A p-ADIC ARITHMETIC INNER PRODUCT FORMULA

DANIEL DISEGNI AND YIFENG LIU

ABsTrACT. Fix a prime number p and let £/F be a CM extension of number fields in which p splits relatively. Let 7 be
an automorphic representation of a quasi-split unitary group of even rank with respect to E/F such that x is ordinary
above p with respect to the Siegel parabolic subgroup. We construct the cyclotomic p-adic L-function of , and a certain
generating series of Selmer classes of special cycles on Shimura varieties. We show, under some conditions, that if the
vanishing order of the p-adic L-function is 1, then our generating series is modular and yields explicit nonzero classes
(called Selmer theta lifts) in the Selmer group of the Galois representation of E associated with 7; in particular, the rank
of this Selmer group is at least 1. In fact, we prove a precise formula relating the p-adic heights of Selmer theta lifts to
the derivative of the p-adic L-function. In parallel to Perrin-Riou’s p-adic analogue of the Gross—Zagier formula, our
formula is the p-adic analogue of the arithmetic inner product formula recently established by Chao Li and the second
author.
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1. INTRODUCTION

In 1986, Gross and Zagier published a groundbreaking formula relating the heights of Heegner points on modu-
lar curves to derivatives of L-functions, known as the Gross—Zagier formula [ ]. For a cuspidal eigenform f of
weight 2, an imaginary quadratic field K and an unramified Dirichlet character £ of K, the formula shows, under the
so-called Heegner condition (which implies that the Rankin—Selberg L-function L(s, f,£) vanishes at the center 1),
that up to some explicit constant, L'(1, f, &) equals the Néron—Tate height of H¢(f) — the f-isotypic component of
the K-Heegner point weighted by &€ on a modular curve. Shortly after, Perrin-Riou found an analogous result in the
p-adic world [ ]. Namely, she constructed a p-adic analogue of the (complex) L-function as a p-adic measure
Z,(f,é) in the Iwasawa algebra that interpolates L(1, f ® y, &) where y is a Dirichlet character ramified only at p,
assuming that f is ordinary at p and p splits in K. Then she proved that under the same Heegner condition, up
to some explicit constant, the derivative of the p-adic L-function .Z,(f, &) at the trivial character equals the p-adic
height of H:(f) — this is known as the p-adic Gross—Zagier formula.

Since the original work of Gross and Zagier, the Gross—Zagier formula and its p-adic avatar have been extended
to various settings but all (essentially) for curves or fibrations/local systems over curves (see Remark 1.10 below
for a brief review of the p-adic results), until the very recent works by Chao Li and one of us [ s ]. There,
the authors proved a formula computing central L-derivatives for unitary groups of higher ranks in terms of the
Beilinson—Bloch heights of special cycles. This originates from a program initiated by Kudla [ , ,

] and can be regarded as a Gross—Zagier formula in higher dimensions, as well as an arithmetic analogue
of Rallis’ inner product formula in the theory of the theta correspondence [ ]. The current work contains a
p-adic avatar of the arithmetic inner product formula in [ , ]; this is likewise the first generalization of
the p-adic Gross—Zagier formula to genuinely higher dimensional varieties. A secondary aim of this article is to
develop some foundational results in the theory of p-adic heights of algebraic cycles (in the two appendices); in
particular, we prove a crystalline property of bi-extensions, which generalizes the fact that p-adic regulators take
values in Selmer groups.

In the rest of this introduction, we explain our results in more detail. Throughout the article, we fix a prime
number p, an algebraic closure @p of Q,, and a CM extension E/F of number fields such that every p-adic place
of F splits in E. Denote by

e c € Gal(E/F) the Galois involution,
. V;O) the set of places of F above a finite set & of places of Q,'
. V‘;}P the set of non-archimedean places of F,

. V;?I, Vi;t and V2™ the subsets of VlﬁpI1 of those that are split, inert and ramified in E, respectively.

'When ¢ = {w} is a singleton, we simply write v for v,
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For every number field K, we denote by I'x , the maximal Hausdorff quotient of

X
0K®HZWJ s

W#p

K\AZ™ /

which is naturally a finitely generated Z,-module; and let 2, be the rigid analytic space over Q, such that for
every complete topological Q,-ring R, Z ,(R) is the set of continuous characters from I'x,, to R*.

1.1. Cyclotomic p-adic L-function. Take an integer r > 1 and put n = 2r. We equip W, := E" with the skew-
hermitian form (with respect to c) given by the matrix w, := (—ly Lr ) Put G, = U(W,), the unitary group of W,,
which is a quasi-split reductive group over F. Denote by 1 the involution of G, given by the conjugation by the
element ( Ir —lr) inside Resg,r GL,,. For v € Vf}“, let K., € G,(F,) be the stabilizer of the lattice O%V.

Definition 1.1. Let L be a field embeddable into C. A relevant L-representation of G,(A}) is a representation 7
with coefficients in L satisfying that for every embedding ¢: L — C,

Lo [r]
= (®V€V<;o)7'rv )® ur

is a tempered cuspidal automorphic representation of G.(Ar). Here, for v € v, nE’] denotes the unique holomor-
phic discrete series representation of G,(F,) = G,(R) with the Harish—-Chandra parameter {1%, 3%”, L3 nely

22
In particular, 7 is admissible and absolutely irreducible.

We consider a finite extension L./Q, contained in @p and a relevant L-representation 7 of G,(Ay). By Lemma
3.14, 7 == (7¥)" is a relevant LL-representation of G,(A}) as well.

Definition 1.2. For v € Vﬁf), let P, be the set (of two elements) of places of E above v. For u € P, we have the
representation m, of GL,(F),) as a local component of x via the isomorphism G,(F,) ~ GL,(E,) = GL,(F,). In
particular, )] ~ m,c. We say that 7, is Panchishkin unramified if
(1) m, is unramified;
(2) if we write the Satake polynomial of x,, which makes sense by (1), as
r(r=1) n(n—1)

Pe(T)=T" + Byt T +Buz-qy T2+ +Bur-qy> T+ +Bun-q,° €L[T]

(see Definition 3.18 for more details), then 3, € OE, where g, is the residue cardinality of F.

We collect two important facts about Panchishkin unramified representations:

e The representation r,, is Panchishkin unramified if and only if m,c is (Lemma 3.22). In particular, it makes
sense to say that m, is Panchishkin unramified.
e If &, is Panchishkin unramified, then there is a unique polynomial Q. (7') € L[T] that divides P, (7) and

has the form o)

Qﬂu(T) =T+ Yu,l Tr_l T Yu2 gy Tr—2 +oe Y qu
with vy, , € Of (Proposition 3.25). In particular, we have an unramified principal series Ty of GL,(F,)
defined over L whose Satake polynomial is Q. (7).

Remark 1.3. In fact, mr, is Panchishkin unramified if and only if m, is unramified and 7 is ordinary at v with respect
to the standard Siegel parabolic subgroup of G, in the sense of Hida [ ].

Theorem 1.4. Under the above setup, suppose that nt,, is Panchishkin unramified for every v € ng). For every finite
set & of places of Q containing {oo, p} such that m, is unramified for every v € Vlﬁgn \V(O), there is a unique bounded
analytic function ff () on the rigid analytic space ZF,, ®q, L such that for every finite (continuous) character
x: Trp — Qp and every embedding v: Q, — C, we have

Z[F :Ql

1 r +r -
L0 = e [T]]r&s @, wr)™ - L3, BCar®) @ (i ® o Nmgp)),
4 2r

VGVSf) uepP,

where
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P, € C* is a certain period for m with respect to t for every embedding v: L — C, satisfying P, = P;

Z, = (-1)27" s % is the value of a certain explicit archimedean local doubling zeta integral;

b (1) = [17, LG, /) is defined in §2.1(F4);

v(s, U, ® Xxv), YEy) is the gamma factor | ] in which yr = yq o Trrg with ygo: Ag — C* the
standard automorphic additive character;

L(s,BC(tn®) ® (1y® o Nmg/F)) is the complex L-function of the (complex) representation BC(tn®) ® (1 ® o
Nmg/r) of GLn(Ag), hence is an Euler product away from <.

By definition, for every v € Vg’) and u € P,, Ty ® | IZV is tempered so that y(%, Uy @ xv), Yry) € C*.

Remark 1.5. We have the following remarks concerning Theorem 1.4.

(1) A bounded analytic function on the rigid analytic space 2, ®q, L is equivalent to an element in
ZplTEpl] ®z » L, that is, an L-valued p-adic measure on I'r;,. In particular, the uniqueness of .,iﬂpo(ﬂ)
is clear.

(2) The collection of periods (P), is only well-defined up to a common factor in L* (see Notation 3.15). In
particular, the p-adic L-function .Zpo(ﬂ) is only well-defined up to a factor in L*.

(3) The vanishing order of .,iﬂpo(n) at 1 does not depend on ¢. From the interpolation formula, we have
.Zpo(ﬂ) = Zpo(ﬁ).

(4) Our p-adic L-function is defined over the p-adic field of definition of the representation and interpolates
complex L-values along all isomorphisms @p =~ C; this is a rationality property stronger than the one under
a fixed isomorphism @p ~ C as in the setup of many previous works in this field.

(5) Among other technical assumptions, at least when 7 is ordinary at p in the usual sense (that is, for every
u € P, By € OF forevery 1 < m < n in the Satake polynomial of x,), our p-adic L-function has
already been constructed in [ ] up to some constant (and with a weaker rationality property). In
fact, in [ ] the authors construct more generally a multi-variable p-adic L-function in which 7 is
allowed to vary in an ordinary Hida family as well. In this article, we will give a (relatively) self-contained
construction of our p-adic L-function independent of [ ] since first, the process of the construction
itself is an ingredient for the p-adic height formula; and second, our construction is technically much
simpler to follow.

1.2. Modularity of generating functions in Selmer groups. In this subsection, we construct a Selmer group
analogue of Kudla’s generating functions and state a theorem on its modularity. We now suppose that F # Q. Fix
an embedding E — C and regard E as a subfield of C. For the simplicity of the introduction, we fix an embedding
@p — C and will not pay attention to the rationality of the constructions below, while the full details with full
generality can be found in §4.2 and §4.3.

Let V be a hermitian space over E of rank n = 2r that has signature (n — 1, 1) along the induced inclusion
F C R and signature (n, 0) at other archimedean places of F. Put H := U(V). We then have a system of Shimura
varieties {X; }; indexed by neat open compact subgroups L of H(A7), which are smooth projective schemes over
E of dimension n — 1. Take a neat open compact subgroup L C H(AY). Let V. be the 6(r)-isotypic subspace of
H¥ (X, ® E, @p(r)) (which could be zero), where 6(xr) denotes the (product of) local theta lifting of 7. We have
a canonical map @, : H> (X, @p(r)) — HY(E, V1) from Lemma 4.7.

For every Schwartz function ¢ € (V" ®p A"F")L and every g € G,(AY), we have Kudla’s generating function

Zy®)= ) > @ @H@Z)L-q"
TeHerm,(F)* xeL\V'®rAy
T(x)=T

as a formal power series indexed by totally semi-positive definite hermitian matrices T over E/F of rank r, with
coeflicients that are special cycles Z(x), € CH"(X;) indexed by elements x € L\V" ®r A} with moment matrix 7.

Denote by Z(’;’ 1(g) its image under the composition of the absolute cycle class map CH’(X;) —» H¥ (Xy, @p(r)) and

the canonical map ¢, : H” (X7, Q,(r)) — H'(E, V1). We say that r satisfies the Modularity Hypothesis if:
There exists a (unique) holomorphic automorphic form Zg’ 1 on G, (Ar) valued in the Bloch-Kato Selmer group

H}(E, Vo)l | such that the g-expansion of g - g’L coincides with Z(’;’L(g) for every g € G.(AY).
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Our first result concerns the Modularity Hypothesis under certain assumptions.

Assumption 1.6. Suppose that F' # Q, that V;Pl contains all 2-adic (and p-adic) places, and that every prime in
V2™ is unramified over Q. Suppose that the relevant L-representation 7 of G,(AY) (with L/Q,, a finite extension

contained in Q) satisfies:
(1) Foreveryv e V?m, my, is spherical with respect to K., that is, nf”’ # {0}.
(2) For every v € V'™, r, is either unramified or almost unramified (see [ , Remark 1.4(3)]) with respect

to K,; moreover, if mr, is almost unramified, then v is unramified over Q.
(3) We have R, U S, C V7. (see below), where

e R, C V?’l denotes the (finite) subset for which r, is ramified,
o S, C V}“ denotes the (finite) subset for which m, is almost unramified.
(4) Foreveryv e v ), 7, is Panchishkin unramified.
Here, we recall from [ ] (and refer to [ , Remark 1.2] for its technical nature) that Vg is the subset of
V;Pl U Vg‘t consisting of v satisfying that for every v/ € V}m N V2™ the subfield of F, generated by F, and the
Galois closure of E\, is unramified over F,. In particular, V? contains ng).

Theorem 1.7 (Theorem 4.21). Suppose that we are in the situation of Assumption 1.6 and n < p. If the vanishing
order of .,iﬂpo(ﬂ) at 1 is one, then r satisfies the Modularity Hypothesis.

1.3. A p-adic arithmetic inner product formula. In this subsection, we construct a Selmer group analogue of the
(arithmetic) theta lift, and state a corresponding inner product formula for it, which we call the p-adic arithmetic
inner product formula. The details can be found in §4.3 and §4.4. We keep the setup from the previous subsection.

Suppose that both 7 and 7 satisfy the Modularity Hypothesis. For every ¢ € 7, we define G)gel(go)L to be

the convolution of ¢' and Zg > Which is an element of H}(E , Vr.1). The element @gel(tp)L is the Selmer group

analogue of the arithmetic theta lift constructed in [ , 1, which we call a Selmer theta lift.
The Poincaré duality for X; induces a pairing V1 X Vi — Q,(1). By Nekovai’s theory [ ], we have a

p-adic height pairing
(, g = HW(E, Ve 1) X HY(E, Vi1) = T, ®2, Q,p

using certain canonical Hodge splitting at p-adic places. For every ¢ € 7, every ¢o € & and every pair ¢1, ¢ €
SV ®@p AR)L, the height

vol*(L) - (@3 (¢1)1. O3 (92)1)E € T p ®2, Qp

is independent of L, where VOlh(L) denotes a certain canonical volume of L introduced in [ , Definition 3.8].

We will denote the above canonical value as <®2j’1(901), ®2§1(¢2)>i’ £

Theorem 1.8 (p-adic arithmetic inner product formula, Theorem 4.22). Suppose that we are in the situation of
Assumption 1.6 and n < p.

(1) If the vanishing order of .i”po(ﬂ) at 1 is one (so that both n and 7t satisfy the Modularity Hypothesis by
Theorem 1.7 and Remark 1.5(3)), then for every choice of elements
® 1 =®yp1y € Tand ¢ = Qupy, € T such that for every v ¢ V(O), @1,y and ¢>,, are fixed by K, such
that (801,1», ‘P2,v>ﬂv =1,
® §1 =Py, P2 = B2, € L (V" ®F AY) with q)f = ¢§> being the characteristic function of (A°)" in
which A° is a self-dual lattice of V ®p AS,
the identity

Nmg p(O3(e1), O3 (02 p = 0L @MW) - [ | [ [y mowrn) - [ ] 2], © 020 £ eps)

vey'?) ueP, yev oD

holds in I'r,p ®z, C, where the term Z(cp.lr L ® w2y, f;l\?]@, ¢2 v) is the local doubling zeta integral with respect

to the Siegel-Weil section fgw

@ associated with ¢, @ ¢,
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(2) If the vanishing order of ,,2”[,0(71) at 1 is not one, then assuming that both © and 7 satisfy the Modularity
Hypothesis, we have

Nmg (03 (1), 05 (¢2))? , =
for every ¢\ € &, p2 € 1, and ¢1,¢2 € S (V" ®F AY). (See Theorem 4.22(2) for a version of this part that
does not rely on the Modularity Hypothesis.)

The above theorem is only nontrivial when r[F : Q] + |S,| is odd (Remark 4.23(3)).

The theorem has applications to the p-adic Beilinson-Bloch—Kato conjecture. Associated with 7, we have a
semisimple continuous representation p, of Gal(E/E) of dimension n with coefficients in @p, satisfying p5; =~
pr(1 = n) (Lemma 4.11). Then in the interpolation property of .Zpo () in Theorem 1.4, we have

L(3,BC@r®) @ (x® o Nmgyr)) = L0, pr(r) @ Xl i)

where on the right-hand side we view y as a @p—valued character of Gal(E/F) via the global class field theory.
The following corollary provides evidence toward the p-adic Beilinson—Bloch—Kato conjecture for (genuinely)
higher-dimensional motives, whose deduction is provided after Remark 4.23.

Corollary 1.9. Suppose that we are in the situation of Assumption 1.6 and n < p. If the vanishing order of .iﬂpo(ﬂ')
at 1 is one, then
dimg H(E, pa(r)) > 1.

Remark 1.10. When n = 2, this result is a variant of the main application of the p-adic Gross—Zagier formula of
[ ], as generalized to totally real fields by one of us [ ] following the development of [ ]lin [ ].
In different directions, Perrin-Riou’s results had been generalized to the case of higher-weight modular forms by
Nekovar [ ] and further to the case with twists by higher-weight Hecke characters by Shnidman [ ], to
the supersingular case by Kobayashi [ ], and to the case where p is not necessarily relative split by one of us
[Dis].> A common generalization of [ , , , Dis] was developed in [ ].

Remark 1.11. Strictly speaking, Theorem 1.8 (together with Corollary 1.9 and Corollary 1.12 below) relies on a
hypothesis on the characterization of the tempered part of the cohomology of certain unitary Shimura varieties (see
Hypothesis 4.12 and Remark 4.13), which is expected to be verified in a sequel of the work [ 1.

1.4. Application to symmetric power of elliptic curves. The above results have applications to the motives of
symmetric power of elliptic curves. We consider a modular elliptic curve A over F' without complex multiplication
that has ordinary good reduction at every p-adic place of F. Denote by V‘l‘; - Vf}“ the subset consisting of places
over which A has bad reduction.

By the very recent breakthrough on the automorphy of symmetric powers of Hilbert modular forms [NT], there
exists a unique cuspidal automorphic representation IT(Sym”~! A) of GL,(AF) satisfying

o for every v € V%w) , the base change of TI(Sym"~! A), to GL,(C) is the principal series representation of
characters (arg!™", arg>™", ... arg""3, arg""!), where arg: C* — CX is the character given by arg(z) :=

2/ Nz

o forevery v € Vlﬁpn \ VA, TI(Sym”~! A), is unramified with the Satake polynomial

—_

n—

(7-eo o5 ) eqir],

T
S

where @, | and @, are the two roots of the polynomial T2 - a,(A)T + g, (with g, the residue cardinality
of F,).

Let TI(Sym”"~! Ag) be the (solvable) base change of TI(Sym”~! A) to E, which is a cuspidal automorphic representa-
tion of GL,(Afg). The representation II(Sym”~! Ag) satisfies II(Sym”"~' Ag)¥ =~ II(Sym™ ! Ag) =~ II(Sym" ™' Ag)C,
hence is a relevant representation in the sense of [ , Definition 1.1.3]. By [ , Remark 1.1.4] and the
endoscopic classification for quasi-split unitary groups [ ], there exists a cuspidal automorphic representation
a(Sym" ! Ag) of G,(Ar) satisfying

2In fact, in [ ], a formula in the nonsplit case is deduced from the split case by making use of some special features of the setup
under consideration.
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o forevery v € V', n(Sym" ™! Ag), is isomorphic to #l'7;
o for every v € Vf}“ \ VA, 7r(Sym”_1 Ap)y is spherical with respect to K, and its base change to GL,(E,) is
isomorphic to l'I(Sym"‘1 Ag),.
In particular, there exists a relevant Q-representation 7 in the sense of Definition 1.1 such that 7 ® C =~
a(Sym" ' Ag)®. Moreover, for every v € v, 7y, ®g Q, is Panchishkin unramified. Applying Theorem 1.4 to
7 (or rather 7 ®g Q), we obtain a bounded analytic function ,,2”[,0 (m) on ZF,, for every finite set & of places of Q

containing {oo, p} and every prime number underlying V3™ U V‘g. For every v € Vg’) and u € P,, the unramified
representation mr, of GL,(F)) is the one with the Satake polynomial

n—1
o on—l-j
(T -a’ 0l 7) e Q,IT,
j=r
where we have ordered @, 1, a2 € QIX, in the way that @, ; € qi‘IZIX,. The following is an immediate consequence
of Corollary 1.9 in which S, = 0.

Corollary 1.12. Under the above setup, we further assume that
n<p,

[F:Q]>1,

r[F : Q] is odd,

every prime in V2™ is unramified over Q,

V’g U Vf) is contained in ijl.

Then £ (7)(1) = 0. Moreover, if .2, (m)(1) # 0, then

dimg, H(E, Sym"™" H} (A, @,)(r) > 1.

1.5. Structure and strategy. We explain the structure of the article and the strategy for the proofs. Before that,
we point out that throughout the article, we have restricted ourselves to only use p-adic measures valued in finite
products of finite extensions of Q, to reduce the technical burden such as infinite dimensional p-adic Banach
spaces.

In Section 2, we make preparation for proving the rationality property of our p-adic L-function. In §2.1, we
collect two sets of more specialized notation that will be used throughout the main part of the article. In §2.2,
we introduce the notion of Siegel hermitian varieties which are over Q, and are the main stage to characterize
the rationality of automorphic forms on the unitary group G,. In §2.3, we review the construction of an auxiliary
Shimura variety over Q that is of PEL type in the sense of Kottwitz, which is needed to prove the rationality of
certain Eisenstein series used in the doubling method. The main reason we pass to this auxiliary one is that the
theory of algebraic g-expansions is only available for such Shimura varieties. However, if the reader is satisfied
with fixing an isomorphism @p =~ C from the beginning and does not care about the field of definition of the p-adic
L-function, then there is no need to use those parts of §2.2 that are related to Shimura varieties and the entire §2.3.

In Section 3, we construct the p-adic L-function. The main strategy is to use the doubling method for an “ana-
Iytic” family of sections in the degenerate principal series of the doubling unitary group G»,, similar to [ ].
However, it is worth pointing out that our computation makes no use of Weil representations (or their twisted ver-
sions). In particular, we do not need any explicit Schwartz functions on hermitian spaces. In fact, we do not even
need an explicit formula for the sections in the degenerate principal series at p-adic places — what we need is just
their Fourier transforms, which have very simple forms. The main reason we can simplify the computation is a
formula obtained in the previous work [ ] for computing the local doubling zeta integral (see Lemma 3.26).
Using this formula, the gamma factor in Theorem 1.4 appears naturally and immediately. In §3.1, we review the
doubling degenerate principal series and collect some facts on their Siegel-Fourier coefficients. In §3.2, we review
the doubling Eisenstein series and prove a certain rationality property of their pullbacks to the diagonal block.
In §3.3, we make all the representational-theoretical preparations; in particular, we study Panchishkin unramified
representations. In §3.4, we prove several formulae for local doubling zeta integrals. In §3.5, we complete the
construction of the p-adic L-function by defining it as an inner product of a specific element in 7 ® 7 and the pull-
back of the family of doubling Eisenstein series with respect to a careful choice of sections in degenerate principal
series. In §3.6, we collect some basic facts about p-adic measures that will be used later.
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In Section 4, we construct the so-called Selmer theta lifts, which are Selmer group analogues of the classical
theta lifts, and study their p-adic heights. In §4.1, we introduce further notation for the whole section and study the
rationality of local theta liftings. In §4.2, we construct a canonical projection from the absolute p-adic cohomology
to the Galois cohomology H!(E, V, 1) or H'(E, V; 1), and define p-adic height pairings on the latter. In §4.3, we
state a theorem (Theorem 4.21) on the modularity of Kudla’s generating functions valued in the Selmer groups of
the above Galois cohomology, and then construct Selmer theta lifts which belong to the Selmer groups. In §4.4,
we state the precise version of our p-adic arithmetic inner formula (Theorem 4.22), which is slightly stronger than
Theorem 1.8 by taking rationality into account. In §4.5, we present our strategy of reducing Theorem 4.21 to the
problem of computing p-adic height itself, and explain that it makes sense and suffices to consider the p-adic height
pairing (Zr,(¢1), Zr,(¢2))E between (weighted) special cycles for a certain pool of Schwartz functions, together
with a formula decomposing the (global) p-adic height pairing into local ones. In §4.6, we compute local p-adic
height pairings between special cycles at (nonarchimedean) places of E not above p, based on a result of Scholl
that relates local p-adic heights to Beilinson’s local indices and the formulae for the latter from previous works
[ , ]. In §4.7, we study local p-adic height pairings between special cycles at p-adic places of E. With
a crucial ingredient (Theorem A.8) on the crystalline property of the corresponding bi-extensions, we show that
the local p-adic heights approach 0 p-adically when one repeatedly applies a certain operator U, to the Schwartz
functions. In §4.8, we finish the proof of Theorem 1.9 assuming a nonvanishing result (Proposition 4.46), by using
the previous formulae on local p-adic heights together with certain limit processes. In §4.9, we prove Proposition
4.46 by a variant of the p-adic doubling formula from §3.5; then we complete the proof of Theorem 4.22.

The article has two appendices. In Appendix A, we develop further the theory of p-adic heights on general
varieties, after Nekovaf. In particular, we prove a comparison result between local p-adic heights and Beilinson’s
local indices. For local p-adic heights above p, we prove a key theorem (Theorem A.8) on the crystalline property
for certain bi-extensions, whose proof occupies the entire Appendix B.

1.6. Notation and conventions.

° WedenoteN:i{O,l,Z,...}. .
e We denote by Z, the ring of integers of Q,,.

e We write m = 3.1415926.. . ., to be distinguished from the representation 7. We also write i for the imagi-
nary unit in C, to be distinguished from the commonly used index i.

e When we have a function f on a product set A} X --- X A, we will write f(ay,...,as) instead of
f((ay,...,ay)) for its value at an element (ay,...,a5) € Ay X -+ X Aj.

e For aset S, we denote by 1g the characteristic function of S.

All rings are commutative and unital; and ring homomorphisms preserve units. However, we use the word
algebra in the general sense, which is not necessarily commutative or unital.

If a base ring is not specified in the tensor operation ®, then it is Z.

For an abelian group A and a ring R, we put Ag := A ® R as an R-module.

For an abelian group A, we denote by AT its free quotient.

For a ring R, we denote by Sch; r the category of locally Noetherian schemes over R.

We denote by G the multiplicative group scheme, that is, Spec Z[X, X~'].
For an integer m > 0, we denote by 0,, and 1,, the null and identity matrices of rank m, respectively, and
by w,, the matrix (—lm I )

e Let yg: Q\Ag — C* be the standard automorphic additive character that sends w!

exp(—2mi/w), and put g = Y o Trg/q for every number field K.

e For a subring R C C and a positive integer A, we denote by R(A) C C the subring generated by A’-th roots
of unity for all / > 0.

e For a locally compact totally disconnected space X and a ring R, we denote by .7 (X, R) the R-module of
R-valued locally constant compactly supported functions on X. We omit R from the notation when R = C.

at a prime w to

Acknowledgements. D. D. would like to thank Ellen Eischen and Zheng Liu for correspondence on p-adic L-
functions. Y. L. would like to thank Yichao Tian for some general discussion related to Theorem A.8. We would
like to thank Marc-Hubert Nicole and Congling Qiu for useful comments. Finally, we are grateful to the anonymous
referee for many helpful comments and suggestions.
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2. SIEGEL HERMITIAN VARIETIES

Recall that we have fixed the CM extension E/F of number fields with the Galois involution c, such that every
p-adic place of F splits in E.

2.1. Running notation. We introduce two sets of more specialized notation that will be used throughout the main
part of the article.
(F1) We denote by
e Vr and Vlﬁpn the set of all places and non-archimedean places of F, respectively;
° V;Pl, VB‘;‘ and VrFam the subsets of V'}“ of those that are split, inert and ramified in E, respectively;
. ij) the subset of Vg of places above a finite set ¢ of places of Q.
Moreover,
o foreveryv e Vg, weput E, .= EQf F\;
o for every finite set ¢ of places of Q, we put F, = Hvevj?) F;
e for every v € Vi", we denote by p, the underlying rational prime of v and by p, the maximal ideal of
Or,, put g, = |OF,/p,| which is a power of p,, and let d, > O be the integer such that pf" generates
the different ideal of F,/Q,,,.
(F2) For every v € v ), let P, be the set of places of E above v. Put P := Uvevgp) P,. We fix a subset Py of P

satisfying that Pcy N P, is a singleton for every v € Vg).
(F3) Let m > 0 be an integer.
e We denote by Herm,, the subscheme of Resp, /0, Mat,, ,, of m-by-m matrices b satisfying 'b¢ = b. Put
Herm,, := Herm,, N Resp, 0, GL.
e For every (ordered) partition m = m; + - - - + m; with m; a positive integer, we denote by

m, . Herm,, — Herm,,, X --- X Herm,,,

.....

the morphism that extracts the diagonal blocks with corresponding ranks.
e We denote by Herm,,(F)* (resp. Herm,, (F)*) the subset of Herm,,(F) of elements that are totally
semi-positive definite (resp. totally positive definite).
(F4) Let ngjr: F X\A;; — C* be the quadratic character associated with E/F. For every finite character
x: FX\AX — C* and every integer m > 1, we put
o for every v € Vg,

m
buy(0) = | | LG
i=1
o for a finite set & of places of Q,

o) = [ | bant0), B0 =[] buatio,

vevl? VveVp\V©

in which the latter product is absolutely convergent when m is even or y # 1.
Let m > 1 be an integer. We equip W,, = E>" and W,, = E*" with the skew-hermitian forms (that are E-linear
in the first variable) given by the matrices w,, and —w,,, respectively.
(G1) Let G,, be the unitary group of both W, and W,,. We write elements of W,, and W,, in the row form, on
which G, acts from the right. Denote by T the involution of G,, given by the conjugation by the element
(' _,, )inside Resg/r GLay.
(G2) We denote by {e1,...,ex,} and {&1,..., &,,} the natural bases of W,, and W,,, respectively.
(G3) Let P,, € G, be the parabolic subgroup stabilizing the subspace generated by {e,+1, ..., e}, and N, C
P, its unipotent radical.
(G4) We have
e a homomorphism m: Resg,r GL,, — P,, sending a to

m(a) = (a t ac,—l) )
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which identifies Resg/r GL,, as a Levi factor of P,,, denoted by M,,.
e a homomorphism n: Herm,, — N,, sending b to

nb) = (lm b )

L
which is an isomorphism.
(G5) We define a maximal compact subgroup K, = [],ey, Kin,y of G, (AF) in the following way:
e forve V%“, K,y 1s the stabilizer of the lattice Oé’?;

o forve ngo), K,y 18 the subgroup of the form

1 ( ki +ky —ik) + ikz)

ki kal =Sk, — iy ky + ko

in which k; € GL,,,(C) satisfies k; & = 1, fori = 1,2.3
Moreover,
o for every place w of Q, put K;,,,, == HveV(Fw) Knyv;
e for a set ¢ of places of Q, put K5 := [T,ue0 K-
(G6) For every v € V(°°), we have a character k,, : K,,, — C* that sends [k, k»] to det k; /det k.
(G7) For every v € Vg, we define a Haar measure dg, on G,,,(F,) as follows:
e forve V}ﬁp“, dg, is the Haar measure under which K, , has volume 1;
e forv e V;’o), dg, is the product of the Haar measure on K, , under which K, , has volume 1 and the
standard hyperbolic measure on G,,(F,)/ K., (see, for example, [EL, Section 2.1]).
Put dg = [], dg,, which is a Haar measure on G,,,(Af).
(G8) Letmy,...,m be finitely many positive integers. Put

Gml ..... my = Gm1 XX Gms-

We denote by Ay, ., the space of both Z(gm, ... m,.c0)-finite and Ky o X - - - X Kjyy, o-finite automorphic
forms (in the sense of [ , §4.2]) on Gy, . m,(AF), Wwhere Z(apm,...m,.0) denotes the center of the com-
plexified universal enveloping algebra of the Lie algebra g, m, 0 Of Gy, .m, ® R. For every integer
w = 0 (as weight), we denote by

.....
.....

m, on which for every v € Vg’o) and every 1 < j < s, Kin,v

..........

(G9Y) For every vector space H on which G,,..m,(A}) acts, we put H(K) := HX for every open compact
subgroup K C Gy,,..m,(AR).

2.2. Siegel hermitian varieties and line bundles of automorphy. We first recall the construction of a CM moduli
problem following [ , Section 3.5]. Let T be the subtorus of Resg/q G that is the inverse image of Gg under
the norm map Nmg,r: Resgio G — Resp/o G.

For every nonzero element § € E<=~!, we denote by W° the E-vector space E (itself) together with a pairing
(,Y¥:ExE — Qgivenby (x,y)° = Tre/o(6xy©). For every Q-ring R, we have T(R) = {t € (E ®g R)* | (tx, 1) =
c(t){x, y)° for some c(t) € RX}.

For every neat open compact subgroup K7 of T(A*), we define a moduli problem X°(K7) on Sch’/Qp as follows:
for every S € Sch’/Qp, Z‘S(KT)(S ) is the set of equivalence classes of quadruples (Ao, ig, o, 170) in which

e Ay is an abelian scheme over S of relative dimension [F : Q],

e io: E — Endg(Ag) ® Q is an E-action such that for every x € E, tr(io(x) | Lies(Ao)) = Xuepey TTE,/Q,(X)s
where Pcy is the fixed subset of P (§2.1(F2)),

e lp: Ag — A(\)’ is a quasi-polarization under which the Rosati involution coincides with the complex conju-
gation on E under iy,

3Here, we choose a complex embedding of E above v to identify G,(F,) as a subgroup of GL,,,(C). However, neither K,,, nor the
character «,,, in (G6) depends on such a choice.
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o 1o WO ®g A® — H‘ft(Ao, A®) is a Kp-level structure (see, for example, [ , Definition 3.5.4]).*

It is known that £°(K7) is a nonempty scheme finite étale over Q »» Which admits a natural action by the finite group
T(A™)/T(Q)K7 such that each orbit is Galois over Spec Q,, with the Galois group T(A%)/T(Q)Kr. We fix such
an orbit ZS(KT).

For every neat open compact subgroup K C G,,(AY), we consider the moduli problem X (K, Kr) on Sch;Qp as
follows: for every S € Sch’/QP, Z%(K, K7)(S) is the set of equivalent classes of octuples (Ag, iy, Ao, 70; A, i, 4, 17) in
which

e (Ao, i, A0, 7mo) is an element of X4 (K7)(S),

e A is an abelian scheme over S of relative dimension 2m[F : Q],

e i: I — Endg(A) ® Qis an E-action such that for every x € E, tr(i(x) | Lieg (A)) = m Trg/p(x),

e 1: A — AY is a quasi-polarization under which the Rosati involution coincides with the complex conjuga-
tion on E under i,
n: W,‘,i ®r AL — HomAzg (H‘ft(Ao, A®), H?t(A, A*))is a K-level structure, where W,‘; denotes the space E>"
equipped with the hermitian form 571w, (see, for example, [ , Definition 4.2.2]).

It is known that Ei(K, K7) is a scheme finite type over Zg(KT), which admits a natural lift of the action of
T(A®)/T(Q)K7. We denote by ZZ(K, KT)b the quotient of Z;(K, K7)by T(A®)/T(Q)Kr, as a presheaf on Sch’/Qp.

Now we discuss the relation between X0 (K, K7)” and usual Shimura varieties. For every CM type @, we have
the Deligne homomorphism

h$ : RCS(C/R G- (RCSF/Q Gn) ®0 R
- ([lm: (Z/Z)lm], oL L, (Z/Z)lm]) € Km,oov
in which for every archimedean place v of F, the notation [1,,,(Z/z)1,,] is understood via the unique complex
embedding of E in ® inducing v. Then we obtain a projective system of Shimura varieties {E®(K)}x associated

with the Shimura data (Resf/g G, h%) indexed by neat open compact subgroups K C Gm(AY), which are smooth
quasi-projective complex schemes of dimension m?[F : Q], with the complex analytification

E2(K)™ = G(F\Gu(AF)/ Ko K.

For every embedding ¢: Q, — C, we denote by ®, the set of complex embeddings i: E — C such that the
p-adic place induced by the embedding i: E — i(E)..(Q)) belongs to Pcy (§2.1(F2)). Then ®, is a CM type of E.

Lemma 2.1. The presheaf Z;(K, Kr)’ is a scheme over Q) independent of the choices of Kr, 6, and the orbit
Z‘.g(KT).5 Moreover, for every embedding v: Q, — C, we have a canonical isomorphism

20K, Kr)’ ®g,. C — Zpi(K).
Proof. By definition, the reflex field E¢, € C of @, is contained in ¢(Q,). Then there is a canonical isomorphism

(X ®r4, Yir) ®ig 1 Qp = Eo(K. K7)

of schemes over Q,, where Xk and Yk, are the usual Shimura varieties for G, and T of level K and K7, respectively,
over their common reflex field Eg,. Under such isomorphism, T(A*)/T(Q)K7 acts on the left side via the second
factor Yk, whose quotient is nothing but Spec Eg,. Thus, we obtain a canonical isomorphism Xk ®g,, -1 Qp =

Zg,(K, KT)b. The lemma follows. O

Definition 2.2. We define the Siegel hermitian variety (of genus m and level K) over Q,,, denoted as X,,,(K), to be
Z;(K, KT)b, which makes sense by the lemma above.’

“In this article, we have been vague in writing level structures: Strictly speaking, one should choose a geometric point s on every
connected component of S and the level structure is a 7, (S, s)-invariant orbit (with respect to the level subgroup) of isometries concerning
the fiber at s.

SBut Z‘fn(K, K7)" depends on the fixed subset Pcy;.

