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Abstract. The basic admissible locus F(G,µ, b)a inside the flag variety F(G,µ), attached

to a reductive group G with a minuscule cocharacter µ of G, is a p-adic analogue of the com-
plex analytic period spaces. It has an algebraic approximation F(G,µ, b)wa inside the flag

variety, called the weakly admissible locus. On the flag variety F(G,µ), we have the Newton

stratification which has the admissible locus as its unique open stratum. In this paper, we
study the relation between the Newton strata and the weakly admissible locus. We show that

F(G,µ, b)wa is maximal (in the sense that it’s a union of Newton strata) is equivalent to

(G,µ) weakly fully HN-decomposable, it’s also equivalent to the condition that the Newton
stratification is finer than the Harder-Narasimhan stratification. These equivalent conditions

are generalizations of the fully HN-decomposable condition and the weakly accessible condi-
tion. Moreover, we give a criterion to determine whether a Newton stratum is completely

contained in the weakly admissible locus involving G-bundles as extensions of M -bundles

over the Fargues-Fontaine curve, where M is a Levi subgroup of G. When G = GLn, we
also give a combinatorial inductive criterion to determine whether a vector bundle over the

Fargues-Fontaine curve is an extension of two given vector bundles.
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Introduction

Let F be a finite extension ofQp, F̄ an algebraic closure of F with C = ̂̄F its p-adic completion.
Let G be a connected reductive group over F , and {µ} the geometric conjugacy class of a

minuscule cocharacter µ. Let F̆ be the completion of the maximal unramified extension Fun of
F inside F̄ , and we write σ the Frobenius on F̆ relative to F . Fix b ∈ G(F̆ ). Let E = E(G, {µ})
be the reflex field, that is, the field of definition of the geometric conjugacy class {µ}, which is a
finite extension of F and is viewed as a subfield of F̄ . Attached to the pair (G, {µ}), we have the
flag variety F(G,µ) which is a projective variety defined over the reflex field E. In the following,

we shall consider its associated adic space, still denoted by F(G,µ), defined over Ĕ, the p-adic

completion of the maximal unramified extension E ·Fun ⊂ F̄ of E. Using the element b ∈ G(F̆ ),
Rapoport and Zink defined an open subset

F(G,µ, b)wa

of the adic space F(G,µ), called the weakly admissible locus (historically also called the p-adic
period domain, see also [DOR10]), as a vast generalization of the Drinfeld upper half plane.

For K/Ĕ a complete field extension, the points of F(G,µ, b)wa(K) correspond to the weakly
admissible filtered isocrystals equipped with a G-structure, whose underlying isocrystals with
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a G-structure are induced by b. If K/Ĕ is finite, by a fundamental result of Colmez-Fontaine
in p-adic Hodge theory ([CF00]), such filtered isocrystals are admissible in the sense that they

come from crystalline Galois representations. If K/Ĕ is an arbitrary complete field extension, we
cannot always get Galois representations attached to points in F(G,µ, b)wa(K). This phenome-
non leads Rapoport and Zink to conjecture that there exists an open subspace, called admissible
locus

F(G,µ, b)a

inside F(G,µ, b)wa with the same classical points, i.e., the same points with values in finite

extensions of Ĕ as F(G,µ, b)wa, together with a p-adic étale local system with additional struc-
tures on F(G,µ, b)a interpolating the crystalline Galois representations attached to its classical
points. By contrast to the subspace F(G,µ, b)wa of weakly admissible locus, the construction
of F(G,µ, b)a is quite mysterious, and was previously known only for certain triples (G,µ, b) by
the work of Hartl ([Har08] [Har13]) and Faltings ([Fal10]).

Recently, thanks to the new progress in p-adic Hodge theory, especially the discovery of
Fargues-Fontaine curve, we can associate in a natural way to b a G-bundle

Eb
on the Fargues-Fontaine curve X, whose isomorphism class only depends on the σ-conjugacy
class of b. Furthermore we can use each C-point x ∈ F(G,µ)(C) to modify Eb à la Beauville-
Laszlo to get another G-bundle

Eb,x
on X. We define F(G,µ, b)a as the (necessarily open) subspace of F(G,µ) stable under gener-
alization, whose set of C-points is given by

F(G,µ, b)a(C) = {x ∈ F(G,µ)(C)|Eb,x is the trivial G-bundle}.
The existence of the étale local system on F(G,µ, b)a as in the conjecture of Rapoport-Zink is
then a consequence of the work of Fargues-Fontaine, Kedlaya-Liu, and Scholze.

As a result, we have two open adic subspaces inside the flag varieties F(G,µ):

F(G,µ, b)a ⊆ F(G,µ, b)wa ⊆ F(G,µ).

It is a natural question to understand the structure of these subspaces. Compared with the
weakly admissible locus F(G,µ, b)wa, which has been intensively studied since the work of
Rapoport-Zink, we don’t know much about the admissible locus F(G,µ, b)a. As the first step,
we would like to see when F(G,µ, b)a coincides with F(G,µ, b)wa ([Rap18, Question A.20]). If

G = GLn, Hartl gave a complete solution to this question. In particular, when b ∈ GLn(F̆ ) is
basic (cf. Section 1.1.1), up to twist by a central cocharacter, the equality

F(GLn, µ, b)
a = F(GLn, µ, b)

wa

holds if and only if

µ ∈ {(1, 0(n−1)), (1(n−1), 0)}, or n = 4 and µ = (1, 1, 0, 0).

For a general reductive group G, Fargues and Rapoport conjectured that, at least when b is basic,
there exists a group-theoretic condition which expresses precisely the coincidence of F(G,µ, b)a

and F(G,µ, b)wa. By a recent joint work of the first-named author with Fargues and Shen, this
conjecture is now a theorem.

Theorem (Chen-Fargues-Shen [CFS21]). Suppose that b ∈ G(F̆ ) is basic. Then F(G,µ, b)a =
F(G,µ, b)wa if and only if the pair (G,µ) is fully Hodge-Newton decomposable.

Here the full Hodge-Newton decomposability condition is purely group-theoretic. It was
first introduced and systematically studied by Görtz, He and Nie in [GHN19]. Moreover, they
also give equivalent conditions in terms of affine Deligne-Lusztig varieties for this condition.
We refer to § 2.1 for the precise definition of the fully HN-decomposability condition. In her
succeeding work, the first-named author proved the analogue of the above theorem in the non-
basic case ([Che]). Furthermore, Shen generalized the Fargues-Fontaine conjecture for non-
minuscule cocharacters ([She]).

On the other hand, Rapoport investigated in [Rap18] the question that in which situations the
subspace F(G,µ, b)wa (resp. F(G,µ, b)a) is the whole flag variety F(G,µ). If this is indeed the
case, we call, following Rapoport, that the triple (G,µ, b) is weakly accessible (resp. accessible).
Clearly, if (G,µ, b) is accessible, then it is weakly accessible. In [Rap18, A.4-A.5], Rapoport gave
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a full classification for such triples. Indeed, if (G,µ, b) is weakly accessible, then b is basic and
hence determined by (G,µ). For instance, in the GLn-case, up to a twist by a central cocharacter,
weak accessibility is equivalent to the condition that µ = (1(r), 0(n−r)) with gcd(n, r) = 1.

To go further, we consider the Newton stratification on the flag variety F(G,µ):

F(G,µ) =
∐

[b′]∈B(G)

F(G,µ, b)[b
′].

Here B(G) is the set of σ-conjugacy classes of G(F̆ ) and F(G,µ, b)[b
′] is a subspace of F(G,µ)

stable under generalization, whose C-points are those x ∈ F(G,µ)(C) such that Eb,x ≃ Eb′ .
Rapoport determined in [Rap18] which Newton strata F(G,µ, b)[b

′] are non-empty when b is
basic. Apparently

F(G,µ, b)a = F(G,µ, b)[1]

is the unique open stratum of this stratification. Naturally, we want to compare the Newton
stratification with the weakly admissible locus. For example, we would like to classify the strata
which have a non-empty intersection with F(G,µ, b)wa ([Che, Conjecture 5.2]). By the work of
Chen-Fargues-Shen mentioned above combined with a recent preprint of Viehmann ([Vie]), we

have a complete answer to this question. Suppose a Newton stratum F(G,µ, b)[b
′] is non-empty,

then

F(G,µ, b)[b
′] ∩ F(G,µ, b)wa ̸= ∅

if and only the triple (G, νb − µ, b′) is Hodge-Newton indecomposable (cf. Definition 2.1). In
particular,

F(G,µ, b)wa ⊆
∐

[b′]∈B(G) s.t. (G,νb−µ,b′)
is Hodge-Newton indecomposable

F(G,µ, b)[b
′] ⊆ F(G,µ).

We say that the weakly admissible locus F(G,µ, b)wa is maximal if the first inclusion above is an
equality, or equivalently (by [Vie]), that F(G,µ, b)wa is a union of Newton strata. Note that the
weakly admissible locus is maximal if F(G,µ, b)wa = F(G,µ, b)a or F(G,µ). Therefore the max-
imality condition of the weakly admissible locus can be considered as a uniform generalization
of the above two extreme cases that we have discussed. Our first main result is a group theoretic
characterization and a geometric characterization of the maximality of the weakly admissible
locus when b is basic under the minuscule condition.

Theorem (Theorem 3.5). Suppose b basic and µ minuscule. Then the following three assertions
are equivalent:

(a) F(G,µ, b)wa is maximal;
(b) (G,µ) is weakly fully Hodge-Newton decomposable (cf. Definition 2.4);
(c) the Newton stratification is finer than the Harder-Narasimhan stratification in the sense

that every Harder-Narasimhan stratum is a union of some Newton strata (see § 1.4.3
for a brief review of the Harder-Narasimhan stratification).

The weakly fully Hodge-Newton decomposability condition in assertion (b) is a group theoretic
condition. This condition is a common generalization of the full Hodge-Newton decomposability
and weak accessibility condition, and it includes also some new cases which are not covered by
the last two conditions. For example, the following new cases arise in the GLn-case:

n is even and µ ∈ {(1(2), 0(n−2)), (1(n−2), 0(2))}, or n = 6 and µ = (1, 1, 1, 0, 0, 0).

In Theorem 2.15, we classify all the weakly fully HN-decomposable pairs when G is absolutely
simple and adjoint.

We would also like to have a practical criterion to see if a single Newton stratum F(G,µ, b)[b
′]

is entirely contained in the weakly admissible locus. Our second main result of this paper is such
a criterion.

Theorem (Theorem 4.8). Let µ be a minuscule cocharacter of G and b ∈ G(F̆ ) be basic. Suppose

F(G,µ, b)[b
′] ̸= ∅. Then

F(G,µ, b)[b
′] ⊈ F(G,µ, b)wa



4 MIAOFEN CHEN, JILONG TONG

if and only if there exist some maximal proper standard Levi subgroup M of H, the quasi-split
inner form of G over F , and an element w in the Weyl group of H, satisfying the following two
conditions:

(1) b has a reduction bM to M and w is µ-negative for M (cf. Definition 4.1); and
(2) [b′] is an extension of some [b′M ] ∈ B(M,κ(bM ) − µw,#, νbM − µw,⋄), where B(M, ...)

denotes a generalized Kottwitz set (cf. §1.1.4 and definition 4.4).

If G = GLn, the two conditions in the theorem can be reformulated in a more down-to-earth
way as follows:

(i) the isocrystal (F̆n, b ◦ σ) has a decomposition by sub-isocrystals (F̆n, b ◦ σ) = D1 ⊕D2;
and

(ii) the vector bundle Eb′ can be written as a extension of E2 by E1, such that the vector
bundle E1 is of degree > 0 and that each Ei can be realized as a minuscule modification
of E(Di), the vector bundle attached to the isocrystal Di.

If the Newton stratum F(GLn, µ, b)
[b′] contains a point which is not weakly admissible, such a

point produces a decomposition of the isocrystal (F̆n, b ◦ σ) and an extension of vector bundles
as required above. Conversely, once these two conditions are fulfilled, it is not hard to realize
Eb′ as a modification of Eb in the way compatible with the two modifications given in (ii). But
à priori the modification that we get randomly may be not minuscule. We need to adjust the
initial modification properly to obtain a minuscule one, and this is done in Proposition 4.6 for
general quasi-split groups. In this way, we obtain a point in F(GLn, µ, b)

[b′] violating the weak
admissibility.

It is now obvious to the readers that, our problem of classifying the Newton strata contained
in the weakly admissible locus is closely related to the difficult question to determine whether a
G-bundle is an extension of aM -bundle on the Fargues-Fontaine curve, withM a Levi subgroup
of the quasi-split inner form of G. When the M -bundle is semi-stable, this question is studied
by [BFHHLWY] for GLn and [Vie] for arbitrary G. In § 5, we study this question for GLn for
any M -bundle. Inspired by the previous work of Schlesinger on the classification of extensions
of vector bundles on the projective line ([Sch00]), we introduce in Definition 5.1, for two given
vector bundles Ei (i = 1, 2), a combinatorial constrain on the slopes of a vector bundles E which
can be realized as an extension of E2 by E1. We check that this constrain is indeed necessary, and
shows that our combinatorial condition coincides with that of [BFHHLWY] when the two vector
bundles Ei (i = 1, 2) are semistable. One might expect that this combinatorial condition is also
sufficient to classify all the extensions, but unfortunately this is not the case (cf. Example 5.8).
We can only give an inductive criterion to see if a vector bundle E verifying our combinatorial
conditions indeed comes from an extension of vector bundles.

After we finished this work, we noticed that Hong has posted a new preprint [Hon22] on his
webpage. In his new work, Hong has classified independently all the extensions of vector bundles
over the Fargues-Fontaine curve in a similar way as we did in § 5.

We briefly describe the structure of this article. In §1, we collect some preliminaries about
modifications of G-bundles on the Fargues-Fontaine curve that we will need in the sequel. In
§2, we discuss the weakly fully HN-decomposable condition and give the minute criterion for
the weakly fully HN-decomosability (Proposition 2.11). Using the minute criterion, we give the
classification of the weakly fully HN-decomposable pairs (G,µ) when G is absolutely simple and
adjoint in Theorem 2.15. In §3, we give several equivalent conditions when the weakly admissible
locus is maximal in Theorem 3.5. In §4, we give a criterion when a single Newton stratum is
contained in the weakly admissible locus in Theorem 4.8. In §5, we introduce a combinatorial
condition which is necessary for a vector bundle over the Fargues-Fontaine curve which can be
realized as an extension of two given vector bundles (Proposition 5.3). Moreover, we give a
combinatorial inductive criterion to classify all extensions of vector bundles in Proposition 5.9.
At the end of this section, we apply this criterion to determine all the Newton strata contained in
the weakly admissible locus for GLn in an explicit example. In the appendix, we show that our
combinatorial constrain above is also sufficient in some special cases, yielding hence classifications
of extensions in some new cases not yet covered in the literature.
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Notations

We use the following notations:

• F is a finite degree extension of Qp with residue field Fq and a uniformizer πF .
• F̄ is an algebraic closure of F and Γ = Gal(F̄ |F ).
• F̆ = F̂un is the completion of the maximal unramified extension Fun ⊂ F̄ , with Frobe-
nius σ.

• G is a connected reductive group over F , and H is a quasi-split inner form of G.
• A ⊆ T ⊆ B, where A is a maximal split torus, T = ZH(A) is the centralizer of A in T ,
and B is a Borel subgroup in H.

• (X∗(T ),Φ, X∗(T ),Φ
∨) is the absolute root of H with positive roots Φ+ and simple roots

∆ with respect to the choice of B. Write ∆∨ for the corresponding simple coroots.
• W = NH(T )/T is the absolute Weyl group of T in H, and w0 is the longest length

element in W .
• (X∗(A),Φ0, X∗(A),Φ

∨
0 ) is the relative root datum of H with positive roots Φ+

0 and
simple (reduced) roots ∆0.

• If M is a standard Levi subgroup in H we denote by ΦM the corresponding roots or
coroots showing up in LieM , and by WM the Weyl group of M . If P is the standard
parabolic subgroup of H with Levi componentM , sometimes we also write WP for WM .
For α ∈ ∆0, let Mα be the standard Levi subgroup of H with ∆Mα,0 = ∆0\{α}. Let Pα
be the standard parabolic subgroup of H with Levi component Mα.

1. Preliminaries

In this section, we collect some basic definitions and results needed in the sequel.

1.1. Generalized Kottwitz sets. Let B(G) be the set of σ-conjugacy classes of elements in

G(F̆ ). Kottwitz has defined two maps, the Newton map and the Kottwitz map, on B(G), which
are of fundamental importance in this paper.

1.1.1. The Newton map. Let D be the pro-torus whose character group is Q, and consider

N (G) :=
(
Hom(DF̄ , GF̄ )/G(F̄ )

)Γ
,

with Γ = Gal(F̄ /F ). The Newton map is a map

(1.1.1) ν = νG : B(G) −→ N (G)

defined as follows. Let b ∈ G(F̆ ). For (V, ρ) an object in RepF (G), write VF̆ := V ⊗F F̆ . The
element b induces an isocrystal

(1.1.2) Db,ρ = (Db,ρ, φb,ρ) := (VF̆ , ρ(b)(1⊗ σ)),

whose slope decomposition gives rise to a Q-graded vector space over F̆ . In this way, we obtain
an exact tensor functor

RepF (G) −→ Q−GradF̆ ,

(V, ρ) 7−→ slope decomposition of Db,ρ,

from the category RepF (G) of rational algebraic representations of G over F to the category

Q −GradF̆ of Q-graded F̆ -vector spaces. This tensor functor in turn, by Tanaka duality, gives
a morphism of algbraic groups

νb : DF̆ −→ GF̆ .

As the slope decomposition ofDb,ρ is defined over Fun, the group νb is naturally defined over Fun,
thus can be viewed as an element of X∗(G)Q = Hom(DF̄ , GF̄ ). Moreover, its G(F̄ )-conjugacy
class [νb] depends only on the σ-conjugacy of b, and is invariant under the action of Γ. The
Newton map ν in (1.1.1) is then defined by setting ν([b]) = [νb] ∈ N (G).

Recall also that, an element [b] ∈ B(G) is called basic if the rational cocharacter νb factors
through the center of GF̆ . In this case, we will also say that b is basic.
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1.1.2. The Kottwitz map. Let π1(G) denote the algebraic fundamental group of G. Indeed,

π1(G) = X∗(T )/⟨Φ∨⟩,

where ⟨Φ∨⟩ ⊂ X∗(T ) is the subgroup generated by Φ∨. Up to a canonical isomorphism, π1(G)
does not depend on the choice of T , and is naturally equipped with an action of Γ = Gal(F̄ /F ).
When G = GLn,F , we have a canonical identification π1(G) ≃ Z.

The Kottwitz map, written κG or even κ if there is no confusion, is a map

κ = κG : B(G) −→ π1(G)Γ

which is functorial on G as an F -reductive group, such that the following square is commutative:

F̆ ∗ vπF
(−)

//

can
����

Z

≃can

��
B(Gm,F )

κGm,F // π1(Gm,F )Γ

,

where vπF
(−) is the πF -adic valuation on F . The Kottwitz map κG is uniquely determined by

this property. The reader can find in [CFS21, § 1.5] a more direct construction of κG via the
abelianization of Kottwitz set à la Borovöı.

Theorem 1.1 ([Kot97] 4.13). The map

(ν, κ) : B(G) −→ N (G)× π1(G)Γ, [b] 7→ ([νb], κ([b]))

is injective.

Remark 1.2. (1) By a classical result of Steinberg, H1(F̆ , G) is trivial, from where one
deduces a natural injective map ([Kot85, 1.8.3]):

H1(F,G) → B(G)

whose image is the set of elements [b] ∈ B(G) with trivial Newton vector νb.
(2) Composing the natural map in (1) with the Kottwitz map κG above, we get a map

H1(F,G) −→ π1(G)Γ.

It is known that this map is injective, with image the subgroup π1(G)Γ,tor of torsion
elements in π1(G)Γ. If G is semisimple, the group π1(G) is of torsion. Consequently,
the map above is bijective provided G semisimple.

1.1.3. Poset structure on N (G) and on B(G). We have the following well-known bijective maps

X∗(A)
+
Q

∼−→ (X∗(T )Q/W )Γ
∼−→ (X∗(G)Q/G(F̄ ))

Γ.

Here X∗(A)
+
Q is the closed Weyl chamber attached to the basis ∆0

X∗(T )
+
Q = {λ ∈ X∗(A)Q|⟨λ, α⟩ ≥ 0 for all α ∈ ∆0}.

Remark 1.3. Up to a canonical bijection, the bijective map X∗(T )Q/W −→ X∗(G)/G(F̄ ) does
not depend on the choice of the maximal torus T . This allows us to equip a group structure on
X∗(G)Q/G(F̄ ), and the latter becomes a Γ-module in this way.

