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Part I. Main Theorem on “automorphic ~» Galois”

@ /-adic coefficients

@ torsion coefficients
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Part II. (Conjugate) self-dual case with ¢-adic coeff.

o Apply Langlands—Kottwitz method (or variants), cf. Morel's talk
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Part I. Main Theorem on “automorphic ~» Galois”
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Part II. (Conjugate) self-dual case with ¢-adic coeff.

o Apply Langlands—Kottwitz method (or variants), cf. Morel's talk

Part Ill. Perfectoid Shimura varieties

@ Slogan: Shimura varieties at p>-level are (should be) perfectoid.

Sug Woo Shin (Berkeley) Construction of automorphic Galois representations



Part I. Main Theorem on “automorphic ~» Galois”
@ /-adic coefficients

@ torsion coefficients

Part II. (Conjugate) self-dual case with ¢-adic coeff.

o Apply Langlands—Kottwitz method (or variants), cf. Morel's talk

Part Ill. Perfectoid Shimura varieties

@ Slogan: Shimura varieties at p>-level are (should be) perfectoid.

Part IV. Construction of torsion Galois representations

@ by p-adic congruences a la Scholze, based on Parts Il and IlI.
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Part . Main Players

Fix a number field F, a prime ¢, and n € Z>;.
S : a finite set of places of F D {places |/, o},
KS = TL,gs GLn(Or,) € GLo(AD).
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Part . Main Players

Fix a number field F, a prime ¢, and n € Z>;.
S : a finite set of places of F D {places |/, o},
KS = TL,gs GLn(Or,) € GLo(AD).

Automorphic side with char 0 coeff.
. C-algebraic cuspidal . regular
Aacln, F) | := {Auto. reps of GL,(Af) } 2 [ Awcln, F) |:= { C-alg. cusp.
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Part . Main Players

Fix a number field F, a prime ¢, and n € Z>;.
S : a finite set of places of F D {places |/, o},
KS = TL,gs GLn(Or,) € GLo(AD).

Automorphic side with char 0 coeff.
. C-algebraic cuspidal . regular
Asc(n, F) |:= {Auto. reps of GL,(AF) } 2 [ Arc(n, F) | = { C-alg. cusp.

Automorphic side with Fj-coeff.
HE>(n, F) | := Hecke Eigencharacters T° — F, appearing in

T® := Ze[K°\G(AZ)/K®] ~ H*(YaL, ks, Fe).
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Part . Main Players

Fix a number field F, a prime ¢, and n € Z>;.
S : a finite set of places of F D {places |/, o},
KS = TL,gs GLn(Or,) € GLo(AD).

Automorphic side with char 0 coeff
. C-algebraic cuspidal . regular
Aacln, F) | := {Auto. reps of GLn(AF) } 2 [ Awcln, F) |:= { C-alg. cusp.

Automorphic side with Fj-coeff.

HE>(n, F) | := Hecke Eigencharacters T° — F, appearing in

T® := Ze[K°\G(AZ)/K®] ~ H*(YaL, ks, Fe).

Galois side with coeff. k € {Q,F,}

G®(n, F)x | := continuous semisimple unramified-outside-S reps

Gal(F/F) — GLa(k).
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Part |. Conjecture & Theorem

rac = regular algebraic cuspidal, (—)° = unram. away from S.
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Part |. Conjecture & Theorem

rac = regular algebraic cuspidal, (—)° = unram. away from S.

Conjecture (Langlands, Clozel, Fontaine-Mazur, Ash, ...)

For every number field F and every isom 1 : C ~ Qy,
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Part |. Conjecture & Theorem

rac = regular algebraic cuspidal, (—)° = unram. away from S.

Conjecture (Langlands, Clozel, Fontaine-Mazur, Ash,

For every number field F and every isom 1 : C ~ Qy,

@ |3 GLCy,, : Asc(n, F) = G°(n,F)g, | ™+ pro,

such that 7, — PW,L|WFV via unramified LLC at v ¢ S.
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Part |. Conjecture & Theorem

rac = regular algebraic cuspidal, (—)° = unram. away from S.

Conjecture (Langlands, Clozel, Fontaine-Mazur, Ash, ...)

For every number field F and every isom 1 : C ~ Qy,

@ |3 GLCy,, : Asc(n, F) = G°(n,F)g, | ™+ pro,

such that 7, — PW,L|WFV via unramified LLC at v ¢ S.