6By construction, X,,(K) also depends on the choice of the subset Pcy of P (§2.1(F2)).
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Now we define the line bundle of automorphy on X,,(K). Denote by A (the A part of) the universal object over
X2 (K, Kr). Then Lie(A) is a projective & ®g E-module of rank m, where & = O%s (k k) 18 the structure sheaf. Put
), = dety (detgo,r Lie(A)"),

which is a line bundle on X? (K, K7). Since T(A>)/T(Q)Kr acts trivially on wm, wa descends to a line bundle w,,
on X, (K). It is easy too see that w,, does not depend on the choices of K7, 9§, and the orbit E‘S(KT)

Now suppose that we are given a partition m = my + --- + mg of m into positive integers. We have a natural
isometry

@.1) Wi, @@ Wy, = Wy,

such that if we write {e{ s eé } as the standard bases for W,,. for 1 < j < s, then the standard basis of W,

e ) : : 1 1 s 1 1 s K
is identified with {e ,.. sy Cpyse el, .. .,ems,emﬁl,...,eZm],...,emSH, .. .,eZmA}. In particular, we may regard
Guypon, =Gy X+ XGp, as a subgroup of G,,. We obtain a map
. glwl [w]
(2.2) Prmy.....mg - ﬂm hol > Py, g ol

(see §2.1(G8)) given by the restriction to the subgroup G, m,(AF).
For neat open compact subgroups K; C G,,(Ay) for I < j < s, we put

m (K1 X+ X Ky, Kr) = X (K1 Kr) X ) X k) Zom, (Ko K1),
=) R RO
and
Zony,.my (K1 X -+ - X Ky) i= Xy (K1) Xq, -+ X, Zm,(K),
Wy oomy = Wy B R Wy
We have the natural quotient map

Empmyt o (KXo X K, K7) = Ey o (Ky X X K)

under which &, .., = &,
For a neat open compact subgroup K C Gpu(AY) containing Ky X - - - X Kj, there is a natural morphism

Ty Zion, (K1 X X Ky, K7) = Eiﬂc Kr)
sending ((Ao, io, A0, 1703 Aj, i, Aj,11))1<j<s tO
(A0, 005 A0, 03 A1 X == X Ag, (i1, - -5 i), A1 X o X A, (15 -+ 25 7))
It is clear that a’%bn_’mx descends to a morphism
Omyny s 2my,om, (K1 X - X K) = X0(K)

rendering the following diagram

(2.3)

(Kl - X KS? KT) m(K KT)

‘fml ,,,,, myl lfm
Tm

T (K1 X - X Ky) e - ¥,.(K)

in Sch’ commutative. It is independent of the choices of K7, ¢, and the orbit Zg(KT). For the line bundles of

automorphy, we have (o-ml )*wﬁi ~ wfnl ..m,> and hence o,

For every integer w > 0, put

Hy o (KXo X K) = HOZ o (K1 X X K, 05 ),

.....

7—{:1/1 ..... mg = 11_11)1 WW (le XKS)'

.....



A p-ADIC ARITHMETIC INNER PRODUCT FORMULA 13

For every embedding ¢: Q, — C, we have an injective map

(2.4) R A = HY 8, C,

mp,...,mg,hol

which fits into the following commutative diagram

[w] Pmy....mg w]
'm,hol (2.2) mi,...,ng,hol
h:n \j lh;ﬂl,..,,ms
y Copms
(]—{m ®Qp;[ C (]—{ml,...,mx ®stl C

of complex vector spaces.

Definition 2.3. Let the notation be as above.
(1) We define %%nwms to be the maximal subspace of H,,

‘H,E{f],m ®q,. C is contained in the image of ﬂ%],...,ms,h ol

such that for every embedding ¢: Q, — C,

M

L
under k;, .

(2) For every ¢ € W;E;Y]m
ﬂ[w]

mi,...,nmg,hol

and every embedding ¢: Q, — C, we denote by ¢' the unique element in

s

such that hinl,...,ms(SDL) = 1.

Remark 2.4. We have the following remarks concerning W,E,vf]mr
(1) The inclusion Hy'! . H

mi,...,mMg
impose any growth condition along the boundary.

is proper in general since in the definition of H,, we do not

MY el ?

,,,,,,,,,, m, (A% ). Moreover, in its definition,
it suffices to check for some embedding .

(3) The natural map 7{,[,:,”] ®qg, *** ®q, 7{,[;?] — 7_{%]% given by exterior product is an isomorphism. Indeed,
it suffices to check it at every finite level, which is then an isomorphism of finite-dimensional Q,-vector

spaces.
To end this subsection, we review the notion of analytic g-expansion (or Siegel-Fourier expansion).

Definition 2.5. For every ring R, we denote by SF,,, _, (R) the R-module of formal power series

Ty,..T
ar,..r,q """, ar,.1, €R
(Th.....Ts)eHermyy,, (F)*x---xHerm,, (F)*
in which ar, . r, vanishes unless the entries of T, ..., T are in a certain fractional ideal of E. We have a restriction
map
Omy....my - SEm(R) = SFy i (R)
sending
T
arq
TeHerm,,(F)*
to
aT quw-’Ts’
(T1,....Ts)eHermyy, (F)*x---xHermy, (F)* TeHerm,,(F)*
aml,...AVmST:(lewT.v)

where 0, m, 1s the map from §2.1(F3). It is an easy exercise to show that the interior summation is always a
finite sum.

For every integer w > 0, we have a map
. glwl
(2.5) qoiyom, Aol SEu,...m,(C)

Yo Z ar,..r.(@)g T

(T ,A..,TA,)GHerm,,,l (F)*x---xHerm,, (F)*
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in which ar, . 7.(¢) equals

f f o(n(by), ..., n(b )Wt Tiby) ™ -yt Tybg) ™ dby - - dby
Hermm] (F )\Hermm] (Afp) Herm,, (F)\Herm,,,;(Ar)

with dby, ..., dbs being the Tamagawa measures.
We have the following commutative diagram
[W] pml,r.,,ms [W]
ﬂm hol (2.2) my,...,mg,hol
T lqi‘é‘l ,,,,, s
le seesllls

SF,(C) ———— SF,, .., (C)

under restrictions.
We also need an equivariant version of the above constructions for use in §4.

Definition 2.6. For every ring R, we denote by 87, m,(A})]-module

..........

Map (

in which G, .. (A7) acts via the right translation. We have an injective C[G, ... (AR)]-equivariant map

...........

a s AN - SFmy....m,(C)

l»--wmrshOl

such that q,‘;;’l (go) sends g to qml ’’’’’ m, (g 9.

.....

2.3. Relation with PEL type moduli spaces. In order to show the rationality of some Eisenstein series later, we
need the theory of algebraic g-expansions. However, since such theory was only developed for PEL type Shimura
varieties (in the sense of Kottwitz), we need to study its relation with our Siegel hermitian varieties.

Let W,, be the space E>" equipped with the parrrng Trg /Q¢ o(, dw,, s E*"x E*™ — Q. Let G, be the similitude
group of W,,, which is a reductive group over Q. Let P,, € G,y be the parabolic subgroup stabilizing the subspace
generated by {e+1, ..., €},

Consider a partition m = m; + --- + mg of m into positive integers. We denote by Gml
Eml X X me of common similitudes, in other words, it fits into a Cartesian diagram

. the subgroup of

.....

Gumy.my—=Gpm X XGp

| |

Gg G},

s

diagonal

1n which the vertical arrows are similitude maps. In particular, we may regard Gm1 m, as a subgroup of G Put
,,,,, = Gml m, N P

For every neat open compact subgroup Eml,...,mj - Gml ,,,,, g (A‘X’) we consider the PEL type moduli problem
Eml ,,,,, mS(Em1 ,,,,, m,) ON Sch’/Q as follows: for every S € Sch ) I mS(Km1 ,,,,, m,)(S) 1is the set of equivalence

classes of s—tuples of quadruples ((A1,i1,41,71), ..., (As, L5, é,’ﬁs)) in which

.....

e for 1 < j<s,Ajis an abelian scheme over § of relative dimension 2m;[F : Q],
e for 1 < J < s,ij: E — Endg(A;) ® Q is an E-action such that for every x € E, tr(ij(x) | Lieg(A;)) =
m; Trg q(x),

e forl < j<s,1;:A; — AV is a quasi-polarization under which the Rosati involution coincides with the
complex conjugation on E under ij,

.....

factors 1ndependent of ]
Then Eml ,,,,, g (Kml ,,,,, m,) 18 a scheme of finite type over Q. Now for a neat open compact subgroup C m(A°°)
containing Km1 ,,,,, m,» We have an obvious morphism

Eml ..... mg : M.y mS(Kml ..... ms) - Zm(K)
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over Q by “taking the product of all factors”. For neat open compact subgroups K e (F}ij(A”) containing the

image of K,,, .....m, under the natural projection map G N émj, we have another obvious map

Tmy,...my iml ..... ms(fml ..... ms) - i‘:ml (ﬁl) XQ - XQ ims(gs)
over Q. On fm(f ), we have the line bundle of automorphy w,, similar to wﬁl, which satisfies

m, (O B+ Ry, ).

Remark 2.77. For every 1 < j < s, we have an isometry W,fl/, Qp W° = ij. These isometries induce a homomor-
phism

éml,---vmx: ReSF/Q Gml ----- N X T - Gml ----- Mg

sending (g1,...,8s, 1) to (glt,...’,vgst), which is independent of the choice of 6. Using this map, we regard
Resriq Gm,,...m, as a subgroup of G, in what follows.

For neat open compact subgroups K; C ij(A"F") for 1 < j < sand Kr C T(A™) such that K| X --- X Kg X Kt
is contained in fml ,,,,, m,» we have a natural morphism

sending ((Ag, i, Ao, ﬂo;Aj, ij, /lj, T]j))]gjgs to ((Aj, ij, ﬂj,ﬁj))]gjgs, where ﬁj sends w ® v to T]j(W)(I]o(V)). The mor-
phism &y, ..m, is finite étale.

In summary, for every neat open compact subgroup K C G,(Ay) containing K; X --- X K and such that
{m(K X K7) is contained in K, we have a diagram

(2.6)
—~ —~ — —~ Tm . —~ Tmy....ms -~ ~

Zml (K1 )Qp XQ, ** XQ, me(Ks)Q,, Eml ..... ms(Kml ..... mS)Q,, 2'm(l<)Qp

Ly X+ X Sy e Cm

¥ (K, K o B0 (K, Kp) =—2L 3 K Ko Kp) T30 (K K

ml( 1> T) XZS(KT) e XZ?)(KT) ms( KB T) - “my,..m ( 1 X X Ky, T) E—— m( s T)
fml X'"Xfmx é:ml ..... Mg Em
def LT 5
Ly, (K1) Xq, -+ Xq, Zm,(K;) = Zony,..my (K1 X -+ X K) : Z,(K)

in Sch’/QP expanding (2.3) as the lower-right square, in which various line bundles of automorphy are compatible
under pullbacks. _

Similar to ﬂ%] ..... e hol (§2.1(G8)), we define a space ﬁ{nfl] ..... e hol of certain automorphic forms on Gy, .., (A)
with the additional requirement that (t1,,,, ..., ¢1,,) acts trivially for every ¢ € T(R). We have a map

2.7) Py, A s AL

'm,hol mi,...,mg,hol

.....

For every integer w > 0, put

17 % — Oy 7% ~®
ernvl ..... mS(Kml,..-,mx) =H ... m.y(Kml,..-,mx)’“)mvlv,.“,ms)’
Tw 1 Tw %
(I—{ml,...,ms T 11_1’)1’1 7—{ml,...,ms(l(ml ,,,,, ms)'
Kml,...,mg

