,Z) to (Z2d,ψZ). We have an action of Sp2d(Z) on *Md: if
c = (A,λ, ηZ) ∈ *Md and x ∈ Sp2g(Z), set x · c = (A,λ, x ◦ ηZ).

If (A,λ, ηZ) ∈ *Md, then Λ = H1(A,Z) is a lattice in the real vector space Lie(A), we
have A = Lie(A)/Λ and we can recover the Hermitian form Hλ corresponding to λ from
Im(Hλ)|Λ, which is sent to the form ψZ on Z2d by the isomorphism ηZ : Λ

∼−→ Z2d. If we
see R2d as a complex vector space via the isomorphisms (of real vector spaces)

Lie(A) Λ⊗Z R R2d,∼ ∼

6We take Hermitian forms to be semi-linear in the first variable and linear in the second variable.
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then the Hermitian form on R2d corresponding to Hλ is

(v, w) )−→ ψR(iv, w) + iψR(v, w).

So ηZ determines all the data of the isomorphism class of (A,λ, ηZ), except for the struc-
ture of complex vector space on R2d. This structure of complex vector space is equivalent
to the data of an R-linear endomorphism J of R2d such that J2 = −1 (the endomorphism
J corresponds to multiplication by i). We also need the R-bilinear map R2d × R2d → C
defined by (v, w) )−→ ψR(J(v), w) + iψR(v, w) to be a positive definite Hermitian form on
R2d. This is equivalent to the following conditions:

(a) ψR(J(v), J(w)) = ψR(v, w) for all v, w ∈ R2d;
(b) the R-bilinear form (v, w) )→ ψR(J(v), w) on R2d (which is symmetric by (a)) is

positive definite.

Conversely, if we have a complex structure J on R2d satisfying (a) and (b), then we get
a positive definite Hermitian form H on R2d whose imaginary part takes integer values on
the lattice Z2d, so the complex torus R2d/Z2d has a polarization, hence is an abelian variety
(for example by the Kodaira embedding theorem), and we gat an element of *Md.

So we get a bijection from *Md to the set X ′ of endomorphisms J of R2d such that J2 = −1

and that J satisfies condition (a) and (b).
Now observe that, if W is a R-vector space, then the data of an endomorphism J of W

such that J2 = −1 (i.e. of the structure of a C-vector space on W ) is equivalent to the data
of a C-linear endomorphism JC of W ⊗R C such that

Ker(JC − i · id) = Ker(JC + i · id),

where v )→ v is the involution of W ⊗C C induced by complex conjugation on C. This is
equivalent to giving a C-vector subspace E of W ⊗R C such that W ⊗R C = E ⊕ E, i.e., a
d-dimensional complex subspace E of W ⊗R C such that E ∩ E = {0}.7

We apply this to W = R2d. Let J be a complex structure on R2d, and let E be the
corresponding C-vector subspace of C2d. Then condition (a) on J is equivalent to the fact
that:

(a’) ψC(v, w) = 0 for all v, w ∈ E,

(i.e., to the fact that E is a Lagrangian subspace8 of C2d), and condition (b) on J is equivalent
to the fact that

(b’) −iψC(v, v) ∈ R>0 for all v ∈ E\{0}.
Note that these two conditions on a C-vector subspace E of C2d imply that E ∩ E = {0}.
So we get a bijection from X ′ to the set of Lagrangian subspaces E of VC satisfying (b’).

7In fancy terms, we are saying that putting a structure of complex vector space on W is the same as
putting a pure Hodge structure of type {(−1, 0), (0,−1)} on it (or of type {(1, 0), (0, 1)}, depending on your
normalization). When W = R2d and the complex structure comes from an element (A,λ, ηZ) of #Md, then
this Hodge structure is the one induced by the isomorphism

H1(A,R) ηZ⊗R−→ Z2d ⊗Z R ∼−→ R2d.

8By definition, a maximal isotropic subspace.
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If we represent Lagrangian subspaces of C2d by their bases, sees as complex matrices of
size d× 2d, then the action of Sp2d(R) is just left multiplication. For example, the subspace

E0 corresponding to Jd ∈ X ′ is the one with basis

$
iId
Id

%
.

More generally, if Y ∈ h+d , the subspace of C2d with basis

$
Y

Id

%
is a Lagrangian subspace

satisfying condition (b’), and every such Lagrangian subspace is of that form. So we get
bijections

*Md ≃ X ′ ≃ h+d ,

and we can check that the second bijection is Sp2d(R)-equivariant. Unraveling the defi-
nitions, we see that Y ∈ h+d corresponds to the element (AY ,λY , ηZ,Y ) of *Md such that
AY = Cd/(Zd + Y Zd), λY is the principal polarization given by the Hermitian form with
matrix Im(Y )−1 on Cd, and ηZ,Y : Zd + Y Zd ∼−→ Z2d is the isomorphism sending a ∈ Zd to
(a, 0) ∈ Zd × Zd = Z2d and Y a ∈ Y Zd to (0, a) ∈ Zd × Zd = Z2d.

Now we want an interpretation of the quotients Γ\h+d , for Γ an arithmetic subgroup of
Sp2d(Q). We will do this for the groups Γ(n) = Ker(Sp2d(Z) → Sp2d(Z/nZ)), where n is a
positive integer (and Γ(n) is called the principal congruence subgroup at level n). Note
that any arithmetic group contains Γ(n) for n divisible enough.

We will need the notion of a level structure; we give the general definition here.

Definition 1.7. Let S be a scheme, (A,λ) be a principally polarized abelian scheme of
relative dimension d over S, and n be a positive integer. Than a level n structure on
(A,λ) is a couple (η,ϕ), where

η : A[n]
∼−→ Z/nZ2g

S
, ϕ : Z/nZ

S

∼−→ µn,S

are isomorphisms of group schemes such that ϕ ◦ψZ/nZ ◦ η is the Weil pairing associated to
λ on A[n].

Remark 1.8. A level n structure on (A,λ) can only exist if n is invertible on S and µn,S is
a constant group scheme.

Note that isomorphisms ϕ : Z/nZ
S

∼−→ µn,S correspond to sections ζ ∈ µn(S) generating
µn,S (i.e. to primitive nth roots of 1 over S), by sending ϕ to ζ = ϕ(1). So we will also see
level structures as couples (η, ζ), with ζ ∈ µn(S) primitive.

Let ζn = e−2iπ/n ∈ µn(C). If Y ∈ h+d , then 1
nηZ,Y defines an isomorphism of groups

ηY : AY [n]
∼−→ (Z/nZ)2d, and it follows from formula

A[n]×A[n] → µn(C), (v, w) )→ e−2iπn Im(H(v,w))

that (η, ζn) is a level n structure on (AY , ηY ).
Using the fact that Sp2d(Z) → Sp2d(Z/nZ) is surjective for every n ∈ N, which follows

from strong approximation for Sp2d,
9 we finally get:

Proposition 1.9. Let n be a positive integer. The map Y )→ (AY ,λY , ηY ) induces a
bijection from Γ(n)\h+d to the set of isomorphism classes of triples (A,λ, η), where (A,λ) is

9See [Pla69] and [Pla70].
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a principally polarized complex abelian variety of dimension d and η : A[n]
∼−→ (Z/nZ)2d is

an isomorphism of groups such that (η, ζn) is a level n structure on (A,λ).

Now there is an obvious way to make Γ(n)\h+d into an algebraic variety.

1.3.2. The connected Siegel modular variety. Let On = Z[1/n][T ]/(Tn−1). If S is a scheme
over On, we denote by ϕ0 : Z/nZ

S

∼−→ µn,S the isomorphism sending 1 to the class of T .

Definition 1.10. Let M′
d,n be the functor from the category of On-schemes to the category

of sets sending S to the set of isomorphisms classes of triples (A,λ, η), where (A, η) is a
principally polarized abelian scheme of relative dimension d over S and η : A[n]

∼−→ Z/nZ2g

S

is an isomorphism of group schemes such that (η,ϕ0) is a level n structure on (A,λ).
An isomorphism from (A,λ, η) to (A′,λ′, η′) is an isomorphism of abelian varieties u :

A
∼−→ A′ such that λ′ ◦ u = u∨ ◦ λ and η′ = η ◦ (u, u).

Theorem 1.11 (Mumford, cf. [FC90]). Suppose that n ! 3. Then the functor M′
d,n is

representable by a smooth quasi-projective On-scheme purely of dimension d(d + 1)/2 and
with connected geometric fibers, which we still denote by M′

d,n and call the connected
Siegel modular variety of level n.

Remark 1.12. If n ∈ {1, 2}, then triples (A,λ, η) as in Definition 1.10 may have automor-
phisms, so we should see M′

d,n as a stack. This stack will then be representable by a smooth
Deligne-Mumford stack over On that is a finite étale quotient of the scheme M′

d,3n.

We can now reformulate Proposition 1.9 in the following way.

Proposition 1.13. Let n ! 3 be an integer. Then the map Y )→ (AY ,λY , ηY ) induces an
isomorphism of complex manifolds from Γ(n)\h+d to M′

d,n(C).

The fact that this is an isomorphism of complex manifolds is clear on the explicit formula
for the bijection Γ(n)\h+d → M′

d,n(C).
In particular, we showed that Γ(n)\h+d is the set of complex points of an algebraic variety

defined over the number field Q(ζn). Unfortunately, this number field depends on the level
n. The issue is that we need a fixed primitive nth root of 1 in order to define the moduli
problem M′

d,n, so we need to be over a basis where such a primitive nth root exists. To fix
this problem, we will allow the primitive nth root of 1 to vary.

1.3.3. The Siegel modular variety.

Definition 1.14. Let n be a positive integer. The Siegel modular variety Md,n is the
functor from the category of Z/nZ-schemes to the category of sets sending a scheme S to
the set of isomorphism classes of triples (A,λ, η,ϕ), where (A,λ) is a principally polarized
abelian scheme of relative dimension d over S and (η,ϕ) is a level n structure on (A,λ).

An isomorphism from (A,λ, η) to (A′,λ′, η′) is an isomorphism of abelian varieties u :

A
∼−→ A′ such that λ′ ◦ u = u∨ ◦ λ and η′ = η ◦ (u, u).

The group GSp2d(
!Z) acts on Md,n: if g ∈ GSp2d(

!Z) and (A,λ, η,ϕ) ∈ Md,n(S), then

g · (A,λ, η,ϕ) = (A,λ, g ◦ η, c(g)−1ϕ).
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The kernel of this action is the group

K(n) = Ker(GSp2d(
!Z) → GSp2d(Z/nZ)).

If n divides m, then we have a morphism Md,m → Md,n that forgets part of the level m
structure; this morphism is (representable) finite étale, and in fact it is a torsor under the
finite group K(n)/K(m).

We have the following variant of Theorem 1.11.

Theorem 1.15 (Mumford, cf. [FC90]). Suppose that n ! 3. Then the functor Md,n is
representable by a smooth quasi-projective On-scheme purely of dimension d(d+1)/2, which
we will denote by Md,n and call the Siegel modular variety of level n.

Remark 1.16. Let K(n) = Ker(GSp2d(
!Z) → GSp2d(Z/nZ)). Then Md,n is the Shimura vari-

ety for GSp2d with level K(n), or rather its integral model. If K is an open compact subgroup
of GSp2d(Af ) that is small enough,10 then we can also define the Shimura variety Md,K,Q

with level K: choose n such that K(n) ⊂ K. Then K(n) is a normal subgroup of K, so the
group K/K(n) ⊂ GSp2d(Z/nZ) acts on Md,K,Q, and we set Md,K,Q = Md,n,Q/(K/K(n)).
It is easy to check that this does not depend on the choice of n.

In fact, for K an open compact subgroup of GSp2d(Af ), we have a direct definition of a
level K structure on a principally polarized abelian scheme (see Section 5 of [Kot92b]). For
K small enough, the scheme Md,K,Q is the moduli space of a principally polarized abelian
schemes with level K structure. In general, this moduli space is representable by a Deligne-
Mumford stack. We can also define this moduli schemes over a localization of Z, but the
primes that we invert depend on K; see the discussion in Subsubsection 2.1.4.

Let us explain the relationship between Md,n and M′
d,n. We define a map

s : (Z/nZ)× −→ GSp2d(Z/nZ), s(α) =

$
0 αId
Id 0

%
;

note that s is a section of the multiplier c : GSp2d(Z/nZ) → (Z/nZ)×, and that it is not a
morphism of groups.

Proposition 1.17. The morphism

M′
d,n × (Z/nZ)× Md,n,On

((A,λ, η),α) (A,λ, s(α) ◦ η,ϕ0 ◦ α),
where we see α as an automorphism of Z/nZ

S
for any scheme S, is an isomorphism.

As a corollary, we get a description of the complex points of Md,n. Let hd = h+d ∪ (−h+d )

be the set of symmetric matrices Y ∈ Md(C) such that Im(Y ) is positive definite or negative
definite. The action of Sp2d(R) on hd extends to a transitive action of GSp2d(R), given by the
same formula. The stabilizer of iId ∈ hd in GSp2d(R) is R>0K∞, so hd ≃ GSp2d(R)/R>0K∞

as real analytic manifolds.

Corollary 1.18. We have an isomorphism of complex manifolds

Md,n(C) ≃ GSp2d(Q)\(hd ×GSp2d(Af )/K(n))

10For example, K ⊂ K(n) with n ! 3.
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extending the isomorphism of Proposition 1.9, where K(n) = Ker(GSp2d(
!Z) → GSp2d(Z/nZ))

and GSp2d(Q) acts diagonally on hd ×GSp2d(Af ).

This follows from the fact that

GSp2d(Q)\(hd ×GSp2d(Af )/K(n)) ≃ GSp2d(Q)+\(h+d ×GSp2d(Af )/K(n)),

where GSp2d(Q)+ = {g ∈ GSp2d(Q) | c(g) > 0}, and from strong approximation for Sp2d,
11

which implies that c induces a bijection

GSp2d(Q)+\GSp2d(Af )/K(n)
∼−→ Q>0\A×

f /c(K(n)) ≃ !Z×(1 + n!Z) ≃ (Z/nZ)×.

For every i ∈ (Z/nZ)×, we choose xi ∈ GSp2d(Af ) lifting i and we set

Γ(n)i = GSp2d(Q)+ ∩ xiK(n)x−1
i = Sp2d(Q) ∩ xiK(n)x−1

i .

Then the Γ(n)i are arithmetic subgroups of Sp2d(Q), and we have

GSp2d(Q)\(hd ×GSp2d(Af )/K(n)) ≃
"

i∈(Z/nZ)×
Γ(n)i\h+d

as complex manifolds.

In fact, for i ∈ (Z/nZ)×, we are supposed to take xi =

$
0 aiId
Id 0

%
with ai ∈ !Z× lifting

i. In particular, we have xi ∈ GSp2d(
!Z); as K(n) is a normal subgroup of GSp2d(

!Z), we get
xiK(n)x−1

i = K(n), hence Γ(n)i = Γ(n), and finally

GSp2d(Q)\(hd ×GSp2d(Af )/K(n)) ≃
"

i∈(Z/nZ)×
Γ(n)i\h+d .

Remark 1.19. If K is a small enough open compact subgroup of GSp2d(Af ), then we get an
isomorphism of complex manifolds:

Md,K(C) ≃ GSp2d(Q)\(hd ×GSp2d(Af )/K).

1.3.4. Heche correspondence. We can also descend the Hecke correspondences before to mor-
phisms of schemes over Z[1/n].

We proceed as in Section 3 of [Lau05]. Let g ∈ GSp2d(Af ), and let K,K ′ be small enough
open compact subgroups of GSp2d(Af ) such that K ′ ⊂ K∩gKg−1. We want to define finite
étale morphisms T1, Tg : Md,K′ → Md,K , and the Hecke correspondence associated to
(g,K,K ′) is the couple (T1, Tg).

Choose n ! 3 such that K(n) ⊂ K ′; then Md,K′ = Md,n/(K
′/K(n)) and Md,K =

Md,n/(K/K(n)). The morphism T1 just forgets part of the level structure: as K ′/K(n) →
K/K(n), we have an obvious morphism T1 : Md,K′ → Md,K .

To define Tg, we first consider the following special case: if g ∈ GL2d(!Z) ∩ GSp2d(Af ),
let x = (A,λ, η,ϕ) ∈ Md,n(S). Let u be the endomorphism of Z/nZ2d with matrix g. Then
Tg sends the class of x in Md,K′(S) to the class of (A′,λ′, η′,ϕ) ∈ Md,n(S), where A′ is
the quotient of A by the finite flat subgroup scheme η−1(Keru) of A[n] and λ′, η′ are the
morphisms deduced from λ, g ◦ η.

