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Period integrals

G - reductive group over Q; [G] = G(Q)\G(A).

H - subgroup of G.

We may consider period integrals over H for automorphic forms ϕ on G

P(ϕ) =

∫
[H]
ϕ(h)dh.

Period integrals are closely related to L-values.
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Waldspurger formula

B - quaternion algebra over Q containing a quadratic field E.

(G,H) = (Q×\B×,Q×\E×).

Let π be a cuspidal automorphic representation on B×A with HomH(A)(π,C) 6= 0.

Waldspurger formula

|P(ϕ)|2 .
= L(1/2, πE), ϕ ∈ π.
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Cycles on Shimura varieties

We may also consider the Shimura varieties Y and X associated to the groups H and G.

Usually, the embedding H ↪→ G induces a finite morphism Y → X so that we may view Y as a
cycle on X.

The height pairing for such cycles in X are closely related to L-derivatives.
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The Gross-Zagier formula

G = GL2/Q.

H = E× with E an imaginary quadratic field.

The pair (G,H) gives the Heegner points on modular curves.

ϕ ∈ S2(Γ0(N))new.

Assume the Heegner hypothesis: any prime factor of N is split in E.

X = X0(N) - the modular curve over Q with level Γ0(N).

The complex points of X0(N) parametrizes isogenies of elliptic curves over C with kernel Z/NZ.

z = (C/OE → C/N−1) ∈ X(C) withOE/N ∼= Z/NZ.

z ∈ X(HE).

Y0 =
∑
σ∈Gal(HE/E)(z− [∞])σ ∈ J(E) with J the Jacobian of X.

P(ϕ) - the ϕ-component of Y0 in J(E)C.

Gross-Zagier formula
We have the following identity

〈P(ϕ),P(ϕ)〉NT
.
= L′(1, ϕE).

where 〈·, ·〉NT is the Neron-Tate height on J(Q̄)C.
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The Waldspurger formula is firstly proved by the Siegel-Weil formula.

It is Jacquet, who firstly introduced the relative trace formula (RTF) approach to study period
integrals and gave another proof of the Waldspurger formula.

It has many important results, including the recent proof of the Gan-Gross-Prasad (GGP) conjecture
for unitary groups.

General Gross-Zagier formula for Shimura curves / totally real fields: Yuan, S. Zhang and W. Zhang
via the arithmetic Siegel-Weil formula.

It is W. Zhang who firstly considered the application of the RTF approach to the study of heights of
cycles on Shimura varieties (the arithmetic case).

RTF approach to the Gross-Zagier formula: Tian-Yuan-Zhang-C.

Recent breakthroughs for the arithmetic case include the proof of the so-called arithmetic
fundamental lemma for the arithmetic GGP conjecture (nonarchimdean theory)

Today’s topic
The archimedean theory in the arithmetic case: archimedean arithmetic smooth matching.

Next, via the Gross-Zagier case, we introduce the RTF approach, especially the archimedean
arithmetic smooth matching.
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The automorphic kernel

In general, consider G a reductive group over Q with Z its center.

G(A) acts on L2([Z\G]) by right multiplication, denoted by R.

The space of Schwartz functions S(G(A)) acts on L2([Z\G])

R(f )ϕ =

∫
G(A)

f (g)R(g)ϕdg, f ∈ S(G(A)).

It is an integral operator with kernel

Kf (x, y) =

∫
[Z]

∑
γ∈G(Q)

f (x−1γzy)d×z.

Usually, a relative trace is a distribution on S(G(A)) given by integration of Kf over two specified
subgps.
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The L-value side
G′ = GL2,E .

GL1,E ↪→ G′ by a 7→
(

a
1

)
.

GUw = {g ∈ G′|gwt ḡ = κ(g)w}- similitude unitary group of w =

(
0 1
1 0

)
.

For Π a cuspidal automorphic representation on G′(A)

µs : ϕ ∈ Π 7→
∫

[GL1,E]
ϕ

[(
a

1

)]
|a|sEd×a.

Then L(1/2 + s,Π) is nonzero iff µs 6= 0 on Π.