Definition 2.8. Similar to (2.4), we have an injective map

: A —>7’~(W m ®0 C

~~~~ My mi,...,mg,hol my,...,Mg



16 DANIEL DISEGNI AND YIFENG LIU

for w > 0. We define ?{m m, t0 be the subspace of WW

,,,,,,,,,, g

such that the image of ﬁml m, coincides with

.....

VT(,EX]MY ®g C. Thus, we obtain an isomorphism
(2.8) By, A

mi,...,nyg,hol

Now we review the algebraic theory of g-expansion for fml ,,,,, m, from [Lan12]. Take an open compact sub-
group Km1 ,,,,, my, C 5,,,1 m,(A%). We choose a smooth projective toroidal compactiﬁcation Eml ,,,,, ms(Eml m,)"°" of
s Koy overQ and let @, . be the canonical extension of @y, ...,

[Lan12, Definition 5.3.4], for every w2 O we have the algebraic g-expansion map

.....

(Definition 2.5) at the cusp “at 1nﬁn1ty . We remark that the map ¢, ., s not necessarlly injective, since we only
expand the section on the connected component of Zml ,,,,, m,(Kmy...m )" ®Q C that contains the cusp “at infinity”.

.....

...............

hence we obtain a map

(2.9) Byt HE o (Ko

..........

ms) ®Q C— SFm1 ..... ms(c)’

which is independent of the choice of the toroidal compactification. Thus, by passing to the colimit, we obtain a
map

(2.10) Gy, HE o ®0 C = SFyy (O,

which fits into the following commutative diagram

(2 1 1) ﬁ[w] Eml sl Ad[W]

'm,hol @7 ﬂml ..., hol
ﬁm l lzml ey
7wl Tmeims ]
Hy ' ®g C ————Hp,\ m,® C
qmj lqml ..... mg
SF,,(C) ——™ SR C
() — o, (©)

of complex vector spaces.

Definition 2.9. Denote by D C Op the different ideal of E/Q. The (projective) Og-lattice ‘W, (OE)’"EB(Q‘I)’”
of W,, defines an integral model G,, (resp. Qm) of G, (resp Gm) over Of (resp. Z) Srmrlarly, we have G,
and gm ....m, and their parabolic subgroups %,

.....

m,» Tespectively.

------------

Notation 2.10. For future use, we introduce some standard open compact subgroups. Take two positive integers A
and A’ that are coprime to each other. We put

Kot (A ) = Gy @D X gy Pt can (Z1B),
Konpom (A N) = Gy (B) O Koy, (A, A)

in view of Remark 2.7.

Lemma 2.11. When Km1 _____ my = ~m _____ m, (A, A"), the map (2.9) is eqmvarzant under Aut(C/Q(A")), where we recall
that Q(A") C C is the subfield generated by A"'-th roots of unity for all | >

Proof. This follows from the fact that the cusp “at infinity” is defined over the subfield Q(A’) at this level structure.
See [LLan12] for more details. O

TForv € V“" Gn(Or,) = K, if and only if d, = O and v ¢ V3™,
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Remark 2.12. Denote by G,

----- m seees
~ab — der ; (der e Qi 1%
€m17~~-,ms = Gmy,..my/ Gy, m,- Since Gy, - is simply connected, for every open compact subgroup K, m, €
G, ....m,(A™), the natural map

.....................

has connected fibers, where I?,'jﬁ m, denotes the image of I?m Loy 110 Geb (A®™). Itis clear that Enu m, (A, A)2b

,,,,, s MY e yeres

depends only on A’, which we denote by Ef‘nbl’_me(A’).

3. CycLOTOMIC p-ADIC L-FUNCTION
In this section, we construct the p-adic L-function. We fix an even positive integer n = 2r.

3.1. Doubling space and degenerate principal series. We have the doubling skew-hermitian space WP := W, @
W,. Let G be the unitary group of W2, which admits a canonical embedding 1: G, X G, <— GZ. We now take a
basis {e7, ..., e7 } of W7 by the formula

el =i, €)==, €= €5 =8
for 1 < i < r, under which we may identify WZ with W, and G2 with Gy,. Putw? := wy,, P := P, and N7 = Ny,.
We denote by

5?2 PrD i GF
the composition of the Levi quotient map P = P, — Mp,, the isomorphism m: My, — Resg/r GLy,, the
determinant Resg,r GL,, — Resg/r G and the norm Nmg,r: Resg/r G — Gr. Put

1,
(3.1) W, = } € G2(F).
1, 1,

Then P - w, - (G, X G,) is Zariski open in G¥.
In what follows, we will regard G, X G, as a subgroup of G, = G via the isometry (2.1), which is precisely
the embedding

ag b1

ar b\ (ax by ap by
(3.2) ((Cl dl)’(Cz 012))'_> 1 dy '
o5 d

Remark 3.1. The embedding 1: G, xG, — GY = G, coincides with the embedding (3.2) twisted by the involution
idx ton G, X G,.

Let y: I'r,, — C* be a finite character, regarded as an automorphic character of A%. For every place v of F, we
have the degenerate principal series of GP(F,), which is defined as the normalized induced representation
Go(F,
I2,00) = Ind () Oy 0 67)
of GY(F,) with complex coefficients. For every f € IEV(X‘,) and every T" € Hermgr(Fv), we can regularize the
following integral

(33) Wra(f) = f FOCRB)Wra(tr T) ™ db,
Hermy,(Fy)

where db is the self-dual measure on Hermy,(F,) with respect to ¢ r,,. Indeed, one has a family of integrals Wra(f;)
for s € C, where f; € I7, (.| Ij,v) is the standard section induced by f; it is absolutely convergent when Re s is large
enough and has an analytic continuation to C. Then Wra(f) is defined as the value at O of this analytic continuation.
See [ , Theorem 8.1] and [ , Corollary 3.6.1] for more details.

In order to show the rationality of our p-adic L-function, we need to extend the degenerate principal series to
52,. Recall that we have a natural inclusion Resz/g GY = Respjg Gor — C~}2r. We have a map

S GQ - 52,
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sending ¢ to (Clzr 1 ) Then the natural map Resr/q P2, X 5(Gg) — FQ,« is an isomorphism.
Take a place w of Q. Put

WF,W = l_[ 'J’F,v, Xw = ]_[ Xvs IrD,w(Xw) = ® IrD,v(Xv)a
veV(Fw) veV(Fw) vev;.”’)

and

o .
&2,

[T6%: [] PR = Resrg PHQw) = (Fu)

VEV;W) VEV(;V)

The map &7, extends uniquely to a map EEW along the inclusion (Resg/q PY)(Qy) = (Resp/g P2,)(Qy) € P> (Qy)
that sends s(c¢) to ¢ for ¢ € Q}. Then we have a canonical isomorphism

6 r w ot
2, 00w) = IndZ> 3,y 0 67,)

so that IEW()(W) becomes a representation of 52,(QW). Forevery T" € Hermj, (F\,), we define the functional Wro(-)
on I, () to be the product of the corresponding ones over v € ng).

Lemma 3.2. For every v € V;.m), denote by fv[r] € I, (xv) = It (1) the unique section whose restriction to K, is
the character Kgm. Put fo[orJ = ®vev(;c)fvlrj. Then there exists W», € Qsq such that

Wra(fI) = Wa, - b (1) - exp(—27 Trpyq tr TO)
for every T® € Herm (F)™.

Proof. For two elements x,y € C*, we write x ~ y if their quotient is rational.
By [ , Proposition 4.5(2)], we have

(zﬂ)r(2r+l) [F:Ql
rare)--- Iﬂ(z”))
for every T® € Herm3 (F)*. The positivity of W», then follows. Thus, it remains to show that 55’ (1) ~ aGreDEQl

Write L(s, n’é / ) for the complete L-function for the self-dual character niE IF Then by the functional equation,
we have

Wrs(fih) = ( exp(—27 Trpjq tr T7)

2r . 2r .
[ |2y m ~ ] |20 =i
i=1 i=1
By a well-known result of Siegel, Hiz:’l L1 -1, 172 / ) 1s rational. It follows that
2r e 2 . i\ [F:Q] 2 [F:Q]
iz Lo = i 1yp) (Hi=1 Lr(1 —i,sgn )) N ( n’ ) _ rreDIFQl

[T} Leois 7 ) [172, Le(i. sgn’) Ao+

The lemma follows. ]

by, (1) ~

From now to the end of this subsection, we assume w # oo.

Lemma 3.3. We have
(1) Forv € ng) and b € Hermy,(F), the relation
Wra(n(b)f) = Yry(tr T7b) - Wra(f)
holds for every f € I (x,) and every T® € Herm; (F).
(2) Forv eV and a € GLy,(E,), the relation

Wro(m(a)f) = x,(Nmg,r, deta)”' |det al};, - Wigeraa(f)
holds for every f € I} (x,) and every T® € Herm; (F).
(3) Forc € Q, the relation
Wra(s(0)) = (@) P Il Wera(f)
holds for every f € I, (xw) and every T® € Hermj (F,).
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Proof. This is well-known. For readers’ convenience, we give a (formal) proof.
For (1), we have

Wra(n(b)f) = f F@n® ynb)Wry (e TO0) ™ db’

Hermy,(F)

= Yry(tr T°b) F@n® + b)r, (T + b))~ db’ = yr, (tr Tb) - Wrs(f).

Hermy,(F,)

For (2), we have

Wra(m(a)f) = f F@Enbym(@)r, (o T) ™" db

Hermy,(F)

= f FPm(ayn(a™'b'aS YWp, (tr TPb) ™ db
Herer(Fv)

= f Fm('a® " YwCn(a b e Y)W r, (tr(a T a)(a b 'a®" 1)) db
Hermy,(Fy)

= x»(Nmg, 5, deta)”'|det al}, f FPnb)Wr,(te('a“T a)b)~" db
" JHermy, (F,)

= xo(Nmg,, deta)™'|det all; - Wigeroa(f).
The proof for (3) is similar to (2) and we omit it. The lemma is proved. O

Notation 3.4. Letv € Vgn be a finite place.

(1) We denote by I7 (x,)° the subspace of I} (x,) consisting of sections that are supported on the big Bruhat
cell PT(F,) - w" - N(F)).
(2) When v € Vi \ v'”, we denote by J}Sf’h € IZ,(x») the unique section that takes value 1 on Ko,

It is clear that I?, (x,)° is stable under the action of P}(F,). For f € I7,(x,)° and T° € Hermy.(F,), we put

Wra(f) = f FOORB (i TB) ™ db,
Hermy,(F))

which is in fact a finite sum and coincides with (3.3) for 7% € Hermj (F,). It is clear that the assignment 7 +
Wra(f) is a Schwartz function on Herm,,(F),). Conversely, using the Fourier inversion formula, we know that for
every f € (Hermy,(F))), there exists a unique section £ € I’ (x,)° such that Wro(£¢*) = £(T) holds for every
T" € Hermy,(F,). In other words, we obtain a bijection

(3.4) 1 F(Hermy,(F,)) — I2,(x)°.

Put IZ,,(x)° = &),y I7,(x1)° and we obtain an isomorphism
, L,

=02 7 (Hermy, (Fy)) = 17, 000)°
by taking product over v € VEVW).

Lemma 3.5. Suppose that (the rational prime) w # p.
(1) For every v € ng) \ V™ and every g € Ga,(F)), there exists a finitely generated ring Qg contained in
Zp)(w) such that for every T® € Hermgr(Fv), there exists a unique element gWSphV € OglX, X1 such that

79,
h h
W (@) = bar(0) - Wrs(g - 7
holds for every finite character y: I'r,, — C*, where @, is an arbitrary uniformizer of F,. Moreover,

sph . 14\p/SPh
Wi, = Wi e Z[X].

(2) For évery f €I (y,) and every TP € Herm;, (F,,), we have
rw 2r

WTD (O'f) = O'WTD (f)
for o € Aut(C/Q(w)).
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(3) Forevery f € I (x\)° that is fixed by P, (Z,) and every T° € Hermj (F,), we have
Wra(of) = oWra(f)
for o € Aut(C/Q).

Proof. For (1), by Lemma 3.3(1,2) and the Iwasawa decomposition Go.(F,) = P2,.(F,)K2;,, it suffices to consider
the case where g = 14,. Then the statement follows from [ , Theorem 3.5.1], together with the discussion in
[ , Sections 3.2 & 3.3].%

Part (2) follows from the proof of [ , Corollary 3.6.1] and the fact that yr,, takes values in Q(w).

For (3), put O), = {c'a®ba|a € GL2(Og,), ¢ € Z};} for every b € Hermy,(F,,), which is an open compact subset
of Hermy,(F,). It follows easily that

C1o,0, = f Yy (e TP db € Q.
Op

Since y,, is unramified, the assignment b’ — f(wZn(b’)) is constant on each subset O, which we denote as fo, .
Then (o f)o, = o fo,. 1t follows that

Wra(of) = ZCTD,D'(O'f)D = ZCTE‘,D'O'fD = O'ZCTD,D fo=oWra(f)
o o o

in which the sum is taken over a finite set of disjoint open compact subset of Hermy,(F,,) of the form O;. Thus,
(3) follows. O

Lemma 3.6. The representation 17, (x,,) is semisimple and of finite length as a representation of C~;Zr(QW). When
w # p, every irreducible summand of 1.,,(x,,) contains a nonzero element f in 17, (x,,)° that is fixed by P2.(Z,).

Proof. The first statement follows since it is the parabolic induction of a unitary character.

Now we show the second statement. For every v € V;f), by [ , Theorem 1.2 & Theorem 1.3], IEV(XV) is an
irreducible representation of G,,(F,) unless X% = 1. Moreover, when X% = 1, each direct summand of IEV(XV) is
of the form I(V,) for some (nondegenerate) hermitian space V,, over E, of rank 2r. Here, I(V,) is the image of the
Siegel-Weil section map . (V>") — I7,(x») under the Weil representation with respect to (the standard additive
character Y r, and) the splitting character y,, o Nmg,,/r, (again see [ D.PutV:i={ve Vg”) | X% =1}

Now let I be an irreducible summand of IEW(/\(W) as a representation of Ggr(Qw). One can find a collection of
hermitian spaces V, over E,, of rank 2r for v € V such that I contains

[@I(vv)]@» X |-

vev (v)
VeV \V

For every v € V(W), we define a subset T, of Herm3 (F,) as follows. If v € V, then we define T, to be the intersection

of Hermj (F,) and the image of the moment map sz’ — Herm,,(F,) (see §4.1(H1) if one needs recall). If v ¢ V,

then we define T, to be Hermj (F,). Take any open compact subset T of Hermy,(F\,) = [] _,o» Hermy,(F,) that
o

is contained in HVEV(W) T, N Hermy,(OF,) satisfying that c'a“Ta = T for every a € GLy,(Og,,) and every ¢ € Z.
F

vev

Then (1z ¥ € IEW(,\(W)o is a nonzero element of I. Moreover, by Lemma 3.3, it is fixed by ¢~>2r(Zw).
The lemma is proved. O

In the rest of this subsection, we construct some explicit sections in IEP()(I,)O.

Notation 3.7. For every place v € v, we

e fix a uniformizer @, of F,,
e for every element e = (e,), € Z, put |e| = 2.uep, € and denote by @ the element in E, = [],ep, Eu
whose component in E, is @},

e for u € P,, denote by 1, € Z" the element that takes values 1 at u and 0 at u€,

8Though [ ] only treats the case where v is inert in E, the same argument works in the case where v splits in E as well.
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e for every u € P,, introduce an element

Uu = —1,c

vu .lr

w;dvbﬁ) (wlu 1,
w

1 )] € ZIG/(F,)],

beHerm,(Op, /@)

where b* € Herm,(OF,) denotes the Teichmiiller lift of b,
e forevery e = (e,), € NP, define

Ug = [ | Ui e ZIGHF),
uep,

where we note that the subalgebra of Z[G,(F,)] generated by U, for u € P, is commutative.

Construction 3.8. Forv € ng) and every element e € ZP, put

a [m}
T = {T':' = (T“ r ) € Hermy,(F)

T1D2 Ty, T3, € Herm(OF,), T}, € @,° -GL,(OEV)}
2

as a subset of Herm,,(F,). Define a function f)[fv] € % (Hermy,(F,)) by the formula
£1(T°) = xo(Nmg, 5, det T1y) - 1 (T°).
In particular, we obtain a section (f)[fv] Yy e IE,‘V()(V)O by (3.4).
In what follows, we will identity ZF and N? with Hvev;{” ZP» and Hvev? NP, respectively. For e € ZF, we put

— [e] ._ [ev] [e] ._ [ev]
llell := max le,, T := 1_[ el £ = (X) £l

()
vev
F (p) (p)
vev F vev r

For e € NP, we put
Us = (X U € (X) ZIG(F))] = ZIG(F 8 Z,)].
vEV(Fp) vEV(If)
For two elements e1, e, € N, we have the element U} x U as the image of U} ® U}’ under the natural map
ZIG(F ® Zy)| ® ZIG(F ® Z),)] — Z[G(F ® Z,)] induced by the embedding (3.2).

Example 3.9. Suppose that F = Q and write P = {u, u®}. If we take @, = p and identify G»,(Q,) with GL4,(Q))
via u, then

(1, b pl,
1y, 0 _ 1r 1r
b = beHerm, (F I L
€Herm,(F,) lr lr
1, b 1,
1,c 1 1,
UL x U9 = . .
beHerm,(F,) r . 1,
1, 1,
0 Ly _ 1, bﬂ rl;
Wxuy = > L i
beHerm, (F))
1, 1,
1, 1,
0 il 1, bt 1,
U0 x U, _bHZF L L
€Herm,(F,) _ 1, p_llr

and the general ones Uf,l X Uf,z are the composition of the above four.
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Lemma 3.10. For every element e € ZF, the section (f)[fp]))(l’ € IEP()(p)O is invariant under the subgroup ?’r,r(Zp)
(Definition 2.9) of G2,(Q,).
Proof. This follows immediately from the construction of f)[fp] O

Lemma 3.11. For every element e € ZF and every ey, e; € N¥, we have
[e+eS+er]
(U X UD(ED = (£, e,
where ef ‘=ejo0C.

Proof. By induction, we may assume either e; = 0 or e; = 0. We consider the case where e, = 0 and leave the
other similar case to the reader. Again by induction, we may assume e; = 1, for some u € P, with v € V;p) its
underlying place.

For two square matrices a and b, we write [a, b] for the block diagonal matrix. As an element in 2[52,(@3,,)], we
have

UpxUg= > [nw® 0400 m@y - 1. 1,)]
beHerm, (O, /@)

in which all components away from v are 14,. By Lemma 3.3, we have

Wra (U9 x U2)(£y7)

= Y Weaer® 50D ml@ - 1,.1,]) - ()
beHerm,(OF, /@)

1Y wm@ Ty b | Ween(wl - 1,1, - (£
beHerm,(Op, /@)

—day r\— —r2 ]uc u
= > @t a TR Y @) e (w1 LT 1)
beHerm,(OF, /@)

_ el g2 @, TS @« . T8
3-5) = D, Ue@eT] ) @) e - ] (( Lo go 12))'
beHerm,(Or, /@) @y Ly 2
Since ,
" Af TP € Hermo,(OF.),
> Um@ Ty b = {qv | € RearOr)
beHerm, (Or, /@) 0 if T11,v € w, Hermy,(Or,) \ Hermy,(OF,),

we have

- Lue [e+ef]

(3.5) = xv(@}) " xp(Nmg, /r, det @, TT)) - lzwf](TD) = xp(Nmg,/p, detTp,) - lz[mf](TD) = £, (7).
P P

The lemma follows. O

3.2. Siegel hermitian Eisenstein series. Let y: I'r,, — C* be a finite character, regarded as an automorphic
character of A%. We define I7(y) to be the restricted tensor product of I, (y,) over all places v of F, which is a

smooth representation of ézr(A). For f, € I7(y), we have the Siegel hermitian Eisenstein series’
E@f)= D, fg, geGulhp),
YEP2(F)\G2r(F)
E@f)= ), he) geGulA).
¥€P2(Q\G2/(Q)

9We remind the reader that the sums in the following expressions are not absolutely convergent in general; they are rather defined by
analytic continuation. For example, one has a family of Eisenstein series E(g, f,,;) for s € C, where f,; € I”(y| I;ZAF) is the standard section
induced by f,; it is absolutely convergent when Re s is large enough and has a meromorphic continuation to C. Then E(g, f,) is defined as
the value at O of this continuation, known to be analytic.
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For a finite set ¢ of places of Q containing {co, p}, an element e € ZF and a section f € I7(y)>”, we put
(3.6) EXN =y, ) =057 b5 00) - E(— [ @ (£ @ f),
where bgr(l) is defined in §2.1(F4); fo[or] is introduced in Lemma 3.2; and (f)[(‘?}\’l’ is introduced in Construction 3.8.

It is clear that 17315](—, X, f) belongs to ﬁgr]’hol. Put

(3.7 W5 = Wy - baro\ieey(1) € Q%,
where W, is the constant in Lemma 3.2.

Lemma 3.12. Suppose that |le|| > 0. Then for f = ®oop fiw that is a pure tensor,

0o (B - ) =ws, ).
T"eHerm; (F)*

xp(Nmg,/F, det TIDZ)IXE;](TD) : l_[ Wi, (fw)} q"
wtoop
in which the product is finite. Here, Fl;z, is the map (2.8); q,, is the map (2.10); and
Wra(fw) ifwe o,
barw(x) - Wra(fw) ifw ¢ O.
Proof. First, note that when ||e|| > 0, we have f)[(e[}(TD) = 0 for T" € Hermy,(F) \ Hermj (F). By the discussion in
[ , Section 2B] and Lemma 3.2, the analytic g-expansion (2.5) of E(—, o[o’] ® (f)[fp]))(ﬂ ® f) equals

W?u (fw) = {

Wa, - b5(1)
TReHermy, (F)*

xp(Nmg, i, det )1y (T7) n WT“(fw)] q",

wioop
in which we recall that 55 (1) is absolutely convergent as in §2.1(F4). It follows that the analytic g-expansion of
E[Oe](_’)(’ f) Cquals

we )

Xxp(Nmg,/p, det Tluz)lef](TD)' l_l W?D(fw)]qTD

T8eHerms, (F)* wicop
in which the product is actually finite by [ , Proposition 3.2]. The lemma follows by the coincidence of the
analytic and the algebraic g-expansions [ , Theorem 5.3.5]. O
Put
(3.8) DY = x. ) = Prr (EX =y ) e AVL

(see (2.7) for the map ﬁ,,,).lo The following proposition concerns the rationality of Bgf](—, X, f), which is the main
result of this subsection.

Proposition 3.13. Suppose that |le|| > 0 and let f € I (x)*P be a section. For every oo € Aut(C/Q), we have
ooy (Do ) = 0l (D, ).
where E,, is the map (2.8).
Note that for f € I7(x)*?, of € IZ(ox)®P. Thus, the statement of the proposition makes sense.
Proof. Take an integer d > 1 such that (f)[fp])XP is fixed by the kernel of the map éy(Z,,) - §2r(Z/ pd). The proof

consists of two steps.
Step 1. We first show that for every f € IZ(y)*? and every o € Aut(C/Q(p)), the relation

(3.9) o (ES =, 0x,0) = ohar (ES (=, x. 1)
holds.

Take an irreducible summand I of T'(y)*? (as a representation of ézr(A“’p)). Choose a positive integer A =
Ar > 1 that is coprime to p such that

10The letter D stands for pullback along the diagonal block.
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(1) for every rational prime w not dividing pA, I,, has nonzero invariants under @r(Zw);
(2) one can write A = Ay - Ay with (A1, Az) = 1 such that for i = 1,2, [],a, P2-(Q,) maps surjectively to
GP(Q\GP(A®)/K3P(p?) (Remark 2.12).
For every o € Aut(C/Q(p)), since the map

f = EZr (E-[g](_’ ax, U'f)) - O—F’;Zr (E-[g](_$)(’ f))
is 52r(A°°P)—equivariant, it suffices to show that there exists a nonzero element f = f,; € I such that
(3.10) by (ES (=, 0x,0f)) = ohay (ES (= x, f)) =

In practice below, we will first check (3.10) for o € Aut(C/Q(A1)) and then for o € Aut(C/Q(A»)).
Choose a nonzero element f = Byfoop fw € I such that f,, satisfies the condition in Lemma 3.6 (that is, it

belongs to I, »(rw)® and is fixed by PQ,(ZW)) for w | A and that f;, is the unique section that is fixed by gzr(zw)
and satisfies f,(14r) = 1 for w £ A. Replacing A by a power of A, we may assume that f, is invariant under
Gor(Z,,) X G T/ ) P (Z,,/A) for every w { cop. In particular, we have

Eg (= x, ) € AV} (Kar(A, ph)
(Notation 2.10). For such f, we first show that (3.10) holds for o € Aut(C/Q(pA;)). By property (2) for A
and Remark 2.12, the g-expansions of hj, (Eg](—, X8 f)) for all g € [],a, P2-(Qy) determines E Te]( x> f). For

every g € [, P>.(Q,,), there exists an integer d, > 1 such that Eg](—, X, &) belongs to Agr]hol(KZ,(Az p A s ).
Then by Lemma 2.11, to check (3.10) for o € Aut(C/Q(pAy)), it suffices to check that

quZZr (E"[O@](_’ ox,8 " O'f)) - O-q2r52r (Elg](_’)(9 8- f)) =

for every g € [[ya, FQ,(QW). However, this follows from Lemma 3.12 and Lemma 3.5(2,3). Since the roles of A;
and A, are symmetric, (3.10) also holds for oo € Aut(C/Q(pA;)). Together, (3.10) holds for oo € Aut(C/Q{(p)).
Thus, (3.9) holds.

Step 2. By Step 1 and the upper square of the functorial diagram (2.11), for the proposition, it suffices to show
that for every f € I7(x)™?, there exists a positive integer A that is coprime to p such that

(3.11) by, (DY = 0x,00) = o (DS (=, ) =

holds for every o € Aut(C/Q(A)).
By linearity, we may assume that f = ®,yc0p fiw 15 a pure tensor. Let A be a positive integer that is coprime to p
such that

(3) forevery prime w not dividing pA, f,, is the unique section that is fixed by ézr(le) and satisfies f,,(14,) = 1;
(4) for every prime w dividing A, f,, is fixed by the kernel of the map G»,(Z,,) = G2,(Z,,/A).

Combining with Lemma 3.10, we see that 5[6](—, X, f) belongs to A Al (Kr +(p?, A)). Thus, by Lemma 2.11 (with
g Lo g r,r;hol y

A = pand A’ = A), for (3.11), it suffices to show that

(3.12) g, b, (DS ox.0f) - g, e (DS (= x. ) =

holds for every o € Aut(C/Q(A)) (this time, we only need to consider the g-expansion on one connected compo-
nent since we argue for all f). By Lemma 3.12 and Lemma 3.5(2), (3.12) holds for o € Aut(C/Q(A)).
The proposition is proved. o

3.3. Relevant representations.

Lemma 3.14. Let L/Q, be a finite extension and let it be a relevant L-representation of G(A}) (Definition 1.1).

(1) The representation # = (nV)' is also a relevant L-representation of G(AY), where T is the involution
introduced at the beginning of §1.1.
(2) The L-vector space Homg, a2)(7, ?{,[r] ®q, L) has dimension 1.

See Definition 2.3 for the notation H\".
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Proof. Part (1) follows from the fact that for every v € ng’), (") is isomorphic to 7.

For (2), it suffices to show that for every embedding :: L. — C, the complex vector space HomGr(A;o)(m, ﬂy]lol)
has dimension 1. However, this follows from Arthur’s multiplicity one property proved in [ 1. O
Now we fix a relevant L-representation 7 of G,(Ay) for some finite extension L/Q), contained in @p such that

m, is unramified for every v € Vg’). After Lemma 3.14, we let V,; and V; be the unique subspaces of ‘H,[r] ®q, L
that are isomorphic to 7 and 7, respectively.

Notation 3.15. We fix a G,(A})-invariant pairing { , )r: (er XV, — L. For every embedding ¢: L — C, since 7
is absolutely irreducible, there is a unique element P4 € C* such that

f ¢ (e (g) dg = i - (@], ¢2)r
G (F)\Gr(AF)
for every ¢1 € V; and ¢, € V. See Definition 2.3 for the notation ¢:.

Remark 3.16. Since # = n, the pairing ( , ), is equivalent to a similar pairing { , )z: (V); X Vs — L for 7, for
which we have P = P; for every embedding ¢: L — C.

Lemma 3.17. There is a unique L-linear map
pr: H ®g, L = Vx

satisfying that for every Z € 7-{,“] ®q, L, every ¢ € V; and every embedding v: L — C,

f @8N Z(g)dg = P4 - ', pro(2))a
G (F\G(AF)
holds.

Proof. Take an open compact subgroup K of G,(AY). The L-vector space 7{,[”(1( ) ®q, L is a semisimple module
over LIK\G,(A)/K], in which V(K) is the unique summand that is isomorphic to 7%, We denote by 7-{,[r](K)” c
7{,“](1() ®q, L the direct sum of the remaining summands. Then we have a direct sum decomposition ?{r[’](K ) ®q,
L = Vu(K) ® H'(KY of LIK\G,(AY)/K]-modules. Denote by prf: H!"(K) ®g, L — Vi(K) C V, the
corresponding projection map. It is clear that the maps prX are compatible with each other for different K, hence

defining a map pr: 'Hr[r] ®q, L — V; which satisfies the property of the lemma by construction. The lemma is
proved as the uniqueness is obvious. O

In the rest of this subsection, we take an element v € ng). For every u € P,, we have the representation r,,
of GL,(F,) as a local component of & via the isomorphism G,(F,) ~ GL,(E,) = GL,(F,) (recall that n = 2r).
In particular, ) =~ m, =~ (7"),. Note that we will also speak of r,, a representation of G,(F,) without any
identification with GL,,(F)).

Definition 3.18. We let {@,1,..., @} C @; (as a multi-subset) be the Satake parameter of x,,.
(1) Define the Satake polynomial of r, to be

n

Pr (D) = [ [(T - awjva"™").

j=1
(2) For every integer 1 < m < n, put

Ay, m) = [l_l a/u,j] @m(”_m) Jc{l,...,n,|[J|=m

jeJ
as a multi-subset of @p.

Note that to define the Satake parameter, one needs to choose a square root of g, in @p. However, both P, (T) and
A(m,, m) are independent of such choice.

Lemma 3.19. We have
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(1) There exist 5,1, . ..,Bun € OL such that

r(r-1) n(n—1)

Poo(D) =T" +But T +Buz o T" 2+ +Bur @y > T+ +Bun-qy°

(2) Foreveryinteger 1 < m < n, A(rr,, m) is contained in Zp and contains at most one element (with multiplicity
one) in Z[X,. Moreover, A(rr,, m) N Z; # 0 if and only if Bim € OF.
(3) We have that A(r,,m) N Z; # 0 is equivalent to that A(m,c,n — m) N Z; % 0.

Proof. Part (1) follows from Definition 1.1 and [ , Theorem 8.1(3)], that is, the Newton polygon is above the
Hodge polygon. _
For (2), we may order the multi-set {1, ..., @y,} in the way that a, j;1/@,; € Z, for 1 < j < n. Then it
m(m=1) __
follows by (1) and induction that for every 1 < m < n, H]’”Zl(au, i @"‘1) €q, > Zp. Thus, (2) follows.
Part (3) follows from the fact that ]_[;?:1 @,,j is aroot of unity and the fact that {a,c 1, ..., @ucn} = {a;’ll, e, a;’}l}.
O
Put
(3.13) I, = G(OF,) Xg,(0, /@, Pr(OF,|@y)

which is an open compact subgroup of G,(F,). For every u € P,, define two Hecke operators

+1,

+ -1
TL_I =1, (WV " w}luc -1 )IV
r

v

(in which the volume of /, is regarded as 1). In particular, T} = U, - I, (Notation 3.7).

Lemma 3.20. For every u € P,, the multisets of generalized eigenvalues of the actions of T, and T, on 71'11," are
A(my, r) and A(mye, r), respectively.

The proof of this lemma will be given at the end of this subsection.

Definition 3.21. We say that the (unramified) representation «, of G.(F,) is Panchishkin if B,, € OE for every
u € P, under the notation in Lemma 3.19.

Lemma 3.22. The following statements are equivalent:

(1) m, is Panchishkin unramified;
(2) 7, is Panchishkin unramified;
(3) A(my, r) contains a unique element in OE for some u € P,

Proof. This is an immediate consequence of Lemma 3.19. The fact that the unique element in A(r,,, r) DZ; belongs
to L follows from the Galois action and the uniqueness. O

Lemma 3.23. Suppose that nt, is Panchishkin unramified.

(1) The one-dimensional subspace of ﬂi" that is the eigenspace of the operator T} for the eigenvalue that is
the unique element in A(rr,, r) N Oi is independent of u € P,,.

(2) The one-dimensional subspace of 71\],” that is the eigenspace of the operator T, for the eigenvalue that is
the unique element in A(m,c,r) N OF is independent of u € P,

The proof of this lemma will be given at the end of this subsection.

Notation 3.24. Suppose that 7, is Panchishkin unramified.
(1) For every u € P,, we denote by a(r,) € OE the unique element in Lemma 3.23(3).

(2) In view of Lemma 3.20 and Lemma 3.23, we denote by 7} and 7, the one-dimensional subspaces of h
that are the eigenspaces of the operators T, and T, for the eigenvalues a(r,) and a(n,c) for every u € P,,
respectively.

Proposition 3.25. Suppose that n, is Panchishkin unramified.
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(1) For every u € P,, there is a unique polynomial Q. (T') € L[T] that divides P (T) and has the form
=1
Qe (D) =T 4yt T 4y T2 4 4 yur - qy

with y,,, € Of.
(2) There is a unique L-valued locally constant function &, on G,(F,) such that

(a) there exist ¢, € (n))~ and ¢, € 1, such that &, = (n)(8)¢y , ¢v)x, for g € G.(F,);

(b) &x,(wy) = 1.

In particular, &, is bi-1,-invariant.
(3) For u € P, denote by m, the unramified principal series of GL,(F\) with Qg (T) as its Satake polynomial,

which is defined over L. Then there exist GL,(OF,)-invariant vectors ¢, € n, and ¢, € (n,)" for every

u € P, such that

&n m(a)w) = | [<xu@e)du &) imy+
u€ebP,

holds for every a = (ay)y € GL,(E)) = [,ep, GL(Ey).

In this rest of this subsection, we prove Lemma 3.20, Lemma 3.23 and Proposition 3.25. To ease the notation,
we will suppress the subscript v hence F = F,, P = P,, and m = m, temporarily. It is easy to see that for these three
statements, we may replace L by a finite extension (inside @p). Thus, without loss of generality, we may assume
that I contains both /g and «,, ; foru € P and 1 < j < n. We need some preparation on Jacquet modules.

For every subset J C {1,...,n}, put J = {1,...,n}\ J. For every subset J C {1,...,n} of cardinality r, every
u € P and every sign € € {+, -}, we denote by I(a,, ; /¢ | j € J) the unramified principal series of GL,(F) with the
Satake parameter {a, ;j /g | j € J}, with coeflicients in L.

Put ?, = w;lPrwr and let Nr be its unipotent radical. We identify both Levi quotients P,/N, and ?’r /N, with
Resg/r GL, via the map m in §2.1(G4). We define the Jacquet modules

nn, =n/[{g —m(n)p | n € Ny (F), ¢ € n},
ng, = x/lg —n(n)g | n € N.(F).¢ € 7},

which are admissible representations of GL,(E) of finite length. Fix an order {u;,up} of P. Recall that
{@u 1@ nd = 1), ey ). Without loss of generality, we may assume @y, @, ; = 1 for 1 < j < n.

It is well-known that

wy = D W NG 1€ )8 lanVa" i),

JCl1,....n}
=
72 = (D w7 e @l V7 |j <.
JC(l,....n}
I

as representations of GL,(E) = GL(E,,) X GL,(E,,). Since w, conjugates m(aj,az) € G2,(F) to m(tagl , tal‘] ), the
isomorphism w, 7r_—> m descends to an isomorphism ”153, - zr%r that sends Iy, ;g "1 j € J)®RI(aw, j\g"1j € J)
to lau,,jvg' | je B, j\q | jE ).

Proofs of Lemma 3.20 and Lemma 3.23. The element

o e 1,
(—‘w’l”'l GGV(F)

normalizes I and induces an operator on 7! that switches T} and w'«~!« . T,. In particular, if the multiset of
generalized eigenvalues of T, on n! is A(rr,, r), then the multiset for T}, is

_ 2
[l_[a/uj-] NZ TSl =,
jeJ

which is nothing but A(rr,c, r). Thus, it suffices to study T} in both lemmas.
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The quotient map 7 — my, induces an isomorphism

al 2 2S00
,

under which the operator T; (which is nothing but the operator U, in Notation 3.7) corresponds to the operator
qr2 . (wlu-I, lr )

Since the operator (wlu’lf 1r) actson I(e,j+g "l je N R(au j+\g | j€ D by the scalar [] je; @y, \/6_’2, the
multiset of (generalized) eigenvalues of T} on n!is A(m,, r). Lemma 3.20 is proved.

Now we consider Lemma 3.23, for which it suffices to show (1). For i = 1,2, let J; be the unique subset of
{1,...,n} of cardinality r such that [];c;, @y, ; \/Zf’z € Z;,(. Then J; U J; = {1,...,n}. Thus, for bothi = 1,2,
the one-dimensional subspace of 7/ that is the eigenspace of the operator T,, for the eigenvalue that is the unique
element in A(r,,;, r) N OE is the GL,(Og)-invariant subspace of (@, j+/g™" | j € J1) ®(a@y, j\/g"" | j € J2). Lemma
3.23 is proved. O

Proof of Proposition 3.25. Without loss of generality, by Lemma 3.22, we may assume that the unique subset J of
{1,...,n} with |J| = r such that \/6’2 [Tjesau.j€ OE is {1,...,r}. It follows that the unique subset J of {1,...,n}

with |J] = r such that v~ [1jcs @u,; € OF is {r+ 1,...,n).
For (1), note that every factor of P, (7T") in L[T] that is monic of degree r has the form

[ (7 -aw;va)

jeJ

for some J C {1,...,n} with |J| = r. In particular, the corresponding term v, , equals +/g" ? [1jes @u,j. Thus, we
must have

Qr, (D) = [ [(T - €wjvT™"), Quy (D)= [ ] (T - cwnjvg"™).
J=1 j=r+l

For (2) and (3), it suffices to show the following claim: For nonzero vectors ¢¥ € (n¥)™ and ¢ € 7™, there exist
nonzero GL(OF)-invariant vectors ¢ € my,, o] € (. W, € M b5 € (72)V such that

2
(' (m(ar, a)we’, @) = | [(rulas-ei, 6 der,
i=1 T

holds for every (aj,a2) € GL(E) = GL.(E,,) X GL.(E},).
Again by Lemma 3.22, the two factors

Wau,j Vg 11<j<nB(au,Vg Ir+1<j<n),
W@, jVg " Ir+1<r<m @, Vg I1<j<r)

are direct summands of 7ry,. We see from the proof of Lemma 3.23 that under the projection 7 — 7., the one-
dimensional subspaces 7", 7~ C ! map to

Hay, jvVg 11<j< r)GL’(OF) Ry, Vg ' |r+1<j< n)GL’(OF),

W j Vg 1r+1<r<n)™ O g1, Vg |I1< <O,
respectively. However, we observe that
I j Vg " lr+1<r<n) = (M)’ W@ g 11<j<r)=(m,)".

The claim follows.
The proposition is proved. O
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3.4. Local doubling zeta integral. Let  be as in §3.3. Let y: I'r,, — C* be a finite character, regarded as an
automorphic character of A%.

Take a finite place v € V%“. For every ¢ € 7/, ¢, € m, and f € I, (x,), we have the local doubling zeta integral

240! ® ¢, f) = f T (@Y, e)m - FWi(g, 12,)) dg
G.(F,)

for every embedding ¢: L. — C. Here, w, is defined in (3.1) and (g, 15,) is an element of G,,(F,) via the embedding
(3.2). Since ur, is tempered, the above integral is absolutely convergent by [ , Lemma 7.2].

Lemma 3.26. Define a map ¢: (Resg/r GL,) X Hermp X Hermp — G, by the formula

1, up\[—a 0 1, u
g(a’ Ml’MZ) = (Or li)( 0 _tac,—l)wr(or 1}1’)

whose image is contained in the big Bruhat cell P,vi,N,. Then Z(¢, ® ¢,, f) equals
u ‘a°
f Ky (s(a, ur, u2))gy, o)x, - X(NMEg,r, deta)ldet al, - f (W? n ( )) ds(a, uy, up),
Pr(F\)w.N,(F) a v

where the integral is absolutely convergent. Here, we recall that W = wy, = (_1% Lar ) from §1.6.
Proof. This formula is deduced in the proof of [ , Proposition 3.13]. O

Definition 3.27. For a pair ¢, € mr) and ¢, € 7, we say that an element £ € . (Hermy,(F,)) is (¢, ¢y)-typical if
its Fourier transform f € . (Herm,,(F,)) with respect to ¢, (recall from §1.6) satisfies

(D) Etakes values in Q;
(2) f is supported on the subset

{le %)

f <7T‘\}/(§(Cl, MI’MZ))QD\\)/’ ‘p\/)ﬂ'\, ’f((
G (Fy)

where the integration is in fact a finite sum by (2) and ¢ is the map in Lemma 3.26.

a € GL,(Og,),u1,uz € Hermr(OFV)} C Hermy,(F,);

3) f satisfies

t,C
u ‘'a B
a u )) dg(a, ur,uz) =1,

Remark 3.28. Tt is easy to see that (¢, ¢,)-typical element exists if (m)/ (w,)¢, , ¢y )z, € Q%.

Lemma 3.29. Consider ¢, € rn), ¢, € m, and a (p), ¢,)-typical element £ € .#(Hermy,(F,)). If x, is unramified,
then

Z'(p) @y, £) = 1
(see Notation 3.4 for £Xv) holds for every ¢: L — C.