Q |3 GLGs, : HE®(n, F)z, = G°(n, F)s, | m Dy,
such that Vv ¢ S, [Hecke poly of m at v] = [char poly of p,,(Frob,)].
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Part |. Conjecture & Theorem

rac = regular algebraic cuspidal, (—)5 = unram. away from S.

Conjecture (Langlands, Clozel, Fontaine—-Mazur, Ash, ...)

For every number field F and every isom ¢ : C ~ Qy,
Q |3 GLCy,, : A%(n,F) = G°(n,F)g, | ™ pru,

such that w, = px.|wg, via unramified LLC at v ¢ S.

Q |3 GLCs, : HE (n, F)s, = G°(n, F)z, |,  m— Py,
such that Vv ¢ S, [Hecke poly of m at v] = [char poly of p,,(Frob,)].

@ GLCq,, and GLCg, are uniquely characterized. Images?

o D# @

@ I an upgrade m + pn lifting @), where pn has coeff. in a Hecke algebra.
(Caraiani’s talk)

@ 3 conjecture for general G (Buzzard—Gee).
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Part |. Conjecture & Theorem

rac = regular algebraic cuspidal, (—)° = unram. away from S.

Conjecture (Langlands, Clozel, Fontaine-Mazur, Ash, ...)

For every number field F and every isom ¢ : C ~ Qy,
@ |3 GLCy,, : Axc(n, F) = G°(n,F)g, | ™+ pr,

such that w, — px,.|wg, via unramified LLC at v ¢ S.

Q |3 GLCs, : HE (n, F)s, = G°(n, F)z, |,  m— Py,
such that Vv ¢ S, [Hecke poly of m at v] = [char poly of p,,(Frob,)].

Theorem (Harris—Lan—Taylor—Thorne, Scholze)
If F is a totally real or CM field,

@ D is true on w € A2.(n, F).

@ Qs true.
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Part I. Order of proof

If F is a totally real or CM field (c = complex conjugation),

Q |3GLCy,,  AS(n F) = G5(n, Flg, | T+ pry St .

@ |3 GLCs, : HE (n, F)g, = G5(n,F)z, |, ™ By, St ...
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Define AS (n,F) := {roc~n"} C AS.(n,F) ‘“conjugate self-dual’
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Order of proof

#1. Prove @ for m € AS (n, F).
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Part I. Order of proof

If F is a totally real or CM field (c = complex conjugation),

Q |3GLCy,,  AS(n F) = G5(n, Flg, | T+ pry St .

@ |3 GLCs, : HE (n, F)g, = G5(n,F)z, |, ™ By, St ...

Define AS (n,F) := {roc~n"} C AS.(n,F) ‘“conjugate self-dual’

Order of proof
#1. Prove @ for m € AS (n, F).

#2. Prove (2), as well as its analogue with mod ¢™ coeff., m > 1.
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Part I. Order of proof

If F is a totally real or CM field (c = complex conjugation),

Q |3GLCy,,  AS(n F) = G5(n, Flg, | T+ pry St .

@ |3 GLCs, : HE (n, F)g, = G5(n,F)z, |, ™ By, St ...

Define AS (n,F) := {roc~n"} C AS.(n,F) ‘“conjugate self-dual’

Order of proof
#1. Prove @ for m € AS (n, F).

#2. Prove (2), as well as its analogue with mod ¢™ coeff., m > 1.

#3. Deduce D) for 7 that are not conjugate self-dual.
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Part I. Order of proof

If F is a totally real or CM field (c = complex conjugation),

Q |3GLCy,,  AS(n F) = G5(n, Flg, | T+ pry St .

@ |3 GLCs, : HE (n, F)g, = G5(n,F)z, |, ™ By, St ...

Define AS (n,F) := {roc~n"} C AS.(n,F) ‘“conjugate self-dual’

Order of proof
#1. Prove @ for = € AS (n, F).
#2. Prove (2), as well as its analogue with mod ¢™ coeff., m > 1.