` : ϕ ∈ Π 7→
∫

[Z′\GUw]
ϕ(h)η(κ(h))dh, η = ηE/Q

Then Π is the base change of a cusp auto rep on PGL2(A) iff ` 6= 0 on Π.

RT for L-value

I(s, f ′) =

∫ reg

[GL1,E×Z′\GUw]
Kf ′

[(
a

1

)
, h
]
|a|sEη(κ(h))d×adh, f ′ ∈ S′ = S(G′(A)).
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The RT for L-value - geometric side

For the geometric side, expand I(s, ·) into orbital integrals for the action of GL1,E × GUw on G′.

E×\G′(Q)/GUw(Q) ↪→ T1(Q)\S(Q), [g] 7→ [g ◦ w], w =

(
0 1
1 0

)
where S is the G′-variety of nondeg 2× 2 Hermitian matrices w.r.t E/Q and T1 = GL1,E × GL1.

f ′  Φf ′ ∈ S(S(A)) via the map G′/Uw → S

The regular semisimple orbits T1(Q)\S(Q)reg ∼= Q× \ {1}.

Geometric expansion of I(s, ·)

I(s, f ′) =
∑

x

O(s, x,Φ) + Ising(s,Φ).

For each x with Φ = ⊗vΦv,

O(s, x,Φ) =
∏

v

O(s, x,Φv), O(s, x,Φv) =

∫
T1(Qv)

Φv(t ◦ s(x))ξs,v(t)dt, ξs,v(a, z) = |a|−s
E,vηv(z).
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The RT for L-value - the spectral side

For the spectral side, expand I(s, ·) into Bessel distributions (Hecke eigen invariant distributions).

Spectral decomposition of the S′-mod L2([Z′\G′])

L2([Z′\G′]) = L2
cusp([Z′\G′])

⊕
L2

Eis([Z
′\G′]), L2

cusp([Z′\G′]) =
⊕̂
Π

L2
Π.

Kf ′ = Kf ′,cusp + Kf ′,Eis, Kf ′,cusp =
∑

Π Kf ′,Π.

Spectral expansion of I(s, f ′)

I(s, f ′) =
∑
Π

IΠ(s, f ′) + IEis(s, f ′)

where for each Π, the Bessel distribution

IΠ(s, f ′) = Bµs,`
Π (f ′) =

∑
ϕ∈OB(Π)

µs(Π(f ′)ϕ)`(ϕ).
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The RT for toric period
For the toric period side, we consider a distribution on B× with respect to the subgroup E×.

The RT for toric period

J(f ) =

∫∫
[Q×\E×]2

Kf (t1, t2)dt1dt2, f ∈ S(B×A )

It has the geometric expansion

J(f ) =
∑

x

O(x, f ) + Jsing(f )

where x denotes the regular semisimple orbits E×\(B×)reg/E× ↪→ Q× \ {1}.
It has the spectral expansion

J(f ) =
∑
π

Jπ(f ) + JEis(f )

where for each π, the Bessel distribution

Jπ(f ) = BP,P
π (f ) =

∑
ϕ∈OB(π)

P(π(f )ϕ)P(ϕ).
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Comparison
We shall compare I(Φ) = I(0,Φ) and J(f ) for (Φ, f ) at the geometric sides. As orbital integrals are
Eulerian, the comparison reduces to local.

Matching of orbits: for separable quadratic extension E/F

T1(F)\S(F)reg ∼→ F× \ {1} ∼←
⊔

E⊂B

E×\(B×)reg/E×.

Let F be a local field. Let Φ ∈ S(S(F)) and (fB ∈ S(B×))B. We call Φ matches with (fB)B if for
any x ∈ F× \ {1}

O(x, fB) = O(x,Φ)

when x is in the image of invB.

Local comparison

(Existence of smooth matching). Given Φ, there exists (fB)B matches with Φ. Conversely, given any
(fB)B, there exists some Φ matches with (fB)B.

(Fundamental Lemma). Consider the unramified situation. Then

Φf ′ ∼ (b(f ′), 0), f ′ ∈ H′.