Proof. This is immediate from Lemma 3.26 and Definition 3.27. O
This following lemma will not be used until Section 4.

Lemma 3.30. For every ¢ € ), ¢, € nt, and a Q-valued section f € 12 (1), there exists a unique element

Z(py ® ¢y, f) €L
such that for every embedding v: L — C, (Z(¢) ® ¢y, f) coincides with Z'(¢,| ® ¢y, f).

Proof. We may regard IZ (1) as a representation with coefficients in Q. Let Q be the set of all embeddings ¢: L —
C. The assignment

(90\\;/ ® ¢y, f) d {ZL(‘;D\\;/ ® ¢y, f)}LEQ
defines an element
3 € Homg, (£,)xG,(F,) ((ﬂy B ) ® L, (1), CQ)-

We need to show that 3 takes values in L, which is tautologically a subring of C®. By [ , Proposition 3.6(1)],
it suffices to find one pair of elements (¢, ® ¢, f) such that 3(¢, ® ¢, f) € L*. Indeed, choose ¢, € ), ¢, € 7,
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such that () (w,)¢), ov)x, = 1, and a (¢, @,)-typical element £ € .(Hermy,(F,)) (which exists by Remark 3.28).
Then £! is Q-valued. By Lemma 3.29, 3(¢) ® ¢y, f1) = 1 € LX. The lemma is proved. O

Lemma 3.31. Suppose that v ¢ ng) . If m, is unramified with respect to K,., and ¢,/ , ¢, are both K, -invariant such
that @), py)x, = 1, then for every 1: L — C,

L(3,BC(um,) ® (xy o Nmg,/r,))

sph
2! o ") =

bZr,v(X) ’
where ]j?f’h is defined in Notation 3.4(2).
Proof. This is a well-known calculation of Piatetski-Shapiro and Rallis. See [ , Theorem 3.1] for a full account
including our case. O

Proposition 3.32. Suppose that v € Vg’) and that n, is Panchishkin unramified. For every embedding t: L — C,
we have

2
f én,(9) - (B (w,(g, 12,)) dg = ¢ l—[ Y5, ity ® xo, WEy) ™!
G/(F))

uep,

where &, and mty are introduced in Proposition 3.25.
Note that the left-hand side is a local doubling zeta integral.

Proof. To ease notation, we omit v and ¢ in the proof. In particular, w“ generates the different ideal of F/ Qp, and
&y is C-valued.
By Lemma 3.26, we have

n(g) - (£ (w,(g, 12,)) dg

G (F)
G.14) = &n(s(a, ur, uz)) - Y(Nmg g deta) - [Nmg,p deta|}V . f)[(o](a, ur, uz) - de(a, uy, un),
G (F)
where
~o0 t c TI:I TD
f[OJ(a’ ui, MZ) = f f[OJ(TD)lﬁF (tr (ul a )( 11 12)) d7r"
* Herma, (F) " a w)\Ty T

in which dT" is the self-dual measure with respect to ¢/f.
It follows easily that

(3.15) E[a(a —_ q_dr LL o )X(NmE/F det T (TrgyptraT) AT if uy,uy € @ ‘Herm,(OF),
. X s Ui, u2) = r(VE

0 otherwise,

in which dT is the self-dual measure on Mat,..(E) with respect to y/r.
Since &; is bi-I-invariant, (3.15) implies that

2
(3.14) = qdr f Ex(m(a)w,) - y(Nmg,p deta) - |[Nmg,r detaly,
GL,(E)

X (f )((NIHE/F detT)yr (TrE/F tr aT) dT) da,
GL(Ok)

which, by Proposition 3.25(3), equals

=" [ | ( f @@ $u)izy - x(deta) - [det aly ( f x(det Tyyp (tral) dT) da)
GL.(F) - GL(OF)

Uuep

=q" ( f (7 ® )@us )z - 1det aly ( f x(detThyr (traT) dT) d")'
wep \WJGL.(F) - GL,(OF)
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Applying [ , Proposition 1.2(3)] with @ = (y o det) - 1.0, We have

f (4 ® X)) @Pus b ), - Idet al, ( f x(detT)p (traT) dT) da
GL.(F) - G

L-(Or)

1-r
= 7(—1;, (7y ®x)",UF) fGL ( )<¢u, (1y ®X)V(a)¢x>(,ru®)()v - |det aIF2 - x(deta) - 1gL,0,(a) da
(F -

= ’)/(%’ (ﬂ ®/\/)v’ WF) ) <¢1\4/’ ¢u>ﬂl
= y(E @ X Ur) " By Budn,

Together, we have

@14 = ¢ [ [y mu @)™ - B budm

ueP
2 _ 2 _
=" &) | [yt meexun ™ = ¢ | [y mex.un ™.
ueP ueP

The proposition is proved. o

3.5. Construction of the p-adic L-function. Let 7 be a relevant L-representation of G,(A}) for some finite

extension L/Q,, contained in @p such that 7, is Panchishkin unramified for every v € ng).

Choose a finite set ¢ of places of Q containing {oo, p} such that m, is unramified (hence v ¢ V;2™) for every
veve\ V.

We choose decomposable elements ¢ = ®,¢1, € Vi and g2 = ®,¢2,, € V, satistying

(T1) (xYW)@] . @2udn, = 1 forv e VS,

_ _ T d,r?

(T2) @] | € (M), @2 € 7y and (x) (W)@] . @20)m, = ¢, forv e VL,
KN Krv K.

(T3) ¢} € @)X, 0y € m," and (@] |, @24)r, = 1 forv e Vp \ V.

Note that (T2) is possible by Proposition 3.25(2). We also choose a (gpi ,» ¥2.v)-typical element £, € < (Hermy,(F,))

(Definition 3.21, which exists by (T1) and Remark 3.28) for v € V'V,
For every finite character y : I'r,, — C*, put

fer= Q) fu €00,
vevimy'?

where f, € IEV(XV) is the section £ (resp. ]j(sfh) forv e V;?\{oo’p}) (resp. v € Vg \ V;O)).
Consider an open compact subset 2 C I'r,. By the linear independence of characters, one can write

1o = Z Ci* Xi
i
as a finite sum in a unique way with ¢; € C and finite characters y;: I'r, — C*. For an element e € ZF, we put
55](_’ Q) = Z Ciﬁg](_vvi’ f;(?op)’
i
where D' (—, i, fe) is defined in (3.8).

For every w ¢ &, we choose a nonnegative power A,, of w such that Ga,(Fyy) () Gar(Zy) X G Zo/A) Por(Zy/Av)
is contained in K»,,, (and we may take A,, = 1 when w is unramified in E). For every w € ¢ \ {oo, p}, we may
choose a nonnegative power A,, of w such that ® v fy, 1s fixed by the kernel of the map ézr(Zw) - ézr(ZW /Ay)
for every finite character y : I'r, — C*. Indeed, by Definition 3.27(2), the restriction of f, to K, is independent

of y,, which implies the existence of A,,. Finally, put

A::]—[AW, N = ]—[ A,.

weo wed\{oo,p}
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Lemma 3.33. For every open compact subset Q C T, if |lel| > O, then
hy (D)= Q) € im H (K, (p?A, A7)
deN
(Notation 2.10).

Proof. By construction and Lemma 3.10, it is clear that
by (D= @) € lim HIK,(p!A, ') @g C.
deN
It remains to show the rationality when |le|| > O.

Take an arbitrary element o € Aut(C/Q). We have o f,, = fo,, forevery v € Vgn \ ng) and every finite character
x: I'r,, = C* by construction. By Proposition 3.13, we have

0'71;,, (55](—, Q)) = i;r,r [Z U(Ci)ﬁg](_’ oXi, fo.Xl?"l’)) .

1

On the other hand, we have 1g = olg = }; o(c;) - oxi, which implies that

Fil’r,r (Z O'(C[)BESJ(_, OXis fo,on1))] = Er’r (55:](_, Q)) )

1

The lemma is proved. O
Lemma 3.34. For every open compact subset Q C I'rp, if |le]| > O, then there is a unique element
D (=, Q) € lim H (K, (p'A, A))
deN
(Notation 2.10) such that _
&,08(-.Q) = b, (DY (-, Q)
in terms of the diagram (2.6).

Proof. Since the center of 52,(A°°) (as a subgroup of 5,,,(A°°)) acts trivially on 551(—,9), the element
I Z,ﬁg](—, Q) descends to the desired element Z)Ef](—, Q). O

Notation 3.35. By Remark 2.4(2), we have a map
Pr, 4 =PIy ® pry: HY) = H ®q, HI - Voo Vi

that is the tensor product of pr, and pr; from Lemma 3.17. In what follows, for every ¥ € Wr[rr], ¢1 € Vi and
@ € V,, we put

(01 ® @2, Vonp = (SOZ’ Ma Prnfrl}'>n>

Definition 3.36. We define an LL-valued distribution d.i”po () on I'f,, to be the following assignment

7t

-1
QCTf, - [1_[ a(ﬂu)] (901 ® @2, DY) (-, Q)>

uep

A
R

which is additive from the construction. Here, 1 is regarded as a constant tuple in NF.

Theorem 3.37. The distribution d,i”po(n) on I'r, in Definition 3.36 is a p-adic measure. Moreover, if we denote
by fpo(ﬂ) the induced (bounded) analytic function on ZF,, ®q, L, then for every finite (continuous) character
x:Tpp— Q; and every embedding 1: Q, — C, we have

Z£F Ql

1
LLAm() = o -

B e [T] ] dmexvr)™ - L, BCu®) @ (x° o Nmp ),

vey!?) uePy

where
> I'(1)---T(r)

I'r+1)---T'(2r)

Z, = (=127 27
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and m, is introduced in Proposition 3.25. In particular, in terms of the data chosen from this subsection, <, <>(7r)
depends on & only, justifying its notation.

Proof. For the first statement, it amounts to showing that the map

-1
Q- fg; dgpo(ﬂ) = (H a(ﬂu)) <"01 ® SDZ’Z)Q](_’Q))ﬂ,ﬁ €L

uep

is uniformly bounded.
Now we show the uniform boundedness. By Lemma 3.38 below, for every Q, there is an integer e = eq > 1,
regarded as a constant tuple in N¥, such that

DG (= Q) € HI (K, (pA, A)).
By (T2) and Lemma 3.11, we have

—e

fgdzf(n): [ o] (ero@) e D)

UepP
—e

= ]_I a(ry) <tp1 ® @2, (1 x UZ_I)DQJ(_’ Q)>7r,fr

ueP
—e

= l_la(ﬂ'u) <()01 ®¢2’D£§](_’Q)>n,fr

uUep

where T, = [1uep T,. Since a(n,) € OE for every u € P and ‘I-{,[f,](K(pA, A")) is a finite-dimensional Q,-vector
space, it suffices to show that there exists an integer M > 0 such that

pMq,.(g- D¥(~, Q) € SF,(Z,)

holds for every g € GN(AO), every e > 1 and every Q. By (2.11), it suffices to study ¢,,(g - EEf](—,Q)). We

may choose M such that p¥ Wfr T, eytorien E(TD) € Zp) for every T" € HermS (F). Then by Lemma 3.12 and
F

Lemma 3.5(1), quzr(g . ng](—,Q)) € SFZ,(ZP) holds for every 1 < j < s, every e > 1 and every Q. Thus, we

have shown that d.Z, <>(7r) is a p-adic measure.

Next, we show the second statement, that is, the interpolation property. By construction, Remark 3.16 and
Lemma 3.11, for every finite character y: I'r,, — QX and embedding ¢: Qp - C,

-1
| .
LLL (M) = [t [] a’(ﬂu)] oy f f ¢ (gD (8D EN (g1, 82), wx, fiyer) dgi1 dgo

UepP

(GHF\GHAFR))

(PL Y f f @ (gD (8D EN (81, 82), . fiyr) dgi1 dgo

(G(F)\G(Ap))
(3.16) = 5y f f (@D (1) (8D ES (1. 83). X fiyor) dg1 dga.

" (GHF)\GH(Ap))?
By (3.6),
(3.16) = (P[)z-b%(l)‘l 500 f f (@D (815 (8DE (g1, 81). [ @ (£L))1? ® fyeor) gy dgo

" (GH(F)\GH(AF))

GI7 = G M7 by ) f f (@D (g (8)E(81. 82). [ @ (E)X7 ® fiyer) gy o,

(G(F\G(AF))
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where we have used (g1, g;) = 1(g1, g2) as in Remark 3.1. By the well-known doubling integral expansion (see
[Ral82] or [Liulla, Section 2B] in the case of unitary groups) and Lemma 3.31, we have

L3, BC(tn®) ® (x® o Nmg/r))
bS ()

f f (@D (8184 (82)E1(81. 82). f41 ® (£))X7 fyeor) dgi dgn =

(G (F\G(Ap))?
0 , T
X Z(@] ® @)oo f5D - [ | 2401, @ 020 (B ) [ ] 2], © 0200 firn).

(p) (O\{eo,p})
vevy VeV

There are three cases:

e By [EL, Theorem 1.3 & Proposition 3.3.2] (withn =k =2r,a=b=r,11=-- =7, =r,vi =+ =V, =
—r, and y}. = 1), we have (see the proof of [LLL21, Proposition 3.7] for more details)

e By (T2) and Proposition 3.32, for v € Vg’) , we have

. . )
Z4p;, ® o (i) = [ [ (55l @ 3, )™

uepP,

e By Lemma 3.29, for v € ng\{m’p}), we have Z‘(gof L@@y, fon) = 1
Putting together, we have

Z[F Q]

1
GI7) =57 H ]_[ Y5 1 @ ) )™ - L3, BC@r®) @ (® o Nmg ).

Ll

The theorem is proved. O

Lemma 3.38. For every finite character y: T'r,, — C*, there exists e, € N such that for every e € NP satisfying

ey > ey for every u € P, the section (f)[fp] Yer is invariant under ]_[VEv(p) Gr.(OF,)Xg,,0r, jo)Pr.(OF, /@) (Definition
F > v ’

2.9).

Proof. 1t is well-known that for every v € fo) and u € P,, we have IU,1¢ = 971U, I¢ for every integer d > 2
where I? == G.(OF,) Xg, 0y, /) Pr(OF,[@?). Since (£ is fixed by [1,eyp Prr(OF,). it follows that there
exists a pair (e,1,ey0) € N X N such that for every (e, e;) € NP x NP satisfying e;, > e, and ey, > e, for
every u € P, (U} x Uez)(f[o]))fl’ is invariant under Hvev(Fp) Gr.r(OF,) XG,,(0r, /@) Prr(OF,/@,). By Lemma 3.11,

[eS+er]

(U, x Uf,z)(f)[((l]))(l’ (f,, ). Thus, the lemma follows by taking e, = e;1 + €,2. o

To end this subsection, we discuss the parity of the vanishing order of .Z, <>(71) at 1. For every v € Vﬁn the
root number e(BC(r,) ® vy, o Nmg, r,) does not depend on the finite character y: I'r,, — Qp and the embedding
L @p — C, which we denote by €(rr,). Put €(n) := Hvevﬁn €(m,), which is indeed a finite product.

Proposition 3.39. The vanishing order of £, <>(7r) at 1 has the same parity as r[F : Q] + 1= E(")

Proof. Denote by ng the subgroup of I'r, generated by uniformizers above < \ {co, p}. For every v € V;O\{m’p ,

there is a unique element .Z,(m,) € L(Fﬁp) such that for every finite character y: I'r,, — @; and every embedding

L @p - C,1.Z%y(m)(x) = L(%, BC(tr,) ® (tyy o Nmg,/r,)). In particular, £, (x,) has neither poles nor zeros at
points corresponding to finite characters.
Put

Zm=22m || b Ly,

cu(O\eo,p))
vevy
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regarded as an element of Z,[[I'r,,]] ®Z,,[r§ ] ]L(I“;Zp). Then .Z), () is the unique element such that for every finite
P ’

character y: I'r, — Q} and every embedding ¢: Q, — C,

Z,[,F Q]

D [T] 15 dmexnvr)™ - LG BCG) @ (1 o Nmgyp))

vev'p) UeP,

1
Lgp(ﬂ)(X) = P_[ :

holds. As BC(u#t,) =~ BC(um)') ~ BC(urr,) o ¢ for every v € Vg, we have the functional equation
(3.18) 1Zy(m)(x) = eBC(m) ® 1y o Nmg/F) - L.fp(n)()(_l)
(Definition 1.1) for the root number

e(BC('m) ® ty o Nmg/r) = l_l e(BC(‘my) @ vy, o Nmg, /5,) € {£1}.
veVp

(c0)

It is clear that forv e V F

by definition.
To summarize, if we denote by V the involution on Z,[[I'f]] ®Zp[r§ ! L(F;Zp) induced by the inverse homomor-
P K

, €(BC(‘my)®1yy oNmg, /r,) = (=1)"; and for v € Vf}n, e(BC(‘m,) @y, oNmg, /r,) = €(n,)

phism of I'r,,, then (3.18) implies the functional equation
L) = (=) e(n) - Z,(m)".

It follows that the vanishing order of .Z},(rr) at 1 has the same parity as r[F : Q] + # The proposition is then
proved since the vanishing order of .Zpo (m) at 1 is same as that of .Z, (7). O

Remark 3.40. We expect that the p-adic L-function .Z),() constructed in the proof of Proposition 3.39 is again a
p-adic measure, that is, an element of Z,[[I'r,,]] ®z, L.

3.6. Remarks on p-adic measures. In this subsection, we review some facts about derivatives of p-adic measures
and make some remarks that will be used in the next section. For d > 1, we denote by U, the image of 1 + O ®
(dep) in I'r,, which is an open subgroup of finite index.

Let du be an L-valued p-adic measure on I'r, (for a finite extension L./Q,). For every continuous character
x: I'rp — R* for a complete L-ring R, we put

M) = fr X dy = lim Zx(x) vol(xUy, du)

Fp xely

where I'y C I'; C --- is an arbitrary increasing chain of sets of representatives of I'r,,,/Uy ford = 1,2,.... Then
u(x) does not depend on (I'y)4 and defines a bounded rigid analytic function 4 on ZF,, ®g, L, or equivalently an
element in Z,[[T'r,]1®z, L. We consider its derivative du(1) at 1, which is an element in I'r , ®z, L — the cotangent
space of ZF,, ®q, L at 1. More precisely, du(1) is the linear functional in Homgz,(Homgz, (I'r, , Z,), L) that sends
e HOII]ZP (FF,pa Zp) to

1 1
Oap(1) = lim I (uexp(p D) — p(D) = lim o [}ggo Z(eXp(pC/l(X)) — 1) vol(xUy, dp).

xel"d
Since
1 ) € A(x)? 2 Q(x)3
L exp(p ) - 1) = Ay + LA 2T
pe 2! 3!
and vol(xUy, du) is bounded independent of x and d, we have
(3.19) 0,u(1) = lim Z A(x) vol(xUy, du).

xel’y

Definition 3.41. We say that an L-valued p-adic measure du on I'g), is integral if vol(Q2, du) € Oy for every open
compact subset Q C I'g,, that is, u belongs to O [[I'f,]].
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Lemma 3.42. Let du be an integral L-valued p-adic measure on U, . Then for every A € Homg, (U'r, Zp) and
everyd > 1, we have
Oau(1) = " A(x) vol(xUy, dpr) € p 0.
xely

In particular, du(1) € Fg’p ®z, OL.

Proof. Since U, C pT'rp,, we have A(x) — A(x’) € p?Oy, if x = ¥’ in g,/ Uy. Then the lemma follows from (3.19)
since du is integral. m|

The discussion of this subsection can be easily generalized to p-adic measures valued in a finite product of finite
extensions of L.

4. SELMER THETA LIFTS AND THEIR P-ADIC HEIGHTS

In this section, we introduce Selmer theta lifts and study their p-adic heights. We fix an embedding E — C and
regard E as a subfield of C and regard E as the algebraic closure of E in C. Fix an even positive integer n = 2r.

4.1. Hermitian spaces and Weil representations. Let 7 be a relevant L-representation of G,(AY) for some finite
extension L/Q,, contained in @p.

Choose a finite set < of places of Q containing {co, p} such that 7, is unramified (hence v ¢ V;2™) for every
vevp\ v

Let V,(, )y be a hermitian space (that is nondegenerate and E-linear in the second variable) over E of rank n
that is split at every v € Vg \ V%O), has signature (n — 1, 1) along the induced inclusion F C R and signature (n, 0) at
other archimedean places of F. We introduce the following sets of notation.

(H1) For every F-ring R and every integer m > 0, we denote by
T(x) = ((xi,xj)v) ; € Herm,,(R)

i,
the moment matrix of an element x = (x1,...,x;) € V" ®fr R.
(H2) For every v € Vg, we put €, := ng/r((—1)"det V) € {£1}. In particular, €, = 1 for v ¢ Vg}).
(H3) Letv e Vgn be an element and m > 0 an integer.
e For T € Herm,,(F,), we put (V")r :={x e V' |T(x) =T}, and

(V:;n)reg = U (V\T)T’
TeHerm;,(F,)
where we recall Herm,, from §2.1(F3).
e For every Z[p; K py)-ring M, we have a Fourier transform map ™ : .7(V/", M) — .(V]',M) sending
¢ to ¢ defined by the formula

B(x) = j‘: . dOWEy [TTEV/FV Z(xi’)’i)v) dy,
v i=1

which is in fact a finite sum, where dy is the self-dual Haar measure on V| with respect to ¥/r,. In
what follows, we will always use this self-dual Haar measure on V.

(H4) Put H := U(V), which is a reductive group over F.

(H5) Forv € Vlﬁpn \ {v € V2™ | either €, = —1 or v | 2}, a good lattice of V, is an O, -lattice A, of V, that is a

subgroup of A\ of index qi_e", where
AY = {x €V, | Trg,/r,(x,y)y € p," forevery y € A, }.
We say that
e an open compact subgroup L° of H (A%) is good if it is the product of the stabilizers of good lattices
atv ¢ Vi \ V(O);

e a Schwartz function ¢® € .Z (V" ®F Ag) is good if the it is the product of 147 in which A, is a good
lattice of V.
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(H6) Denote by T the (abstract) spherical Hecke algebra of rank-n unitary groups over E away from <, and S
its subring consisting of Hecke operators supported on places split in E. In particular, for every good open
compact subgroup L of H (Aﬁ), we have canonical isomorphisms

T® = ZILO\H(AD)/L®), 8% = lim Z[L{\H(Fr)/Ly]® 1por

sply ()
TV, \Vg
|T|<oo

of commutative rings.
(H7) For every integer m > 1, every v € Vf}“ and every Z[p;'1(p,)-ring M, we have the Weil representation w,, ,
of G (F,) X H(F,) on .7(V]',M) given by the following formulae:
e fora € GL,,(E,) and ¢ € ./ (V]", M), we have

Wmy(m(a))(x) = |detaly - ¢(xa);
e for b € Herm,,(F,) and ¢ € .(V', M), we have

W y(n(D))P(x) = Ypy(tr DT (x))p(x);
e for ¢ € S (V]',M), we have

—

Wi,y (W) p(x) = 7’&",,“‘, - 9(x),

where yv, ., € {£1} is the Weil constant of V), with respect to ¥r,;
e for h € H(F,) and ¢ € . (V]', M), we have

Wmy(M(x) = p(h™" x).
(H8) When m = n = 2r, we have the Siegel-Weil section map
SV v - 1,0
for v € V" sending @ to 3" defined by the formula
f3V (@) = (W2rn(@)®) (0), g € Goy(F,) = GR(F,).

(H9) For every v € V", there is a unique Q-valued Haar measure dh, on H(F,), called the Siegel-Weil measure,
satisfying that for every 7" € HermS (F,) and every ® € ./ (ver )1

Iro(®) := f (h, ' x) dhy = by (1) - Wra(f30),
H(Fy,)

where x is an arbitrary element in (VVZ’)T\:. When v is unramified over Q and H ®p F), is unramified, the
measure dh, gives volume 1 to every hyperspecial maximal subgroup of H(F,). For ® € .#(VZ", R) with
R a general Q-ring, I70(®) is well-defined and belongs to R.

(H10) Let¢: L — C be an embedding. For every v € Vi, put

O(urry) = Homg,(r,) (- (Vy,), trry)
as a complex representation of H(F,). Then put

() =® . 0(m,)

vevg“
as a complex representation of H(AY).

Lemma 4.1. For every v € V%n, there exists a (unique up to isomorphism) hermitian space Vy, over E, of rank n
such that for every embedding v: L — C, 0(ury) # 0 if and only if V, = V. When V,, = V. , 8(m,) is a tempered
irreducible admissible representation of H(F,), satisfying

Homp(r,) (Y (V) e(mv)) ~um,
as C[Gr(Fv)]-modules.

H'We recall our convention from §1.6 that .#( V2") means .7 (V>, C).
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Proof. For every fixed embedding ¢: L — C, the existence and the uniqueness of V follow from the local theta
dichotomy [ , Theorem 3.10] (see also [ , Corollary 4.4] and [ , Theorem 2.1.7]). As V,, does not
change if we twist the additive character ¥, by automorphisms of C, it is the same for all «.

Since umr, is tempered, the irreducibility and the temperedness of 6(ur,,) follow from [ , Theorem 4.1(v)]
and (the same argument for) [ , Theorem 1.3(ii)], respectively. The last isomorphism follows from the dual
statements. O

Definition 4.2. We say that V (as above) is nr-coherent if V,, =~ V, for every v € Vg“.

Remark 4.3. We have the following remarks.

(1) The following conditions are equivalent for V as above: n-coherent, 7" -coherent, ' -coherent, #-coherent.
(2) There exists a hermitian space V as above that is r-coherent if and only if

4.1) 1_[ nesr (1) det Vy,)) = (1)1,

vy Vs
Moreover, when (4.1) holds, .Z,”(x) vanishes at 1.

In the rest of this subsection, we discuss the rationality of local theta liftings. For readers who are willing to fix
an embedding Q,, — C and do not care about the rationality of the coefficients of the Selmer theta lifts below, this
discussion may be ignored.

Take a place v € V%“. We say that 7, is symmetric if for every element a € F, n,* ~ m,, where f, is the
automorphism of G,(F,) given by the conjugation of the element ( L u lr) € GLy.(E,)."> Denote by Uy the subset

of Vlﬁpn consisting of v such that 7, is not symmetric.
It is easy to see that

(4.2) (@dwe | |Zi=Zave (] Nmgr E

w<oo veU, ﬂV(Fw>

is an open subgroup of Z*. Thus, we may define Q, to be the finite abelian extension of Q contained in C
determined by this subgroup via the global class field theory.

Remark 4.4. We have the following remarks concerning Q.

(1) Itis clear that Q; = Qy since Uy = U+ = Up.

(2) Ttis clear that in (4.2), we may replace U by U, N V2™,

(3) Suppose that we are in the situation of Assumption 1.6. For every v € Vi*™ and every a € O% , since T,
pp p y F ry ,

preserves K., we have 7'(3;" ~ g, that is, m, is symmetric. In other words, U, N VrFam = ( hence Q; = Q.

For this reason, the readers may just assume Q, = Q for further reading.
(4) Since every p-adic place of F splits in E, p is unramified in Q.

Lemma 4.5. For every v € V%“, every embedding 1: L — C, and every o € Aut(C/Qy), O(our,) is isomorphic to
gl(umy).

Proof. We have 00(tr,) = Homg, (0" (Vz,), oumy). The representation o (Vz,) has the same formulae of
definition as .(V ) except that n(b) sends ¢ to the function x > ¥, (atr bT(x))$(x) for some element a € Z;fv
(resp. a € Z;v NNmg,r, EY) if v ¢ Uy (resp. v € Uy). It follows that

Homg,(r, (0 (V;v), our,) =~ Homg, (r,) (- (V;V), 0'177:“) = O(oum,®).

By definition, we have nI“ ~ m,. The lemma follows. O

12Note that JTI“ ~ g, when a € Nmg, /f, EY.
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4.2. p-adic height pairing on unitary Shimura varieties. From this subsection, we will assume F # Q. Put
L;=L ®qQ Qr.

Back to the setup in §4.1, we have the projective system of Shimura varieties X; associated with Resp/qo H
indexed by neat open compact subgroups L C H(AY), which are smooth projective schemes over E of dimension

n—1. Put)_(L =X, ® E.
Lemma 4.6. For every L, there exists a unique decomposition

HE ™ (X1, La(r) = Hy ™ (X1, L () [0 @ Hy ™ (X1, L (1)) 6]
of La[L\H(A})/L)-modules such that for every homomorphism v: L, — C extending the inclusion Q, C C,
LHé{_l()_(L, L(r)[6] is isomorphic to a finite sum of copies of O(um)t (§4.1(H10)) and LH?{_I()_(L, L,,(r))[é;r] does
not contain ()" as a subquotient. 13

In what follow, we put V, = Hgt’ ‘1()_(L, L.(r)[0,]. It is clear that V.1 is nonzero only if V is m-coherent
(Definition 4.2).

Proof. For every given t, the existence of such a decomposition follows from Matsushima’s formula. It follows
from Lemma 4.5 that these decompositions are the same for all «. O

The Hochschild-Serre spectral sequence in [ , Corollary 3.4] induces a decreasing filtration
- CFPHE (X1, La(n) € F'HE (X1, La(r)) € FPHZ (X1, La(r)) = Hg (XL, La(r)
of Hgt’ (XL, Lx(r)) in the category of L[L\H(AY)/L]-modules such that there is a canonical isomorphism
FH (X1, La(r))
F+TH2 (X7, La(r))
Lemma 4.7. There exists a unique map of Ly[L\H(AY)/L]-modules
r H (X1, La(r)) = H' (E, H ™ (XL, La(r)[651)

=~ H' (E.HY (XL La(r)).

such that it vanishes on FzHgt’ (X1, Lx(r)) and induces the identity map on
F'HZ (X, L(r))
F2H2 (X, La(r))

H' (E.Hy ™ X1, La(r))I6x]) €

Proof. By [ , Proposition 6.9(1)], we have
(4.3) Homy, 1 masy) (Hi (X1 La(r), Hy ' (X1 La(r)[65]) =
as long as i # 2r — 1. In particular, we have
Homy, 1y mcagy/) (FPHE (XL, La(9), Hey ™ (X1, La(1)[6]) = 0
By Lemma 4.6, we have a unique map
or: FUHE (XL, La(r) — H' (E,H ™ (X, Le(r))[65])

satisfying the property in the lemma. It remains to show that p! extends uniquely to Hgt’ (X1, Lz(r)). The uniqueness
follows from (4.3) with i = 2r. For the existence, note that [ » Proposition 6.9(1)] actually implies that there
exists an element s € SE (by possibly enlarging <) such that s* annihilates Hg{ (X1, Lr(r)) and acts by the identity

map on HY/ ~1(X 1, Lz(r))[6y]. In particular, g, := ! o s* is such an extension. o

Denote by 87? ;. the subset of SE consisting of elements s such that s* annihilates FzHe?t’ (X1,L,(r)) and the
induced endomorphism of Hgt’ Xz, L,,(r))/FzHgt’ (Xz,Lr(r)) has image in H'(E, V). Itis clear that SXL is an
ideal. On the other hand, we have the Hecke character

X SE - L
given by its action on .

I3We warn the readers that the statement could be wrong if we replace L, by L.
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Lemma 4.8. Suppose that L is of the form Lo L® in which L° is good (§4.1(HS5)).
(1) Foreverys € S:’L, we have s* :)(;?(s) c P Héf(XL,Ln(r)) — HY(E, Vo).
(2) If Ly is of the form Hvev;?\“’“” L, in which for every v € V%O\{oo}) \V?l, L, is special maximal and 6(um,)™ + 0
for every embedding 1: L — C, then the restriction of )(;: to S:i ;1§ surjective.
Proof. By [ , Corollary A.6(2)], for every embedding ¢: L — C and every v € V;PI \ v, we have O(umy) =~

7, ®L, C. This already implies (1).
For (2), For every embedding ¢: L — C and every i € Z, we have

(4.4) HE (X1, L(M) 8L, C = ()" @c Homepymeag)u ()" HE (X1, L(r) €1, C)

7T/
in which 7’ runs over all irreducible admissible (complex) representations of H(A}), by Matsushima’s formula.
By [ , Proposition 6.9(1)], we may find s € SE that annihilates Hét()_(L,L(r)) for every i # 2r — 1 and such
that )(;:(s) = 1. It remains to show that if 7’ contributes nontrivially to Hgt’ 11X, L(r) in (4.4) satisfying that

m, =~ O(ur,) for every v € ijl \ V;O), then the same must hold for every v € Vlﬁp“. Indeed, by the strong multiplicity

one property [ , Theorem A] and the local-global compatibility of base change [ ], we already have the
isomorphism for v € ijl and that BC(n},) ~ BC(6(um,)) for v € V%n \ V?l. Now take an element v € Vlﬁprl \ ij].
Since both 7}, and 6(cmr,,) have nontrivial L,-invariants and L, is special maximal, they are constituents of the same
principal series representation p of H(F,). Since p!» is one-dimensional, they must be the same constituent. Thus,
(2) follows. O

Remark 4.9. In both [ ] and [ ], the authors mistakenly identified v}, with (x7), where x3: T¢,. — Q*
is the Hecke character in [ , Definition 6.8] (and similarly for )(f;v); in fact, they only coincide when restricted
to TBaCnR' As a consequence, one should replace X}f(s)c by )(iv (s)in [ , Proposition 6.10(1)]; and whenever
one asks for two elements in S}

oo \ m5, they should actually be in SF,. \ m%,. Such modifications do not affect the
proof of the results.

Lemma 4.10. Forv € Vgﬁ’), if m, is unramified, then V1 is crystalline at every place u of E above v.

Proof. If m, is unramified, then its local theta lift is also an unramified representation of H(F,). In particular, we

may assume that L is of the form L, L” in which L, is hyperspecial maximal. By [ , Theorem 4.5] (or a more
closely related discussion after [ , Proposition 7.1]), X; admits a finite étale cover that has smooth reduction
at every place u of E above v. Thus, V., is crystalline at u. O

Lemma 4.11. There is a unique up to isomorphism semisimple continuous representation p, of Gal(E/E) of
dimension n with coefficients in @p such that for every place u of E not above < that is split over F, p, is unramified
at u and a geometric Frobenius at u acts with a characteristic polynomial that coincides with the Satake polynomial
of m,, regarded as an unramified representation of GL,(E,). Moreover, we have pz ~ pS =~ p(1 — n).

Proof. The uniqueness of p, follows from its property and the Chebotarev density theorem; and the last statement
follows from the uniqueness. It remains to show the existence of pj.

Choose an isomorphism¢: Q) - C. By [ ], the automorphic base change of ®vev(°°)7r‘[’r] ®ur is an isobaric
F
sum of distinct unitary cuspidal automorphic representations I1; of GL,,(Ag) for some partition n = ny + - -+ + n;.

By [ , Theorem 3.2.3], for each 1 < j < s, we have a semisimple representation pry; of Gal(E/E) such that
for every place u of E not above < that is split over F, the restriction of pr; to the place u is unramified and

1-n

corresponds to the irreducible admissible representation (H u®| Ig) ®c ! @p of GL,,(E,) under the unramified

local Langlands correspondence. Then p, = @;zl p; does the job. O

Hypothesis 4.12. For every homomorphism v: L, — @p over L and every irreducible @p[Gal(E/E)]-module P
that is a subquotient of V, 1 ®r,_, @p, p is a direct summand of p(r).

Remark 4.13. We have the following remarks concerning Hypothesis 4.12.
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(1) Hypothesis 4.12 is equivalent to the parallel statement for 7.

(2) We understand that Hypothesis 4.12 will follow from a sequel of the work [ 1.

(3) A precise prediction of the semisimplification of V1 ®r,_, @p, if not zero, can be found in [ , Hypoth-
esis 6.6]. Such prediction is independent of .

(4) Itis conjectured that V.1 ®r,_, @p is irreducible as an @p[L\H (AP)/L] [Gal(F/ E)]-module. However, this
does not seem reachable at this moment.

From this moment, we will assume Hypothesis 4.12 without further mentioning.

Lemma 4.14. For every finite place u of E not above p, we have
H'(Ey, V1) = H(Ey, Vi) = 0
foreveryieZ.
Proof. By symmetry, we only need to consider V, ;. By Hypothesis 4.12, it suffices to show that H'(E,, p(r)) = 0

for such u. By [ , Theorem 1.1] and [ , Lemma 1.4(3)], we know that the associated Weil-Deligne
representation of p,(r)|g, is pure of weight —1, which implies that H'(E,, pr(r)) = 0 by (the proof of) [ ,
Proposition 2.5]. O

Lemma 4.15. Take v € Vg’). If m, is Panchishkin unramified (Definition 3.21), then both V, 1 |g, and V1 L|g, satisfy
the Panchishkin condition (Definition A.12) and are pure of weight —1 for u above v.

Proof. By symmetry and Lemma 3.22, we only need to consider V. ;. We will use the results and notational
conventions introduced in §A.6. Since V. is crystalline (Lemma 4.10), by Lemma A.14 and Hypothesis 4.12,
it suffices to show that p,(r)|g, satisfies the Panchishkin condition and is pure of weight —1 for u above v. By
[ , Theorem 1.1], we know that for every embedding 7: E, — @p,

(1) pz(r)lg, is crystalline and has Hodge-Tate weights {—r,—r+1,...,r — 1} att;

(2) the associated Weil-Deligne representation WD(p,(r)|g,)r (see §A.6) is unramified and its multiset of

generalized geometric Frobenius eigenvalues is {a, | @‘1, e Qg @‘1}.

By (2), we know that p,(r)|g, is pure of weight —1. Moreover, by Lemma 4.10 and Remark A.10, the multiset of
generalized p-eigenvalues on D := Deis(0(MlEg,) is {av1 V@ s - -+, @y Gy '} as well,

For the Panchishkin condition, by Lemma 3.22, we may assume that the unique subset J of {1,...,n} with
|J] = r such that @’2 [ljesavj€ OE is {1,...,r} without loss of generality. Then a, ; \/ﬁ_l belongs to Zp if and
only if i > r + 1. Let D™ c D be the L ®g, E, 0-submodule spanned by the generalized eigenspaces with respect
to the crystalline Frobenius for the eigenvalues {a, ; @‘1 | 1 < j < r}, which is the negative-slope submodule
defined in general in Lemma A.13. By the weak admissibility of D and rank counting, the map (A.4) for D* is an
isomorphism, and by inspection of the Newton and Hodge polygons, D* is weakly admissible. It follows that the
equivalent Panchishkin condition of Lemma A.13 is satisfied. O

If 7, is Panchishkin unramified for every v € Vif), then we may apply §A.7 to the case where K = E, X = X|,
d=d =r,L=L;,V=V,rand V' = V4. Indeed, (V1) is due to Lemma 4.14; (V2) and (V3) are due to Lemma
4.10 and Lemma 4.15. Consequently, we have a canonical p-adic height pairing

4.5) (o NVarVan)E: H}(E, Vi) X H}(E, Vir) = Tep®z, Ly

4.3. Selmer theta lifts. We take a finite set 4 of places of Q containing {co} and a subfield M of C containing
Q(Hweo\{m} w) and Qy.

Consider a neat open compact subgroup L € H(AY). Recall that for every element x € V" ®@r A}, we have
Kudla’s special cycle Z(x);, € Z"™(Xy) if T(x) € Herm,,(F)* and Z(x); € CH"(X1)q in general. See [ ,
Section 4] for more details in our setting. For every ¢ € . (V" Qp AR, M)K': XL and every T € Herm,,(F), we put

Zr@ = Y ¢Z00r

xEL\Vm®FA;O
T(x)=T

as an element in Z"(X;) ® M if T € Herm,,(F)" and in CH"(X;) ® M in general. Denote by
ZH@)r € HY'(Xp, Qp(m)) 8 M
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the image of Z7(¢);, under the (absolute) cycle class map Z"(X;) - CH"(X;) — Hét’”(X L, Qp(m)).
Definition 4.16. Suppose that m = r. We define the n-Selmer generating function to be

Ziu= ), or(Zlwi@e)n) 4" e H'E, Vo) @r, SFAL®GC), g€ GHAT).
TeHerm,(F)*

Here, w; is the restricted tensor product of w;,,, (§4.1(H7)) over all v € viin. and ¢ 1s the map in Lemma 4.7.14

Hypothesis 4.17 (Modularity of 7-Selmer generating functions). For every ¢ € / (V" ®r A7, C)K*™ L there exists
an element

Z;, € HY(E, V1) ®g, AU}
such that (1 ® ¢2")(g - Zg’L) = Zg(g)L holds in H'(E, V1) ®., SF,(L ®q C) for every g € G,(AY), where 2" is the
analytic g-expansion map (Definition 2.5).
Remark 4.18. Hypothesis 4.17 is implied by [LL.21, Hypothesis 4.5].

We warn the readers that Hypothesis 4.17 is stronger than the following statement: For every embedding ¢: L —
C, there exists an element ZZLL € H}(E, VL) ®L,x1 ﬂirl]ml such that for every g € G (AR), (1 ® ¢*")(g - Zg:LL)
coincides with the natural image of Zg (g)r in H'(E, V1) ®r,.x1 SF(C) induced by «. 15 The stronger statement in
Hypothesis 4.17 reflects, in some sense, the conjecture that the image of the absolute cycle class map CH"(X;) —

Hgt’ (X1, Qp(r)) is a finitely generated abelian group.

Recall from Definition 2.3 the Q,-vector space 7-{,“] and the subspaces V,, V; of 7‘(,“1 ®q, L introduced after
Lemma 3.14.

Proposition 4.19. Assume that Hypothesis 4.17 holds for n. Then for every ¢ € (V' ®p AL, M)Kr‘ XL there exists
a unique element

Z5, € HY(E, Vrp) 8L, (Ve ®g M)
such that for every embedding .: L — C, (Zg ), regarded as an element in H}(E » Vr1)®o, ﬂE‘rl]lOl via the inclusion
M C C, coincides with Zg I

Proof. We first explain that it suffices to find the element Zg , in H;(E s VL) ®0,800, (Wrm ®g M) Indeed, if we