One define a partial order ⪯ on N (G) (resp. on B(G)): for v, v′ ∈ N (G) (resp. [b], [b′] ∈
B(G)), write ṽ and ṽ′ the representatives of v and v′ (resp. of [νb] and [νb′ ]) in X∗(A)

+, and set

v ⪯ v′ (resp. [b] ⪯ [b′]) ⇐⇒ ṽ′ − ṽ ∈

{∑
α∈∆

nαα
∨|nα ∈ Q≥0

}
⊂ X∗(A)Q.

One can check that, the definition of the partial order ⪯ only depends on G. Using this partial
order, we can equip B(G) with the topology such that

[b′] ∈ {[b]} ⇐⇒ [b] ⪯ [b′].

The set N (G) can be topologized in a similar way.
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1.1.4. The generalized Kottwitz sets. Recall the Kottwitz set

B(G,µ) := {[b] ∈ B(G)|[νb] ⪯ µ⋄, κ([b]) = µ#},
where

• µ⋄ denotes the Galois average of the cocharacter µ in X∗(G)Q/G(F̄ ):

µ⋄ :=
1

[Γ : Γµ]

∑
τ∈Γ/Γµ

µτ ∈ X∗(G)Q/G(F̄ ),

with Γµ the stabilizer of the action Γ on µ ∈ X∗(G), and
• µ# is the image of µ in π1(G)Γ via the canonical maps below

X∗(T ) −→ π1(G) = X∗(T )/⟨Φ∨⟩ −→ π1(G)Γ.

One checks that both µ⋄ and µ# depend only on the conjugacy class {µ} of µ. Set also

A(G,µ) := {[b] ∈ B(G)|[νb] ⪯ µ⋄}.
It is known that B(G,µ) ⊂ A(G,µ) are both finite sets equipped with the partial order ⪯ induced
from B(G). Later we will need a generalized version of the Kottwitz sets introduced in [CFS21,
§ 4.1].

Definition 1.4. Let ϵ ∈ π1(G)Γ and δ ∈ N (G). Set

B(G, ϵ, δ) := {[b] ∈ B(G)|[νb] ⪯ δ, κ([b]) = ϵ}.

If ϵ = µ# and δ = µ⋄, we recover the Kottwitz set B(G,µ) above.

Remark 1.5. In this paper, for the generalized Kottwitz set B(G, ϵ, δ), δ is written additively but
not multiplicatively such as in [CFS21] and [Che]. For example, the notation B(G, 0, νbµ

−1,⋄)
in [CFS21] and [Che] is written B(G, 0, νb − µ⋄) here.

1.2. Fargues-Fontaine curves and G-bundles.

1.2.1. Fargues-Fontaine curves. Let K be a perfectoid field over Fq, and ωK ∈ K with 0 <
|ωK | < 1. Let WOF

(OK) :=W (OK)⊗W (Fq) OF , and

YK := Spa(WOF
(OK)) \ V (πF [ωK ]).

The latter is an adic space over F equipped with an automorphism φ induced from the Frobenius
on K relative to Fq. The quotient

X = XK := YK/φZ

is an adic curve which can be algebraized, and the resulting F -scheme, the Fargues-Fontaine
curve associated with the perfectoid field K, is given by

X = XK := Proj

(⊕
i

B
φ=πi

F

K

)
with BK := H0(YK ,OYK

). It is known that X is a one-dimensional Noetherian scheme. In
the following, we shall take C a complete algebraically closed extension of F̄ , and K = C♭ the
tilt of C. In particular, the curve X is equipped with a closed point ∞ ∈ X with residue field
k(∞) = C and complete local ring ÔX,∞ = B+

dR(C).

1.2.2. G-bundles on Fargues-Fontaine curves. In the following, we shall use intensively the no-
tion of G-bundles on X = XC♭ with C as above. Recall first that, a G-bundle on X is a (right)
G-torsor on X for the étale topology. From a G-bundle E on X, one can construct an exact
tensor functor

RepF (G) −→ BunX ,

(V, ρ) 7−→ E ×G,ρ (OX ⊗F V ).

Here BunX is the category of vector bundles on X and E ×G,ρ (OX ⊗F V ) denotes the quotient
of E × (OX ⊗F V ) by the following action of G: for g (resp. x) a local section of G (resp. of E),
and v ∈ V ,

g · (x, 1⊗ v) := (xg−1, 1⊗ ρ(g)(v)).

Conversely, every exact tensor functor

(1.2.1) RepF (G) −→ BunX
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arises in this way (see [Far20, § 1]). Moreover, attached to a G-bundle E , we have the Harder-
Narasimhan polygon νE ∈ N (G) and the G-equivariant first Chern class cG1 (E) ∈ π1(G)Γ. See
[CFS21, § 1.4] for more details.

Let b ∈ G(F̆ ). For (V, ρ) an object in RepF (G), consider the isocrystal Db,ρ of (1.1.2). It
gives rise the vector bundle E(Db,ρ) on X associated with the graded module

M(Db,ρ) :=
⊕
i≥0

(BK ⊗F̆ Db,ρ)
φ⊗φ=πi

F

over the graded ring PK :=
⊕

iB
φ=πi

F

K . In this way, we obtain an exact tensor functor of the
form (1.2.1). The resulting G-bundle on X is denoted by

Eb
in the following. The isomorphism class of the isocrystal (Db,ρ, φb,ρ), and hence the isomorphism
class of the G-bundle Eb, depend only on the σ-conjugacy class of b. So we obtain a map

(1.2.2) B(G) −→ H1(X,G), [b] 7→ [Eb].

Here B(G) is the set of σ-conjugacy classes G(F̆ ).

Theorem 1.6 ([Far20] Théorème 5.1). The map (1.2.2) is bijective. Moreover, for [b] ∈ B(G),
νEb

= −w0[νb] ∈ N (G) and cG1 (Eb) = −κG([b]).

Remark 1.7. For (V, ρ) an F -representation of G, the restriction of the vector bundle E(Db,ρ)
to Spec(B+

dR) via the map

Spec(B+
dR) = Spec(ÔX,∞) −→ X

is canonically trivialized (see also [FF18, p. 278]). To show this, write {∞} = V+(t) with
t ∈ Bφ=πK . Then OX,∞ is the homogeneous localization of the graded ring PK at the homogeneous
prime ideal (t) ⊂ PK . In other words, let

S := {b ∈ BK \ t ·BK |φ(b) = πib for some i ∈ N},
then OX,∞ = (S−1BK)φ=1. Similarly

E(Db,ρ)∞ =
(
S−1BK ⊗F̆ Db,ρ

)φ⊗φ=1
.

So it suffices to check that, for any isocrystal D over F̆ /F , the natural morphism of B+
dR-modules

B+
dR ⊗OX,∞

(
S−1BK ⊗F̆ D

)φ⊗φ=1 −→ B+
dR ⊗F̆ D

is an isomorphism: one reduces to the case where D is simple of slope d/h, with d ∈ Z, h ∈ Z≥1

and (h, d) = 1, and the result follows from the fact that the natural map below is an isomorphism:

B+
dR ⊗OX,∞

(
S−1BK

)φh=πd

−→ B+,h
dR , 1⊗ a 7→ (a, φ(a), . . . , φh−1(a)).

As a corollary, the G-bundle Eb is canonically trivialized over Spec(B+
dR).

1.3. Flag varieties and the weakly admissible locus. Let {µ} be a geometric conjugacy
class of a cocharacter

µ : Gm,F̄ −→ GF̄ .

Let E = E(G, {µ}) ⊂ F̄ be the field of definition of {µ}: so E/F is a finite subextension of F̄ /F
such that Gal(F̄ /E) is the stabilizer of

{µ} ∈ HomF̄ (Gm,F̄ , GF̄ )/G(F̄ )

under the action of Gal(F̄ /F ).

1.3.1. Flag varieties. There is a projective variety P over F parametrizing all parabolic sub-
groups of G, and the geometric connected component of P whose set of F̄ -points is given by the
image of the map

{µ} −→ P(F̄ ), λ 7→ Pλ

is defined over E. The corresponding open and closed subscheme of PE will be written by

F(G,µ).

Here, for λ : Gm,F̄ → GF̄ a cocharacter, Pλ denotes its associated parabolic subgroup: for any

field extension L/F̄ ,

Pλ(L) =
{
g ∈ G(L)| lim

t→0
λ(t)gλ(t)−1 exists in GL

}
.
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Recall that, for λ′ : Gm,L → GL a second cocharacter of G over L, Pλ = Pλ′ if and only if there
exists g ∈ Pλ(L) with λ′ = Int(g) ◦ λ. Therefore, with a particular choice of µ ∈ {µ}, we have
an identification

GF̄ /Pµ −→ F(G,µ)F̄ ,

gPµ 7−→ gPµg
−1.

So F(G,µ) is a twisted form of GF̄ /Pµ over E.

1.3.2. Weakly admissible locus in flag varieties. In the following, we shall consider F(G,µ) as

an adic space over Ĕ, the completion of the composite E · Fun ⊂ F̄ . Let b ∈ G(F̆ ). Rapoport
and Zink defined a subspace, called weakly admissible locus

F(G,µ, b)wa ⊂ F(G,µ)

attached to the triple (G, {µ}, b), as a vast generalization of Drinfeld upper half plane. Let us

briefly recall its definition. Let L/Ĕ be a complete field extension. A point x ∈ F(G,µ)(L)
corresponds to a parabolic subgroup of GL, and thus of the form Pµx

for some cocharacter
µx : Gm,L → GL over L. For any finite-dimensional F -representation (V, ρ) of G, we may
consider the filtration on VL := V ⊗F L induced by the cocharacter ρ ◦ µx, which does not
depend on the auxiliary choice of µx. We shall denote this filtration by Fil•x,ρ. Let

φ− FilModL/F̆

be the category of filtered isocrystals over L/F̆ . Consider the functor

Ib,x : RepF (G) −→ φ− FilModL/F̆ ,

(V, ρ) 7−→ (VF̆ , ρ(b)(1⊗ σ),Fil•x,ρ).
(1.3.1)

Definition 1.8 ([RZ96, 1.18]). Let L/Ĕ be a complete field extension. Let b ∈ G(F̆ ) and
x ∈ F(G,µ)(L). We say that x is weakly admissible if the following equivalent conditions are
satisfied:

(1) for any object (V, ρ) in RepF (G), the filtered isocrystal Ib,x(V, ρ) over L/F̆ is weakly
admissible in the sense of Fontaine;

(2) there is a faithful finite dimensional F -representation (V, ρ) of G such that Ib,x(V, ρ) is
weakly admissible.

It is a fundamental observation that the weakly admissible locus forms an open adic subspace
of the flag variety:

Theorem 1.9 ([RZ96]). There is a partially proper open subspace F(G,µ, b)wa ⊂ F(G,µ) such

that for any complete field extension L/Ĕ,

F(G,µ, b)wa(L) = {x ∈ F(G,µ)(L)|x is weakly admissible}.

Moreover, F(G,µ, b)wa ̸= ∅ if and only if [b] ∈ A(G,µ).

Remark 1.10. The space F(G,µ, b)wa is obtained from F(G,µ) by removing a family of Zariski
closed subspaces of F(G,µ). To see this, consider the reductive group Jb over F , the σ-centralizer
of b: so for any F -algebra R,

Jb(R) = {g ∈ G(F̆ ⊗F R)|gbσ(g)−1 = b}.

The group Jb(F ) acts on F(G,µ) through the natural inclusion Jb(F ) ⊂ G(F̆ ) ⊂ G(Ĕ). The
weakly admissible locus F(G,µ, b)wa is stable under this action of Jb(F ), and is of the form

F(G,µ) \
⋃
i∈I

Jb(F ) · Zi

where Zi, i ∈ I, is a finite collection of Zariski closed Schubert varieties.
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1.4. Period domains and modifications of G-bundles. Let C/F̄ be a complete algebraically
closed field extension, and consider the Fargues-Fontaine curve X = XC♭ , with ∞ ∈ X the
associated closed point. So

k(∞) = C and ÔX,∞ = B+
dR(C) =: B+

dR.

Let also µ : Gm,F̄ → GF̄ be a minuscule cocharacter of G. Let b ∈ G(F̆ ). In this subsection,
we shall construct modifications of the G-bundle Eb from C-points of the period domain. As an
application, we relate the weak admissibility to certain stability condition of G-bundles on the
Fargues-Fontaine curve.

Remark 1.11. The natural ring homomorphism θ : B+
dR −→ C of Fontaine has a canonical

section over F̄ . Thus B+
dR and its fraction field BdR are naturally algebras over F̄ . Therefore

the cocharacter µ : Gm → G yields a map Gm(BdR) → G(BdR), and for t a non-zero element of
B+
dR, we may consider its image µ(t) in G(BdR).

1.4.1. Modifications of G-bundles. Let t ∈ B+
dR be a uniformizer of the discrete valuation ring

B+
dR. Consider (the set of C-points of) the affine Schubert cell GrBdR

G,µ (C) associated with µ (which

does not depend on the choice of the uniformizer t above) inside the B+
dR-affine Grassmannian

GrBdR

G (C):

GrBdR

G,µ (C) := G(B+
dR)µ(t)

−1G(B+
dR)/G(B

+
dR) ⊂ GrBdR

G (C) := G(BdR)/G(B
+
dR),

and (the evaluation on C-points of) the Bialynicki-Birula map (cf. [CS17, 3.4.3])

πG,µ : GrBdR

G,µ (C) −→ F(G,µ)(C),

gµ(t)−1G(B+
dR) 7−→ θ(g)Pµθ(g)

−1.

Proposition 1.12 ([CS17, 3.4.4]). Assume that µ is minuscule. Then the map πG,µ above is
bijective.

In particular, for any x ∈ F(G,µ)(C), one can use it to modify the G-bundle Eb as follows.
Recall that the pullback of Eb along the natural map

Spec(B+
dR) = Spec(ÔX,∞) −→ X,

can be canonically trivialized (Remark 1.7). Let x̃ = gG(B+
dR) ∈ GrBdR

G,µ (C) be the unique

element such that πG,µ(x̃) = x. We glue E|X\{∞} and the trivial G-bundle G×Spec(F )Spec(B
+
dR)

over Spec(B+
dR) through the isomorphism of G-bundles below:(
E|X\{∞}

)
|Spec(BdR)

≃−→ G×SpecF Spec(BdR)
g−1·−→ G×SpecF Spec(BdR).

The resulting G-bundle on X will be denoted by Eb,x in the sequel.

Remark 1.13. The isomorphism class of the G-bundle Eb depends only on the class [b] ∈ B(G)

of b. However, the construction of Eb,x does depend on b as an element in G(F̆ ). For b1, g ∈ G(F̆ )

with b1 = gbσ(g)−1, the element g induces an isomorphism Eb,x
∼→ Eb1,gx.

1.4.2. Weak admissibility and admissibility for G-bundles. For E a G-bundle on X, and for
G′ ⊂ G an algebraic subgroup of G, a reduction of E to G′ is a G′-bundle E ′ on X, together with
an isomorphism of G-bundles

E ′ ×G
′
G

∼→ E .
From the isomorphism above, we deduce a morphism E ′ → E of X-schemes, compatible with the
action of G′. The latter yields a section

s : X ≃ E ′/G′ −→ E/G′,

of the map E/G′ → X such that E ′ ∼→ X ×s,E/G′ E . Conversely, every section of E/G′ → X can
be obtained in this way.

Proposition 1.14 ([CFS21], Lemma 2.4). Let P ⊂ G be a parabolic subgroup of G. Let E and

Ẽ be two G-bundles on X, equipped with an isomorphism E|U
∼→ Ẽ|U of G-bundles over some

non-empty open subset U of X. Let EP be a reduction of E to P . Then there is naturally a
reduction ẼP of Ẽ to P , together with an isomorphism EP |U

∼→ ẼP |U of P -bundles satisfying the
obvious compatibility condition.
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One can reformulate the weak admissibility in terms of G-bundles on Fargues-Fontaine curves
when G is quasi-split. To see this, we need the following key definition:

Definition 1.15 ([CFS21], Definition 2.5). Let b ∈ G(F̆ ) be an element. For a Levi subgroup

M of G, a reduction of b to M is an element bM ∈ M(F̆ ) together with an element g ∈ G(F̆ )
such that b = gbMσ(g)

−1. By abuse of notation, such a reduction will simply be denoted by bM
in the following if there is no confusion.

Proposition 1.16 ([CFS21], Proposition 2.7). Assume G quasi-split, and µ minuscule. Let

b ∈ G(F̆ ) with [b] ∈ A(G,µ). Then x ∈ F(G,µ)(C) is weakly admissible if and only if for any
standard parabolic subgroup P with associated Levi M , any reduction bM of b to M , and any
χ ∈ X∗(P/ZG)

+, we have

deg(χ∗(Eb,x)P ) ≤ 0,

where (Eb,x)|P is the reduction to P of Eb,x induced by the reduction EbM ×M P of Eb to P .

As mentioned in the introduction, Rapoport and Zink has conjectured the existence of an open
subspace F(G,µ, b)a ⊂ F(G,µ, b)wa together with an étale G-local system L on F(G,µ, b)a such
that these two spaces have the same classical points, that is, points with values in finite field
extensions of Ĕ, and that L interpolates the crystalline representations arising from classical
points of F(G,µ, b)wa. With the above construction, for [b] ∈ B(G,µ), we define F(G,µ, b)a,
called admissible locus, the subspace of F(G,µ) such that, for any complete algebraically closed
field extension C of F̄

F(G,µ, b)a(C) = {x ∈ F(G,µ)(C)|Eb,x is trivial}

The space F(G,µ, b)a satisfies the properties required by Rapoport-Zink conjecture follows from
the work of Fargues-Fontaine, Kedlaya-Liu and Scholze.

1.4.3. Newton and Harder-Narasimhan stratifications. In the following, we review the definition
of the Newton and the Harder-Narasimhan stratification on the flag variety. Recall that b ∈
G(F̆ ).

The Newton stratification on F(G,µ) is indexed by elements in B(G). More precisely, let
C be a complete algebraically closed field extension of F̄ . For each x ∈ F(G,µ)(C), the G-
bundle Eb,x corresponds to a unique element [b′x] ∈ B(G) by Theorem 1.6. So we obtain a map
F(G,µ)(C) → B(G). Letting C vary, we deduce a map

Newtb : |F(G,µ)| −→ B(G), x 7→ [b′x].(1.4.1)

For [b′] ∈ B(G), the corresponding Newton strata F(G,µ, b)[b
′] is defined to be the preimage of

[b′] ∈ B(G) via the map Newb: so for any complete algebraically closed field extension C of F̄ ,

F(G,µ, b)[b
′](C) = {x ∈ F(G,µ)(C)|Eb,x ≃ Eb′}

In particular, we have a decomposition

(1.4.2) F(G,µ) =
∐

[b′]∈B(G)

F(G,µ, b)[b
′]

of the flag variety F(G,µ).

Remark 1.17. Assume that µ is minuscule. Let b, b′ ∈ G(F̆ ).

(1) Each Newton stratum F(G,µ, b)[b
′] is locally closed in F(G,µ) by the work of Kedlaya-

Liu, and is stable under the action of Jb(F ) ⊂ G(F̆ ) on F(G,µ). Moreover, if [b] ∈ B(G)
is basic,

F(G,µ, b)[b
′] ̸= ∅ ⇐⇒ [b′] ∈ B(G, κ([b])− µ#, νb − µ⋄).

However, when [b] ∈ B(G) is non-basic, such a description is still unknown.
(2) The decomposition (1.4.2) is a stratification by the work of Viehmann [Vie, Corollary

6.7].

Now we turn to the Harder-Narasimhan stratification on the flag variety. The formalism of
Harder-Narasimhan stratification on the flag varieties (or on the B+

dR-Grassmannian) was studied
by Dat-Orlik-Rapopoport [DOR10], Cornut-Peche Irissarry[CPI19], Shen [She] and Nguyen-
Viehmann[NV]. We briefly recall the definition and main properties that we will need in the
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sequel. For D = (D,φ,Fil•) a filtered isocrystal over C/F̆ . We call dimF̆ (D) the rank of D,
written rank(D), and

deg(D) :=
∑
i

i · dimC griFil•(DC)− vπ(det(φ))

its degree. Using these two functions, one can develop a theory of Harder-Narasimhan filtration
on the category φ− FilModC/F̆ of filtered isocrystals over C/F̆ ([DOR10, Proposition 8.1.10]),

and a remarkable property here is that the Harder-Narasimhan filtration for filtered isocrystals
is compatible with tensor products ([DOR10, Theorem 8.1.9]).