Here, b is the base change morphism from the unramified Hecke algebraH′ of G′(F) to that of
GL2(F).
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The proof of the Waldspurger formula

Global comparison
Let f = ⊗vfv ∈ S(B×A ). Let f ′ = ⊗vf ′v ∈ S′ be purely matching with f , that is, for each v,

Φf ′v
∼ (f ′v , 0).

Then
I(f ′) = J(f ).

By the principal of independence of characters, for any π on B×A with HomE×A
(π,C) 6= 0

IπE (f ′) = Jπ(f ).

This gives the Waldspurger formula.
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The RT for height
G = GL2/Q.
U - an open compact subgroup of G(Af ).
X - the modular curve with level U. The complex points of X forms a Riemann surface

X(C) ∼= G(Q)\H± × G(Af )/U ∪ {cusps}.

S = S(U\G(Af )/U) bi-U-invariant Schwartz functions.
Hecke action on the Jacobian J of X

R : S −→ End(J)C.

E - imaginary quadratic field with a fixed embedding E× ↪→ G;
z0 - the unique point inH fixed by E×.
For any g ∈ G(Af ), consider the CM points

[g] = [z0, g] ∈ X(Q̄), [g]0 = [g]− [∞]g ∈ J(Q̄).

Heegner cycle

P0 =

∫
E×\Ê×/U∩Ê×

[t]0dt ∈ J(E).

The RT for height of the Heegner cycle

H(f ) = 〈R(f )P0,P0〉NT, f ∈ S.
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The global comparison

Global comparison (Tian-Yuan-Zhang-C)
S - finite set of nonarchimedean ramified places.

fS ∈ S0
S - “nice” test functions to simplify the computation of height.

f ′S ∈ S
′
S - purely matching with fS.

f ′∞ ∈ S∞ - Gaussian.

Then the following two distributions on the spherical Hecke algebraH′(S)

H
(

fS ⊗ b
(

f
′(S)
))

, I′
(

f ′∞ ⊗ f ′S ⊗ f
′(S)
)
, f

′(S) ∈ H
′(S)

are equal up to a coherent distribution.

15 / 30



The global comparison

a linear functional `′ onH′(S) is called coherent if

`′ =
∑
Π

`′Π + Eisenstein part.

where Π = πE is the base change lifting of a cuspidal automorphic representation π on PGL2(A)
with the root number of ε(1/2,Π) = +1.

The most important example of coherent functionals comes from the distribution J.

For any π on G(A) discrete of weight two with ε(1/2, πv) = +1 for any nonarchimedean v

I′πE
(f ′) = Hπ(f )

for any purely matching f ′ and f . This gives the Gross-Zagier formula of Yuan-Zhang-Zhang.
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Semi-global comparison
The Neron-Tate height pairing is a sum of local heights so that the distribution H(f ) is also a sum of
distributions Hv(f ) for local heights

Hv(f ) = 〈R(f )P,P〉v, f ∈ S0
S ⊗H

(S)

where the local height 〈·, ·〉v is a pairing on divisors of Xv with disjoint supports.
The distribution I′ is also a sum of distributions indexed by places,

I′v(f ′) =
∑

x

O′(x, f ′v )O
(

x, f
′(v)
)
.

Here,O′(x, f ′v ) is the derivative ofO(s, x, f ′v ) at s = 0.

Semi-global comparison
For each v, (with test functions as in the global comparison)

Hv

(
fS ⊗ b

(
f
′(S)
))

, I′v
(

f ′∞ ⊗ f ′S ⊗ f
′(S)
)
, f

′(S) ∈ H
′(S)

are equal up to a coherent distribution.

In the following, we focus on the archimedean theory.
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Archimedean arithmetic smooth matching

Step 1. Reduction from the semi-global comparison to the local one.
There exists h∞ ∈ C∞(C×\G(R)− C×) with compact support in C×\G(R) such that for any fS ∈ S0

S ,

H∞
(

fS ⊗ f (S)
)

=
∑

x

O
(

x, h∞ ⊗ fS ⊗ f (S)
)
, f (S) ∈ H(S)

up to coherent distributions onH(S).

Step 2. Local comparison.
There exists h′∞ ∈ S(G(R)) such that for any x ∈ R× \ {1}

O′(x, f ′∞)−O(x, h∞) = O(x, h′∞).
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A general problem

In fact, Step 1 can be formulated in a very general setting.

