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Let F be a local field. We denoted by  ·  the normalized absolute value of F . In the
non-archimedean case it maps a uniformizer to q−1 where q is the cardinality of the residue
field. If F ≃ R it is the usual absolute value, if F ≃ C it is given by z → zz.

1. Representations of reductive groups

1.1. Setup. In this section we focus on the case where F is non-archimedean and occasion-
ally indicate the differences for the archimedean case.

Let G be a connected reductive group over F . We refer to [Bor91] [Spr98] [BT65] and
[DGA+11] for fundamental results about reductive groups. Let C be an algebraically closed
field of characteristic zero, for example C or Qℓ. We consider smooth representations
of G(F ) with coefficients in C, i.e. pairs (V,π) where V is a vector space over C and
π : G(F ) → GL(V ) is a morphism of groups such that the map

G× V −→ V

(g, v) −→ π(g)v

is continuous for the natural topology on G and the discrete topology on V . If π is implicit
we will also denote g · v for π(g)v. Recall that such a representation is called admissible if
for any compact open subgroup K of G(F ) the subspace

V K = {v ∈ V | ∀k ∈ K, π(k)v = v}

of V has finite dimension. It is a non-trivial but well-known fact that any irreducible
representation is admissible. Denote by Z(G) the center of G. By a suitable generalization of
Schur’s lemma, any irreducible representation has a central character Z(G)(F ) → C×. For
a smooth representation (V,π) of G(F ), its contragredient (V , π̃) is the space of K-finite
linear forms on V .

Remark 1.1. In the case of an archimedean field F we only consider coefficients C = C.
The analogue of smooth representations are (g,K)-modules where g = C ⊗R LieG(F ) and
K is a maximal compact subgroup of G(F ). For many notions it is necessary to relate
(g,K)-modules to continuous representations of G(F ) on topological vector spaces. See e.g.
[Wal88, §3.4] for the relation between the two notions in the case of unitary irreducible
representations.
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1.2. Parabolic induction and the Jacquet functor. Let P be a parabolic subgroup
of G. Let N be the unipotent radical of P and M = P/N its reductive quotient. Recall
that there exists a section M → P , unique up to conjugation by N(F ). Let δP (p) =

| det(Ad(p)|Lie(N))| be the modulus character (of M(F ) acting on N(F )). We choose
a square root √

q of q in C, allowing us to define δ
1/2
P . If C = C we naturally choose

√
q ∈ R>0.
Let (V,σ) be a smooth representation of M(F ), which we can see as a representation

of P (F ) trivial on N(F ). The normalized parabolically induced representation iGPσ is the
space of locally constant function f : G(F ) → V such that for any p ∈ P (F ) and g ∈ G(F )

we have f(pg) = δP (p)
1/2σ(p)f(g), with left action by (g · f)(x) = f(xg). If σ is admissible

(resp. has finite length) then iGPσ is admissible (resp. has finite length). The introduction
of δ1/2P in the definition are motivated by the fact that if C = C and (V,σ) is unitary, i.e.
endowed with a M(F )-invariant Hermitian inner product, then iGPσ has a natural G(F )-
invariant Hermitian inner product. In particular if σ is admissible and unitarizable then
iGPσ is semi-simple.

For (π, V ) a smooth representation of G(F ), denote by VN the space of coinvariants for the
action of N(F ), which is naturally a smooth representation πN of M(F ). The normalized
Jacquet functor applied to (π, V ) is the smooth representation rGP π = δ

1/2
P ⊗πN of M(F )

on the space VN . It also preserves admissibility and the property of being of finite length.
Recall that an irreducible (hence admissible) smooth representation (V,π) of G(F ) is

called supercuspidal if VN = 0 for any parabolic P = MN ⊊ G; or equivalently, if for
every proper parabolic subgroup P , the Jacquet functor rGP (·) is zero. This is equivalent to
all “matrix coefficients”

G(F ) −→ C

g −→ 〈π(g)v, ṽ〉

for v ∈ V and ṽ ∈ V , being compactly supported modulo center. Note that if ωπ :

Z(G(F )) → C× is the central character of π then matrix coefficients of π are ωπ-equivariant.
We recall in the following theorem the notion of supercuspidal support.

Theorem 1.2. Let π be an irreducible representation of G(F ).

(1) There exists a parabolic subgroup P = MN of G and a supercuspidal irreducible
representation σ of M(F ) such that π embeds in iGPσ.

(2) If P ′ = M ′N ′ is a parabolic subgroup of G and σ′ is a supercuspidal irreducible
representation of M ′(F ) then π is isomorphic to a subquotient of iGP ′σ′ if and only
if there exists an element of G(F ) conjugating (M,σ) and (M ′,σ), where M and σ

are given as in (1).

The conjugacy classes of (M,σ) may be called the supercuspidal support of π.

Proof. The first part is due to Jacquet: see [Cas, Theorem 5.1.2]. The second part seems to
be due to Harish-Chandra: see [Sil79, Theorem 4.6.1, §5.3.1 and Theorem 5.4.4.1] for the
“if” part. The “only if” part can be deduced from Bernstein center theory [Ber84a]. See also
[BZ77]. □

The G(F )-conjugacy class of (M,σ) in the previous theorem is called the supercuspidal
support of π.
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1.3. Asymptotic properties. For the rest of this section we assume C = C.

Definition 1.3. Let (V,π) be a smooth irreducible representation of G(F ). Let ωπ :

Z(G(F )) → C× be its central character. If ωπ is unitary, then we say that π is essentially
square-integrable if all of its matrix coefficients are square-integrable modulo center:

∀v ∈ V, ∀ṽ ∈ V ,



G(F )/Z(G(F ))

|〈π(g)v, ṽ〉|2dg < ∞.

In general (without assuming that ωπ is unitary) there is a unique smooth character χ :

G(F ) → R>0 such that the central character of χ ⊗ π is unitary [Cas, Lemma 5.2.5], and
we say that π is essentially square-integrable if χ⊗ π is.

If π is an essentially square-integrable irreducible smooth representation of G(F ) and if
ωπ is unitary then π is unitarizable.

Essential square-integrability can be checked on the Jacquet module of a representation,
as recalled in Proposition 1.4 below. For a Levi subgroup M of G we denote by AM the
largest split torus in the centre of M . Denote a∗M := X∗(AM )⊗ZR. We have an isomorphism

(1.1)
a∗M −→ Homcont(AM (F ),R>0)

χ⊗ s −→ (x → |χ(x)|s).

Proposition 1.4 ([Wal03, Proposition III.1.1]). Let (V,π) be an irreducible smooth rep-
resentation of G(F ). Assume that the central character of π is unitary (we can reduce to
this case by twisting). Then (V,π) is essentially square-integrable if and only if for every
parabolic subgroup P = MN of G, the absolute value of any character of AM (F ) occurring
in rGP π is a linear combination with positive coefficients of the simple roots of AM in N via
the isomorphism (1.1).

Replacing “positive” by “non-negative” in this characterization we get the notion of tem-
pered representation. This is also equivalent to a growth condition on coefficients [Wal03,
Proposition III.2.2].

We have the following implications, for an irreducible smooth representation of G(F )

having unitary central character:

supercuspidal =⇒ essentially square-integrable =⇒ tempered =⇒ unitarizable.

For non-commutative G none of these implications is an equivalence.

Proposition 1.5 ([Wal03, Proposition III.4.1]). (1) Let P = MN be a parabolic sub-
group of F and σ an essentially square-integrable irreducible smooth representation
of M(F ) having unitary central character. Then the induced representation iGPσ is
semi-simple, has finite length and any irreducible subrepresentation is tempered.

(2) Let (P,σ) and (P ′,σ′) be two pairs as in (1). Then iGPσ and iGP ′σ′ admit isomor-
phic irreducible subrepresentations if and only if the pairs (M,σ) and (M ′,σ′) are
conjugated by G(F ), and in this case the two induced representations are isomorphic.

(3) For any tempered irreducible smooth representation π of G(F ) there exists a pair
(P,σ) as in (1) such that π is isomorphic to a subrepresentation of iGPσ.
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Remark 1.6. For G = GLn, parabolically induced representations as in Proposition 1.5
are always irreducible [Ber84b, §0.2] and so the proposition completely classifies tempered
representations in terms of essentially square-integrable representations of smaller general
liner groups.

For arbitrary G such induced representations are generically irreducible (see [Wal03,
Proposition IV.2.2] for a precise statement), but decomposing such induced representations
is a suitable problem in general.

The tempered representations are exactly the ones occurring in Harish-Chandra’s Plancherel
formula, expressing the values of any locally constant and compactly supported f : G(F ) →
C in terms of the action of f in tempered representations (or expressing f(1) in terms of
the traces of f in tempered representations).

Finally the “Langlands classification”, that we recall below, classifies irreducible smooth
representations of G(F ) in terms of tempered representations of Levi subgroups. For a
connected reductive group M denote by X∗(M)Γ the abelian group of morphisms M → GL1

(defined over F ). The restriction morphism X∗(M)Γ → X∗(AM ) is an isogeny (it is injective
with finite cokernel) and so it induces an isomorphism ResMAM

: X∗(M)Γ ⊗Z R ≃ a∗M . We
have an isomorphism

(1.2)
X∗(M)Γ ⊗Z R ∼−→ Homcont(M(F ),R>0)

χ⊗ s −→ (x → |χ(x)|s).

Fix a minimal parabolic subgroup P0 of G and a Levi factor M0 of P0. Let Y ⊆ X∗(AM0) be
the subgroup of characters which are trivial on AM0

∩Gder. Recall from [BT65, Corollaire
5.8] that the set of roots of AM0 in G is a root system in (X∗(AM0 , Y ). Let ∆ ⊆ X∗(AM0)

be the set of simple roots for the order corresponding to P0. The rational Weyl group
N(AM0

, G(F ))/M0(F ) acts on a∗M0
; fix an invariant inner product (·, ·) on a∗M0

. For M a
standard Levi subgroup of G the restriction map X∗(AM0

) → X∗(AM ) induces a surjective
map Res

AM0

AM
: a∗M0

→ a∗M . We also have a composite map in the other direction

jMM0
: a∗M

(ResMAM
)−1

−−−−−−−→ X∗(M)Γ ⊗Z R
ResMM0−−−−→ X∗(M0)

Γ ⊗Z R
Res

M0
AM0−−−−−→ a∗M0

and the composition Res
AM0

AM
◦jMM0

is ida∗
M

. In fact one can check that jMM0
◦ ResAM0

AM
is the

orthogonal projection a∗M0
→ jMM0

(a∗M ).

