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SLOPES OF MODULAR FORMS AND GEOMETRY OF EIGENCURVES
RUOCHUAN LIU, NHA XUAN TRUONG, LIANG XIAO, AND BIN ZHAO

ABSTRACT. Under a stronger genericity condition, we prove the local analogue of ghost
conjecture of Bergdall and Pollack. As applications, we deduce in this case (a) a folklore
conjecture of Breuil-Buzzard-Emerton on the crystalline slopes of Kisin’s crystabelian de-
formation spaces, (b) Gouvéa’s L%J—conjecture on slopes of modular forms, and (c) the
finiteness of irreducible components of the eigencurve. In addition, applying combinatorial
arguments by Bergdall and Pollack, and by Ren, we deduce as corollaries in the reducible and
strongly generic case, (d) Gouvéa—Mazur conjecture, (e) a variant of Gouvéa’s conjecture
on slope distributions, and (f) a refined version of Coleman’s spectral halo conjecture.
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1. INTRODUCTION

1.1. Questions of slopes of modular forms. Let p be an odd prime number and let N be
an integer relatively prime to p. The central object of this paper is the U,-slopes, that is, the
p-adic valuations of the eigenvalues of the U,-operator acting on the space of (overconvergent)
modular forms of level I'y(/Np), or on more general space of (overconvergent) automorphic
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forms essentially of GL2(Q,)-type. In this paper, the p-adic valuation is normalized so that
up(p) = 1.

The general study of slopes of modular forms dates back to 1990’s, when Gouvéa and
Mazur made several profound and intriguing conjectures on these slopes, based on extensive
numerical computations. These conjectures were later extended and refined by Buzzard,
Calegari, and many other mathematicians; see [Bu05l, [BC04| [CI05, Lo07]; certain very spe-
cial cases were also proved based on either the coincidence that certain modular curve has
genus 0 (e.g. [BC04]), or the still computationally manageable p-adic local Langlands corre-
spondence when the slopes are small (e.g. [BuGel3, BhGh15, IGG15, BGRIS8|, [Ar21]). Un-
fortunately, despite strong numerical evidences, little theoretic progress was made towards
these conjectures in the general case.

In recent breakthrough work of Bergdall and Pollack [BP19al, BP19b, BP217], they unified
all historically important conjectures regarding slopes into one conjecture: the ghost con-
jecture, which roughly gives a combinatorially defined ‘toy model”, called the ghost series,
of the characteristic power series of the U,-action on the space of overconvergent modular
forms. The purpose of this work and its prequel [LTXZ227] is to prove this ghost conjec-
ture and place it under the framework of p-adic local Langlands conjecture. We now state
our main theorem followed by a discussion on all of its corollaries, and then conclude the
introduction with a short overview of the proof.

1.2. Statement of main theorems. To be precise, we fix an odd prime p > 5 and an
isomorphism @p ~ C. Let E be a finite extension of Q, with ring of integers O and
residue field F. Let 7 : Galg — GLg(F) be an absolutely irreducible representation. Let
Sk(To(Np); ¥)s C SH(To(Np);b)s denote the space of classical and overconvergent modular
forms of weight k level I's(Np) and nebentypus character ¢ of F), localized at the Hecke
maximal ideal corresponding to 7, respectively. (Our convention on associated Galois repre-
sentation is the cyclotomic twist of that of [Em98, [CEGGPS16, [CEGGPSISE]|; see § for
more discussion.)

It is a theorem of Coleman and Kisin that Si(I'o(Np);v)r is “almost” the subspace of
SL(FO(Np); ¥) spanned by U,-eigenforms with slopes < k — 1 (the forms of slope k — 1 is a
bit tricky and we do not discuss them in this introduction; see Proposition 2ZIT](1)). Thus, to
understand the slopes of the Uy-action on Sk(I'g(Np); ¢)s, it suffices to understand the slopes
of the Newton polygon of the characteristic power series of the U,-action on SL(FO(Np); )z

It is a theorem of Coleman that one may interpolate the characteristic power series of
U,-actions on spaces of overconvergent modular forms of all weights £, as follows. Let
wy : Iy, - Gal(Q,(1p)/Q,) = F) denote the first fundamental character of the inertial
subgroup lg, at p; so det(7li,, ) = wi for some ¢ € {0,...,p—2}. Write w : F — O for the
Teichmiiller character, and put wy := exp(p(k — 2)) — 1 for each k € Z. Then there exists a
power series Cr(w,t) € OJw, t] such that

Cr(wy, t) = det (Ioo — Upt; SL(FO(Np);wk_l_C));).