(G,H1,H2) - a triple of reductive groups over Q where H1,H2 are subgroups of G.

(X, Y1, Y2) - the triple of Shimura varieties associated to (G,H1,H2). Assume that

dim X + 1 = codim(Y1,X) + codim(Y2,X).

For each open compact subgroup U of G(Af ), (n = dim X)

〈·, ·〉U,∞ : (Zi(XU)× Zn+1−i(XU))0 −→ C, (Z1, Z2) 7→
∫

Z2

gZ1

where gZ1 ∈ Di−1,i−1(XU) is the unique harmonic Green current on XU for Z1 normalized by∫
XU

gZ1 h = 0, h ∈ Hn+1−i,n+1−i(XU).
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The “relative trace” for archimedean local height

H∞(φ) = 〈R(φ)Y1, Y2〉∞
φ=φf

= Vol(U)〈RU(f )Y1,U , Y2,U〉U,∞, φ ∈ S0.

Here,

For each U, denote by RU the Hecke correspondence of C∞c (U\G(Af )/U) on XU .

S = C∞c (H1(Af )\G(Af )).

S - a finite set of places containing ramified places of (G,H1,H2).

S0 = S0
S ⊗ S

(S) ⊂ S - for any φ ∈ S0, the two cycles R(φ)Y1 and Y2 are disjoint supported.

Such pairing is independence on the choice of f and the level U of f .

Question: geometric expansion of H∞?
Note that

H∞ ∈ HomH2(A(S))(S0,C).

Can we expand H∞ in terms of orbital integrals?
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To simplify our situation, in the definition of S0
S , assume there is a place v0 ∈ S, such that the

support of φv is contained in the elliptic semisimple locus.

We expect H∞ admits a geometric expansion in the following sense.

Decomposability
The distribution H∞ is called decomposable provided that there exists

h∞ ∈ C∞c (H1(R)\(G(R)− H1(R)U∞))

with compact support on H1(R)\G(R) such that

H∞ (φ) =
∑

γ∈H1(Q)\G(Q)/H2(Q)

Vol([H2,γ ])O (γ, h∞ ⊗ φ) , φ ∈ S0

up to a (H1,H2)-coherent distribution.

We require h∞ has compact support for the local comparison in the RTF.
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A distribution ` on S0 is called (H1,H2)-coherent if for any φS ∈ S0
S , the following distribution on

the spherical Hecke algebraH(S)
G

`
(
φS ⊗ φf

)
, f ∈ H(S)

G

is
I separable, that is

`
(
φS ⊗ φf

)
=
∑
π

`πTrπ(S) (f ) + Eisenstein part

where π runs over cuspidal automorphic representations on G(A)
I (H1,H2)-distinguished, that is, `π = 0 unless π is nearly equivalent to a H1 and

H2-distinguished representations.

Important example of (H1,H2)-coherent distributions is the relative trace I on H1\G for H2: we
have the spectral expansion

I(φ) =
∑
π

∑
ϕ∈OB(π)

PφH1
(ϕ)PH2 (ϕ) + Eisenstein part

where
PφH1

(ϕ) =

∫
H1(A)\G(A)

φ(g)PH1 (π(g)ϕ)dg.
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A rank one case

We consider the following case (G(R),H1(R)) of rank 1 and Y1 a divisor of X:

G = U(V). Here, (V, (·, ·)) is a Hermitian space with respect to an imaginary quadratic field E/Q
of dimension n with signature (n− 1, 1) in the archimedean place.

H1 = StabG(Eu) with u ∈ V of norm one.

H2 - an anisotropic torus in G.

Theorem (Tian-C)
The distribution H∞ for the above (G,H1,H2) is decomposable if n 6= 3.

For the case n = 3, if we moreover require S0
S satisfying

I there is a place v1 split in E (so that (Gv1 ,Hv1 ) = (GL3,GL2 × GL1)) such that φv1 is RSC
in the sense that

φv1 (g) = `(σ(g)ϕ)

where σ is a relatively supercuspidal representation on Gv1 , ` is a nonzero functional in
HomHv1

(σ,C) and ϕ is a nonzero vector of σ.
then H∞ is also decomposable.