Theorem 1.7 ([Sil78, Theorem 4.1]). (1) Let P be a standard Levi subgroup of G (with
respect to P0) and M is Levi factor containing M0. Let σ be a tempered irreducible
smooth representation of M(F ) (in particular its central character is unitary). Let
ν ∈ X∗(M)Γ ⊗Z R be such that for any α ∈ ∆ not occurring in M we have
(ResMAM0

ν,α) > 0. Consider ν as a character of M(F ) via (1.2), and denote by
σν the twist of σ by this character. Then the induced representation iGP (σν) admits
a unique irreducible quotient J(P,σ, ν). Let P be a parabolic subgroup of G which
is opposite to P . We have dimC HomG(i

G
P (σν), i

G
P
(σν)) = 1 and any nonzero ele-

ment in this line identifies J(P,σ, ν) with the unique irreducible subrepresentation
of iG

P
(σν).
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(2) Let π be an irreducible smooth representation of G(F ). There exists a unique triple
(P,σ, ν) as above such that π is isomorphic to the quotient J(P,σ, ν).

Remark 1.8. It will be useful to reformulate the positivity condition on ν in terms of the
absolute root system of G. First note that the condition does not depend on the choice of an
admissible inner product on a∗M0

. Let T be a maximal torus in M0,F sep and choose a Borel
subgroup B of GF sep containing T and contained in P0,F sep . Choose an admissible inner
product (·, ·)T on X∗(T )⊗ZR, i.e. one variant under the absolute Weyl group. Consider the
restriction map X∗(T ) → X∗(AM0

), inducing a surjective map ResTAM0
: X∗(T )⊗ZR → a∗M0

.
It identifies a∗M0

with ker(ResTAM0
)⊥, and we can endow a∗M0

with the restriction of (·, ·)T .
It turns out that this restriction is also an admissible inner product on aM0∗ for the relative
Weyl group [BT65, §6.10]. The roots of AM0

on LieN are the restrictions of the roots of T
on LieN . So the positivity condition in Theorem 1.7 is equivalent to 〈ResMT ν,α∨〉 > 0 for
any simple root α ∈ X∗(T ) which does not occur in M .

For analogous results in the case where F is archimedean see [Lan89] and [Wal88, Chapter
5].

1.4. Harish-Chandra characters. Denote by C∞
c (G(F )) the space of locally constant and

compactly supported functions G(F ) → C. Recall that any such function in bi-invariant
under some compact open subgroup of G(F ).

Let (V,π) be an admissible representation of G(F ). Any f ∈ C∞
c (G(F )) gives an endo-

morphism π(f) of V via defining π(f)v =

G(F )

f(g)π(g)vdg. By admissibility this integral
is actually a finite sum. Moreover, the image of any π(f) has finite range and we may con-
sider Θπ(f) = trπ(f). The linear form Θπ : C∞

c (G(F )) → C is called the Harish-Chandra
character of π. A standard result in representation theory of finite-dimensional associative
algebras implies that the Harish-Chandra characters Θπ of the irreducible smooth represen-
tations of G(F ) (up to isomorphism) are linearly independent. In particular a smooth rep-
resentation of finite length is characterized up to semi-simplification by its Harish-Chandra
character.

Denote by Grs the regular semi-simple locus in G, an open dense subscheme.

Theorem 1.9 ([HC99, Theorem 16.3]). Assume that F is a non-archimedean local field of
characteristic zero. Let (V,π) be an irreducible smooth representation of G(F ). Choose a
Haar measure for G(F ). There exists a unique element of L1

loc(G(F )), also denoted Θπ,
such that for any f ∈ C∞

c (G(F )) we have

trπ(f) =



G(F )

Θπ(g)f(g)dg.

Moreover, Θπ(g) is represented by a unique locally constant function on Grs(F ).

Unfortunately this result does not seem to be known in full generality in positive charac-
teristic, but see [CGH14]. Harish-Chandra characters behave well under induction [vD72].

See [Wal88, Chapter 8] for the archimedean case.
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2. Langlands dual groups

We recall the definition of Langlands dual groups. We refer to [Bor79, §I.2] for details
not recalled below. In this section F could be any field, F is a separable closure of F and
we denote Γ = Gal(F/F ).

2.1. Based root data. Let G be a connected reductive group over F . There exists a finite
separable extension E/F such that GE admits a Killing pair (also called Borel pair) (B, T )

[DGA+11, Exposé XXII Corollaire 2.4 and Proposition 5.5.1]. We may do assume that E/F

is a subextension of F/F . Associated to (GE , B, T ) we have a based (reduced) root datum
(X,R,R∨,∆) where

• X is the group of characters of T ,
• R ⊂ X the set of roots of T in GE ,
• R∨ the set of coroots of T (a subset of X∨ = Hom(X,Z), the group of cocharacters

of T ), and
• ∆ ⊂ R the set of simple roots corresponding to B.1

The group G(E) acts (by conjugation) transitively on the set of Killing pairs in GE [DGA+11,
Exposé XXVI Corollaire 5.7 (ii) and Corollaire 1.8] and the (scheme-theoretic) stabilizer of
(B, T ) is T [DGA+11, Exposé XXII Cor 5.3.12 and Proposition 5.6.1], which centralizes
T . It follows that other choices of Killing pair in GE yield based root data canonically
isomorphic to (X,R,R∨,∆), and so do other choices for E.

We also obtain a continuous action of Γ on this based root datum, that we now recall.
The group Gal(E/F ) acts on the set of closed subgroups of GE : if G = SpecA for a Hopf
algebra A over F and a closed subgroup H corresponds to an ideal I of A ⊗F E, then for
σ ∈ Gal(E/F ) we let σ(H) be the closed subgroup corresponding to σ(I). If K = SpecB

is a linear algebraic group over F and λ : H → KE is a morphism, dual to a morphism of
Hopf algebras λ : B ⊗F E → (A⊗F E)/I, define σ(λ) : σ(H) → KE as dual to

σ ◦ λ ◦ σ−1 : B ⊗F E → (A⊗F E)/σ(I).

Now for σ ∈ Gal(E/F ) there is a unique T (E)gσ ∈ T (E)\G(E) such that we have σ(B, T ) =

Ad(g−1
σ )(B, T ), and we get a well-defined isomorphism Ad(gσ) : σ(T ) ≃ T . We obtain an

action of Γ on X = X∗(T ) such that σ ∈ Gal(E/F ) maps λ : T → GL1,E to σ(λ)◦Ad(gσ)
−1.

It is straightforward to check that this action preserves R and ∆ and that the dual action on
X∨ preserves R∨. We denote by brdF the resulting functor from the groupoid of connected
reductive groups over F to the groupoid of based root data with continuous action of Γ.

Definition 2.1. Let G be a connected reductive group over F . Define a groupoid of inner
twists IT(G) as follows.

• The objects of IT(G) are the inner twists of G, i.e. pairs (G′,ψ) consisting of a
connected reductive group G′ over F and an isomorphism ψ : GF ≃ G′

F
such that

for any σ ∈ Γ the automorphism ψ−1σ(ψ) of GF is inner.

1Strictly speaking we should also include in the datum the bijection R → R∨ as in [DGA+11, Exposé
XXI], or include the orthogonal of R∨ in X as in [BT65, §2.1].
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• A morphism between two inner twists (G1,ψ1) and (G2,ψ2) of G is an element
g ∈ Gad(F ) such that for any σ ∈ Γ we have

(2.1) ψ−1
2 σ(ψ2) = Ad(σ(g))ψ−1

1 σ(ψ1)Ad(σ(g))−1.

Remark 2.2. (1) One can check that any inner twist ψ : GF → G′
F

yields a canonical
isomorphism brdF (G) ≃ brdF (G

′).
(2) For an inner twist ψ : GF → G′

F
the map

Γ → Gad(F ), σ → ψ−1σ(ψ)

is a 1-cocycle, i.e. an element of Z1
cont(Γ, Gad) = Z1(F,Gad).

(3) The relation (2.1) imply that the isomorphism

ψ2Ad(g)ψ−1
1 : G1,F → G2,F

is defined over F , i.e. descends to an isomorphism G1 ≃ G2.
(4) For an inner twist (G′,ψ) of G we have an isomorphism

Aut(G′,ψ) → G′
ad(F ), g → ψ(g).

Proposition 2.3. Let b be a based root datum with continuous action of Γ. Let CRGb be the
groupoid of pairs (G,α) where G is a connected reductive group over F and α : b ≃ brdF (G)

is an isomorphism of based root data with action of Γ, with obvious morphisms. In other
words CRGb is the groupoid fiber of b for brdF .

(1) There exists an object (G∗,α∗) of CRGb such that G∗ is quasi-split. Two such objects
are isomorphic.

(2) Any object (G,α) of CRGb yields equivalences of groupoids

Z1(F,Gad)
∼←− IT(G)

∼−→ CRGb.

This gives in particular a bijection between H1(F,Gad) and the set of isomorphism
classes in CRGb.

Proof. This is a reformulation of [DGA+11, Exposé XXIV Théorème 3.11] in the case where
the base is the spectrum of a field. □

To sum up, we can “classify” connected reductive groups over F as follows:

• fix a representative in each isomorphism class of based root datum with continuous
action of Γ;

• for each such representative b, fix a quasi-split connected reductive group G∗ over
F together with an isomorphism brdF (G

∗) ≃ b;
• for each element of H1(F,G∗

ad) choose an inner twist (G,ψ) of G∗ representing it.

Up to isomorphism each connected reductive group G over F arises in this way. It can
happen that an isomorphism class of connected reductive groups arises more than once,
because H1(F,Gad) → H1(F,Aut(G)) is not injective in general (equivalently, the functor
brdF is not full).
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2.2. Langlands dual groups. Let C be an algebraically closed field of characteristic zero.
Let G be a connected reductive group over F and let brdF (G) = (X,R,R∨,∆) be its associ-
ated based root datum endowed with a continuous action of Γ. Let ( G,B, T , (Xα)α∈∆∨)

be the pinned connected reductive group over C with the associated based root datum
(X∨, R∨, R,∆∨), i.e. the dual of brdF (G) (ignoring the action of Γ from now). The choice
of a pinning induces a splitting of the extension

1 → Gad → Aut( G) → Out( G) → 1

because the subgroup Aut( G,B, T , (Xα)α∈∆∨) of Aut( G) maps bijectively onto Out( G)

[DGA+11, Exposé XXIV Théorème 1.3]. We also have an isomorphism

Out( G) ≃ Aut(X∨, R∨, R,∆∨) ≃ Aut(X,R,R∨,∆)

and so we have an action of Γ on G (preserving the pinning and factoring through a finite
Galois group). Denote LG = G ⋊ Γ the Langlands dual group, also called L-group. It is
sometimes useful (or just convenient) to replace Γ by a finite Galois group or by the Weil
group in this semi-direct product.