can find such elements, then the assignment ¢ — Zg I defines a functional in

o0 K*XL 17l [r]
HomQﬂ[K,‘\G,(A:)/K,.‘][L\H(A?)/L] (,5” (V" ®@F Ay, M) ™ ,Hf(E, VL) ®Q,800, (7-{/ ®0 M))

By the definition of V. = Hzt’ “1(X 1, Le(r)[0,] from Lemma 4.6 and Lemma 4.1, the functional Z”* ;, must take
values in the subspace H}.(E ,Var)®L, ((V,r ®g M) (which could be zero).
Now we show the existence of Zg, ;, as an element in H}(E ,Var) ®Q,80Qx (‘H,[rJ ®q M) Put G, = Respjq G,

which has been regarded as a subgroup of G, in Remark 2.7. For every w ¢ @, choose a nonnegative power A,, of
w such that the intersection of

Krw = Gi(Zo) Xg iz 1, Pr(Zow/ Ay)
with G7(Q,,) is contained in K,,, (and we may take A,, = 1 when w is unramified in E). Put Kr’ = [lge fnw and
K* =G.(A*)NK?* CK?.
We claim that for every open compact subgroup K’ of [],ce G(Q,,), there exists an open compact subgroup K
of [],,ce G+(Qy) containing K’ such that the natural map
GUQ\G,(R)* x GUA)/K'K[* > GAQ\G,R)* x G(A®)/KK?

is injective, and hence an open and closed immersion. In fact, since ar(Q) is discrete in (~?,(A°°), we have

lim G(Q\G,(R)* x G(A™)/KK? = G (Q\G,(R)* x G(A™)/K'K?

K'cK

14gince SF,(L ®q M) strictly contains L ®g SF,(C), a priori we do not know whether Z{(g), belongs to H'(E, V1) ®, SF,.(C).
510 particular, Theorem 4.21 below is stronger than Theorem 1.7.
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Then the claim follows from the obvious injectivity of the map
GUQ\GLR) x GUA™)/K'K[* = GAQ\G(R) x G.(A®)/K'K?.

Choose a sufﬁciently small K’ as above such that Z” e H! (E V1) ®q, ﬂ%ol(K ’K?). By the above claim, we

may extend Z7 , by zero to obtain an element Z’ . € H1 (E V,T L) ®q, ~%01([{ K?*) for some K as above.
Note that for every L,-module M, the commutatlve dlagrarn

M &g, SF,(M) — M ®;,, SF,(L ®g M)

| |

M ®q, SF.(C) — M &, SF.(L ® C)

in the category of L,-modules, in which all arrows are natural inclusions, is Cartesian. Thus, by Lemma 2.11, we
have

R, (Z5,) € HI(E. V1) 8,000, (H" &0 M).
It follows from the construction that, in view of (2.6), the element
&l (Z5) € HY(E. V1) 80,600, (H'E(K'K®), & (w))™) ©g M)
belongs to the subspace
H}(E, Vr.1) ®g, 800, (HEAK'K?), 0f") ®g M)

(along the canonical subbundle w®" C &.(w?)®"). Then we define Z;;L to be fr*g“;%r (Z;L), which satisfies the
requirement. The proposition is proved. O

Definition 4.20 (Selmer theta lift). Suppose that Hypothesis 4.17 holds for . For every ¢ € .7(V"®F A%, M)K**L
and every ¢ € V;, we put

03 = (¢, Zf n

(see Notation 3.15 for the pairing) as an element of Hlf(E , V1) ®g, M, called a Selmer theta lift of n. It is clear

from the construction that @gel(tp) 1 1s compatible under pullbacks with respect to L.
At last, we state our theorem concerning Hypothesis 4.17, whose proof will be given in §4.8.

Theorem 4.21. Suppose that we are in the situation of Assumption 1.6 and n < p. If the vanishing order of ,,?po(n)
at 1 is one, then Hypothesis 4.17 holds for r.

4.4. A p-adic arithmetic inner product formula. Recall from [ , Definition 3.8] that we have a canonical
volume VO]h(L) € Qp, which in fact equals the product of the constant W5, in Lemma 3.2 and the volume of L
under the Siegel-Weil measure in §4.1(H9). If Hypothesis 4.17 holds for both & and 7, then for every ¢ € V3,
every ¢ € V, and every pair ¢, ¢ € L (V' @p AS, M)X**L we have the height

vol“(L) - <®Sel(¢’1)L, ®Sel(902)L>(V,,L ViE €TEp®z, Li®g, M =Tg,®z, Leg M

from (4.5), which is independent of L. Denote the above canonical value as (@Sel(wl) @Sel(cpz» and then put

mE’
Sel Sel Sel Sel
(05, (¢1), 0, (902)> = Nmg;/r(0y (1), 0 (s02)> €lpp®z, L&g M.
Now we can state our p-adic arlthmenc inner product formula, whose proof will be given in §4.9.

Theorem 4.22. Suppose that we are in the situation of Assumption 1.6 and n < p.

(1) If the vanishing order of D?po(ﬂ) at 1 is one (so that Hypothesis 4.17 holds for both n and & by Theorem
4.21 and Remark 1.5(3)), then for every choice of elements
o 1 = ®u1y € Viand g3 = @2, € Vi both fixed by Kr<> such that {¢1y, 2,0z, = 1 for every

vevp\ VY,

o §1 = @1y b2 = ®upry € L (V' @ AZ, MK with ¢¢ = ¢$ good (§4.1(HS)),
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the identity

@6) (O, 05 @) p = 0L - [ | [ [ & mwvr) - || 26), @020 £y,

vey®) uePy vey(\D

holds inT'r,, ®z, L ®y M, where
° y(ﬁ,@, WEy) is the unique element in L™ satisfying Ly(ﬂ,@, YrEy) = 7(%“#@, VUry) for every
embedding 1: L — C;

o the term Z(goI’v ® @2y, f;xp ¢2N) € L ®g M is from Lemma 3.30.

(2) If the vanishing order of ofpo(n) at 1 is not one, then

Nmg,p <@n (Zertl (¢1)L) P (Z% (¢2)L>>(V 0

LV, L)E -
for every ¢1,¢2 € S (V" ®F AR, C)t and Ty, T> € Herm,(F)*.

Remark 4.23. We have the following remarks concerning Theorem 4.22.

(1) By the interpolation property of .i”f () and Lemma 3.31, the right-hand side of (4.6) does not change
when enlarging <. In particular, we may enlarge < to prove the theorem.

(2) Note that when we vary @1y, 2.y, @1, P2, forv e V}O\{“}), both sides of (4.6) define elements in the space

Homg, (7,xG,(F,) (Iny(D), 1y B 71y ),
09 ( )

(O\{eo})
vevy

which is one-dimensional if V is w-coherent [ , Proposition 4.8(1)]'° and vanishes if not. In particular,
when V is not m-coherent, all quantities in the theorem are trivially zero.

(3) In the situation of Assumption 1.6, we have e(r,) = —1 (resp. e(nr,) = 1) if v € S; (resp. v € V%“ \ Sp),
where €(rr,) is introduced before Proposition 3.39. By [ , Theorem 1.2] and [ , Proposition 3.9],
V is m-coherent if and only if ng/r ((=1)" det V) = €(x,) for every v € VQ_“. In particular, the theorem is
trivial unless r[F : Q] + |S;| is odd by Remark 4.3(2).

(4) Itis clear that Theorem 4.22(2) implies Theorem 1.8(2).

(5) The role of the set # is only to control the coefficient field M (the smaller # is, the smaller M we can take).
For the proof of the theorem, we may just take M = C and ignore the choice of .

Proof of Corollary 1.9 assuming Theorem 4.22. When the vanishing order of .Zl? () at 1 is one, we may choose V
that is w-coherent by Proposition 3.39 and Remark 4.23(3). In particular, we may find data ¢, ¢, ¢1, ¢ such that
the right-hand side of (4.6) is nonzero. Thus, (93;’1((,01) # 0, which implies that H}(E , V1) # 0. Then the corollary
follows from Hypothesis 4.12. ]

The rest of this section is devoted to the proof of Theorem 4.21 and Theorem 4.22. Once again, for the proof of
these theorems, we may assume M = C hence the choice of # is irrelevant.

From now on, we will assume that we are in the situation of Assumption 1.6. In particular, Q, = Q (Remark
4.4(3)). We may also that V is mr-coherent (Definition 4.2) hence the vanishing order of .Z},(r) at 1 is at least one
(Remark 4.3), since otherwise both theorems are trivial.

To shorten notation, we put

— yOMPD A 3Pl A yo _ yf () ~ yPl A y©
R=V. "NV NVg, T=Vp\(V, NV NVp),
so that ng) URUT is a partition of V%“. By enlarging ¢, we also assume that

4.7 The set of primes of E above R is nonempty and generate the relative class group of E/F.

16Here, we regard G, X G, as a subgroup of G, through (3.2) rather than : from §3.1, which explains the change from 7} to 7, (see
Remark 3.1).
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4.5. Strategy for the modularity. We first reduce Hypothesis 4.17 to a problem about height pairing. The lemma
below is the starting point.

Lemma 4.24. [f &, is unramified for every v € Vg), then the image of the composite map

Or
CH'(Xp) — H (X, Qu(r) — H'(E, Vyr 1)
is contained in H}(E » VL) for every neat open compact subgroup L of H(AY).

Proof. By Lemma 4.14 (which relies on Hypothesis 4.12), it suffices to show that the image of the above compos-
ite map is a crystalline class at every p-adic place of E. This then follows from Lemma 4.10 and [Nek0O, Theo-
rem 3.1]. O

Definition 4.25. We say that an element ¢ € L ®q ﬂg’r}]lol is strongly nonzero if for every embedding ¢: L — C, the

induced element wp € Al s nonzero.
r,hol

Lemma 4.26. Suppose that we can find

a neat open compact subgroup L of H(AY)
an element ¢ € . (V" @ A°F°)L,

an element { € HAlf(E ,Var),

an element A € Homgz,(I'g p, Zp),

e a strongly nonzero element ¢ € L ®q ﬂﬁ’ﬂop
such that

(AxgMg-en= > Hox(Ziwi@or).0), 4" €SFLeg0)
TeHerm,(F)*

for every g € G,(AY) (in which the height pairing makes sense by Lemma 4.24). Then Hypothesis 4.17 holds for
every ¢ € (V" ®r AY).

Proof. First, we note that 7 can actually be defined over a number field E contained in L and we will assume that
m has coefficients in E in this proof. For every embedding £: E — C, put

V3 := Homyyaz) | 6(en), lim Hy ™ (X, (1) ®.» C
L

as an (L ®g ¢ C)[Gal(ﬁ/ E)]-module, where we recall 8(emr) from §4.1(H10). Then for each individual L, V, ; ®g ¢
C = O(em)t ®c VE, so that
HY(E, Vy1) ®E,c C = 0(em)" ®c HY(E, V5).
For every neat open compact subgroup L of H(A}), the assignment
pe SV er AR) - Z5(-)L
(Definition 4.16) defines a functional in
Z € Homc(G, (aS)[L\H(AD)/L] («7 (V' @ AR)" HY(E, Vo) @L SF (L ®g C))
(Definition 2.6). For the lemma, it suffices to show that for every embedding : E — C, the functional Z? in

HomeyG,am)in\Has)/L) (y (V" ®r ADE, 6(em)t ®c H}(E , V3) ®Le,c SF (L &g C))

factors through the subspace 6(em)" ®c H}(E, V) ®c (q‘,"’ﬂgﬁ]lol) (Definition 2.6) of the target. By Lemma 4.1,

there exists an irreducible C[G,(A}’)]-submodule M of H}(E , V7) @Legc SF (L ®g C) such that Z° takes values

in O(em)t ®c M. Thus, it suffices to show that M and H}(E , Vi) ®c (qﬁ"ﬂy}]lol) have nonzero intersection, which is
implied by the situation of the lemma. O

In practice, we are not able to study the height pairing <g{),, (Z?‘(wr(g)m) L) ,( >(v Vap)E for all g € G,(AY) for
a,Ls Vit,L)s

given ¢ and {. However, the following lemma shows that it suffices to consider a much smaller set of g. Recall
the subgroups M, C P, C G, from §2.1(G3,G4).
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Lemma 4.27. Let {: CH' (X1 )g — L be a Q-linear map. For every ¢ € (V" ®F A"F")L that is fixed under
[Tyevimr (Kry N M(F\)) and every ¢ € L ®q ﬂg’r}]lol, if

(IxgMe 9= Y  (Z/@p) - q" €SFLegC)
TeHerm,(F)*

holds for every g € M,(Fy), then it holds for all g € G,(AY).

Proof. To prove the lemma, it suffices to show the identity for every embedding ¢: L — C. Thus, we may assume
that the coefficients are in C instead of L ®g C and that £: CH'(Xy)c — C is a complex linear functional.

We first turn the generating function into the automorphic setting. For every v € Vgx’), let VS := (E,)* be the
standard positive definite hermitian space defined by the identity matrix 1,,, ¢3¢ the standard Gaussian function
on (V$49Y" and w,., the Weil representation of G,(F,) generated by ¢5'¢ in which every function factors through the
moment map 7 ': (VS‘d)’ — Herm,(F),). Put w, := ®,cy,w,, and ¢ = (®vev<oo>¢§td) ® ¢. For every T € Herm,(F)*
and g € G, (Ap), put "

Zr(w(Q)P)L = Z (w()P)T, x)Z(x), € CH (XL)c.

XEL\V'®FAY
T(0)=T

Denote ¢ to be the subset of G,(A%) consisting of g such that for every g € G,(Fw), the sum

C(Zr (W (g0Q)P)L)

TeHerm,(F)*

is absolutely convergent and equals ¢(g«g). Thus, the lemma is equivalent to the following statement: If M,.(Fg) C
¢, then 9 = G,(A}).

Choose an open compact subgroup K of G,(AY) that fixes ¢ and contains Hvevf;n\R (Kyy N M,(F,)). It is clear
that ¢ is preserved under the right translation by K. On the other hand, condition (4.7) implies that M,(Fgr) maps
surjectively to the double quotient G,(F)\G,(A)/K. Thus, it suffices to show the following claim:

(%) If g € ¢4, then yg € ¥ for every y € G,(F).

The above claim is slightly stronger than the formal modularity property of Kudla’s generating functions as
proved in [ , Theorem 3.5] as we do not assume the absolute convergence a priori. Nevertheless, it can be
proved by essentially the same argument. First note that G,(F) is generated by P,(F) and the element

]r—l

1r—l
-1

Claim () is obvious for v € P,.(F). Thus, it remains to consider y = w. Denote by d: Herm, — Herm,_; the
map that sends T to its upper-left block of size r — 1. The proof of [ , Theorem 3.5(1)] indeed shows the
following: If g € ¢, then for every g, € G(F), the sum

C(Zr(wr(Wgeg)P)L)

T’eHerm,_|(F)* | TeHerm,(F)*
oTr=T’

is absolutely convergent in order, and equals ¢(wg«g). It remains to show that the above sum is indeed absolutely
convergent as a double sum. Since Herm,(F') is dense in Herm,(AY), it follows that

pnbwgag) = Y D Zrnbwgs)$)r)
T’eHerm,_|(F)* | TeHerm,(F)*
or=T"'
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for every b € Herm,(AF), in which the right-hand side is again understood as a convergent sum in order. Then it is
easy to see that for every T € Herm, (F),

f P(n(b)WgeoW 5 (tr Th) db = € (Zr (@, (WgewQ)P)L) -
Herm,(F)\Herm,(Afr)
Thus, 3 7eperm,(r)* € (Z1(@,(Wgwg)P)1) is absolutely convergent and equals ¢p(wgwg). In other words, wg € 4.

Claim (*) hence the lemma are proved. O

The candidate ¢ in Lemma 4.26 will also be (the limit of) elements of the form go;,(Z%((bz)L) for some T €
Herm;(F)* and ¢, € S (V" @ A}")L. Next, we construct some pairs of Schwartz functions in .(V}) for every
Ve V%“ that will be candidates in Lemma 4.26.

Notation 4.28. For every v € Vg’) , we denote by &, € NP the element that takes value 1 on P, N Pcy (§2.1(F2))
and value O on P, \ Pcy. Put & == (g,), € NF.

For v € R, define
48) Ay = {(dv1.¢v2) € S (V] Z(p)?| the support of ¢,.1 ® .2 is contained in (V" )reg (§4.1(H3))!

which is stable under the action of M,.(F,) X M,(F,).

(S1) For v € R, choose an arbitrary pair (¢, 1, $p2) € Zy.
(S2) Forv € T, choose a good lattice A, of V, and put ¢,,1 = ¢, := Ix; € S (V],Z).

(S3) Forv e Vif’), choose a good lattice A, of V,, and a polarization A, = A, ; ® p, dVAV,z of free O, -modules,
namely, A, 1 and A, » are free isotropic Og,-submodules of A, of rank r. For e € NPv, put

c r

T(x) € Herm,(Op,) and xmod A, » ® Q generates @, ™" - Av,l} ,
A[Ve; = {x € (@, A1 ®w@,°- Av,z)r| T(x) € Herm,(OF,) and xmod A, ; ® Q generates @, - Av,z}.

Fori= 1,2, let ¢£el] € .Z(V!,Z) be the characteristic function of AEEI.].

Fori= 1,2 and e € NF, we put

gl =R e e| X) duile SV @r AT Z).
vev? veviny'?
At last, we choose an open compact subgroup L, € H(F,) for every v € V%“.

e For v € R, we choose some L, that fixes ¢, ; fori = 1,2.
e For v € T, we define L, to be the stabilizer of A,,.
e Forve Vg’), we define L, to be the stabilizer of the lattice chain A, | ® pyAy2 S Ay ® Ayo.

Put L =[], L, € H(AY) so that L° is good. We may assume that L is neat by shrinking L, for v € R(# 0).

Lemma 4.29. Take an element v € ng).
. ’ P, r el _ lete’]
(1) Fori=1,2ande,e € N, wehaveUﬁin = ¢Vi. el
(2) Fori=1,2and e € N, ¢£el] is fixed by L,.
(3) For every (e1,e>) € NP x NPV, the support of ¢£€i] ® ¢>£e§] is contained in (VVZ’ reg (§4.1(H3)); and we have

- le]+ev+ea]
(4.9) Fgilggen = b2 (D7 vol(Ly dy) - (£ DY

where vol(L,, dh,) denotes the volume of L, under the Siegel-Weil measure dh, in §4.1(H9).
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Proof. For (1), by induction, it suffices to consider the case where ¢’ = 1, for some u € P,. We will prove the case
where i = 1 and leave the other similar case to the reader. By definition, we have

Urgkhm = > (@, bym@)el])x)

beHerm, (O, /@)

= (@nm@NENDE > Yl a P T ()

beHerm,(Of, [®@y)

P —d,
(4.10) =q, gll@r) > Yrra M P T()).
beHerm,(Of, /@)

Since
¢, if T(x) € Hermy,(OF),

Vi@, b (x) = . 1
0 ifT(x) € @, Hermy(OF,) \ Hermy,(OF,),

beHerm,(OF, /@)
we have (4.10) = ¢ ().
For (2), by (1), it suffices to consider the case where e = 0, for which the invariance under L, is obvious.

For (3), it is easy to see that the image of Agei] XA%] under the moment map 7 : VVZ’ — Hermy,(F) is contained
[ef+er+er] .

in the set T, in Construction 3.8, which is contained in Hermj (F,). For (4.9), by (1) and Lemma 3.11, it
suffices to consider the case where e¢; = ¢, = 0. In the definition of AE?}, the condition that 7'(x) € Hermy,(OF,) is

automatic. Then it is a straightforward exercise in linear algebra that the image of Agof X A&O% under the moment

[0

map 7 is exactly z&*]; and that for every x € A[Ol] x A% an element h, € H (F,) keeps x in A

, ,2°
if h, € L,. Tt follows from §4.1(H9) that o

Wre(figgn) = bar(D)7 vOI(Ly, dly) - 11 (T)

| [o1 .
1 XA if and only

for every T € Hermj (F,), which implies (4.9) (when e; = e; = 0).
The lemma is proved. O
Recall the ideals S:: , and Sg , of SE introduced in front of Lemma 4.8. For (T, T2) € Herm;(F)* x Herm;(F)*,
(s1,52) € 82, X 8F, and (e1, 2) € NP x NP, we have Z! (s1¢1'), = 5728 (64", and Z§! (s0°)).. = 8328 (657,
by [ , Lemma 4.4]. In particular,

Z3 (5101 = 9x (5125 (01) € HUE. Vier),  Z3 (205D = 95 (5325 (057)1) € H(E, Vi)

by Lemma 4.24. By [ , Lemma 6.4] (in which we may take R” as RU ng) by Lemma 4.29(3)), the algebraic cy-

cles Zr, (smﬁ%ell) 7 and ZTz(squ[ZeZJ)L do not intersect. Therefore, by the discussion in §A.7, we have a decomposition
formula

4.11) (Z& (518" N1 Z8 (5205 D) v, Ve E = Z<ZT1 16N, Zr, (5285 1)v, 1 Va0E, € TEp ®2, L

ufoo

for our p-adic height pairing. In what follows, to shorten notation, we will suppress the part (V, 1, V4 ) in the
subscript of height pairings.

Notation 4.30. For a finite place u (resp. v) of E (resp. F) not above p, we denote by [u] (resp. [v]) the image of
an arbitrary uniformizer at u (resp. v) in I'g , (resp. I'r ).

4.6. Local height away from p. In this subsection and the next one, we study the local summands in (4.11).

Lemma 4.31. For everyv € T and every T" € Hermj (F,), there exists a unique element Wrs ,, € Z[X] such that

Wra,Qrv(@y)) = bory(X) - Wra(fy,)

holds for every finite character y : T'r,, — C*, where f, € I (y,) is the unique section that satisfies fy|k,,, =
fISA‘ZI Ka,, and @, is an arbitrary uniformizer of F\.
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Proof. When v € V2™, this follows from [[.L1.22, Remark 2.18 & Lemma 2.19]. When v € S, this follows from
the discussion in [LZ22, Section 9]. The remaining cases have been settled in Lemma 3.5(1) as in these cases

fu = 1P (Notation 3.4(2)). O
Notation 4.32. For every T° € Hermj (F)*, put Diff(T", V) = {v € V%“ | (V2")re = 0}, which is a finite subset
of Vﬁn \ VSpl of odd cardinality. We define Herm3 (F)7, to be the subset of Herm3 (F)* consisting of T such that
lef(TD V) is a singleton, whose unique element we denote by vro.

Proposition 4.33. There exists a pair (t,t3) € SE X SE satisfying )(;:(tl))(,? (tp) # 0, such that for every (T1,T>) €
Herm; (F)* x Herm; (F)", every (s1,s2) € S:L X S;?L and every (e1, e>) € NP x NP we have

Nmge [VoI(L) D (Zr, (151051, Zr, (bsads >,
utoop

=W, Z Wi, (1) Iro((t1516' ® 5,10 - [vyo]
T®eHermj (F);,
ar,rTE‘z(TlsTZ)

2 h
Wy Y DL WE LM Irs(tsigh @ bsagh) |- [v]
ves, 4v T%€Herm;, (F)*
(’)r,rTD:(TlaTZ)

inl'g, ®z, L, where W», is the rational constant in Lemma 3.2, W5ph

and Iro is ( the product of) the functional in §4.1(H9).

€ Z[X] is the polynomial in Lemma 3.5(1),

Proof. We first note that by Proposition A.7, the local p-adic height at u 4 cop coincides with Beilinson’s local
index. To compute the local indices at different u, we have four cases:

Suppose that u lies over VSpl By [LL1.22, Proposition 4.20] in which we may take R’ to be R U V(p ) which has
cardinality at least 2 (see also Remark 4.9), we can find a pair (t{, t}) € S° X S° satisfying )(O(t”))(,r (t5) # 0 such
that (Zr, (t”sl¢[e]])L, Zr, (t“szqﬁ[ez])L) £, = 0. Moreover, we may take tbl’ = t‘l‘ = 1 for all but finitely many u.

Suppose that u lies over an element v € V™ \ S;. By [[LL.21, Proposition 8.1] and Remark A.6, we have

vol*(L) - (Zr, (516" 1, Zr, (5265 ),

byry(1)
s W0, Ly L) - Irs((s19" © 5263 |- [,
TP€Herms, (F)}, 0849y

0;‘,rTD:(T1 aTZ)
vro=v

=-W,

where Wra(s, 14,1 A%r) denotes the usual Siegel-Whittaker function with complex variable s (see [LLL.21, (3.3)] for
example). In our case, the character y, plays the role as | I}v, which implies that

n

(4.12) Wrou(gy") = [ | LGs + imiie,) - Wra(s, Lap 1ya0).
i=1

Together with the relation Nmg, r[u] = 2[v], we obtain

(4.13)

Nmgyr (voI(L) - (Zr, (510Y )1 Zr, (5205 0E) = War | D0 Wha(D) - Ira((s191 @ s0g2h)") |- [v]
T®eHermj (F);,

6r,rTD:(T1 ,TZ)
vro=v
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Suppose that u lies over an element v € V2™, By [ , Proposition 4.28] and Remark A.6, we have

vol*(L) - (Zr, (516" D1, Zr, (5265 1),

byry(1)
= -Wy, Z lorv cWio(0, Lar, 152) - Iro (516 @ 2652 |- [,
T"eHermj (F);, gdv
ar,rTD:(Tl ,T2)
vra=v
Now we have (4.12) again but Nmg,r[u] = [v], which imply (4.13) as well.
Suppose that u lies over an element v € S;. By [ , Proposition 9.1] (see also Remark 4.9) and Remark A.6,

we can find a pair (], t}) € SE X SE satisfying )(;:(tﬁ‘))(,?(tg) # 0 such that

vol*(L) - (Zr, (45161, Zr, (205D ),

bay(1)
=Wl DL S Wie(0, an L) o516 @ sagh™)) | [u]
TPeHerm; (F)}, 0g 9y
ar,rTD:(leTZ)

vro=v

1 sph
+ W2r2r——l WSTPD’V(I) . [Tu((tlfslqg[lel] ® t382¢[2€2])v) - [u].
v T®€Herm$ (F)*
[jr,rTl:I =(T.T>)

Now we have (4.12) and Nmg,r[u] = 2[v], which imply

Nmg,p (VOlh(L) {2, (tﬁ‘81¢[lel])L, Zr, (t382¢[262])L>E,,)

=War| DL Who (D) Ira((tsi19)") @ thsagh>h) |- [v]

T®eHermj (F)j,
C‘)r,rTD=(TlvTZ)
vro=v
2 .
AWl DL WL Ire((Esidh @ Bsagy™)) | ]
qv TPeHerm; (F)*

ar,rTD:(T] ,T2)

Finally, for i = 1,2, we take t; = [], t! to be the (finite) product of the above auxiliary Hecke operators. The
proposition follows by taking the sum over all u 1 cop, which is a finite sum. O

4.7. Local height above p. Elk? an element u € P with v € Vg’) its underlying place. For technical purposes, we
fix an E-linear isomorphism E, — C.

Lemma 4.34. Suppose that n < p. There exists a pair (t1,1p) € SE X SE satisfying )(f?(tl))(,?(tz) # 0, such that for
every (T, T,) € Herm;(F)" x Herm;(F)*, every (s1,$2) € S:L X S;:L and every (e, e2) € N¥ x NP, we have

(Zr, 10 D1, Zr, (82051 ), € (03 )@z, L.

Proof. In view of Remark A.15, we would like to apply Theorem A.8, for which we need an integral model of
X1 over Og,. For this, we need an auxiliary Shimura variety that admits such a model via moduli interpretation.
Choose a CM type ® of E such that the p-adic places of E induced by ® via the fixed isomorphism E,, = C form
a subset Pe of P of cardinality [F : Q] that contains u. Then the reflex field E¢ C C of @ is contained in E,.
Recall that we have the Q-torus T from §2.2 and fix a neat open compact subgroup Ky of T(A*) that is maximal



A p-ADIC ARITHMETIC INNER PRODUCT FORMULA 51

at primes not in ¢ \ {p}. We have the Shimura variety Yx, of T with respect to the CM type @ at level K7, which
is finite étale over Spec Eg. Put X = (X, ®¢ E,) ®, Yk,, which is a finite étale cover of X; ®¢ E, and hence a
smooth projective scheme over E, of pure dimension n — 1. The ring S® extends naturally to a ring of finite étale
correspondences (see §A.1) of X. For every x € V" ®r A}, we denote by Z(x) the pullback of Z(x), to X.

Now for the lemma, it suffices to find elements (t;, ty) € SE X SE satisfying )(;:(tl))(,? (t2) # 0, such that for every
x1,x2 € V' ®@p AR satistying
(4.14) T(x;) € Herm2(F)*, x;, € LJ A, i=1.2,

eeNPy
we have <tTZ(X1), t;Z(x2)>X’Eu € 0214 ®z, L.

Put K := E, with the residue field k. The K-scheme X admits an integral model X over Ok such that for every S €
Sch}OK, X(S) is the set of equivalence classes (given by p-principal isogenies) of tuples (Ag, Ao, 70; A, 4, 17; Gye —
G4 yc) where

e Ay is an abelian scheme over S with an action of Og of signature type ®, together with a compatible
p-principal polarization Ay and a level structure 79 away from p,

e A is an abelian scheme over S with an action of Of of signature type n® — inc + inc® (inc being the
inclusion £ — C), together with a compatible p-principal polarization A, so that G4 ,c = A[(#)*] is an
OF,-divisible module of dimension 1 and relative height n,

e nis an L"-level structure for the hermitian space Homg, (Ao, A) ®F AL,

o G, — Gy e is an isogeny of Of, -divisible modules over S whose kernel is contained in G<[w,] and has

degree ¢,,.
The reader may consult [ , Section 7] for more details about the first three items, which are not so related to
our argument below. By the same argument for [ , Proposition 3.4], we know that X is a projective strictly

semistable scheme over Ok to which finite étale correspondences in SE naturally extend. Moreover, if we put
X = X ®p, k and let X; (resp. Xz) be the closed locus of X on which the kernel of Gy« — Ga e (resp. Gaye —
Guc/Gclw,]) is not étale, then under the notation of §A.5S,

XU =X [ [X, XP =X )X, XP=X®=...=0.

We then would like to apply Theorem A.8 with T = SE , m = Ker )(75: and m’ = Kery?. To check (A.3), we
realize that both X}f: and )(,? can be defined over a number field E contained in L. Thus, by [ , Theorem 2], it
suffices to show that
(4.15) P HLX? @k, Epw = @D HEX? @K, By = 0

q=>0 q>0

where ¢ is an arbitrary prime of E not above p. Indeed, there is a finite flat morphism X; — X to which finite étale
correspondences in SE naturally extend, in which X is the integral model with a Drinfeld level-1 structure at v as
the one used in [ , Section 7]. Then (4.15) follows from claim (2) in the proof of [ , Lemma 7.3] with
m=j=1.

Denote by Z(x) the Zariski closure of Z(x) in X. By Theorem A.8 and Remark A.15, it suffices to show the
following two claims for the lemma.

(1) For every x1, x; € V' ®p A satisfying (4.14) and every t;,tp € SE, we have t] Z(x1) N 5 Z(x2) = 0.
(2) Forevery x € V' ®r A} with T(x) € Herm}(F)", the dimension of Z(x)N X® is at most r —h for h = 1, 2.

Part (1) follows from (the same argument for) [ , Lemma 7.2].

For (2), since Z(x) remains the same if we scale x by an element in F*, we may assume that x, € (A, ® A,2)"
for every v € ng). Up to a Hecke translation away from p, which does not affect the conclusion of (2), we
may also assume that x € V". We have a moduli scheme Y(x) finite over X, such that for every object S =
(Ao, 20,105 A, 4,1, Gye — Gaye) of X, the set Y(x)(S) consists of elements y € Homg, (A2, A) ® Z(p) satisfying
T(y) = T(x) and y? € n(LPx). By [ , Lemma 5.4], Z(x) is contained in the image of Y(x) in X. Thus, it
suffices to show that the dimension of Y(x)™ is at most r — & for h = 1,2, where Y(x) := Y(x) xx XP.

Let V, C V be the hermitian subspace (of dimension r) that is the orthogonal complement of the subspace
spanned by x. Put H, := U(V,) which is naturally a subgroup of H, and put L, := L N H,(A}). We have a similar
moduli scheme X over Ok for V, similar to the one for V but with the hyperspecial level structure at p. More
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precisely, for every S € Sch;OK, X,(8) is the set of equivalence classes (given by p-principal isogenies) of tuples
(Ao, /l(), 7]0;A1, /11, 771) where

e (Ao, Ao, no) is like the one in the definition of X,

e Aj is an abelian scheme over S with an action of Og of signature type r® — inc + inc®, together with a

compatible p-principal polarization A,

e 11 is an LY-level structure for the hermitian space Homo, (Ao, A1) ®F A"
In particular, X is a projective smooth scheme over Ok of pure relative dimension r — 1. Put X, := X, ®o, «;
and for & > 1, denote by X&h] the closed locus of X, where the height of the connected part of G4, yc == A1[(u)*]
is at least 4. It is known that X&h] has pure dimension r — h. Claim (2) will follow if there is a finite morphism
f: Y(x) > X, that sends Y(x)® into X! for h = 1,2, which we now construct.

Take a point P = (Ag, A0,770; A, A,7; Gue = Gauc;y) of Y(x)(S). Put A" := (AY /(A 0 y)AF")", which inherits an

action of O which has signature type r® — inc + inc® and admits a natural map to A. Since T'(x) € Herm; (F), the
induced map 1’: A" —» A 4 AY — A’V is a quasi-polarization such that ’[p™] is an isogeny. For every it € P, we

have the induced isogeny /l;c : Gy e = GX, ;- Put

A= A'/@ Ker 2
ePep

and let A;: A; — A} be the quasi-polarization induced from A", which is in fact p-principal from the construction.
We can also define a natural L7-level structure 1; for A; whose details we leave to the reader. Then we define
f(P) to be (Ag, Ao, 1703 A1, A1,11). Since the OF,-divisible module G4, < is étale, the height of the connected part
of G4, uc equals to that of G4 ,c. In particular, f sends Y(x)™ into XECh] for h = 1,2. It remains to show that f
is finite. Since Y(x) is proper over Ok, it suffices to show that the fiber of f over an arbitrary k-point is finite.
Indeed, when S = Speck, G ;c has dimension 1 (resp. is étale) if & = u (resp. it € P \ {u}), and the degree of
A7 is bounded by the moment matrix 7'(x). It follows that up to isomorphism, there are only finitely many such
isogenies G4 zc — Gy, ; with fixed G4, ; for every it € Pg. Thus, f is finite and claim (2) is confirmed.

The lemma is finally proved. O
Proposition 4.35. Suppose that n < p. There exist an integer M > 0 and a pair (t1,t3) € SgL X SgL satisfying
X3 (x5 (t2) # 0, such that for every (T, T2) € Herm;(F)* x Herm;(F)*, every (s1,52) € (S5, NS¢, )x(Sy, NSY )
and every (e, e2) € N¥ x NP, we have

(Zr, (510", Zr, (05205 1)k, € (05 )T @z, (P71 0L).

The rest of this subsection is devoted to the proof of this proposition. We may assume that V,; # Oand V4 # 0
since otherwise the proposition is trivial.
Let S be the kernel of the norm map Nmg,r: Resp, 0, G = Go,. Consider the reciprocity map

(4.16) rec: Aut(C/E) — EX\!-XE”X — S(FO\S(AY)

in which the first one is from the global class field theory and the second (surjective) one sends a to a®/a. For
d €N, we

o put LY := $(0F,) N (1 + p¢0g,),
e let EIYl C C be the finite abelian extension of E such that the map rec (4.16) induces an isomorphism

Gal(EY/E) = S(F)\S(AY) /Ll;{{ [1 s,
pevin\ (v}
e denote by Zf al (X1) the image of the norm map
Nmga g2 Z'(X ® E') — Z/(Xy).
Lemma 4.36. For every x € V" ®p A} satisfying T(x) € Herm;(F)* and x, € Ai"% for some e € N*, we have

Z(x)L € Zﬁe”(XL)-
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Proof. Up to a Hecke translation away from p, which does not affect the conclusion of the lemma, we may assume
that x € V’. Let V, C V be the hermitian subspace (of dimension r) that is the orthogonal complement of the
subspace spanned by x. Put Hy := U(V,) which is naturally a subgroup of H, and put L, := L N H,(A}). We have
the Shimura variety X, ; for H, with level L,, similar to X;. By definition, Z(x);, is the fundamental cycle of the
finite unramified morphism X, ; — X defined over E.

We have the determinant map det: H, — S ®¢, F which identifies S ®¢, F' with the maximal abelian quotient of
H,. Then the set of connected components of X, ; ®¢C is canonically parameterized by the set S (F)\S (A7) /detL.
For every s € S(F)\S(AY)/det Ly, we denote by X;’ L. the corresponding connected component. The definition of
Xrec(y)s

canonical models of Shimura varieties implies that yX7 , =X
X, Loy X, Loy

(4.16).
We claim that det L, , C Lgel]. Then we have the quotient map

for every y € Aut(C/E), where rec is the map

S(F\S(AP)/det Ly — S(F)\S (AY) /Lgfy [] s©r)
pevin\{v}
Let G be the fiber of 1 in the above map. Then ¥z X}, is defined over EIl; and Nmgie g e X5,
The lemma then follows.
It remains to show the claim, which is an exercise in linear algebra. We assume e # 0 as the case for e = 0 is
trivial. By definition, L, , is simply the subgroup of L, that fixes x,, or equivalently, x|, := @¢ - x,. By the definition
of A[ve; in §4.5(S3), x], belongs to (A, 1 ® A,2)" such that T'(x]) € w'f |Hermr(OFV) and that x{, mod A, ; generates

= XL,

Ly

lel

A,>. It follows that the image of x} in (A,,1 ® A,2)" ®o,, OF,/ p'f ! generates a Lagrangian Og, ®o,, OF, /P, -
submodule of (A, & Ay2) ®o,, OF,/ plfl. In particular, every element in Ly,, which stabilizes A, | & A, 2, has
determinant 1 modulo p'f |_The claim follows. O

For d € N, let u; be the place of E“! induced from the fixed isomorphism E, — C, which is above u. Put
K = E,, K; = (E'),, ford € N and K., = Jzs0 K4. Then Ko/K is unramified and K,/Kj is totally ramified of
degree (q, — l)qﬁl_1 /IUE| for d > 0, where Ug is the torsion subgroup of OE.

Recall that V1 and V3 are subspaces of Hgt’ ~1(X,,L(r)). Put
Trz = Vor NHY X1, OL()™, Tz = Var N HY (X1, OL()T,

et et

both being OL[Gal(E/ E)]-modules. For d € N, we put

NeoH}(Kg, Trp) = | Im(Corg, sk, : Hy(Kar, Ter) = Hy(Ka, Tr.)).
d'>d

in which Corg, /k, denotes the corresponding corestriction map.

Lemma 4.37. There exists an integer M > 0 such that p™ annihilates H}(Kd,T,,,L)/NOOH}(Kd,TmL) for every
deN.

Proof. By Lemma4.15, we know that V. /|, satisfies the Panchishkin condition (Definition A.12) for every d € N.
By Lemma 4.10, we may apply [ , Theorem 6.9] to V. 1|k, 4-17 Thus, by the same argument at the end of the
proof of [ , Proposition I1.5.10], it suffices to show that H(K., Var) = H(K., Vir) =0.

We follow the strategy in [ , Section 8]. We may choose an element & € S (F) such that & = (wi“
in Gal(E!"/E). Then by the same argument for [ , Proposition 8.3], K, is contained in K; — the field
attached to the Lubin-Tate group relative to the extension Ko/K with parameter £. Let y¢: Gal(K;/Ko) — 02 be
the character given by the Galois action on the torsion points of this relative Lubin—Tate group; and let K(y¢) be
the corresponding one-dimensional representation. Let L be the maximal subfield of K that is unramified over Q,,.
By the same argument for [ , Proposition 8.4], K(y¢) is crystalline, and that the g,-Frobenius map (which is
L-linear) acts on Dcis(K(x¢)), which is a free K ®q, L-module of rank 1, by multiplication by f‘l .8 Note that L

—lye )[KO:K]

17Though our extension K., /Kj is in general not a Z,-extension as assumed in [ , 6.2], the argument for [ , Theorem 6.9]
works without change.
18Note that in this article, we always use the covariant version for Dggr and D).



54 DANIEL DISEGNI AND YIFENG LIU

is a subfield of C and hence K via the fixed isomorphism K=E, = C. Let V be either Ve QL K or Vi ®L K.
Repeating the argument in [Shn16, Proposition 8.9] (which followed an approachp in [Nek95]) to V, we obtain
HO(Ksa, V) = 0 since V is crystalline of pure weight —1 by Lemma 4.15.

The lemma is proved. O

Proof of Proposition 4.35. Let M > 0 be the integer in Lemma 4.37 and (t;,tp) € SgL X SgL the pair in Lemma
4.34. We first note that ZT[(t,-s,-¢l[.e"])L € Z'(Xy) ® O, fori = 1,2. By Lemma 4.36, we may find an element
Z € 7' (X;, ® Ele2ly @ O, such that Nmgies, ) Z = ZTz(t2¢[2€2])L. We may also assume that the support of Z is