Note that, if g = aI2d with a ∈ !Z ∩ A×
f and K ′ = K, then the morphisms Tg : Md,K →

Md,K is an isomorphism.

11See [Pla69] and [Pla70].
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Finally, for a general g ∈ GSp2d(Af ), we write g = a−1g0 with a ∈ (!Z ∩ A×
f )I2d and

g0 ∈ GL2d(!Z) ∩GSp2d(Af ), and we set Tg = Tg0 ◦ T−1
a .

Remark 1.20. If we use instead the general definition of a level K structure from Section 5
of [Kot92b], then it becomes much easier to define the Hecke correspondences; see Section
6 ibid..

Remark 1.21. We have two ways to think of Md,n(C): as an adelic double quotient or
as finite disjoint union of spaces Γ(n)\h+d , which are locally symmetric spaces associated
to the semi-simple group Sp2d. The first description is more convenient to see the action
of adelic Hecke operators, and the second description is a bit more concrete and has sim-
pler combinatorics. Note also that the complex manifold Γ(n)\h+d is isomorphic to the set
of C-points of the algebraic variety M′

d,n, but this algebraic variety is defined over the
field Q[T ]/(Tn − 1), which depends on n. On the other hand, the adelic double quotient
GSp2d(Q)\(hd×GSp2d(Af )/K(n) is isomorphic to the set of C-points of the algebraic variety
Md,n, which is defined over Q. So if we want to consider Shimura varieties as a projective
system of algebraic varieties over a number field, then it makes sense to use the adelic double
quotients, because they are all defined on the same field.

1.3.5. Background on abelian schemes. Let S be a scheme. We denote by Sch/S the category
of S-schemes.

Definition 1.22. (1) An abelian scheme over S is an S-group scheme A → S which
is smooth and proper with geometrically connected fibers. If S is the spectrum of a
field k, an abelian scheme over S is also called an abelian variety over k.

(2) A morphism of abelian schemes over S is a morphism of S-group schemes
between abelian schemes over S.

Proposition 1.23. Let A be an abelian scheme over S. Then

(1) The S-group scheme A → S is commutative;
(2) The morphism A → S has connected fibers.

Definition 1.24. Let A be an abelian scheme over S, and let e : S → A be its zero section.
We consider the following two functors from (Sch/S)op to the category of sets:

(a) The functor PicA/S,e sending an S-scheme T → S to the set of isomorphism classes
of couples (L,ϕ), where L is an invertible sheaf on A×ST , eT = e×ST : T → A×ST ,
and ϕ : OT

∼−→ e∗TL is an isomorphism. An isomorphism from (L,ϕ) to (L′,ϕ′) is
an isomorphism of OT -modules α : L ∼−→ L′ such that (e∗Tα) ◦ ϕ = ϕ′;

(b) The subfunctor Pic0A/S,e of PicA/S,e sending sending an S-scheme T → S to the set
of isomorphism classes of couples (L,ϕ) as in (a) such that, for every point t of T ,
every smooth projective curve C over the residue field κ(t) of t, and every morphism
of κ(t)-schemes f : C → A×S t, the line bundle f∗(L|A×St) is of degree 0 on C.

Remark 1.25. (1) The functor PicA/S,e can be made into a functor into the category
of abelian groups: if T is an S-scheme and (L,ϕ), (L′,ϕ′) represent elements of
PicA/S,e(T ), their product is represented by (L⊗OT

L′,ϕ⊗ϕ′), where ϕ⊗ϕ′ is the
isomorphism
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OT = OT ⊗OT
OT (e∗TL)⊗OT

(e∗TL′) = e∗T (L⊗OT
L′).∼

ϕ⊗ϕ′

Moreover, for every S-scheme T , the set Pic0A/S,e(T ) is a subgroup of PicA/S,e(T ).
(2) If X → S is a scheme over S, then the relative Picard functor on Sch/S is the

fppf sheafification of the functor T )→ Pic(X ×S T ) (where, for Y a scheme, we
denote by Pic(Y ) the set of isomorphism classes of line bundles on Y , that is an
abelian group for the tensor product); see [Aut, Situation 0D25]. We can also define
a subfunctor Pic0X/S of PicX/S as in Definition 1.24. By [Aut, Lemma 0D28], if A
is an abelian scheme over S, then there is an isomorphism of functors in abelian
groups PicA/S

∼−→ PicA/S,e, inducing an isomorphism Pic0A/S
∼−→ Pic0A/S,e.

(3) We can upgrade A )→ PicA/S,e and A )→ Pic0A/S,e to contravariant functors in A:
if f : A → B is a morphism of abelian schemes over S, then it induces a natural
transformation f∗ : PicB/S,e → PicA/S,e sending (L,ϕ) to (f∗(L), f∗(ϕ)), and f∗

sends Pic0B/S,e to Pic0A/S,e.

Theorem 1.26. Let A be an abelian scheme over S. Then Pic0A/S,e is representable by an
abelian scheme over S.

Proof. We know that Pic0A/S,e is representable by an algebraic space by a result of M.
Artin (see [Art69] or [Aut, Lemma 0D2C]). We can check on the moduli problem that this
algebraic space is proper and smooth, and its fibers over points of S are abelian varieties
by the classical theory of the dual abelian variety (see sections II.8 and III.13 of Mumford’s
book [Mum08]). It remains to prove that the algebraic space representing Pic0A/S,e is a
scheme; this is due to Raynaud, and a proof is given in [FC90, Theorem 1.9]. □

Definition 1.27. Let A be an abelian scheme over S. The abelian scheme over S repre-
senting Pic0A/S,e is called the dual abelian scheme of A and denoted by A∨. In particular,
we get a couple (PA,ϕA) representing the element of Pic0A/S,e(A

∨) corresponding to idA∨ ,
with PA a line bundle on A×S A∨, called the Poincaré line bundle.

If f : A → B is a morphism of abelian schemes over S, we denote by f∨ : B∨ → A∨ the
morphism corresponding to the natural transformation f∗ : Pic0B/S,e → Pic0A/S,e of Remark
1.25.

Remark 1.28. Let e : S → A∨ be the unit section. Then the pullback of PA by A ×S

e : A = A ×S A → A ×S A∨ is the line bundle on A corresponding to the element e of
A∨(S) = Pic0A/S,e(S); in other words, it is isomorphic to the trivial line bundle OA. So PA

defines an element of Pic0A/S,e(A), that is, a morphism of S-schemes A → A∨∨, called the
biduality morphism. The biduality theorem says that the biduality morphism is an
isomorphism. For S the spectrum of a field, this is proved in Section III.13 of [Mum08], and
the general case reduces to this by looking at the fibers of points of S.

Let A be an abelian scheme over S and let L be a line bundle on A. We denote by
µ, p1, p2, ε : A×S A → A the addition morphism, the first projection, the second projection
and the zero morphism respectively. Then the line bundle (µ∗L)⊗ (p∗1L⊗−1)⊗ (p∗2L⊗−1)⊗
(ε∗L) on A×SA is trivial when restricted to S×SA via the zero section of A, hence it defines
an element of Pic0A/S,e(A), corresponding to a morphism of S-schemes λ(L) : A → A∨.
Moreover, the theorem of the cube (see for example Section III.10 of [Mum08]).

https://stacks.math.columbia.edu/tag/0D25
https://stacks.math.columbia.edu/tag/0D28
https://stacks.math.columbia.edu/tag/0D2C
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Definition 1.29. Let A be an abelian scheme over S. A polarization on A is a morphism
of abelian schemes λ : A → A∨ such that, for every algebraically closed field k and every
morphism Spec k → S, the morphism λ ×S Spec k : A ×S Spec k → A∨ ×S Spec k = (A ×S

Spec k)∨ is of the form λ(L), for L an ample line bundle on A ×S Spec k. We say that a
polarization is principal if it is an isomorphism.

A principally polarized abelian scheme over S is a pair (A,λ), where A is an abelian
scheme over S and λ is a principal polarization on A.

Remark 1.30. (1) A polarization on A is always an isogeny, i.e. finite and faithfully flat.
(2) Let λ be a polarization on A, and let n be a positive integer. Then, composing

λ : A[n] → A∨[n] with the canonical pairing A[n]× A∨[n] → µn,S , we get a pairing
A[n]×A[n] → µn,S , called the Weil pairing associated to λ. If λ is principal, this
is a perfect pairing.

1.4. Shimura varieties over C. Remember the upshot of Subsection 1.2: if we want
algebraic varieties that are all defined over the same number field, and Hecke correspondences
that are also defined on this number field, it is better to work with adelic double quotient for
a reductive group such as GSp2d rather than with locally symmetric spaces for a semi-simple
group such as Sp2d. This (and Theorem 1.3) motivates the definition of Shimura data, due
to Deligne in [Del71].

1.4.1. The Serre torus. Let S be C× seen as an algebraic group over R; this is called the
Serre torus. In other words, the group S is the Weil restriction of scalars from C to R
of GL1, so that S(R) = (R ⊗R C)× for every R-algebra R. We denote by w the injective
morphism GL1,R → S corresponding to the inclusion R× ⊂ C×.

We have S(C) = (C⊗R C)× ∼−→ C× ×C×, where the isomorphism sends a⊗ 1 + b⊗ i to
(a+ ib, a− ib). So the abelian group Hom(SC,GL1,C) of characters of S is free of rank 2 and
generated by the characters z and z corresponding to the two projections of C× × C× on
C×. We denote by r : GL1,C → SC the injective morphism corresponding to the injection of
the first factor in C× × C×.

If V is a real vector space and ρ : S → GL(V ) is a morphism of algebraic groups (i.e. a
representation of S on V ), then we have VC := V ⊗R C =

+
p,q∈Z V

p,q, where V p,q is the
subspace of VC on which SC acts by the character z−pz−q; moreover, as ρ is defined over
R, we have V p,q = V q,p for all p, q ∈ Z. Let m ∈ Z. We say that ρ is of weight m if
ρ ◦ r : GL1 → GL(V ) is equal to x )→ xmidV .

Remark 1.31. If ρ : S → GL(V ) is of weight m, we have V p,q = 0 unless p + q = m, so
the decomposition VC =

+
p,q V

p,q is a pure Hodge structure of weight m on V . In fact,
representations of weight m of S on V are in bijection with pure Hodge structures of weight
m on V .

1.4.2. Shimura data.

Definition 1.32. A Shimura datum is a couple (G, h), where G is a connected reductive
algebraic group over Q and h : S → GR is a morphism of real algebraic groups such that:

(a) The image of h ◦ w : GL1,R → GR is central;
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(b) If g = Lie(GR) and gC =
+

p,q∈Z g
p,q is the decomposition induced by the representa-

tion Ad◦h : S → GL(g), then we have gp,q = 0 unless (p, q) ∈ {(−1, 1), (0, 0), (1,−1)};
(c) Conjugation by h(i) induces a Cartan involution of Gder(R) (see Theorem 1.3);
(d) Gder has no normal subgroup (defined over Q) whose group of R-points is compact.12

Let (G, h) be a Shimura datum. We denote by K∞ the centralizer of h in G(R) and by X

the set of G(R)-conjugates of h. Then K∞ contains the center of G(R), and K∞ ∩Gder(R)0

is equal to the centralizer of h0(i) in Gder(R)0, hence is a maximal compact subgroup of
Gder(R)0 by condition (c). We have X ≃ G(R)/K∞, and Theorem 1.3 implies that there
is a G(R)-invariant complex structure on X such that the connected components of X are
Hermitian symmetric domains.

Example 1.33. Take G = GSp2d. Up to conjugation, there exists a unique morphism
h : S → GSp2d satisfying conditions (a)–(c) of Definition 1.32 and such that h ◦ w = xI2d
for every x ∈ R×. An element of that class is given by

h(a+ ib) =

$
aId −bId
bId aId

%
.

For this h, we have K∞ = GSp2d(R)∩GO(2d), and we can check that the map GU(d) → K∞

sending X + iY ∈ GU(d) (with X,Y ∈ Md(R)) to

$
X Y

−Y X

%
is an isomorphism of Lie

groups. So K∞ = R>0K
′
∞, where K∞ = Sp2d(R) ∩O(d) is the maximal compact subgroup

of Sp2d(R) that was called K∞ in Subsections 1.1 and 1.2. This implies that X ≃ hd.
The couple (GSp2d, h) is called a Siegel Shimura datum.

Let K be an open compact subgroup of G(Af ). We set

MK(G, h)(C) = G(Q)\X ×G(Af )/K,

where the group K acts by right translations on the factor G(Af ), and the group G(Q) acts
by left translations on both factors simultaneously. This is the Shimura variety at level
K associated to the Shimura datum K.

As in Subsection 1.1, if (xi)i∈I is a system of representatives of the (finite) quotient
G(Q)\G(Af )/K, and if Γi = G(Q) ∩ xiKx−1

i for every i ∈ I, then the Γi are arithmetic
subgroups of G(Q), and we have

MK(G, h)(C) =
"

i∈I

Γi\X.

Hence it follows from Theorem 1.5 that MK(G, h)(C) is (the set of complex points of) a
quasi-projective algebraic variety over C, smooth if K is small enough.

Again as in Subsection 1.1, we have Hecke correspondences between the MK(G, h)(C),
which are finite maps, hence morphisms of algebraic varieties. This defines an action of
G(Af ) on the projective system (MK(G, h)(C))K⊂G(Af ), or on its limit

M(G, h)(C) = lim←−MK(G, h)(C) = G(Q)\X ×G(Af ),

and we have MK(G, h)(C) = M(G, h)(C)/K for every open compact subgroup K of G(Af ).

12Note that Gder(R) could still have compact normal algebraic subgroups, as long as they are not defined
over Q.
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1.4.3. Morphisms of Shimura varieties. Let (G1, h1) and (G2, h2) be Shimura data, and let
u : G1 → G2 be a morphism of algebraic groups such that u ◦ h1 and h2 are conjugated
under G2(R); we say that u is a morphism of Shimura data. Then u induces a morphism
of complex manifolds X1 → X2, so, for all K1 ⊂ G1(Af ), K2 ⊂ G2(Af ) open compact
subgroups such that u(K1) ⊂ K2, we get a morphism of quasi-projective varieties u(K1,K2) :

MK1(G1, h1)(C) → MK2(G2, h2)(C). We can also think of this as a morphism of C-schemes
u : M(G1, h1)(C) → M(G2, h2)(C).

Proposition 1.34. [Del71, Proposition 1.15] If G1 is an algebraic subgroup of G2 and
u is the inclusion, then, for every open compact subgroup K1 of G1(Af ), there exists an
open compact subgroup K2 ⊃ K1 of G2(Af ) such that u(K1,K2) : MK1(G1, h1)(C) →
MK2(G2, h2)(C) is a closed immersion.

1.4.4. Connected components. For (G, h) equal to the Shimura datum of Example 1.33 and
K = Ker(GSp2d(

!Z) → GSp(Z/nZ)), we have seen that the multiplier c : GSp2d → GL1

induces a bijection

π0(MK(G, h)(C)) ∼−→ Q>0\A×
f /c(K) = Q×\A×/c(K∞K).

In fact, it follows from real approximation and the Hasse principle that this works for many
Shimura varieties:

Theorem 1.35 (Deligne, see [Del71, 2.7]). Let ν : G → T := G/Gder be the quotient mor-
phism, and suppose that Gder is simply connected. Then, for every open compact subgroup
K of G(Af ), the map ν induces an isomorphism of groups

π0(MK(G, h)(C)) ∼−→ T (Q)\T (A)/ν(K∞K).

In other words, ν induces an isomorphism

π0(M(G, h)(C)) ∼−→ π0(T (A)/T (Q))/π0(K∞).

1.5. Canonical models. In the situation of Example 1.33, we have seen that the algebraic
varieties MK(G, h)(C) and all the Hecke correspondences are defined over Q. We would like
to generalize this kind of result to other Shimura varieties.