One can give a more pedantic definition of Langlands dual group in order to avoid the
inelegant choice of pinning. Namely, define an L-group for G as an extension LG of Γ by
G, where G is a split connected reductive group endowed with an isomorphism of its base
root datum with the dual of that of G, such that the induced morphism Γ → Out( G) is
as above, and endowed with a G-conjugacy class of splittings Γ → LG, called distinguished
splittings, such that any (equivalently, one) of these splittings s preserves a pinning of G.
It is not necessary to specify the pinning, since for a distinguished splitting s we have that
Gs(Γ) acts transitively on the set of such pinnings: see [Kot84, Corollary 1.7]. By the same
argument, for any pinning of G a distinguished splitting fixing it is unique up to

ker(Z1(Γ, Z( G)) → H1(Γ, G)) = B1(Γ, Z( G)).

Note that all distinguished splittings induce the same action of Γ on Z( G).
By Proposition 2.3 for two connected reductive groups G1 and G2 their Langlands dual

groups LG1 and LG2 are isomorphic as extensions of Γ if and only if G1 and G2 are inner
forms of each other, and in this case they are even isomorphic as extensions endowed with
conjugacy classes of distinguished splittings.

The construction of the Langlands dual group is not functorial for arbitrary morphisms
between connected reductive groups, however in the following cases functoriality is straight-
forward.

• Let G be a quasi-split connected reductive group and (B, T ) a Borel pair defined
over F . Choose a distinguished splitting sG : Γ → LG preserving a pinning
(B, T , (Xα)α∈∆∨) of G and a distinguished splitting sT : Γ → LT . Then the canon-
ical isomorphism T ≃ T extends to an embedding LT ↩→ LG whose composition
with sT is sG.

• For G = G1 ×F G2 we can identify LG with LG1 ×Γ
LG2.

• A central isogeny (see [DGA+11, Exposé XXII Définition 4.2.9]) G → H induces a
surjective morphism with finite kernel LH → G.
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• There are weaker forms of functoriality. Let G be a connected reductive group
and T a maximal torus of G defined over F . Choose a Borel subgroup B of GF

containing TF and a splitting s : Γ → LG preserving a pinning (B, T , (Xα)α) of G.
We have a canonical isomorphism T ≃ T , but the Galois actions differ by a 1-cocycle
taking values in the Weyl group. In general we don’t have a canonical embedding
LT ↩→ LG,2 but note that the induced embedding Z( G) ↩→ LT is Γ-equivariant.

In the next section we recall how the first case generalizes to parabolic subgroups in
arbitrary connected reductive groups.

2.3. Parabolic subgroups and L-embeddings. A parabolic subgroup P of LG is a closed
subgroup mapping onto Γ and such that P0 := P ∩ G is a parabolic subgroup of G. The set
of parabolic subgroups is clearly stable under conjugation by G. If P is a parabolic subgroup
of LG then P is the normalizer of P0 in LG.

Choose a Killing pair (B, T ) of G. Recall that a parabolic subgroup of G is conjugated
to a unique one containing B, and that parabolic subgroups of G containing B correspond
bijectively to subsets of ∆∨ (or ∆, using the bijection α → α∨), by associating to P0 the set
of α ∈ ∆∨ (seen as characters of T ) such that −α is a root of T in P0. Embed B in a pinning
(B, T , (Xα)α∈∆∨) of G, and let s : Γ → LG be a distinguished section fixing this pinning.
Then Bs(Γ) is a (minimal) parabolic subgroup of LG, and any parabolic subgroup of LG is
conjugated under G to one containing Bs(Γ). A parabolic subgroup P0 of G containing B is
such that its normalizer P in LG maps onto Γ (i.e. P is a parabolic subgroup of LG) if and
only if the corresponding subset of ∆∨ is stable under Γ. Therefore G-conjugacy classes of
parabolic subgroups of LG also correspond bijectively to Γ-stable subsets of ∆∨.

Using the bijection between ∆ and ∆∨ we obtain a bijection between the set of Γ-stable
G(F )-conjugacy classes of parabolic subgroups of GF and the set of G-conjugacy classes
of parabolic subgroups of LG. The obvious map from the set of G(F )-conjugacy classes
of parabolic subgroups of G to the set of Γ-stable G(F )-conjugacy classes of parabolic
subgroups of GF is injective, and it is surjective if and only if G is quasi-split.

Recall from [Bor79, §3.4] that if P is a parabolic subgroup of LG and M0 is a Levi factor
of P0 then the normalizer M of M0 in P maps onto Γ and P is the semi-direct product of
its unipotent radical and M. In this situation we say that M is a Levi factor of P, and a
Levi subgroup of LG.

Let P be a parabolic subgroup of G. Choose a distinguished splitting s : Γ → LG

stabilizing a pinning E = (B, T , (Xα)α∈∆∨) of G, and let LP be the parabolic subgroup of
LG corresponding to P and containing B. Let M = P/N be the reductive quotient of P .
Taking Killing pairs inside P in the definition of brdF we obtain an isomorphism between
brdF (M) and (X,RP , R

∨
P ,∆P ) where ∆P is the set of simple roots α ∈ ∆ such that −α also

occurs in P , RP = R ∩ Span(∆P ), ∆∨
P = {α∨ | α ∈ ∆P }, and R∨

P = R∨ ∩ Span(∆∨
P ). Let

EM = (BM , TM , (Yα)α) be a pinning of M and sM : Γ → LM a corresponding distinguished
splitting. These choices determine an embedding

ι[P, E , s, EM , sM ] : LM −→ LG

characterized by the following properties.

2See however [LS87, §2.6] and [Kal].
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(1) It maps (BM , TM ) to (B, T ), and on TM it is the isomorphism TM ≃ T induced by
the above embedding brdF (M) ↩→ brdF (G),

(2) it maps EM to E , and
(3) we have ι[P, E , s, EM , sM ] ◦ sM = s.

The image of ι[P, E , s, EM , sm] is clearly a Levi subgroup of LG. The formation of
ι[P, E , s, EM , sM ] satisfies obvious equivariance properties with respect to conjugation by M
and G. In particular we have an embedding ιP : LM → LG well-defined up to conjugation
by G.

Lemma 2.4. Let M be a Levi subgroup of G. Let P and P ′ be parabolic subgroups of G

admitting M as a Levi factor. Then ιP and ιP ′ are conjugated by G.

Proof. First we recall a general construction. Fix a pinning E = (B, T , (Xα)α) in G and
a distinguished splitting s : Γ → LG fixing it. For a Killing pair (B, T ) in GF we denote
by γ[(B, T ), (B, T )] the isomorphism X∗(T ) ≃ X∗(T ). Considering Weyl groups inside
automorphism groups of tori this also induces an isomorphism

ω[(B, T ), (B, T )] : W (T,GF ) ≃ W (T , G)

We have an action of Γ on W (T,GF ) : for σ ∈ Γ let T (F )gσ ∈ T (F )\G(F ) be the class
for which σ(B, T ) = Ad(g−1

σ )(B, T ), then x → Ad(gσ)(σ(x)) induces an automorphism of
W (T,GF ). One can check that the isomorphism ω[(B, T ), (B, T )] is Γ-equivariant for this
action on W (T,GF ) and the action via s on W (T , G).

Fix E , s, EM and sM as above. Fix a Borel pair (BM , T ) in MF . This determines two
Borel subgroups B and B′ in GF that are characterized by the properties B ∩MF = BM

and NF ⊂ B and similarly for B′. There is a unique x ∈ W (T,GF ) for which Ad(x)(B, T ) =

(B′, T ). Let n : W (T , G) → N(T , G) be the set-theoretic splitting determined by E [Spr98,
§9.3.3]. Denote w = n(ω[(B, T ), (B, T )](x)). We claim that we have

(2.2) Ad(w) ◦ ι[P ′, E , s, EM , sM ] = ι[P, E , s, EM , sM ].

To simplify notation in the rest of the proof we abbreviate ι = ι[P, E , s, EM , sM ] and ι′ =

ι[P ′, E , s, EM , sM ].
First we check that ι and ι′ coincide on TM . Denote T ′ = T for clarity. We have (B′, T ′) =

Ad(x)(B, T ) so if we also denote by Ad(x) the induced isomorphism X∗(T ) ≃ X∗(T
′) we

have Ad(x)γ[(B, T ), (B, T )] = γ[(B′, T ′), (B, T )]. Here because T ′ = T we obtain

γ[(B′, T ), (B, T )] = γ[(B, T ), (B, T )] ◦ ω[(B, T ), (B, T )](x).

The isomorphism ι|TM
: TM ≃ T is dual to the isomorphism

γ[(BM , T ), (BM , TM )]−1 ◦ γ[(B, T ), (B, T )] : X∗(T ) ≃ X∗(TM ).

Similarly ι′|TM
: TM ≃ T is dual to the isomorphism

γ[(BM , T ), (BM , TM )]−1 ◦ γ[(B′, T ), (B, T )]

= γ[(BM , T ), (BM , TM )]−1 ◦ γ[(B, T ), (B, T )] ◦ ω[(B, T ), (B, T )](x)

and the equality
ι′|TM

= ω[(B, T ), (B, T )](x)−1 ◦ ι|TM

follows.
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To check that the equality (2.2) holds on M it is enough to check that we have Ad(w)ι(Yα) =

ι′(Yα) for any α ∈ ∆(TM ,BM ). We have

ι(Yα) = Xβ and ι′(Yα) = Xβ′

where
β = γ[(B, T ), (B, T )]−1γ[(BM , T ), (BM , TM )](α),

β′ = γ[(B′, T ), (B, T )]−1γ[(BM , T ), (BM , TM )](α)

= w−1(β)

both belong to ∆(T ,B). By [Spr98, Proposition 9.3.5] we have Xβ = Ad(w)(Xβ′).
Finally we need to check Ad(w) ◦ s = s, i.e. that w commutes with s(Γ). For σ ∈ Γ

and y ∈ W (T , G) we have s(σ)n(y)s(σ)−1 = n(σ(y)) and so it is enough to check that
wT ∈ W (T , G) is fixed by Γ. For any σ ∈ Γ there exists gσ ∈ M(F ) such that σ(BM , T ) =

Ad(g−1
σ )(BM , T ) and this implies σ(B, T ) = Ad(g−1

σ )(B, T ) and σ(B′, T ) = Ad(g−1
σ )(B′, T )

because N and N ′ are both defined over F . A simple computation shows that we have
Ad(gσ)(σ(x)) = x in W (T,GF ), i.e. x is Γ-invariant. □

The lemma shows that for a Levi subgroup M of G we have an embedding ιM : LM → LG,
well-defined up to conjugation by G. We call the image of such an embedding a relevant
Levi subgroup of LG.
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3. Langlands parameters

In this section F is a local field.

3.1. Weil-Deligne groups. We briefly recall the definition of Weil-Deligne groups of local
fields. We refer the reader to [Tat79] for more details.

If F ≃ C define WF = F×. If F ≃ R define WF as the unique non-split central extension

1 → F
× → WF → Gal(F/F ) → 1

where Gal(F/F ) acts on F
×

in the natural way. Explicitly, WF = F
× ⊔ jF

×
with j2 = −1.