Recall that, for b ∈ G(F̆ ) and for x ∈ F(G,µ)(C), we have the natural functor

Ib,x : RepF (G) −→ φ− FilModC/F̆ .

of (1.3.1), or equivalently, a functor

Ib : RepF (G) −→ φ−ModF̆

together with a filtration Fil•x on the fiber functor

ωGC : RepF (G) −→ VectC , (V, ρ) 7→ VC := V ⊗F C.
Using the formalism of Harder-Narasimhan filtration, we deduce a unique Q-filtration on Ib,
such that for any V = (V, ρ) ∈ RepF (G), the induced filtration on the isocrystal Ib(V ) over F̆
is the Harder-Narasimhan filtration of the filtered isocrystal Ib,x(V ) as explained in the above
paragraph. In particular, this defines an element vb,x ∈ X∗(G)Q/G. It is known that vb,x is
invariant under the action of Γ = Gal(F̄ /F ). So

vb,x ∈ N (G) = (X∗(G)Q/G)
Γ
.

We call it the Harder-Narasimhan vector of x.

Remark 1.18. Suppose b = 1 ∈ G(F̆ ). Recall that we are in the minuscule case, so we can

identify the affine Schubert cell GrBdR

G,µ (C) with F(G,µ)(C) via the Bialynicki-Birula map. Under

this identification, the Harder-Narasimhan vector vb,x = v1,x of x ∈ GrBdR

G,µ (C) = F(G,µ)(C) is

denoted by HN(E1, x) by Nguyen-Viehmann in [NV].

Letting C vary, we get the following map on topological spaces

HNb : |F(G,µ)| −→ N (G), x 7→ v∗b,x := −w0vb,x.

Remark 1.19. We take the dual of the Harder-Narasimhan vector here is in order to compare
it with Newb in (1.4.1).

Proposition 1.20 ([She] Theorem 3.5 and Theorem 4.4). The map HNb above is upper-continuous.
In other words, for any v ∈ N (G), the subset

F(G,µ)HNb≥v := {x ∈ F(G,µ)|v ⪯ HNb(x)}
is closed. Consequently, the subset

F(G,µ)HNb=v := {x ∈ F(G,µ)|HNb(x) = v}
is locally closed, and we call it the Harder-Narasimhan stratum associated with v ∈ N (G).

Remark 1.21. Recall that µ is minuscule. If [b] ∈ B(G,µ), then if [b′] ∈ B(G, 0, νb − µ⋄) is
basic, then

F(G,µ)HNb=[νb′ ] = F(G,µ, b)wa

is precisely the subspace of weakly admissible locus, thus is open and non-empty.

In [She] and [NV], Shen and Nguyen-Viehmann study the geometric properties of the Harder-
Narasimhan stratification. For the convenience of the readers, we summarize below some of their
results in the form that we will need in the sequel.

Proposition 1.22 ([She], [NV]). Suppose [b] ∈ B(G,µ) is basic and x ∈ F(G,µ, b)[b
′](C). Then

(1) HNb(x) ∈ B(G, 0, νb − µ⋄);
(2) HNb(x) ⪯ [νb′ ]. Moreover, if (G, b′, νb − µ⋄) is Hodge-Newton decomposable with respect

to some standard Levi subgroupM inside the quasi-split inner form H of G (cf. definition
2.1 below), then

HNb(x) ⪯M [νb′ ],

where ⪯M means that [νb′ ]−HNb(x) is a non-negative combination of coroots in ∆∨
M,0.
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Proof. (1) and the first assertion in (2) are proved in [She, Proposition 4.3], and also in [NV,
Proposition 3.13 and Theorem 6.4] (via inner twisting). The last assertion of (2) is stated for
the modification of the trivial bundle E1 in [NV, Theorem 6.4]. Their results can be translated
in the form mentioned above using the compatibility under inner twisting (cf. loc. cit. Section
8, or [She, § 4.5]).

□

2. Weakly fully HN-decomposability

In this section, we introduce the notion of weakly fully HN-decomposability and discuss its
minute criterion. We also give the complete classification of the weakly fully HN-decomposable
pairs when the group G is absolutely simple and adjoint. In the next section we shall use this
group theoretic condition to see when the flag variety F(G,µ) has maximal weakly admissible
locus F(G,µ, b)wa.

2.1. Weakly fully HN-decomposability. Recall that the reductive group G is not necessarily
quasi-split, and H is the quasi-split inner form of G over F . So we have natural identifications

X∗(G)/G(F̄ ) = X∗(H)/H(F̄ ), N (G) = N (H) and π1(G) = π1(H).

Moreover, as in Notations, let

A ⊂ T ⊂ B

be subgroups of H, where A is a maximal split torus of H, T = CH(A) and B a Borel subgroup of
H containing T . Let (X∗(T ),Φ, X∗(T ),Φ

∨) (resp. (X∗(A),Φ0, X∗(A),Φ
∨
0 )) be the root datum

given respectively by the adjoint action of T (resp. of A), with ∆ (resp. ∆0) a fixed basis. In
particular, the Galois group Γ acts on Φ and on ∆, inducing a natural bijection

Φ/Γ
∼−→ Φ0, Γ-orbit of α 7→ α|A.

Similarly, we have ∆/Γ
∼→ ∆0.

In order to discuss the concept of weakly fully Hodge-Newton decomposability for the non
quasi-split reductive group G, we need to relate a generalized Kottwitz set for G to a certain
Kottwitz set of Had, the adjoint quotient of H. This part is explained in [CFS21, 4.2]. For the
sake of completeness, let us reproduce their argument here. Since Had is semisimple, we have
natural identifications (see Remark 1.2)

H1(F,Had)
∼−→ B(Had)basic

∼−→ π1(H
ad)Γ = [⟨Φ⟩∨/⟨Φ∨⟩]Γ.

The group G, being an inner form of H, gives a class [bG] ∈ B(Had)basic and a class [ξ] ∈
[⟨Φ⟩∨/⟨Φ∨⟩]Γ, with bG ∈ Had(F̆ ) and ξ ∈ ⟨Φ⟩∨. Moreover, JbG = Gad and there is a bijection

(2.1.1) B(Gad) = B(JbG) −→ B(Had)

that sends [1] to [bG] ([Kot97, 3.4]), which can be inserted into the following commutative
diagram

B(Gad)
(2.1.1) //

κ
Gad

��

B(Had)

κ
Had

��
π1(G

ad)Γ = π1(H
ad)Γ

•+ξ // π1(Had)Γ

As [bG] ∈ B(Had)basic, its Newton vector is trivial. So the map (2.1.1) gives the commutative
diagram below

B(Gad)
(2.1.1) //

ν
Gad

��

B(Had)

ν
Had

��
N (Gad) N (Had)

On the other hand, for ϵ ∈ π1(G)Γ and δ ∈ N (G), via the natural map B(G) → B(Gad), the
generalized Kottwitz set B(G, ϵ, δ) can be identified with B(Gad, ϵad, δad) ⊂ B(Gad), where ϵad

(resp. δad) denotes the natural image of ϵ in π1(G
ad)Γ (resp. in N (Gad) ): see [Kot97, 4.11].

Thus, by the bijection (2.1.1), B(G, ϵ, δ) can be further identified with

B(Had, ϵad + ξ, δad) ⊂ B(Had).



14 MIAOFEN CHEN, JILONG TONG

Before giving the definition of the weakly fully HN-decomposability, let us review briefly the
definition of the fully HN-decomposability and its minute criterion. The fully HN-decomposability
condition was first introduced and systematically studied by ([GHN19]).

Definition 2.1 (full HN-decomposablity [GHN19]). Let {µ} ∈ X∗(G)/G(F̄ ) = X∗(H)/H(F̄ )
with µ ∈ X∗(T )

+, ϵ ∈ π1(G)Γ = π1(H)Γ, and δ ∈ X∗(A)
+
Q = N (H) = N (G).

(1) Suppose [b] ∈ A(G,µ) (resp. [b] ∈ B(G, ϵ, δ)), and view its Newton vector [νb] as an
element in X(A)+Q . We say that the triple (G,µ, b) (resp. (G, δ, b)) is Hodge-Newton
decomposable, or HN-decomposable for short, if there exists a standard proper Levi
subgroup M ⊊ H such that:

• the centralizer of [νb] is contained in M ; and
• µ⋄ − [νb] ∈ ⟨Φ∨

0,M ⟩Q (resp. δ − [νb] ∈ ⟨Φ∨
0,M ⟩Q).

Moreover, for a HN-decomposable triple (G,µ, b) (resp. (G, δ, b), we say that the triple is
HN-decomposable with respect to a standard Levi subgroup M in H if M is the unique
minimal Levi subgroup satisfying the above conditions.

(2) We say that the generalized Kottwitz set B(G, ϵ, δ) is fully HN-decomposable if for any
non-basic [b] ∈ B(G, ϵ, δ), the triple (G, δ, b) is HN-decomposable. We say that the pair
(G,µ) is fully HN-decomposable if so is B(G,µ).

Remark 2.2. (1) The generalized Kottwitz set B(G, ϵ, δ) is fully HN-decomposable if and
only if the corresponding generalized Kottwitz set B(Had, ϵad + ξ, δad) for Had is fully
HN-decomposable.

(2) Suppose G quasi-split. If (G,µ, b) (resp. (G, δ, b)) is HN-decomposable with respect toM .
Let bM be a reduction of b to M , then (M,µ, b) (resp. (M, δ, b)) is HN-indecomposable.

For β ∈ ∆, let wβ ∈ ⟨Φ⟩Q be the corresponding fundamental weight. For α ∈ ∆0, let

ω̃α =
∑

β∈∆ s.t. β|A=α

wβ ∈ X∗(T )ΓQ = X∗(A)Q.

In particular, for γ ∈ ∆ we have

⟨γ∨,⋄, ω̃α⟩ =
{

0, if γ|A ̸= α;
1, otherwise.

Here γ∨,⋄ denotes the Galois average of γ∨ in X∗(T ). In particular, for the element ξ ∈ ⟨Φ⟩∨
above, the fractional part

{⟨ξ⋄, ω̃α⟩} ∈ [0, 1[

of ⟨ξ⋄, ω̃α⟩ only depends on the its ⟨Φ∨⟩-coset in π1(Had) = ⟨Φ⟩∨/⟨Φ∨⟩.
Proposition 2.3 (Minute criterion for the full HN-decomposability, [GHN19, Theorem 3.3],
[CFS21, Proposition 4.12]). The set B(G,µ) is fully HN-decomposable if and only if for any
α ∈ ∆0, ⟨µ⋄, ω̃α⟩+ {⟨ξ⋄, ω̃α⟩} ≤ 1.

Now we are ready to give the definition of the weakly fully HN-decomposability.

Definition 2.4 (Weakly fully HN-decomposability).

(1) Let ϵ ∈ π1(G)Γ, and δ ∈ X∗(A)
+
Q = N (G). We say that the generalized Kottwitz set

B(G, ϵ, δ) is weakly fully HN-decomposable if for every non-basic [b′] ∈ B(G, ϵ, δ), either
the triple (G, δ, b′) is HN-decomposable or [b] does not have reduction to CentH(νb′),
where [b] is the basic element in B(G, ϵ, δ).

(2) We say that the pair (G,µ) is weakly fully HN-decomposable if the Kottwitz set B(G,µ)
is weakly fully HN-decomposable.

Remark 2.5. (1) The generalized Kottwitz set B(G, ϵ, δ) is weakly fully HN-decomposable
if and only if so is B(Had, ϵad + ξ, δad).

(2) If the generalized Kottwitz set B(G, ϵ, δ) is full HN-decomposable, then it is weakly fully
HN-decomposable.

(3) By the uniqueness of superbasic Levi subgroup (cf. [Nie] Lemma 1.5), [b] has a reduction
to CentH(νb′) if and only if [b] has a reduction to all the maximal proper standard Levi
subgroup of H containing CentH(νb′).

Suppose that G = H is quasi-split. In the following, we will give a criterion when [b] has
reduction to a maximal proper standard Levi subgroup. Recall that for α ∈ ∆0, Mα is the
standard Levi subgroup of H with ∆Mα,0 = ∆0\{α}.
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Lemma 2.6. Suppose that G = H is quasi-split. Let µ ∈ X∗(T )
+ and [b] ∈ B(G)basic such

that κG(b) = µ#. For any α ∈ ∆0, the element [b] ∈ B(G) has a reduction to Mα if and only if
⟨µ⋄, ω̃α⟩ ∈ Z.

Proof. We may assume that the identity component of the center Z of G is trivial. To see this,
set G′ = G/Z0. As Z0 is connected, we obtain from [Kot85, 1.9] an exact sequence of pointed
sets

B(Z0) −→ B(G) −→ B(G′) −→ 0.

Let M ′
α =Mα/Z

0 be the corresponding standard Levi subgroup of G′. We have a similar exact
sequence of pointed sets

B(Z0) −→ B(Mα) −→ B(M ′
α) −→ 0.

As a result, one checks that the square below is cartesian

B(G) // B(G′)

B(Mα)

OO

// B(M ′
α)

OO
.

Therefore, [b] ∈ B(G) has a reduction to Mα precisely when its image in B(G′) has a reduction
to M ′

α. Hence, for the remaining part of the proof, we assume that the center of G is finite. In
particular, since [b] ∈ B(G)basic, its Newton vector νb is trivial.

We next claim that [b] has a reduction to Mα if and only if there exists a torsion element in
π1(Mα)Γ which is mapped to κG(b) via π1(Mα)Γ → π1(G)Γ. If bα ∈ B(Mα) is a reduction of b to
Mα, the image of [νbα ] ∈ N (Mα) in N (G) is [νb], hence is trivial. Therefore, νbα itself is trivial,
and κMα

(bα) ∈ π1(Mα)Γ is a torsion element, which is sent to κG(b) = µ#. Conversely, if there
exists a ∈ π1(Mα)Γ,tor in the preimage of κG(b) = µ# via π1(Mα)Γ → π1(G)Γ, it corresponds to
a unique element in H1(F,Mα) via the composed map below (see Remark 1.2)

H1(F,Mα) −→ B(Mα)
κMα−→ π1(Mα)Γ.

The latter gives rise to an element of B(Mα), which is a reduction of b toMα, proving our claim.
Now, write µ =

∑
β∈∆ cββ

∨ ∈ X∗(T ) with cβ ∈ Q. The preimage of µ♯ via π1(Mα)Γ → π1(G)Γ
are the images in π1(Mα)Γ of the elements in X∗(T ) of the form∑

β∈∆

cββ
∨ +

∑
β∈∆

β|A=α

λββ
∨,

with λβ ∈ Z for any β ∈ ∆ such that β|A = α. On the other hand, the image in π1(Mα)Γ of
such an element is a torsion if and only if∑

β∈∆
β|A=α

(λβ + cβ) = 0.

Therefore, there exists a torsion element in π1(Mα)Γ which is mapped to κG(b) = µ♯ via the
natural map π1(Mα)Γ → π1(G)Γ if and only if

⟨µ⋄, ω̃α⟩ =
∑
β∈∆

β|A=α

cβ ∈ Z,

as required. □

Lemma 2.7. Suppose that G is quasi-split. Let µ ∈ X∗(T )
+ and let [b] ∈ B(G)basic such that

κG(b) = µ#. Then for any α ∈ ∆0, the element [b] has a reduction to Mα if and only if [b] has
a reduction to Mα∗ , where α∗ = −w0α.

Proof. By Lemma 2.6, it suffices to show

⟨µ⋄, ω̃α⟩+ ⟨µ⋄, ω̃α∗⟩ ∈ Z.

Indeed, the involution ∗ is equal to −1 on π1(G)Γ since (w0µ)
♯ = µ♯. As the fractional part of

⟨µ⋄, ω̃α∗⟩ = ⟨(−w0µ)
⋄, ω̃α⟩ only depends on the image (−w0µ)

♯, it follows that

⟨µ⋄, ω̃α⟩+ ⟨µ⋄, ω̃α∗⟩ ∈ ⟨µ⋄, ω̃α⟩+ ⟨−µ⋄, ω̃α⟩+ Z = Z.

This completes the proof of our lemma. □
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For the weakly fully HN-decomposibility, we have a similar minute criterion as that for the full
HN-decomposability (Proposition 2.3). To see this, recall that, by Theorem 1.1, the generalized
Kottwitz set B(G, ϵ, δ) can be viewed as a subset of N (G) through the Newton map νG. Hence
we can describe the elements in B(G, ϵ, δ) in terms of their Newton vectors in X∗(A)

+
Q = N (G).

Proposition 2.8 ([CFS21], Proposition 4.6, Corollary 4.7 and Corollary 4.8). Let ϵ ∈ π1(G)Γ
and δ ∈ X∗(A)

+
Q . Suppose ϵ = µ♯1 with µ1 ∈ X∗(T )

+ not necessarily minuscule. Then as a subset

of N (G), the generalized Kottwitz set B(G, ϵ, δ) consists of the vectors v ∈ X∗(A)
+
Q such that

(1) δ − v ∈ ⟨Φ∨
0 ⟩Q;

(2) for all α ∈ ∆0 with ⟨v, α⟩ ≠ 0, one has ⟨δ − v, ω̃α⟩ ≥ 0, and ⟨µ⋄
1 + ξ⋄ − v, ω̃α⟩ ∈ Z.

In particular, let [b] ∈ B(G,µ1) be the basic element, then

(1) the Kottwitz set B(G,µ1) consists of the vectors v ∈ X∗(A)
+
Q such that

(a) µ⋄
1 − v ∈ ⟨Φ∨

0 ⟩Q;
(b) for all α ∈ ∆0 with ⟨v, α⟩ ≠ 0, one has ⟨µ⋄

1 − v, ω̃α⟩ ≥ 0, and ⟨µ⋄
1 + ξ⋄ − v, ω̃α⟩ ∈ Z.

(2) the Kottwitz set B(G, 0, νb − µ⋄
1) consists of v ∈ X∗(A)

+
Q such that

(a) v ∈ ⟨Φ∨
0 ⟩Q;

(b) for all α ∈ ∆0 with ⟨v, α⟩ ≠ 0, one has ⟨νb−w0µ
⋄
1−v, ω̃α⟩ ≥ 0 and ⟨v−ξ⋄, ω̃α⟩ ∈ Z.

As a direct application of the previous proposition, we get the following corollary.

Corollary 2.9. Suppose G = H is quasi-split. Then the bijection

X∗(A)
+
Q ≃ X∗(A)

+
Q

v 7→ v∗ := −w0v

induces a bijection between generalized Kottwitz sets

B(G, ϵ, δ) ≃ B(G,−ϵ,−w0δ).

Remark 2.10. If G is not quasi-split, then in general, B(G, ϵ, δ) is not in bijection with
B(G,−ϵ,−w0δ). For example, let H = PGL6, µ = (1(2), 0(4)) and ξ = µ♯. Then

B(G,µ) ≃ B(H,µ♯ + ξ♯, µ)

=

{(
2

3
,
4

15

(5)
)
,

(
2

3
,
1

3

(3)

,
1

6

(2)
)
,

(
2

3

(2)

,
1

6

(4)
)
,

(
2

3

(3)

, 0(3)

)
,

(
5

12

(4)

,
1

6

(2)
)
,

(
1

3

(6)
)}

consists of 6 elements, while

B(G,−µ) ≃ B(H, 0,−µ)

=

{(
2

3

(6)
)
,

(
1(3),

1

3

(3)
)
,

(
1(3),

2

3
,
1

6

(2)
)
,

(
11

12

(4)

,
1

6

(2)
)}

consists of 4 elements.

Proposition 2.11 (Minute criterion for weakly fully HN-decomposability). Let µ ∈ X∗(T )
+.

The pair (G,µ) is weakly fully HN-decomposable if for any α ∈ ∆0 with ⟨µ⋄ + ξ⋄, ω̃α⟩ ∈ Z, we
have

(2.1.2) ⟨µ⋄, ω̃α⟩+ {⟨ξ⋄, ω̃α⟩} ≤ 1.

Proof. Without loss of generality, assume G = Gad and thus H are adjoint. Recall that there
is a natural identification between the generalized Kottwitz set B(G,µ) = B(G,µ#, µ⋄) for G,
and the generalized Kottwitz set B(H,µ# + ξ#, µ⋄) for H.

Necessity. Suppose that ⟨µ⋄, ω̃α⟩ + {⟨ξ⋄, ω̃α⟩} > 1 is an integer for some α ∈ ∆0. Let
v ∈ ⟨Φ∨

0 ⟩Q = X∗(A)Q such that ⟨v, α′⟩ = 0 for all α′ ∈ ∆0 \ {α} and

⟨v, ω̃α⟩ = ⟨µ⋄, ω̃α⟩+ {⟨ξ⋄, ω̃α⟩} − 1 ∈ Z>0.