1.5.1. Model of a Shimura variety. First we need to say what we mean by a model.

Definition 1.36. Let (G, h) be a Shimura datum, and F be a subfield of C. A model of
the projective system (MK(G, h)(C))K over F is the data:

• for every open compact subgroup K of G(Af ), of a quasi-projective variety MK over
F and isomorphism ιK : MK ⊗F C ∼−→ MK(G, h)(C);

• for every g ∈ G(Af ) and all open compact subgroups K,K ′ of G(Af ) such that
gK ′g−1 ⊂ K, of a morphism of F -varieties Tg,K,K′ : MK′ → MK ,

such that:

(i) For all g,K,K ′ as above, the morphism ιK ◦ Tg,K,K′,C ◦ ι−1
K′ : MK′(G, h)(C) →

MK(G, h)(C) sends the class of (x, h) in MK′(G, h)(C) to the class of (x, hg) in
MK(G, h)(C);

(ii) If K is an open compact subgroup of G(Af ) and g ∈ K, then Tg,K,K = idMK
;
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(iii) If K,K ′,K ′′ are open compact subgroups of G(Af ) and g, h ∈ G(Af ) are such that
gK ′g−1 ⊂ k and hK ′′h−1 ⊂ K ′, then Tg,K,K′ ◦ Th,K′,K′′ = Tgh,K,K′′ ;

(iv) If K,K ′ are open compact subgroups of G(Af ) such that K ′ is a normal subgroup
of K, then the morphism Tg,K′,K′ for g ∈ K define an action of K/K ′ on MK′

(this follows from (ii) and (iii)), and T1,K,K′ : MK′ → MK induces an isomorphism
MK′/(K/K ′) → MK .

If we have a model (MK)K of (MK(G, h)(C))K over F , we write M = lim←−K
MK (where

the transition morphisms are given by the T1,K′,K). This is an F -scheme with an action of
G(Af ), and we have a G(Af )-equivariant isomorphism M ⊗F C ∼−→ M(G, h)(C).

In particular we get an action of Gal(F/F ) on π0(M(G, h)(C)) ∼−→ π0(M ⊗F F ), which
must commute with the action of G(Af ). Under the hypothesis of Theorem 1.35, we have

π0(M ⊗F F )
∼−→ π0(T (A)/T (Q))/π0(K∞)

with T = G/Gder, and G(Af ) acts transitively on this set of connected components (Propo-
sition 2.2 of [Del71]). So every element of Gal(F/F ) acts by translation by an element
of π0(T (A)/T (Q))/π0(K∞), and the action of Gal(F/F ) comes from a morphism of groups
Gal(F/F ) → π0(T (A)/T (Q))/π0(K∞), that necessarily factors through the maximal abelian
quotient Gal(F/F )ab.

Suppose that F is a number field. Then global class field theory13 gives an isomorphism

Gal(F/F )ab
∼−→ π0(F

×\A×
F )

where AF is the ring of adeles of F , so the action of Gal(F/F ) on π0(M ⊗F F ) comes from
a morphism of groups

λM : π0(F
×\A×

F ) → π0(T (Q)\T (A))/π0(K∞),

called the reciprocity law of the model.

1.5.2. The case of tori. We consider the case where G = T is a torus. Let h : S → TR be
any morphism of real algebraic groups. Then h trivially satisfies the conditions of Definition
1.32, so we get a Shimura datum (T, h), and X = T (R)/CentT (R)(h) is a singleton. For
every open compact subgroup K of T (Af ),

MK(T, h)(C) = T (Q)\T (Af )/K

is a finite set, and we have
M(T, h)(C) = T (Q)\T (Af ),

which is a profinite set. Giving a model of the Shimura variety of (T, h) over a subfield F

of C is the same as giving an action of Gal(F/F ) over T (Q)\T (Af ) (commuting with the
action of T (Af ) by translation), i.e. a morphism of groups Gal(F/F ) → T (Q)\T (Af ). If F
is a number field, this is equivalent to giving a morphism of groups

λ : π0(F
×\A×

F ) → π0(T (Q)\T (A)).

It is natural to construct such a morphism from a morphism of algebraic groups F× → T ,
where F× is seen as an algebraic group over Q (so that, for example, we have F×(A) =

(A ⊗Q F )× = A×
F ). We already have a morphism h : S → TR, which gives a morphism of

13Normalized so that local uniformizers correspond to geometric Frobenius elements.
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complex algebraic groups hC : SC → TC. Remember that SC ≃ GL1,C ×GL1,C, and that we
denoted by r : GL1,C → SC the embedding of the first factor (see Subsubsection 1.4.1). We
get a morphism hC ◦ r : GL1,C → TC. As T is an algebraic group over Q, this morphism is
defined over a finite extension of Q in C, and we call this extension F . We get a morphism of
F -algebraic groups GL1,F → TF , hence a morphism of Q-algebraic groups F× → ResF/Q TF ,
where ResF/Q TF is the algebraic group that sends a Q-algebra R to T (R⊗QF ). Composing
this with the norm NF/Q : ResF/Q TF → T , we finally get a morphism r(h) : F× → T , called
the reciprocity morphism for (T, h). We take λM to be induced by r(h).

So if (G, h) is a Shimura datum with G a torus, we get a canonically defined model of
the associated Shimura variety over the field of definition of hC ◦ r.

1.5.3. The reflex field. Let (G, h) be a Shimura datum satisfying the hypothesis of Theorem
1.35, and let ν : G → T := G/Gder be the quotient morphism. We have an isomorphism,
induced by ν:

π0(M(G, h))(C) ∼−→ π0(T (A)/T (Q))/π0(K∞).

Suppose that we have a model (MK)K of the Shimura variety of (G, h) over a number
field F ⊂ C. We would expect the Shimura variety of (T, ν ◦ h) to also have a model over
F , and the isomorphism above to be Gal(F/F )-equivariant, where the action on the right
hand side is given by the morphism r(ν ◦ h) : F× → T constructed in Subsubsection 1.5.2.

Remember that r : GL1,C → SC ≃ GL1,C × GL1,C is the embedding of the first factor
(see 1.4.1 again). By the previous paragraph, we would expect F to contain the field of
definition of ν ◦ h ◦ r. In fact it would make sense to take F to be the field of definition of
hC ◦ r : GL1,C → GC, except that h is only significant up to conjugation. This motivates the
following definition.

Definition 1.37. Let (G, h) be a Shimura datum. The reflex field F (G, h) of (G, h) is
the field of definition of the conjugacy class of hC ◦ r : GL1,C → GC.

Let F = F (G, h). Then F is a finite extension of Q in C, and, for every morphism ρ of G
into a commutative algebraic group, the morphism ρC ◦ hC ◦ r is defined over F . Note that
hC ◦ r itself is not necessarily defined over F .

Example 1.38. Let E = Q[
√
−d] be an imaginary quadratic extension of Q, let p ! q ! 1

be integers, and set n = p+ q. Let

J =

$
Ip 0

0 −Iq

%
∈ GLn(Z).

For every commutative ring R, we denote by x )→ x the involution of R ⊗Z OE induced by
the nontrivial element of Gal(E/Q), and, for every Y ∈ Mn(R⊗Q E), we write Y ∗ = tY .

The general unitary group GU(p, q) is the Z-group scheme defined by

GU(p, q)(R) = {g ∈ GLn(R⊗Z OE) | ∃c(g) ∈ R×, g∗Jg = c(g)J}

for every commutative ring R. Then GU(p, q)Q is a connected reductive algebraic group,
and we have a morphism of group schemes c : GU(p, q) → GL1, whose kernel is the unitary
group U(p, q).
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Let h : S → GU(p, q)R be the morphism defined by

h(z) =

$
zIp 0

0 zIq

%
∈ GU(p, q)(R).

Then (G, h) is a Shimura datum, and K∞ is the set of matrices

$
g1 0

0 g2

%
such that g1 ∈

GLp(C), g2 ∈ GLq(C) and there exists c ∈ R with g∗1g1 = cIp and g∗2g2 = cIq. We use the
isomorphism C ⊗Q E

∼−→ C × C sending x ⊗ 1 + y ⊗
√
−d to (x +

√
−dy, x −

√
−dy) to

identify GU(p, q)(C) to a subgroup of GLn(C)×GLn(C); note that the involution g )→ g of
GU(p, q)(C) corresponds to switching of the two factors. With this convention, we have for
every z ∈ C× that

hC ◦ r(z) =
$$

zIp 0

0 Iq

%
,

$
Ip 0

0 zIq

%%
.

It is easy to check that hC ◦ r is defined over E but not over Q. On the other hand, the
reflex field of (G, h) is E if p > q and Q if p = q.

Example 1.39. Let (G, h) be the Shimura datum of Example 1.33 (so that G = GSp2d).
For every z ∈ C×, we have

hC ◦ r(z) =
$

1
2 (z + 1)Id − 1

2i (z − 1)Id
1
2i (z − 1)Id

1
2 (z + 1)Id

%
= P

$
zId 0

0 Id

%
P−1,

where

P =

$
1√
2
Id

i√
2
Id

i√
2
Id

1√
2
Id

%
.

So the reflex field of (G, h) is Q.

1.5.4. Canonical models. We are now ready to define canonical models.

Definition 1.40. Let (G, h) be a Shimura datum and let F = F (G, h). A canonical
model of M(G, h)(C) is a model (MK)K over F such that, for every torus u : H ⊂ G and
every h′ : S → HR such that u ◦ h′ and h are G(R)-conjugated (i.e. such that u induces a
morphism of Shimura data from (H,h′) to (G, h)), the morphism

u : M(H,h′)(C) → M(G, h)(C)

is defined over the compositum F · F (H,h′) ⊂ C, where we use as model of M(H,h′)(C)
over F (H,h′) the one defined in Subsubsection 1.5.2.

Example 1.41. (1) If G is a torus, then the model of Subsubsection 1.5.2 is a canonical
model of M(G, h)(C).

(2) If (G, h) is the Shimura datum of Example 1.33 (so that G = GSp2d), then the
schemes (Md,K,Q)K⊂GSp2d(Af ) of Subsubsection 1.3.3 form a canonical model of
M(G, h)(C). This is not obvious but follows from the main theorem of complex
multiplication; see Section 4 of [Del71].
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At the time of Deligne’s paper [Del71], it was not known whether all Shimura varieties
has canonical models (spoiler: this is now known to be true, see Theorem 2.27), but it was
possible to prove their uniqueness. If u : (H,h′) → (G, h) is a morphism of Shimura varieties
as in Definition 1.40 (so that H is a subtorus of G), the image in M(G, h)(C) of the points
of M(H,h′)(C) are called special points. The fact that canonical models are uniquely
characterized relies on the following two points:

(i) Special points are dense in M(G, h)(C);
(ii) For every finite extension F ′ ⊂ C of F (G, h), there exists u : (H,h′) → (G, h) as

above such that F (H,h′) and F ′ are linearly disjoint over F (G, h) (Théorème 5.1 of
[Del71]).

From this, we can deduce:

Theorem 1.42 (Corollaire 5.4 of [Del71]). Let u : (G1, h1) → (G2, h2) be a morphism
of Shimura data. Then the corresponding morphism M(G1, h1)(C) → M(G2, h2)(C) of
Shimura is defined over any common extension F of F (G1, h1) and F (G2, h2) in C.

Corollary 1.43. Let (G, h) be a Shimura datum. Then a canonical model of M(G, h)(C)
is unique up to unique isomorphism if it exists.

Corollary 1.44. Let (G, h) be a Shimura datum satisfying the hypothesis of Theorem 1.35,
let ν : G → T := G/Gder be the quotient morphism, and let F = F (G, h). Then the action
of Gal(F/F ) on π0(M(G, h)(C)) ∼−→ π0(T (Q)\T (A))/π0(K∞) is given by the inverse of the
reciprocity morphism for (T, ν ◦ h).

Apply Theorem 1.42 to ν : (G, h) → (T, ν ◦h). Using the same techniques as for Theorem
1.42, we also get the following very useful result.

Proposition 1.45 (Corollarie 5.7 of [Del71]). Let u : (G1, h1) → (G2, h2) be a morphism of
Shimura data such that the underlying morphism of algebraic groups is a closed immersion
and that F (G1, h1) ⊂ F (G2, h2). If M(G2, h2)(C) has a canonical model, then so does
M(G1, h1)(C).
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2. Arithmetic Shimura varieties

In Section 1, we have defined Shimura varieties over C and introduced the notion of
canonical model of a Shimura variety. We also discussed in some detail the example of the
Siegel modular varieties, who have canonical models coming from their modular interpre-
tation. In this lecture, we first want to present different types of Shimura varieties, which
each type being contained in the next one:

(1) The Siegel modular variety: It is a moduli space of principally polarized abelian
schemes with some level structure;

(2) PEL type Shimura varieties: They are have an interpretation as moduli spaces of
polarized abelian schemes with multiplication by the ring of integers O of some number
field and some level structure (here “P” means “polarization”, “E” means “endomor-
phisms” in reference to the action of O and “L” means “level structure”);

(3) Hodge type Shimura varieties: They come from Shimura data (G, h) that have an
injective morphism into a Siegel Shimura datum (Example 1.33);

(4) Abelian type Shimura varieties: Their Shimura datum is “isogenous” to a Hodge
type Shimura datum (in a way to be made precise later);

(5) General Shimura varieties: All Shimura varieties.

The further we go down in the list, the less is known about the geometry of the Shimura
variety (and the higher the price for what we know), because many of the techniques we have
rely on the interpretation of the Shimura varieties as moduli problems of abelian schemes,
and this is only really available for PEL type Shimura varieties (there is something for Hodge
type Shimura varieties, but it is harder to use).

For example, PEL type Shimura variety naturally come with an integral model defined
over a localization of the ring of integers of their reflex field, but it took a lot of effort14

to construct integral models for Hodge type and abelian type Shimura varieties, and to
formulate their properties; as far as we know, nothing is known for general Shimura varieties.

We are not claiming that the classification above is the only measure of the complexity
of a Shimura variety, whatever that means. For example, as we will discuss in Section 3,
if one wants to study the cohomology of Shimura varieties and their zeta functions, then
the simplest case is not the Siegel modular varieties, but rather compact PEL type Shimura
varieties whose group has no endoscopy and a simply connected derived subgroup; we will
introduce some examples of these, known as Kottwitz’s simple Shimura varieties.

2.1. PEL type Shimura varieties. These Shimura varieties were introduced by Kottwitz
in [Kot92b], but we will follow the presentation of Lan for the moduli problems (cf. [Lan13,
1.4.1]), which is closer to our definition of the Siegel moduli problem. The equivalence
between the two definitions is proved in [Lan13, 1.4.3].

2.1.1. PEL data.

Definition 2.1 (see [Lan20, 5.1] or [Lan13, Definition 1.2.13]). An (integral) PEL datum
is a quintuple (O, ∗,Λ, 〈·, ·〉, h), where

14Add references (?)



SHIMURA VARIETIES 23

(1) O is an order in a finite-dimensional semisimple Q-algebra B (that is, O is a subring
of B that is a free Z-module and spans the Q-vector space Q);

(2) ∗ is a positive involution of O, i.e. an anti-automorphism of rings of order 2 such
that, for every x ∈ O\{0}, we have Tr(B⊗QR)/R(xx

∗) > 0;
(3) Λ is an O-module that is finitely generated and free as a Z-module;
(4) 〈·, ·〉 : Λ×Λ → Z is an alternating bilinear map such that, for all x, y ∈ Λ and b ∈ O,

we have
〈bx, y〉 = 〈x, b∗y〉;

(5) h : C → EndB⊗QR(Λ⊗Z R) is an R-algebra morphism such that:
(a) For z ∈ C and x, y ∈ Λ⊗Z R, we have

〈h(z)(x), y〉 = 〈x, h(z)(y)〉;

(b) The R-bilinear pairing 〈·, h(i)(·)〉, which is symmetric by (a), is also definite
positive.

Let (O, ∗,Λ, 〈·, ·〉, h) be a PEL datum. We define a group scheme G over Z by

G(R) = {g ∈ EndO⊗ZR(Λ⊗Z R) | ∃c(g) ∈ R×, 〈g(·), g(·)〉 = 〈·, ·〉}

for every commutative ring R. We also get a morphism of group schemes c : G → GL1.
The morphism of R-algebras h : C → EndB⊗QR(Λ⊗Z R) induces a morphism of R-algebraic
groups h : S → GR.

Proposition 2.2. The couple (G0
Q, h) satisfies conditions (a)–(c) in Definition 1.32 of a

Shimura datum.

Let us explain why this proposition is true. Condition (a) of Definition 1.32 follows from
the fact that h : C× → EndB⊗QR(Λ ⊗Z R) is a morphism of R-algebra, and Condition (c)
follows from Condition (5)(b) of Definition 2.1. We have to show how to prove Condition (b),
on the decomposition of Lie(GC into eigenspaces for the action of Ad ◦hC. Let V = Λ⊗ZR,
a finite-dimensional R-vector space. Then h : C → EndR(V ) defines a structure of C-vector
space on V , so A := V/Λ is a complex torus. We would like this torus to be an abelian
variety, so we need a polarization on it, that is, a positive definite Hermitian form H on V

such that Im(H) takes integer values on Λ. But we already have an alternating form on Λ,
so we are already know from Subsubsection 1.3.1 how to proceed: define H by

H(v, w) = 〈h(i)(v), w〉+ i〈v, w〉.