contained in the support of Zr, (typéeﬂ) .. Put

Zy = NmE[\ez,v | Z®r K eZ' (X, ® Klez,vl) ® 0L,

oL K/ K, ,
so that Nmg,, \/kx Z> = Zr, (t2¢[262])L ®g K. Since the natural map
HZ ' (X1, OL(r)™ /T — HE'(X 1, L) Vi

is injective, the class Z;tl (tlsl¢[le'])L = s’l‘Z?1 (Sl¢[1€l])L sits in H}(K, Tr,r). Similarly, the cycle class of s37; sits in

H}(Kje,,» Ts..). By [Nck95, TL(1.9.1)], we have

{Zr, (tlsl¢[lel])L7ZTz(t252¢[262])L>K = Nmg,, /k(s{Zr, (t1¢5”])L ®r Kie, > S§Z2>K|e2,‘,|-
By Lemma 4.34, we have
(s1Zr, (t1¢[1€1])L ®k Kie,,|» Sﬁzthew € (OIX% v‘)fr ®z, L.

In other words, the corresponding bi-extension is crystalline (Remark A.15). By the argument for [Nek95, Propo-
sition I1.1.11], we have

(5121, (1) )L @ Kies 153200k, € (O, ) @z, (07" OL).
Finally, since the image of the norm map Nmg,, / : (OI>§d)fr — (0% is precisely p?(0%) for d € N, we have

(Zr, (1516 N1, Zr, (820D )k € (09T @z, (P Oy).

The proposition is proved. O

4.8. Proof of Theorem 4.21. In this subsection, we prove Theorem 4.21.

Take e € N, which is regarded as a constant tuple according to the context.

For every v € R, we
e choose a pair (¢y,1, dy2) € %, (4.8) and put @, := ¢, ® ¢, 2,
o let f, € ¥ (Hermy,(F,),Zy)) be the unique element such that fS" = fsw,
e put f, = fi" € I7,(xv) (3.4) for every finite character y : I'r,, — C*.

For every v € T, we
o put @, = ¢, 1 ®¢yn =152 (§4.5(52)),
e let f,, € I7,(x,) be the section from Lemma 4.31 for every finite character y: I'r, — C*, that is, the

standard section such that f1, = (IS)W.

Forevery v € V(p), we
o put &) = ¢l @ 9] (§4.5(83)),
o put £ = by, (1) - VOI(L,, dhy) - (£ Iy € 17 (x,) for every finite character y: Tz, — CX, so that
£l = qu)[‘j]’ by Lemma 4.29(3).

Then we
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e put
0
(4.17) or=Qa%e| X dul. & ={X | X ¢
v ev(p) vev‘“‘ \V(”) vev(") veV““ \V(”)
in S (V" @ AS, Z») <L,
e put
o= (Rl | (X) @ |e sV er A,z
vev” vevim\y?
e put

=R Aol Q) fu|ebw

vev? vevin\v'
for every finite character y: I'r,, — C*.
Finally, we
e let M € N be the smallest element such that all of the following elements

pMWO\lp}
pvoli(L), 52— [ ] vol(Ly, dhy), WV € s,
r_
49y vey®
F

belong to Z,), where Wfr \P)is defined in (3.7);
¢ fix an open compact subgroup KT of G, (A7) = G(A}) X G,(AY) of the form

K} oo X | [ | G008 XG,,0r, 1 Prr O, 17 | % (KP x KP)

(p)
veVv F

(Definition 2.9) in which K;\{m ) contains

(Kr,v m MV(FV)) X (Kr,v m MV(FV))

ver =g
and fixes [ _y©vwrn fy, for every finite character y : I'r,, — C*;
F

o fix (t,tp) € SgL X SgL that is the product of those pairs from Proposition 4.33 and Proposition 4.35 for
every u € P (and a suitable scalar), which satisfies ,\(o(t] W) # 0;
e fix (s1,81) € (S<> nsg )X (S<> nsg ) such that)(o(sl))( (s2) # 0, which is possible by Lemma 4.8(2).

spl \ V(O)

Remark 4.38. For every v € V. , we have a canonical isomorphism

ZIL\H(F\)/L,] = Z[K;)\G(F\)/ Ky ]
of rings via Satake isomorphisms. By [Liulla, Proposition A.5], we know that the action of s € Z[L,\H(F,)/L,]

on . (VV’)K“'XL" via the Weil representation w,.,, coincides with that of § € Z[K,,\G.(F,)/K,,], where § denotes
the adjoint of s.

Motivated by Proposition 4.33, for every e € N, every pairs (g1, g2) € M,(Fr) X M,(Fr), we define following
elements inI'r, ®z, L:
&) o= pMWar - Wi (1) - Ira((tisi81¢1 @ t2s2g20 )'7°) - [vra]
for every T € Hermj (F);, (Notation 4.33), and

& o= pMW,, W (1) - Iro((ti518161 ® tas28205)") - [V]

(g1-82)

-1
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for every T € Herm$ (F)" and every v € S;.
For every finite character x: I'r,, — @; we denote by L, the finite (normal) extension of L generated by values
of x, which is a subfield of Q.

Lemma 4.39. We have
(1) There exists a (module-)finite Zp)-ring O contained in C such that for every e € N, every pairs
(g1,82) € M,(Fr) X M,(FR), and every T" € Hermgr(F)Jr, there is a unique integral L ®z,) O-valued

p-adic measure (Definition 3.41) d(é”([gel] gz))TD on I'r,p, such that for every finite character x: I'r;,, — @;

and every embedding t: @p - C,

(4.18) (&S retn) = pMWs, - S () - Wre((g1, 2) - USifh, 0)£1L),

where Wfr is from (3.7).
(2) The measure d(éa(gjl],gz))T” in (1) satisfies (@@([gel],gz))TD(l) = 0and

(8%:,]1 )7° if T° € Herm; (F)y,

AE re(1) =
(g1.e2)’T 0 ifT" € Hermgr(F)Jr \ Herm;r(F);r/.

(3) For every finite character x : I'r,,, — @IX, the assignment

S0 e P S = Y @& rsng”
T9eHerm; (F)*
belongs to Oy, ®z,, SF, (Q)M-FRXM(FR) 19 For every o € Gal(Q,/L), we have & el (y) = o&9 00,

. (g1.82) (81,82
where o acts on OL, ®z, SF,,(0) via the first factor.
(4) For every v € S, the assignment

volel. vglel .
(81,82 P '8, ) =

TReHerm; (F)*

veolel "
( S(gl,gz))TDq

belongs 10 OL ®z,,, SFar(Z))MrFR>Mr(Fr),

Proof. By Lemma 4.29, the right-hand side of (4.18) equals

PWE [ bara() vol(Ly, diy) X(LXP(NmEp/Fp det T1D2)1155+5c](TD))

()
vevy

x| [ | Wre ((81,v,g2,v)fm)] x| ] Wt |x (5,00 - WraG(siti, $50)f0))
VER VEV;?\‘DO'FD\R
We have
o C= p"WS T, bary(1)~' voI(Ly, dhy) = pM WP [,y VOI(Ly. dhy), which belongs to Zy):
e there is an element #70 , € Z[I'f,,] satisfying

LWTD’],()() = L)(p(NmEp/Fp det TIDZ)].Z[;+€C](TD)

for every y,t as above;

for every v € R, there is a constant Cro (g, , ¢, ) € Z(p) that equals Wro((g1,y, 82,v) fiy,) for every x as above;
by Lemma 4.31, for every v € T, there is an element #7o, € Z[I'f),] satisfying «#70,(x) = ba,(ty) -
Wra(fy,) for every x,t as above;

it is easy to see that for every v € V;O\{w’p b \ R, there is an element %, € Z[I'f] satisfying 1%,(x) =
bzr’v(LX)_l for every y,t as above;

90nce again, we have strict inclusions Oy, ®z,, SF ()M (O, @, | SF,,(0))MrRM ) ¢ SF, (O, @, Q)M F0=MrFr),
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e by Lemma 3.5(1), there exist O as in the statement of (1) and finitely many elements cy,...,c; € Or, such
that for every T € Herm$ (F)*, there are elements WT% e WT% . in O[['g ] satistying

1

LY @@ WD 00 = b5, - Wrs (i, $56) fyo)
i=1

for every y, ¢ as above.

For each i, put

— <
Wrori=| || #ieu| #2, €Ok,
veVﬁ,?\(w'p))\R

spl .
Moreover, for every v e T\ V Fp , we can write #ro1; = Wro, - W

To.Ti for a unique element WT"D’TJ € O[T'gpl.
For (1), we may take

1
@& e = Z Ci® (C 1_[ CTD,(gl,V,gz,v)] : l_l By |- Wrep - Wrozi € (OL 8z, O)IFpl.

81,82) .
i=1 veER vGV(If\(m’p))\R

The uniqueness is automatic.

Part (3) is obvious from the construction in (1).

The proof of (4) is similar by realizing that };!_, ¢; ® Wio (D) € Zgy).

For (2), note that Wra(f1,) = O for every v € Diff(T®, V), which implies that (é”(i:]gz))rn(l) = 0, and for
T° € Herm3, (F)* \ Herm3,(F)}, that (&) )7o(1) = 0. For T% € HermS, (F);;, we have &7s,,,4(1) = 0. Then by

the p-adic Leibniz rule, we have

NS g )ro() = pMWay - B3 (Db (1) Wra (g1, 82) - UST 1 $20)f ) - W70, (1),

By Remark 4.38 and §4.1(H9), we have
b5 (Wb (D7 Wra((81,82) - es1 61, 200 [, ) = Ira((is1 6191 @ Ls2g2gy)'™).
This, it remains to show that
1o 0D = Wra |, (1) - [vre],
which is tautological as #7c ., = Wro . ([vre]) from Lemma 4.31.

The lemma is proved. O

We search for Eisenstein series whose g-expansions are given by &l (y) and V&l We refer to §3.2 for the
notation concerning Eisenstein series. For every e € N, every finite character y: I'r,, — Qf, and every embedding
L @p — C, define an Eisenstein series

Efl = p" b1 55 (00) - E(—, 2 @ u(sifh, 0)£1L) e AV

and, for every v € S, an Eisenstein series

2
vplel . M___ <
ES=p 2r

p E(—, fU e usif, 6) 1) e ﬂ[zrr],hol’
v

where " f [1601 is obtained from f; ] after replacing the component fi, by f;ph from Notation 3.4.

Lemma 4.40. We have
(1) For every finite character x : I'r,;, — @; and every embedding t: @p - C,
G381, 82) - ER) =85 00
holds for every (g1, 82) € M,(Fr) X M,(FR).
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(2) For everyv € S, and every embedding t: @p - C,
651,82 "EN = '€ )
holds for every (g1,82) € My(Fr) X My(F&).

Proof. Since for v € R (which is nonempty), g1,¢1., ® g2.,¢2, again belongs to %,, both cases follow from the
discussion in [Liul Ib, Section 2B] and Lemma 3.2. O

Definition 4.41. For every open compact subgroup K C G,(AY) and every subring M of C, we define ﬂgﬁ the

M-submodule of ?IEfr]’hol consisting of all ¢ that are fixed by K and satisfy ¢77.((g1,&2) - ¢) € SF,,(M) for every
(81, 82) € M, (Fr) X M,(FR).

Lemma 4.42. Suppose that K contains

[1 Kew 0 MuFD) X (Kry 0 M(F)
vevo\hR

so that the tautological map ﬂgﬂ — SF,., (M)M-FRXM:FR) sending o to the assignment (g1, g2) + q27((g1,82) - ¢)
is injective.
(1) For rings Z,y) €M C M’ C C, the natural diagram

OL ®z) ﬂll\{/ﬂ OL 7, ﬂll\(/ﬂ'

| |

oL ®Z(p) SFr’r(M)Mr(FR)XMr(FR) ~ 0L ®Z<1,) SFr’r(M/)Mr(FR)XMr(FR)

is Cartesian.
(2) For aring Zy,) € M C C, the natural diagram

OL ®Z) *7{11\{41 I1 ﬂg

| N

)3 ®Z(p) SFr’r(M)Mr(FR)XMr(FR) — ] SFr’r(C)Mr(FR)XMr(FR)
1: L-C

is Cartesian.

Proof. Part (1) follows from Definition 4.41 and the fact that O, is flat over Z).
For (2), consider an element x = J| 521 cj®x;of OL®z,, SF,,,(M)M H(FRXM:(FR) i which ¢y, ... ., ¢ are Zp)-linearly
independent elements of Op, satisfying that for every ¢: L — C, its image in SF, (C)M FR*XM:(FR) comes from

ﬂg . Since L has characteristic zero, we may find embeddings ¢, ..., ¢, such that A = (1;c))1«; j<s 1s invertible.
If we write (;x = y; for y; € ﬂé, then '(x1,...,x;) = A7''(y1,...,y,). In particular, x belongs to O, ®7,)
SF, (C)M-FrRxM:(Fr) - Applying (1) with M’ = C, we obtain (2). O

Lemma 4.43. Recall the map o, from Definition 2.5.
(1) For every finite character x: I'r,) - @;, there exists e, € N such that for every e > ey, there exists a

(unique) element D)[f] € 0L, ®z, ﬂg satisfying
(I x g1, 8) - DY) = 0,65 00

J;r every (g1,82) € M,(Fr) X M,(Fr). Moreover, the sequence {D)[(N!]} converges in O, ®z, ﬂg when
— 090,

(2) Foreveryv € Sy and e € N, there exists a (unique) element "D'! € Or, ®z,) Sﬂg;) satisfying

(1 x ¢)((g1,82) - "D = Qr»rSEZ]l 82)
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for every (g1,82) € M.(FRr) X M,(Fr). Moreover, the sequence {"DIV'1y converges in O, ®7,, ﬂ%;) when
N — oo.

Proof. For (1), note that by Lemma 4.39(3),

Qr,l’éa([gel]’gz)(/v) € OLX ®Z(p) SFnr(@)Mr(FR)XMr(FR)-

Then by Lemma 4.40(1) and Lemma 4.42(2), for every e € N, there is a (unique) element D)[f e O, ®z, ﬂgm

for some subgroup K'¢! ¢ K of finite index such that

(1% g2)((21,82) - D) = 061 00

holds for every (g1, 82) € M,(Fg) X M,(Fg). Now Lemma 3.38 tells us that we may take K'! = K" when e > e, in
that lemma.
For the convergence, we have a natural inclusion

(4.19) O, ®z,, A L, @, (HUIK") ©g My:)
(Definition 2.3) for some number field M+ C C containing O depending on K. It is well-known that the limit of
the operators {Ug 2 U;,V Y 2}N>2 exists in Endg, (7-{r[,r,](K T)), which is the projection to the (Siegel-)ordinary part

(see, for example, [Hid98, Page 685]). Thus, by Lemma 3.11, {D/[YN!]} converges in L, ®g, (7‘(,[;]([(%) ®o MK#).
Since the inclusion (4.19) is closed, the limit belongs to the source.
The proof for (2) is similar, by using Lemma 4.39(4) and Lemma 4.40(2). O

Lemma 4.44. For every g € G,(Fr) and T, € Herm[(F)*, the sequence {Z?Z(tzszngb[zN!])L}N converges in
HY(E, V).

Proof. Fix an embedding Q(p) — @p and all representations will have coefficients in @p. The assignment
¢, SV & Fp.Qp)" = Z§ (t25282058,)L

factors through 6(#,)" (§4.1(H10) but with C replaced by @p) as a @p [L,\H(F)/Lp]-module, by the influence of
Sy. Write (@I,)T2 the character of N,(F,) such that for every b € Herm,(F,), n(b) acts by g ,(tr Tob). Then, by

Lemma 4.1, there exists an element w € Homy,(r,)(7p, (@,,)Tz) such that the assignment Z;‘z ('[2s2g2¢5127 —), factors
through the composition
r = AL A A L WOL ]
SV ®r F,,Q,)" — 7, ®@p O(7p)” — 0(7p)".
By Lemma 4.29(1), ¢Ef]2 = UZ¢£S]2 hence is invariant under /,, := nvevj;’) I, (3.13). Since {UIZY " is convergent as a

. N . .
sequence of endomorphisms on 7, and wlﬁ/,, is continuous, the lemma follows. O
P

In what follows, we put

. N! t
D, = lim D)[( le OL, ®z, ff’{fof ,

N—oo

— 1 ! K'
"D = lim "D € Op @z, AZ

N—ooo
Lo, = pM lim Z! (652620} i € H(E. Vao).

For every integer d > 1, we recall the subgroup U, of I'r,, and the set of representative I'y of I'r,,/ U, fixed from
§3.6. For every 4 € Homgz,(I'r,p, Zp), define

-1
L= Z/i(x)% > by +[Zvl)).

xel'y b% FF,P/qu@; veS,
Proposition 4.45. Suppose that n < p. Take an element A € Homz, (I, Z)) and put Ag := A o Nmg/F.

. . 0
(1) The sequence {1, 4}q>1 is a convergent sequence in L, 7, ﬂg .
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(2) Putl := [}im Lig. Then

(1% g)((g1,82) - 1) = vol“(L) > A (25 (181008 oo rs) - 4
T1,T2eHerm; (F)*xHerm; (F)*
holds for every (g1, g2) € M, (Fr) X M,(Fg).

(3) The limit I} belongs to Oy ®z,, ﬂg -

Proof. By Lemma 4.39, we have D([f)]( = O'D)[f] hence D, = oD, for every o € Gal(@p /L). Thus, D, 4 belongs to
KT
OL OZy) ﬂ@ :
For every (g1,82) € M, (Fr) X M.(R) and (T, T>) € Herm;(F)* x Herm}(F)*, denote by (Z(4, ¢,))1,.7,(x) the
g™ T2-th coefficient of (1 x q:1)((g1,82) - Dy) and "(Dg, 4,))1,.1, the g™ T2-th coefficient of (1 x q;7)((g1,82) - 'D).

Since L ®z,, ﬂg is a finite dimensional LL-vectors space, for the remaining statements of (1,2), it suffices to show
that for every (g1, g2) € M,(Fgr) X M,(R) and (T, T>) € Herm;(F)* x Herm;(F)*, the sequence

) v
(4.20) 2 A >|FF(:/Ud| 2. Paann0o +(Z <D<g.,g2>>r.,n]

xely X FFA,p/Ud—’Q;;( VES,

inL ®7,) O, converges to Ag <Z§‘l (t1518101)1, Loy, 15 >E when d — .
Without loss of generality, we assume (g1, g2) = (1,, 1,) and suppress it (together with redundant parentheses)
from the notation. For every d > 1, we may find an element N = Ny € N satisfying:
(a) N! > e, (Lemma 4.43(1)) forevery x: I'r,,/ Uy — QX,
(b) we have

1
x(x)~ s d
2AWEE ) |- ), | € pioL &z, O;
xely P x: Trp/Ug—Q T eHerms (F)*
(9,-JTD=(T1,T2)
(c) forevery v e S,,
N!
V.Z)Tl,Tz - Z VS[TD] € PdOIL ®Z(,,> O;
T®eHermj (F)*
6r4,rTD:(T1’T2)

(d) N! > d+ M, for every u € P, where M, is the integer from Proposition 4.35 (for u);
(e) we have

volf(L) - A (Z?l (15181011, Leo.15 — PMZ%(tzszgzcﬁ[zN!])L)E € p’OL @z, O.
We claim that
4.21) (4.20) = vol'(L) - A (Z§ (18181911 Lo 15 ), € PPOL @2, O.

Indeed, the left-hand side can be written as the sum of four differences:

(4.22) 420~ > A E=— X > ooaMml-1> > e,

ICrp/Udl
xely P X Trp/Ug—Q; TOeHerm3, (F)* VeSy TeHerm}, (F)*
arrT =(T1.T2) ar,rTD=(T1’T2)

(4.23) 3 a2 | > gl D e,

Trp/Udl
xely P X1 Trp/Ug—Q5 TeHerms, (F)* TPeHerms (F)*
6rrT —(Tl TZ) ar,rTD:(leTZ)
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(4.24) > (a@“}d T+ ) VS[TND”] —vol'(L) - Ax (Z§, (us12160L, PV 75, (0522265 D) ,
T®eHerm; (F)* VES,
ar,rTD:(TlaTZ)

(4.25) vol'(L) - A (Z3 (is181¢0)L, P 25 (05222605 i), = VOIU(L) - A (Z5, (118111 Lo 7 ), -

By (b) and (c), (4.22) belongs to deL ®z,, 0. By Lemma 4.39(1,2) and Lemma 3.42, (4.23) belongs to deL ®z,
0. By (4.11), Proposition 4.33 and Proposition 4.35 (which is applicable by (d)), (4.24) belongs to deL ®z,, O.
Finally, by (e), (4.25) belongs to deL ®z,,, O. Together, (4.21) holds. Thus, (1) and (2) are proved.

For (3), we see from the above discussion that the g’72-th coefficient of (1 x q;7)((81, &2) - Ip) is also the limit
of

> EN hray+ D ERY, Do |

(81,82 (81,82)
T®eHermj (F)* VES,
ar,rTD =(Ty ,TZ)

which belongs to Op.. In other words, the assignment
(81,82) = (1 X ¢73)((81,82) - D)
belongs to SF,,,(OL)M’(F RXM(FR) Tt jg straightforward to check that
L @z, SFy(Q)FO<M: () (y SF, (0 ) FOM ) = O @y ST, (Zy) WM ),
Then (3) follows from (1) and Lemma 4.42(1) (with M = Z,) and M’ = O). O

Proposition 4.46. Suppose that
(a) n<p;
(b) 0L (m)(1) #0;
(c) for every v € R, there exist ¢ € n), ¢, € m, such that Z(p, ® cpv,f(gw) # 0 (Lemma 3.30).

v

Then there exists A € Homgz, (T'rp, Z)) such that Iy # 0.

The proof of the above proposition will be given in the next subsection. Now we move to the proof of Theorem
4.21.

Proof of Theorem 4.21. By [L.L.21, Proposition 3.13], for every v € R, we may choose a pair (¢, 1,$,2) € %,
(§4.5(S1)) such that condition (c) in Proposition 4.46 holds. Choose A € Homgz,(I'r, , Z,) such that I, # 0 by this
proposition. In particular, we may choose some g, € G,(Fg) and T, € Herm; (F)*, such that the qu—th coeflicient

of (1, g2) - I, which we denote by ¢,, 7, 4, is nonzero. Since I, belongs to O ®z,) ﬂg ” by Proposition 4.45(3),

$g,.T5,1 18 a strongly nonzero element in L ®q ﬂE’l]l o1 (Definition 4.25), which satisfies

(I X ¢2")(g1 - oo 120) = Z AE <Z%tl (81t181¢1)L,§g2,T2>E g™
T1eHerm; (F)*

= Z AE <807r(Z% (g1tis1¢1)1), §g2,72>E P
Ti€Herm{(F)*

for every g € G,(Fgr) by Proposition 4.45(2). By Lemma 4.27, the above identity indeed holds for every g; €
Gr(A;i’). Thus, we may apply Lemma 4.26 with L, t;s1¢1, ¢, 1,, Ag and @g, 1, 1, hence Theorem 4.21 follows. O

Remark 4.4°7. Unfortunately, the strategy for proving Theorem 4.21 hence giving an unconditional construction of
the Selmer theta lifts can not be applied to give an unconditional construction of the arithmetic theta lifts (on the
level of Chow groups) appeared in [I.1.21,1.1.22], since our strategy replies on the fact that H'(E, H*~'(X1, Q,(r)))
as a Qy[L\H(AY)/L]-module is semisimple and automorphic — this is not known for CH"(Xy).
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4.9. Proof of Theorem 4.22. In this subsection, we prove Proposition 4.46 and Theorem 4.22. Both proofs
require choices of vectors from 7 and 7, which we do now. Choose decomposable elements ¢; = ®,¢;, € V; and
@2 = ®vp2, € Vy satisfying

K 2
(T2) <pll’v € (m))", ¢y €7, and (ﬂ:,/(wr)tp;(,v, 2007, = Gy 4 forv e V;{’),
K.y
(T3) ¢}, € @)K, ry € m,™ and (@] . @24)r, = 1 forve T\ Sy,

(T4) goI ,» 2.y are New vectors”’ with respect to K., and ((,01 P20, = 1 forv e Sy

Proposition 4.48. Suppose that n < p. Take an element A € Homg, (U'rp,Z,) and regard 1, as an element of
L ®q, (M (K" &g C) (Definition 2.3). Then

1@ @2, Iz = P X StisNC(s2) - .20 - [ | 2], @ pans A1),

(O\{eo,p})
vev

where ( , ) is introduced in Notation 3.35 and Z(goi ,» ® P2y, f1,) is from Lemma 3.30.

Proof. We first compute <<p1 ® ¢2, D)(>7”Ar and (¢1 ® ¢2,"D), -

Lety: T'rp — @; be a finite character. By definition, we have

— 1 [N']
<¢1 ® ¢2, DX>7r,ﬁ' B 1\%1—1;20 <<Pl ® ¢2, DX >ﬂ,ﬁ' ’
For the right-hand side, we perform a computation similar to the one in the proof of Theorem 3.37. For every
embedding ¢: Q, — C, we have

R

1 .
N! N!
dprom D) = o f f &b EN (g1, 2)) dgn de2
Ve
(GHP\GH(AR))

1 |
(4.26) =y f f (@D (e ()EL (g1, g2)) dg1 dg2
" GNG A

by Lemma 4.43(1) and Lemma 4.40(1). By the doubling integral expansion and Lemma 3.31,

[F:Q]
-

1
(4.26) = pM - iy S (tis ) (t2s2) - = -
Ve Ve P;z— bgr(l)

x L(3,BC@r®) ® (o® o Nmgp) - | | 2o}, @ a0 G ) [ | 26}, ® g2 fire)-

veV(F”) vevﬁf\“"’"””
By (T2) and Lemma 3.11, for every v € v,
-N!
Moy ] (NS
Z(p}, ® pa, (£y )X = [L [ a(m)] Z'(p}, ® g2, (£,
uepP,

By Proposition 3.32 and (T2), for every v € v,

0 _
Z4p}, @ @2, () = [ [ v 1 @ 3, ) ™

uepP,

204 new vector in an almost unramified representation of G,(F) is a vector in the (one-dimensional) space in [Liu22, Definition 5.3(2)].
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Together, we have
Z[F Ql

(4.26) = F,, T st o @), wr)™ - L3, BC@®) @ (i ® o Nmpp))

(1) V(P) uepP,

—N!
><pM-w,?(tlsl)w,?(tzsz)-[L]_[am)] ] 26, ®e fa),

u€epP VGV;?\(DO»PD

which, by Theorem 3.37 and Lemma 3.30, equals

P (s (s2) - L$p°(7r)()()-t(l_[ a(nurm]-t [1 24}, @0 5)]-

ueP vEV(FO\(Oo,pD

As a consequence, we have

(pr@en D) = pM - x2sing (s2) - £ (M) - (]_[amrm]- [T ze), e 50,

ueP v\
hence
(4.27) (preenDy) =" xStisngLs) - ZP@w - || 2], 0¢ f):
yey Qi)
By a similar argument, for every v € S,, we have
vpINT\  _
<<P1 ® ¢z, D >M =0

since Z(¢] , ® g2 f;7") = 0. Thus, {p1 ® ¢2,"D), 5 = 0.

Now the proposmon follows from (4.27), (3.19), and the p-adic Leibniz rule. O

Lemma 4.49. For every v € V(<>\{°<”’7 Y\ R we have Z(go'f ® v2., f1,) # 0.

Proof. By [LLiu22, Proposition 5.6] and (T4) when v € Sz, [I.L1.22, Proposition 3.6] and (T3) when v € V;2™, Lemma
3.31 and (T3) when v € T \ (S, U V;i™), we have

L(3,BC(x,))

bary(1)
for a constant C, € Q*. Then the nonvanishing is clear. O

Z(p! @@y fi,) = Cy-

Proof of Proposition 4.46. We would like to apply Proposition 4.48. By condition (c), for every v € R, we may find
¢, €m)/, ¢, € m, such that Z(¢) @ ¢y, qu)w) # 0, that is, Z(goI ,®¢2,, f1,) # 0. Together with Lemma 4.49, we have
Hveviva,m) Z((pf’v ® @21, f1,) # 0. By condition (b), there exists A € Homgz,(I'r,p, Z)) such that 84$p<>(7r)(1) # 0.
Thus, by Proposition 4.48, I; # 0. The proposition is proved. O

Proof of Theorem 4.22. For (1), we may apply Theorem 4.21 so that we have elements Z’r and .Z ;, from

Proposition 4.19. By Remark 4.23(2), it suffices to show (4.6) for a smgle choice of data (¢, <p2, o1, $2) (as in the

statement of Theorem 4.22) satisfying [] _joven Z((p1 , ® P2y, 3w 1@ ) # 0. Thus, by Lemma 4.49, it suffices to
F ) SV sV

show (4.6) for our particular choices of (¢, ¢, = ¢50]) as in (4.17) and (g1, ¢2) from (T2-T4), together satisfying
the following extra requirement
(T1) Z(¢], ® @2, [ eg,,) # O forv ER.

This is possible by [[LI.21, Proposition 3.13].
By Remark 4.38 and Lemma 4.29(1),

O3 (o)L = x5 (ts) 'O 4 (0D O3 (0L = x ¥ (12s2) ™! (]‘[a(nu>e]®§;g¢[el<wz)L
2

ueP
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hold for every e € N. By Definition 4.20,

Sel
®tlesl¢1 (QDI)L <¢P1, t151¢71 L>7T’ t s ¢[e] (QDZ)L (Sozy s ¢[L] >ﬁ,

in which

?181¢1Ja € HJIC(E’ Vi) ®L ((vff ®Q M) ) Zn 2l € H}(E, Vi) ®L ((Vﬁ ®Q M)

for some field M C C. Indeed, for given R-components of ¢; and ¢, we can shrink M to a number field, which
is in particular independent of e. Again by Lemma 4.29(1), the sequence {Z’r N } converges when N — oo,
2

whose limit we simply denote by Z5. Then
®Sel(902)L = ,?(tzsz)_l@;, Do)
Therefore, for every element A € Homz, (I'r,p, Z)) with Ag == Ao Nmgp,
KO @), O3 (92)): - = vol(L) - (@5 (1)1, O ()1
(4.28) = x5 s X208 - {91 © 02, v0I (L) - Ae (Zi 50,10 22) ),
By Proposition 4.19,
9,81 Zi60) = Z Z3 (tis18161)q™"

T1eHerm; (F)*

-M
qr,r(gZ : ZZ) =p Z ggz,Tz
TreHerm) (F)*

hold for every pair (g1, g2) € M, (Fr) X M,(Fg), where we recall that g, 7, = pM Al,im Z‘;;(tszgm[zN!])L.
Thus, by Proposition 4.45(2), we have

voli(L) - /1E< ?181¢1,L’Z2>E =p M.
By Proposition 4.48,

@28) = x2 (s wg s {1 @2 p ™M) =Ly @M || 2], @2 ).

(O\{oo,p})
VGVF
In other words,

@3 (e, O3 @) p =022 - [ | 2], @200 A1)

VEV?“WWD
_ <& T SW
=02y || 2@}, ® @20 3 eg,,)-
(O\{eo,p})
veVF

Finally, by Proposition 3.32 and (T2),

2@}, ®@aus e = | | (55 7w )™

uep,

for every v € ng). Together, we obtain (4.6). Part (1) is proved.
For (2), it suffices to show the vanishing under every embedding ¢: I — C. Thus, we may regard LL as a subfield
of C and r as defined over C. For every 4 € Homgz,(I'rp, Z)) with Ag := A1 o Nmg/r, we have a map

il SV e AY) = S (V' @p AY) ®c S (V" ®F AY) > SF,,(C)
(Definition 2.6) of C[G,,,(A})]-modules sending (¢1, #2) to the assignment

(81.82) = > A (9 (28 (@r(@1)¢1)L) , 91 (25 (@i (g2)p2)L)) - 472
(Ty,T>)eHerm,(F)* xHerm,(F)*



A p-ADIC ARITHMETIC INNER PRODUCT FORMULA 65
We prove (2) by contradiction. Assume the opposite hence iﬁ . 1s nontrivial for some A. Then it is clear from the
construction that i factors through successive G, -(A})-equivariant quotient maps

SV ep AY) > M) = | | 2,0) > 7wk

VeV
We claim that the image of i’ i, is contained in g, ,ﬂy] hol (Definition 2.6). By [ , Proposition 4.8(1)], it suffices
to show that i;, ,((;51, $2) € q; ,ﬂ£r] no1 for one choice of pair (¢1, ¢2) such that ¢; ® ¢» has nonzero image under

the unique nontrivial map in Homg, ax)xG,(a%) (I7(1), 7 ® 7). Indeed, we choose the pair to be (t;s1¢1, t2s2¢) in
which ¢, and (¢})” (away-from-p part) are from the proof of (1), and ¢’2 forv € V(p ) is an arbitrary element in

Z(V]) whose image in the quotient 7, ® 6(,) (Lemma 4.1) is the limit of the images of qb[ Yin that quotient when
N — oo (which exists by Lemma 4.29(1)). By Lemma 4.27 (applied to both Varlables) 1t suffices to show that

there exists J, € ﬂ[’] rhot SUch that
4 (21,82) - ) = D A (9 (28 (@r@)tis191)L) 97 (25 (r(gsagh)L)) . - 4"
(T1.T>)eHerm,(F)* xHerm,(F)*
= Z <Zet (w(gDtis101)1, Z5: (wr(g2)t252¢2)L> g

(T1,T2)eHerm,(F)*xHerm,(F)*

for every pair (g1,82) € M (FR) x M,(Fg). Then by Proposition 4.45(2), we may take J. i to be vol*(L)"1p~™ . I,
(regarded as an element of ﬂ ho 1) It remains to show that /, vanishes hence the map i l . vanishes, resulting in a
contradiction. Once again, since z » factors through 7 ® 7, it suffices to show that (o1 ® @2, I3}, » = 0 for a single
(decomposable) pair (¢1, ¢2) such that Z((pl’v ® ¢2,, f1,) # 0 for every v € Vgn. Indeed, we can just take (o1, ¢2)
to be the pair from the proof of (1). Then the vanishing of (¢1 ® ¢2, I1), » follows from Proposition 4.43, since we
have assumed that the vanishing order of fpo(ﬂ) at 1 is at least one. Part (2) is proved. O

APPENDIX A. BI-EXTENSIONS AND p-ADIC HEIGHT PAIRINGS

In this appendix, we develop further the theory of p-adic heights on general varieties. We fix a prime number
p and an integer n > 2. Moreover, W denotes a finite flat local extension of Z, and L denotes a finite product of
finite extensions of Frac(W).

A.1. Etale correspondences. Let X be a scheme. An érale correspondence on X is a diagram
rxdxdx

in which both f and g are finite étale morphisms.

The collection of all étale correspondences on X forms a monoidal category EtCor(X). See [ , Defini-
tion 2.11] for more details. We denote by EC(X) the (unital) Z-algebra generated by the underlying monoid of
isomorphism classes of objects of EtCor(X). For every ring R, an R-ring of étale correspondences on X is an
R-ring T together with a homomorphism T — EC(X)g that is R-linear and unital. Usually, we only write T for the
notation when the homomorphism T — EC(X)g, is clear.

Notation A.1. Let S be a subset of X. For an étale correspondence ¢ as above, we put S’ := f(g~!(S)). For a finite
linear combination 7 = Y, ¢;f; with ¢; # 0, we put S* := [ J; S.
A.2. Remarks on sheaves. Let S be a site. For a diagram of rings R., we denote by

e M(S, R.) the abelian category of sheaves of R,-modules on S,

e C*(S,R.) = C*(M(S, R.)) the abelian category of bounded below complexes in M(S, R.),

e D*(S,R.) = D"(M(S, R.)) the derived category of M(S, R.) with bounded below cohomology.
In this article, we mainly use two kinds of diagrams of rings. The first is a singleton valued in a ring R so that
M(S, R,) = M(S, R) is the usual category of sheaves of R-modules on §. The second is the diagram

We: oo > W/p* > W/p? - W/p
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so that M(S, W,) consists of sequences F, = (--- = F3 — Fy — F1) of sheaves of W-modules on S in which F;
is annihilated by p’. Then we have the left-exact functor

@: M(S,W,) —» M(S,W)
and the exact restriction functor
—: M(S, W) - M(S, W/p")

forevery [ > 1.

In what follows, we suppress S (together with the comma after it) in the notation when S is a point. We have
the global section functor I'(S, —): M(S, R.) — M(R.). For every g € Z, denote by HY(S, —) the g-th cohomology
of RI'(S, -).

Example A.2. For a scheme X and an integer r, we have the object ,ufff € M(Xg, Zpe) and put

L(r)y i= (RyLn(u?.’ ),) €z, L € D*(Xei, L),

Then HY(X¢, L(r)x) coincides with Jannsen’s continuous étale cohomology [ ] of X (with coeflicients in L),
usually denoted by H?(X, L(r)). For a relative scheme 7: X — S of finite type, HY(S ¢, RmL(r)x) coincides with
the continuous cohomology of X/S with proper support, usually denoted by HZ(X, L(r)) when the base S is clear.

Now let G be a profinite group that acts on §. We similarly define three categories Mg(S, R.), C5(S, R.),
and D{(S,R.) for compatible G-equivariant R,-modules on S. We have the global section functor
I'(S,-): Mg(S,R.) — Mg(R,.) and the G-invariants functor I'g: Mg(R.) — M(R,). For every g € Z, de-
note by H‘é(S, —) the g-th cohomology of RI'g o RI'(S, —). The natural transformation from I'g to the forgetful
functor (forgetting the G-action) induces, for every g € Z, a functor Hé(S ,—) — HI(S,-), whose kernel we
denote by HZ (S, -)°.

For an object " € D (S, W,), we put

(A.1) G = (R@%) ®w L € DE(S,L).

Definition A.3. We say that an object ¢" € D(S, W.) is admissible if

(1) H4(S, %)) is a discrete G-module for every ¢ € Z and [ > 1, that is, every element of HY(S, %;) has an open
stabilizer;
(2) R! {iLnl H4(S, %)) has finite exponent for every ¢ € Z.

It is clear that if %" is admissible, then the natural map H?(S, %1) — (linl HY(S, ‘51)) ®w L is an isomorphism of

G-modules, through which we view H4(S, 41,) as a topological G-module. The following lemma slightly general-
izes [ , Corollary 3.4] in the case of rational coefficients.

Lemma A4. Let € € DL(S,Zps) be an admissible object. Then there is a spectral sequence
H, (G HY(S, %1)) = HET(S, 6L).

In particular, we have the edge map
H{(S,L)° — Heon(G,HT'(S,61)).

Proof. We first note that (I'g o I'(§,—)) o @ ={Tgo liLn) oI'(S, —) and all of the three functors preserve injectives.
By the same argument for [ , Theorem 3.3], there is a spectral sequence

H(G, (H(S,€1))) = H™(S.Rlim &)

which is simply the Grothendieck spectral sequence for the composition R(I'g o &n) o RI'(S, —). By the similar

argument for [ , Theorem 2.2] and Definition A.3, there is a canonical isomorphism
HP(G, (H(S,6))) @w L ~ HY (G, HY(S, 1))
The lemma then follows as H‘C’;rq(S ,R gn 6w L = Hé+q(S ,6L). O

The lemma below will only be used in §B.6.



A p-ADIC ARITHMETIC INNER PRODUCT FORMULA 67
Lemma A.5. Let S be a site with an action of G and q an integer. Consider a distinguished triangle
a5
of admissible objects in D5(S, W), inducing the following commutative diagram

HY'(S, ‘fL)—>H (S, o) —— HE(S, BL) — = HL(S, 61)

| | z K
HO-1(S, 4,.) — > HI(S, o) —— HI(S, B) —— HI(S. %)

in which all vertical maps are induced from forgetting G-actions. Then for every element b € H. (S, BL) satisfying
y(v(b)) = 0, the image of v(b) under the composite map

H (S, %
HZL(S,60)° > Hign (G, HIT' (S, 61L)) = Hipy (G, ( L))

H4~1(S, #L)

can be represented by the (continuous) 1-cocycle g — ga — a for g € G, where a is an arbitrary element in

HY(S, o) satisfying u(a) = B(b).

Proof. Tt is easy to check that the 1-cocycle does not depend on the choice of x. Thus, it suffices to check the
statement for one such element.

Take an injective resolution 0 — A; LN B, RN Ce — 0in C5(W,) (the bullet in the superscript denotes the
cohomological degree) of the exact triangle

RIS, o) — RI(S, B) — RT(S. %) —> .

Put X7 := (11m X’) ®w L € C5(L) for X = A, B, C. Then the diagram in the statement can be replaced by

Ha-! ((CH:)G) A Ha ((AJDG) M R ((BH:)G) LA = (7 ((Cﬁ)G)

b )

Ho (07) ——he (ay) He (B) H(cr)

in which all vertical arrows are induced by natural inclusions. By definition, we have

Ker(( EHS S (Cq“)G)nIm(cqliEq)

HL(S,%.)° = HY ((C)O) =
G L ( L ) Im((CE_I)G_)(E]Z)G)

It follows from the formation of the spectral sequence in Lemma A.4 that for ¢ € H? ((C )G) , its image in

Ont(G H? 1(C )) under the edge map can be represented by the 1-cocycle that sends g € G to the (cohomology
class in H?™ 1(CH:)) of ge?™! — ¢47!, where ¢! € CE is an arbitrary element whose differential dc?™ Uin Cﬁ
represents ¢ (so that gcd™! — ¢471 is closed).

To prove the lemma, let b7 € (BE)G be a closed element that represents b € H? ((BIL)G). Since v4(y?) induces
an element in HY ((C )G) we may choose an element ¢4~ € Cﬁ_l whose differential dc?~! in CH‘f equals v(b?).
To construct an element @ that lifts B(b), we take an element b7~ € Bi_l such that u4=1(b97 1) = ¢4°'. Then
vi(b? —db?~") = 0, which implies that a? := b7 — db9~! belongs to AE and is closed. Then we may take a € H? (AH:)
to be the cohomology class of a?. Since b7 is fixed by G, we have for every g € G, ga? — a? = gdb?™! — db9~! =
d(gh?~'=b49"1), which is a closed element in AE. However, d(gb?~!—b7~") exactly represents the class of gc4~!—¢77!
under the coboundary map A: H?~! (CIE) — H4 (AEA). The lemma is proved. O
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In what follows, G will be the absolute Galois group of a field K of characteristic different from p, which we

denote by Gg. As for common practice, we simply write HY(K, —) for HZOm(GK, —). We also introduce the additive

category M (L) of topological L-vector spaces with continuous actions by Gg.

A.3. Bi-extensions of cycles. Let K be a field of characteristic different from p with a fixed algebraic closure K.
Let X be a projective smooth scheme over K of pure dimension n — 1. For every integer d, put

2(X)} = Ker (Z4(X)L. - H*(X.L(d))).

Now we consider two elements ¢ € Zd(X)H(i and ¢’ € 74 (X)](i with d + d’ = n, such that ¢ and ¢’ have disjoint
supports. Choose disjoint nonempty closed subsets Z and Z’ of X of pure codimension d and d’ containing the
supports of ¢ and ¢’, respectively. Denote by i: Z — X and i’ : Z’ — X the closed immersions and put U := X \ Z
and U’ := X \ Z'. We have the following diagram

of open immersions. We have the following induced diagram
(A.2) 0 0
XXz, L(d)) —— H**2(ZL L(d)) — B> (X, iL(d)) — B (Xg, L(d)) —= 0

H*2(Ug, L(d)) —= B*"X(Z, L(d)) — B> (Ug, /)L(d)) — H**(Ug, L(d)) —=0

H*(Zz, 'L(d)) =———=H*!(Z. 'L(d))

HY (Xg, /}L(d)) H* (X%, L(d))

in Mg (LL).

The element ¢ gives rise to a map «°: L — H?¢(Z=, i'L(d)) whose image is contained in the kernel of the map
H?*!(Zz,i'L(d)) —» H* (X%, 1L(d)). The element ¢’ gives rise to a map & : HZd‘Z(Z’E, L(d — 1)) — L that vanishes
on the image of the map HZd‘Z(Xf, L(d)) — HZd‘Z(Z’i, L(d)). Applying the pullback along «¢ and the pushforward
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along k(1) to the diagram (A.2), we obtain the following bi-extension diagram

0 0
0 L(1) E. H* (X%, L(d)) — 0
|
0 L(1) E, E° 0
L L
0 0

in Mg(L). It is easy to see that the above diagram does not depend on the choices of Z and Z’. We have three
induced extension classes

e [E] € HY(K, H** (X%, L(d))),

o [Ex(D] = [E] € H'(K, B! (X, L(@))),

o [E] € H'(K,Eo).

A.4. Relation with Beilinson’s local index. In this subsection, we assume that K is a non-archimedean local
field whose residue field has characteristic different from p. We study the relation between Nekovaf’s local p-adic
height and Beilinson’s local index.

Assume that the cycle classes of ¢ and ¢’ in H%(X,1L(d)) and H (X,L(d")) vanish, respectively.21 Then the
image of [E{,] in H'(K, H2d—1(XE, IL(d))) vanishes, hence [E{,] belongs to the image of the map H'(K,L(1)) —