As ω̃α ∈ Q≥0∆0, v is dominant. Moreover, ⟨µ⋄ − v, ωα⟩ = 1− {⟨ξ⋄, ω̃α⟩} ≥ 0, and

⟨µ⋄ + ξ⋄ − v, ω̃α⟩ = 1 + ⟨ξ⋄, ω̃α⟩ − {⟨ξ⋄, ω̃α⟩} ∈ Z

So by Proposition 2.8, there exists [b′] ∈ B(G,µ) such that νb′ = v. Since ⟨v, ω̃α⟩ = ⟨νb′ , ω̃α⟩ ≠ 0,
v ̸= 0 and the element [b′] is not basic. Moreover, Mα is the centralizer of v = νb′ in H, and

⟨µ⋄ − v, ω̃α⟩ = 1− {⟨ξ⋄, ω̃α⟩} > 0.
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Hence µ⋄ − v /∈ ⟨Φ∨
0,Mα

⟩Q, and (G,µ, b′) is not HN-decomposable. Moreover, as

⟨µ⋄ + ξ⋄, ω̃α⟩ ∈ Z,
according to Lemma 2.6, the basic element [b] in B(G,µ) = B(H,µ# + ξ, µ⋄) has a reduction to
CentH(νb′) =Mα. This contradicts the weakly fully HN-decomposability condition.

Sufficiency. Suppose that [b′] ∈ B(G,µ) = B(H,µ# + ξ, µ⋄) is a non-basic element which is
HN-indecomposable with respect to µ. We want to show that [b] does not have reduction to the
maximal standard Levi Mα ⊃ CentH([νb′ ]) of H for some α ∈ ∆0, or equivalently, that for some
⟨α, νb′⟩ ≠ 0 we have ⟨µ⋄+ ξ⋄, ω̃α⟩ /∈ Z: see Lemma 2.6. Take α ∈ ∆0 with ⟨νb′ , α⟩ ≠ 0, such that
⟨µ⋄ + ξ⋄, ω̃α⟩ ∈ Z. Then, Mα contains the centralizer of νb′ and ⟨νb′ , ω̃α⟩ > 0. Moreover, the
inequality (2.1.2) gives ⟨µ⋄, ω̃α⟩ + {⟨ξ⋄, ω̃α⟩} ≤ 1. As [b′] ∈ B(G,µ), again by Proposition 2.8,
we find

{⟨ξ⋄, ω̃α⟩}︸ ︷︷ ︸
≥0

+ ⟨µ⋄, ω̃α⟩ − ⟨νb′ , ω̃α⟩︸ ︷︷ ︸
≥0

= {⟨ξ⋄, ω̃α⟩}+ ⟨µ⋄, ω̃α⟩︸ ︷︷ ︸
≤1

−⟨νb′ , ω̃α⟩︸ ︷︷ ︸
>0

∈ Z.

This implies that ⟨µ⋄ − νb′ , ω̃α⟩ = 0 since νb′ ⪯ µ⋄. In other words, µ⋄ − νb′ ∈ ⟨Φ∨
0,Mα

⟩Q. This

contradicts to the condition that (G,µ, b′) is HN-indecomposable. □

Remark 2.12. Since −w0 induce a bijection on ∆0 and w0ξ − ξ ∈ ⟨Φ∨⟩, the inequality (2.1.2)
given by the minute criterion (Proposition 2.11) is equivalent to the following: for α ∈ ∆0 with
⟨−w0µ

⋄, ω̃α⟩+ {⟨−ξ⋄, ω̃α⟩} ∈ Z, we have

⟨−w0µ
⋄, ω̃α⟩+ {⟨−ξ⋄, ω̃α⟩} ≤ 1.

In particular, when G is quasi-split, (G,µ) is weakly fully HN-decomposable if and only if

⟨−w0µ
⋄, w̃α⟩ /∈ Z>1, ∀ α ∈ ∆0.

So (G,µ) is weakly fully HN-decomposable if and only if this is the case for (G,µ−1).

Remark 2.13. Let G = GLn, and µ a minuscule cocharacter of G. Replacing µ by −w0µ if
needed, we assume further that µ = (1(r), 0(n−r)). Then, using the minute criterion, it is easy
to see that, the pair (G,µ) is weakly fully HN-decomposable if it is fully HN-decomposable, or is
one of the following forms:

(1) (weakly accessible case, cf. Definition 3.2 below), µ is central or µ = (1(r), 0(n−r)) with
gcd(n, r) = 1;

(2) n even and µ = (1, 1, 0, · · · , 0);
(3) n even and µ = (1, · · · , 1, 0, 0);
(4) n = 6 and µ = (1, 1, 1, 0, 0, 0).

In the next subsection, we shall give the complete classification of weakly fully HN-decomposable
pairs when the group G is absolutely simple and adjoint.

2.2. Classification of weakly fully HN-decomposable pairs. Notations are the same as
the last subsection. By definition, we know that the weakly fully HN-decomposability condition
(Definition 2.4) implies the fully HN-decomposable case (Definition 2.1). Görtz, He and Nie
classify in [GHN19] the fully HN-decomposable pairs. In this section, we classify the weakly
fully HN-decomposable pairs (G,µ) when G is absolutely simple and adjoint.

The main tool for us to do the classification is the minute criterion for weakly admissibility
(Proposition 2.11): the pair (G,µ) is weakly fully HN-decomposable if and only if for any α ∈ ∆0

with ⟨µ⋄ + ξ⋄, ω̃α⟩ ∈ Z, we have

⟨µ⋄, ω̃α⟩+ {⟨ξ⋄, ω̃α⟩} ≤ 1.

Suppose G and hence H are absolutely simple and adjoint. Note that in the minute criterion,
whether (G,µ) is weakly fully HN-decomposable only depend on the quadruple (H, |ImΓ|, µ, ξ),
where |ImΓ| is the order of the image of the natural homomorphism Γ → Aut(Φ,∆) for H. So in
order to classify the weakly fully HN-decomposable pairs (G,µ), it suffices classify the possible
quadruples (H, |ImΓ|, µ, ξ).

We will write the type of Dynkin diagram to represent H. Here the labeling of the Dynkin
diagram are as in [Bou81]. Moreover, as H is adjoint, there is a bijection

⟨Φ⟩∨/⟨Φ∨⟩ ≃ {minuscule dominant cocharacter of T}.
Via this identification, we will take minuscule dominant cocharacter of T as a representative of
ξ ∈ (⟨Φ⟩∨/⟨Φ∨⟩)Γ. We also write w∨

0 := 0 for ξ as a convention.
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Proposition 2.14. Suppose G is absolutely simple and adjoint. Let µ be a minuscule cochar-
acter and µ ̸= 0. Then (G,µ) is weakly fully HN-decomposable if and only if (G,µ) is fully
HN-decomposable or the associated quadruple (H, |ImΓ|, µ, ξ) is one of the following up to iso-
morphism:

H |ImΓ| µ ξ
An 1 ω∨

i ω∨
i′ , s.t. gcd(i+ i′, n+ 1) = 1

An 1 ω∨
1 arbitrary

An 1 ω∨
2 ω∨

i′ , s.t. gcd(2 + i′, n+ 1) = 2
A5 1 ω∨

3 0
A3 2 ω∨

2 ω∨
1

C3 1 ω∨
3 0

Dn 1 ω∨
1 ω∨

n

D5 1 ω∨
5 0, ω∨

1

Dn 2 ω∨
1 ω∨

n

D4 2 ω∨
4 0

Moreover, (G,µ) is weakly accessible if and only if the quadruple is the first row in the above
table.

As a corollary of this proposition, we can list all the weakly fully HN-decomposable pairs
using the notation of Tits’ table ([Tit79]).

Theorem 2.15. Suppose G is absolutely simple and adjoint. Let µ be a minusucle cochar-
acter and µ ̸= 0. Then (G,µ) is weakly fully HN-decomposable if and only if (G,µ) is fully
HN-decomposable or weakly accessible or (G,µ) is one of the following up to isomorphism:
(dAn, ω

∨
1 ) with d|n+ 1 (dAn, ω

∨
2 ) with n odd, d|n+ 1 (*) (A5, ω

∨
3 ) (4A3, ω

∨
2 )

(2Cn, ω
∨
1 ) (2C −Bn, ω

∨
1 ) (C3, ω

∨
2 )

(2D′′
n, ω

∨
1 ) (D5, ω

∨
5 ) (2D′

5, ω
∨
5 ) (2D4, ω

∨
4 )

where (*) after (dAn, ω
∨
2 ) means that not all groups of type dAn are allowed, but only the ones

with Frobenius acting on the n+1-cycle by a clockwise rotation of i′-steps with gcd(2+i′, n+1) = 2
are allowed.

Remark 2.16. In [GHN19], Görtz, He and Nie give characterizations of basic affine Delgine-
Lusztig varieties associated to (G,µ) when it is fully HN-decomposable. For example, under this
assumption, the affine Deligne-Lusztig variety is a union of Deligne-Lusztig varieties. It will
also be an interesting question to investigate the basic affine Delgine-Lusztig varieties associated
to a weakly fully HN-decomposable pair. For the case (C3, ω

∨
2 ), it is studied in [Ric98]. In a joint

work with Viehmann in preparation, we study the case (An, ω
∨
2 ).

Proof of Proposition 2.14. Note that by minute criterion (Proposition 2.11), the condition that
(H,µ) is fully HN-decomposable implies that (G,µ) is weakly fully HN-decomposable for any in-
ner form G of H. In the following, we only consider (H,µ) which is NOT fully HN-decomposable.
We use the same notation as in Bourbaki [Bou81]. We will discuss by the Dynkin diagram of
H. Sometimes for simplicity, we will also write ω̃i for ω̃αi

= ωi when H is split.
Case An: Note that for 1 ≤ i, j ≤ n,

⟨ω∨
i , ωj⟩ = min{i, j} − ij

n+ 1
.(2.2.1)

Consider

θi(j) :=

{
j − ij

n+1 , j ≤ i

i− ij
n+1 , j > i,

as a function on R ∩ [0, n + 1]. Then θi(j) = ⟨ω∨
i , ωj⟩ for 1 ≤ i, j ≤ n. Moreover, as a function

on j, θi(j) is strictly increasing for j ≤ i and strictly decreasing for j ≥ i.
Subcase 1An: |ImΓ| = 1.
By (2.2.1),

⟨ω∨
i , ω̃j⟩+ {⟨ω∨

i′ , ω̃j⟩} ≡ − (i+ i′)j

n+ 1
mod Z.

It follows that

⟨ω∨
i , ω̃j⟩+ {⟨ω∨

i′ , ω̃j⟩} ∈ Z ⇐⇒ n+ 1|(i+ i′)j.
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Suppose (An, 1, ω
∨
i , ω

∨
i′ ) is weakly fully HN-decomposable. By minute criterion (Proposition

2.11), it’s equivalent to say

∀1 ≤ j ≤ n,
(i+ i′)j

n+ 1
∈ Z =⇒ θi(j) = ⟨ω∨

i , ω̃j⟩ ≤ 1.(2.2.2)

Obviously, this condition is satisfied if gcd(i+i′, n+1) = 1. Now assume d := gcd(i+i′, n+1) > 1.
By symmetry, we may further assume i ≤ n+1

2 . Moreover (An, ω
∨
1 ) is fully HN-decomposable by

[GHN19]. It remains to consider 2 ≤ i ≤ n+1
2 .

Claim: i = 3 with n=5 or i = 2.
If i ≥ 3, then

θi(
n+ 1

2
) =

i

2
> 1

θi(2) = 2− 2i

n+ 1
≥ 1

where the second inequality becomes an equality if and only if i = n+1
2 . The weakly fully

HN-decomposability condition (2.2.2) for (An, 1, ω
∨
i , ω

∨
i′ ) is equivalent to

θi(
n+ 1

d
r) ≤ 1, ∀1 ≤ r ≤ d− 1.(2.2.3)

If i ̸= n+1
2 , then θi(j) > 1 for all j ∈ [2, n+1

2 ]. On the other hand, note that

{n+ 1

d
r|r ∈ N ∩ [1, d− 1]}︸ ︷︷ ︸

value of θi≤1 by (2.2.3)

∩ [2,
n+ 1

2
]︸ ︷︷ ︸

value of θi>1

̸= ∅

which leads to a contradiction.
If i = n+1

2 , then θi(j) > 1 for all j ∈]2, n+1
2 ]. Again by (2.2.3),

{n+ 1

d
r|r ∈ N ∩ [1, d− 1]} ∩ [2,

n+ 1

2
] = {2}

which implies that n+1
d = 2 and 4 > n+1

2 . Hence n = 5 and i = 3 as we ignore the fully
HN-decomposable pairs. Now the Claim follows.

For i = 2, θ2(j) = 2− 2j
n+1 for j ≥ 2. By (2.2.3), it follows that

j ∈ {n+ 1

d
r|r ∈ N ∩ [1, d− 1]} =⇒ θ2(j) ≤ 1 ⇐⇒ j ≥ n+ 1

2
or j = 1.

This implies d = 2 or n = 3.
For i = 3 with n = 5, θ3(j) ≤ 1 ⇔ j ̸= 3. Hence (2.2.3) implies that n+1

d ∤ 3. It follows that
d = 3.

Subcase 2An: |ImΓ| = 2. If n is even, then ⟨µ, ω̃α⟩ ∈ Z for any µ and any α ∈ ∆0. Hence
(G,µ) is weakly fully HN-decomposable if and only if it’s fully HN-decomposable.

If n = 2m− 1 is odd. Note that

⟨ω∨
i , ω̃αj ⟩ ∈ Z, ∀1 ≤ j ≤ m− 1,∀1 ≤ i ≤ m

where ω̃αj
= ωj + ωn−j = (1(j), 0(2m−2j),−1(j)). Suppose (An, 2, ω

∨
i , ω

∨
i′ ) is weakly fully HN-

decomposable. It follows that

⟨ω∨
i , ω̃αj

⟩ ≤ 1, ∀1 ≤ j ≤ m− 1.

It follows that m = 2 if i = 2. We can easily verify (A3, 2, ω
∨
2 , ω

∨
1 ) is the only new case up to

isomorphism.
Case Bn: µ = ω∨

1 is the only non-trivial minuscule cocharacter. We can check that the weakly
fully HN-decomposable pairs are all fully HN-decomposable.

Case Cn: µ = ω∨
n is the only non-trivial minuscule cocharacter. Note that

⟨ω∨
n , ω̃j⟩ =

j

2
,∀1 ≤ j ≤ n.

So (C3, 1, ω
∨
3 , 0) is the only new case.

Case Dn: ω
∨
1 , ω

∨
n−1 and ω∨

n are the non-trivial minuscule cocharacters. Note that

⟨ω∨
1 , ω̃j⟩ =

{
1, j ≤ n− 2
1
2 , j = n− 1, n

, ⟨ω∨
n , ω̃j⟩ =


j
2 , j ≤ n− 2
n−2
4 , j = n− 1

n
4 , j = n.
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Subcase 1Dn: |Im(Γ)| = 1. If µ = ω∨
1 , then ξ can be taken arbitrarily. If n = 5, we can also

take µ = ω∨
n with ξ = 0 or ω∨

1 .
Subcase 2Dn: |Im(Γ)| = 2. Note that

⟨ω∨
1 , ω̃αj

⟩ = 1, ⟨ω∨
n , ω̃αj

⟩ = j

2
, ∀1 ≤ j ≤ n− 1.

It follows that if µ = ω∨
1 , then ξ can be chosen arbitrarily. If µ = ω∨

n , then n = 4 and ξ = 0 or
ω∨
1 (which in fact have the same image in (⟨Φ⟩∨/⟨Φ∨⟩)Γ)
Subcase 3D4: |Im(Γ)| = 3.

⟨ω∨
1 , ω̃αi

⟩ =

{
2, i = 1,

1 i = 2.

No new case is possible.
Case E6, E7: Same computation shows there are NO new cases.
Case E8, F4, G2: There is no non-trivial minuscule cocharacter.
The last assertion of the proposition follows directly from [Rap18, A.13].

□

3. Maximal weakly admissible locus

In this section, we address the question when the weakly admissible locus F(G,µ, b)wa is
maximal (in the sense that it is a union of Newton strata, see Definition 3.2). We shall show in
Theorem 3.5 that the previous condition is fulfilled if and only if the pair (G,µ) is weakly fully
HN-decomposable, which is further equivalent to the fact that the Newton stratification is finer
than the Harder-Narasimhan stratification.

Recall that there is a Newton decomposition for the flag variety F(G,µ):

F(G,µ) =
∐

[b′]∈B(G,0,νb−µ⋄)

F(G,µ, b)[b
′]

where F(G,µ, b)[b
′] is a locally closed adic subspace of F(G,µ), such that

F(G,µ, b)[b
′](C) := {x ∈ F(G,µ)(C)|Eb,x ≃ Eb′}

for any complete algebraically closed field extension C/F̄ . Moreover, F(G,µ, b)[b
′] defines a

locally spatial subdiamond of F(G,µ)⋄.

Proposition 3.1. Let {µ} be the geometric conjugacy class of a minuscule cocharacter µ, and
[b] ∈ A(G,µ) which is basic. Suppose [b′] ∈ B(G, 0, νb − µ⋄).

(1) ([CFS21, Theorem 5.1]) If [b′] is HN-decomposable with respect to νb − µ⋄, then

F(G,µ, b)wa ∩ F(G,µ, b)[b
′] = ∅;

(2) ([Vie, Theorem 1.3]) If [b′] is HN-indecomposable with respect to νb − µ⋄, then

F(G,µ, b)wa ∩ F(G,µ, b)[b
′] ̸= ∅.

As a corollary, we deduce

(3.0.1) F(G,µ, b)wa ⊆
∐

[b′]∈B(G,0,νb−µ⋄) such that
(b′,νb−µ⋄) is HN-indecomposable

F(G,µ, b)[b
′] ⊆ F(G,µ).

Definition 3.2. Let {µ} a geometric conjugacy class of a cocharacter of G. Let [b] ∈ A(G,µ),
so that the period domain F(G,µ, b)wa is non-empty.

(1) ([Rap18, Definition A1]) We say that the triple (G, b, µ) is weakly accessible if

F(G,µ, b)wa = F(G,µ).

We say that (G,µ) is weakly accessible if this is the case for (G, b′, µ), where [b′] ∈
B(G,µ) is the unique basic element.

(2) We say that the weakly admissible locus F(G,µ, b)wa is maximal if the first inclusion in
(3.0.1) is an equality, or equivalently,

F(G,µ, b)wa(C) =
∐

[b′]∈B(G,0,νb−µ⋄) s.t.
(b′,νb−µ⋄) is HN-indecomposable

F(G,µ, b)[b
′](C)

for any complete algebraically field extension C/F̄ .
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If G = GLn, the weakly accessible pairs (G,µ) are given as in Remark 2.13 (1). In the general
case, after some reduction steps ([Rap18, Lemma A.11]), the following proposition gives the
complete classification of all weakly accessible triples (G,µ, b).

Proposition 3.3 ([Rap18] Proposition A.12). Suppose that (G,µ, b) defines a non-empty period
domain where G is F -simple and µ is non-trivial. Then (G,µ, b) is weakly accessible if and only
if the F -group Jb is anisotropic, in which case b is basic.

Remark 3.4. Clearly, the fully HN-decomposability or the weak accessibility implies the maxi-
mality of the weakly admissible locus.

The following theorem gives several characterizations for the maximality of the weakly ad-
missible locus F(G,µ, b)wa, which is the first main result of our paper.

Theorem 3.5. Suppose that b ∈ G(F̆ ) is basic and that µ ∈ X∗(T )
+ is minuscule. Then the

following assertions are equivalent:

(1) F(G,µ, b)wa is maximal;
(2) (G,µ) is weakly fully HN-decomposable;
(3) the Newton stratification is finer than the Harder-Narasimhan stratification in the sense

that every Harder-Narasimhan stratum is union of some Newton strata.

Proof. We may assume G and thus H adjoint. Indeed, this follows from the observation that, if
we denote by

π : F(G,µ) −→ F(Gad, µad)

the natural map, then the preimage of a Newton stratum (resp. Harder-Narasimhan stratifica-
tion) for the triple (Gad, µad, bad) is the corresponding stratum for the triple (G,µ, b). Therefore,
for the rest of the proof, G is supposed to be adjoint. In particular, νb = 0. Furthermore, we
suppose µ ̸= 0: otherwise our theorem is trivially true.