The fact that Im(H) takes integral values on Λ is clear, the pairing H is Hermitian by
condition (5)(a) and positive definite by condition (5)(b). So the torus A is an abelian variety,
with dual abelian variety A∨ = V/Λ∨, where Λ∨ = {v ∈ V | ∀w ∈ Λ, 〈v, w〉 ∈ Z} is the dual
lattice of Λ. The polarization λ : A → A∨ defined by H is then just the map induced by
Λ ⊂ Λ∨. We can see h as a morphism of algebraic groups S → GL(V ), and the decomposition
V ⊗R C =

+
p,q∈Z V

p,q induced by this morphism (see Subsubsection 1.4.1) is the same as
the Hodge structure coming from the isomorphism V ≃ H1(A,R). As A is an abelian
variety, we have V p,q = 0 unless (p, q) ∈ {(0,−1), (−1, 0)}. As g := Lie(GR) ⊂ EndR(V ),
for the decomposition g ⊗R C =

+
p,q∈Z g

p,q induced by Ad ◦ h, we have gp,q = 0 unless
(p, q) ∈ {(0, 0), (1,−1), (−1, 1)}, as desired.
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Note also that the action of O on Λ defines a morphism of rings ι : O → EndC(A)

satisfying the Rosati condition, which says that, for every b ∈ O, we have

λ ◦ i(b∗) = i(b)∨ ◦ λ.

Remark 2.3 ([Kot92b], sections 5 and 7). Let (O, ∗,Λ, 〈·, ·〉, h) be a PEL datum, and let G

be the associated group scheme. If the Q-algebra B = O⊗Z Q is simple, then all the simple
factors of G(C)der are of the same type, which is A, C or D. If we are in type A or C,
then GQ is connected and reductive. In type D, the group GQ is reductive and has 2[F0:Q]

connected components, where F0 is the field of the fixed points of ∗ in the center of O⊗ZQ,
so it is never connected.

We now give an example of each type.

Example 2.4. Take O = Z, ∗ the trivial involution, Λ = Z2d, 〈·, ·〉 the perfect symplectic

pairing with matrix

$
0 Id
Id 0

%
in the canonical basis of Z2d, and h : C → M2d(R) defined

by

h(a+ ib) =

$
aId −bId
bId aId

%
.

Then we get a PEL datum, and the couple (G, h) is the Siegel Shimura datum of Example
1.33.

Example 2.5. Let B = E ⊂ C be an imaginary quadratic extension of Q, O be an order
in E (for example the ring of integers), ∗ be the restriction to O of complex conjugation,15

Λ = Op+q with p ! q ! 0. Choose ε ∈ O such that −iε ∈ R>0, let H be the Hermitian

pairing on Λ with matrix

$
Ip 0

0 −Iq

%
and 〈·, ·〉 be the alternating pairing TrO/Z(εH) on Λ.

Finally, define h : C → EndC(Λ ⊗Z R) = Mp+q(C) by h(z) =

$
zIp 0

0 zIq

%
. Then we get a

PEL datum, and the couple (G, h) is the Shimura datum of Example 1.38.
If p = q, then (G, h) does not satisfy condition (d) of Definition 1.32.

Example 2.6. Let B be a quaternion algebra over Q such that B⊗QR ≃ H, and let O be an
order in B that is stable by the involution of H defined by (x+iy+jz+kt)∗ = x−iy−jz−kt.
Let Λ = O2n, let 〈·, ·〉 be TrO/Z ◦H, where H is the skew-Hermitian pairing on Λ with matrix$

0 In
−In 0

%
. Define h : C → EndB⊗QR(Λ⊗Z R) = Mn(H) by h(a+ ib) =

$
aIn −bIn
bIn aIn

%
.

The group GR,der is often denoted by SO∗
2n; it is a quasi-split outer form of the split

orthogonal group SO2n, hence is of type Dn. But note that the algebraic group GQ is not
connected.

Definition 2.7. We say that a Shimura datum is of PEL type if it is of the form (G0
Q, h),

where (G, h) comes from a PEL datum. The corresponding Shimura varieties are called
PEL type Shimura varieties.

15If (1, a) is a Z-basis of OE , then every order O of E is contained in OE and of the form Z ⊕ faZ,
where f = [OE : O] is the conductor of O. In particular, the order O is stable by the nontrivial element
of Gal(E/Q).
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2.1.2. PEL moduli problems. Just as in the case of the Siegel modular variety, PEL type
Shimura varieties are the solution of a moduli problem,16 know as a PEL moduli problem.
We now discuss these.

Let (O, ∗,Λ, 〈·, ·〉, h) be a PEL datum, and let (G, h) be defined as before. If V = Λ⊗ZR,
then we saw the morphism h : C× → EndO⊗ZR(V ) defines a decomposition V ⊗R C =

V −1,0 ⊕ V 0,−1. The reflex field F of the PEL datum is the field of definition of the
isomorphism class of V −1,0 as an O ⊗Z C-module, that is, the subfield of C generated by
the Tr(b, V 1,0), for b ∈ O. It is also equal to the reflex field of (G, h).

Definition 2.8. We say that a prime number p is good for the PEL datum if:

• p is unramified in O (i.e. it does not divide the discriminant of O/Z);
• p does not divide [Λ∨ : Λ], where Λ∨ is as before the lattice {v ∈ V | ∀w ∈ Λ, 〈v, w〉 ∈
Z};

• p ∕= 2 if the PEL datum has a factor of type D (i.e. if O ⊗Z R has a simple factor
isomorphic to an algebra Mn(H) with its canonical positive involution).

If p is not good we say that it is bad. Note that, if p is good, then F and GQ are
unramified at p; in fact, the group G(Zp) is then a hyperspecial maximal compact subgroup
of G(Qp).

Let T be a set of good primes (finite or infinite), and let OF,T be the localization
OF [1/p, p /∈ T ].

Definition 2.9 (PEL moduli problem). Let n be a positive integer that is prime to all the
elements of T . Then the PEL moduli problem at level n defined by the fixed PEL datum
is the functor Mn from the category of OF,T -schemes to the category of sets sending an
OF,T -scheme S to the set of isomorphism classes of quadruples (A,λ, ι, (η,ϕ)), where

• A is an abelian scheme over S;
• λ : A → A∨ is a polarization whose degree is prime to nN ;
• ι : O → EndS(A) is a morphism of rings satisfying the Rosati condition: for every
b ∈ O, we have λ ◦ ι(b∗) = ι(b)∨ ◦ λ;

• (η,ϕ) is a level n structure on A, i.e., η : A[n]
∼−→ (Λ/nΛ)S is an O-equivariant

isomorphism of group schemes and ϕ : Z/nZ
S

∼−→ µn,S is an isomorphism of group
schemes such that ϕ◦〈·, ·〉, ◦η is the Weil pairing defined by λ on A[n]S , and moreover
(η,ϕ) are liftable to level m structures for every prime-to-T multiple m of n, in the
sense of [Lan13] Definition 1.3.6.2.

We furthermore require that this quadruple satisfy the following determinant condition
(see Definition 1.3.4.1 of [Lan13]): let α1, . . . ,αt be a basis of the Z-module O, and let
X1, . . . , Xt be indeterminates. Then det(ι(α1)X1 + · · ·+ ι(αt)Xt,Lie(A)) is a polynomial in
OS [X1, . . . , Xt], and the condition says that this polynomial is equal to the image by the
map OF,T → OS of the polynomial det(α1X1 + · · ·+ αtXt, V

1,0) ∈ OF,T [X1, . . . , Xt].17

Remark 2.10. (1) We did not specify the relative dimension of the abelian scheme A in
the moduli problem, because it is already determined by the determinant condition.

16Well, almost. See below for a more precise statement.
17It is not totally obvious that the second polynomial, which is a priori in F [X1, . . . , Xt], has its coeffi-

cients in OF,T . But it is also not too hard to check. See for example pages 389-390 of [Kot92b].
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(2) For n ∈ {1, 2}, the objects of the moduli problem Mn can have nontrivial auto-
morphisms, so it would make more sense to see Mn as a functor with values in
groupoids, i.e. as a stack. See Remark 1.12.

(3) As in Remark 1.16, it is also possible to define the moduli problem MK for more
general levels K, i.e. for open compact subgroups K of G(Af ), though there is a
condition on K corresponding to the condition that n be prime to T . Let AT

f be the
ring of prime-to-T adeles of Q, i.e. the restricted product of the Qp for p /∈ T , and
AT be the restricted product of the Qp for p ∈ T . We have Af = AT ×AT

f , and the
condition on K is that K = KTK

T , where KT ⊂ G(AT
f ) and KT =

,
p∈T Kp with

Kp = G(Zp) for every p ∈ T .

Theorem 2.11 (Kottwitz and Lan, see Corollaries 1.4.1.12 and 7.2.3.10 of [Lan13]). If
n ! 3, then the functor Mn is representable by a smooth quasi-projective scheme over OF,T .

In fact, by Theorem 1.4.1.11 and Corollary 7.2.3.10 of [Lan13], the functor MK is also
representable by a smooth quasi-projective scheme for K small enough.

Remark 2.12. We also have an action of the Hecke operators defined by elements g ∈ G(AT
f )

(i.e. the Hecke operators that are trivial at primes of T ) on the tower (MK); as for the
Siegel moduli problem, the element g acts on the level structure. See Remark 1.4.3.11 of
[Lan13] (and the comparison result of Proposition 1.4.3.4 ibid.).

2.1.3. PEL moduli problems and canonical models. Consider the PEL datum of Example
2.4. The associated couple (G, h) is the Siegel Shimura datum of Example 1.33, and we
have seen in Example 1.41(2) that the associated moduli problem, with T = ∅, defines a
canonical model of the Shimura variety of (G, h).

We would like something like this to be true for general PEL data. One obstacle is that
the moduli problem only depends on the group G(A); this is not obvious on Definition 2.9,
but it becomes so if we use the moduli problem of Definition 1.4.2.1 of [Lan13] or of Section
5 of [Kot92b] (the equivalence of the two moduli problems is proved in [Lan13, 1.4.3]). So, if
we have another reductive algebraic group G′ over Q such that G′

Qv
≃ GQv

for every place v

of Q, we get a Shimura datum (G′, h′) by taking h′ = h : S → GR ≃ G′
R, and we should also

see the canonical models for the Shimura variety of (G′, h′) in the PEL moduli problem. In
fact, we have the following result.

Proposition 2.13. Suppose that the semisimple Q-algebra O⊗Z Q has no simple factor of
type D (see Definition 2.8). Then:

(i) [Lan13, Remark 1.4.4.4]. Let T ⊂ T ′ be two sets of good prime numbers, let KT ′
be

an open compact subgroup of G(AT ′

f ), and let K = KT ′ ,
p∈T ′ G(Zp). Let MK (resp.

M′
K) be the moduli problem over Spec(OF,T ) (resp. Spec(OF,T ′)) from Definition

2.9, where we take the set of good primes to be T (resp. T ′). Then the forgetful
functor MK → M′

K ×Spec(OF,T ′ ) Spec(OF,T ) is an isomorphism.
(ii) [Kot92b, Sections 7-8]. Let Ker1(Q, G) be the kernel of the diagonal map H1(Q, G) →,

v H
1(Qv, G), where we take the product over all places v of Q; this is a finite set.

Suppose that every (GQ, h) is a Shimura datum, and use T = ∅ to define the moduli
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problems of Definition 2.9, so that they are moduli problems over Spec(F ).18 Then
the projective system (MK)K⊂G(Af ) is a disjoint union indexed by i ∈ Ker1(Q, G) of
projective systems (M(i)

K )K⊂G(Af ), and each (M(i)
K )K⊂Gi(Af ) is the canonical model

of the Shimura variety of (GQ, h).

Remark 2.14. (1) For every i ∈ Ker1(Q, G), let Gi be the corresponding inner form of
GQ; we have Gi,v ≃ Gv for every place v of Q, and we denote by hi the morphism
S h−→ GR ≃ Gi,R. If (GQ, h) is a Shimura datum, then all (Gi, hi) are, and the
projective system of projective systems (M(i)

K )K⊂G(Af ) in (ii) of the proposition is
really a canonical model of the Shimura variety of (Gi, hi) (note that Gi(Af ) ≃
G(Af )). But, as noted by Kottwitz at the end of Section 8 of [Kot92b], under our
hypothesis that O ⊗Z Q has no factor of type D, all the groups Gi are isomorphic
to GQ.

(2) There is some information about Ker1(Q, G) in Section 7 of [Kot92b], and ways to
calculate it. For example, if O⊗Z Q is simple of type C, we have Ker1(Q, G) = {1},
which explains why the moduli problem of Definition 1.14 gives a canonical model
of the Siegel Shimura variety and not of a finite disjoint union of copies of it. If
O ⊗Z Q is simple of type A, then Ker1(Q, G) is automatically trivial “half” of the
cases, and it is always isomorphic to Ker1(Q, Z(G)); for example, it is trivial for the
Shimura datum of Example 1.38.

(3) Kottwitz doesn’t say much about the case where O⊗Z Q has simple factors of type
D. The situation is complicated for many reasons: the group GQ is not connected,
Ker(Q, G) is not trivial, and point (i) of Proposition 2.13 is not true in general,
so we must also be careful about the choice of T . In any case, it is still true that
the Shimura varieties MK(G0, h)(C) are open and closed subschemes of MK,C (see
[Lan12, 2.5]), and we might even canonical models out of this, but we won’t pursue
that here because there are other ways to get canonical models for these Shimura
data (see Subsubsection 2.2.1).

(4) If we want (G, h) to be a PEL Shimura datum, then this puts pretty strict conditions
on the center of G. For example, if F is a nontrivial totally real extension of Q,
then the group ResF/Q GL2 (defined by ResF/Q GL2(R) = GL2(R⊗Q F )) is part of
a Shimura datum, but this Shimura datum cannot be PEL; more generally, we have
the issue with the group ResF/Q GSp2d. This is somewhat annoying, as sometimes
we really do want to consider the Shimura varieties for these precise groups (see
for example Nekovar and Scholl’s [NS16]). Fortunately, these Shimura data are of
Hodge type (see Subsubsection 2.2.1), so their Shimura varieties are still understood
reasonably well.

2.1.4. Canonical integral models. PEL moduli problems don’t just give canonical models of
Shimura varieties, they also give models over various localizations of the ring of integers of
the reflex field, at least when Ker1(Q, G) is trivial. Here are some things that we can learn
from this example:

18By (i), these moduli problems are the generic fibers of the moduli problems defined by nonempty sets
T .
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(1) The ring of integers over which we can expect to have a “good” integral model de-
pends on the level K. More precisely, to have a good integral model defined over
OF,(p), we need K to be of the form KpKp, where Kp ⊂ G(Ap

f ) and Kp is a hyper-
special maximal compact subgroup of G(Qp). Likewise, the Hecke correspondences
that will extend to finite étale morphisms between integral models over OF,(p) are
the ones that are trivial at p, i.e. defined by elements of G(Ap

f ).
(2) We need a notion of what a “good” integral model is. If the Shimura varieties for

(G, h) are compact, then we can just ask for the integral model to be projective
smooth over the localization of OF that are using, and to have a dense generic fiber.
But this does not suffice in the noncompact case.

To fix problem (2), Milne suggested only looking at models with a certain extension
property. Let (G, h) be a Shimura datum, let F = F (G, h), let p be a prime number at
which G is unramified, and let Kp ⊂ G(Qp) be a hyperspecial maximal compact subgroup.19

For every level K, write MK = MK(G, h). We want to say what a canonical integral model
MKp over OF,(p) of the projective system (MKpKp)Kp⊂G(Ap

f )
, or of its limit MKp . The idea,

first suggested by Milne in [Mil92] (see also Moonen’s paper [Moo98]), is to require that, for
every S in a class of “admissible test schemes” over OF,(p), any morphism S⊗OF,(p)

F → MKp

should extend to a morphism S → MKp . The problem is to decide what class of admissible
test schemes one should use. We will follow Kisin’s presentation in [Kis10].

