Kodaira-Parshin Construction

qbg

April 19, 2023

We work over \mathbb{C} analytically.

(0.1) We first construct, for a genus ≥ 2 curve Y and a finite center-free group G, the Hurwitz space $Y' = \mathcal{H}_{G,1}(Y)$ that parametrizes G-covers of Y branched at one point. Together with this we have a relative curve Z/Y' and a morphism $Z \longrightarrow Y' \times Y$.

(0.2). Take $G = \operatorname{Aff}_q = \mathbb{F}_q^+ \rtimes \mathbb{F}_q^{\times}$ we get the Kodaira-Parshin curve family $Z_q \longrightarrow Y'_q \longrightarrow Y$.

(0.3). Take "relative reduced Prym" we get the Kodaira-Parshin family $X_q \longrightarrow Y'_q \longrightarrow Y$.

1. The Hurwitz space

Theorem (1.1). Let X be a path-connected, locally path-connected and semilocally simplyconnected topological space. Then covering spaces of X is in bijection with subgroups of $\pi_1(X, x)$.

Theorem (1.2) (Riemann existence theorem). Let Y be a compact Riemann surface, G be a finite group and $y \in Y$ be a point. Then G-covers of Y branched at y are in bijection with conjugacy classes of surjections $\pi_1(Y - y, *) \longrightarrow G$ nontrivial around y.

(1.3). Let S(y) denote the set of G-covers of Y branched only at y and let $Y' = \coprod S(y)$. S(y) is finite because $\pi_1(Y - y, *)$ is finitely generated.

(1.4). Let $\Delta \subseteq Y$ be a small disk around y, and $y' \in \Delta$. $\pi_1(Y - \Delta, *) = \pi_1(Y - y, *) = \pi_1(Y - y', *)$. Because fundamental group classifies coverings, we see that every covering of $Y - \Delta$ is the restriction of a unique covering of Y - y (resp. Y - y'). This gives a way to identify S(y) and S(y'): a covering of Y - y and a covering of Y - y' are identified if their restriction gives the same covering of $Y - \Delta$.

(1.5). Then we can give topology on $Y' = \coprod_y S(y)$ s.t. Y' is a compact Riemann surface and the natural map $Y' \longrightarrow Y$, $y' \in S(y) \longmapsto y$ is étale. Each $y' \in Y$ represents a cover of Y, so recover these curves we get a relative curve Z/Y' and a morphism $Z \longrightarrow Y' \times Y$. (1.6). Take $G = \operatorname{Aff}_q = \mathbb{F}_q^+ \rtimes \mathbb{F}_q^{\times}$ we get the Kodaira-Parshin curve family $Z_q \longrightarrow Y'_q \longrightarrow Y$.

2. The relative reduced Prym variety, $X_q \longrightarrow Y'_q \longrightarrow Y$

(2.1). Given $f: C_1 \longrightarrow C_2$ we have $f^*: J_{C_2} \longrightarrow J_{C_1}$. This map has finite kernel and its cokernel is called the *Prym variety* associated to f.

(2.2). Now back to our setting, let $f: C_1 \longrightarrow C_2$ be a Aff_q-cover and branched only at one point of C_2 . Rather that take its Prym directly we use a "reduced" version. We shall take a subgroup $H = \mathbb{F}_q^{\times} \hookrightarrow G = Aff_q$ and consider the corresponding intermediate cover $C_1 \longrightarrow C'_1 \longrightarrow C_2$. We are interested in the Prym coker $(J_{C'_1} \longrightarrow J_{C_2})$ and we want to reformulate this, in a way that can be applied in relative situation.

(2.3). $J_{C_2} \longrightarrow J_{C_1}$ has finite kernel, and the image is the identity component of $J_{C_1}^G$. Similarly $J_{C'_1} \longrightarrow J_{C_1}$ has finite kernel, and the image is the identity component of $J_{C_1}^H$. So

$$\operatorname{coker}(J_{C'_1} \longrightarrow J_{C_2}) \sim \operatorname{identity} \operatorname{component} \operatorname{of} J^H_{C_1}/\operatorname{identity} \operatorname{component} \operatorname{of} J^G_{C_1}$$

~ identity component of $J^H_{C_1}/J^G_{C_1}$.

(2.4). The RHS can be computed via idempotent method. Let's go back to those good old days of representation theory of finite groups. Let V/\mathbb{Q} be a vector space with *G*-action. Then $V^H = V^G \oplus V^{e_H - e_G = \mathrm{id}}$, where $e_H = \frac{1}{\#H} \sum h$ and $e_G = \frac{1}{\#G} \sum g$ in $\mathbb{Q}[G]$.

(2.5). First note that v is fixed by H (resp. G) $\iff e_H v = v$ (resp. $e_G v = v$). Every H-fixed vector v can be written as $v = e_H v = e_G v + (e_H - e_G)v$. This proves $V^H = V^G + V^{e_H - e_G = id}$. The intersection consists of $v = e_G v = (e_H - e_G)v$, v = 2v, v = 0. This proves $V^H = V^G \oplus V^{e_H - e_G = id}$.

(2.6). Now you can believe that the identity component of $J_{C_1}^H/J_{C_1}^G$ is isogenous to the identity component of $J_{C_1}[\#G(1-(e_H-e_G))]$.

(2.7). The distriction above can be applied in relative situation. From the Kodaira-Parshin curve family $Z_q \longrightarrow Y'_q$ we construct

 X_q = relative identity component of $J_{Z_q/Y'_q}[\#G(1-(e_H-e_G))]$.

Then $X_q \longrightarrow Y'_q$ is an abelian scheme whose fiber over $y' \in Y'_q$ is isogenous to the reduced Prym of the covering $Z_{y'} \longrightarrow Y$.