Recall that we have the identification (2.1.1) between B(G) and B(H) induced by the class

ξ ∈ H1(F,H) ≃ π1(H)Γ,tor

of G as an inner form of H, under which B(G,µ) is identified with B(H,µ# + ξ, µ⋄). Moreover,
using a fixed inner twisting

GF̆
∼−→ HF̆ ,

we have an identification

F(G,µ)
∼−→ F(H,µ)

of flag varieties over Ĕ, under which the Newton stratification (resp. the Harder-Narasimhan
stratification) on F(G,µ) for the triple (G,µ, b) is identified with the corresponding stratification
on F(H,µ) for the triple (H,µ, bH), where [bH ] ∈ B(H) is the image of [b] via B(G) ≃ B(H).
In the following, we will deal with (H,µ, bH) instead of (G,µ, , b).

Moreover, we may assume that H is simple. Indeed, if H = H1 ×H2 with µ = (µ1, µ2) and
bH = (bH1 , b

H
2 ). Then we have a natural isomorphism

F(H,µ, bH) ≃ F(H1, µ1, b
H
1 )×F(H2, µ2, b

H
2 ),

under which the Newton stratification and Harder-Narasimhan stratification on both sides are
compatible.

(1) ⇒ (2). Suppose that (G,µ) is not weakly fully HN-decomposable. By the minute criterion

(Proposition 2.11 and Remark 2.12), there exists α ∈ ∆0 such that

⟨µ⋄, ω̃−w0α⟩+ {⟨ξ⋄, ω̃−w0α⟩} = ⟨−w0µ
⋄, ω̃α⟩+ {⟨−w0ξ

⋄, w̃α⟩} ∈ Z>1.

We want to show that there exists a point in a HN-indecomposable Newton stratum that is not
weakly admissible. Let α∗ = −w0α andM =Mα∗ the standard Levi such that ∆0,M = ∆0\{α∗}.
Let P be the standard parabolic subgroup of H corresponding to M . Since ⟨µ⋄ + ξ⋄, ω̃α∗⟩ ∈ Z
and [bH ] ∈ B(H,µ#+ξ, µ⋄), the element [bH ] has a reduction [bM ] toM (Lemma 2.6). By [Che,
Lemma 1.8],

ξ ∈ Im(π1(M)Γ,tor → π1(G)Γ,tor),

and there exists µ1 ∈Wµ ⊂ X∗(T ) which is M -dominant, such that

[bM ] ∈ B(M,µ#
1 + ξ, µ1).
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Here, ξ is view as an element in π1(M)Γ,tor. As ⟨µ⋄, w̃α∗⟩ > 0 while µ⋄
1 = µ⋄

1 − νbM ∈ ⟨Φ∨
M,0⟩Q,

it follows that µ ̸= µ1, and µ1 is M -dominant but not H-dominant. So there exists β ∈ ∆ with
β|A = α∗, such that

⟨µ1, β⟩ < 0.

Therefore ⟨µ1, β⟩ = −1 as µ and hence µ1 are minuscule. Let [b′M ] ∈ B(M)basic such that

κM (b′M ) = image of − β∨ + ξ in π1(M)Γ.

Then
νb′M = prM (−β∨ + ξ)⋄ = prM (−β∨)⋄,

with prM the projection of X∗(T ) = ⟨Φ∨
M ⟩Q ⊕ ⟨ΦM ⟩⊥Q to the direct factor ⟨ΦM ⟩⊥Q . Let

µ2 = (sβµ1)M-dom = (µ1 + β∨)M-dom.

We check easily that
[b′M ] ∈ B(M, (µ1 − µ2)

# + ξ, νbM − µ⋄
2).

Hence there exists a point xM ∈ F(M,µ2)(C) such that Eb′M ≃ EbM ,xM
. Let [b′H ] be the image

of [b′M ] in B(H). It follows that

[b′H ] ∈ B(H, ξ, νb − µ⋄).

In particular, F(H,µ, bH)[b
′H ] is a non-empty Newton stratum of the flag variety. Let x ∈

F(H,µ)(C) the image of xM via the natural map F(M,µ2) → F(H,µ). In order to show the
weakly admissible locus is not maximal, it suffices to prove the following Claim.

Claim: (H, b′H ,−w0µ) is HN-indecomposable and x ∈ F(H,µ, bH)[b
′H ](C) is not weakly ad-

missible.
As νb′M is H-antidominant, νb′H = (νb′M )H-dom = w0νb′M . It follows that (H, b′H , µ−1) is

HN-indecomposable as

⟨−w0µ
⋄ − w0νb′M , ω̃α⟩ = ⟨−w0µ

⋄, ω̃α⟩+ ⟨νb′M , ω̃α∗⟩
= ⟨−w0µ

⋄, ω̃α⟩ − 1 > 0.

since H is simple. Moreover, Eb,x ≃ Eb′ , and x is not weakly admissible by definition: for the
dominant root χ = mwβ ∈ X∗(P/ZH)+ with m > 0, we have

degχ∗((Eb,x)P ) = deg(χ∗(Eb′M )) = ⟨−w0νb′M ,mwβ⟩ > 0,

since νb′M is H-anti-dominant and non trivial.

(2) ⇒ (1). Suppose that (G,µ) is weakly fully HN-decomposable. Let

x ∈ F(H,µ, bH)[b
′H ](C)

with (H, b′H ,−w0µ) HN-indecomposable. So EbH ,x = Eb′H . We want to show that x is weakly
admissible. Suppose that x is not weakly admissible, then there exist a maximal standard Levi
subgroup Mα, a reduction of bH to Mα, and thus a reduction (EbH ,x)Pα

of EbH ,x = Eb′H to the
corresponding standard parabolic Pα, such that for some χ ∈ X∗(Pα/ZH)+ = X∗(Pα)

+

(3.0.2) degχ∗((Eb,x)Pα) > 0.

In particular, ⟨µ⋄ + ξ⋄, w̃α⟩ ∈ Z by Lemma 2.6. Let v ∈ X∗(A)Q be the slope vector for the
reduction (Eb,x)Pα

of Eb,x = Eb′ to Pα. Indeed,

v ∈ Hom(X∗(Pα),Z)Γ = Hom(X∗(Mab
α ),Z)Γ ∼−→ X∗(M

ab
α )Γ ⊆ X∗(AMα)Q ⊂ X∗(A)Q

where Mab
α is the cocenter of Mα and AMα

⊆ A is a maximal split central torus of Mα.
In other words, let Eb′Mα

:= (Eb,x)Pα ×Pα Mα with [b′Mα
] ∈ B(Mα), then

[b′Mα
] ∈ B(Mα, κMα

(b′Mα
), νb′Mα

).

Moreover, as
v = prMα

(νEb′
Mα

)⋄ = −prMα
(νb′Mα

)⋄,

with prMα
the projection of X∗(T ) = ⟨Φ∨

Mα
⟩Q ⊕ ⟨ΦMα

⟩⊥Q to the direct factor ⟨ΦMα
⟩⊥Q , It follows

that
−v ∈ B(Mα, κMα(b

′
Mα

), νb′Mα
).

The fact that Mα = CentG(v) and the inequality (3.0.2) implies

⟨v, w̃α⟩ = ⟨νEb′
Mα

, w̃α⟩ > 0.(3.0.3)
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Hence v is H-dominant. Furthermore, as

κH(b′Mα
) = −cH1 (Eb′Mα

×Mα H) = −cH1 (Eb,x) = κH(b′) = ξ ∈ π1(H)Γ

we deduce that −w0v ∈ B(H, ξ, (νb′Mα
)H−dom). In particular, −w0v ∈ B(H, ξ,−w0v). On the

other hand, v ∈ X∗(A)
+
Q and v ⪯ νEb,x

= −w0νb′ by [CFS21, Theorem 1.8]. Hence,

−w0v ⪯ νb′ ⪯ −w0µ
⋄,

and then
−w0v ∈ B(H, ξ,−w0µ

⋄).

By proposition 2.8, it follows that

⟨−w0v, ω̃α∗⟩+ {⟨−ξ⋄, ω̃α∗⟩} ∈ Z≥0(3.0.4)

As (G,µ) is weakly fully HN-decomposable, by Remark 2.12, and the fact that bH has reduc-
tion to Mα∗ , we have

⟨−w0µ
⋄, ω̃α∗⟩+ {⟨−ξ⋄, ω̃α∨⟩} = 0 or 1(3.0.5)

Moreover,

⟨−w0µ
⋄ − (−w0v), ω̃α∗⟩ ≥ ⟨−w0µ− νb′ , w̃α∗⟩ > 0.(3.0.6)

Here we have the last inequality because the centralizer of νb′ = −w0νEb′ is contained inMα∗ and
νb′ is HN-indecomposable relative to −w0µ. Combined with (3.0.4), (3.0.5), (3.0.6), it follows
that ⟨−w0v, w̃α∗⟩ = 0 which contradicts with (3.0.3).

(3) ⇒ (1). It follows directly from a result of Viehmann (cf. Proposition 3.1 (2)).

(2) ⇒ (3). Suppose (G,µ) is weakly fully HN-decomposable. As we have proved (2) ⇒ (1),

for any [b′] ∈ B(G, 0,−w0µ) which is HN-indecomposable with respect to −w0µ, the Newton

stratum F(G,µ, b)[b
′] is contained in the weakly admissible locus F(G,µ, b)wa. Therefore it

suffices to consider [b′] ∈ B(G, 0,−w0µ) which are HN-decomposable. Let [b′H ] ∈ B(H) be the
image of [b′] via inner twist. Suppose that [b′H ] ∈ B(H, ξ♯,−w0µ) is HN-decomposable with
respect to a standard Levi subgroup M of H (i.e. νb′H ⪯M −w0µ

⋄ and M is the smallest

standard Levi subgroup with this property). For any x ∈ F(H,µ, bH)[b
′H ](C), we want to show

that the Harder-Narasimhan vector HNbH (x) does not depend on x. By Proposition 1.22 (2),
HNbH (x) ⪯M νb′H . We claim that

HNbH (x) = prMνb′H ,

or equivalently, that HNbH (x) is central in M . Write v := HNbH (x).
Suppose v that is NOT central in M . Then there exists α ∈ ∆M,0 such that ⟨v, α⟩ > 0. As

−w0µ
⋄ − v is a nonnegative combination of coroots in ∆∨

M,0 and α ∈ ∆M,0, we have

⟨−w0µ
⋄ − v, ω̃α⟩ > 0.(3.0.7)

Moreover, ⟨HNbH (x), α⟩ = ⟨v, α⟩ ≠ 0 implies that bH has reduction toMα. Therefore, by Lemma
2.6 and Lemma 2.7, we have

⟨µ⋄ + ξ⋄, ω̃α⟩ ∈ Z.
Then by the minute criterion for the weakly fully HN-decomposability (Proposition 2.11 and
Remark 2.12),

⟨−w0µ
⋄, ω̃α⟩+ {⟨−ξ⋄, ω̃α⟩} = 0 or 1.(3.0.8)

On the other hand, by Proposition 1.22 (1) and Corollary 2.9, v ∈ B(H, ξ♯,−w0µ
⋄). In

particular, by Proposition 2.8,

⟨ξ⋄ − v, ω̃α⟩ ∈ Z.(3.0.9)

Combined with (3.0.8) and (3.0.9), we deduce

⟨−w0µ
⋄, ω̃α⟩+ {⟨−v, ω̃α⟩} = 0 or 1.(3.0.10)

As v is dominant, ⟨v, ω̃α⟩ ≥ 0. It follows that

⟨−w0µ
⋄, ω̃α⟩+ {⟨−v, ω̃α⟩}︸ ︷︷ ︸

=0 or 1

−⟨−w0µ
⋄ − v, ω̃α⟩︸ ︷︷ ︸

>0 by (3.0.7)

∈ N.

Therefore the left hand side is 0 and it follows that ⟨v, ω̃α⟩ = 0 which implies v = 0 since H is
simple. This contradicts to the fact that v is not central in M . □
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4. Newton strata completely contained in the weakly admissible locus

In this section, we study the question when a single Newton stratum is contained in the
weakly admissible locus of the flag variety. We shall start with some general observation which
works for a quasi-split reductive group, and give an answer to the above question by establishing
a criterion for a Newton stratum completely contained in the weakly admissible locus. At the
end of this section, we illustrate our criterion by an explicit example in the GLn-case.

4.1. Extensions and weakly admissible locus. Recall that H is the quasi-split inner form
of G over F , and T is a maximal F -torus of H, with

W = (NH(T )/T ) (F̄ )

its Weyl group. Let µ ∈ X∗(T ) be a minuscule cocharacter. Let M be a standard Levi subgroup
of H, with corresponding parabolic subgroup P . We have the decomposition in Schubert cells of
F(H,µ)F̄ according to the PF̄ -orbits given as follows. For w ∈W , let F(H,µ)wP be the schematic
image of the map

PF̄ −→ F(H,µ)F̄ , g 7→ gPµwg−1.

So F(H,µ)wP is the PF̄ -orbit of Pµw ∈ F(H,µ)(F̄ ), and

F(H,µ)wP = PF̄ /PF̄ ∩ Pµw .

Moreover, every PF̄ -orbit of F(H,µ)F̄ is obtained in this way: this follows from the relative
Bruhat decomposition

HF̄ =
∐

[w]∈WP \W/WPµ

PF̄wPµ

Here WP denotes the stabilizer of the standard parabolic subgroup PF̄ ⊂ H under the action of
Weyl group W (on the set of standard parabolic subgroups of HF̄ ), and [w] is the double coset
in WP \W/WPµ

of an element w in the Weyl group W . By taking the projection to the Levi
quotient M , we obtain a map

(4.1.1) prP,w : F(H,µ)wP → F(M,µw),

It is known that the above map prP,w above is an affine fibration.

Definition 4.1. Let µ be a minuscule cocharacter of H, [b] ∈ A(H,µ)basic. Let M be a standard
Levi subgroup of H. An element w ∈W is called µ-negative for M if ⟨νb −wµ, χ⟩ < 0 for some
χ ∈ X∗(P/ZH)+.

Proposition 4.2. Let µ be a minuscule cocharacter of H, [b] ∈ A(H,µ)basic.

(1) Let M be a standard Levi subgroup of H, with P its corresponding standard parabolic
subgroup. Assume that w ∈ W is µ-negative and that b has a reduction (bM , h) to M

with bM ∈M(F̆ ) and h ∈ H(F̆ ), then

h · F(H, b)wP ⊂ F(H,µ)F̄ \ F(H,µ, b)waF̄ .

(2) The complement in F(H,µ) of the weakly admissible locus can be described as follows:
for C/F̄ a complete algebraically closed field extension of F̄ ,

(F(H,µ)\F(H,µ, b)wa) (C) =
⋃
α∈∆0

 ⋃
(bM ,h) is a reduction

of b to Mα

 ⋃
w∈W is µ-negative

for Mα

h · F(H,µ)wPα
(C)


 .

Remark 4.3. Viehmann told us that this proposition is a reformulation of [NV, Corollary 4.5].

Proof. (1) Since b = hbMσ(h)
−1, the element h ∈ H(F̆ ) induces an isomorphism of H-bundles

ι = ιh : EbM ×M H
∼−→ Eb,

such that, under the natural identification in Remark 1.7, the restriction of ι to Spec(ÔX,∞) =
Spec(B+

dR) is the right-multiplication by h. So for C a complete algebraically closed field exten-
sion of F̄ and for x ∈ F(H,µ)(C), the isomorphism ι above induces a compatible isomorphism
between the modifications of H-bundles (see also Remark 1.13):(

EbM ×M H
)
h−1x

∼−→ Eb,x.
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If furthermore x ∈ h · F(H,µ)wP , and by [CFS21, Lemma 2.6] there is an isomorphism

(Eb,x)P ×P M ≃ EbM ,prP,w(h−1x).

On the other hand, w is µ-negative for M , so ⟨wµ− νb, χ⟩ > 0 for some χ ∈ X(P/ZG)
+. Thus

deg(χ∗(Eb,x)P ) = deg(χ∗(EbM ,prP,w(h−1x))) = ⟨wµ− νbM , χ⟩ > 0.

Therefore x is not weakly admissible by Proposition 1.16.
(2) In view of (1) and the criterion for the weak admissibility in the quasi-split case (Propo-

sition 1.16), this follows from the the following two facts: once an element b has a reduction to
a proper standard Levi M , it has a reduction to every maximal standard Levi containing M ;
moreover, if ⟨νb −wµ, χ⟩ < 0 for some χ ∈ X∗(P/ZH)+, then the same holds with χ = w̃α for a
certain α /∈ ∆0,M . □

Suppose [b] ∈ A(H,µ)basic with bM a reduction of b to a standard Levi M of H. Recall that
we have Newton stratifications

F(H,µ) =
∐

[b′]∈B(H,κ(b)−µ#,νb−µ⋄)

F(H,µ, b)[b
′], and

F(M,µw) =
∐

[b′M ]∈B(M,κM (bM )−µw,#,νbM −µw,⋄)

F(M,µw, bM )[b
′
M ].

Let P be the standard parabolic subgroup corresponding to M . We would like to compare these
two Newton stratifications via the affine fibration prP,w in (4.1.1) above.

Definition 4.4. Let M be a standard Levi subgroup of H, with P the corresponding standard
parabolic subgroup. Let [b′H ] ∈ B(H) and [b′M ] ∈ B(M). We say that [b′H ] is an extension of
[b′M ] if Eb′H has a reduction (Eb′H )P to P such that (Eb′H )P ×P M ≃ Eb′M . Let [b′] ∈ B(G) be the

preimage of [b′H ] via the identification B(G) ≃ B(H). We also say that [b′] is an extension of
[b′M ] if [b′H ] is an extension of [b′M ].

Remark 4.5. (1) Suppose H = GLn and M = GLr × GLn−r a standard Levi of H. An
element [b′] ∈ B(H) is an extension of

[b′M ] = ([b′′1 ], [b
′′
2 ]) ∈ B(M) = B(GLr)×B(GLn−r)

if and only if the rank n vector bundle Eb′ on the Fargues-Fontaine curve X is an exten-
sion of the vector bundle Eb′′2 of rank n− r by the vector bundle Eb′′1 of rank r.

(2) When [b′M ] ∈ B(M) is basic with νb′M anti-H-dominant, then the extensions [b′] ∈ B(G)

of [b′M ] are classified by [BFHHLWY] for GLn and by [Vie] for arbitrary G.

Suppose that [b] ∈ A(H,µ)basic has a reduction (bM , h) to a proper standard Levi subgroup
M of H. Let P be the standard parabolic subgroup corresponding toM . Then, for every w ∈W
and for every [b′] ∈ B(H,κ(b)− µ♯, νb − w0µ

⋄), we have

(4.1.2) prP,w(F(H,µ)wP ∩h−1F(H,µ, b)[b
′]) ⊆

∐
[b′M ]∈B(M,κ(bM )−µw,#,νbM −µw,⋄)

such that [b′] is an extension of [b′M ]

F(M,µw, bM )[b
′
M ].

Proposition 4.6. The inclusion in (4.1.2) is an equality.

Proof. Since (bM , h) is a reduction of b to M , we have b = hbMσ(h)
−1. So by Remark 1.13, we

have
h−1 · F(G,µ, b)[b

′] = F(G,µ, bM )[b
′] ⊂ F(G,µ).

Here for the second term above, we view bM ∈M(F̆ ) as an element of G(F̆ ). Therefore, replacing

b ∈ H(F̆ ) by bM ∈M(F̆ ) ⊂ H(F̆ ), we shall assume h = 1 for the remaining part of the proof.
Let [b′M ] ∈ B(M,κ(bM ) − µw,#, νbM − µw,⋄) such that [b′] is an extension of [b′M ], and let

x′ ∈ F(M,µw, bM )[b
′
M ]. We need to find x ∈ F(H,µ)wP ∩ F(H,µ, b)[b

′] such that prP,w(x) = x′.
Write U = X\{∞}. Recall that Eb′M = EbM ,x′ is a modification of EbM : so there is an isomorphism

(4.1.3) EbM |U
∼−→ EbM ,x′ |U = Eb′M |U ≃ Eb′,P |U ×P M

of M -bundles over U , where Eb′,P is defined in Definition 4.4 as [b′] is an extension of [b′M ]. We
claim that the isomorphism (4.1.3) can be extended to a modification of P -bundles over U

(4.1.4) EbM |U ×M P
∼−→ Eb′,P |U .
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Indeed, by a result of Anschütz ([Ans19, Theorem 4]), the M -bundle EbM is trivial over U . So
the isomorphism (4.1.3) corresponds to a section s of Eb′,P ×P M over U . We want to lift the
section s to a section of Eb′,P over U through the canonical map

Eb′,P −→ Eb′,P ×P M.

The latter makes Eb′,P a Ru(P )-bundle over Eb′,P ×P M , where Ru(P ) denotes the unipotent
radical of P . Consider the cartesian diagram below

U //

��

Eb′,P

��
U

s // Eb′,P ×P M

.