Definition 2.15 (See [Kis10, 2.3.7]). A canonical integral model of (MKpKp)Kp⊂G(Ap
f )

or of MKp over OF,(p) is a projective system

(MKpKp)Kp⊂G(Ap
f )

of smooth OF,(p)-schemes with finite étale transition maps, with finite étale morphisms
Tg,Kp,K′p : MKpK′p → MKpKp for all g ∈ G(Ap

f ) and Kp,K ′p open compact subgroups
of G(Ap

f ) such that K ′p ⊂ Kp ∩ gKpg−1, and with an isomorphism of projective systems
ι : (MKpKp)⊗OF,(p)

F
∼−→ (MKpKp), such that:

(a) The morphisms Tg,Kp,K′p satisfy the analogue of conditions (ii), (iii) and (iv) of Defi-
nition 1.36, and they correspond to the morphisms Tg,KpKp,KpK′p between canonical
models by the isomorphism ι (in other words, ι is G(Ap

f )-equivariant);
(b) The scheme

MKp := lim←−
Kp

MKpKp

satisfies the following extension property: if S is a regular formally smooth OF,(p)-
scheme, then any morphism S⊗OF,(p)

F → MKp
extends to a morphism S → MKp

.

In particular, by applying the extension property with S = MKp , we see that integral
canonical models are unique up to unique isomorphism. Now the problem is existence.
For PEL type Shimura varieties of type A or C (satisfying the condition that Ker1(Q, G)

is trivial), the PEL moduli problem will give some a canonical integral model. But what
about other Shimura varieties?

19The condition on p means that G extends to a reductive group scheme G over Zp, and then we can
take Kp = G(Zp).
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2.2. Hodge type and abelian type Shimura varieties.

2.2.1. Hodge type Shimura varieties. For every d ! 1, we denote by (GSp2d, hd) the Siegel
Shimura datum of Example 1.33.

The following condition was introduced in Deligne’s paper [Del79, Section 2.3] and named
in Milne’s paper [Mil90] (at the end of Section 3).

Definition 2.16. A Shimura datum (G, h) is of Hodge type if there exists an integer
d ! 1 and a morphism of Shimura data u : (G, h) → (GSp2d, hd) such that the underlying
morphism of algebraic groups G → GSp2d is injective. We also say that the corresponding
Shimura variety is of Hodge type.

Example 2.17. (1) Every Shimura datum of PEL type is of Hodge type, pretty much
by definition (or by Proposition 2.3.2 of [Del79]): if (O, ∗,Λ, 〈·, ·〉, h) is a PEL datum
and G is the corresponding group scheme, then G embeds into the group scheme H

defined by

H(R) = {g ∈ EndR(Λ⊗Z R) | ∃c(g) ∈ R×, 〈g(·), g(·)〉 = c(g)〈·, ·〉}

for every commutative ring R. As the alternating pairing 〈·, ·〉 is nondegenerate by
condition (5)(b) of Definition 2.1, and as all nondegenerate alternating pairing on
Λ⊗Z Q are equivalent, we have HQ ≃ GSp2d,Q for 2d = dimQ(Λ⊗Z Q). Let h′ be he
composition of h : S → GR and of the embedding GR → HR = GSp2d,R. We have
seen in the discussion after Proposition 2.2 that h : C → EndR(Λ ⊗Z R) induces
a Hodge structure of type {(−1, 0), (0,−1)} on Λ ⊗Z C,20 so h′ satisfies condition
(b) of Definition 1.32. It also satisfies condition (c) of Definition 1.32 because the
R-bilinear pairing 〈·, h(i)(·)〉 on Λ ⊗Z R is symmetric definite positive. Finally, for
every a ∈ R×, the element h(a) of EndR(Λ⊗ZR) is a · id (because h is a morphism of
R-algebras), so h′(a) = aI2d ∈ GSp2d(R). This implies that h′ and hd are conjugated
by GSp2d(R).

(2) The list of groups G that have Shimura data of Hodge type is given (at least in
theory) in Section 2.3 of [Del79]. For example, the group G can be of type B, while
that is not possible for PEL type Shimura data.

The following result is due to Deligne; it follows from Corollaire 5.7 of [Del71]), which
was already cited as Proposition 1.45.

Proposition 2.18. Every Shimura variety of Hodge type admits a canonical model.

Remark 2.19. There is a general philosophy that Shimura varieties should be moduli spaces
of motives (the conditions that we put on a Shimura datum (G, h) are basically there to force
the G(R)-conjugacy class of h to be a parameter space of Hodge structures); see Section 3
of [Mil90] for more precise hopes.

For (G, h), we are a bit closed to that hope: we can prove that MK(G, h)(C) is a moduli
space of abelian varieties with Hodge cycles of a certain type and level structure (see Theorem
3.11 of [Mil90]). As Hodge cycles on complex abelian varieties are absolute by a theorem

20Which means that, in the decomposition Λ⊗ZC =
$

p,q∈Z V p,q induced by h, we have V p,q = 0 unless

(p, q) ∈ {(−1, 0), (0,−1)}.
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of Deligne (see Theorem 2.11 of Chapter I of [DMOS82]), we can also see the action of
Aut(C/F ) (where F = F (G, h)) on this modular interpretation. So far, this has not allowed
people to give a moduli interpretation of the integral models of the Shimura variety of (G, h),
but it does help with the construction of integral models, that we now discuss.

Let (G, h) be a Shimura datum of Hodge type, and let u : G → GSp2d be an injective
morphism inducing a morphism of Shimura data (G, h) → (GSp2d, hd). Let F = F (G, h)

be the reflex field of (G, h). We fix a prime number p such that GQp extends to a reductive
group scheme G over Zp. To simplify the presentation, we will assume that the embedding
GQp → GSp2d,Qp

extends to an embedding G → GSp2d,Zp
, though that is not necessary. We

set Kp = G(Zp) and K ′
p = GSp2d(Zp).

For each sufficiently small open compact subgroup Kp of G(Ap
f ), we fix an open compact

subgroup K ′p of GSp2d(A
p
f ) such that, setting K = KpK

p and K ′ = K ′
pK

′p, the morphism
u defines a closed immersion MK(G, h) → MK′(GSp2d, hd)F (this is possible by Proposition
1.15 of [Del71]).

Let MK′ be the integral model of MK′(G, h) over OF,(p) given by base change from its
canonical integral model. We denote by MK the normalization of the closure of the image
of MK(G, h) in MK′ ⊃ MK′(G, h)F . Kisin proved the following result.

Theorem 2.20 (Theorem 2.3.8 of [Kis10]). Suppose that p > 2. The limit lim←−Kp
MKpKp

is a canonical integral model of the Shimura variety of (G, h).

In particular, the schemes MK do not depend on the choice of K ′p or on the embedding
G → GSp2d.

Remark 2.21. In fact, Theorem 2.3.8 of [Kis10] is more general, and gives a construction of
a canonical integral model without the assumption on the embedding GQp → GSp2d,Qp

. It
even allows the case p = 2 under some conditions.

2.2.2. Abelian type Shimura varieties.

Definition 2.22. Let (G, h) be a Shimura datum. We say that (G, h) is of abelian type
if there exists a Shimura datum of Hodge type (G1, h1) and a central isogeny Gder

1 → Gder

that induces an isomorphism of Shimura data (G1,ad, h1,ad)
∼−→ (Gad, had), where h1,ad

(resp. had) is the composition of h1 (resp. h) and of the quotient morphism G1 → G1,ad

(resp. G → Gad). In that case, we also say that the corresponding Shimura varieties are of
the abelian type.

Another way to formulate the definition is to say that a Shimura variety MK(G, h)(C) is
of abelian type if all its connected components are finite quotients of connected components
of Shimura varieties of Hodge type (see Section 9 of [Del79]). Deligne has classified all
connected Shimura varieties of abelian type in [Del79, 2.3]. The very rough upshot is that
all Shimura data (G, h) with G of type A, B and C are of abelian type; if G is of type D,
it is complicated, and if G is of type E6 or E7, then the Shimura datum is never of abelian
type. See page 61 of [Lan20] for more details.

Theorem 2.23 (Deligne, see Corollaire 2.7.21 of [Del79]). Let (G, h) be a Shimura datum
of abelian type. Then the Shimura variety of (G, h) admits a canonical model.
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In fact, Deligne reduces the construction of a canonical model of MK(G, h)(C) to that of
canonical models of its connected components (over finite extensions of F (G, h)). See for
example Corollaire 2.7.18 of [Del79].

Remark 2.24. Shimura varieties of abelian type are not moduli spaces of abelian varieties
in general. However, Milne proved in [Mil94] that they are moduli spaces of motives if
h ◦ w : GL1,R → GR is defined over Q, and this leads to a more direct proof of existence of
their canonical models even without that condition.

Theorem 2.25 (Milne, see Theorem 3.31 of [Mil94]; see also Brylinski’s paper [Bry83]). Let
(G, h) be a Shimura datum of abelian type such that h ◦ w : GL1,R → GR is defined over Q.
Then each MK(G, h) is a moduli space of abelian motives (over the reflex field of (G, h)).

By reducing to the case of Shimura varieties of Hodge type, Kisin is able to prove the
existence of canonical integral models of Shimura varieties of abelian type.

Theorem 2.26 (Corollary 3.4.14 of [Kis10]). Let (G, h) be a Shimura datum of abelian type,
let p > 2 be a prime number such that GQp

extends to a reductive group scheme G over Zp,
and let Kp = G(Zp). Then MKp := lim←−Kp⊂G(Ap

f )
MKpKp(H,h) admits a canonical integral

model over OF,(p), where F = F (G, h).

2.3. General Shimura varieties. Let (G, h) be a Shimura datum that is not of abelian
type. Then we know very little, but we do know that canonical models exist. This results
was first claimed in the paper [Mil83] of Milne (based on earlier results of Kazhdan and
Borovoi), but there was a gap in the proof, which was fixed by Moonen in Section 2 of
[Moo98].

Theorem 2.27 (Milne-Moonen, cf. [Moo98, Section 2]). Let (G, h) be a Shimura datum.
Then the Shimura variety of (G, h) admits a canonical model.

In fact, Section 2 of [Moo98] contains a good summary of the different construction
methods of canonical models. The proof in the general case does not proceed by reduction
to the case of Siegel modular varieties (unlike the previous proofs in the abelian type case),
but uses results of Borovoi, Deligne, Milne and Shih on a conjecture of Langlands, that says
that a conjuate of a Shimura variety over C by an automorphism of C is still a Shimura
variety (Langlands’s conjecture is much more precise than this, see for example Theorem
2.4 of [Moo98]).

2.4. Kottwitz’s simple Shimura varieties. After considering more and more compli-
cated Shimura varieties in the previous subsections, we will now introduce a very simple
PEL case, that has been studied by Kottwitz in [Kot92a]. These Shimura varieties are
simple for several reasons:

• they are compact;
• they are PEL of type A, hence moduli spaces of abelian schemes with extra struc-

tures;
• their reductive group has no endoscopy (see below for a more precise statement).
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2.4.1. Inner forms of unitary groups. We fix a totally real extension F0 of Q and a totally
imaginary quadratic extension F of F0. Such an extension F of Q is called a CM extension.
We denote by z )→ z the nontrivial element of Gal(F/F0).

Let n be a positive integer. The quasi-split unitary group U∗(n) over F0 is defined to be
the unitary group of the Hermitian F0-space Fn, with the form

((x1, . . . , xn), (y1, . . . , yn)) )→
n)

i=1

xiyn+1−i.

In other words, for every commutative F0-algebra R, we have

U∗(n) = {g ∈ GLn(F ⊗F0 R) | tgJg = J},

where J is the n× n anti-diagonal matrix with nonzero coefficients equal to 1.
We want to describe all inner forms of U∗(n). Remember that, if G and H are algebraic

groups over a field k, we say that they are inner forms of each other if there exists an
isomorphism ϕ : Gk

∼−→ Hk such that, for every σ ∈ Gal(k/k), the automorphism ϕ−1 ◦ σϕ

of G(k) is inner (where σϕ is the isomorphism σ ◦ ϕ : Gk

∼−→ Hk). Inner forms of G are
in bijection with elements of H1(k,Gad) := H1(Gal(k/k), Gad), where Gad = G/Z(G) with
Z(G) the center of G.

Here, observing that U∗(n)ad is the group of automorphisms of the couple formed by the
central simple algebra Mn(F ) over F with the positive involution g )→ Jg∗J ,21 we see that
inner forms of U∗(n) are exactly the groups U(B, ∗), where B is a central simple algebra
over F and ∗ is a positive involution on B extending the involution z )→ z on F , and U(B, ∗)
is the F0-group defined by

G(R) = {g ∈ B ⊗F0
R | gg∗ = 1},

for R a commutative F0-algebra.
On the other hand, if G is an inner form of U∗(n), then GF0,v is an inner form of U∗(n)F0,v ,

for every place v of F0, which is isomorphic to U∗(n)F0,v itself for all but finitely many v.
Inner forms over local fields are easier to classify (because the absolute Galois groups of
local fields are simpler); but then we must be able to decide when a family of inner forms
of the U∗(n)F0,v comes from a “global” inner form of U∗(n) (defined over F0). Using Galois
cohomology calculations or the calculation of the Brauer groups of local and global fields,
we get the following results (see for example Section 2 of Clozel’s paper [Clo91]):

Proposition 2.28. Let v be a place of F0.

• Suppose that v is finite and does not split in F . If n is odd, then the only inner
form of U∗(n)F0,v is U∗(n)F0,v itself (up to isomorphism). If n is even, then there
are two isomorphism classes of inner forms of U∗(n)F0,v

.
• Suppose that v splits in F (in particular, v is finite), and let w be a place of F

above v. Then U∗(n)F0,v ≃ GLn,F0,v ≃ GLn,Fw , and its inner forms are (up to
isomorphism) the groups GLm(D), for m dividing n and D a central division algebra
over Fw of dimension (n/m)2.

21See Definition 2.1 for the definition of a positive involution.
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• Suppose that v is infinite, hence a real place of F0. Then the inner forms of U∗(n)F0,v

are (up to isomorphism) the real unitary groups Up,q of signature (p, q), for p+q = n,
and we have Up,q ≃ Ur,s if and only if (r, s) = (p, q) or (q, p).

Suppose that n is even, let v be a place of F0 and let G be an inner form of U∗(n)F0,v .

• If v is finite and does not split in F , set ε(G) = 1 if G ≃ U∗(n)F0,v
and ε(G) = −1

otherwise;
• If v is finite and splits in F , set ε(G) = (−1)m if G ≃ GLm(D) with m dividing n

and D a central division algebra over Fw of dimension (n/m)2;
• If v is infinite, set ε(G) = (−1)n/2−p if G ≃ Up,q.

Proposition 2.29. Consider a family (Gv)v place of F0 , where Gv is an inner form of
U∗(n)F0,v

for every place v of F0. Suppose that Gv ≃ U∗(n)F0,v
for all but finitely many

places v.

(i) If n is odd, there exists an inner form G of U∗(n) such that GF0,v ≃ Gv for every v.
(ii) If n is even, there exists an inner form G of U∗(n) such that GF0,v ≃ Gv for every

v if and only if
,

v ε(Gv) = 1.

Remark 2.30. Let G be an inner form of U∗(n). We know that G ≃ U(B, ∗), with B a
central simple algebra over F and ∗ a positive involution on B extending the involution
z )→ z on F . In the next subsection, it will be of interest to us to know when B is a division
algebra. Let v be a place of F0, and let Gv = GF0,v .

• If v does not split in F , and let w be a place of F above v. The group Gv is a unitary
group over F0,v, so we have Gv ≃ U(Bv, ∗v), with B a central simple algebra over Fw

and ∗ a positive involution on B extending the nontrivial element of Gal(Fw/F0,v).
Also, we can write Bv = Mmv

(Dv), with mv dividing n and Dv a central division
algebra of dimension (n/mv)

2 over Fw.
• If v splits in F , then we have Gv ≃ Mmv (Dv), with mv dividing n and Dv a central

division algebra of dimension (n/mv)
2 over F0,v.

We can now deduce from the classification of central simple algebras over F that B is a
division algebra if and only if the gcd of the family (mv) is equal to 1. The simplest way to
make sure that this condition is satisfied is to take one of the mv equal to 1, for example to
take Gv of the form D×

v for a place of F0 split in F , where Dv is a central division algebra
over F0,v.