There is no distinguished supercuspidal representations for (GL3,GL2 × GL1).
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Local theory of Green functions - the secondary spherical
functions

The key ingredient for the proof is the Green current of Oda-Tsuzuki on X for Y1.
We refine their work to fit into the framework of the RTF approach.

The secondary spherical functions
There is the polar decomposition

G(R) = H1(R) exp(a)U∞, R ∼= a ⊂ g.

For any s with Re(s) > n, there exists a unique family of secondary spherical functions

φ
(2)
s ∈ C∞(H1(R)\G(R)− H1(R)U∞/U∞)

characterized by

the family φ(2)
s is holomorphic.

φ
(2)
s ∗ Ω = (s2 − n2)φ

(2)
s where Ω is the Casimir operator on G(R).

φ
(2)
s (at)− log t is bounded for t→ 0+.

It has the following “large-time behaviour”

φ
(2)
s (at) = O

(
e−(Res+n)t

)
, t→ +∞.
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Global theory of Green functions - spectral method
The Green function (Oda-Tsuzuki)

Consider the Poincare series

Gs(x) =
∑

γ∈H1(Q)\G(Q)

(φ
(2)
s ⊗ 1U)(γx).

For Re(s)� 0, the above sum is convergent and Gs ∈ L2(G(Q)\G(A)/U) with U = U∞ · U.
For any s1, s2, the difference (Gs1 − Gs2 )(g) equals the sum of (cusp) + (cont) + (res):

∑
π∈Πcusp(G)σ

[
1

n2 − s2
1 − λ(π)

−
1

n2 − s2
2 − λ(π)

] ∑
ϕ∈OB

(
πU

) PH1 (ϕ)ϕ(g) (cusp)

Πcusp(G)σ - cuspidal unitary automorphic representations π on G(A) which are H-distinguished, that is, HomH(A)(π,C) 6= 0.

∑
π∈Πcusp(M)σ/ImXM

∑
ϕ∈OB

(
V(π)U

)
∫

ImXM

 1

n2 − s2
1 − λ

(
IG
P (ξ ◦ π)

) − 1

n2 − s2
2 − λ

(
IG
P (ξ ◦ π)

)
 PH1 (E(ϕ, ξ))E(ϕ, ξ)(g)dξ

(cont)

P = MN - a minimal parabolic, M = E× × G1 with G1 a compact unitary group;

Πcusp(M)σ - cuspidal unitary automorphic representations π = χ � τ on M(A) such that χ factors through NE/Q and τ = 1.[
1

n2 − s2
1

−
1

n2 − s2
2

]
Vol([H1])

Vol([G])
. (res)
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Global theory of Green functions

The Green function (Oda-Tsuzuki)

The above spectral expansion of Gs1 − Gs2 gives the meromorphic continuation of Gs to the whole s-plane
which has a simple pole at s = n. Moreover,

G = lim
s→n

(
Gs −

1
n2 − s2

Vol([H1])

Vol([G])

)
is a harmonic Green function for Y .

Oda-Tsuzuki obtains the spectral expansion of Gs and its meromorphic continuation in the L2-sense.

As we shall consider its H2-period integral, the above smooth version of spectral expansion is
needed.

For this, we have the following lemma.
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A convergence lemma
Let Φ be a smooth function on G(A) which also belongs to L2(G(Q)\G(A)/U). Assume that

for each π ∈ Πcusp(M)σ , ϕ ∈ V(π)U and ξ ∈ ImXM , 〈Φ,E(ϕ, ξ)〉Pet is absolutely convergent;

the function Φ has the following spectral expansion in the L2-sense

Φ(g) =
∑

π∈Πcusp(G)σ

∑
ϕ∈OB(πU )

〈Φ, ϕ〉Petϕ(g) + 〈Φ, 1〉Pet
Vol([H1])

Vol([G])

+
∑

π∈Πcusp(M)σ/ImXM

∑
ϕ∈OB(V(π)U )

∫
ImXM

〈Φ,E(ϕ, ξ)〉PetE(ϕ, ξ)(g)dξ.
(0.1)

Then the righ hand side of (0.1) converges to the value Φ(g) absolutely and locally uniformly for
g ∈ G(A).
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The proof of the convergence lemma
For the convergence of the cuspidal part:
I For any R > 0, there exists N1 > 0 such that for any π ∈ Πcusp(G), any ϕ ∈ OB(πU )

|ϕ(g)| � λ(π)N1 a(g)−R, g ∈ SG.