In particular, U is a Ru(P )-bundle over U . Since U is affine and Ru(P ) is unipotent over F
(thus a successive extension of Ga), every Ru(P )-bundle must be trivial. So U has a section over
U , giving a section of Eb′,P over U lying above s, as claimed.

On the other hand, the restriction EbM |Spec(ÔX,∞) is canonically trivialized (Remark 1.7), so

the modification (4.1.4) corresponds to a coset

xPP (B
+
dR) ∈ GrBdR

P (C) = P (BdR)/P (B
+
dR),

whose image in GrBdR

M (C) =M(BdR)/M(B+
dR) is

π−1
M,µw(x

′) = mµw,−1(t)M(B+
dR) ∈M(B+

dR)µ
w,−1(t)M(B+

dR)/M(B+
dR) = GrBdR

M,µw(C).

Here
πM,µ : GrBdR

M,µw(C)
∼−→ F(M,µw)(C)

is the Bialynicki-Birula map (for M) recalled in § 1.4.1. Hence the element xP is of the form

umµw,−1(t)m′ ∈ P (BdR),

with u ∈ Ru(P )(BdR), m,m
′ ∈M(B+

dR). But we can further write u as

u = u′u′′

with u′ ∈ Ru(P )(U) and u′′ ∈ P (B+
dR): indeed, using the fact that Ru(P ) is a successive

extension of Ga, by a standard dévissage, one reduces to the similar assertion for the addition

group Ga, which is clear. Now, composing (4.1.4) with u′
−1 ∈ Ru(P )(U) ⊂ G(U), we get a new

modification EbM |U ×M P
∼→ Eb′,P |U compatible with (4.1.3), which is now minuscule of type

µw. From this new modification, we deduce a minuscule modification of type µ

Eb|U
∼−→ Eb′ ,

or equivalently, a point x ∈ F(H,µ, b)
[b′]
P lying above x′. This completes the proof of our

proposition. □

Corollary 4.7. Let µ be a minuscule cocharacter of H, and [b] ∈ A(H,µ)basic. Assume that

[b] has a reduction (bM , h) to some standard Levi subgroup M of H, with bM ∈ M(F̆ ) and

h ∈ H(F̆ ). Let [b′] ∈ B(H,κ(b)− µ#, νb − µ⋄) and w ∈W . Then

(h · F(H,µ)wP ) ∩ F(H,µ, b)[b
′] ̸= ∅.

if and only if [b′] is an extension of a certain [b′M ] ∈ B(M,κ(bM )− µw,#, νbM − µw,⋄).

Proof. This follows directly from Proposition 4.6. □

This corollary allows us to have a criterion about whether a single Newton stratum is com-
pletely contained in the weakly admissible locus for a general connected reductive group.

Theorem 4.8. Let µ be a minuscule cocharacter of the (not necessarily quasi-split) connected

reductive group G, and b ∈ G(F̆ ) such that [b] ∈ B(G,µ)basic. Let [b′] ∈ B(G, 0, νb − µ). Then

F(G,µ, b)[b
′] ⊈ F(G,µ, b)wa

if and only if there exists some maximal proper standard Levi subgroup M of H, the quasi-split
inner form of G over F , and w ∈W satisfying the following two properties:

(1) b has a reduction bM to M and w is µ-negative for M ; and
(2) [b′] is an extension of some [b′M ] ∈ B(M,κ(bM )− µw,#, νbM − µw,⋄).
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Proof. Recall the identification (2.1.1) between B(G) and B(H) induced by the class

ξ ∈ H1(F,H) ≃ π1(H)Γ,tor

of G as an inner form of H, under which B(G,µ) is identified with B(H,µ# + ξ, µ⋄). Moreover,

using a fixed inner twisting GF̆
∼−→ HF̆ , we have an identification

F(G,µ)
∼−→ F(H,µ)

of flag varieties over Ĕ, under which the Newton stratification (resp. the Harder-Narasimhan
stratification) on F(G,µ) for the triple (G,µ, b) is identified with the corresponding stratification
on F(H,µ) for the triple (H,µ, bH), where [bH ] ∈ B(H) is the image of [b] via B(G) ≃ B(H).
Therefore the theorem follows immediately from Corollary 4.7 and Proposition 4.2 (2). □

4.2. An examples in the GLn-case. In this §, we illustrate an applications of Theorem 4.8,
and we refer to the next section for some similar but more complicated applications of the same
result.

Consider the case where G = GL10 and µ = (1(4), 0(6)). Let b ∈ B(G)basic with κ(b) = µ#.
In particular,

νb =

(
2

5

(10)
)

=

2

5
,
2

5
, · · · , 2

5︸ ︷︷ ︸
10

 ∈ N (GL10).

The element b has a reduction to only one proper maximal standard Levi

M = GL5 ×GL5 ↪→ G = GL10,

and if w ∈W is such that ⟨νb − wµ, χ⟩ < 0 for some χ ∈ X∗(P/ZG)
+, then

wµ ∈
{(

(1(3), 0(2)), (1, 0(4))
)
,
(
(1(4), 0), (0(5))

)}
∈ N (M) = N (GL5)×N (GL5).

So

νbMµ
w,−1 ∈

{((
2

5

(2)

,−3

5

(3)
)
,

(
2

5

(4)

,−3

5

))
,

((
2

5
,−3

5

(4)
)
,

(
2

5

(5)
))}

∈ N (M).

Therefore, by Theorem 4.8, for [b′] ∈ B(G, 0, νbµ
−1), the Newton stratum F(G,µ, b)[b

′] contains
a point that is not weakly admissible if and only if Eb′ is an extension of E ′ by E ′′, where the
pair (E ′, E ′′) is either contained in{
O
(
−1

3

)
⊕O2,O

(
−1

4

)
⊕O,O

(
−1

5

)}
×
{
O
(
1

5

)
,O ⊕

(
1

4

)
,O2 ⊕O

(
1

3

)
,O3 ⊕O

(
1

2

)}
,

or contained in {
O
(
−2

5

)}
×

{
O
(
2

5

)
,O ⊕O

(
1

2

)2

,O
(
1

3

)
⊕O

(
1

2

)}
.

Observe that, for each choice of (E ′, E ′′) above, the slopes of E ′ are less or equal to those of E ′′.
In particular, every extension of E ′ by E ′′ splits. On the other hand,

νbµ
−1 =

(
2

5

(6)

,
−3

5

(4)
)
,

so there are 26 non-empty Newton strata, listed as follows:

• νb′ =
(

2
5

(5)
, 0(i),− 2

5−i
(5−i)

)
for i = 0, 1; or

(
2
5

(5)
,− 1

3

(3)
,− 1

2

(2)
)
. We have 3 possibilities

in this case, and the polygons are HN-decomposable, in the sense that they all touch
the polygon for νbµ

−1. As a result, the corresponding Newton strata do not contain any
weakly admissible point.

• νb′ =
(

1
3

(2)
,− 1

2

(2)
)
. So Eb′ is not a direct sum of E ′⊕E ′′ for all possible choices (E ′, E ′′),

and the corresponding Newton stratum is completely contained in F(G,µ, b)wa.

• νb′ =
(

1
i

(i)
, 0(j),− 1

10−i−j
(10−i−j)

)
for 3 ≤ i ≤ 8 and 0 ≤ j ≤ 8 − i. We have 21

possibilities for this case. It is easy to see that, Eb′ = E ′ ⊕ E ′′ for some choice (E ′, E ′′)
if and only if i ≤ 5 and i + j ≥ 5. So in this case, we get 9 Newton strata that are
completely contained in the weakly admissible locus.
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• νb′ =
(
0(6)
)
, which corresponds to the admissible locus F(G,µ, b)a thus is completely

contained in F(G,µ, b)wa.

In summary, there are 26 non-empty Newton strata in the Newton stratification of F(G,µ), and
11 of them are completely contained in the weakly admissible locus.

Remark 4.9. The reason why we can determine all the Newton strata completely contained in
the weakly admissible locus in this example is that all the involved extensions of M -bundles to
G-bundles are trivial. In general, it’s a difficult question to determine whether a G-bundle is an
extension of a M -bundle. In the next section, we will study this question for GLn.

5. Extensions of Vector bundles over Fargues-Fontaine curve

As seen in the previous section, to determine if a single Newton stratum F(G,µ, b)[b
′] is

completely contained in the weakly admissible locus F(G,µ, b)wa, we need to have a classification
of extensions of G-bundles over the Fargues-Fontaine curve. In this section, we give such a
classification for GLn in an inductive way: see also the appendix below for a direct classification
in some special cases. As an application this result, this gives an algorithm to determine which
Newton strata are completed contained in the weakly addmissible locus for G = GLn.

5.1. Inductive classification of extensions of vectors bundles. For n ∈ N, let

N (n) := N (GLn) ⊂ Qn.

Let T ⊂ GLn be the diagonal torus, and B ⊂ GLn the Borel subgroup of upper-triangular
matrices. SoN (n) can be identified with the set of rational cocharacters of T which are dominant
relative to the positive coroots defined by B. In other words,

N (n) = X∗(T )
+
Q = {(a1, . . . , an) ∈ Qn|a1 ≥ a2 ≥ · · · ≥ an}.

For a ∈ N (n), let O(a) be the corresponding vector bundle of rank n over the Fargues-Fontaine
curve X. We say that a is semistable (resp. stable) if the corresponding vector bundle O(a) is
semistable (resp. stable). In general, the stable (resp. semi-stable) blocks in O(a) are also called
the stable (resp. semistable) blocks in a. For a ∈ N (n) and b ∈ N (m), their direct sum

a⊕ b ∈ N (n+m)

is defined in such a way that O(a ⊕ b) = O(a) ⊕ O(b). For a = (a1, . . . , an) ∈ N (n), we define
its dual a∨ by

a∨ := (−an, . . . ,−a1) ∈ N (n).

In other words, a∨ = −w0a. Clearly O(a∨) = O(a)∨. Finally, for c ∈ Qn, set

Snc := {(cσ(1), . . . , cσ(n)) ∈ Qn|σ ∈ Sn}.

Definition 5.1. Let r, s ∈ N, c ∈ N (r) and d ∈ N (s). Set n = r + s and define the following

two subsets Ext1(c, d) and Ẽxt
1
(c, d) of N (n):

(1) Ext1(c, d) is the set of a ∈ N (n) such that there exists a short exact sequence

0 −→ O(d) −→ O(a) −→ O(c) −→ 0,

or equivalently, that O(a) is an extension of O(c) by O(d);

(2) Ẽxt
1
(c, d) is the set of a ∈ N (n) satisfying the following condition: there exists a partition

{1, . . . , n} = H
∐

K

of {1, . . . , n} with

H = {h1 < h2 < . . . < hr} and K = {k1 < k2 . . . < ks},

and b ∈ Qn with

(bh1
, . . . , bhr

) ∈ Src and (bk1 , . . . , bks) ∈ Ssd,

such that the following properties hold:
(a) for any i ∈ H, bi ≥ ai;
(b) for any i ∈ K, bi ≤ ai;

(c) for any 1 ≤ l ≤ n,
∑l
i=1 bi ≥

∑l
i=1 ai, with equality if l = n.
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Remark 5.2. (1) The combinatorial definition of Ẽxt
1
is motivated by [Sch00] in which

the extensions of vector bundles on P1 over an algebraically closed field are classified
in a similar way. After we finish our work, we noticed that similar condition is also
considered independently by Hong in [Hon22].

(2) In the definition of Ẽxt
1
, if an element b ∈ Qn satisfies the conditions (2.a)-(2.c) above

and if we take b̃ ∈ Qn such that

(b̃h1
, . . . , b̃hr

) = (c1, . . . , cr), and (b̃k1 , . . . , b̃ks) = (d1, . . . , ds),

then b̃ satisfies equally the conditions (2.a)-(2.c) above.

These two subsets of N (n) are closely related by the following proposition:

Proposition 5.3. For r, s ∈ N, c ∈ N (r) and d ∈ N (s), we have Ext1(c, d) ⊂ Ẽxt
1
(c, d).

Proof. Take a ∈ Ext1(c, d). Let N ∈ N such that all the components of Na,Nc,Nd are in-
tegers. Consider the cyclic covering f : XN −→ X of order N between Fargues-Fontaine
curves. It follows that f∗O(a), f∗O(c) and f∗O(d) are sum of line bundles: for example, if
a = (a1, . . . , an) ∈ N (n) ⊂ Qn, f∗O(a) is the direct sum of line bundlesO(Nai), 1 ≤ i ≤ n. Then

the same argument as in the proof of [Sch00, Proposition 3.1] shows that Na ∈ Ẽxt
1
(Nc,Nd),

which implies a ∈ Ẽxt
1
(c, d). □

Let c ∈ N (r), d ∈ N (s). Proposition 5.3 gives a necessary condition for the property that
O(a) can be realized as an extension ofO(c) byO(d). One could find some other conditions in the
literature for the last property. For example, if c and d are semistable, one can reformulate the

conditions in Definition 5.1 (2) in a more direct way, which allows us to relate the set Ẽxt
1
(c, d)

with the description of extensions in [BFHHLWY].

Lemma 5.4. Let c ∈ N (r), d ∈ N (s) and a ∈ N (n). Assume n = r + s, and that c and d are

both semistable. Set c := c1 = · · · = cr and d := d1 = . . . = ds. Then a ∈ Ẽxt
1
(c, d) if and only

if one of the following two conditions is verified:

(1) c ≤ d and a = c⊕ d; or
(2) c > d, and a ≤ c⊕ d.

Proof. If one of the two conditions is verified, it is clear that a ∈ Ẽxt
1
(c, d): we can take

H = {1 < . . . < r} and K = {r + 1 < . . . < r + s = n} in both cases.

Conversely, suppose that a ∈ Ẽxt
1
(c, d), with H = {h1 < . . . < hr} and K = {k1 < . . . < ks}

a partition of {1, . . . , n} given in Definition 5.1. We shall distinguish two different cases:

• Assume first c ≤ d. If h1 < ks, by the conditions (2.a) and (2.b) of Definition 5.1 we
have

c = bh1
≥ ah1

≥ aks ≥ bks = d.

So we get c = d. Combing (2.c) in Definition 5.1, we deduce moreover a1 = . . . = an,
and thus a = c ⊕ d as asserted in (1). If h1 > ks, then H = {s + 1 < . . . < n} and
K = {1 < . . . < s}. By (2.c) of Definition 5.1, for all 1 ≤ l ≤ s, we have

l∑
i=1

di =

l∑
i=1

bi ≥
l∑
i=1

ai

while di = bi ≤ ai for all 1 ≤ i ≤ s by (2.b) of Definition 5.1, therefore a1 = . . . = as = d.
On the other hand, as

s∑
i=1

di +

n∑
i=s+1

ci =

n∑
i=1

bi ≥
l∑
i=1

ai =

s∑
i=1

ai +

n∑
i=s+1

ai,

we find
n∑

i=s+1

ci ≥
n∑

i=s+1

ai.

But ci = bi ≥ ai for every s+ 1 ≤ i ≤ n by (2.a) of Definition 5.1. Thus ai = ci = c for
all s+ 1 ≤ i ≤ n. Consequently we still obtain a = c⊕ d as asserted in (1).
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• It remains to consider the case where c > d. Necessarily a1 ≤ c: otherwise 1 ∈ K and
we obtain d = b1 ≤ a1 ≤ c which is absurd. Similarly an ≥ d. Since

∑n
i=1 ai =

∑n
i=1 bi

by (2.c) of Definition 5.1, it follows that c⊕ d ≥ a, as claimed by (b).

This completes the proof of our lemma. □

Corollary 5.5. Let c ∈ N (r) and d ∈ N (s). Assume that c and d are both semistable. Then

Ext1(c, d) = Ẽxt
1
(c, d).

Proof. Let a ∈ Ẽxt
1
(c, d). We must check that O(a) is an extension of O(c) by O(d). Set

c := c1 = . . . = cr and d := d1 = . . . = ds. According to the lemma above, we only need to
consider the following two cases.

• If c ≤ d and a = c⊕ d, then O(a) = O(c)⊕O(d), which is the split extension of O(c) by
O(d).

• If c > d and a ≤ c⊕ d, then the vector bundles F1 := O(d), F2 := O(c), and E := O(a)
satisfy the condition of [BFHHLWY, Theorem 1.1.2]. So according to loc. cit., O(a) is
an extension of O(c) by O(d), as required.

□

We have the following property of Ẽxt
1
:

Lemma 5.6. Let c ∈ N (r), d ∈ N (s) and a ∈ N (n). Assume n = r + s, and a ∈ Ẽxt
1
(c, d).

Then the following assertions hold.

(i) a strongly slopewise dominates d: for every µ ∈ Q,

nµ := #{ai|ai ≥ µ} ≥ #{di|di ≥ µ},

with equality if and only if (a1, . . . , anµ) = (d1, . . . , dnµ);
(ii) a∨ strongly slopewise dominates c∨, or equivalently, for every µ ∈ Q,

mµ := #{ai|ai ≤ µ} ≥ #{ci|ci ≤ µ},

with equality if and only if (a1, . . . , amµ
) = (c1, . . . , cmµ

); and
(iii) a ≤ c⊕ d.

Proof. Suppose for some µ ∈ Q,

nµ = #{ai|ai ≥ µ} ≤ #{di|di ≥ µ}.

We may assume without lossing generality that µ = ai or di for some i. By (2.b) of Definition
5.1, the inequality above must be an equality and {1, . . . , nµ} ⊂ K. Therefore (a1, . . . , anµ

) =
(d1, . . . , dnµ

), showing (i) above. For (ii), note that

a ∈ Ẽxt
1
(c, d) ⇐⇒ a∨ ∈ Ẽxt

1
(d∨, c∨).

So (ii) is just the dual version of (i).
It remains to check (iii). Write c⊕ d = (b′1, . . . , b

′
n) ∈ N (n). So the b′1 ≥ . . . ≥ b′n is just the

permutation by order of b1, . . . , bn. So, combing (2.c) of Definition 5.1, we obtain

l∑
i=1

b′i ≥
l∑
i=1

bi ≥
l∑
i=1

ai, for all 1 ≤ l ≤ n.

In other words, a ≤ c⊕ d, as claimed by (iii). □

Remark 5.7. We keep the notations of Lemma 5.6.

(1) According to [Hon19], the condition that a strongly slopewise dominates d is equivalent
to the fact that O(d) is a subbundle (i.e. locally direct factor) of O(a) and the condition
that a∨ strongly slopewise dominates c∨ is equivalent to the fact that O(c) is a quotient
of the vector bundle O(a).

(2) In general, as shown by the following example, the combination of the above conditions

(i)-(iii) is weaker than the conditions defining Ẽxt
1
(c, d) even when one of a and b is

semistable. Consider

a = (6, 5, 2, 1) ∈ N (4), c = (10, 4) ∈ N (2), and d = (0, 0) ∈ N (2).
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Then the triple (a, c, d) does verify the conditions (i)-(iii) above. But a /∈ Ẽxt
1
(c, d).

Otherwise, let {1, 2, 3, 4} = H
∐
K be the partition given in Definition 5.1. Since 0 < 6,

we must have 1 ∈ H and thus b1 = c1 = 10. Then as

a1 + a2 = 11 > b1 + 0,

by (2.c) of Definition 5.1, 2 ∈ H and thus b2 = c2 = 4. But this contradicts to the fact
that b2 ≥ c2. In particular, by Proposition 5.3, O(a) = O(6) ⊕ O(5) ⊕ O(2) ⊕ O(1) is
not an extension of O(c) = O(10)⊕O(4) by O(d) = O ⊕O.

One would probably expect that

Ext1(c, d) = Ẽxt
1
(c, d),

or equivalently, for a ∈ Ẽxt
1
(c, d), there exists a short exact sequence of the form

0 −→ O(d) −→ O(a) −→ O(c) −→ 0.

However this fails in general by the following example.

Example 5.8. Let

a =

(
1,

5

7

(7)

,
4

7

(7)

, 0

)
, c =

(
3,

3

5

(5)
)
, and d =

(
5

9

(9)

,−1

)
.

In particular, a ∈ N (16), c ∈ N (6) and d ∈ N (10). Then we have a ∈ Ẽxt
1
(c, d), with

H = {1, 9, 10, 11, 12, 13} ⊂ {1, 2, . . . , 16}.

However, O(a) is not an extension of O(c) by O(d), or equivalently, there does not exist a short
exact sequence as follows

0 −→ O
(
5

9

)
⊕O(−1)

ϕ−→ O(1)⊕O
(
5

7

)
⊕O

(
4

7

)
⊕O ψ−→ O(3)⊕O

(
3

5

)
−→ 0

Suppose that such an extension exists. Consider the subbundle O(a′) ⊂ O(a), with

a′ =

(
1,

5

7

(7)

,
4

7

(7)
)

∈ N (15).