The ghost conjecture aims, under a condition we specify later, to find a “toy model” power
series Gz(w,t) that has the same Newton polygon as Cr(w,t) for every evaluation of w,
but only depends on the restriction p = 7li, . Here and later, for a power series C(t) :=

1+ ait + agt? + --- € O[t], the Newton polygon NP(C(¢)) is the lower convex hull of the
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points (n, v,(a,)) for all n. In particular, the slopes of NP(C5(wy, —)) are precisely the slopes
of U,-action on S!(T'o(Np); w17,

The key requirement for the ghost conjecture is that 7, := F\Gal(@p is reducible and generic,
namely, c=a+2b+ 1 mod (p — 1) for some a € {1,...,p—4} and b € {0,...,p — 2}, and
w¢11+b+1 % # 0

0 w?

trivial extension in H!(Ig,, w{ ™))% = H'(Galg,,w{*") or
e (reducible and split case) fp|1@p ~ 5% = Wi @ Wb,

e (reducible and nonsplit case) either 7|y, ~p:= ), the unique non-

We need one more technical input to state our theorem (which we give a working defini-
tion): there exists an integer m(7) such that

2k
dim S (To(Np); w"17¢); — —lm(F) is bounded as k — co.
p —
Such m(7) always exists. In fact, we will prove more precise dimension formulas in Definition-
Proposition 2.12

For the p above, we defined in [LTXZ227| a power series G5(w,t) = > g, (w)t" € Zy[w][t]
n>0
analogous to the ghost series in [BP19al. (We will quickly recall its definition after the
theorem below.)

Our main result is the following. It was essentially conjectured by Bergdall and Pollack
[BP19al, BP19b| (and is slightly adapted in the prequel [LTXZ22"] of this series).

Theorem 1.3 (Ghost conjecture). Assume p > 11. Assume that 7 : Galg — GLo(F) is an
absolutely irreducible representation such that F\Gal(@p 1s reducible and that 7:|I@,, 18 isomorphic
to either p or p* above with 2 < a < p—5. Then for every w, € mc,, the Newton polygon
NP (Cr(wy, —)) is the same as the Newton polygon NP (G5(w,, —)), stretched in both - and
y-directions by m(7), except possibly for the their slope zero parts.

Remark 1.4. (1) We have complete results for the slope zero part; see Theorem [R.7] for
details. In fact, our Theorem [8.7] is a much more general statement for the space of
automorphic forms of general GLy(Q,)-type.

(2) It is conjectured that Theorem holds for a = 1 and a = p — 4, and for smaller
primes p. We explain the technical difficulties later in Remarks 2.8 and

(3) In Remark B8, we also explain how to extend Theorem to the case when the
global representation 7 is reducible. The only difference is some additional dimension
computation.

We quickly recall the definition of ghost series Gj(w,t) =14 > go(w)t" € Z,[w]|[t]; see
n>1
Definition 2.5land the following discussion for examples and formulas. Assume that 7[5, =~ p.

For each k =a + 2b+ 2 mod (p— 1) and k > 2, define
dif = %dim Sk(FO(N))F and d} := %dim Sk(Co(Np))

Then we have
gn(w) _ H (w N UJk)mn(k),

k=a+2b+2 mod (p—1)
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where the exponents m,, (k) are given by the following recipe

: __ Jur de —dw — if qu de —
o (k) = min {n —d*, d}¥ —di* —n} i ¢ <n <d - df
0 otherwise.

We point out that the ghost series G5(w, t) depends only on p, or equivalently the numbers
p, a, and b; it does not depend on N and the global representation T.

A very primitive form of the ghost conjecture was first asked in [BC04], which is only for
the case when p = 2 and N = 1. Later similar types of ghost series for other small primes
were conjectured by [CI05] [Lo07]. The general form of the ghost series was first introduced
by Bergdall and Pollack [BP19al [BP19b]. We emphasize that the Bergdall and Pollack’s
work is of crucial importance to this paper.