2.4.2. Simple Shimura varieties.

Definition 2.31 (See §1 of [Kot92a]). A Kottwitz simple Shimura variety is a Shimura
variety defined by the Shimura datum (G, h) associated to a PEL datum (O, ∗,Λ, 〈·, ·〉, h)
such that:

• D := O ⊗Z Q is a division algebra with center a CM extension F of Q;
• ∗ extends the nontrivial automorphism of F/F0, where F0 is the maximal totally

real subextension of F ;
• Λ = O;
• 〈x, y〉 = TrO/Z(x

∗y) for all x, y ∈ Λ.
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We have EndO(Λ) = Oop (acting by right multiplication), so, for every commutative ring
R,

G(R) = {g ∈ (Oop ⊗Z R)× | gg∗ ∈ R×}.

We have a morphism c : G → GL1 sending g ∈ G(R) to gg∗ ∈ GL1(R), and we denote its
kernel by G0.

Denote by ResF0/Q the foncteur of Weil restriction of scalars22 from F0 to Q; in
particular, if H is an algebraic group over F0, then ResF0/Q H is the algebraic group over Q
defined by ResF0/Q H(R) = H(R⊗Q F0) for every commutative Q-algebra R. Then

G0,Q = ResF0/Q U,

with U the algebraic group over F0 defined by

U(R) = {g ∈ (Dop ⊗F0
R)× | gg∗ = 1}

for every F0-algebra R.
The dimension of D over F is of the form n2 with n ∈ N, and U is an inner form of the

quasi-split unitary group U∗(n) over F0 defined by the extension F/F0. By Propositions
2.28 and 2.29 and Remark 2.30, we have a description of such inner forms. In particular,
we know that

G0,R ≃
-

τ∈Φ

Upτ ,qτ ,

where Φ is the set of real places of F0 and, for every τ ∈ Φ, pτ and qτ are nonnegative
integers such that pτ + qτ = n. Note that Definition 2.31 says nothing about h : S → GR,
but we now know what morphism h to choose: if z ∈ C× is of norm 1, we take

h(z) =

$$
zIpτ

0

0 zIqτ

%%

τ∈Φ

∈
-

τ∈Φ

Upτ ,qτ ≃ G0(R).

Then there is a unique extension h to a morphism h : C× → G(R) such that h(a) = a · id if
a ∈ R×.

Note that we can choose the signatures of G0,R arbitrarily, by manipulating what happens
at finite places. On the other hand, the Shimura varieties of (G, h) are always compact,
thanks to the following lemma.

Lemma 2.32. The group Gder is of Q-rank 0.

Proof. We have Gder = G0, so Gder
F ≃ D×. Let T be a maximal torus of G0. Then TF is a

maximal torus in D× (seen as an algebraic group over F ). As D is a division algebra, there
exists a degree n extension F ′ of F such that TF = F ′×, i.e. TF = ResF ′/F GL1,F ′ . This
shows that the maximal split subtorus of TF is {1}, so the maximal split subtorus of T is
also {1}. □

We now discuss endoscopy.

22Say “foncteur” is the French word for “functor” in English.
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2.4.3. Endoscopy. In its simplest form, endoscopy is the following phenomenon: let G be
an algebraic group over a field k. Then the G(k)-conjugacy classes in G(k) can be larger
than the G(k)-conjugacy classes. Some vocabulary: G(k)-conjugacy classes in G(k) are
often called the stable conjugacy classes, and G(k)-conjugate elements are called stably
conjugate (sometimes this terminology is only used for regular semisimple elements).

Example 2.33. (1) Suppose that G = GLn. It is then a classical exercise that any two
elements of G(k) that are G(k)-conjugate are actually G(k)-conjugate. We say that
GLn has no endoscopy.

(2) We can generalize (1) to inner forms of GLn, i.e. algebraic groups of the form B×,
where B is a central simple algebra over k.

(3) Take k = R and G = SL2. As GL2(C) = C× · SL2(C), elements of G(R) are G(C)-
conjugate if and only if they are GL2(C)-conjugate. For example, the matrices$

0 1

−1 0

%
and

$
0 −1

1 0

%
are in the same SL2(C)-conjugacy class, but we can check

by a direct calculation that they are not in the same SL2(R)-conjugacy class. So
SL2 has endoscopy, and we can generalize that example to SLn for n ! 2.

(4) If k = R and G = Un := {g ∈ GLn(C) | g∗g = In}, then again it is a classical exercise
to check that Un(C)-conjugacy classes in Un(R) coincide with Un(R)-conjugacy
classes.

Remark 2.34. We care about stable conjugacy classes because, in the Langlands philosophy,
groups are related via their L-groups (see 3.2.1 and 3.3.2). As inner forms have the same
L-groups, this means that we should be able to move information between inner forms; but
we can compare conjugacy classes in two inner forms, only stable conjugacy classes. More
generally, if G and H are algebraic groups over k and their is a morphism LH → LG between
their L-groups, then we can use this to transport stable conjugacy classes of semisimple
elements from H to G.

It quickly becomes tiring to calculate conjugacy classes by hand, so we need more efficient
methods to check for endoscopy. Let γ ∈ G(k), and let Gγ ⊂ G be the centralizer of γ.

Let δ ∈ G(k) be stably conjugate to γ, and let g ∈ G(k) such that δ = gγg−1. For every
σ ∈ Gal(k/k), we have

gγg−1 = δ = σ(δ) = σ(g)σ(γ)σ(g)−1 = σ(g)γσ(g)−1,

hence σ(g)−1g ∈ Gγ(k). So we get a 1-cocycle c : Gal(k/k) → Gγ(k), σ )→ σ(g)−1g, and
we can check that the image inv(γ, δ) of this 1-cocycle in H1(k,Gγ) does not depend on the
choice of g. Moreover, the image of inv(γ, δ) in H1(k,G) is trivial.

Proposition 2.35. Suppose that γ is semisimple. Then the map δ )→ inv(γ, δ) gives
a bijection from the set of stable conjugacy classes in the G(k)-conjugacy class of γ to
Ker(H1(k,Gγ) → H1(k,G)).

This is particularly useful when Gder is simply connected and γ is regular and semisimple,
because then the centralizer of γ is a maximal torus.
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Example 2.36. (1) Take k = R and G = Up,q, the unitary group of a form with
signature (p, q). Any maximal torus T of G is isomorphic to Sr ×Us

1, with 2r+ s =

p + q. (Remember that S = ResC/R GL1,C, i.e. it is C× seen as an algebraic group
over R.) By Shapiro’s lemma and Hilbert’s theorem 90, we have

Hi(R, S) = Hi(C,GL1,C) = 0

and
Hi(R,GL1,R) = 0

for every i ! 1. Using the exact sequence

1 → U1 → S Nm−→ GL1,R → 1

where Nm : C× → R× is the map z )→ zz, we see that Hi(R,U1) = 0 if i ! 2, and
H1(R,U1) = R×/Nm(C×) = Z/2Z. So

H1(R, T ) = (Z/2Z)s.

On the other hand, by the main result of Borovoi’s paper [Bor14, Theorem 9], we
have

H1(R, G) = H1(R, T0)/W0,

where T0 is a maximal torus of G with minimal R-rank, i.e. T0 ≃ Up+q
1 , and W0

is the group of R-points of the Weyl group scheme WT0 . As T0 is anisotropic, the
group scheme WT0 is constant, so W0 = Sp+q. We finally get that

H1(R, G) = (Z/2Z)p+q/Sp+q,

where Sp+q acts by permuting the entries. We still need to check that the map
H1(R, T ) → H1(R, G) is the obvious one, i.e. induced by the map (Z/2Z)s →
(Z/2Z)p+q adding p + q − s entries equal to 0 (it does not matter which ones,
as we are taking the quotient by Sp+q), but this is not hard. We conclude that
Ker(H1(R, T ) → H1(R, G)) is trivial. Hence G(R)-conjugacy classes of regular
semisimple elements coincide with G(C)-conjugacy classes.

Note that in the previous paragraph, although Ker(H1(R, T ) → H1(R, G)) is triv-
ial, the map H1(R, T ) → H1(R, G) is not injective. This happens because H1(R, G)

is just a pointed set and not a group (unlike H1(R, T )).
(2) We now take k to be a finite extension of Qp, E be an unramified quadratic extension

of k, and G = U∗(n)E/k to be the quasi-split unitary group defined by that extension,
i.e. the unitary group of the Hermitian k-space En, with the form

((x1, . . . , xn), (y1, . . . , yn)) )→
n)

i=1

xiyn+1−i,

where x )→ x is the nontrivial element of Gal(E/k). Any maximal torus T of G

is isomorphic to (ResE/k GL1)
r × U(1)sE/k, where U(1)E/k is the subgroup of norm

elements in ResE/k GL1 and 2r+ s = n. As before, we have H1(k,ResE/k GL1) = 0

and H1(k,U(1)E/k) = k×/NmE/k(E
×) = Z/2Z.

But now we have H1(k,G) = Z/2Z. Indeed, the derived group Gder = SU∗(n)E/k

of G is simply connected, so H1(k,Gder) = 0 by a theorem of Kneser (see [Kne65]),
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and then we use the fact that G = Gder ⋊ U(1)E/k. The map H1(k, T ) → H1(k,G)

is then just the sum map.
So we see that, for some maximal tori T , the set Ker(H1(k, T ) → H1(k,G)) is

not a singleton, hence there are stable conjugacy classes containing more than one
conjugacy class. As in (1), the more anisotropic factors the torus T has, the bigger
its H1 is.

The second example shows that, if G is the general unitary group of a Kottwitz simple
Shimura variety as in Definition 2.31, then it is not reasonable to expect that G will behave
as GLn and have absolutely no endoscopy over any field. In fact, what Kottwitz actually
proved about these groups is the following:

Proposition 2.37 ([Kot92a, Lemma 2] and [Kot86, Theorem 6.6]). Let A be the restricted
product of the Qv, for v a place of Q. Let γ be a semisimple element of G(Q), and δ be an
element of G(A) that is G(A)-conjugate to γ. Then there exists an element of G(Q) that is
G(A)-conjugate to δ.23

This implies that in the trace formula for G (see 3.4.4), we will be able to group the
orbital integrals on the geometric side by stable conjugacy class and obtain an expression
that is easier to transfer between groups. See Section 4 of [Kot92a].

The proof of Proposition 2.37 is a more complicated global version of the Galois cohomol-
ogy calculations of Example 2.36. First Kottwitz reduces to the case of Gder = ResF0/Q U,
where U is the unitary group (over F0) given by U(R) = {g ∈ (D⊗F0

R)× | gg∗ = 1}. Then
Then he reduces to a similar result for U, now involving F0-rational points and the ring of
adeles of F0. The main point is that, if T is a maximal torus of U, then TF is a maximal
torus of D×, and maximal tori of D× are all of the form ResK/F GL1, for K a degree n

extension of F . This allows us to control the Galois cohomology of T .

2.5. p-adic uniformization and local Shimura varieties.

23Note however that this new element of G(Q) may not be G(Q)-conjugate to γ.
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3. The cohomology of Shimura varieties

In this section, we discuss techniques to calculate the cohomology of Shimura varieties,
concentrating on the compact case (see at the end for the general case).

We fix a connected reductive group G over Q; let Z(G) be the center of G, and let SG be
the maximal Q-split torus in Z(G).

Except in Subsection 3.5, we will often assume that Gder is of Q-rank 0, which means
that G has no proper parabolic subgroup.

3.1. Matsushima’s formula.

3.1.1. Discrete automorphic representations. Let AG = SG(R)0. If Gder is of Q-rank 0, then
the quotient G(Q)\G(A)/AG is compact; this follows from the theorem on page 461 of the
paper [MT62] by Mostow and Tamagawa and from the fact that, with the notation of that
paper, we have G(A) = AGG(A)1 (which is easy to prove). Without this assumption, the
quotient G(Q)\G(A)/AG is still of finite volume. We denote by L2

G the space of complex
L2 functions on G(Q)\G(A)/AG. The group G(A) acts on LG by right translation on the
argument, and this defines a continuous unitary representation of G(A).

If G(Q)\G(A)/AG is compact, the representation L2
G decomposes as a Hilbertian sum of

irreducible representations π of G(A), with finite multiplicities m(π). This is not true in
general, but we can still consider the part L2

G,disc of L2
G that decomposes discretely, and we

still denote by m(π) the multiplicity of an irreducible representation π of G(A) in L2
G,disc.

We denote by ΠG the set of equivalences classes of irreducible representations π of G(A)
such that m(π) ∕= 0. Elements of ΠG are called discrete automorphic representations
of G(A) (or just of G). If Gder is of rank 0, then the concepts of automorphic representations,
discrete automorphic representations and cuspidal automorphic representations coincide.

If π ∈ ΠG, then, as G(A) = G(Af ) × G(R), we can write π = πf ⊗ π∞, where πf (resp.
π∞) is an irreducible representation of G(Af ) (resp. G(R)).

3.1.2. The theorem. To state Matsushima’s formula, we first need some definitions. Let g be
the Lie algebra of GR, let K ′

∞ be a maximal compact subgroup of GR, and set K∞ = AG·K ′
∞.

If π ∈ ΠG, then we denote by H∗(g,K∞;π∞) the (g,K∞)-cohomology of π∞, i.e. the
cohomology of the complex Cq(g,K∞;π∞) = HomK∞(∧q(g/k), (π∞)∞), where k = Lie(K∞)

and (π∞)∞) is the space of smooth vectors in π∞ (which is stable by K∞ because π∞ is
K ′

∞-finite and AG acts trivially).24

The following theorem for connected components of complex Shimura varieties is Corol-
lary VII.3.4 of [BW00], and the adelic reformulation can be found in Section 2 of Arthur’s
paper [Art89].

Theorem 3.1 (Matsushima’s formula). Let (G, h) be a Shimura datum with Gder of Q-rank
0. Then we have a G(Af )-equivariant isomorphism of graded C-vector spaces

lim−→
K

H∗(MK(G, h)(C),C) ≃
.

π∈ΠG

πf ⊗H∗(g,K∞;π∞)m(π),

where G(Af ) acts on the factors πf on the right hand side.

24See Section I.5 of Borel and Wallach’s book [BW00] for more about (g,K)-cohomology. The main
point of us is that this is something that can in theory be calculated.
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Here H∗(MK(G, h)(C),C) is Betti cohomology with coefficients in C.
The theorem is equivalent to the following corollary. Let K be an open compact subgroup

of G(Af ), and remember from page 2 of Section 1 that the Hecke algebra HG,K at level
K is the space of bi-K-invariant functions from G(Af ) to Q with compact support, with
the convolution product as multiplication.25 If π ∈ ΠG, then πK

f is a finite-dimensional
representation of HG,K ⊗Q C.

Corollary 3.2. Let (G, h) be as in Theorem 3.1, and let K be an open compact subgroup
of G(Af ). Then we have an isomorphism of graded HG,K-modules

H∗(MK(G, h)(C),C) ≃
.

π∈ΠG

πK
f ⊗H∗(g,K∞;π∞)m(π).

3.2. Étale cohomology of canonical models: the Kottwitz conjecture. Let ℓ be a
prime number. If (G, h) is a Shimura datum, then the projective system (MK(G, h)(C))K
with its G(Af ) has a model over the reflex field F = F (G, h). So the ℓ-adic étale cohomology
H∗

ét(MK(G, h)F ,Qℓ) has commuting actions of HG,K and Gal(F/F ). For every isomorphism
Qℓ ≃ C, we have comparison isomorphisms

H∗
ét(MK(G, h)F ,Qℓ) ≃ H∗(MK(G, h)(C),C)

equivariant for the action of HG,K , because this action comes from the geometric Hecke
correspondences. So, when Gder is of Q-rank 0, Matsushima’s formula tells us that the
action of HG,K ⊗Q Qℓ on the cohomology groups Hi

ét(MK(G, h)F ,Qℓ) is semi-simple, that
the only representations of HG,K that appear are the πK

f for π ∈ ΠG, and that the πK
f -

isotypic part Hi
K(πf ) of Hi

ét(MK(G, h)F ,Qℓ) is of dimension
)

π′∈ΠG

π′
f≃πf

m(π′) dimHi(g,K∞;π′
∞).

We would like to calculate the action of Gal(K/K) on Hi
K(πf ). We would like to calculate

the action of Hi
K(πf ), and we want to state that conjecture in the simplest case. We need

some preparation.

3.2.1. The Langlands group of F . The Langlands group LF of F is a conjectural group
scheme over C whose irreducible representations on n-dimensional vector spaces should
classify the cuspidal automorphic representations of GLn(AF ). Remember that we defined
discrete automorphic representations of GLn(AF ) = GLn(F ⊗Q A) in Subsubsection 3.1.1;
roughly speaking, cuspidal automorphic representations are discrete automorphic represen-
tations that don’t arise from an automorphic representation of a Levi subgroup of GLn via
parabolic induction. Langlands conjectures that there is a bijection π )→ φπ from the set
of cuspidal automorphic representations π of GLn(AF ) to the set of equivalence classes of
representations φπ : LF → GLn(C), and this correspondence is the one determined by local
compatibilities. We call φπ the Langlands parameter of π.