If F is a non-archimedean local field, we have a short exact sequence of topological groups

1 → IF → Gal(F/F ) → Gal(k/k) → 1

where k is the residue field of F and IF is called the inertia subgroup of Gal(F/F ). Since
k is finite, say of cardinality q, Gal(k/k) is isomorphic to Z and topologically generated by
the (arithmetic) Frobenius automorphism x → xq. This automorphism generates a natural
subgroup Z of Gal(k/k), and the Weil group WF is defined as its preimage, a dense subgroup
of Gal(F/F ). Instead of the induced topology, we endow WF with the topology making IF
an open subgroup, with its topology induced from that of Gal(F/F ).

Recall that the Artin reciprocity map is an isomorphism Wab
F ≃ F×. Composing with

the norm  ·  : F× → R>0 we get a continuous morphism still denoted  ·  : WF → R>0.
For non-archimedean F , we now recall three possible definitions for the Weil-Deligne

group.

(1) W′
F := Ga ⋊WF , where the action of WF on Ga is by w(x) = wx.

(2) WDF := WF × SL2, where the second factor is the algebraic group over Q.
(3) The (unnamed) locally compact topological group WF × SU(2).

For Archimedean F it will be convenient to denote WDF = WF .

3.2. Langlands parameters. First assume that F is non-archimedean.
For the first version of the Weil-Deligne group, a Weil-Deligne Langlands parameter3 is a

pair (ρ, N) such that

• ρ : WF → LG is a continuous representation, i.e. there exists an open subgroup
U of IF which acts trivially on G and is mapped to 1 × U ⊂ G ⋊ Γ, such that the
composition with the projection LG → Γ is the usual map,

• N ∈ Lie G satisfies ρ(w)Nρ(w)−1 = wN for all w ∈ WF (this forces N to be
nilpotent), and

• for any w ∈ WF (equivalently, for some w ∈ WF \IF ) we have that ρ(w) is semi-
simple.

One of the motivations for using the first version of the Weil-Deligne group, rather than
the other two, is the ℓ-adic monodromy theorem [Tat79, Theorem 4.2.1]. This roughly
says that for a prime ℓ not equal to the residual characteristic of F and for C = Qℓ,4 any
continuous morphism WF → LG for the natural topology on G compatible with LG → Γ is
given by a pair (ρ, N) satisfying the first two conditions above. Continuous ℓ-adic Galois

3This terminology is not standard.
4One could work with a finite extension of Qℓ instead.
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representations occur naturally in algebraic geometry (Tate modules of elliptic curves over
F , or more generally in the étale cohomology of varieties defined over F ). Another reason
for preferring W′

F is that this version requires fewer “choices of a square root of q” in the
local Langlands correspondence, and is more obviously compatible with parabolic induction
(property (10) in Conjecture 4.1 below).

For the second version WDF , over any field C of characteristic zero, Langlands parameters
are defined as morphisms φ : WF × SL2(C) → LG which are compatible with LG → Γ,
continuous and semi-simple on the first factor and algebraic on the second factor.

For the third version, we need to assume C = C and we consider continuous (for the
natural topology on G) semi-simple morphisms φ : WF ×SU(2) → LG which are compatible
with LG → Γ. By restriction via SU(2) ⊂ SL2(C) we obtain exactly the same morphisms
as in the second version, essentially because SL2(C) is the complexification of the compact
Lie group SU(2).

Recall that we have already chosen a square root of q in C in order to normalize parabolic
induction. We have a natural map from Langlands parameters to Weil-Deligne Langlands
parameters:

φ →

φ ◦ ιW , dφ|SL2


0 1

0 0



where ιW (w) = (w, diag(w1/2, w1/2)). By a refinement of the Jacobson-Morozov theo-
rem (see [GR10, Lemma 2.1]) this induces a bijection between sets of G-conjugacy classes
of parameters.

If F is archimedean we assume C = C and define Langlands parameters as semi-simple
continuous morphisms φ : WF → LG which are compatible with LG → Γ.

We will denote by Φ(G) the set of G-conjugacy classes of Langlands parameters taking
values in LG. As explained above all versions of the Weil-Deligne group give equivalent sets
of G-conjugacy classes.

3.3. Reductions. We briefly recall from [SZ] the Langlands classification for parameters.
Assume C = C and let cl(φ) ∈ Φ(G). Applying the polar decomposition to φ(w) for any
w ∈ WF with positive valuation, we find a canonical tuple (LP, LM,φ0,χ) satisfying the
following conditions.

• LP is a parabolic subgroup of LG and LM is a Levi subgroup of LP . We denote by
N the unipotent radical of LP .

• φ0 is a Langlands parameter taking values in LM and bounded on WF .
• χ ∈ Z1(WF , X∗(Z(M)Γ,0)⊗ZR>0) where X∗(Z(M)Γ,0)⊗ZR>0 is seen as a subgroup

of X∗(Z(M)Γ,0)⊗Z C = Z(M)0.
• The eigenvalues of χ(Frob) (resp. χ(x) for any x > 1) on Lie N are all greater than

1 if F is non-archimedean (resp. if F is archimedean).
• φ = φ0χ.

This corresponds to the Langlands classification (Theorem 1.7). This reduction explains
why we are mainly interested in bounded parameters φ. We will also call such parameters
tempered.

The following proposition does not assume C = C.
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Proposition 3.1 ([Bor79, Proposition 3.6]). Let φ : WDF → LG be a Langlands parame-
ter. The Levi subgroups of LG which are minimal among those containing φ(WDF ) are all
conjugated under the centralizer of φ in G.

This proposition may be seen as a generalization of the isotypical decomposition of a semi-
simple linear group representation. A Langlands parameter φ is called essentially discrete
if this Levi subgroup is LG, i.e. if φ is “LG-irreducible”. This condition is equivalent to
Cent(φ, Gh)/Z( G)Γ being finite. A Langlands parameter φ is called relevant if this Levi
subgroup is relevant (see Subsection 2.3).

Lecturer’s comment: can compare centralizers for both versions of Weil-Deligne.

3.4. Weil restriction. Let E be a finite subextension E of F/F and let ΓE = Gal(F/E)

be the corresponding open subgroup of Γ. Let G0 be a connected reductive group over E.
Let G = ResE/F G0 be the Weil restriction, a connected reductive group over F such that
the topological groups G(F ) and G0(E) are isomorphic. Recall from [Bor79, §5] that we
may identify G endowed with its action of Γ with the induction from ΓE to Γ of G0. By
Shapiro’s lemma we have a bijection Φ(G) ≃ Φ(G0).
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4. The local Langlands conjecture

4.1. Crude local Langlands correspondence. Denote by Π(G) the set of isomorphism
classes of irreducible admissible representations of G(F ) (in the archimedean case, (g,K)-
modules).

Conjecture 4.1. There should exist maps LL : Π(G) → Φ(G) for all connected reductive
groups G over F , satisfying the following properties. Denote Πφ(G) = LL−1(φ).

(1) If G is a torus then LL should be the bijection that Langlands deduced from class
field theory [Bor79, §9].

(2) For any G all fibers of LL should be finite and the image of LL should contain all
essentially discrete parameters.

(3) If G = G1 × G2 then, using the identification of LG with LG1 ×Γ
LG2, for any

irreducible admissible representation π ≃ π1 ⊗ π2 of G(F ) we should have LL(π) =

(LL(π1),LL(π2)).
(4) If θ : G → H is a central isogeny with dual θ : LH → LG then for π ∈ Π(H) and

any constituent π′ of the restriction π|G(F ), which is semi-simple of finite length, we
should have LL(π′) = θ ◦ LL(π).

(5) In the setup of Subsection 3.4 we should have a commutative diagram

Π(G) Φ(G)

Π(G0) Φ(G0)

LL

∼ ∼

LL

where the left vertical map is induced by the isomorphism G(F ) ≃ G0(E) and the
right vertical map comes from Shapiro’s lemma.

(6) For an irreducible smooth representation π of G(F ) we should have that π is essen-
tially square-integrable if and only if LL(π) is discrete.

(7) Let M be a Levi subgroup of G. Recall the embedding ιM : LM ↩→ LG, well-defined
up to G-conjugacy by Lemma 2.4. If σ is an irreducible smooth representation of
M(F ) which is essentially square-integrable and has unitary central character then
for any constituent π of iGPσ we should have LL(π) = ιM ◦ LL(σ).

(8) In the situation of Theorem 1.7 we should have

LL(J(P,σ, µ)) = ιP ◦ LL(σ ⊗ ν)

(9) Assume F ≃ R and choose F ≃ C. We may reduce to this case if F ≃ C by (5)

above. Then LL should be compatible with infinitesimal characters in the following
sense. Let π be an irreducible (g,K)-module. The restriction of LL(π) to C× is
conjugated to a morphism of the form z → zλzµ where λ, µ ∈ X∗(T ) ⊗Z C sat-
isfy λ − µ ∈ X∗(T ) and zλzµ is a suggestive notation for (zz)(λ+µ)/2(z/|z|)λ−µ.
The infinitesimal character of π should be identified to λ by the Harish-Chandra
isomorphism.

(10) Assume that F is non-archimedean. If P = MN is a parabolic subgroup of G and σ

is an irreducible smooth representation of M(F ), then for any irreducible subquotient
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π of iGPσ we should have LL(π) ◦ ιW = ιM ◦ LL(σ) ◦ ιW . Equivalently, the same but
just for supercuspidal σ.

(11) Assume that F is non-archimedean. If φ is essentially discrete and trivial on the
factor SL2 of WDF , then every element of Πφ(G) should be supercuspidal.

We warn the reader that there are actually two versions of the conjecture, corresponding
to the two possible normalizations of the Artin reciprocity map in local class field theory.
According to [KS, §4] these should be related by a certain automorphism of LG, which
according to [AV16] and [Kal13] is itself related to taking contragredient representations.
Thus another way to state the relation between the two normalizations is to say that we
should obtain one from the other by composing with the involution π → π̃.

Cases for which the conjecture is known include the archimedean case [Lan89], general
linear groups over non-archimedean fields [LRS93, Hen00, HT01, Sch13], GSp4 over finite
extensions of Qp [GT11], quasi-split classical groups [Art13, Mok15]. More cases will be
discussed later.

The rest of this section is devoted to remarks on the properties in the conjecture.

4.1.1. Compatibility with the case of tori. The functoriality assumptions (3) and (4) imply
the following compatibilities with the case of tori.

• The map LL should be compatible with central characters in the following sense.
Let Z be the maximal central torus in G so that we have a surjective morphism
LG → LZ. Then all elements of Πφ(G) should have (isomorphism class of) central
character of Z(F ) determined by composing φ with this surjection and applying
LL−1.

• Langlands defined (see [Bor79, §10.2]) a morphism

H1
cont(WF , Z( G)) → Homcont(G(F ),C×).

For a continuous 1-cocycle c : WF → Z( G) with corresponding character χ :

G(F ) → C× we should have LL(π ⊗ χ) = cLL(π) for π ∈ Π(G).