I For any N2 > 0, any π ∈ Πcusp(G) and any ϕ ∈ OB(πU )

|〈Φ, ϕ〉Pet| ≤
||Φ ∗ ΩN2 ||2
λ(π)N2

.

I There exists N3 > 0 such that ∑
π∈Πcusp(G)

∑
ϕ∈OB(πU )

1
λ(π)N3

<∞.

This follows from the Weyl law (by Lindenstrauss-Venkatesh): let

0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λi ≤ · · ·

be the Laplacian eigenvalues on L2
cusp(G(Q)\G(A)/U), then

{i : λi ≤ x} ∼ Cxρ0 , x→∞.

 
∑
π

∑
ϕ

∣∣∣〈Φ, ϕ〉Petϕ(g)
∣∣∣ ≤ ||Φ ∗ ΩN3 || · a(g)−R

∑
π

∑
ϕ

1
λ(π)N2−N1

<∞ g ∈ SG.

For the Eisenstein part, we apply the classification of distinguished Eisenstein series to obtain the
finiteness of π ∈ Πcusp(M)σ with V(π)U 6= 0.
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The proof of the main result
By the meromorphic continuation of Gs, for any s ∈ C with Re(s)� 0,

H∞(f ) =

∫
[H2]

K
φ

(2)
s ⊗φf

(t)dt

up to coherent distributions. Here, the Poincare series

K
φ

(2)
s ⊗φf

(x) =
∑

γ∈H1(Q)\G(Q)

(φ
(2)
s ⊗ φf )(γx), φf ∈ S(H1(Af )\G(Af ))

We decompose φ(2)
s into two functions

φ
(2)
s = φ

(2)
s,0 + φ

(2)
s,∞

where
I φ

(2)
s,0 ∈ C∞(H1(R)\G(R)− H1(R)U∞/U∞) with compact support in H1(R)\G(R)

I φ
(2)
s,∞ ∈ C∞(H1(R)\G(R)/U∞) with the same “large time behaviour” as φ(2)

s .
Consider the associated Poincare seires K

φ
(2)
s,?⊗φf

with ? = 0,∞.

As [H2] is compact, the integral over [H2] for K
φ

(2)
s,0⊗φf

can be expanded to required orbital

integrals.
Reduce to show that for Re(s) large enough, the Poincare series

K
φ

(2)
s,∞⊗φf

admits a (smooth) spectral expansion.
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The proof of the main result
Spectral expansion of K

φ
(2)
s0,∞⊗φf

Assume n 6= 3 and s0 is large enough. Consider the Poincare series Kφ with φ = φ
(2)
s0,∞ ⊗ φf . Then

Kφ ∈ L2(G(Q)\G(A)/U)

with the spectral expansion

Kφ(g) =
∑

π∈Πcusp(G)σ

∑
ϕ∈OB(πU )

PφH1
(ϕ)ϕ(g) +

Vol([H1])

Vol([G])

∫
H1(A)\G(A)

φ(g)dg

+
∑

π∈Πcusp(M)σ/ImXM

∑
ϕ∈OB(V(π)U )

∫
ImXM

PφH1

(
E(ϕ, ξ)

)
E(ϕ, ξ)(g)dξ.

The right hand side is absolutely convergent and locally uniformly for g ∈ G(A).

Proof: for automorphic forms ϕ with certain growth condition, the Fourier coefficient

〈ϕ,Kφ〉 = PφH1
(ϕ) =

∫
H1(A)\G(A)

φ(g)PH1 (R(g)ϕ)dg.

Now, we apply the above convergence lemma.
If n = 3, Kφ ∈ L1+ε(G(Q)\G(A)/U), 0 ≤ ε < 1. The RSC condition implies that Kφ is cuspidal.
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