H'(K,E.) which is injective. Following Nekovarf [ ], we denote by (c, c’); x the image of [Ef,] under the
natural isomorphism H'(K,L(1)) = KX ® L given by the Kummer maps.

We recall the definition of Beilinson’s local index [ , Section 2] (see also [ , Appendix B]). We have the
refined cycle class [c] € H%d(X, L(d)) = H*(Z, J'L(d)), which is contained in the kernel of the map H%d(X, L{d)) —
H24(X,1(d)), hence we may choose an element y € H2-1(U, L(d)) that maps to [c] under the coboundary map
H* (U, L(d)) — H%d(X, L(d)). Similarly, we can choose an element y’ € H24-1(U’,L(d")) for ¢’. Beilinson’s
local index, which we denote by {c, c')?}’ - 18 defined as the image of y U y” under the composite map

) , 2n-1 Trxk 1 1 %
H22(U 1 U, Ln)) — H*"' (X, L(n)) —=5 H'(Spec K, L(1)) = H'(K,L(1)) = K* &= L.

in which the first map is the coboundary map in the Mayer—Vietoris exact sequence for the open covering X =
vuvU'.

Remark A.6. In fact, in [ , Section 2] and [ , Appendix B], the local index {c, c’}% takes value in L via
the canonical isomorphism H'(Spec K, Qp(1)) = Q, that is the composition

H' (Spec K, Q)(1)) = Hg,,.. (Spec Ok, Q,(1)) = H'(Speck,Q,) = Q,

in which « is the residue field of K. By [ ,2.1.3]or[ , 11.(2.16.1)], the induced isomorphism I/{;‘g’ZQp -
Qp sends a uniformizer of K to —1, rather than 1.

The following proposition is simply [ , Theorem 5.3].
Proposition A.7. Let the situation be as above. Then

N B
(e, Vxx = (e, Ny

21This is automatic if the monodromy-weight conjecture holds for H*~! (X%, L(d)).
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A.5. Crystalline property of bi-extensions. In this subsection, we assume that X is a finite extension of Q,, with
residue field x. Denote by W the Witt ring of «, and by K the fraction field of W, which is canonically a subfield
of K.

We assume that X admits a proper strictly semistable model X over Og. Put X := X ®¢, k. For every integer
h > 1, denote by X the disjoint union of intersections of 4 different irreducible components of X, which is either
empty or a proper smooth scheme over «.

Theorem A.8. Suppose that n < p. Let T be an LL-ring of étale correspondences on X and m,m’ two maximal
ideals of T satisfying that

(A3) D HLxVWez, L) = D HLXP/Wez, L), =0

h>1,4>0 h>1,4>0
Then there exist elements t € T\ mand t' € T\ m’ depending only on X such that the following holds: For two
arbitrary elements c € Zd(X)](i and ¢’ € 7% (X)E with d + d’ = n satisfying that

(1) (suppC) N (suppC’)’ = 0 for every t,t’ € T, where C and C' denote the Zariski closures of ¢ and ¢’ in X,
respectively,
(2) the codimension of supp C’ in X is at least d’ for every h > 1,
the following
o [E"] € Hi(K, H*! (X, L(d))),
o [E)..(D]€ H}(K, H2 (X, L(d))),

1%
L4 [EI*C ] E H;(K’ Et'*c’):

¢!

hold simultaneously. Here, the bi-extension E.,¢, exists by (1).

t/*C/
Remark A.9. By taking T = L, Theorem A.8 asserts that E{, is crystalline as long as suppC N suppC’ = 0

when X is a proper smooth model of X over Ok.?> This confirms the (equivalent) conjecture in the remark after
[ , Theorem 8.7] when n < p.23

Our main strategy of proving Theorem A.8 is similar to [ ]. The main difficulty is to show that the bi-
extension [E;ffc,] is a crystalline class. We consider the Abel-Jacobi map from the homologically trivial part of
the degree 2d syntomic cohomology of X \ (supp C’) with proper support to H' (K, Hgd‘l(U’E, Qp(d))). After we
show that E,- is crystalline for suitable ¢', it suffices to show that if a syntomic class comes from a (homologically
trivial) cycle, then its Abel-Jacobi image vanishes in H' (K, H2¢~! (U’?, Qp)®q, Beris) “after localization at m’” (and
replace K by a finite extension in fact), under the conditions in Theorem A.8. However, the main challenge for
us is that unlike the situation in [ ] where U’ = X, we do not have a comparison theorem for Hgd‘l(U;?, Qp)
with some cohomology on the special fiber in general. Also, due to the constraint of the conditions in the theorem,
we can not reduce the theorem to an alteration. We solve this problem in the following way. First, we show
that the kernel of the Abel-Jacobi map from the above syntomic cohomology to H'(K, Hgd_l(U'?, Qp) ®g ) Beris)
contains the kernel of another map whose range is a certain space defined by log rigid cohomology (Proposition
B.9). Second, we show that a cycle class will vanish in this space “after localization at m’”. For the first step,
which shall hold more generally without the conditions in the theorem, we pass to a strict semistable alteration.

The full proof of Theorem A.8 will occupy the entire Appendix B.

A.6. Recollection on p-adic Galois representation. Let K be as in the previous subsection. Let V be a finite-
dimensional continuous representation of Gg with coefficients in L, which we assume to be de Rham, that is

Dar(V) = (V &g, Bag)

is afree L ®q, K-module of rank dimy, V. In the rest of this subsection, we assume that L is a subfield of @p; and
one can generalize the discussion to a finite product of finite extensions of Q, by considering all homomorphisms

L— @p over Q.

22We warn the readers that this assertion is wrong if one replaces the word smooth by strictly semistable.
23However, our strategy for the proof of Theorem A.8 is different from the case of (local systems over) curves in [ , Theorem 8.7].
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We have a decreasing filtration F'Dgr(V) of L ®q, K-submodules of Dgr(V), known as the de Rham filtration.
Moreover, for every embedding 7: K — @p, Fontaine constructed a Weil-Deligne representation WD(V); of the
Weil group of K with coefficients in @p, with underlying @p—vector space Dgr(V) ®Leg, K.1o7 @p. The isomorphism
class of WD(V); is independent of 7. See, for example, [ , Section 1] for more details. We also recall that V

is crystalline if

G
Deris(V) = (V ®Qp Bcris) :

is a free L ®g, Ko-module of rank dimy, V.

Remark A.10. It follows from the construction of WD(V), that if V is crystalline, then the following polynomials
coincide:

e the characteristic polynomial of a geometric Frobenius on WD(V),, for any t;
e the characteristic polynomial of ¢ on D5(V), where ¢ denotes the [Ky : Q,]-th power of the crystalline
Frobenius.

Definition A.11. Let u be a real number. We say that V is pure of weight u if for some (hence every) 7: K — @p,
all geometric Frobenius eigenvalues of gr,WD(V), are Weil |«[**-numbers for every i € Z, where gr;WD(V),
denotes the i-th graded piece of the monodromy filtration on WD(V),.>*

We make the following definition, after [ , 6.7].

Definition A.12. We say that V satisfies the Panchishkin condition if there exists a necessarily unique L[Gg]-
submodule V¥ C V (with V™ := V/V*) such that

F'Dgr(V*) = Dar(V")/F'Dgr(V™) = 0.

Lemma A.13. For a crystalline representation V of Gg over L, the following are equivalent:

(1) V satisfies the Panchishkin condition;
(2) the L®q, Ko-submodule D:riS(V) C Dy1is(V) on which the crystalline Frobenius acts with negative slopes25
is weakly admissible, and the natural map

(A4) (D (V) ®k, K) ® F'Dgr(V) — Dar(V)

cris

is a splitting of the Hodge filtration on Dgr(V).

Proof. Assume that V is Panchishkin with a subrepresentation V* as in the definition. By the weak admissibility
of D¢is(V*), the crystalline Frobenius acts on Deis(V*) with negative slopes and on D¢,5(V™) with non-negative
slopes; it follows that D:riS(V) = Deis(V*) satisfies the second condition. Conversely, that condition implies that
D+

wis(V) € Deris (V) is weakly admissible, hence by [ ] it arises as D*. (V) = Dei(V*) from a subrepresenta-

cris
tion V' c V, which witnesses the Panchishkin condition. O

Lemma A.14. Let u be a nonzero integer and 0 — Vi — V — V, — 0 a short exact sequence of crystalline
representations of Gg. If V| and V, are pure of weight u, then so is V. If V| and V, satisfy the Panchishkin
condition, then so does V.

Proof. The first statement is clear. We prove the second one. The sequence
0 - F'Dgr(V1) = FPDgr(V) = F'Dgr(V2) — 0

is exact, and by definition, so is

0— ID-c‘—ris(vl) - D:ris(v) - D:ris(VZ) — 0.
This implies that (A.4) is an isomorphism. By [ , Proposition 3.4], the module D7 . (V) is weakly admissible
too, so that the equivalent Panchishkin condition of Lemma A.13 is satisfied. O

2 particular, L(1) is pure of weight —2.

251n other words, the submodule D*

(V) generated by the generalized ¢-eigenspaces relative to the eigenvalues of negative valuation.
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A.7. Decomposition of p-adic height pairing. In this subsection, we take K to be a number field. Let X be a
proper smooth scheme over K of pure dimension n — 1 and take two positive integers d, d’ satisfying d + d’ = n.
Consider L[Gg]-submodules V and V’ of H*¢~! (X%, 1L(d)) and H24'-1 (X%, L(d")), respectively, satisfying

(V1) For every nonarchimedean place u of K not above p, H!{(K,,V) = H(K,,V’) = 0 fori € Z.

(V2) For every place u of K above p, both Vl|g, and V’|k, are semistable and pure of weight —1 (Definition
A.11).

(V3) For every place u of K above p, both V|g, and V’|k, satisfy the Panchishkin condition (Definition A.12).

We have the canonical p-adic height pairing
(v Hi(K, V) x HY(K, V') - Tk @z, L

constructed in [ ], using the Hodge splitting map (A.4). The pairing is L-bilinear.
Recall that we have the Abel-Jacobi map

AJ: 24X — HY(K, H* (Xz, L(d))).

We denote by Z{l,(X)E the subspace of Zd(X)H(i that is the inverse image of H' (K, V). By [ , Theorem 3.1], the
image of AJ is contained in Hy (K, H**! (X, L(d))). Moreover, (V1) implies that H{(K, V) = H}(K, V). Thus, we
have the Abel-Jacobi map

AJ: ZG(X)]) = H(K, V),
Similarly, we have Z{J;, X )g and the corresponding Abel-Jacobi map

AJ: Z4,(X)], > Hy(K, V).
Combining with the two Abel-Jacobi maps, we obtain a pairing
(A.5) COvvnk: Z9X0? x 26,0 - Tk, @z, L.

Take two elements ¢ € Z%(X)g and ¢’ € Zf,', (X)ﬁ with disjoint supports. Then according to [ , Section 4],
we have a decomposition

(e, Yk = Z(C, NVN)K,

ufoo

of the pairing (A.5) into local ones (¢, ¢")v.v)k, € K ® L over all nonarchimedean places u of K, in which
(c,c")vvrk, =(c, c’))l\(I ¢ for u not above p.

Remark A.15. For a place u of K above p, the bi-extension class [E(,] € H'(K,,E.) belongs to H}(Ku, E.) if and
only if {c, C/>(V,V’),Ku S OIX(M ®Zp L.

APPENDIX B. PrROOF OF THEOREM A.8

Let K be a finite extension of Q, with residue field x. Denote by W the Witt ring of «, and by Ky the fraction
field of W, which is canonically a subfield of K. We fix an algebraic closure K of K with the residue field k. For
every finite extension K’ of Kj contained in K, put G- := Gal(K/K") as a profinite group.

B.1. Preparation. For a scheme Z of finite type over Ok with K’ a finite extension of K contained in K, we

e put Z := Z ®p,, K’ for the generic fiber,

put Z; := Z ®Z/p' for every integer [ > 1,

put Z := Z ®,, & for its special fiber, where «” is the residue field of K’,

denote by 3 the formal completion of Z along Z,

denote by 3,, the generic fiber of 3, regarded as an analytic space over K’ in the sense of Berkovich,

put Z := Z ®o,, O, Z =7Z®k K, and Z=2 ® K.



A p-ADIC ARITHMETIC INNER PRODUCT FORMULA 73

We apply the similar notational convention to morphisms over Og- as well.?®

Suppose that X is a subscheme of Z, we denote by ]X[3, its tubular neighbourhood in 3,. We have the quasi-

étale site ]X[quét [ , §3] with the natural map ]X[Sn,qét—) (§/;)ét, where §7X denotes the formal completion
of 3 along X. On the other hand, the natural map (§/\X)ét — Xg 1s an equivalence of sites [ , Proposition 2.1].

Together, we obtain the specialization map s(x 3): ]X[;gﬂ,qét—> Xet, and will simply write s when no confusion
arises.

Definition B.1. Let R be a ring. In the situation above, suppose that X is a closed subscheme of Z and U an open
subscheme of X, we define a functor

£1ux0° MAX[ 3,6 B) = M(X[3, g6t R)
to be the kernel of the unit transform id — g, o g*, where g denotes the open immersion ] X \ U[3,]—>]X[3n.

Remark B.2. The functors g*, g., and féu x) are all exact. Moreover, there is in general no functor £: D*(Xg, R) —

D* (X, R) such that £ o Rs(x 3)« = Rs(x 3y« © f(!U,X)’ even when X = Z.
Lemma B.3. Let the situation be as in Definition B.1. The diagram

Fy oF*o RS(X,S)* 0

| |

Rs(x,3)« Rsix3)x08:0g"

of functors from D+(]X[3U’qét, R) to D* (X4, R) commutes, where F: U — X denotes the open immersion. In partic-
ular, there is a canonical natural transform

FioF* oRsx 3« = Rsx 3« © f(!u,x)i D*(IX[3,.q4ét- R) = D" (X1, R).
Proof. Tt suffices to notice that the unit transform Rs(x 3). — Rsx 3)« © g« o g" factors through
Rsx3)s = Gx 0 G" 0 Rsix3)- = G 0 Rspaug)s © 8" = Rsxg)s © 8- 0 8",
where G: X\ U — X denotes the closed immersion. O

In what follows, we will work with log-schemes, written as (X, L) with the first variable the underlying scheme
and the second variable the log structure. Since the integral model in Theorem A.8 is strictly semistable, we assume
that the log structures are defined in the Zariski topology.

For a scheme X and a closed subset Y, we denote by L;; the log structure OxN j. ﬁ;((\Y — Ox,where j: X\Y - X
denotes the open immersion. For a log-scheme (X, L) and a morphism f: X’ — X, we write f*L for the pullback
log structure or simply L|x» when f is clear from the context.

We write W'V for (Spec W, W), W[r]° for (Spec W[t], L) where L is the log structure associated with 1 +—
t, W° for the fiber of W[¢]° at t = 0, and «° for the fiber of W° at p = 0. Note that the natural morphism
W[1]° —» WiV ig log-smooth. For every extension K’/Kj contained in K with the residue field «/, we put 0" =

K T
(Spec Ok, LgPect, ).
Let (X, M) be a fine log-scheme over a fine base log-scheme (S, L) of finite type. Recall that an embedding
system for (X, M)/(S, L) is a projective system {(X*, M*) < (Z*, N*)},=0.1... of exact closed immersions of log-
schemes over (S, L) in which X* is a Zariski hypercovering of X, M* = M|x«, and (Z*, N*) is a fine log-scheme
log-smooth over (S, L) of finite type. Note that embedding system always exists.
In the case where (S, L) = W[r]° and (X, M) is a strictly semistable log-scheme over «° [ , §2.1] of finite
type, we say that an embedding system {(X*, M*) — (Z*, N*)} for (X, M)/(S, L) is admissible if
(X%, M%) — (Z°, N°) induces an isomorphism (X%, M%) =~ (2%, N) Xwire K3
79 is flat and generically smooth over W[t], and is smooth over W;
Y9 := Z0 @y W is a relative strict normal crossings divisor of Z° over W;

o N :Lg));

26Later, we will see C,D,E,7,U,V,X,Y, Z for schemes and A, F, G, H for morphisms over O .
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o (X*,M*) — (Z*,N*) is (isomorphic to the one) induced from (X°, M°) — (Z°, N°) in the process de-
scribed in [ , 85.1].

B.2. Rigid de Rham—Witt complexes. Let (X, L) be a fine log-scheme over «° of finite type. Let F: U — X be
an open subscheme. For every Zariski hypercovering X* of X, we put F*: U* := U xx X* — X*.

Choose an embedding system {(X*, L*) < (Y*, M*)} for (X, L)/W°. Denote by u: X* — X the augmentation
map for the hypercovering, and put s* := s(x* 9+). We define the rigid de Rham—Witt complex of (X, L) to be?’

wx = Ru, (Rs: (Q(.M*,M*)/W’ 0y ﬁlx*[ﬂ)* )) € D" (Xeus Ko,

where Q(‘y* MRy denotes the complex on Y7 of relative logarithmic differentials of the log-smooth morphism
(Y*, M*)/W°. By (the same argument in) [ , Lemma 1.4], the complex wx does not depend on the choice of
the embedding system for (X, M)/ we.8

On the other hand, choose an embedding system {(X*,L*) — (Z*,N*)} for (X,L)/W][t]°, hence for
(X, L)/W™ . Then {(X*,L*) — (Y*,M*) = (Z*,N*) Xwppe W°} is an embedding system for (X, L)/W°. We
have the short exact sequence

q-1 q q
0 - Q(y*,M*)/WO - Q(Z*’N*)/eriv ®ﬁz* ﬁy* - Q(y*,M*)/WO - 0

of coherent sheaves on Y7, in which the first map is given by A dlog?, for every g > 0 compatible with differentials.
We put

@x = Ru, (Rs} (QZZ*,N*)/WM ®0,. Oixtiye ) € D (Xat Ko).

Then there is a distinguished triangle

(B.l) wﬁ: a))([—l] i Z)x — WY l) wyx

in D* (X, Ko), where N denotes the connecting map; it is independent of the choice of the embedding system for
(X, L)/W[t]°. Moreover, for a morphism f: (X', L") — (X, L) of fine log-schemes over «° of finite type, we have
an induced map wy — R f.@, of distinguished triangles in D* (X, Ko).

We put

WU X) = Ru. (Rs:f(!U*,X*) (Q(.y*,M*)/W" ®ﬁ’y* ﬁ]X*[gD* )) s
a(u,x) = Ru, (RS**:E(!U*,X*) (Q(.Z*,N*)/W“‘W ®[/>2* ﬁ]x*[w )) s

both in D* (X, Ko) (see Definition B.1). Then by definition, we have a distinguished triangle

—~ N
(B.2) OUx) " oux[-11 = oux = oux — oux

in D* (X4, Kp), and a distinguished triangle of distinguished triangles

1
(B.3) Wiy = 0§ = Gy —
where G: X\ U — X denotes the closed immersion.

From now on, we assume that (X, L) is strictly semistable over x°. We recall the construction of several crys-
talline complexes of (X, L). For every [ > 1, let D and & be the (scheme part of the) PD envelops of X* in Y}
and Z} (over the base W equipped with the usual PD structure), respectively.”” We have complexes

Q(y*’M*)/Wo ®ﬁ’y* ﬁ@:, Q(Z*,N*)/W‘ri" ®0Z* ﬁva Q(Z*,N*)/W"i" ®ﬁZ* ﬁSf? Q(Z*,N*)/W[t]" ®ﬁz* ﬁSI*

2"More precisely, it should be called convergent de Rham—Witt complex since it gives the log convergent cohomology in general.
However, later we will take (X, L) to be strictly semistable and proper.

Z0of course, wy depends on the log structure L. However, as a common practice for de Rham—Witt complexes, we will not include L in
the notation.

29The natural morphism D} — & ®yy,, W is an isomorphism, where W(z) denotes the PD envelop of (W[f], ()) over W.
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in C* (X%, W,). Put
et’ L]

Gx.Ly/we = Ru*( Y ;) we B0y ﬁﬂ*)

Coxnywe = RU*( (z* N Wi B0z ﬁ@*)
Cox,nyweiv = Ru*( (z* N*y Wiy B0z s} ) ’
Coxywine = RU (Qf 7+ oy wiie @0 Oe; )

all in D* (Xg, W,). It is well-known that the above objects do not depend on the choice of the embedding system
for (X, L)/W[t]°. In fact, €x r),w- is nothing but the modified de Rham—Witt complex Wy [ , ], and

Gx.L)/we is simply Way.
Applying the notation (A.1) (with W = W and L = Kj)), we obtain a distinguished triangle

[ ] —~® L[] N L]
(B.4) wa’ KO[—I] — W‘”x,Ko — wa, Ko Wa)x’ Ko

in D* (X, Ko), similar to (B.1), in which the first arrow is given by A dlogz, the second arrow is the natural one,
and the last arrow is the connecting map.

We would like to compare (B.1) and (B.4). We have a canonical map ﬁ’ — — lim Op» = Rlim Op» as in
/x* «—I 1 «—I 1

[ , (1.9.2)], which induces maps
* ° ~ o .
RS? (Qye arywe ©0ye Oixelye) = (Q(y*,M*)/W° B0y @9&*) ow Ko

- R£i£1§2(&,/*,ﬁ,,.,)/wo ®0x ﬁ@{* ®w Ko,

l

(Q Z* N* /eriv ®ﬁz* ﬁ]X*[\D*) (Q Z* N* /Wmv ®ﬁz* ﬁﬂl)//;x\*) ®W KO

Rlim Q(Z* Ny ey B0 ﬁﬂf) ®w Ko,
T
in D*(X%, Ko). These maps are in fact equivalences since (X*, L*) is strictly semistable over x* by an argument
similar to [ , §1.9]. Applying Ru,, we obtain equivalences
(B.5) wx = Wok g, @x = Wk g,

under which (B.1) is equivalent to (B.4). On the other hand, by Lemma B.3, we have a natural map

(B.6) FIF Way ., — Ru*F,*(F*)*[

l

5 RUL (FEFH)RS? (. o e ®62 Oiceys))
— RU. (RST {0 o) (O 70 ey e @z Oixrlyn ) = Buxy

in D* (Xg(, Ko).

When the model in Theorem A.8 is not smooth, we also need a cohomological variant of the rigid de Rham—
Witt complex, which we now introduce. We choose an admissible embedding system {(X*, L*) — (Z*, N*)} for
X, L)/ WIz]°.

q q
For every g > 0, we have a natural subsheaf Q2 w S Q(Z* Ny W Put

g+1
':'(1 i Q(Z* N*)/W‘”"
4 Qq+1

vayl
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which is an Oy«-module. The map A dlog ¢ induces a diagram

q
(B7) Qo

l

g+1 —q
Q(Z*,N*)/W“i" ®ﬁz* ﬁy* - =z*

of coherent sheaves on Y, compatible with differentials. Define
wy = Ru, (Rs: (E.Z* ®0y Oix*[ye )),
Oy = RUs (RS2 £y o) (E70 @00 Oty )
and we have a natural diagram
(B.8) wux[-1]

|

WX — Oy [~1]

in D* (X, Kp), in which the vertical arrow is same as the first arrow in the first line in B.3. Let WES € D (Xg:, We)

be the cohomological de Rham—Witt complex defined in [ , Definition 8.3]. Similar to (B.5), we have a natural
equivalence
wy = WE;(’KO
in D" (X¢;, Ko) by [ , Proposition 8.4]. Similar to (B.6), we have a natural map
(B.9) F!F*WE)'(’ K wZ’U’X)
in D*(Xg, Ko), fitting into the following diagram
(B.10) FgF*Wa;(’KO —_— FgF*WE)'(’KO[—l]

(B.6)l L(B.‘))

a')(U,X) > wz—u’x) [_ 1 ]

in which the upper horizontal arrow is induced by the one in [ , Proposition 8.10].

B.3. Log rigid cohomology with proper support. Let the situation be as in the previous subsection with (X, L)
strictly semistable over «°. We also assume that X is proper of pure dimension n — 1. For every i > 1, let X* be
the disjoint union of intersections of / different irreducible components of X, and put U™ := U xy X,

Recall from [ , §1.5] that for a scheme Y over X of finite type, we have the log rigid cohomology
H:ig(Y/ W¢) and the log convergent cohomology H? ,(Y/W?°) for the log-scheme (Y, L|y), with a natural map
H: (Y/W°) = HZ, ., (Y/W?°). In particular, we have

rig con

H(Xer, 0x) = Hlony X/ W), H!(Xet, Gowx\u) = Hony (X \ U/W?).

for every ¢ > 0.>° Moreover, the natural map Hr‘ig(X/ W°) — HZ.

rem 5.3(i1)].

(X/W°®) is an isomorphism by [ , Theo-

Definition B.4. We define, in an ad hoc way, the log rigid cohomology of U with proper support to be

HE (U, X)/W°) = HY(Xet, U x),
which a priori depends on the embedding U — X. For U € U’ € X, we have a natural pushforward map

H;Iig((u’ X)/W?) — Hfig((U', X)/W®) by construction.

30Here, we use the fact that computing cohomology of coherent sheaves in the quasi-étale topology of analytic spaces is the same as in
the G-topology.
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The distinguished triangle (B.3) induces a long exact sequence

(B.1) v = HE O\ U/W) = HE (U, X)/W?) = HE (X/W°) = Bl X\ U/W?) = -
of Ky-vector spaces.

We now review the weight spectral sequence for log rigid cohomology from [ , §5], which is the rigid
analogue of Mokrane’s spectral sequence for log crystalline cohomology [ ]. Take an admissible embedding
system {(X*, L*) < (Z*,N*)} for (X, L)/W[t]°. For j > 0, put

04 — J q-J q
PJQ(Z*’N*)/WMV - Im (Q(Z*,N*)/W“i" ® QZ*/W - Q(Z*,N*)/W‘“V) .
We have the double complex
Qi+ j+1
A[j _ (Z*,N*)/W“i"
T p.Oitit!
IR (Z* NF) W

of Oy«-modules, in which the differential A;]_;* - A%tl)j is given by (-1)/ d and the differential Ag* - Agf Dis
given by A dlogt, with the filtration

) i+j+1
p Alj . P2]+k+lg(z*,N*)/Wm'v
kA zx = POt

J (Z*,N*)/W”i"

for k > —j. In particular, A:ZQ* is nothing but the complex E.Z* from the previous subsection. Let A%,, be the
P . . . [ e — o0

total complex of AZ*‘ It is shown in [ 05, §5.2] that the augmentation map Q(y*’ ymywe > Ege = AZ* in
(B.7) induces an equivalence Q('y* My we A.Z* in D+(ygt, Kp). Then the total filtration on A%, induces spectral

sequences

E(X)l—k,q+k — @ Hﬁ;zj_k(x(2j+k+l)/K0) = Hﬁg(X/WO),

Jj=>max{0,—k}
—k,g+k -2j—k j o
B = HLYUEHRY Ky = HE /W),
j=>max{0,—k}

which already appeared in [ , (@], and

(B.12) EX\US ™ = @ HEY @D\ UG 1K) = HEp, X\ U/W),
Jj=zmax{0,—k}
(B.13) BU XY = @) HEP (U, X@ID) ) = HE (U, X)/WO).

Jj=>max{0,—k}

Here, Hr'ig((U(21+k+1), X2y 1KoY is defined similarly as for H}, (U, X)/W°) but without the log structure, which
in fact coincides with the rigid cohomology with proper support H? rig(U(zf’“k“)/ Kj) defined by Berthelot since

X@/+k+1) is proper. In particular, the spectral sequence (B.13) can also be written as

E U = P HITUAHD ) Ky = HE (U, X)/WO).
j=>max{0,—k}

The following two lemmas will be used later.

Lemma B.5. Let d > 1 be an integer. Suppose that dim(X" \ UM) < d — h for every h > 1.
(1) The natural map H?ig((U, X)/W°) — Hfig(X/Wo) is an isomorphism for q > 2d.
(2) The natural map EC(U)Ik’quk - E(X)Ik’(ﬁk is an isomorphism for q > 2d — |k|.

(3) For the map EC(U)?’Zd_1 - E(X)?’Zd_l, the direct summand

c,rig
jz1 j>1

is an isomorphism.
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Proof. For (1), it suffices to show that H ,,(X \ U/W®) = 0 for ¢ > 2d — 1. By the spectral sequence (B.12), it
suffices to show that Hfi;j _k(X(zj”‘”) \ UGHD K5y = 0 for every j, k, and g > 2d — 1, which follows from the
fact that
2d—1-2j—k>2(d-2j—k—1)>2dim(X&*+D\ @itk
For (2), it follows from the fact that

for every j > max{0, —k} when g > 2d — |k|.

For (3), it follows from the fact that
Hfiié_l_zj_l(x(Zj-H) \ U(2j+1)/KO) — Hiz;—]—Zj(X(Zj+l) \ U(2j+1)/KO) — 0
for j > 1. O
Lemma B.6. There is a spectral sequence E:(U)l_k"ﬁk = HY(Xg, w:U,X)) with

E*(U) 5k = HL L (USD/Ky), k> 0;
o 0. k <O.

o . —k,g+k
Moreover, the map Hfig((U,X)/W ) = Hi(X¢, oux) — Hq(Xét,wer,X)) is abutted by the map E.(U), CALN
Ef (U)Ik’quk given by the obvious projections.

Proof. The spectral sequence follows from the filtration PyA”, of A0, = E% , . Recall that the map wx) — W

zr T =z , U.X)
is induced by the natural projection map A%,, — A%)*. The lemma follows since PkAg* is the image of PyA.,,
under this map. o

B.4. Abel-Jacobi map via rigid cohomology. We start to prove Theorem A.8. We fix a uniformizer @ of K,
and regard Ok as an W[¢]-ring via ¢t — @, making 0%‘“ an exact closed log-subscheme of W[¢]°. Let Bs be the
crystalline period ring and By the semistable period ring with respect to @.

We fix a proper strictly semistable scheme X over Ok of pure (absolute) dimension n > 2. Then (X, L/)\E) is

log-smooth over O%", and (X, L = L§<|X) is strictly semistable over «° of finite type. Consider an open immersion
¥ : U — X. The following definition will be frequently used later, which is related to condition (2) in Theorem
AS.

Definition B.7. For an integer d > 1, we say that U is d-dense if dim(X" \ U®) < d — h for every h > 1.

Puti: X - X and j: X — X for the special fiber and the generic fiber of X, respectively. Take an integer d
satisfying 0 < d < p — 1. Let .Z(d)x € D* (X4, Zp.) be Kato’s (log) syntomic complexes for (X, Lg(().3 ! We have

the period map . (d)x — i*R j*(,u?fi)x which induces equivalences .7 (d)x = 4R j*(u?fi)x {l , D.
Putigs: U — U and jqr: U — U for the special fiber and the generic fiber of U, respectively. We have a sequence
of maps

FIF" IR (up)x — FiigRjar iy — i FIR jun Gy — I RjuFi(i )y
in D*(X¢, Zps), in which the last one is given by adjunction. Then we obtain the maps
R (Xet, FiF"Rlim .7 (d)x) — RT (X, R lim FiF*.%(d)x)
= R (Xe, R1im FiF"i"R . (5 )x )
= R (Xe Rlim iR Fi(ti v
= RT (Xa, Rlim F1(5)0)
where we have used the proper base change for the last equivalence. Put

RIo(U, Qp(d)) = RT (Xet, Rlim Fiu ) ©2, Qp = RT (X, FIQp(d)0),

31We will recall the construction of many syntomic and crystalline complexes in §B.6 in which .7(d) is a special case.
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whose g-th cohomology gives H! (U, Q,(d)). Then the composition of the previous sequence gives a map
(B.14) RT (Xei, FIF".7 (d)x.q,) = RT(U, Qp(d)
in D*(X¢., Q,), where we have again applied the notation (A.1) (with W =Z, and L = Q,).
The Hochschild—Serre spectral sequence (Lemma A.4) induces the edge map

H{(U,Q,p(d))° — H'(K,H' (U, Qp(d))),

where .
HI(U, Qp(d))° = Ker (H{(U, Qp(d))) — H(TU, Qy(d))).

Let HY(Xg, FIF*. (a’),\»,Qp)” be the inverse image of H(U, Qp(d))o under the map (B.14) (after taking g-th coho-
mology). Then we have the induced composite map
(B.15) ay: H'(Xe, FIF* .7 (d)x0,)” = H'(K,H (U, Q,(d)) —» H'(K, H' (U, Q) @, Bris),

where in the last map we use the canonical embedding Q,(d) < Bes in the category Mg (Q,).

To study the kernel of a4, we need to use crystalline complexes for X rather than its special fiber. Let €y yyuiv
and Gx;wine be the objects in D™ (Xg, W.) defined similarly as 6x ;,,w=v and Gix..)/we in §B.2, respectively, for
which we use an embedding system for (X, L/)\(,)/ W(t]° and just replace & by the PD envelop of X; in Z. We
have the following commutative diagram

(B.16) L (Dxg, — Cxywiv k, — CX/Wir°.Ko

| |

e L]
wa’ K Wa)X’ Ko

in D*(Xg, Qp), in which the first arrow is the natural map from the syntomic complex to the crystalline complex
over W'V, and the vertical maps are induced by the specialization at ¢ = 0.
Using (B.6), we obtain a map

(B.17) FIF*.Z(d)xq, = ®ux)
in D*(X¢, Q).
Lemma B.8. Suppose that U is d-dense if d > 1. Then the composite map
H* (Xg, FIF* 7 (d)x 0,) = B (Xai, @0 ,x)) = B (Xei, 0ux)) = HiE (U, X)/W°)
(Definition B.4) vanishes on H* (X, F\ F(d)xq,)"
Proof. When d = 0, the natural map H?ig((U, X)/W°) — H(r)ig(X/ W°) is injective. When d > 1, since U is d-
dense, by Lemma B.5(1) and the long exact sequence (B.11), the natural map H2¢((U, X)/W°) — H2¢(X/W°) is

Tig rig
an isomorphism, in particular, injective as well.
Thus, in both cases, we may assume U = X. Then the map H (X, . (Dxq,) — Hfi‘é(X/ W*®) factors through

H2(Xg, . (dxg,) — H* (X, Cx wie.k,) by (B.16). We have the commutative diagram
H (Xg, S (d)x,q,) — H*Xei, Cx v i) — H* Xat, Cxpwire k)

) L
~
~
~
-~
Al

2d iy 2d i\
H (Xét, %X/Wm",KO)Q H (Xéb %X/W[I]",Ko)

in which the injectivity of the two arrows follows from [Sat13, Proposition A.3.1].>> By [Sat]3, Lemma 9.5],
H* (X, . (d)X,Qp)v is contained in the kernel of the dashed arrow hence contained in the kernel of the map

H* (Xg, S (d)x,q,) = H*(Xat, €xwiipe k,)- The lemma follows. O

32We will in fact review the definition of the objects (Ky/wlm and ¢ Wi of DEK (Xéh W.) in a more general setup in §B.6. Meanwhile, it
suffices to note that in terms of the notation, our map H2 (X, Cx wiriv, Ko) — H*(Xq, Cx Wi Ko) is parallel to the map Hffgs((z M)/ W)g, —
HZ (X, M)/(&,Mg))g, in [Satl3].

crys
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The long exact sequence induced by (B.2) gives an isomorphism

HE (U, X%)/W°) _
— Ker (HY(Xs(, o x)) = HI(X¢, oux))) -

NH (U, X)/ W)

Thus, by Lemma B.8, we obtain a map

o . , HEH (U, X)/W*)
(B.18) p2a: HXet, FIF" S (d)x q,)" —

NHEE (U, X)/ W)’

For every finite extension K'/K contained in K and every object V € Mk (Q,), we denote by
resg+: H(K, V) - H(KT, V)

the restriction map.
The following proposition is the key to the proof of Theorem A.8, whose proof will be given in §B.6.

Proposition B.9. Suppose thatn < p, 1 < d < p— 1, and U is d-dense. There exists a finite extension Ky /K
(depending on U) contained in K such that

Ker(p2q) € Ker(resk, o azq)
holds. Moreover, we may take Kx to be K.

Now we bring the L-ring T of étale correspondences on X in Theorem A.8. In what follows, we write V1, :=
V ®q, L for a Qp-vector space V. In the situation of Theorem A.8, we may assume 1 < d < n — 1 without loss of
generality.

For every t € T, put

U =X\ (X\W"), F: U - X
(see Notation A.1), where ¥ denotes the transpose of 7. Then we have (U;)" € U. The element 7 acts on various

cohomology and spectral sequences compatibly,* giving a commutative diagram

(B.19)

21 (UL X)W Hig (U X)/ W)

Tig
I I
HZ ' (Un X)/Wo)L HN (U X0/ W)L

H (X, 08 5 )L

B (X, 0] ) 0%

U1.X)

_— _—

H* (X1, @u, %)L H2 (Xet, @ux)L

H*(Xg, FoF; 7 (d)xq, )L H(Xg, FIF*. (d)xg,)L

HZX (U, X)/WO)L

Tig

HZ((U, X)/ W)L

in which the two triangles are induced from (B.8).
Let I C T be the annihilator of

q / — q h
HL (XP/Wyez, L= P HL(X"/Ko)x.
h>1,420 h>1,4>0

33We note that for a finite étale morphism f: Xy — X, one can choose admissible embedding systems {(X},L}) — (Zj,Nj)} and
{(X*,L*) = (Z*,N*)} for (Xo, Ly)/W[z]° and (X, L)/ W[t]°, respectively, with an étale morphism (Z§, Nj) — (Z*, N*) that is compatible
with f. We have the similar statement for embedding systems for (Xj, Li(\,‘())) JW[t]° and (X, Lfé) [WIt]°.
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Lemma B.10. Suppose that U is d-dense. Then for every t € I¥'=3, the kernel of the map

H21 (U, X)/ W)L
e = Xet, wzrut’x))L

NHZT (U, X)/ W)

is annihilated by t*.
Proof. Since U is d-dense, U, is d-dense as well. Let

0=F"'cF'c...c F¥2 = HX'((U, X)/W°)

be the filtration induced by the spectral sequence EC(U,)Ik’quk. Let V be the kernel of the map in the lemma. For

every i, we regard F ]’L NV as the intersection of V and the image of F’ ]’L in the target of the map in the lemma.
By Lemma B.5(2,3) and Lemma B.6, we know that F; N V/Fi! 0V is a subquotient of €, _, p Hflg(X(h) /Ko
for every 0 < i < 4d — 2. Thus, every element in [ annihilates F} NRY Fy =1 NV for 0 < i < 4d — 2, which implies

that #* annlhllates V. a

Proposition B.11. Suppose that n < p and U is d-dense. Let t be an element in 1"=. Then for every ¢ € Z¢ (X)E
such that the Zariski closure of its support in X is contained in Uy, we have

resg, ("Be) € Hy(Ky, Ho™ (U, L(@))),

where 8. € H'(K, Hgd_l(a, L(d))) is the image of the cycle class of ¢ in Hgd (U, L(d))° under the edge map, and
Ky /K is the finite extension in Proposition B.9.

Proof. Let .7 (d)x be the object in D*(X¢;, Z ) defined in [ , Definition 4.2.4], which fits into a distinguished
triangle

(B.20) y)d(_l[—d 1] - T(d)x — % *RJ*(/J®d)X - V;i( -d]

where vf(‘
§2.2].

Let C be the Zariski closure of ¢ in X. Let {H;: C; — X} be the (finite) set of irreducible components of supp C,
which are projective flat schemes over Ok of pure (absolute) dimension n—d. The construction of the refined cycle
class of C; in [ , Definition 5.1.2] induces a map

D@, /p*)c, > H T (@)x12d]

e M(Xg, Zpe) 1s the (projective system of) logarithmic Hodge—Witt sheaves on X¢ defined in [ s

in D*(X¢, Z ) and hence a map

P @y, - H.T @xg,2d)

in D*(X¢, Z,). As supp C is contained in U, the natural map Hl!.FﬂF,* T (d) XQ, = Hl!.ﬁ (d)x, is an equivalence.
Thus, we obtain a Gysin map

@ HY(Ci, L) - H*(X&, FuF; T (d)x 0, )

Let 7. € H*(Xg, FiF; 7 (d)x,0,)L be the image of the cycle C under the above map.

Since d < n < p, the period map induces equivalences .%(d)x — 7<¢*R ]*(/,l®d)X Replacing 7¢/*R J*(,u‘X’d)X
by .7 (d)x in (B.20) and applying (A.1), we obtain a distinguished triangle

Wl =11 = Tdxg, = 7 g, — ¥d I=d)

in D*(Xg, Qp). Denote by o € H* (X, FoF; (d)x.g,)L the image of 7. under the above sequence, which then

belongs to H*(Xg, FuF;.%(d)x,,)7 since the cycle class of ¢ vanishes in H*(X, L(d)) and hence in H24(U;, L(d)).
Now we compute py4(0.), where p4 is defined in (B.18).
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In the following diagram

(B.16) (B.6)

FaF;(dx.q, FaF; Wa;(,Q,, WU.X)

| .

FuFvig, -l —————FaF;WES ¢ [-1] wixl=11

in D* (X4, Qp), the left square commutes as shown in the proof of [Sat]3, Proposition 9.10] (followed by taking
limit and applying F;F}), and the right square is (B.10). It follows that