Lecturer’s comment: need interpretation of central character on the full center as ob-
struction to lifting.

4.1.2. Reduction to the discrete case. Using Proposition 1.5, the Langlands classification
(Theorem 1.7, including Remark 1.8) and the “Langlands classification for parameters” (see
Subsection 3.3), properties (7) and (8) imply that π is tempered if and only if LL(π) is
tempered. In fact we see that these parallel results for smooth representations of reductive
groups and Langlands parameters reduce the construction of LL to the essentially square-
integrable case, and with property (2) we see that the image of LL should be the set of
relevant Langlands parameters.

4.1.3. The unramified case. From properties (1), (7), and (8) it follows that if G is unramified
and K is a hyperspecial compact open subgroup of G(F ) then on K-unramified irreducible
representations of G(F ) (i.e. representations having non-zero K-invariants) the map LL is
given by the Satake isomorphism. More precisely in this case the minimal Levi subgroup M0

is an unramified torus and unramified representations of G(F ) are parametrized by orbits
under the rational Weyl group of continuous characters χ : M0(F ) → C×. The unramified
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representation π corresponding to the orbit of χ is the unique unramified constituent of
iGBχ, for any Borel subgroup B of G containing M0. We have LL(π) = ιM0 ◦ LL(χ). In the
tempered case, that is when χ is unitary, this follows immediately from property (7). The
general case is more suitable, and can be deduced from the Gindikin-Karpelevich formula
[Cas80, Theorem 3.1] (see [CS80, p. 219] for the values of the constants in the case of an
unramified group).5

4.1.4. The semi-simplified correspondence and algebraicity. For non-archimedean F prop-
erty (10) says that the map LLss : π → LL(π) ◦ ιW is compatible with the notion of
supercuspidal support (Theorem 1.2). This suggests the following conjecture.

Conjecture 4.2. Assume that F is non-archimedean. Let C be any algebraically closed
field of characteristic zero and choose a square root √

q ∈ C. There should exist for each
connected reductive group G over F a map LLss from the set of isomorphism classes of
smooth irreducible representations of G(F ) over C to the set of G-conjugacy classes of
continuous semi-simple morphisms WF → LG which are compatible with LG → Γ, satisfying
the obvious analogue of (1), (3), (4) in Conjecture 4.1, as well as the following analogues
of properties (10) and (11):

(1) If P = MN is a parabolic subgroup of G and σ is an irreducible smooth repre-
sentation of M(F ) then for any irreducible subquotient π of iGPσ we should have
LLss(π) = ιM ◦ LLss(σ).

(2) If LLss(π) is essentially discrete then π should be supercuspidal.

These maps should be functorial in (C,
√
q).6

Conjecture 4.1 implies the case C = C of Conjecture 4.2. Note that properties (6), (7),
and (8) in Conjecture 4.1 make essential use of the topology on the coefficient field C. The
notion of essentially discrete Langlands parameter is purely algebraic (it does not rely on
the topology of the coefficient field) so there ought to be a purely algebraic characterization
of essentially square-integrable representations.7 Assuming Conjecture 4.1 one can show
that the map LL ◦ ιW determines the map LL, by considering first the case of tempered
representations and using the decomposition in Subsubsection 4.1.3 and the fact that an sl2
triple is determined by its semi-simple element up to conjugation. In general Conjecture
4.2 does not immediately imply Conjecture 4.1: this would require proving a non-trivial
integrality property for the Jacquet module of essentially square-integrable representations.
In the case of general linear groups however the construction of the map LL was reduced to
the supercuspidal case by Zelevinsky [Zel80].

5To be honest the arguments in [Cas80] assume that χ is regular but similar arguments work using only
partial regularity.

6One could certainly avoid the choice of a square root of q by modifying Langlands dual groups. We do
not attempt to explain this here, see [BG14, §5.3].

7More precisely Conjecture 4.1 implies that the characterization in Proposition 1.4 can be reformulated
as follows. Up to twisting by a character we may assume that the central character of π has finite order.
Then (V,π) should be essentially square-integrable if and only if for any parabolic subgroup P = MN of G
and for any character χ of AM (F ) occurring in rGP π there exists an integer N  1 such that χN is equal to


α αnα for some integers nα > 0, where the product ranges over the simple roots of AM in LieN .
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For C = Qℓ where ℓ does not equal the residue characteristic of F , Genestier-Lafforgue
[GL] (in positive characteristic) and Fargues-Scholze [FS] have constructed maps LLss satis-
fying all properties in Conjecture 4.2 except for functoriality with respect to the coefficient
field, which seems to remain open.

4.1.5. Cuspidal parameters. Note that property (10) implies that property (11) should be an
equivalence, i.e. if all elements of Πφ are supercuspidal then φ should be essentially discrete
and trivial on SL2. Contrary to the case of GLn, in general supercuspidals do not correspond
to discrete parameters which are trivial on SL2, more precisely there are discrete parameters
φ which are non-trivial on SL2 and such that Πφ contains supercuspidal representations. A
related matter is that the classification of essentially discrete representations in terms of
supercuspidal representations (of Levi subgroups) is more complicated in general than in
the case of GLn.

4.1.6. Characterizations of the correspondence. The list of properties in Conjecture 4.1 is
not exhaustive, and these properties are certainly not enough to characterize the map LL.
In particular we did not discuss the relation with L-functions and -factors. We refer the
interested reader to [Har] for a survey of the possible characterizations.

4.2. Refined local Langlands for quasi-split groups. In some applications having just
the map LL is too crude, e.g. to formulate the global multiplicity formula for the automor-
phic spectrum of a connected reductive group over a global field, and so we would like to
understand the fibers Πφ(G).

In this section we assume that G is quasi-split. For a Langlands parameter φ : WDF →
LG denote Sφ = Cent(φ, G) (a reductive subgroup of G), and define Sφ = Sφ/Z( G)Γ. Recall
that a parameter φ is discrete if and only if Sφ is finite. It can happen that π0(Sφ) is non-
abelian (even in the principal series case, that is if φ factors through ιT : LT → LG where
T is part of a Borel pair (B, T ) defined over F ). For F = R however, it is always abelian,
in fact there is a maximal torus T of G such that Sφ ∩ T meets every connected component
of Sφ. For a finite group A denoted by Irr(A) the set of isomorphism classes of irreducible
representations of A over C.

Conjecture 4.3. For each Langlands parameter φ there should exist a bijection

Irr(π0(Sφ)) −→ Πφ(G).

Langlands’s classification (Theorem 1.7) again reduces the construction of this bijection
to the tempered case. So we assume from now on that φ is tempered. The bijection in
Conjecture 4.3 is not canonical in general: it depends on the choice of a Whittaker datum
(up to conjugation by G(F )).

We briefly recall the notions of Whittaker datum and generic representation for a quasi-
split connected reductive group G. Choose a Borel subgroup B with unipotent radical U .
For a Galois orbit O on the set of simple roots, the group UO = (


α∈O Uα(F ))GalF is

isomorphic to a finite separable extension FO of F . We have a natural surjective morphism
from U(F ) to


O UO. Choosing a nontrivial morphism UO → C× for each orbit O yields a

morphism θ : U(F ) → C×, called a generic character. A Whittaker datum w for G is such a
pair (U, θ). The adjoint group Gad(F ) acts transitively on the set of such pairs, and so there
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are only finitely many G(F )-conjugacy classes of Whittaker data. An irreducible smooth
representation (π, V ) of G(F ) is called w-generic if there is a non-zero linear functional
V → C such that λ(π(u)v) = θ(u)λ(v) for all u ∈ U(F ) and v ∈ V .

Conjecture 4.4 (Shahidi). There should be a unique w-generic representation in each
Πφ(G). The conjectural bijection ιw : Πφ(G) → Irr(π0(Sφ)), which depends on w, should
map this w-generic representation to the trivial representation of Sφ.

In order to characterize the bijections ιw we have to introduce endoscopic data. Let
s ∈ Sφ be a semi-simple element. From the pair (s,φ) one can construct the following
objects. For π ∈ Πφ(G) denote 〈s,π〉w = tr(ιw(π))(s). On the one hand we have

Θw
φ,s =



π∈Πφ(G)

〈s,π〉wΘπ.

This is a virtual character on G(F ). In the case s = 1 we introduce the special notation

SΘφ = Θw
φ,1.

The reason for not recording w in the notation in this case will be explained below.
On the other hand we consider the complex connected reductive subgroup H0 = Cent(s, G)0

of G. It contains φ(1× SL2) and is normalized by φ(WF ). Thus H = H0 · φ(WF ) is a sub-
group of LG, which is an extension 1 → H0 → H → WF → 1. The resulting morphism
WF → Out(H0) factors through the Galois group of a finite extension of F . By Proposition
2.3 there exists a quasi-split connected reductive group H over F together with an inner
class of isomorphisms ι : H0 ≃ H such that the above morphism WF → Out(H0) and the
morphism WF → Out( H) used to define LH = H ⋊ WF correspond to each other via η,
and for any two such groups H1 and H2 we have an isomorphism H1 ≃ H2, well-defined
up to H1,ad(F ). It may unfortunately happen that the two extensions H and LH of WF

are not isomorphic. We shall ignore this difficulty, as its resolution is not terribly excit-
ing (see [KS99, Lemma 2.2.A]). So let’s assume there exists an isomorphism of extensions
Lη : H → LH. Then e = (H, s, Lη) is called an extended endoscopic triple. By construction
we have a unique Langlands character SΘφH

on H(F ).
The two virtual characters Θw

φ,s and SΘφH
are expected to be related by a certain ker-

nel function. This function, called the Langlands-Shelstad transfer factor, is itself non-
conjectural and explicit. It is a function

∆[w, e] : H(F )G,sr ×G(F )sr → C

whose construction depends on the Whittaker datum and the extended endoscopic triple.
We will not recall the definition of ∆[w, e] (which is rather technical, see [LS87, KS99, KS]),
but let us recall what its support is (a correspondence between strongly regular semisimple
conjugacy classes in G(F ) and G-strongly regular semisimple stable conjugacy classes in
H(F )), and recall a meaningful variance property.

Definition 4.5. Recall that an element of G(F ) is called strongly regular if its centralizer is
a torus. Two semisimple strongly regular elements δ, δ′ ∈ G(F ) are called stably conjugate
if there exists g ∈ G(F ) such that gδg−1 = δ′.
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Using maximal tori and identifications of Weyl groups one can define [KS99, Theorem
3.3.A] a canonical map m from semisimple conjugacy classes in H(F ) to from semisimple
conjugacy classes in G(F ). A conjugacy class in H(F ) is called G-strongly regular elements
of H(F ). The map m enjoys the following properties.

(1) The map m is Γ-equivariant.
(2) If γ ∈ H(F ) is semisimple G-strongly regular then m([γ]) ∩ G(F ) is a non-empty8

finite union of G(F )-conjugacy classes. In this situation we say that (the stable
conjugacy class of) γ and (the conjugacy class) of δ ∈ m([γ])∩G(F ) match. Given a
strongly regular stable conjugacy class for G, there are finitely many stable conjugacy
classes for H in its preimage by m.