Write O(c′) := ψ(O(a′)) ⊂ O(a) and O(d′) = ϕ−1(O(a′)). So we have the following commutative
diagram with exact rows

0 // Coker(α′) // O // Coker(α′′) // 0

0 // O
(
5
9

)
⊕O(−1)

ϕ //

OO

O(1)⊕O
(
5
7

)
⊕O

(
4
7

)
⊕O

ψ //

OO

O(3)⊕O
(
3
5

)
//

OO

0

0 // O(d′) //

α′

OO

O(a′) //

α

OO

O(c′) //

α′′

OO

0

We claim that O(d′) = O( 59 ). To see this, observe first that α′ is not surjective: otherwise O ≃→
Coker(α′′) and thus O would be a direct factor of O(3)⊕O( 35 ), which is absurd. So Coker(α′) is
a line bundle contained in O, and its degree ≤ 0. In particular, there is no non-zero morphism
O( 59 ) → Coker(α′). As a result, being a quotient of O( 59 ) ⊕ O(−1), Coker(α′) ≃ O(−1), and

thus O(d′) = O( 59 ) ⊂ O(d). Furthermore, we claim that O(c′) = O(2)⊕O( 35 ). As Coker(α′′) is
torsion, α′′ is generically an isomorphism. It follows that the induced map

O(a′)
ψ−→ O(3)⊕O

(
3

5

)
−→ O

(
3

5

)
is generically an epimorphism, hence must be an epimorphism since 2

5 <
4
7 . In particular, the

composition

β : O(c′)
α′′

−→ O(3)⊕O
(
3

5

)
−→ O

(
3

5

)
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must be surjective. On the other hand, O(c′) is a vector bundle of rank 6 and of degree 5, so
ker(β) ≃ O(2). As 2 > 3

5 , we get O(c′) = O(2)⊕O( 35 ). So

c′ =

(
2,

3

5

(5)
)
, and d′ =

(
5

9

(9)
)
.

Moreover, O(a′) is an extension of O(c′) by O(d′), so a′ ∈ Ẽxt
1
(c′, d′). But one could check

directly that this is not the case. In fact, since

2 > 1 >
5

9
>

5

7
>

3

5
>

4

7

if a′ ∈ Ẽxt
1
(c′, d′), the corresponding partition {1, . . . , 15} = H ′∐K ′ would satisfy 1 ∈ H ′ and

{2, 3, . . . , 8} ⊂ K ′. But this is impossible as

2 +
5

9
× 7 < 1 +

5

7
× 7 = 6.

Next we want to give an inductive criterion for an element a ∈ Ẽxt
1
(c, d) to be contained in

Ext1(c, d).

Proposition 5.9. Let c ∈ N (r), d ∈ N (s). Let n := r + s, and a ∈ Ẽxt
1
(c, d). Write cr = q/p

with p ∈ Z≥1 and q ∈ Z such that (p, q) = 1, so c =
(
c1, . . . , cr−p,

q
p , . . . ,

q
p

)
. Set

c′ := (c1, . . . , cr−p) ∈ N (r − p), and c′′ = c(p)r :=

(
q

p
, . . . ,

q

p

)
∈ N (p).

Then a ∈ Ext1(c, d) if and only if there exists some e ∈ N (n− p) such that

• e ∈ Ext1(c′, d); and

• a ∈ Ext1(c′′, e), or equivalently, a ∈ Ẽxt
1
(c′′, e): see Proposition A.8 below or [Hon22,

Theorem 1.1].

Remark 5.10. Proposition 5.9 is also proved independently by Hong in [Hon22, Theorem 1.2].

Proof. Assume first that a ∈ Ext1(c, d). So we have a short exact sequence of vector bundles
over the Fargues-Fontaine curve X:

0 −→ O(d) −→ O(a) −→ O(c) −→ 0.

Let E ⊂ O(a) be the inverse image of the subbundle O(c′) ⊂ O(c) by the surjective morphism
O(a) → O(c), and write E = O(e). Then E = O(e) is an extension of O(c′) by O(d), or
equivalently, e ∈ Ext1(c′, d). Furthermore, by Snake Lemma,

O(a)/E ≃−→ O(c)/O(c′) ≃ O(c′′).

So O(a) is an extension of O(c′′) by E = O(e). In other words, a ∈ Ext1(c′′, e).
Conversely, suppose that there exists e ∈ N (n − p) such that e ∈ Ext1(c′, d), and that

a ∈ Ext1(c′′, e). Then we get two short exact sequences of vector bundles

0 −→ O(d) −→ O(e) −→ O(c′) −→ 0,

and

0 −→ O(e) −→ O(a) −→ O(c′′) −→ 0.
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We can insert them into the following commutative diagram

0

O(c′′)

OO

0 // O(d) // O(a)

OO

// G // 0

0 // O(d) // O(e) //

OO

O(c′) //

OO

0

0

OO

,

where G is the cokernel of the injective morphism O(d) → O(a). By Snake Lemma, the coherent
sheaf G on the Fargues-Fontaine curve X can be put into the following short exact sequence

0 −→ O(c′) −→ G −→ O(c′′) −→ 0.

As cr−p ≥ cr, all the extension of O(c′′) by O(c′) splits. In particular, G is again a vector bundle,

and G = O(c′)⊕O(c′′) = O(c). It follows that a ∈ Ext1(c, d). □

Proposition 5.9 can be used as an algorithm to compute Ext1(c, d) inductively on the number
of stable blocks in c⊕ d using duality combined with Corollary 5.5.

Example 5.11. We have

Ext1

((
0,−1

6

(6)
)
,

(
−1

3

(3)
))

=

{
(− 1

5
(10)),(− 1

6
(6),− 1

4
(4)),(0,− 2

9
(9))

(0,− 1
5
(5),− 1

4
(4)),(0,− 1

6
(6),− 1

3
(3))

}
.

Indeed, by Proposition 5.9, we have

Ext1

((
0,−1

6

(6)
)
,

(
−1

3

(3)
))

=
⋃

e∈Ext1((0),(− 1
3
(3)))

Ext1

((
−1

6

(6)
)
, e

)
.

Using the main result of [BFHHLWY] or Corollary 5.5 above, we have

(5.1.1) Ext1

(
(0),

(
−1

3

(3)
))

=

{(
−1

4

(4)
)
,

(
0,−1

3

(3)
)}

.

So it remains to compute, for e one of the two elements in (5.1.1), the set Ext1
((

− 1
6

(6)
)
, e
)
:

• if e =
(
− 1

4

(4)
)
, again by the main result of [BFHHLWY],

Ext1

((
−1

6

(6)
)
, e

)
=

{(
−1

5

(10)
)
,

(
−1

6

(6)

,−1

4

(4)
)}

;

• if e =
(
0,− 1

3

(3)
)
, then as 0 > −1/6 any extension of O(−1/6) by O splits, so we reduce

to computing Ext1
((

− 1
6

(6)
)
,
(
− 1

3

(3)
))

, and finally we get

Ext1

((
−1

6

(6)
)
, e

)
=

{(
0,−2

9

(9)
)
,

(
0,−1

5

(5)

,−1

4

(4)
)
,

(
0,−1

6

(6)

,−1

3

(3)
)}

.

Remark 5.12. As the vector bundle O(−1/3) is (semi-)stable, by Proposition A.8 we have

Ext1

((
0,−1

6

(6)
)
,

(
−1

3

(3)
))

= Ẽxt
1

((
0,−1

6

(6)
)
,

(
−1

3

(3)
))

.

So we can also compute the extension set in Example 5.11 by exploring directly the combinatorial
condition in Definition 5.1.
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5.2. Applications. As we see at the end of last section, the key for verifying if a single Newton
stratum is not contained in the weakly admissible locus is the existence of certain particular
extensions of vector bundles on the Fargues-Fontaine curve. In this §, we shall give further
applications of Theorem 4.8 for the general linear group G = GLn. The new input here is our
discussions in the previous subsection, which allows us to handle more complicated extensions
of vector bundles. In the following, to simplify the notation, for an element

v = (λ
(n1)
1 , . . . , λ(ns)

s ) ∈ N (n), with λ1 > λ2 > . . . > λs, and ni ∈ Z>0,

if the integer λini is coprime to ni, then we omit the exponent (ni) from the notation.

5.2.1. We take G = GL14, µ = (1(6), 0(8)), and b ∈ B(G)basic with νb =
(

3
7

(14)
)
∈ N (14). Then

b has a reduction bM to only one proper maximal standard Levi subgroup

M = GL7 ×GL7 ↪→ GL14.

The cocharacters wµ, with w an element in the Weyl group, such that ⟨νb−wµ, χ⟩ < 0 for some
χ ∈ X∗(P1/ZG)

+ are

(5.2.1) wµ ∈
{
((1(4),0(3)),(1(2),0(5))), ((1(5),0(2)),(1,0(6)))

((1(6),0),(0(7)))

}
⊂ N (M).

Thus

νbM − wµ ∈
{
(( 3

7
(3),− 4

7
(4)),( 3

7
(5),− 4

7
(2))), (( 3

7
(2),− 4

7
(5)),( 3

7
(6),− 4

7 ))
(( 3

7 ,−
4
7
(6)),( 3

7
(7)))

}
⊂ N (M).

We want to describe explicitly the generalized Kottwitz set

B(M, (k1, k2), νbM − wµ) = B(GL7, k1, v1)×B(GL7, k2, v2)

for the rational cocharacter νb−µw = v1×v2 ∈ N (M) = N (7)×N (7) as above (here ki := |vi|).
It suffices to do this for B(GL7, ki, vi) (i = 1, 2) respectively.

(i) wµ = ((1(4), 0(3)), (1(2), 0(5))). So v1 = ((3/7)(3), (−4/7)(4)) and v2 = ((3/7)(5), (−4/7)(2)).

The generalized Kottwitz set B
(
GL7,−1,

(
(3/7)(3), (−4/7)(4)

))
⊂ N (7) have 7 elements:(

1

3

(3)

,−1

2

(4)
)
;

(
0(i),− 1

7− i

)
, 0 ≤ i ≤ 5,

and B(GL7, 1, ((3/7)
(5), (−4/7)(2))) ⊂ N (7) consists of the following 6 elements:(

2

5

(5)

,−1

2

(2)
)
;

(
1

7− i

(7−i)
, 0(i)

)
, 0 ≤ i ≤ 4.

(ii) wµ = ((1(5), 0(2)), (1, 0(6))). So v1 = ((3/7)(2), (−4/7)(5)) and v2 = ((3/7)(6),−4/7). The

generalized Kottwitz set B
(
GL7,−2,

(
(3/7)(2), (−4/7)(5)

))
⊂ N (7) have 8 elements:(

0(i),− 2

7− i

(7−i)
)
, 0 ≤ i ≤ 3;

(
0(j),− 1

5− j

(5−j)
,−1

2

(2)
)
, 0 ≤ j ≤ 2;

(
−1

4

(4)

,−1

3

(3)
)
,

and B(GL7, 2, ((3/7)
(6),−4/7)) ⊂ N (7) consists of the following 6 elements:(

2

5

(5)

, 0(2)

)
;

(
1

3

(6)

, 0

)
;

(
1

3

(3)

,
1

4

(4)
)
;

(
2

7

(7)
)
.

(iii) wµ = ((1(6), 0), (0(7))). So v1 = (3/7, (−4/7)(6)), and v2 = ((3/7)(7)). The generalized

Kottwitz set B
(
GL7,−3,

(
3/7, (−4/7)(6)

))
⊂ N (7) have 4 elements:(

0,−1

2

(6)
)
,

(
−1

3
,−1

2

(4)
)
;

(
−2

5

(5)

,−1

2

(2)
)
;

(
−3

7

(7)
)
,

and B(GL7, 3, ((3/7)
(7))) ⊂ N (7) consists of one single element ((3/7)(7)).
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We would like to give a complete list of the non-empty Newton strata

F(GL15, µ, b)
[b′], [b′] ∈ B(G, 0, νb − w0µ)

that are contained in the weakly admissible locus F(GL14, µ, b)
wa. As before, it is enough to

consider those [b′] ∈ B(G, 0, νb − w0µ) which are HN-indecomposable relative to νb − w0µ. By

Theorem 4.8, the Newton stratum F(G,µ, b)[b
′] ̸⊂ F(G,µ, b)wa if and only if the vector bundle

Eb′ can be written as an extension of the form

(5.2.2) 0 −→ E1 −→ Eb′ −→ E2 −→ 0,

with E1 and E2 two vector bundles, or equivalently, if

−νb′ ∈ Ext1(vE2 , vE1) ⊂ N (14),

such that the pair (−vE1
,−vE2

) ∈ B(M, (k1, k2), νbM − wµ) for the cocharacters wµ in (5.2.1).
Write

E =
⋃

(−vE1
,−vE2

)∈B(M,(k1,k2),νbM
−wµ)

for a cocharacter wµ in (5.2.1).

Ext1(vE2
, vE1

) ⊂ N (14)

Proposition 5.13. Let v ∈ N (14). Then v ∈ E if and only if one of the following holds:

(1) v = vE1⊕E2
, with (−vE1

,−vE2
) ∈ B(M, (k1, k2), νbM − wµ) for a certain cocharacter wµ

in (5.2.1); or
(2) v ∈ N (14) is one of the following 10 elements:(

1

2

(4)

,−1

5

(10)
)
,

(
1

2

(4)

,−1

6
,−1

4

)
,

(
1

2

(4)

, 0,−2

9

)
,

(
1

2

(4)

, 0,−1

5
,−1

4

)
,

(
1

2

(4)

, 0(2),−1

4

(8)
)

(
1

3
,
1

6
,−2

5

)
,

(
1

4
,
1

5
,−2

5

)
,

(
1

3
,
1

5
, 0,−2

5

)
,

(
2

9
,−2

5

)
,

(
2

5
, 0,−2

5

)
.

Moreover, the last 5 elements are all contained in Ext1
((

1
2 ,−

2
5

)
,
(
1
6 , 0
))
.

Proof. Observe that, for most of the pairs (E1, E2) as above, the slopes of E2 are less or equal to
those of E1, so the extension (5.2.2) is trivial and hence

Ext1(vE2
, vE1

) = {vE1⊕E2
} ⊂ N (14).

It remains for us to consider the pairs (E1, E2) for which there exist non-trivial extensions. In
other words, we only need to compute the following sets

Ext1

((
1

2
,−2

5

)
,

(
1

2

(4)

,−1

3

))
, Ext1

((
0(i),− 1

7− i

)
,

(
1

2

(4)

,−1

3

))
, 0 ≤ i ≤ 4,

and

Ext1
((

1

2
,−2

5

)
,

(
1

7− j
, 0(j)

))
, 0 ≤ j ≤ 5.

Using the inductive criterion in Proposition 5.9, we can determine explicitly these 12 sets. For
example, we have

Ext1

((
0,−1

6

)
,

(
1

2

(4)

,−1

3

))
=

{
( 1

2
(4),− 1

5
(10)),( 1

2
(4),− 1

6 ,−
1
4 ),(

1
2
(4),0,− 2

9 )
( 1

2
(4),0,− 1

5 ,−
1
4 ),(

1
2
(4),0,− 1

6 ,−
1
3 )

}
.

Indeed, as 1/2 is bigger than 0 and −1/6, there is no non-trivial extension of O ⊕O(−1/6) by
O(1/2)2. So, if a vector bundle E is an extension of O ⊕O(−1/6) by O(1/2)2 ⊕O(−1/3), then
E = O(1/2)2 ⊕ E ′ with E ′ an extension of O ⊕O(−1/6) by O(−1/3). So it suffices to compute

Ext1
((

0,−1

6

)
,

(
−1

3

))
,

which is done in Example 5.11. The other extension sets can be computed in a similar way. To
list all the non-trivial extensions, one just keeps in mind that a vector bundle E may be realized
as an extension of E2 by E1 for different pairs of vector bundles (E1, E2) as above. □

Remark 5.14. As in Example 5.11 above (cf. Remark 5.12), we can also prove Proposition
5.13 by using Proposition A.8.



36 MIAOFEN CHEN, JILONG TONG

With the help of Proposition 5.13, we can now easily list all the non-empty Newton strata that
are contained in the admissible locus. In the sequel, we shall distinguish the following different
cases according to the explicit form of νb′ .

(1) νb′ = ( 38 , . . .). So νb′ = ( 38 ,−
1
2

(6)
), and the only Newton stratum here is contained in the

weakly admissible locus.
(2) νb′ = ( 25 , . . .). We have 16 non-empty Newton strata in this case, and none of them is

contained in the weakly admissible locus.

(3) νb′ = ( 13
(6)
, . . .). We have 11 non-empty Newton strata in this case, and 3 of them are con-

tained in the weakly admissible locus: ( 13
(6)
,− 1

4

(8)
),
(

1
3

(6)
,− 1

5 ,−
1
3

)
and

(
1
3

(6)
,− 1

6 ,−
1
2

)
.

(4) νb′ = ( 13 ,
1
4 , . . .). We find 8 non-empty Newton strata in this case, and none of them is

contained in the weakly admissible locus.
(5) νb′ = ( 13 ,

1
5 , . . .). We find 5 non-empty Newton strata in this case, and 4 of them are

contained in the weakly admissible locus: ( 13 ,
1
5 ,−

1
3

(6)
),
(
1
3 ,

1
5 ,−

1
4 ,−

1
2

)
,
(
1
3 ,

1
5 , 0,−

2
5

)
,(

1
3 ,

1
5 , 0,−

1
3 ,−

1
2

)
.

(6) νb′ = ( 13 ,
1
6 , . . .). We have 3 non-empty Newton strata in this case, and 2 of them are in

the wa locus: νb′ =
(
1
3 ,

1
6 ,−

2
5

)
,
(
1
3 ,

1
6 ,−

1
3 ,−

1
2

)
.

(7) νb′ = ( 13 ,
1
7 , . . .). So νb′ = ( 13 ,

1
7 ,−

1
2

(4)
) and this Newton stratum is not contained in the

weakly admissible locus.
(8) νb′ = ( 27 , ...). We have 8 non-empty Newton strata in this case, and none of them is

contained in the weakly admissible locus.

(9) νb′ = ( 14
(8)
, ...). We have 5 non-empty Newton strata in this case, and all of them are

contained in the weakly admissible locus.
(10) νb′ = ( 14 ,

1
5 , . . .). We have 3 non-empty Newton strata in this case, and 2 of them are

contained in the weakly admissible locus: ( 14 ,
1
5 ,−

2
5 ) or (

1
4 ,

1
5 ,−

1
3 ,−

1
2 ).

(11) νb′ = ( 14 ,
1
6 , ...). So νb′ = ( 14 ,

1
6 ,−

1
2

(4)
), and the corresponding stratum is not contained

in the weakly admissible locus.
(12) νb′ = ( 29 , . . .). We have 3 non-empty Newton strata, and 2 of them are contained in the

weakly admissible locus: ( 29 ,−
2
5 ) or (

2
9 ,−

1
3 ,−

1
2 ).

(13) νb′ = ( 15
(2)
, ...). So that νb′ = ( 15

(2)
,− 1

2

(2)
), and the only one Newton stratum here is

not contained in the weakly admissible locus.
(14) νb′ = ( 1i , 0

(j),− 1
14−i−j ), 3 ≤ i ≤ 12, 0 ≤ j ≤ 12− i. Such a stratum is contained in the

weakly admissible locus if and only if i ≥ 8, or i ≤ 7 and 0 ≤ j ≤ 6− i.

To summarize, we have 121 non-empty HN-indecomposable Newton strata, and 44 of them are
contained in the weakly admissible locus.

5.2.2. We take G = GL21, µ = (1(9), 0(12)) and thus b ∈ B(G)basic with νb =
(

3
7

(21)
)
∈ N (21).

Then b has a reduction to two proper maximal standard Levi subgroups

M1 = GL7 ×GL14, M2 = GL14 ×GL7 ↪→ G.

For the first Levi subgroup, the cocharacters wµ such that ⟨νb − wµ, χ⟩ < 0 for some χ ∈
X∗(P1/ZG)

+ are

wµ ∈
{
((1(4),0(3)),(1(5),0(9))), ((1(5),0(2)),(1(4),0(10)))

((1(6),0),(1(3),0(11))), ((1(7)),(1(2),0(12)))

}
⊂ N (M1).

Thus

νbM1
µw,−1 ∈

{
(( 3

7
(3),− 4

7
(4)),( 3

7
(9),− 4

7
(5))), (( 3

7
(2),− 4

7
(5)),( 3

7
(10),− 4

7
(4)))

(( 3
7 ,−

4
7
(6)),( 3

7
(11),− 4

7
(3))), ((− 4

7
(7)),( 3

7
(12),− 4

7
(2)))

}
⊂ N (M1).