More precisely, if π is a discrete automorphic representation of GLn(AF ), then we can
write π as a restricted tensor product

/′
v πv over all places of F , where πv is an irreducible

25Here we fixed any Haar measure on G(Af ) such that open compact subgroups of G(Af ) have rational
volume.
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admissible representation of GLn(Fv). On the other hand, for each place of v, we have the
(non-conjectural) Langlands groups LFv of Fv, with a (conjectural) embedding LFv ⊂ LF ,
and the (non-conjectural) local Langlands correspondence relates irreducible admissible rep-
resentations of GLn(Fv) and n-dimensional representations of LFv (“local Langlands param-
eters”). The local Langlands correspondence was proved independently by Harris-Taylor,
Henniart and Scholze, but for our purposes it is enough to understand the unramified local
Langlands correspondence, which is just given by the Satake isomorphism. If π is a cuspidal
automorphic representation and we write π =

/′
v πv, then we expect that, for every place

v of F , the restriction φπ|LFv
corresponds to πv by the local Langlands correspondence, and

that this uniquely determines φπ. In fact, it should be enough to know φπ at the finite
places v such that πv is unramified (hence the corresponding representation of LFv

is given
by the Satake isomorphism).

It is also expected that LF canonically surjects to GF,C, where GF is the motivic Galois
group of F , a group scheme over Q defined as the Tannakian group of the conjectural cat-
egory of mixed motives over F .26 The irreducible representations of LF factoring through
GF,C are supposed to correspond to automorphic representations satisfying a certain con-
dition at the infinite places of F , called algebraic automorphic representations. On
the other hand, for ever prime number ℓ, the étale ℓ-adic realization functor defines a con-
tinuous morphism of groups Gal(F/F ) → GF (Qℓ), that is supposed to be injective (by the
conservativity conjecture) and have dense image (by the Tate conjecture).

Remark 3.3. The philosophy behind the Langlands group of a number field, and its relation
to the motivic Galois group, are explained much better in Clozel’s paper [Clo90].

Now we come back to the case of a connected reductive group G. We need to define the
L-group of G; a good reference for this is Section 1 of [Kot84b]. Let T be a maximal torus of
G. The root datum of G is the quadruple (X∗,Φ, X∗,Φ

∨), where X∗ = X∗(TC), Φ ⊂ X∗

is the set of roots of TC in GC, X∗ = X∗(TC) and Φ∨ ⊂ X∗ is the set of coroots. As G

and T are defined over Q, this root datum has an action of Gal(Q/Q). The dual group
!G of G is the complex connected reductive group with root datum (X∗,Φ

∨, X∗,Φ). If we
fix a pinning of !G, then this defines an action of Gal(Q/Q) on !G, and the L-group of G if
LG = !G⋊WQ, where WQ ⊂ Gal(Q/Q) is the Weil group of Q.

Remark 3.4. If ℓ is a prime number, we could define !G to be the connected reductive group
over Qℓ with root datum (X∗,Φ

∨, X∗,Φ), and we would get a group LG over Qℓ. We write
!G(Qℓ) and LG(Qℓ) for the resulting groups, when we want to distinguish them from the
complex versions. Which form of the L-group we use depends on the context: for Langlands
parameters defined on LF , we use the complex form, and for Langlands parameters defined
on Gal(F/F ), we use the ℓ-adic form.

Example 3.5. If G is of type A, B, E, F or G, then !G is of the same type as G. If G is
of type Bn (resp. Cn), then !G is of type Cn (resp. Bn). We can also relate other properties
of G and !G: for example, the derived group Gder is simply connected if and only if Z( !G) is
connected, and in that case Z( !G) is the dual group of G/Gder.

26To make this precise, we need a fiber functor. We fix an embedding of F into C and take the fiber
product given by the corresponding Betti realization with Q-coefficients.
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Here are some examples of dual groups:

• 0GLn = Û(p, q) = GLn(C) if p+ q = n;
• 0SLn = ̂SU(p, q) = PGLn(C) if p+ q = n;
• P̂GLn = SLn(C);
• Ŝp2n = SO(2n+ 1), ĜSp2n = GSpin2n+1(C);
• ̂GU(p, q) = GL1(C)×GLn(C).

We see that different groups can have isomorphic dual groups. In fact, if G′ is an inner
form of G, then the L-groups LG and LG′ are isomorphic. However, as U(p, q) is not
an inner form of GLn, the actions of Gal(Q/Q) on their dual groups are not the same,
and we get non-isomorphic L-groups. If G = GLn (or more generally if G split over Q),
then Gal(Q/Q) acts trivially on !G. On the other hand, if G = U(p, q) and if E is the
imaginary quadratic extension of Q that we used to define G, then Gal(Q/Q) acts on !G =

GLp+q(C) via its quotient Gal(E/Q), and the nontrivial element of Gal(E/Q) acts as a non-
inner automorphism of GLp+q(C), i.e. a conjugate of the automorphism g )→ tg−1 (which
conjugate depends on the choice of the pinning).

Coming back to the Langlands correspondence for G, there are several complications:

• A cuspidal automorphic representation π of G(A) should now have a Langlands
parameter φπ with values not in GLn(C) but in LG;

• There is a still a characterization of algebraic automorphic representations (conjec-
turally corresponding to the parameters that factors through GF,C), but it is more
complicated;

• Distinct cuspidal automorphic representations can have the same Langlands param-
eter. We say that they are in the same L-packet.

Also, if π is an algebraic cuspidal automorphic representation of G, then we expect
φπ : GQ,C → LG to be defined over a finite extension L of Q in C. Choosing a finite place λ

of L over a prime number ℓ, we get a morphism from GQ(Qℓ) into the ℓ-adic version of LG,
and this gives a morphism σπ : Gal(Q/Q) → LG(Qℓ), also called the Langlands parameter
of π, and whose value on the Frobenius elements at big enough prime numbers p is predicted
by the Satake parameter of πp. Now the conjecture only involves well-defined objects, and
we can actually try to prove it!

Remark 3.6. If we are very brave and want to classify all discrete automorphic representa-
tions of G(A), then there is an extension of the Langlands conjecture due to Arthur. Now
a discrete automorphic representation π should have a parameter ψπ : LF × SL2(C) → LG,
satisfying a long list of properties (in particular compatibility with a local version of the
Arthur conjectures), and there is a somewhat explicit formula to calculate the multiplicity
m(π). For a quick review of Arthur’s conjectures, see Section 8 of Kottwitz’s paper [Kot90].
Warning: if π is cuspidal, then we can recover φπ from ψπ and vice versa, but the two
parameters are not equal.

3.2.2. The Kottwitz conjecture. Let (G, h) be a Shimura datum, and let F = F (G, h) be its
reflex field. We assume that Gder is of Q-rank 0, so that the Shimura varieties MK(G, h)(C)
are compact.



42 SOPHIE MOREL (SCRIBED BY WENHAN DAI)

The conjugacy class of the cocharacter µ := hC ◦ r : GL1,C → GC is defined over F (see
Subsubsection 1.5.3), hence it defines a finite-dimensional representation rµ of LGF (Qℓ) :=
!G(Qℓ) ⋊ WF in the following way (see Lemma 2.1.2 of Kottwitz’s paper [Kot84a]): fix a
maximal torus !T of !G and a Borel subgroup !B containing !T that are part of a splitting
fixed by WF . The cocharacter hC ◦ r corresponds to a unique dominant character µ of !T ,
and we denote by Vµ the corresponding highest weight representation of !G(Qℓ). The action
of !G(Qℓ) on Vµ extends to a unique action rµ of LGF (Qℓ) such that WF acts trivially on
the highest weight subspace.

Example 3.7. (1) If G = GSp2d and (G, h) is the Shimura datum of Example 1.33,
then !G = GSpin2d+1(C) and rµ : !G → GL2d(C) is the spin representation.

• If d = 1, then GSp2d = GL2 and rµ is the standard representation of 0GL2 =

GL2(C).
• If d = 2, then we have an exceptional isomorphism GSpin5(C) ≃ GSp4(C), and
rµ is isomorphic to the standard representation of GSp4(C).

(2) If G = GU(p, q) and (G, h) is the Shimura datum of Example 1.38, then !G ≃
GL1(C)×GLp+q(C) and rµ is, up to twists by characters, the qth exterior power of
the standard representation of GLp+q(C).

Let K be an open compact subgroup, and let π be a cuspidal automorphic representation
of G(A) such that the πK

f -isotypic part Hi
K(πf ) of Hi(MK(G, h)(C),C) is nonzero for at

least one i ∈ Z. Then π should be algebraic, so its Langlands parameter should give rise to
a Galois representation σπ : Gal(Q/Q) → LG(Qℓ) as above.

Finally, let d = dimMK(G, h).

Conjecture 3.8 (Kottwitz, cf. Section 10 of [Kot90] and Section 1 of [Kot92a]). There is
an explicitly defined integer a(πf ) such that we have a Gal(F/F )-equivariant isomorphism
of virtual representations

2d)

i=0

(−1)iHi
K(πf )(d/2) ≃ (rµ ◦ σπ)

a(πf ).

Moreover, the integers i such that Hi
K(πK

f ) ∕= 0 all have the same parity.

By the Weil conjectures (proved by Deligne), the representation Hi
K(πf ) of Gal(F/F ) is

pure of weight i for every i ∈ Z, so we can separated the degrees in the formula of Conjecture
3.8 by using Frobenius weights.

Remark 3.9. (1) The conjecture as stated is in a very naive form, and almost always
false. In fact, we only expect it to be true when the Shimura varieties for (G, h) are
compact and when G has no endoscopy (i.e. admits no nontrivial elliptic endoscopic
triple).

(2) While we cannot hope to prove the Kottwitz conjecture without first constructing
the Langlands parameter of σπ, we do know what the image by σπ of the Frobenius
element Frob℘ at a place ℘ of F over a nice enough prime number p should be,
so we can try to prove that Frob℘ has the correct characteristic polynomial on the
Hi

K(πf ). For the simple Shimura varieties of Subsection 2.4, Kottwitz proved this
consequence of his conjecture in [Kot92a].
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(3) If we know the local Langlands correspondence for G, we can also try to check
that the restriction to all local Galois groups of the Hi

K(πf ) are as predicted by the
Kottwitz conjecture. This is a much harder problem and we won’t discuss it here.

3.3. Applications of the Kottwitz conjecture.

3.3.1. The zeta function of a Shimura variety.

Definition 3.10. Let X be a smooth proper variety over a finite field Fq. The Hasse-Weil
zeta function of X is the following formal power series in q−s:

Z(X, s) = exp

1

2
)

n!1

#X(Fqn)

n
q−sn

3

4 .

Using the Grothendieck-Lefschetz fixed point formula (cf. Theorem 3.15 later), we get
the following result.

Theorem 3.11 (Grothendieck, see Theorem 3.1 of [Del77]). Let Frobq ∈ Gal(Fq/Fq) be the
geometric Frobenius (the inverse of the arithmetic Frobenius a )→ aq). Then

Z(X, s) =

2 dim(X)-

i=0

det(1− q−sFrobq,H
i
ét(XFq

,Qℓ))
(−1)i+1

.

In particular, the formal power series Z(X, s) is actually a rational function on q−s.

Remark 3.12. We can define the zeta function of any algebraic variety over Fq by the
same formula, and Theorem 3.11 still holds providing we use étale cohomology with proper
supports.

Now let X be proper smooth algebraic variety over a number field F . For all but finite
places ℘ of F , the variety X has a proper smooth model X over OF,℘ (we say that X has
good reduction at ℘), and we set

ζX,℘(s) = ζXκ(℘)
(#κ(℘)−s),

where κ(℘) = OF /℘ is the residue field of ℘. By Theorem 3.11 and the specialization
theorem for étale cohomology, this does not depend on the choice of the model.

If v is a finite place of F where X does not have good reduction or an infinite place, we
will not give the definition of ζX,v(s); we will just say that ζX,v(s) is a rational function of
#κ(v)−s if v is finite and a product of Γ functions if v is infinite.

Definition 3.13. The Hasse-Weil zeta function of X is the infinite product

ζX(s) =
-

v place of F

ζX,v(s).

Example 3.14. If X = SpecQ, then ζX is the Riemann zeta function.

A priori this product only makes sense for ℜ(s) big enough. The Hasse-Weil conjecture
predicts that ζX(s) has a meromorphic continuation to C and a functional equation similar
to the one of Riemann zeta function.

The conjecture seems to be out of reach in general, but for Shimura varieties we can
approach it using the Kottwitz conjecture. The general idea goes as follows:
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(1) Essentially by Theorem 3.11, we have an equality

ζX(s) =

2 dim(X)-

i=0

L(Hi
ét(XF ,Qℓ), s)

(−1)i+1

,

where, for every continuous representation ρ of Gal(F/F ), we denote by L(ρ, s) the
L-function of ρ.

(2) Suppose that (G, h) is a Shimura datum such that Gder has Q-rank 0, that F =

F (G, h) and X = MK(G, h). For every i, we have up to semi-simplification

Hi
ét(MK(G, h)F ,Qℓ) ≃

.

π∈ΠG

Hi
K(πf )

dim(πK
f )

as representations of Gal(F/F ).
(3) The Kottwitz conjecture predicts that Hi

K(πf ) is a sum of copies of rµ ◦ σπ, where
σπ : Gal(F/F ) → LG(Qℓ) is the Langlands parameter of π and rµ is the algebraic
representation of LG defined in Subsubsection 3.2.2. But the local compatibility
between π and σπ implies immediately that

L(rµ ◦ σπ, s) = L(π, s, rµ),

where the L-function L(π, s, rµ) is defined in Borel’s survey [Bor79].
(4) In theory we understand the analytic properties of L-functions of automorphic rep-

resentations better, so we get some information of the zeta function of MK(G, h).

In practice the automorphic L-functions that appear are usually not standard L-functions
and so our understanding of them is still limited. However, this methods can still go through
when rµ is the standard representation of a classical group, such as in the case of modular
curves or Picard modular surface (when G = GU(2, 1)), see [Bor79].

3.3.2. The global Langlands correspondence. Let (G, h) be a Shimura datum, and let F =

F (G, h). In a way, the Kottwitz conjecture says that the cohomology lim−→K
H∗

ét(MK(G, h)F ,Qℓ)

realizes the global Langlands correspondence for those automorphic representations of G(A)
that contribute to Matsushima’s formula. So we could try to use this cohomology to con-
struct the global Langlands correspondence in that case, and then use results like the main
theorem of Kottwitz’s [Kot92a] to check that this does satisfy the desired compatibility with
the local correspondence (at least in the unramified case). There are several problems with
this approach:

(1) The representation of Gal(F/F ) that appears in the cohomology of MK(G, h) is not
σπ (this would not even make sense, as σπ is a morphism into LG(Qℓ)) but rµ ◦ σπ;

(2) There are multiplicities (the integer a(πf ) in the Kottwitz conjecture);
(3) We want to construct the Langlands correspondence for GLn, not some strange

unitary group;
(4) We want to get a representation of Gal(Q/Q), not Gal(F/F );
(5) This will only ever work for “cohomological” automorphic representations, i.e. those

π that appear in the cohomology of Shimura varieties. This is a condition on π∞:
roughly, we need it to have nontrivial (g,K∞)-cohomology.
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All of these can be somewhat addressed, at some cost. For point (1), we can choose
the group such that !G is classical and rµ is the standard representation. This will for
example be the case if G = GU(n− 1, 1), although in practice we will rather G to be a more
complicated unitary group (defined by a CM extension of Q of degree 2r > 2) of signature
(n− 1, 1)× (n, 0)r−1 at infinity, so that we can get a simple Shimura variety. Of course, this
solution puts even greater restrictions on the groups that we can use, so it seems that we
are making problems (3) and (4) worse.

For problem (2), we can sometimes calculate the multiplicities, and they tend to be equal
to 1 for nice unitary groups.

Problem (3) can be attacked using the Langlands functoriality principle. The idea
is that, if discrete automorphic representations of G(A) are parametrized by morphisms
LQ×SL2(C) → LG, then, if H is another connected reductive algebraic group over Q and if
we have a morphism LG → LH, then we should be able to “transfer” discrete automorphic
representations from G to H. As with the global Langlands correspondence or the Arthur
conjectures, this principle can be made very precise at “good” primes (i.e. primes where both
groups and all automorphic representations we consider are unramified) using the Satake
isomorphism, so we can pin down the conjectural transfer using a local-global compatibility
principle. Of course, things are not so simple: the conjectural Arthur parametrization is not
bijective in general so we can only expect to transfer L-packets, so we can only expect to
transfer.