(3) For any matching pair (γ, δ) ∈ H(F )G,sr × G(F )sr, denoting TH = Cent(γ, H) and
T = Cent(δ, g) (maximal tori of H and G), there is a canonical isomorphism TH ≃ T

identifying γ and δ.

Let δ be a strongly regular element of G(F ), and denote T = Cent(δ, G). The set of G(F )-
conjugacy classes [δ′] which are stably conjugate to δ is parametrized by ker(H1(F, T ) →
H1(F,G)), by mapping δ′ to inv(δ, δ′) := (σ → σ(g)−1g) where as above gδ−1g = δ′. Recall
from [Tat66] that the Tate-Nakayama isomorphism for tori over F identifies H1(F, T ) with

(4.1) H−1(E/F,X∗(T )) = X∗(T )
NE/F=0/IE/FX∗(T )

where E/F is any finite Galois subextension of F/F splitting T , NE/F is the norm map, and
for a Z[Gal(E/F )]-module Y we denote by IE/FY the submodule


σ∈Gal(E/F )(σ − 1)Y .

Note that the right-hand side of (4.1) can also be described as the torsion subgroup of the
coinvariants X∗(T )Γ. Kottwitz interpreted this isomorphism in terms of Langlands dual
groups and generalized it to connected reductive groups in [Kot86]. Recall that T is a torus
over C endowed with an isomorphism X∗( T ) ≃ X∗(T ). Using the exactness of the functor
mapping a finitely generated abelian group A to the diagonalizable group scheme Z with
character group A (considered as a sheaf on the étale site of C, say) we see that X∗( T )Γ is
identified with X∗( TΓ). It follows that the Tate-Nakayama isomorphism may be written as

(4.2) αT : H1(F, T ) ≃ Irr(π0( TΓ)).

It is formal to check that this definition is functorial in T . As for the Artin reciprocity map
it would be just as natural to consider the same isomorphism composed with x → x−1.

Theorem 4.6 ([Kot86, Theorem 1.2]). There is a unique extension of the above family of
isomorphisms to a family of maps of pointed sets

αG : H1(F,G) → Irr(π0(Z( G)Γ))

for connected reductive group G, “functorial” in the following sense. For any morphism
H → G which is either the embedding of a maximal torus in a connected reductive group G

or a central isogeny between connected reductive groups we have a commutative diagram

8For non-emptiness the fact that G is quasi-split is essential.



22 OLIVER TAÏBI (SCIBED BY WENHAN DAI)

H1(F,H) H1(F,G)

Irr(π0(Z( H)Γ)) Irr(π0(Z( G)Γ))

αH αG

where the bottom horizontal map is the one induced by the Γ-equivariant map Z( G) → Z( H)

recalled (in both cases) at the end of Subsection 2.2.
For two connected reductive groups G1 and G2 we have αG1×G2 = αG1 × αG2 .

In [Kot86] this is proved in the case where F has characteristic zero but the same proof
works for all local fields, using Bruhat and Tit’s generalization of Kneser’s theorem [BT87]. If
F is non-archimedean then each αG is a bijection, in particular H1(F,G) has a commutative
group structure. In the archimedean case the kernel and image of αG are described. We
will also denote αG(c)(s) = 〈c, s〉.

We resume the above notation: (H, s, Lη) is an extended endoscopic triple, (γ, δ) ∈
H(F )G,sr × G(F )sr is a matching pair, TH = Cent(γ, H) and T = Cent(δ, G) and we have
a canonical isomorphism TH ≃ T . By Theorem 4.6 the kernel of H1(F, T ) → H1(F,G) is
identified with the group of characters of π0( TGalF ) which are trivial on Z( G)GalF . The
element Lη(s) ∈ Z( H)GalF defines an element sγ,δ of TGalF

H ≃ TGalF . We can finally state
the variance property of transfer factors: we have

(4.3) ∆[w, e](γ, δ′) = ∆[w, e](γ, δ)〈inf(δ, δ′), sγ,δ〉−1.

As for the Artin reciprocity map and the pairing (4.2) there are several natural normal-
izations for the transfer factors [KS, §4], and for half of these normalizations the exponent
−1 on the right-hand side should be removed. The relation (4.3) is far from characterizing
∆[w, e] because it does not compare the values at unrelated matching pairs.

Conjecture 4.7. Let G be a quasi-split connected reductive group over F . Let φ : WDF →
LG be a tempered Langlands parameter.

(1) The map SΘφ : Grs(F ) → C should be invariant under stable conjugacy.
(2) For any semisimple s ∈ Sφ and any strongly regular semisimple G(F )-conjugacy

class [δ] we should have

Θw
φ,s(δ) =



γ∈H(F )/st

∆[w, e](γ, δ)SΘφH
(γ).

Remark 4.8. (1) The equation uniquely determined ιw when provided it exists, due to
the linear independence of characters. In particular, one can deduce how ιw should
depend on w. Namely, to each pair w and w′ one can associate unconditionally
a character (w,w′) of Sφ and then ιw′(π) = ιw(π) ⊗ (w,w′). See [Kal13, §3] for
details. In particular, dim(ιw(π)) is independent of the choice of w, and hence SΘφ

is also independent.
(2) While Conjecture 4.1 readily induces to the discrete case using Harish-Chandra’s

work, the putative analogous reductions for Conjectures 4.3 and 4.7 appear to be
more subtle, involving the study of intertwining operators. See [KS88] for character
formulas in the case of principal series representations.



THE LOCAL LANGLANDS CONJECTURE 23

(3) Implicity in the conjecture is the fact that the choice of a semisimple s in its con-
nected component in π0(Sφ) is irrelevant. One can reduce to the case where s is
“generic” (implying that φH is essentially discrete) by parabolic induction (which
behaves well with respect to SΘ).

(4) This conjecture reduces the characterization of the local Langlands correspondence
to a characterization of the stable functions SΘφ.

4.3. Refined Langlands correspondence for non-quasi-split groups. Recall from
Proposition 2.3 that two connected reductive groups that are inner forms of each other
have isomorphic Langlands dual groups, and thus the “same” Langlands parameters. Vo-
gan’s idea is to consider the L-packets Πφ(G), for a given φ and G varying in an inner class,
as one big L-packet Πφ. It is natural to take the quasi-split group given in Proposition
2.3 as “base point” in the inner class because we already have a satisfying conjecture in
this case, and for reasons explained below. So we fix a quasi-split group G∗. Recall that
isomorphism classes of inner twists of G∗ are parametrized by H1(F,G∗

ad). We may consider
the groupoid of triples (G,ψ,π) where (G,ψ) is an inner twist of G∗ and π is an irreducible
smooth representation of G(F ), with the obvious notion of isomorphism. The problem with
this definition is that for an inner twist (G,ψ) of G∗ its automorphism group in IT(G∗) is
Gad(F ), which acts non-trivially on the set of isomorphism classes of irreducible smooth
representations of G(F ). This motivates the introduction of pure inner twists: augment the
datum (G,ψ) with a 1-cocycle z : Γ → G∗(F ) lifting

Γ −→ Gad(F )

σ −→ ψ−1σ(ψ).

This effectively solves the above problem but creates a new one because the map H1(F,G∗) →
H1(F,G∗

ad) is not surjective in general. For F = R, Adams, Barbasch and Vogan [ABV92]
found an ad-hoc generalization of Z1(R, G∗), called strong real forms, that surjects onto
H1(R, G∗

ad). Kottwitz suggested using his theory of isocrystals with additional structure
[Kot85, Kot97] in the case of non-archimedean fields of characteristic zero as a generaliza-
tion of H1(F,G∗). This suggestion was implemented completely by Kaletha and will be
recalled below, but unfortunately it does not capture all inner forms of a given quasi-split
group in general. Kaletha later introduced another generalization of inner forms, called rigid
inner forms, for any local field F of characteristic zero and which captures all inner forms.
Specializing to F = R recovers strong real forms. It turns out that all of these generaliza-
tions can be understood as replacing the Galois group Γ (or the étale site of SpecF ) by an
appropriate Galois gerb. We summarize the three theories (pure, isocrystal and rigid) for a
local field F of characteristic zero below and refer the interested reader to Dillery’s paper
[Dil] for the generalization to functions fields, which uses Čech cohomology instead of Galois
cohomology and also provides a more conceptual point of view using actual gerbs.

In characteristic zero and for a commutative band, following [LR87] the above mentioned
Galois gerbs may prosaically be defined as group extensions

1 → u(F ) → E → Γ → 1

where u is a commutative group scheme over F and the action by conjugation of Γ on
u(F ) coincides with the usual one. In practice u is a projective limit of groups (ui)i0 of
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multiplicative type and finite type over F with surjective morphisms between them, and the
extension E is built from a class in H2

cont(Γ, u(F )) where u(F ) is endowed with the topology
induced by the discrete topology on each ui(F ). Note that we have set-theoretic sections
Γ → E , endowing E with a natural topology. Define H1

alg(E , G) ⊂ H1
cont(E , G(F )) as the

subset of classes of 1-cocycles E → G(F ) whose restriction to u(F ) is given by an algebraic
morphism from uF to GF . Define H1

bas(E , G) ⊂ H1
alg(E , G) as the set of classes of cocycles

for which the algebraic morphism uF → GF takes values in the center Z(G)(F ). By the
cocycle condition it descends in the case to a morphism u → Z(G) defined over F . Note
that such a morphism is induced from a morphism ui → Z(G) for some index i because
the center of G has finite type over F . We will also consider, for Z a subgroup scheme of
Z(G), the subset H1(u → E , Z → G) of H1

bas(E , G) consisting of classes of cocycles whose
associated map u → Z(G) factors through Z.

We consider three cases in parallel.

(1) If we take u = 1 we obtain the trivial extension Epur = Γ, recovering the usual
Galois cohomology group H1(F,G).

(2) Consider the pro-torus u over F with character group

X∗(u) =


Q if F is non-archimedean,
1
2Z if F ≃ R.

(Exclude the case F ≃ C here because it is essentially trivial.) We have

H2
cont(Γ, u(F )) ≃


Z⊗Z Q if F is non-archimedean,

Z/2Z if F ≃ R.

Let E iso be the extension of Γ by u(F ) corresponding to the class of 1.
(3) Consider the pro-finite algebraic group u over F with character group X∗(u) the

set of locally constant functions f : Γ → Q/Z satisfying


σ∈Γ f(σ) = 0 in F is
archimedean. We have

H2
cont(Γ, u(F )) ≃


Z if F is non-archimedean,

Z/2Z if F ≃ R.

(As above we exclude the case F ≃ C.) Let Erig be the extension of Γ by u(F )

corresponding to the class of −1.

We have the following generalizations of the Tate-Nakayama isomorphisms.