Similarly, for the Levi subgroup M2, , the cocharacters wµ such that ⟨νb − wµ, χ⟩ < 0 for some
χ ∈ X∗(P1/ZG)

+ are

wµ ∈
{
((1(7),0(7)),(1(2),0(5))), ((1(8),0(6)),(1,0(6)))

((1(9),0(5)),(0(7)))

}
⊂ N (M2),
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and hence

νbM2
µw,−1 ∈

{
(( 3

7
(7),− 4

7
(7)),( 3

7
(5),− 4

7
(2))), (( 3

7
(6),− 4

7
(8)),( 3

7
(6),− 4

7 ))
(( 3

7
(5),− 4

7
(9)),( 3

7
(7)))

}
⊂ N (M2).

Let b′ ∈ G(F̆ ) with slope vector νb′ =
(

5
12 ,−

5
9

)
. So Eb′ = O( 59 ) ⊕ O(− 5

12 ). But for each
wµ ∈ N (Mi) as above, and for each possible pair (E ′, E ′′) with

−w0,Mi
νE′⊕E′′ ⪯ νbMi

µw,−1

one checks (by a simple drawing for example) that the maximal slope of E ′ is less or equal to
1
2 < 5

9 . But on the other hand, none of the slope of E ′′ is 5
9 . Therefore, Eb′ can not be an

extension of E ′ by E ′′ by our discussions in the previous §: see for example Lemma 5.3 and
the combinatorial condition in Definition 5.1. Consequently, by Theorem 4.8, F(G,µ, b)[b

′] is
entirely contained in the weakly admissible locus.

Appendix A. Direct description of Ext1 for GLn in some cases

In § 5, we describe Ext1 in an inductive way. In this appendix, we want to prove Ext1 = Ẽxt
1

in some cases. We first need some combinatorial lemmas.

Definition A.1. Let n ∈ N and ϵ ∈ Q ∩ [0, 1). Recall that

N (n) = {a = (a1, · · · , an) ∈ Qn|a1 ≥ a2 ≥ · · · ≥ an}.

(1) An element a = (a1, · · · , an) ∈ Qn is said to have ϵ-breakpoints if the following two
conditions are verified:

• |a| := a1 + · · ·+ an ∈ Z+ ϵ; and

• for any 0 < i < n with ai ̸= ai+1, we have
∑i
j=1 aj ∈ Z+ ϵ.

We say that a has integral breakpoints if it has 0-breakpoints.
(2) Set

N (n, ϵ) := {a = (a1, · · · , an) ∈ N (n)|a has ϵ− breakpoints}.
(3) For a ∈ Qn, let Pa : [0, n] → R be the piecewise linear function such that

• Pa(0) = 0;
• Pa(i) = a1 + a2 + · · ·+ ai for i = 1, · · · , n; and
• Pa is linear on the segment [i− 1, i] for i = 1, · · · , n.

Remark A.2. (1) N (n, 0) = N (n).
(2) Let 0 < d < n. For a ∈ N (n), let

τ>d(a) := (ad+1, · · · , an) ∈ N (n− d).

Then τ>d(a) ∈ N (n− d, ϵ) for ϵ = {−
∑d
j=1 aj} ∈ [0, 1).

Lemma A.3. Let ϵ ∈ [0, 1). Let a ∈ N (n, ϵ) and c ∈ N (n), such that ai ≥ ci for all 1 ≤ i ≤ n.
Then for any m ∈ Z with |c| ≤ m ≤ |a|, there exists b ∈ N (n) such that ci ≤ bi ≤ ai for all
1 ≤ i ≤ n and |b| = m.

Proof. We prove by induction on |a| − |c| ∈ N+ ϵ. If |a| − |c| ≤ 1, there is nothing to prove. So
we may assume |a| − |c| > 1. Let

m0 := max{0 ≤ m ≤ n|m ∈ Z, Pa(m) ∈ Z+ ϵ, Pa(m)− Pc(m) < δ + ϵ}
m1 := min{0 ≤ m ≤ n|m ∈ Z, Pa(m) ∈ Z+ ϵ, Pa(m)− Pc(m) ≥ δ + ϵ}
n0 := max{0 ≤ m ≤ n|m ∈ Z, Pc(m) ∈ Z, Pa(m)− Pc(m) < δ + ϵ}
n1 := min{0 ≤ m ≤ n|m ∈ Z, Pc(m) ∈ Z, Pa(m)− Pc(m) ≥ δ + ϵ}

where

δ =

{
0, if ϵ ̸= 0

1, if ϵ = 0
.

Then ai is constant for m0 < i ≤ m1 and ci is constant for n0 < i ≤ n1. Moreover,

max(m0, n0) < min(m1, n1)

as Pa − Pc is an increasing function. It suffices to find b ∈ N (n) such that |c| < |b| < |a|.
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Let

b̃i :=


ci, i ≤ n0
Pa(m1)−δ−ϵ−Pc(n0)

m1−n0
, n0 < i ≤ m1

ai, i > m1

By definition, |b̃| = |a| − δ − ϵ and therefore |c| < b̃ < |a|.
Claim: ci ≤ b̃i ≤ ai for any n0 < i ≤ m1.
Then the existence of b follows from Lemma A.4. Now it remains to prove the Claim.
For any n0 < i ≤ m1, it suffices to show

cn1
=
Pc(n1)− Pc(n0)

n1 − n0
≤ b̃i ≤ am1

=
Pa(m1)− Pa(m0)

m1 −m0
.(A.0.1)

We first prove the first inequality. If m1 = n1, then it holds by the definition of m1.

If m1 > n1, the first inequality is equivalent to cn1
≤ Pa(m1)−δ−ϵ−Pc(n1)

m1−n1
. This follows from

cn1
≤ an1

=
Pa(m1)− Pa(n1)

m1 − n1
≤
Pa(m1)− δ − ϵ− Pc(n1)

m1 − n1

by the definition of n1.
If m1 < n1, the first inequality is equivalent to

Pc(n1) + δ + ϵ− Pa(m1)

n1 −m1
≤
Pa(m1)− δ − ϵ− Pc(n0)

m1 − n0
.

This follows from

Pc(n1) + δ + ϵ− Pa(m1)

n1 −m1
≤
Pa(n1)− Pa(m1)

n1 −m1
≤
Pa(m1)− Pa(n0)

m1 − n0
≤
Pa(m1)− δ − ϵ− Pc(n0)

m1 − n0
,

where the inequality in the middle holds because a is decreasing.
For the second inequality in (A.0.1), we again distinguish three subcases.
If m0 = n0, then it’s obvious by the definition of m0.
If m0 > n0, then the second inequality is equivalent to

Pa(m0)− δ − ϵ− Pc(n0)

m0 − n0
≤
Pa(m1)− Pa(m0)

m1 −m0
= an1 .

This holds because the left hand side is bounded by cn1
by the defintion of m0.

If m0 < n0, then the second inequality is equivalent to

Pa(m1)− δ − ϵ− Pc(n0)

m1 − n0
≤
Pc(n0) + δ + ϵ− Pa(m0)

n0 −m0
.

This follows from

Pa(m1)− δ − ϵ− Pc(n0)

m1 − n0
≤
Pa(m1)− Pa(n0)

m1 − n0
≤
Pa(n0)− Pa(m0)

n0 −m0
≤
Pc(n0) + δ + ϵ− Pa(m0)

n0 −m0
.

□

Lemma A.4. Suppose a ∈ N (n, ϵ), c ∈ N (n). Let b̃ = (b̃1, · · · , b̃n) ∈ Qn has integral breakpoints

such that ai ≥ b̃i ≥ ci for all 1 ≤ i ≤ n. Then there exists b := (b1, · · · , bn) ∈ Snb̃ such that
b ∈ N (n) and ai ≥ bi ≥ ci for all 1 ≤ i ≤ n.

Proof. This can be checked directly. □

Lemma A.5. Suppose ϵ1, ϵ2 ∈ [0, 1). Let a ∈ N (n, ϵ1) and c ∈ N (n, ϵ2) such that ai ≥ ci for
all 1 ≤ i ≤ n. Assume that c1 = · · · = cn. Then for any m ∈ Z such that |c| ≤ m ≤ |a|, there
exists b ∈ N (n) such that ci ≤ bi ≤ ai for all 1 ≤ i ≤ n and |b| = m.

Remark A.6. If we do not require all the coordinates in c are equal, then Lemma A.5 does not
hold in general. For example, take n = 3, a = ( 47 ,

4
7 , 0) and c = ( 59 ,

5
9 ,−1). Then |a| = 8

7 > 1 >

|c| = 1
9 , but there doesn’t exist b ∈ N (3) such that ai ≥ bi ≥ ci for i = 1, 2, 3 and |b| = 1.

Proof of Lemma A.5. We prove by induction on n. If n = 1, it’s obvious. Now we deal with
general n. Suppose |a| ≥ ⌈|c|⌉ =: m0. According to Lemma A.3, it suffices to find b ∈ N (n)
such that ai ≥ bi ≥ ci for all i and |b| = m0. Let

c′ = (an, · · · , an) ∈ N (n, ϵ3)



WEAKLY ADMISSIBLE LOCUS AND NEWTON STRATIFICATION IN p-ADIC HODGE THEORY 39

where ϵ3 = {nan}. If nan ≥ m0, then b = (m0

n , · · · ,
m0

n ) ∈ N (n) is the desired element. If
|c′| = nan < m0. Then |c′| < m0 ≤ |a|. Write an = s

r with r and s coprime and r ≥ 1. Let

τ≤n−r(a) := (a1, · · · an−r) ∈ N (n− r, ϵ1),

and τ≤n−r(c
′) ∈ N (n− r, ϵ3) is defined in the same way. Then

|τ≤n−r(c′)| = |c′| − s < m0 − s ≤ |τ≤n−r(a)| = |a| − s.

By the induction hypothesis for n − r, we may find (b1, · · · , bn−r) ∈ N (n − r) such that an ≤
bi ≤ ai for 1 ≤ i ≤ n− r and

∑n−r
i=1 bi = m0 − s. Then

b = (b1, · · · , bn−r, an, · · · , an︸ ︷︷ ︸
r

) ∈ N (n)

satisfies the desired properties. □

Lemma A.7. Let 0 < d < n. Suppose ϵ1, ϵ2 ∈ [0, 1). Let a ∈ N (n, ϵ1) and c ∈ N (n−d, ϵ2) such
that ai+d ≥ ci for all 1 ≤ i ≤ n− d. Assume that either c1 = · · · = cn−d or c ∈ Zn−d. Then for
any m ∈ Z such that |c|+ dc1 ≤ m ≤ |a|, there exists b ∈ N (n) such that |b| = m, bi ≤ ai for all
1 ≤ i ≤ n, ci ≤ bi+d and for 1 ≤ i ≤ n− d.

Proof. Let

c′ :=


(c1, · · · , c1︸ ︷︷ ︸

n

), if c1 = · · · = cn−d

(c1, · · · , c1︸ ︷︷ ︸
d

, c), if c ∈ Zn−d
.

In the first case, we apply Lemma A.5 to the pair (a, c′) and in the second case, we apply Lemma
A.3. □

Proposition A.8. Suppose 0 < r < n. Let c ∈ N (r), d ∈ N (n − r) and a ∈ N (n). Suppose

c or d is semistable, then O(a) is an extension of O(c) by O(d) if and only if a ∈ Ẽxt
1
(c, d).

Equivalently, Ext1(c, d) = Ẽxt
1
(c, d).

Remark A.9. Proposition A.8 is also obtained independently by Hong in [Hon22, Theorem 1.1].

Proof of Proposition A.8. By Proposition 5.3, it suffices to prove the if part. By duality, we may

assume that d = d
(n−r)
1 is semistable.

Claim: We may assume that d1 ≤ cr.
Indeed, if d1 > cr, then there exists 1 ≤ m < r such that cm+1 < d1 ≤ cm. There exists

natural bijections:

Ext1(c, d) ≃ Ext1(τ≤mc, d) and Ẽxt
1
(c, d) ≃ Ẽxt

1
(τ≤mc, d).

We may replace c by τ≤mc. The Claim follows.
We prove by induction on n. If n = 1, then it’s trivial. Now assume that the proposition

holds for < n. We also use induction on c1 − d1 ∈ N
(n!)2 . If c1 = d1, then c1 = . . . = cr = d1, and

c is also semistable, then the result follows from Corollary 5.5. Now we consider the general case
c1 > d1. Moreover, we assume c non semi-stable: otherwise it follows again from Corollary 5.5.

Take a ∈ Ẽxt
1
(c, d). Without loss of generality, we assume that the slope d1 of d is not bigger

than an. Then there exists a partition of {1, 2, · · · , n} into two disjoint subsets

H = {h1 < · · · < hr}, K = {k1 < · · · < kn−r},

and b ∈ Qn such that

• (bh1
, · · · , bhr

) ∈ Src, and (bk1 , · · · , bkn−r
) ∈ Sn−rd;

• bi ≥ ai if i ∈ H, and bi ≤ ai if i ∈ K; and
• b ≥ a.

Let

m := min{0 ≤ s ≤ n|as+1 ≤ cr}.
In particular, Pa(m) ∈ Z. Moreover, as am+1 ≤ cr and d1 ≤ an, we may assume that

- H ∩ (m,n] = {i ∈ N|m+ 1 ≤ i ≤ hr};
- bm+1 = · · · = bhr−l = cr for some 0 ≤ l < hr −m and bi > cr for hr − l < i ≤ hr.
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As am > cr, we have cr · (hr − l −m) ∈ Z. Let

a′ := τ>hr−l(a) ∈ N (n− hr + l, ϵ1) and c′ := τ>hr
(b) ∈ N (n− hr, ϵ2)

for some ϵ1, ϵ2 ∈ Q∩ [0, 1). So c′ = d
(n−hr)
1 . By Lemma A.7, there exists e′ ∈ N (n−hr+ l) such

that

c′i ≤ e′i+l ≤ a′i+l

for all 1 ≤ i ≤ n− hr, and

|e′| = |a′|+ (am+1 + . . .+ ahr−l)− cr(hr − l −m)

= Pa(n)− Pa(m)− cr(hr − l −m) ∈ Z.

Note that

|c′|+ ld1 ≤ |e′| = |a′|+ (am+1 + . . .+ ahr−l)− cr(hr − l −m) ≤ |a′|.

Here the first inequality holds because

am+1 + . . .+ an ≥ bm+1 + . . .+ bn

≥ (bm+1 + . . .+ bhr−l) + (bhr−l+1 + . . .+ bn)

≥ (hr − l −m)cr + (n− hr + l)d1.

In particular,

|a′| − |e′| = Pb(hr − l)− Pb(m)− Pa(hr − l) + Pa(m).

Let

e := (a1, · · · , am, e′1, · · · , e′n−hr+l) ∈ N (n− hr + l +m).

Note that

c = (τ≤r−hr+l+m(c), c(hr−l−m)
r ).

By Proposition 5.9, to complete the proof, it suffices to verify

a ∈ Ext1(c(hr−l−m)
r , e) and e ∈ Ext1(τ≤r−hr+l+m(c), d).

But we can check

e ∈ Ẽxt
1
(τ≤r−hr+l+m(c), d) = Ext1(τ≤r−hr+l+m(c), d)

where the equality follows from the induction hypothesis, and

a ∈ Ẽxt
1
(c(hr−l−m)
r , e) ≃ Ẽxt

1
(c(hr−l−m)
r , e′) = Ext1(c(hr−l−m)

r , e′) ≃ Ext1(c(hr−l−m)
r , e)

where the first and third bijection follows from the proof of the Claim and the equality in the
middle follows from induction on n if m > 0 or the fact that cr − e′n−hr+l

< c1 − d1 as c is non
semi-stable and the induction hypothesis on c1 − d1 if m = 0. □

Proposition A.10. Suppose 0 < r < n. Let c ∈ N (r), d ∈ N (n − r) and a ∈ N (n). Suppose
that two elements among a, b and c are with all coordinates in Z, then O(a) is an extension of

O(c) by O(d) if and only if a ∈ Ẽxt
1
(c, d). In particular, Ext1(c, d) = Ẽxt

1
(c, d) if d ∈ Zn−r

and c ∈ Zr.

Proof. The proof is similar to that of Proposition A.8. By Proposition 5.3, it suffices to prove
the if part.

Assume first d ∈ Zn−r and c ∈ Zr. We prove by induction on r. When r = 1, it’s proved in

Proposition A.8. Next, suppose r ≥ 2 and take a ∈ Ẽxt
1
(c, d). Then there exist a partition

{1, 2, · · · , n} = H
∐

K

with H = {h1 < · · · < hr}, and K = {k1 < · · · < kn−r}, and b ∈ Qn such that

• bi ≥ ai if i ∈ H, bi ≤ ai if i ∈ K;
• b ≥ a;
• (bh1

, · · · , bhr
) = (c1, . . . , cr), and (bk1 , · · · , bkn−r

) = (d1, . . . , dn−r).
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Let

m := min{0 ≤ s ≤ n|as+1 = ahr
}.

In particular Pa(m) ∈ Z. Without loss of generality, assumeH∩(m,n] = {i ∈ N|m+1 ≤ i ≤ hr}.
Let

a′ := τ>m+1(a) ∈ N (n−m− 1, ϵ), and b′ := τ>hr (b) ∈ N (n− hr)

for some ϵ. By Lemma A.5, there exists e′ ∈ N (n − m − 1) such that e′i ≤ a′i for all i,
bj ≤ e′hr−m−1+j for all 1 ≤ j ≤ n− hr, and

Pa(n)− Pa(m) = |e′|+ bhr
.

Let e = (a1, · · · , am, e′) ∈ N (n− 1). Note that c = (τ≤r−1(c), cr). We can check

a ∈ Ẽxt
1
((cr), e) = Ext1((cr), e)

and

e ∈ Ẽxt
1
(τ≤r−1(c), d) = Ext1(τ≤r−1(c), d)

Indeed, the first equality follows from Proposition A.8, while the second equality follows from
induction hypothesis. Then we conclude with Proposition 5.9.

Finally suppose that all the coordinates of a and d are integers. As above, we prove by
induction on r. When r = 1, it’s proved in Proposition A.8. Next, suppose r ≥ 2. Then there
exist a partition {1, 2, · · · , n} = H

∐
K with

H = {h1 < · · · < hr}, and K = {k1 < · · · < kn−r},

and b ∈ Qn satisfying

• (bh1 , . . . , bhr ) = (c1, . . . , cr); and (bk1 , . . . , bkn−r ) = (d1, . . . , dn−r);
• bi ≥ ai if i ∈ H, bi ≤ ai if i ∈ K;
• b ≥ a.

Let

m := min{0 ≤ s ≤ r|cs+1 = cr}.

In particular (r−m)cr ∈ Z, and bhm+1
= bhm+2

= . . . = bhr
= cr. Let a

′ ∈ N (n−hm+1+1−r+m)
be the element obtained from

τ≥hm+1
a ∈ N (n− hm+1 + 1)

by removing the coordinates ahm+1
, ahm+2

, . . . , ahr
, and b′ ∈ N (n − hm+1 + 1 − r +m) defined

from b in a similar way. Then b′i ≤ a′i and all the coordinates of b′ are integers. As b ≥ a,

|a′|+ (ahm+1 + ahm+2 + . . .+ ahr ) ≥ |b′|+ (r −m)cr.

So it is easy to see that there exists e′ ∈ N (n − hm+1 + 1 − r +m) with all the coordinates in
Z, such that b′i ≤ e′i ≤ a′i and that

|a′| − |e′| = (r −m)cr − (ahm+1
+ ahm+2

+ . . .+ ahr
) ∈ Z.

Let e = (a1, · · · , ahm+1−1, e
′) ∈ N (n − r +m). Note that c = (τ≤m(c), c

(r−m)
r ). We can check

that

a ∈ Ẽxt
1
(c(r−m)
r , e) = Ext1(c(r−m)

r , e)

and

e ∈ Ẽxt
1
(τ≤m(c), d) ∩ Zn−r+m = Ext1(τ≤m(c), d) ∩ Zn−r+m.

Indeed, the first equality follows from Proposition A.8, while the second equality follows from
induction hypothesis. This concludes the proof by Proposition 5.9. □

Remark A.11. In Proposition A.10, if all the coordinates of a, c and d are integers, then the

same proof as that of the main result of [Sch00] shows that a ∈ Ext1(c, d) if and only if Ẽxt
1
(c, d).

The argument adopted above is inspired from the proof of Schlesinger in [Sch00]. This result is
also mentioned in the remark after Example 4.5 in [Hon22].
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