#3. Deduce D) for 7 that are not conjugate self-dual.
Plan: Briefly go over #1 (Part 1), focus on #2 (Parts IlI, IV).
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Part Il. Conjugate self-dual case: reduction

Theorem (Clozel, Kottwitz, Harris—Taylor, ...)
If F is a totally real or CM field, then

3 GLCy,, : As(n, F) = G°(n,F)g,. M pn,. st. ...
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Part Il. Conjugate self-dual case: reduction

Theorem (Clozel, Kottwitz, Harris—Taylor, ...)
If F is a totally real or CM field, then

3 GLCy,, : As(n, F) = G°(n,F)g,. M pn,. st. ...

Reduction:  We may assume
@ Fis CM. Set F*t := fixed field of c ~ F.
o FF#£Q.
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Part Il. Conjugate self-dual case: reduction

Theorem (Clozel, Kottwitz, Harris—Taylor, ...)

If F is a totally real or CM field, then
3 GLCy,, : As(n, F) = G°(n,F)g,. M pn,. st. ...

Reduction:  We may assume
@ Fis CM. Set F*t := fixed field of c ~ F.
o FF#£Q.

Use of unitary groups

Say U/F™" := unitary group in n variables w.r.t. F/F" s.t.
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Part Il. Conjugate self-dual case: reduction

Theorem (Clozel, Kottwitz, Harris—Taylor, ...)

If F is a totally real or CM field, then
3 GLCy,, : As(n, F) = G°(n,F)g,. M pn,. st. ...

Reduction:  We may assume
@ Fis CM. Set F*t := fixed field of c ~ F.
o FF#£Q.

Use of unitary groups

Say U/F™" := unitary group in n variables w.r.t. F/F" s.t.
@ signature at oo is (1, n — 1), (0, n), ..., (0, n).
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Part Il. Conjugate self-dual case: reduction

Theorem (Clozel, Kottwitz, Harris—Taylor, ...)

If F is a totally real or CM field, then
3 GLCy,, : As(n, F) = G°(n,F)g,. M pn,. st. ...

Reduction:  We may assume
@ Fis CM. Set F*t := fixed field of c ~ F.
o FF#£Q.

Use of unitary groups

Say U/F™" := unitary group in n variables w.r.t. F/F" s.t.
@ signature at oo is (1, n — 1), (0, n), ..., (0, n).
~» compact Shimura variety Sh whose cohomology ‘realizes” pn,,
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Part Il. Conjugate self-dual case: reduction

Theorem (Clozel, Kottwitz, Harris—Taylor, ...)

If F is a totally real or CM field, then
3 GLCy,, : As(n, F) = G°(n,F)g,. M pn,. st. ...

Reduction:  We may assume
@ Fis CM. Set F*t := fixed field of c ~ F.
o FF#£Q.

Use of unitary groups

Say U/F™" := unitary group in n variables w.r.t. F/F" s.t.
@ signature at oo is (1, n — 1), (0, n), ..., (0, n).
~» compact Shimura variety Sh whose cohomology ‘realizes” pn,,

@ U is g-split at all finite places.
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Part Il. Conjugate self-dual case: reduction

Theorem (Clozel, Kottwitz, Harris—Taylor, ...)

If F is a totally real or CM field, then
3 GLCy,, : As(n, F) = G°(n,F)g,. M pn,. st. ...

Reduction:  We may assume
@ Fis CM. Set F*t := fixed field of c ~ F.
o FF#£Q.

Use of unitary groups

Say U/F™" := unitary group in n variables w.r.t. F/F" s.t.
@ signature at oo is (1, n — 1), (0, n), ..., (0, n).
~» compact Shimura variety Sh whose cohomology ‘realizes” pn,,

@ U is g-split at all finite places.
~~ no local obstruction for “automorphic descent”
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Part Il. Conjugate self-dual case: outline

Want |GLCg,, : ASc(n, F) = G°(n,F)g, | M pn., st .

U/F* := unitary group in n variables w.r.t. F/F* s.t.
@ signature at oo is (1,n — 1), (0, n), ..., (0, n).
~» compact Shimura variety Sh whose cohomology ‘realizes” pn,,

@ U is g-split at all finite places.
~~ no local obstruction for “automorphic descent”
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Part Il. Conjugate self-dual case: outline

Want |GLCg,, : ASc(n, F) = G°(n,F)g, | M pn., st .