Theorem 4.9. We have natural maps

κG : H1
bas(E iso, G) −→ X∗(Z( G)Γ)

extending the maps αG of Theorem 4.6, i.e. sitting in commutative diagrams

H1(F,G) Irr(π0(Z( G)Γ))

H1
bas(E iso, G) X∗(Z( G)Γ)

αG

κG
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and functorial in G similarly to Theorem 4.6 (in the case of an inclusion of a maximal torus
T ⊂ G we have to restrict to elements of H1

bas(E iso, T ) for which the induce map u → T

factors through Z(G)).
The map κG is bijective if F is non-archimedean.

Proof. See [Kot, Proposition 13.1 and Proposition 13.4] and [Kal18, §3.1]. □

For a connected reductive group G over F and a finite central subgroup scheme Z denote
G = G/Z. We have a dual map G → G; denote by Z(G)+ the preimage of Z( G)Γ in Z(G).

Theorem 4.10 ([Kal16, Corollary 5.4]). We have natural maps

H1(u → Erig, Z → G) −→ X∗(Z(G)+)

extending the maps αG and functorial in Z → G as in Theorem 4.6.
These maps are bijective in the non-archimedean case.

We also have natural maps H1(u → E?, Z → G) → H1(F,G/Z), and the above general-
izations of the Tate-Nakayama morphism are also compatible with αG/Z . One can deduce
that the maps

H1
bas(E iso, G) → H1(F,G/Z(G)0)

and
H1(u → Erig, Z(Gder) → G) −→ H1(F,Gad)

are both surjective. In particular all inner forms can be realized as rigid inner twists, or as
isocrystal inner twists if the center of G is connected. In general not all inner forms can be
realized as isocrystal inner twists, e.g. when G is split semisimple but not adjoint.

There is [Kal18, §3.3] a natural map of extensions Erig → E iso, inducing H1
bas(E iso, G) →

H1
bas(Erig, G) for any group G. The relation with Theorem 4.9 and 4.10 is not so obvious.

(Cannot find a reference here.)

Conjecture 4.11. Let G∗ be a quasi-split connected reductive group over F . Let w be
a Whittaker datum for G∗. Let φ : WDF → LG∗ be a tempered Langlands parameter.
Let ? ∈ {pur, iso, rig}. Define Π?

φ as the set of isomorphism classes of pairs (z,π) where
z ∈ H1

bas(E?, G∗) and π ∈ Πφ(G
∗
z). Define

(1) Zpur = 1, Spur
φ = π0(Sφ), and Zpur = π0(Z( G)Γ);

(2) Z iso = Z(G)0, S iso
φ = Sφ/(Sφ ∩ Gder)

0, and Z iso = Z( G)Γ;
(3) Zrig is any finite subgroup scheme of Z(G), Srig

φ = π0(S
+
φ ) where S+

φ is the preimage

of Sφ in G and Zrig = π0(Z(G)+).

There should exist a bijection ιw making the following diagram commutative.

Π?
φ Irr(S?

φ)

H1(u → E?, Z? → G∗) X∗(Z?).

ιw
∼

Here the left vertical map is induced by the forgetful map (z,π) → z, the right vertical map
is induced by the obvious map Z? → S?

φ and the bottom horizontal map is given by Theorem
4.6 (resp. 4.9, resp. 4.10) in the pure (resp. isocrystal, resp. rigid) case.
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The relation with Conjecture 4.1 is that for any z ∈ Z1(u → E?, Z? → G∗) we should
have Πφ(G

∗
z) = {π | (z,π) ∈ Π?

φ}.
As for Conjectures 4.3 and 4.7, the map ιw in Conjecture 4.11 should be characterized by

endoscopic character relations. In order to state these relations we need normalized transfer
factors. Their definition was suggested by Kottwitz and established by Kaletha in the case
of pure inner forms [Kal11, §2.2] and extended to the isocrystal and rigid case by Kaletha
[Kal14, Kal16].

Let (G,ψ, z) be a pure/isocrystal/rigid inner twist of G∗ and φ : WDF → LG a tempered
Langlands parameter. Consider a semi-simple s ∈ Sφ if ? ∈ {pur, iso} or s ∈ S+

φ if ? = rig.
As in Subsection 4.2 we obtain an extended endoscopic triple9 e = (H, s, Lη) and a tempered
Langlands parameter φH : WDF → LH. Consider matching strongly regular γ ∈ H(F ) and
δ ∈ G(F ). Using Steinberg’s theorem [Ste65, Theorem I.7] we see that for any strongly
regular δ ∈ G(F ) there exists δ∗ ∈ G∗(F ) stably conjugate to δ, i.e. for which there exists
g ∈ G∗(F ) satisfying ψ(g−1δ∗g) = δ. Clearly δ∗ is also strongly regular; denote its centralizer
in G∗ by T ∗. In this situation let inv[ψ, z](δ∗, δ) ∈ H1(u → E?, Z? → T ∗) be the class of
w → gzww(g)

−1. This class does not depend on the choice of g. Similarly to the quasi-split

case we can associate sγ,δ∗ ∈ T ∗Γ (resp. T ∗Γ, resp. T ∗
+

) to s and the matching pair (γ, δ∗),
and pair it with inf(δ∗, δ) using Theorem 4.6 (resp 4.9, resp. 4.10). In analogy with (4.3)
define

∆[w, e,ψ, z](γ, δ) = ∆[w, e](γ, δ∗)〈inf(δ∗, δ), sγ,δ∗〉−1.

In turns out that this is well-defined, i.e. the right-hand side does not depend on the choice
of δ∗, and this defines a normalization of transfer factors for (H, s, Lη). Again there are
several natural normalizations and in half of these normalizations the exponent −1 should
be removed.

We can now formulate the generalization of Conjecture 4.7. As in Subsection 4.2 we
abbreviate 〈s,π〉w,z = tr ιw(z,π)(s) and define

Θw,z
φ,s = e(Gz)



π∈Πφ(Gz)

〈s,π〉w,zΘπ

where e(Gz) is the sign defined by Kottwitz [Kot83].

Conjecture 4.12. In the setting of Conjecture 4.11, for any z ∈ Z1(u → E?, Z? → G∗),
any strongly regular Gz(F )-conjugacy class [δ] and any semisimple s ∈ Sφ (resp. Sφ, resp.
S+
φ ) we should have

Θw,z
φ,s (δ) =



γ∈H(F )/st

∆[w, e,ψ, z](γ, δ)SΘφH
(γ).

By linear independence of characters the conjecture implies that packets ΠφH
(H) for all

endoscopic groups of G∗ — all quasi-split groups — should determine the refined Langlands
correspondence for all pure/isocrystal/rigid inner forms of G∗.

If we fix an inner twist (G,ψ) of G∗ then it may be realized as a rigid inner twists in more
than one way: one can multiply z ∈ Z1(u → Erig, Z → G∗) by any c ∈ Z1(u → Erig, Z → Z).
By [Kal18, §6], Conjectures 4.11 and 4.12 for z imply the same conjectures for cz. This

9A refined one in the rigid case, i.e. s belongs to the cover G of G.
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implies the same invariance property for pure inner twists. Presumably a similar invariance
property should be valid in the isocrystal case.

Lecturer’s comment: consider to write up the property (if not very fussy).

4.4. Reduction to the isocrystal case. Let G∗ be a quasi-split connected reductive group
over a p-adic field F . As explained above all inner forms of G∗ can be reached using the rigid
theory, and one might be tempted to simply forget the pure and isocrystal versions. They
are simpler however, and the relative complexity of the rigid version is exacerbated in the
global setting. Another reason to favor the isocrystal version is that it seems more naturally
related to geometric incarnations of the correspondence, as in [FS]. It is thus useful to relate
the isocrystal and rigid versions (the relation between the pure and isocrystal versions being
rather obvious.)

As explained in [Kal18, §4], for ziso ∈ Z1
bas(E iso, G∗) and zrig ∈ Z1

bas(Erig, G∗) is pullback
via Erig → E iso, the relevant (i.e. given restriction to center) representations of centralizers
are the same and the endoscopic character relations are also the same. In [Kal18, §5]
Kaletha construct an embedding G∗ → G∗ with normal image and abelian cokernel such
that the center of G∗ is connected and such that Conjecture 4.11 and 4.12 for G∗ and G∗ are
equivalent. Since these conjectures for G∗ can be reduced to the isocrystal case, it would be
enough to prove Conjecture 4.11 and 4.12 for all quasi-split groups in the isocrystal setting
to deduce them for all quasi-split groups in the rigid setting, yielding “the” refined Langlands
correspondence for all connected reductive groups.

4.5. Relation with the crude version. By [Kal16, Lemma 5.7] Conjecture 4.11 recovers
the relevance condition on parameters discussed in 4.1.2.

One can formulate a more precise version of property (4) in Conjecture 4.1. Let f :

G∗
1 → G∗

2 be a central isogeny between quasi-split connected reductive groups over F ,
inducing a dual map f̂ : LG2 → LG1. Let φ2 : WDF → LG2 be a tempered Langlands
parameter and denote φ1 = f̂ ◦ φ2. Let ? ∈ {pur, rig, iso}. We use the same notation as in
Conjecture 4.11, choosing finite central subgroups Zrig

i in the rigid case. Up to enlarging
these groups we may assume that Zrig

1 contains the kernel of f and that its image is Zrig
2 .

Let z1 ∈ Z1(u → E?, Z? → G∗
1) and let z2 be its image in Z1(u → E?, Z? → G∗

2). Denote
G1 = G∗

1,z1 and G2 = G∗
2,z2 . In all three cases f̂ induces a morphism S?

φ2
→ S?

φ1
. Let w be

a Whittaker datum for G∗
1 and G∗

2.

Conjecture 4.13. For any π2 ∈ Πφ2(G2) we should have

π2|G1(F ) ≃


π1∈Πφ1
(G1)

m(π1,π2)π1

where m(π1,π2) is the multiplicity of ιw(z2,π2) in the restriction of ιw(z1,π1) to S?
φ2

.

Lecturer’s comment: may discuss Weil restriction.

4.6. A few known cases. In the case of real groups Conjectures 4.11 and 4.12 were proved
by Shelstad in many papers, see [She08a, She10, She08b] and [Kal16, S5.6].

Arthur [Art13] proved Conjectures 4.3 and 4.7 for quasi-split special orthogonal10 and
symplectic groups over non-archimedean fields of characteristic zero using the stabilization of

10In the even orthogonal case Arthur proved these conjectures “up to outer automorphism”.



28 OLIVER TAÏBI (SCIBED BY WENHAN DAI)

the twisted trace formula. In this case the stable characters SΘ are characterized by twisted
endoscopy for the group GLN with its automorphism θ : g → tg−1 and the correspondence
for general linear groups. Note that endoscopic groups of special orthogonal or symplectic
groups are product of similar groups and general linear groups. Mok [Mok15] followed the
same strategy to prove the conjectures for quasi-split unitary groups over non-archimedean
local fields of characteristic zero.