241 (U, X)/ W)
NHZET((U,, X)/ W)

p24(0¢) € ker( - H2d_1(xéta “’Eru,,X))IL] .

By Lemma B.10 and the diagram (B.19), we have p,4(t*0) = t*p24(c) = 0. Finally, by Proposition B.9, we have
resk, (2q(t* o)) = 0. Since resk, (a24(t* o)) coincides with the image of resk,, (#*5.) under the map

H'(Ky, H*"' (U, L(d))) - H'(Ky, H*"' (U, Q) ®q, Beris)L,
resg, (t*B.) belongs to H}(KU, Hgd‘l(ﬁ, L(d))). The proposition is proved. O

Proof of Theorem A.8. We consider the localized cohomology HZd"l(X L(d"))y, which is a direct summand of
H2?~1(X, L(d")) in the category Mg (L). By the Cy-comparison theorem for X, Mokrane’s weight spectral sequence
[Mok93] and (A.3), we know that H2d/‘1()_(, L(d")) is either zero or a semistable representation of Gk pure of
weight —1 (Definition A.11). In particular, [Nek93, Proposition 1.25] implies the following

(*) For every short exact sequence 0—- L) d E— H2d‘1()_(, L(d)) — 0 in Mg (L) such that [EY(1)] belongs
to HJ{.(K, H2?-1(X, L(d"))) n HY(K, H* (X, 1.(d"))n), we have a short exact sequence
0 - HY(K",L(1)) > Hi(K",E) - H)(KT,H**"' (X, L(d))) - 0

for every finite extension K/K contained in K.
LetJ’ C T be the annihilator of

n—1
P Ker (H' (K, B2~ (X, L(d"))) — H' (K, B~ (X, L(d")r)) .
d'=1

In particular, we have [E¢] € H'(K, H* ~'(X,L(d"))n) for every t; € J'. We need to apply Proposition B.11
three times.
First, we apply Proposition B.11 to the case ¢ = #{"¢’, d = d’, and U = X. Then for every 2, € I4=3, the class

Beeee = té*,B,;*C/ belongs to H}(K, HZ'-1(X,L(d"))). In other words, we have
[Ey..(1)] € Hy(K, H** 7' (X, L(d"))) n H' (K, B** 7' (X, L(d")w ),
where ¢’ := 1 #}. By (*), we have a short exact sequence
0 — Hp(K",L(1)) > Hy(K", Ep)) = Hi(K', H*7 (X, L(d))) - 0
for every finite extension K T/K contained in K. Now we denote by H; (KT, Ey+) the inverse image of the subspace

H}(KT, H24-1(X, L(d))) under the map H' (KT, Ey«r) — H'(KT, H2~1(X, L(d))).** Then the diagram

(B.21) 0 — Hy(K",L(1)) —= H}(K", Ep-) — H(K", H*"! (X, L(d))) — 0

| | |

0 — H'(K", L(1)) —= H}(K", Ep¢) —= Hi(K", H**" (X, L(d))) —= 0

3¥n fact, H(K', Ey-) = HY(K', Epeer).
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is a pushout of extensions.

Second, we apply Proposition B.11 to the case ¢ = ¢, d = d, and U = X. Then for every 1; € I*"73, the

class B, = t;B3. belongs to , H (X, . In other words, [E"¢] € HL(K, H* (X, and hence
lass B;: *Bc belong H}(K H?-1(X,1L(d))). In oth ds, [E1€] H} (K, H**"1(X,1L(d))) and h

tic
[E" ] € Hy(K, Epc).

Third, we apply Proposition B.11 to the case ¢ = fjc, d = d, and U = X \ (supp C’)". Then for every t, € I*"=3,
the class resg, (Brric) = resg, (158 ) belongs to H}(K v, H24~1(U,,1L(d))), where t := 1,1,. Note that the fact that U
is d-dense follows from condition (2), and that supp C C U, follows from condition (1). Since [E;ffc,] is the image
of B+ under the pushout map .

H'(K, H'(U,,L(d))) > H'(K,Ep+o0),
we have resKU([E;ffc,]) € H;(KU,E,»*L.’). Since the inverse image of Hlf(KU,]L( 1)) under resg, coincides with
H{(K, (1)), we conclude that [E}, ] € H\(K,Ey-) by the diagram (B.21) (for K* = K, Ky).

From the above discussion, the conclusion of the theorem holds for every pair of elements ¢ € (I*=5\ m)? and
e @\ ') (I*>\ m'). Itis clear that I’ \ m’ # 0. By (A.3), we also have I\ m # @ and I\ m’ # 0.

The theorem is proved. O

B.5. Further preparation. Let A be a W-linear additive category. Following Fontaine, we say that a (¢, N)-
module in A is an object C in A with a W-semi-linear endomorphism ¢¢: C — C (called the Frobenius operator)
and a W-linear endomorphism N¢: C — C (called the monodromy operator) satisfying that Nc o oc = p-¢c o Ne¢.
A map between (¢, N)-modules is a map that commutes with both Frobenius operators and monodromy operators.

Suppose that A admits W-linear tensors. For two (¢, N)-modules C and D in A, we equip C Qw D with a
(¢, N)-module structure with the obvious W-action, together with

¢ceyD = ¢c ®¢p, Ncgyp =Nc®1+1&Np.

When A is an abelian category, we say that a (¢, N)-module is nilpotent if it has finite length and the monodromy

operator is nilpotent.

Definition B.12. Let D be a triangulated category. For a finite complex
R
in D, we have a canonical diagram

6.1 ——0

|

L
|

0

|

Cm-1 — Cnm
in D, in which every square is a homotopy fiber. We call €_; the successive homotopy fiber of the complex
R
If6 — ¢ — -+ > %, is a complex of (¢, N)-modules in a W-linear triangulated category, then %_ is
canonically a (¢, N)-module.

-~ =0
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Next, we review some period rings. For every [ > 1, let R; be the PD envelop of Og/p’ in W[t]/p’, and let
P; be the R;-ring wit a discrete action by Gk defined in [Kat94, (3.2)] or [Tsu99, §1.6]. Then R, and P, are
(¢, N)-modules in M(W,). Put

K= Qw Ko € Mk (Kp),

lianRl] Qw Ko € M(K)p), B;—t = {l%n P

which are again (¢, N)-modules in relevant categories. See [Bre97, §2 & §4] for an explicit description.35

Lemma B.13. The following holds.
(1) There is a canonical isomorphism B, ~ (IEBEt)N —nilp
(2) The ring B, is flat over K.
(3) The monodromy operator N: B}, — B is surjective.
Proof. For (1), this is [Tsu99, Proposition 4.1.3].
For (2), this is [Tsu99, Proposition 4.1.5].
For (3), we have N = (1211 N1)®Zp Qp, where N, is the monodromy operator on P; [Kat94, Definition 3.4]. Then
(3) follows from the fact that N is surjective and R! {iLl’ll Ker N; = 0 [Kat94, Corollary 3.6]. O
For two (¢, N)-modules C and D in M(K)), the (¢, N)-module structure on C ®w D clearly descends to C ®g, D.

Now we consider a nilpotent (¢, N)-module D in M(Kj). By Lemma B.13(1,3), we have a Frobenius equivariant
diagram

N=0

0— (D®k,B}) —= D®k,Bf ——= Dok, B —=0
N=0 — N —

0— (Do, BY) — D®, Bj, — Dk, B, —=0

in Mg (Kjp), in which the two rows are short exact sequences. It induces a diagram

D N=0
1 +
vp———H (K, (D e, BY) )
D ek, K c \ ( N=0
H' (K, (D &k, B, )
N(D ®k, K) (Dex, B3

of edge maps as (B;)GK = Ky and (I%)GK = K [Bre97, Corollaire 4.1.3].
Lemma B.14. For every integer r, the restricted edge map

Deg K o 1 N=0
_ H' (K, (D ®k, B
(N(D ®K0 K)) - ( ( Ko Pst )

factors through the map
D ®k, K D

_—
ND®g, K) ND
induced by the specialization map K — Ky at t = 0.

Proof. This follows from the same proof of [I.an99, Lemma 2.6].% O

350ur K and ]@3 are denoted as S ,,,;, and I’BE in [Bre97], respectively.
36 [Lan99], the author works with K(t), which is different from our K when K/Q, is ramified. However, such difference will not affect
the proof in view of the explicit description of K in [Bre97, §4].
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Remark B.15. Lemma B.14 is certainly wrong without the restriction to the part ¢ = p" since the specializa-
tion map K/NK — Kp has a large kernel. However, we do not know whether the edge map D ®g, K —

H' (K, (D ®k, BV :0) factors though the quotient D/ND, which is equivalent to the inclusion Ker(K — Kj) C
N(E;)GK where I@; = I@S:t ®p+ Beris. See [ , §5] for the mystery of (I@;)GK.

B.6. Proof of Proposition B.9. This subsection is devoted to the proof of Proposition B.9, for which we use de
Jong’s alterations. We may assume 1 < d <n - 1.

By [ , Theorem 6.5], we may find a finite extension K’ of K (depending on U) contained in K, a projective
strictly semistable scheme X’ over O and a generically finite morphisms A: X’ — X over Og,>’ such that
(X’,A7'U) is a strict semistable pair [ , §6.3]. Let ¥/: U’ — X’ be the open subscheme with U’ = A~'U
and such that X’ \ U’ is flat over Ok.. Note that U’ may strictly contain A~'U. We have objects with respect to
(X’,U’") and we put a prime for their notations.

Lemma B.16. Suppose that n < p. Then for every q > 0, the composite map
HY(X},, FIF”" .7 (d)x q,) = H (X, o x) = HI(X, o x)) = Hfig((U',X')/W'O)

(Definition B.4) vanishes on HI(X) , F{F"”* . (d)x g,)".

Note that this lemma does not follow from Lemma B.§ even for ¢ = 2d, since U’ is not necessarily d-dense
anymore. By Lemma B.16, we have the map

HE (U, X0/ W)
(B.22) Py HIX, FIF" S (d)x 0,)” —

v NHE (. X0/ W)

similar to (B.18) for every g > 0.

Lemma B.17. Suppose that n < p. Then
Ker(p;) € Ker(a)
holds for every g > 0.

We now prove Proposition B.9 assuming the above two lemmas, whose proofs are postponed later.

Proof of Proposition B.9. Take Ky = K’. It is also clear that we may take Kx to be K. We have the commutative
diagram

HZ.d_l((U’, X/)/Wm)

rig 2d 1 A=ty Q Vg 12d-1,777 .
NH2EI (U, X0/ W) HY (X, FIF" S () q,)” — H(K" H (U, Qp) ®g, Beris)
A*T e x

H21 (U, %)/ W)

NHZET(U, X)/W°)

H*(Xg, FIF* 7 (d)xq,)° — H'(K,HX"'(U,Q,) ®g, Beris)

of Q,-vector spaces.’® By Lemma B.17, to prove the proposition, it suffices to show that the map
H'(K', H*"'(U, Q)) ®g, Beris) = H' (K", H™'(U", Q) ®q, Bais)

is injective. However, this follows from the fact that the map H{(U, Qp) — HI(U’, Qp) in the category Mg/ (Q))

admits a section, which is a consequence of the usual Poincaré duality for étale cohomology of U and U’. The
proposition is proved. o

3T The letter A stands for alteration.
38Note that U’ may properly contain A~'U. By A", we mean the restriction map with a possible composition of the pushforward map
along the inclusion A~'U € U’(C X’) of log rigid cohomology (Definition B.4) or étale cohomology with proper support.
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It remains to show Lemma B.16 and Lemma B.17. Since we will only study (X', U”) from now on, we will
suppress the prime from all notation to release some burden. Put V := X \ U, and for every & > 1, let V™ be
the disjoint union of intersections of £ different irreducible components of V, which is either empty or a strictly
semistable scheme over Og of pure (absolute) dimension 7 — . For notational convenience, we also put V@ := X
and VD := (U, X). Denote by G®: ¥V — X the obvious morphism for / > 0.

Lemma B.18. For every h > 0, the pullback of the log structure L§( for X to VP coincides with L)C:I,;.
Proof. The question is local in the Zariski topology. By [ , §6.4], Zariski locally X is smooth over
Oklt1, ... ti,s1,...,51/(t; - - - t; — @). We may assume j > h since otherwise V' is empty in this chart. It suffices
to consider the open and closed subscheme 7~ of V™ defined by s;_j+1 = -+ = s; = 0. Now locally Li(\, and L]
are the log structures associated with the pre-log structures N — & and N' — @ sending 1 in the i’-th factor to
the pullback of #; for 1 < i’ < i, respectively. The lemma follows immediately. O

Our first step is to construct, for every r > 0, a syntomic complex .#(r)
period map

Ve DEK(Xét,ZP.), together with a

(B.23) L (N = PREFI WSy

when 0 < r < p — 1, that becomes an equivalence when n — 1 < r < p — 1. The construction is inspired by the
observation in the following remark.

Remark B.19. After choosing an order on the (finite) set of irreducible components of V, we have an exact
sequence

0— F!(ﬂﬁf)ﬁ NN G(O)*(ﬂ}?f)m SN G(l)*(ﬂ}?f)w N G(z)*(/“‘%‘r)ﬁ NN G(n—l)*(ﬂ?f) -0

)

in Mg, Xet, Z pe). In particular, F (,u?.r )7 1s canonically equivalent to the successive homotopy fiber of the complex

GOy = GO = GOy = -+ = GO0, (8,

In order to unify the notation, we put

N Py = TRLF\(UEDG € DG, Kews Zpe), A (D = IRGFIUED 0 € D*(Xats Zpa),

and
N (g = TREGP. (U € DG KewsZpa), N (Papr = RGP UED)yor € D (Xets Zpa),
for h > 0.%° .
To define . (N we need to consider all extensions of K in K. A Galois embedding system for OEKan JWIt]°

consists of

e an increasing tower K = K; C K, C K3 C --- of finite Galois extensions of K with | J,, K,, = K (and we

can can
regard O X, asa log-scheme over O¢™),

3The letter .4 stands for nearby.
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e for every m > 1, an embedding system {0Can — (Zb NP >} for 0?1’1‘ /WI[t]° with a compatible action of
Gal(K,,,/K) that fits into a commutative dlagram

OCdIl (Z

1 m+1° m+l)

~Q

Oy —— (Zy. V)

of log-schemes over W[¢]° that is Gg-equivariant.
It is clear that Galois embedding system for 0%‘“ /W([t]° exists.
We now choose a Galois embedding system for 0“““/ W(t]° as above, and write k = k1 C kp C k3 C --- for the

induced tower of residue fields. We also choose an embeddmg system {(X*, L*) — (Z*,N*)} for (X, X ) JW([t]°.
Form > 1, put

(Z* N*) = (-Z* N*) Xwlir° ('Zm7 m)

Let 7~ be an irreducible component of V" for some / > 0. Lemma B.18 implies that
(T L] ey X7 L) = (Z*.N)
is an embedding system for (7, LY )/ WI(t]°. For every m > 1, let 8”; , be the PD envelop of T* ®o Ok, / pl in

Z:®Z/p'. Fori>1,let F ol L ﬁg;ﬂ be the i-th divided power of the ideal _#,,; = Ker(ﬁgr:’] = Or+gy, 0k, /pz).
For i < 0, we put / [ ﬁs* We have the complex

. [7] [r—l] 1 [r 2] 2
(B24) B(r)'f,m . m,e - m,e Zm Q(Z* N* /Wmv - ®ﬁ * Q(Z"iz N’:)/thv -

regarded as an object in C+ ((T xXx X* ®¢ km)si» Wo), Where 7,/ r] s placed in degree 0. Put
(B.25) B(g = lim BO)7 mlg e

m

where the colimit is taken in the abelian category C+ ((T Xx X*)et, We). For every h > 0, we put
B(r)y = EB B()7,

where the direct sum is taken over all irreducible components of V", regarded as an element in CEK(%&, W,) via
pushforward along closed immersions T — X. Then parallel to Remark B.19, we have a complex

B(r) — B(r) — B(r) — -+ = B(r)

) ) v A n=1)

in C+ (%eh W )
Take h > 0. Put C YW jyiriv

inclusions / LR S 7[101] We also have the crystalline complex C;55 /W[[] o

as Cy; i except that in the definition of B(0)s,, (B.24), we replace Q7

natural Frobenius operators on both C—

= B(O)w. Then we have the canonical map B(zm = Com Jyp given by the

which is obtained in the same way

q
(Z5 N2 Wiy by Q(Z* NIV WIS We have

W v and Cym Wi and a dlstlngulshed triangle

o c c—  c— N

(B.26) Vo Wi v pwine L= 1 = Com e VO [Wliye VO Wt
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in DEK(F&, W.), where the first arrow is given by A dlogt, the second arrow is the canonical one (which is
Frobenius equivariant), and the third arrow is the connecting map, such that C; becomes a (¢, N)-module

o rV(h)/W[tJo
in DEK(X*ét, W.). We define S (r)-;; to be the homotopy fiber of the map

h)
—r .
1 - p ¢r+- . B(")W - CW/Wmv

(see [Tsu00, Page 540] for more details) in the category DEK X* &, Zpe).

Let B(r)m be the successive homotopy fiber (Definition B.12) of the complex
B(r)3a — B(Nym = BNy = - = BNgem
in DEK (X*&, W), and similarly for Coen v Cym Wi and S (F)W' Then Cym Iy is a (¢, N)-module and
we have a similar distinguished triangle (B.26) for h = —1.
Finally, for 4 > -1, put
Y(r)w = Ru..S (r) G := Ru,.C G = Ru,.C555

rv(h) > rv(h)/Wtriv q/(h)/Wtriv > (V(h)/W[t]o 'V(h)/W[Z]D

in DEK Kets Zpe), DZ:IK Xee, We), DEK Xee, We), respectively. In particular, we have a canonical map
(B.27) &t S (g = Gy

in DEK(Yét, Zps), and a distinguished triangle

N
A . N _ A 2 7z
(B28) CKW/W[I]O . (g(v(h)/w[t]o [ 1] - ng/(h)/wlriv - Cgfv(h)/w[t]o i ng/(h)/w[t]o

in DS, (Xet, Wa).
When 0 < r < p — 1, the usual period maps for V" with i > 0 give a commutative diagram

y(”)w y(”)w y(r)q/(n—l)

| l l

G(0>*i(0)*Rj(°)*(/Jff)m - G(l)*i(l)*Rj(l)*(ll?-r) N — G(n—1)*i(n—1)*Rj(n—1)*w§f)

Z0) yn=1)

in D (Xet» Zpe), where i : VO — Y™ and j0: v — " denote the special and generic fibers, respectively,
for & > 0. However, since the natural map

N (r)W =i"R j*G(h)*(M?-r)W — G0, iW*R j(h)*(,u?.’)ﬁ
is an equivalence for every / > 0, we obtain the period map

(B.29) 7 LWy — A7)

Y0 Vo)

in DEK(Xét,ZP.) for every h > —1 by Remark B.19 and the process of taking successive homotopy fibers. If
n—1<r<p-1,then (B.29) is an equivalence. The desired map (B.23) is simply (B.29) for h = —1.
To proceed, we need versions of syntomic and crystalline complexes for V™ rather than V®. The construction

is similar to . ("7 and (ﬁw v but only taking m = 1 without the colimit (B.25). More precisely, for 7 > —1,
we have

o . (r)qm in D*(X¢;, Zps), which is obtained in the same way as .’ (r)w but only taking m = 1%

® Goym yuiv in D¥(Xg, We), which is obtained in the same way as %W i but only taking m = 1,*!

o Goym e in DT (Xg, W), which is obtained in the same way as %W Wi but only taking m = 1;* itis a

(¢, N)-module,

40 particular, .7 (d)40 coincides with .%(d)x from §B.4.
4 particular, iy yuiv coincides with € x v from §B.4.
421y particular, iy, coincides with 6 x/wge from §B.4.
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° %m swe and Gy Jwe In € D" (Xg, We), which are obtained after we replace B(0)7-; (B.24) by the following
complexes
. 1 2
CT/WO . ﬁ@: — ﬁ@: ®ﬁz* Q(Z*,N*)/WO - ﬁ@:‘ ®ﬁZ* Q(Z*,N*)/WO — e
and
. 1 2
CT/WO . ﬁ@: — ﬁ@: ®ﬁy* Q(y*,M*)/WO - ﬁz): ®ﬁ}/* Q(M*,M*)/W" R
respectively, where (Y*, M*) := (Z*,N*) Xwge W° as in §B.2 and D} denotes the PD envelop of T in
Yrfori> 1%

By construction, we have maps
fri y(r)ry(h) - (g(v(h)/wtriv, Ty <5”(1’)(‘/(11) i JV(r)ry(h)
D*(X¢t, Zpe) similar to (B.27) and (B.29), and a distinguished triangle

N
(B.30) (lA/(")/W[t]" : Cgrv(h)/w[[]o [-1] — Cg(v(h)/Wmv — (grv(h)/w[t]o — Cgrv(h)/w[[]o

in D*(X¢, Z ) similar to (B.28), without bar.
In order to prove Lemma B.16 and Lemma B.17, we need to connect the syntomic cohomology to the log rigid
cohomology via crystalline complexes we have just constructed. By construction, we have a commutative diagram

&r
(B3 1) Y(r)q/a,)@p —— (gq/(h)/wtriv,l(o e (gq/(h)/W[I]D,KO

n

%V(h)/wo’[(o —— %V(h)/W",Ko

in D* (X4, Q,) for every r > 0 and every 4 > —1, similar to (B.16). Now we study the cohomology of various
crystalline complexes.
We start from %y y-. Note that, as in §B.2, for 2 > 0, the object Gym - is equivalent to the modified de

Rham-Witt complex Wwy, . By the construction and (B.5), we have

e a distinguished triangle

= N
A .
v e Gy ywel—1] = Gym jwe — Cym jwe — Gymwe

in D*(X¢;, W,) for every h > 0 hence also & = —1, similar to (B.30), so that Gym swe 18 a (¢, N)-module,
e a commutative diagram
(YDA

0 -1
(B32) w\A/(_]) EEE—— GE}: )we(o) —_— G* wv(l) in )w\A/(n—l)

o :

ﬁ-%A *%A é---ﬁ-%A

VO /We Ky V() We Ky V-1 /We K,

A
Cgv(_l)/W",Ko

of distinguished triangles in D (X, Kp), in which terms in the top row are from (B.1); note that all vertical
arrows starting from the second are equivalences.

Lemma B.20. The first vertical arrow in (B.32) is also an equivalence. In particular, for every h > —1 and q > 0,
we have a canonical isomorphism
h o
HE (VO W) = B X, Gy e k)

of Ko-vector spaces which commutes with monodromy operators.

1 particular, G- and G0,y coincide with ‘670( Lhorwe and Gy Xorwe from §B.2, respectively.
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Proof. It suffices to show that the map wy-1 = w x) is the successive homotopy fiber of the complex
Gio)(l)v(()) - Gil)wv(l) — s = Gin_l)a)v(nfl),

However, this follows from the easy fact that for an embedding system {(X*, L*) — (Y*, M™*)} for (X, Li(\,lx) JWe,
the complex
Q.

0— f (Y*,M*)|W° ®ﬁy* ﬁ]X*[g)*) - Q(y*,M*)/Wo ®ﬁy* ﬁ]X*[g)*

(U* . X*) (
- Q(y*,M*>/W° 6y ﬁ]V“’*[@* = 2 Qs sy we By ﬁ]vw“*[w -0

in C*(D* . ,Kp) is exact. Here, for h > 1,

7.9
ﬁJV(’“*[W = @ ﬁ]T*[gl*
T
where the direct sum is taken over all irreducible components of V. The lemma is proved. ]
Recall that by [ , (4.5.1)], we have the canonical identification

P. =T'(Speck, %SpeCOK/W[t]") = I'(Speck, (gSpecOK/W[t]" Ko)

of (¢, N)-modules in Mg (W,) and Mg(Kp), respectively.
Lemma B.21. The following holds for every h > —1.

(1) The object Goyw jwige of D*(Xg, We) is admissible (Definition A.3).

(2) There is a canonical isomorphism

H(Xer, Copm pwispe k) = HI Xet, Gy ywe k) ®ky K
of (¢, N)-modules in M(Ko) for every g > 0.
(3) The object CK(V(,” Wi of DEK (Xst, W) is admissible.
(4) The natural map
HY(Xet, Coypm jwine k) ®ko B — HI(Xg, C VB W, Ko)
of (¢, N)-modules induced by functoriality and cup product descends to an isomorphism

(Xet, C5(1/(’1)/W[t]° KO) ®K B _) H (Xetv q/(h)/W[t]o )

of (¢, N)-modules in Mg (Ko) for g > 0. In particular, the natural map

H (Xet7 Cg(V(h)/W[[]O KO) - H (Xet3 (V(h)/WU,]o )
is injective. _
(5) The object €55 sy of D§ X, Wo) is admissible.**
(6) The distinguished triangle ‘KA (B.28) induces a Frobenius equivariant isomorphism

VO WP

N=0
(Xeb Y Wiy g, ) - ( q(xét, %V(h)/W",Ko) ®K0 B+)
in Mg (Ky) for every g = 0.
Moreover, the isomorphisms in (2,4,6) are compatible with h in the obvious sense.

Proof. Itis clear that condition (1) of Definition A.3 holds for €y, trivially as G is the trivial group and holds
for ng) Wi and %,W) v since they are defined as injective limits over terms fixed by open subgroups of Gg.
Thus, it remains to check condition (2) of Definition A.3 for the three objects. Below in the proof, we say that two
objects € and € in either D*(Xg, W,) or DZ:IK (Xai, W) are almost equivalent if there exists a map € — %" whose
fiber is annihilated by some power of p. It is clear that condition (2) of Definition A.3 is preserved under almost
equivalence.

First, we prove (1) and (2). Note that [ , Lemma 5.2] is applicable to V™ with 4 > 0, and hence also
to the case for 4 = —1 by long exact sequences induced by the successive homotopy fiber. In other words, for

every h > =1, Cym wige and Gy e ®%V. R, are almost equivalent. It is already known by the proof of [ ,

44However, the object Gy yuiv of D* (X, W,) is in general not admissible.
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Proposition A.3.1(1)] that, when & > 0, Gy - ®%,. R, (hence Goym w0 ) satisfies condition (2) of Definition A.3
and we have the canonical isomorphism in (2). To pass the same argument for 4 = —1, it suffices to show that
HY(X¢, Gy o) is finite for every ¢ > 0 and [ > 1, which follows from long exact sequences induced by the
successive homotopy fiber.

Second, we prove (3) and (4). It is known by [ , Proposition 4.5.4] that for / > 0, the natural map

(Xet’ ng/(h)/W[t] )®W F(SPCCK Cgspec OK/W[I]O) — H? (Xety (VU’)/W[Z]O)

of (¢, N)-modules descends to an isomorphism

(B33) H (Xet, %(V(h)/W[l]o) ®R F(SpeCK Cgs ) —> H (Xeta

pec Ok /WI1]° (V<”)/W[t]°)

of (¢n)-modules in Mg, (W,) for every g > 0. The same holds for 27 = —1 by the long exact sequences induced by
successive homotopy fiber and the fact that I'(Speck, (ﬁspec Ox /W[t]°) = P, is flat over R, [ , Proposition 4.1.5].
To show (3), since Gy jypge and Gym e ®]ﬁ/. R, are almost equivalent for 4 > —1, it suffices to show that

R! hm HY(Xer, Gy jwe 1) ®wy » Pr=0 which has been argued in the proof of [ , Proposition A.3.1(2)].
To show (4), by (B.33) (for & > —1), we have

llmH (Xet, (K(V(I’)/W[l‘] l) ®Rl P[ —> hmH (Xet,
l l

YO W[ 1)

Since both R, and P, have surjective transition maps, we have

[lin H (X4, Cg(v(h)/w[l]o,l) ®g, Pr|®w Ko =

[

EiLn Hq(Xét, (gﬂ/(’l)/wmal) w K() Rk B:-t
l

By (1) and (3), we have

(lﬂl H?(Xa, (g(v(h)/w[[]o,l)} ®w Ko = H(Xa, (gfv(h)/w[t]o,Ko),
l

[hmH Xe, . T W l)} ew Ko = H(Xg(, % VW Ko
1

respectively. Together we obtain (4); and the injectivity follows from Lemma B.13(2).

Finally, we prove (5) and (6). It is well-known that when /4 > 0, the monodromy operator on H?(Xet, Gy o)
is nilpotent for every g > 0. The same holds for # = —1 by long exact sequences induced by the successive
homotopy fiber. Since the monodromy map on P, is surjective [ , Corollary 3.6], the monodromy map on
HY(Xet, Gy jwe) ®w, P is surjective for every h > —

To show (5), since Gy e and Gy yye ®%v. R, are almost equivalent and by (B.33) for every h > -1, it
suffices to show that

. N=0
Rl lin (Hq(Xét, %V(h)/Wo) ®W‘ P ) = O,
l
which follows from the argument in the proof of [ , Proposition A.3.1(3)].

To show (6), we first note that

N=0 —~_\N=0
(H9Xet, Guonywe i) ®x0 BY) = (HIXet, Gyan e k) @y B )

by Lemma B.13(1). Then by (2) and (4), it suffices to show that the monodromy map
N: Hq(Xét, %V(”)/W",Ko) ®KO fg\:t - Hq(Xét, %V(”)/W",Ko) ®KO fg\:t

is surjective for every g > 0. However, this follows from Lemma B.13(3) and the fact that the monodromy operator
on HY(Xet, Gym we k,) is nilpotent. O
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Lemma B.22. Consider integers r satisfyingn — 1 < r < p — 1. For every h > —1 and every q > 0, the By-linear
extension of the composite map

(B.34) H(Xet, A Oz, ) = B Xet, N (N5, ) €3, Qp(=7)
= HIXet, 7 (N5 ) ®a, Qpl(=1)
— H'Xet, Gy x,) ©2, Qo(=1)
25 (H9 X Gy 1) @ BL) 8, Qpl=r)
— HY(Xe, Gy we k) ®k, Bt
is independent of r and induces an isomorphism
HY(Xg, Q/V(O)W’Qp) ®q, Byt = HI(Xe, Gy we x,) @k, Bt

of (¢, N)-modules in Mg (Kop). Here in (B.34), the second arrow is induced by the inverse of the period map 7,
(B.29), the third arrow is induced by the map &, (B.27), the fourth arrow is the isomorphism from Lemma B.21(6),
and the last arrow is induced by the canonical map Q,(-r) — Bg.

In particular, the above isomorphism induces a Frobenius equivariant isomorphism

— N=0
HY (X, A O ) @, Beris = (H (X, G we i) @, B
in Mg(Kp).

Proof. For h > 0, the statement follows from [Tsu99, Theorem 4.10.2] (the usual Cy-comparison theorem for
proper strictly semistable schemes) together with the compatibility properties [Tsu99, Corollaries 4.8.8 & 4.9.2]
for the independence of » (which is at least dim V®) of the map. The case for & = —1 follows from the series of
long exact sequences induced by the successive homotopy fiber.* O

Lemma B.23. Suppose that n < p. For every h > —1, every g > 0, and every O < r < p — 1, the following diagram

— & — ~ N=0
HIXet, S (N ) 52 HY (Xet, Gy ) (H9(Xet, Gy ywe k) ©k, BY)
7, | (B.29)
Qp(N=—Beris N=0

HY(Xer, A (r) HY X, A O ) ®0, Beris ——= (HIXet, Cuon e ;)  But)

W,Q,,)

in Mg(Q,) commutes, in which the equivalence in the first row is from Lemma B.21(6), and the equivalence in the
second row is from Lemma B.22.

Proof. When h > 0, the commutativity follows from the compatibility properties [Tsu99, Corollar-
ies 4.8.8 & 4.9.2]. The case for i = —1 follows from the series of long exact sequences induced by the
successive homotopy fiber. O

Lemma B.24. Suppose that n < p. The map F\IF*#(d)xq, —» S (dxgq, = & (d)q;w)’Qp factors though
5 (d)(vH),Q,,- In particular,
(1) the map (B.14) factors as

RI'(Xet, FIF* S (d)x,g,) = RIMXe, L (d)pi-n g,) = REXKet, A (D) g,) = RE(U, Qp(d)).

whend < p-1;
(2) the map (B.17) factors as

F!F*y(d)X7Qp — cSﬂ(d)ry(—l)’Qp - %V(*l)/WO’KO o~ a(U,X)
in which the last equivalence comes from Lemma B.20.

45Such an isomorphism for & = —1 has already been obtained in [ Yam 1 1]. The results there are much stronger than ours and in particular
they contain a Cyqr-comparison isomorphism. Thus, the log structure on X used there is Lﬁuq’, which makes things more complicated.
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Proof. Since the complex .& (d)(v(h)’Qp is supported on V for every 4 > 1, the factorization follows from the
construction. O

Forevery h > —1, every g > 0, and every 0 < r < p — 1, put

(B.35) HY(Xgt, & (P)yin g,)° = Ker (Hq(xét, S Py g,) = HIXer, C/V(r)W’QP)) :

Now we can give a proof of Lemma B.16.

Proof of Lemma B.16. By Lemma B.24(1), HY(X¢, FiF*. (a?),\»,Qp)O coincides with the kernel of the composite
map

H'(Xet. FIF" 7 ()x.0,) = B/ Xat. & () g,) = B Ket, () )~ B Kets A (s )

By Lemma B.23, it is also the kernel of the composite map

* V2 Er 7
H!(Xe, FIF"(d)x.q,) = B Xat, ()1 g,) = BHIXe, S (d) ) — H(Xy,

(V<_|),Q,, Cgrv(—])/‘/vtriv’[(o)'

By Lemma B.24(2) and (B.31), we have the following commutative diagram

— & — —
HY(Xet, ()5, ) —— B XRets Gy ) —— I Ket oy 0 1)

| | i

&r
Hq(Xé[7 y(d)(V(*l)’QP) I Hq(Xét’ (g(v(—])/eriv’Ko) —_— Hq(Xét, %(V(—l)/W[tJo’Ko)

| |

Hq(Xét, gy(—l)/wo’](o) —_— Hq(Xét, rg(v(—l)/vvo’](o)

in which u and v are injective by Lemma B.21(4) and (6), respectively. Thus, H(Xs, FiF*.% (d)X’Qp)@ maps to

zero all the way to the lower-right corner HY(Xg(, €1 e x,) = Hfig((U, X)/W?). The lemma is proved. O

In order to prove Lemma B.17, we need to compare edge maps in both étale and crystalline settings. For every
h > —1,every g > 0, and every r > 0, put

HY Xt A (e ,)” 1= Ker (HY ke A (i ) = HI R, H (0 ).

Hq(Xét, %V(h)/W‘riV,KO)O = Ker (Hq(Xét, ng/(h)/wtriv’Ko) - Hq(iét, %W/W"i",[(o)) .

Suppose that n < p. Then by definition, 7r; induces a map
(B.36) H7(Xg, y(d)q;(h)@p)v — HY(X¢, JV(d)v(h),Qp)O-
By Lemma B.23 and the definition of the syntomic complex, &; induces a map

_d
(B.37) HY(Xet, & )y )" — (HIKet, Copan pyn i,)°)

As N (d)W is clearly an admissible object of DEK (iét, Zpe) and %W iy is an admissible object of DEK (iét, W)
by Lemma B.21(5), we have the spectral sequences and hence the corresponding edges maps for them from Lemma

A.4. Composing (B.36) and (B.37) with the corresponding edge maps, we obtain maps

Bu: B, @y )7 = B (K H Kot NV ()

Ya: HUXat, & () g,)7 = H' (K H Kets Gy )

respectively.
The following lemma is an “Abel-Jacobi” version of Lemma B.23.
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Lemma B.25. Suppose that n < p. For every h > —1 and every q > 0, the following diagram

Yaq

— N=0
HY(Xet, & ()i o,)° H' (K. (X G 1) HY (K. (! et Gy ) 910 35) )

1 a-17% Qp(d)—>Beris 1 a-1,% ~ 1 g-1 N=0
H! (K H R (@i ) —— Y (K HE Rt A O ) 8, Beris ) —— H (K (HO et Gy ) 0, B

of Qp-vector spaces commutes, in which the equivalence in the first row is from Lemma B.21(6), and the equiva-
lence in the second row is from Lemma B.22.

This lemma does not follow immediately from Lemma B.23 since HY(Xgt, .7 (d)rval),Qp)”, by our definition
(B.35), is in general larger than

Ker (HY(eo 7 (@gm o,) = B R, 7 s )

Proof. Take an integer r satisfying (1 < d <)n — 1 <r < p — 1 (which exists as n < p). We have

e the map w,_4: S (r — d)m SN (r— d)m in DEK (Zps), both equivalent to Ze(r — d),

e the object %m v in DEK(W.), which is equivalent to PZ,V =0

e the map E,_d L (r— d)spec o %S pec O/ WY in DEK (Zpe), which is equivalent to the natural map Z,(r —
d) — PN=0,

For every h > —1, consider the following diagram

(B.38) RT (Xet, €55 ) ®1pr. CopesOg /W RT (Xet, €55 )

£4®E,_q T Té:r

R (Xet, o (d)) ® (1 = D — RTXer, (1)

TA®T—q L l”r

RT(Xets A (d)g) ®% N (= Dy —= RIKet, A (M55

)

in DEK(ZP.), in which all horizontal maps are induced by cup products. We claim that (B.38) commutes. For i > 0,
the upper square commutes by definition, and the lower square commutes by the compatibility of period maps with
cup products (see [Tsu99, §3.1] in a more general context). The case for 7 = —1 follows from the process of taking
successive homotopy fiber.

Using the equivalences

RI(Xet, 7 () = RIXet, () ©5,, L (1 = Do ©5,, Lpe(d = 1),
RTXet, A () = REXet, A () ©5 N (7 = Do ® Zpe(d = 1),

Y

and the fact that 77, (for Xét) is an equivalence, we obtain the following commutative diagram

RI (X, -(d)

— l (-0t )RZ pe(d—r) = L
RI(Xet, A (d)75) RT' (X, %W/Wm) ®z, Zpe(d 1)

V)
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in DEK (Zpe) from (B.38).%6 Composing with R(I'g, o liLn) ®z, Qp and taking edge maps, we obtain a commutative
diagram

HY(Xg, . (d)ym g, )Y

|

— (o, H®Q,(d—r)
H! (K,Hq*(xét,wu) R

W,Qp)) H1 (K, Hq_l(iét, %W/W‘“V,Ko) ®Qp Qp(d - I")) .

The lemma follows since we have the commutative diagrams

(€rom; H®Qy(d—T)

HY™! Xet, N ()5, ) H™! Xet, Gy ,) ®2, Qold = 1)
~ | Lemma B.21(6)
QB (B! (Kets G e i) @k BL) - 80, Qpld = 1)
Qp(d-r)—By

Lemma B.22

— N=0
HY™! X, A ()35, ) ®, Beris )

(Hq_l(xéta Cgv(/ﬁ/Wo,KO) ®K, Byt

and
HY ! (Xee,

Hq—l(iét, %W/W"i",l(o) ®Qp Qp(d -r)

2LLemma B.21(6) l

(g(V(h)/WmV,KO)

N=0 N=0
(HI Xet, Gyon e 1) ®ky BE) —— (HE™! Ket, Gyon e x,) @k, B

in which the upper horizontal arrow is induced by the canonical map Q,(r — d) — (B;)N =0 ~ ‘gm W K
and the cup product, and the right vertical arrow is the composition of two right vertical arrows in the previous

diagram. O

Proof of Lemma B.17. By Lemma B.24, we may replace the source of both a, and p,, which is originally
HY(Xg, FIF*. (d)X,Qp)V, by HY(X¢, (d)q/<-'>,Q,,)Q- Then a, (B.15) coincides with the dashed arrow in Lemma
B.25 (with A = —1). By Lemma B.25, we have

Ker (Hq(Xét, y(d)q/(—n,Qp)v — H! (K, (Hq_l(Xét, Cf\/(—l)/WO’KO) ®K, B:rt) B )) C Ker(ay).
Thus, the lemma will follow if we can show
N=0
(B39) Ker(pq) = Ker (Hq(Xét, y(d)rv(—l)’Qp)O g H1 (K, (Hq_l(Xét, %V(—l)/WO’KO) ®K0 B;—t) )) .

Lemma B.21(4,6) implies that
Hq(Xét, %q/(—l)/wlriv’](o)o = Ker (Hq(Xét, %(V(—l)/wtriv,KO) g Hq(Xét, Cg(VH)/W[t]O,KO)) ,
which induces an isomorphism

HY ' (Xg, Cop-n S Ko)
NHT! (Xet, Copen pwine ko)

l) Hq(Xét, CK(V(’I)/W“W,KO )0

by the distinguished triangle %‘A,H) W Ko (B.30), under which the Frobenius operator on the right side corre-

sponds to p times the one on the left side.

46The above commutative diagram is parallel to [Satl3, (A.6.4)]. However, somehow unfortunately, the roles of d and r here are
switched from those there.
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Consider the following diagram

— d—1
Hq_l(X’ta %(V(*l) WItl°.K ) =r ~ <,D:pd
(B40) ( 1 ° AU ) (Hq(Xét,Cg(y(—l)/wtriv,KO)O)
NH (Xet, Copenywiee k)
HY™ X, Gyenywe k) -5 N=0
Ko) ¢ HI(K, H (X, Gy e &) @k, B )
NHq_l(Xét, %V(_I)/W",Ko) ( ( et Ve 1)/W ’KO) Ko St)
in which

o the map ¢ is the edge map induced from the short exact sequence
~ N=0 _ N -
0—— (Hq I(Xé[, <5\/(71)/‘,‘/0’[(0) ®K, B:t) —— H? I(Xé[, %V(*”/W",KO) ®K, B;rt —— H? 1(Xé[, (gv(fl)/wo’KO) ®K, B:t —0

in Mg (Ko),
o the left vertical arrow is the specialization map at ¢ = 0, and
o the right vertical arrow is the composite map

HY(Xe, Copen o i,)” = H (K HT (X,

~ _ N=0
CKW/WMV,KO)) - Hl (K’ (Hq I(Xét’ (gV(—l)/W°,K0) ®K0 B:—t) )

in which the isomorphism is from Lemma B.21(6).
We show that (B.40) commutes. Applying Lemma A.5to S = X, the distinguished triangle

—-N[-1] +1
%W/W[t]o [_1] —_— %W/W[l]o [_1] - %W/eriv — %W/W[l’]o
in DEK (Xét, W,) (which is a shift of the distinguished triangle %%/W[ : (B.28)) in which all objects are admissible
- 0

by Lemma B.21(3,5), we know that the image of an element ¢; € HY ' (X, b1 /Wi K,) under the composite
map

Hq_1 (Xét, (g(v(_l)/W[t]",Ko) - Hq(Xét, <gq/(—l)/[,vtriv’[(o)0

9% 0 1 v
- HK(Xét, Cg(v(—l)/Wtriv’Ko) — H (K, HY (Xét’cgm/wtriv’Ko))
can be represented by the (continuous) 1-cocycle g — gcg — ¢o for g € Gk, where ¢y is an arbitrary element in
H ' (X, CKW Wi Ko) satisfying that —N(cg) coincides with

-1 -1y
c1 € HY (Xét,cgq/(%)/wltjo,[(()) cHY (Xet» %W/W[t]",l(o)'

Then the commutativity of (B.40) follows from Lemma B.14 (with D = Hq‘l(Xét,‘Kv(_n /we.k,)) and Lemma
B.21(2).
Now (B.39) follows since the composite map

(B.37) o=
Hq(Xét,y(d)q/(—l),Qp)o E— (Hq(xét, cgfv(*l)/wtriv’KO)O)
— pd-1
; ( Hq_l (Xét, igq/(—l)/w[t]o,[(o) ]‘p ’ - Hq_l(xét, <gv(—D/WO,KO)
NH7~1(Xg, ng/(—n/w[t]o,[(o) NH?(Xg, ng—l)/wo,KO)

is nothing but p, (B.22) composed with the isomorphism from Lemma B.20.
Lemma B.17 is proved. O
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