One favorable case is when !G is the set of fixed points of an automorphism of !H, because
then we can use the (twisted) Arthur-Selberg trace formula to construct the transfer map,
although this is very technically difficult; see Subsubsection 3.4.4 for a very simple instance
of the (untwisted) trace formula. This is for example the case if G = Sp2d and H = GL2d+1,
if G is the group U(p, q) constructed using a quadratic imaginary extension E of Q and H =

GLp+q(E), seen as an algebraic group over Q, or if G = GLn and H = GLn(E) (seen as an
algebraic group over Q again) for E/Q as before (or more generally a cyclic extension). Using
trace formula techniques, we can transfer discrete automorphic representations of GLp+q(A)
to GLp+q(AE), and then back down to U(p, q)(A). One caveat is that this only works for
representations of GLp+q(AE) that are conjugate self-dual (because their parameter should
be stable by the involution of ̂GLp+q(E) whose set of fixed points is equal to Û(p, q)). This
kind of construction will also work for more general unitary groups defined using other CM
fields. Again, this is difficult and there are many technical problems, including annoying
congruence conditions on p + q. The first results that we are aware of in this direction are
due to Clozel (see [Clo91], which rests on the results of Kottwitz from [Kot92a]). More
recent and more powerful results can be found in the papers [Shi11] of Shin and [SS90] of
Scholze-Shin [SS13]; these require unitary Shimura varieties that are not simple, so they
use a more complicated form of the Kottwitz conjecture (see Subsection 3.5), as well as the
fundamental lemma.

Problem (4) can be addressed by “gluing” Galois representations constructed using dif-
ferent Shimura varieties. More precisely, suppose that you have a discrete automorphic
representation π of GLn(A), and that you know that it is self-dual and that π∞ satisfies
all the required conditions for π to transfer to cohomological automorphic representations
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of unitary groups. By varying the CM field Ei (and the corresponding unitary group), we
get a family of representations σi of Gal(Ei/Ei), compatible by looking at what happens at
“nice” prime numbers, and then glue then if we chose the Ei disjoint enough.

Problem (5) requires entirely new techniques; a related problem is that we can only
ever transfer self-dual automorphic representations of GLn to groups that have Shimura
varieties, but we don’t have time to explain them here. See for example the papers [CH13]
of Chenevier-Harris, [HLTT16] of Harris-Lan-Taylor-Thorne, [Sch15] of Scholze, or [Box15]
of Boxer.

3.4. Proving the Kottwitz conjecture. We will present the original approach to the
Kottwitz conjecture, due to Ihara, Langlands and Kottwitz. We will not talk about the
more refined approaches through Igusa varieties or through Scholze’s methods, that also
allow us to understand the cohomology at ramified primes.

The situation is the following: we have a Shimura datum (G, h) such that Gder is of Q-
rank 0 (so that the Shimura varieties MK(G, h) are projective), and a discrete automorphic
representation π of G(A). We fix a small enough open compact subgroup K of G(Af ), and
we write F = F (G, h). We are trying to understand the representation of Gal(F/F ) on the
πK
f -isotypic components Hi

K(πf ) in the cohomology groups Hi
ét(MK(F, h)F ,Qℓ).

3.4.1. The specialization theorem. We restrict our attention to the action of the local Galois
group at finite places ℘ of F that are “nice enough”, i.e. such that MK(G, h) has a proper
smooth integral model MK over OF,℘. Remember from Section 2 that, if (G, h) is of abelian
type, then we have control over these places ℘ (in terms of G and K), but in general we
only know that this holds for all but finitely many ℘.

Fix ℘ as in the previous paragraph, and let κ(℘) be the residue field of ℘. Then we have
an exact sequence

1 → I℘ → Gal(F℘/F℘) → Gal(κ(℘)/κ(℘)) → 1,

where I℘ is the inertia group at ℘. Moreover, as κ(℘) is a finite field, its absolute Galois
group is topologically generated by the geometric Frobenius Frob℘, which is the inverse of
the arithmetic Frobenius a )→ a#κ(℘).

The specialization theorem for étale cohomology (which follows from the proper and
smooth base change theorems) tells us that the representations Hi

ét(MK(F, h)F℘
,Qℓ) of

Gal(F℘/F℘) are unramified, i.e. that I℘ acts trivially on them, and that we have isomor-
phisms of representations of Gal(κ(℘)/κ(℘)):

(3.1) Hi
ét(MK(F, h)F℘

,Qℓ) ≃ Hi
ét(MK,κ(℘)

,Qℓ).

If we have a Hecke correspondence defined by g ∈ G(Af ) and K ′ ⊂ K ∩ gKg−1, then
these isomorphisms will be compatible with the corresponding Hecke operator, provided that
MK′(G, h) also has a proper smooth model over OF,℘ and that the Hecke correspondence
extends to the model over OF,℘.

So we can now work over the finite field κ(℘).
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3.4.2. The Grothendieck-Lefschetz fixed point formula and Deligne’s conjecture. Suppose we
were only trying to understand the representation of Gal(F℘/F℘) on H∗

ét(MK(G, h)F℘
,Qℓ)

(and not on the Hecke isotypic components), and that we only cared about semisimplications.
The, by the isomorphism (3.1), it would suffice to calculate the characteristic polynomial
of Frob℘ acting on H∗

ét(MK,κ(℘)
,Qℓ). We can do this thanks to the Grothendieck-Lefschetz

fixed point formula (already mentioned in Subsubsection 3.3.1 on the zeta function):

Theorem 3.15 (Grothendieck, cf. Théorème 3.2 of [Del77]). Let Fq be a finite field, Fq be
an algebraic closure of Fq, ℓ be a prime number different from the characteristic of Fq and
Frobq be the geometric Frobenius automorphic of Fq. Then, for every separated Fq-scheme
of finite type X and every positive integer r, we have

2 dim(X))

i=0

(−1)i Tr(Frobrq,H
i
ét,c(XFq

,Qℓ)) = #X(Fqr ),

where Fqr is the unique extension of Fq of degree r in Fq.

To understand the action of Gal(F℘/F℘) on the Hecke isotypic components, we need to
calculate the traces of Hecke operators multiplied by powers of Frob℘ on H∗

ét(MK(G, h)F℘
,Qℓ).

For this, we use a generalization of the Grothendieck-Lefschetz fixed point formula called
Deligne’s conjecture. We will not state the most general version here, but just the conse-
quence that we need.

We use the notation of Theorem 3.15. Let X,X ′ be separated Fq-schemes of finite type,
and let a, b : X ′ → X be finite morphisms. Suppose that the trace morphism Trb : b∗b

∗ → id

exists.27 Let u be the endomorphism of H∗
ét,c(XFq

,Qℓ) that is the composition of the pullback
by a map H∗

ét,c(XFq
,Qℓ) → H∗

ét,c(X
′
Fq
,Qℓ) and of the map H∗

ét,c(X
′
Fq
,Qℓ) → H∗

ét,c(XFq
,Qℓ)

induced by Trb. Finally, we denote by FX : X → X the Frobenius morphism (which is
identity on the underlying topological spaces and raises functions to the qth power).

Theorem 3.16. For any big enough positive integer r, we have
2 dim(X))

i=0

(−1)i Tr(Frobrq · u,H∗
ét,c(XFq

,Qℓ)) = #{x′ ∈ X ′(Fq) | a(x′) = F r
X ◦ b(x′)}.

Although it is still often refereed to as “Deligne’s conjecture”, this statement is a theorem:
if X,X ′ are reductions of Shimura varieties and a, b are Hecke operators, it was proved by
Pink in [Pin92]. In the general case, it was proved independently by Fujiwara [Fuj97] and
Varshavsky [Var07].

So now we need to understand the set of points the Shimura varieties MK(G, h) and
MK′(G, h) (or rather of their integral models) over κ(℘), as well as the action of the Frobenius
and of Hecke correspondences on these points.

3.4.3. The Langlands-Rapoport conjecture. The Langlands-Rapoport conjecture gives a purely
group-theoretical description of the set of points of a Shimura variety over the algebraic clo-
sure of the residue field at a good place ℘ of the reflex field, as well as a description of
the action of the Frobenius at ℘ and of Hecke operators on this set. We will only give a

27This holds for example if b is flat or if X and X′ are both normal.
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rough statement here; see for example Milne’s paper [Mil92] for a precise statement of this
conjecture.

Let (G, h) be a Shimura datum with reflex field F , let p be a prime number and ℘ a place
of F above p. Suppose that G and F are unramified at p, and let K = KpKp be a level
with Kp ⊂ G(Qp) hyperspecial. Then we expect the Shimura variety MK(G, h) to have a
“nice” model MK over OF,℘, and the Langlands-Rapoport conjecture gives a description of
MK(Fq), where Fq is an extension of O/℘. The description has the rough shape

MK(Fq) =
"

ϕ

Iϕ(Q)\(Xp(ϕ)×Xp(ϕ)),

where ϕ is in a certain set of parameters, Iϕ is an algebraic group over Q (the centralizer
of ϕ), Xp(ϕ) involves the finite adeles outside of p and Xp(ϕ) is a purely p-adic objects.
The conjecture also includes a description of the actions of the Frobenius and of the Hecke
operators.

It would take too long to explain what the parameters ϕ are, but we can say that they
give rise to triples (γ0, γ, δ), where:

• γ0 is a semisimple element of G(Q), given up to G(Q)-conjugacy;
• γ = (γℓ)ℓ ∕=p is an element of G(Ap

f ), given up to G(Ap
f )-conjugacy, and such that γℓ

and γ0 are conjugated under G(Qℓ) for every ℓ ∕= p;
• δ is an element of G(F ), where L is the unramified extension of degree r = [Fq :

O/℘] for F℘, such that, if we denote by σ ∈ Gal(L,Qp) the lift of the (arithmetic)
Frobenius, then N(δ) = δσ(δ) · · ·σr−1(δ) is G(Qp)-conjugate to γ0.

There are some more conditions on the triple (γ0, γ, δ), see for example Section 2 of
[Kot90]. In any case, we then want to take I(ϕ) = Gγ0 , the centralizer of γ0 in G,28 then

Xp(ϕ) = {g ∈ G(Ap
f )/K

p | g−1γg ∈ Kp}

and
Xp(ϕ) = {g ∈ G(L)/G(OL) | g−1δσ(g) ∈ G(OL)µh(ϖL)G(OL)},

where we extended G to reductive group scheme over Zp, ϖL is a uniformizer of L, and
where µh is the morphism hC ◦ r : GL1,C → GC; as seen as a conjugacy class of morphisms
GL1,Qp

→ GQp
that is stable by Gal(Qp/L); as G is quasi-split over L for r big enough,

we may assume up to taking r big enough that µh is defined over L (see Lemma 1.1.3 of
[Kot84a]).

If the Shimura datum (G, h) is PEL of type A or C, so that MK has a modular description
as in Definition 2.9, then the triples (γ0, γ, δ) should parametrize the Q-isogeny classes of
triples (A,λ, ι) as in the moduli problem. This parametrization rests on Honda-Tate theory,
which classifies abelian varieties A over finite fields using their Frobenius, seen as a central
element of End(A) ⊗Z Q. See Part III of [Kot90] for the case of Siegel modular varieties,
and [Kot92b] for the PEL cases of type A and C.

The Langlands-Rapoport conjecture is not known for general Shimura varieties, because
we do not even have integral models for general Shimura varieties. All the proofs that we
know about ultimately rest on an interpretation of the Shimura variety as a moduli space

28At least if Gder is simply connected, which is a hypothesis that Kottwitz makes in [Kot90].
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of abelian varieties with extra structures, so we need to have such an interpretation. Here
are some known results about it:

• If (G, h) is of PEL type and Gder is simply connected (i.e. G is of type A or
C), then Kottwitz reformulated the Langlands-Rapoport conjecture in [Kot90] and
proved this reformulation in [Kot92b];

• For Shimura varieties of abelian type, Kisin proved the Langlands-Rapoport conjec-
ture in [Kis17].

The upshot is that, if g ∈ G(Af ) has a trivial component at the prime number p under
℘ and f∞ = 1KgK ∈ HK , we get a formula for the trace of Frobr℘ · f∞ on the ℓ-adic
cohomology of MK(G, h) involving terms such as orbital integrals for f∞ (i.e. integrals of f
over G(Af )-conjugacy orbits of elements of G(Q)) and twisted orbital integrals of a function
(depending on r) at p; a priori we only get this for r big enough, but then the identity
automatically extends to all non-negative r. This is the kind of input that we can plug into
the geometric side of the Arthur-Selberg trace formula, see the next subsubsection. The
spectral side of the trace formula will then give us an expression that can be massage into
what we want, i.e., in cases when the simplest form of the Kottwitz conjecture applies, the
trace of Frobr℘ · f∞ on the virtual representation

)

i!0

(−1)i
)

π∈ΠG

a(πf )π
K
f ⊗ (rµ ◦ σπ)

of HK ×Gal(F/F ). So we win.

Remark 3.17. (1) The sentence “This is the kind of input that we can plug into the
geometric side of the Arthur-Selberg trace formula” in the previous paragraph is
sweeping a lot of difficulties under the rug. If we are looking at cases where G has
no endoscopy (such as the simple Shimura varieties of Kottwitz), then the traces
given by the Langlands-Rapoport conjecture are not too far from the geometric
side of the trace formula (see Section 4 of [Kot92a]). In general, we must first
perform a complicated process known as “stabilization”, which uses difficult results
such as the fundamental lemma (not known thanks to work of Laumon-Ngo, Ngo,
and Waldspurger). See Section 4 of Kottwitz’s paper [Kot90] for an explanation
of stabilization in the simpler case when Gder is simply connected, and the book
[KSZ21] of Kisin-Shin-Zhu for theh case of Shimura data of abelian type without
this simplifying hypothesis.

(2) Note that we ever used Matsushima’s formula in our outline of the proof of the
Kottwitz conjecture. In fact, though it serves as a guide, Matsushima’s formula is
not logically necessary to the proof.

3.4.4. The Arthur-Selberg trace formula. We consider the situation of Subsubsection 3.1.1,
so G is a connected reductive group over Q, SG is the maximal Q-split torus in the center
of G and AG = SG(R)0. We write L2

G for L2(G(Q)\G(A)/AG,C), with the action of G(A)
given by right translations.
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We also assume that Gder is of Q-rank 0, so that the quotient G(Q)\G(A)/AG is compact.
Then the representation L2

G is semi-simple, and we have

(3.2) L2
G ≃

.̂

π∈ΠG

πm(π).

Fix a Haar measure on G(A). If f is a smooth function with compact support on G(A), then
we write R(f) for the action of f on L2

G by right convolution. Thanks to our hypothesis on
G, the operator R(f) is of trace class, and the goal of Arthur-Selberg trace formula is to
give two expressions of its trace.

Theorem 3.18 (Arthur, see Section 1 of [Art05]). We have

Tr(R(f)) =
)

π∈ΠG

(π) Tr(π(f))

=
)

γ∈G(Q)/∼

vol(Gγ(Q)\Gγ(A)/AG)

5

Gγ(A)\G(A)
f(x−1γx)dx,

where, in the first formula, π(f) is the operator
6
G
f(x)π(x)dx acting on the space of π

and, in the second formula, the sum is over all elements of G(Q) modulo conjugation and,
if γ ∈ G(Q), we denote by Gγ the centralizer of γ in G.

Note that we need to choose Haar measures on the groups Gγ(A) to make sense of the
second formula for R(f) (we also use the counting measure on Gγ(Q)), but that the result
does not depend on that choice.

• The first formula for R(f) is called the spectral side. It follows from the isomor-
phism of (3.2).

• The second formula for R(f) is called the geometric side. We can deduce it by
noting that R(f) is an integral operator with kernel

K(x, y) =
)

γ∈G(Q)

f(x−1γy),

so the trace of R(f) must be equal to
6
G
K(x, x)dx. See Section 1 of [Art05] for

more details.

Remark 3.19. Of course, the fun really starts when the quotient G(Q)\G(A)/AG is not
compact. To learn more about the various version of the trace formula in that case, see the
rest of Arthur’s introductory notes [Art05].

3.5. The general Kottwitz conjecture.

To be continued in the future (no guarantees though).
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