Gan-Takeda [GT11] and Chan-Gan [CG15] proved Conjectures 4.11 and 4.12 for the
groups GSp4 over non-archimedean local fields of characteristic zero, although the normal-
ization of transfer factors in the case of the non-quasi-split inner form was ad hoc.

Yu, Kaletha, Fintzen-Kaletha-Spice: regular or non-singular supercuspidal L-packets.
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5. Gerbs and Tannakian categories

We briefly mention the more conceptual point of view on gerbs and Tannakian categories.
We first recall the equivalence between certain gerbs and Tannakian categories [Riv72,

Théorème 3] as corrected by [Del90]. We consider fpqc stacks over F . Recall that a gerb
is a stack in groupoids admitting local sections and such that any two objects are locally
isomorphic. A gerb C is said to have affine band if for any scheme S over F and any two
objects x, y of CS the sheaf IsomS(x, y) is representable by an affine scheme over S. If this
holds for one non-empty S and one pair (x, y) then C has affine band [Del90, p. 131].

A representation R of a gerb C is a morphism from C to the stack of quasi-coherent
sheaves (over varying schemes over F ). For a scheme S over F and an object x of CS the
quasi-coherent sheaf R(x) over S is automatically flat, and if it has finite rank n for some
pair (S, x) then R(y) has the same rank for any object y of C [Del90, §3.5]. In that case
we may see R as a morphism from C to the stack of vector bundles of rank n (equivalently,
GLn-torsors). Finite-dimensional representations of C form a category Rep(C), that can be
endowed with a tensor product (taking tensor products of vector bundles). In fact Rep(C)
is a tensor category over F (in the sense of [Del90, §2.1]). Because C has local sections the
tensor category Rep(C) is even Tannakian, i.e. it admits a fibre functor [Del90, §1.9] over
some non-empty scheme over F .

To any tensor category T over F we can associate the fibered category (over schemes
over F ) of fibre functors of T , denoted by Fib(T ). If T is Tannakian then Fib(T ) is a
gerb having affine band and the natural tensor functor T → Rep(Fib(T )) is an equivalence.
Conversely for a gerb C we also have a natural morphism of stacks C → Fib(Rep(C)) which
is an equivalence if and only if C has affine band.

For a gerb C having affine band and a linear algebraic group G over F we can consider
morphisms of stacks from C to the gerb BG of G-torsors, generalizing the notion of repre-
sentation of C. Such a morphism may also be interpreted as a G-torsor on C (see [Dil, §2.4]).
By the correspondence recalled above such a morphism amounts to a morphism of tensor
categories Rep(G) → Rep(C). Here we have identified Rep(BG) with the category of finite-
dimensional representations of G over F . The set11 of isomorphism classes of morphisms
C → BG will be denoted by H1(C, G).

We now assume that F has characteristic zero and specialize to the case of a gerb C
whose band u is commutative, and so is an fpqc sheaf of commutative groups over F ,
and is representable by an affine (commutative group) scheme. Any group scheme over
F is isomorphic to a projective limit, over a directed poset I, of group schemes of finite
type (ui)i∈I . We assume further that I may be chosen to be countable. Recall that this
implies that any projective limit over I of non-empty sets is itself not empty. We may
identify C with a projective limit of gerbs Ci bounded by ui (equivalently, we may identify
the Tannakian category Rep(C) with a union of tensor subcategories admitting a tensor
generator). Recall from [Riv72, Chapitre III Théorème 3.1.3.3] or [Del90, Corollaire 6.20]
that Ci admits a section over a finite extension of F . It follows that C admits a section over
F . By the same projective limit argument we have that CF have only one isomorphism class
(i.e. every uF -torsor is trivial). This implies that the group AutC(x) is an extension E of Γ

11We ignore set-theoretic issues here.
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by AutCF
(x) = u(F ). Moreover for any x ∈ CF the two pullbacks p∗1x and p∗2x in CF⊗FF

are isomorphic [Dil, Lemma 2.61]. Fix such an isomorphism ϕ : p∗1x ≃ p∗2x. Pulling back ϕ

via the morphisms

F ⊗F F −→ F

x⊗ y −→ xσ(y)

for σ ∈ Γ gives us a (set-theoretic) splitting Γ → AutC(x). Taking the “coboundary” dϕ =

(p∗13ϕ)
−1◦(p∗23ϕ)◦(p∗12ϕ) yields an automorphism of the pullback of x via the first projection

F → F
⊗3

, i.e. an element of u(F
⊗3

), and one can check that it is a Čech 2-cocycle [Dil, Fact
2.31]. Conversely any such 2-cocycle induces a gerb bounded by u [Dil, Proposition 2.36],
and two gerbs bound by u are isomorphic if and only if their associated class in Ȟ2(F/F, u)

are equal. Yet another projective limit argument shows that we have a natural isomorphism
Ȟ2(F/F, u) ≃ H2

cont(Γ, u(F )). For a linear algebraic group G over F and a morphism of
stacks R : C → BG, R factors through Ci for some i ∈ I (equivalently, Rep(G) has a
tensor generator [DM82, Proposition 2.20(b)] and so the tensor functor Rep(G) → Rep(C)
factor through a sub-tensor category of Rep(C) generated by a single object). Choosing a
trivialization of the GF -torsor R(x) we obtain a morphism uF → GF . One can check that
restricting R to E = AutC(x) gives a continuous 1-cocycle E → G(F ) whose restriction
to u(F ) is (induced by) the above morphism of group schemes over F . We obtain a map
H1(C, G) → H1

alg(E , G(F )) and one can check that it is bijective. (The least obvious part is
perhaps the fact that a morphism C → BG can be constructed from a cocycle in Z1

alg(E , G):
one can reduce to constructing a morphism Ci → Rep(G) for some i ∈ I and this may be
done using finite Galois descent.)

For F a non-archimedean local field of characteristic zero the gerb corresponding to
E iso was historically first reduced via its corresponding Tannakian category, the category of
isocrystals. We briefly recall this notion. Let L be the completion of the maximal unramified
extension of F . Denote by σ the Frobenius automorphism of L. An isocrystal is a finite-
dimensional vector space V over L endowed with a σ-linear bijection Φ : V → V . They form
a tensor category IsocF for the obvious notion of tensor product. (Among other axioms, we
indeed have EndIsocF (1) = Lσ = F .) We have an obvious fibre functor for IsocF over L,
namely (V,Φ) → V , and so IsocF is Tannakian. By the Dieudonné-Manin classification
theorem the tensor category IsocF has a simple structure: it is semi-simple and its simple
objects are parametrized by Q. We briefly recall this classification and refer the reader to
[Riv72, Chapitre VI §3.3] for more details and references. Fix a uniformizer ϖ of F . For
r/s ∈ Q for coprime r, s ∈ Z with s > 0 we may construct the corresponding simple object
of IsocF as follows. Let S(r/s) be Ls and define a σ-linear automorphism of S(r/s) as σ (on
coordinates) post-composed with the linear automorphism of Ls with matrix





0 1 0 · · · 0

0 0 1 · · · 0
. . .

0 0 · · · 0 1

ϖr 0 · · · 0 0




.
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This defines a simple object S(r/s) in IsocF . The isomorphism class of S(r/s) does not
depend on the choice of uniformizer ϖ, and any simple object is isomorphic to S(q) for a
uniquely determined q ∈ Q. Denote by Fs the unramified extension of degree s of F in L.
The F -algebra EndIsocF (S(r/s)) embeds in the matrix algebra Ms(L), in fact it embeds in
Ms(Fs) and it is a central simple algebra over F which is a division ring and is split by
Fs. Its invariant in H2(F,Gm) ≃ Q/Z is simply the image of r/s. Any isocrystal (V,Φ)
decomposes canonically as


r/s∈Q Vr/s where

Vr/s = L⊗Fs V
ϖ−rΦs

is the isotypic component isomorphic to a finite sum of copies of S(r/s). The rational
numbers q for which Vq ∕= 0 are called the slope of (V, f) and the above decomposition is
called the slope decomposition. An isocrystal (V,Φ) is said to be pure of slope q ∈ Q if
Vq′ = 0 for all q′ ∕= q. The tensor product of two isocrystals which are pure of slopes q1
and q2 is also pure, of slope q1 + q2. The tensor category IsocF is the union of its tensor
subcategories IsocF,s consisting of all isocrystals (V, f) whose slopes q all satisfy qs ∈ Z. the
Tannakian category IsocF,s admits a fibre functor over Fs, namely

ωs : (V,Φ) →


r∈Z
V ϖ−rΦs

.

If s divides s′ then we have an obvious identification between Fs′ ⊗Fs ωs and ωs′ . We obtain
a fibre functor ω for IsocF over the maximal unramified extension of F . Thanks to the
description of EndIsocF (S(r/s)) recalled above we can compute the band us of (the gerb of
fibre functors of) IsocF,s as the (commutative!) multiplicative group Gm over F . For an
Fs-algebra A and x ∈ A×, x acts on the slope r/s part A⊗Fs V

ϖ−rΦs

by multiplication by
xr. For s dividing s′ the natural morphism us′ → us can be checked to be x → xs′/s, and so
the band u of (the gerb of fibre functors of) IsocF is the split protorus with character group
Q. The class of the gerb in

H2(F, u) ≃ H2
cont(Γ, u(F )) ≃ lim←−

s

H2(F, us) ≃ lim←−
s

Q/Z ≃ Z⊗Z Q

(the second isomorphism is because each H1(F, us) vanishes and so lim←−s
H1(F, us) also van-

ishes) can be computed from the above description of endomorphisms of simple isocrystals
and is simply equal to 1.

For a connected linear algebraic group G over F we can identify the set of isomorphism
classes of tensor functors Rep(G) → IsocF with B(G) := G(L)/ ∼ where g1 ∼ g2 if and only
if there exists x ∈ G(L) for which g2 = xg1σ(x)

−1 (i.e. ∼ is the σ-conjugacy relation). This
is because H1(L,GL) is trivial and so there is up to isomorphism only one fibre functor
for Rep(G) over L, namely ωG,L : (V, ρ) → L ⊗F V . It follows that any tensor functor
Rep(G) → IsocF is isomorphic to one of the form (V, ρ) → (L ⊗F V,ΦV,ρ). It is clear that
setting ΦV,ρ = σ⊗ idV gives a tensor functor, and any other tensor functor differs from this
one by an automorphism of the fibre functor ωG,L, i.e. by an element of G(L). A similar
argument shows that two elements of G(L) induce isomorphic tensor functors if and only if
they are σ-conjugated.
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Lecturer’s comment: Briefly discuss non-basic B(G) for G connected reductive. Map ν

as in general, explain dominant representatives. Map κ from [Kot90, Lemma 6.1]. The pair
(ν,κ) is injective on B(G) [Kot97, Theorem 5.4].
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