U/F* := unitary group in n variables w.r.t. F/F* s.t.
@ signature at oo is (1,n — 1), (0, n), ..., (0, n).
~» compact Shimura variety Sh whose cohomology ‘realizes” pn,,

@ U is g-split at all finite places.
~~ no local obstruction for “automorphic descent”

Ae(m F) D A5 (U, FY) 2 65, F)g,.
N = 7 o H(Sh Lo )™
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Part Il. Conjugate self-dual case: outline

Want |GLCg,, : ASc(n, F) = G°(n,F)g, | M pn., st .

U/F* := unitary group in n variables w.r.t. F/F* s.t.
@ signature at oo is (1,n — 1), (0, n), ..., (0, n).
~» compact Shimura variety Sh whose cohomology ‘realizes” pn,,

@ U is g-split at all finite places.
~~ no local obstruction for “automorphic descent”

Ae(m F) D A5 (U, FY) 2 65, F)g,.
N = 7 o H(Sh Lo )™

(i) “automorphic descent” (inverse of base change, not unique).
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Part Il. Conjugate self-dual case: outline

Want |GLCg,, : ASc(n, F) = G°(n,F)g, | M pn., st .

U/F* := unitary group in n variables w.r.t. F/F* s.t.
@ signature at oo is (1,n — 1), (0, n), ..., (0, n).
~» compact Shimura variety Sh whose cohomology ‘realizes” pn,,

@ U is g-split at all finite places.
~~ no local obstruction for “automorphic descent”

Ae(m F) D A5 (U, FY) 2 65, F)g,.
N = 7 o H(Sh Lo )™

(i) “automorphic descent” (inverse of base change, not unique).

(ii) Langlands—Kottwitz method to show “s.t. ...", cf. Morel's lectures.
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Part Il. Conjugate self-dual case: outline

Want |GLCg,, : ASc(n, F) = G°(n,F)g, | M pn., st .

U/F* := unitary group in n variables w.r.t. F/F* s.t.
@ signature at oo is (1,n — 1), (0, n), ..., (0, n).
~» compact Shimura variety Sh whose cohomology ‘realizes” pn,,

@ U is g-split at all finite places.
~~ no local obstruction for “automorphic descent”

Ae(m F) D A5 (U, FY) 2 65, F)g,.
N = 7 o H(Sh Lo )™

(i) “automorphic descent” (inverse of base change, not unique).
(ii) Langlands—Kottwitz method to show “s.t. ...", cf. Morel's lectures.

(i) Ramanujan conjecture for I as a by-product.
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Part Il. Conjugate self-dual case: reality

U/F™ := unitary group in n variables w.r.t. F/FT s.t.
@ signature at oo is (1,n —1),(0, n), ..., (0, n).

@ U is g-split at all finite places.
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Part Il. Conjugate self-dual case: reality

U/F™ := unitary group in n variables w.r.t. F/FT s.t.
@ signature at oo is (1,n —1),(0, n), ..., (0, n).

@ U is g-split at all finite places.

Problem

Such U don't always exist due to a parity obstruction if n is even.
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Part Il. Conjugate self-dual case: reality

U/F™ := unitary group in n variables w.r.t. F/FT s.t.
@ signature at oo is (1,n —1),(0, n), ..., (0, n).
@ U is g-split at all finite places.

Such U don't always exist due to a parity obstruction if n is even.

Some solutions

@ Endoscopy + congruences via eigenvarieties
(Clozel-Harris—Labesse or S. or Scholze-S. + Chenevier—Harris, )
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Part Il. Conjugate self-dual case: reality

U/F™ := unitary group in n variables w.r.t. F/FT s.t.
@ signature at oo is (1,n —1),(0, n), ..., (0, n).

@ U is g-split at all finite places.

Such U don't always exist due to a parity obstruction if n is even.

Some solutions

@ Endoscopy + congruences via eigenvarieties
(Clozel-Harris—Labesse or S. or Scholze-S. + Chenevier—Harris, )

@ Reduce via congruences to older results by Clozel and Kottwitz
where Q) is given up (Fintzen—S.—Beuzart-Plessis)
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Coming up next

Good news: You can forget almost everything so far.

Part Ill: Perfectoid Shimura varieties

@ Anti-canonical tower

@ Hodge—Tate period morphism

Part IV: Construction of torsion Galois reps

@ Obstruction: locally sym spaces for GL, are not Shimura varieties

(also see Johansson—Thorne)
~~ pass to Shimura variety for Sp,, or Us, via Borel-Serre + ...
@ Comparison theorems (~ Cech cohomology)

@ Fake Hasse invariants
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