In [LTXZ227], we made an analogous local ghost conjecture which, starts with a com-
pletely abstract setting: set K, = GLa(Z,); consider a primitive O[K,]-projective augmented

module associated to p, that is, a projective O[K,]-module H on which the K,-action extends
to a continuous GL(Q,)-action, satisfying certain appropriate conditions (that are naturally
satisfied in the automorphic setup). From this, one can similarly define analogues of classi-
cal and overconvergent forms, and our main result of this paper is the following analogue of
Theorem in the abstract setup, which we call the local ghost theorem.

wa-l—b—l—l % % 0
Theorem 1.5 (Local ghost theorem). Assume that p > 11. Let p = 10 b
1

be the reducible, nonsplit, and generic residual representation with a € {2,...,p — 5} and
be{0,....,p— 2} as above. Let H be a primitive O[K,]-projective augmented module of
type p, and let € be a character of (IF‘g)2 relevant to p. Then for the characteristic power

series CI%E) (w,t) of the Uy-action on overconvergent forms associated to I:i, and the combi-
natorially defined ghost series G%E) (w,t), we have, for every w, € mg,, NP(G(;) (wy, —)) =
NP(CF (w., -).

Comparing to Theorem [[.3] we here allow characters on both I -factors of the Iwahori

Z5 7 : . . :
group Iw, = (p; 7 ) We refer to Section [2] for more discussions on undefined notations.
P “p

The benefit of extending Theorem to the purely local ghost Theorem is that the
latter works for the “universal” O[K,]-projective augmented module. More precisely, if
7y« Galg, — GLy(F) is a residual local Galois representation whose restriction to Ig, is p,

then Pasktinas in [Pal3| defined a certain projective envelope P of 7(7,)" in the category
of Pontryagin dual of smooth admissible torsion representations of GL3(Q,), so that the

endomorphism ring of Pis isomorphic to the deformation ring R;, of 7,. The upshot is that
there exists an element z in the maximal ideal of Rz such that for every z, € m’ for m’

the maximal ideal in some finite extension O’ of O, Py /(z — x,)Por is always a primitive
O'[K,]-projective augmented module of type p. Thus Theorem [1.5 - applies and gives the

corresponding slopes for overconvergent forms constructed out of Po [(x — ZE*)P@/
Comparing this with the Galois side, we obtain immediately the list of slopes on the
triangulline deformation space of 7, a la Breuil-Hellmann-Schraen [BHS17]. (Moreover, we

observe that this also provides the knowledge of the slopes for triangulline deformation space
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of 737, for free.) Finally, by a bootstrapping argument, our result implies the ghost conjecture
for a general automorphic setup using global triangulation results such as [KPX14, [Lil5], in
particular Theorem

A discussion of the proof of Theorem will be given later in § [L.25l

Remark 1.6. We make several quick comments at the philosophical level on the proof.

(1)

It essential to work over the entire weight space and harness the integrality of the
characteristic power series over the weight ring OJw]. The pattern of slopes of

GE;) (wy, —) can be very complicated and subtle; see for example the cited proof of
Proposition 218 The involved combinatorics seems to suggest: working over a single
weight k£ to treat all slopes is going to be combinatorially extremely difficult.

The bootstrapping step makes use of essentially the full power of the known p-adic
local Langlands correspondence for GLy(Q,) (which might be downgraded to only
assuming Breuil-Mézard conjecture for GLy(Q,)). But the proof of Theorem (in
the primitive case) does not make use of the p-adic local Langlands correspondence.

Remark 1.7. We point to several possible extensions of Theorem [L.5

(1)

The

In addition to slopes of NP (C’g) (wy, —)), we may ask, for each root « of C’g)(wk, =),

what a/p”(®) modulo @ is. It seems to be possible that, if we know this for the
U,-action on the space of “modular forms” with weight 2 and character w® x w+?,
then we may deduce this answer for all slopes of multiplicity one. Suggested by
this, it is natural to ask whether for every root «, one may subtract a fixed value
ap € C, (combinatorially determined and independent of H) so that o — g is always
contained in pﬁmcp for some maximal possible §. Translating this to the Galois
side, we conjecture perhaps overly optimistically that, when F|Gal@p is reducible and
generic, each irreducible component of every Kisin’s semistabelian deformation space
has Breuil-Mézard multiplicity 1. In fact, this can be proved in the crystabelian case
with wild inertia type, in the forthcoming work of [AXZ237].

It is very natural to ask whether the method of this paper extends to the case when
77|Ga1Qp is irreducible, or even non-generic. Our most optimistic answer is “maybe”,
but we have not carefully investigated this case. The key difference is that, when
77|Ga1Qp is irreducible and generic, the smallest slope at any classical point seems to
depend on the automorphic data. However, some initial computation suggests that
although NP(CI%‘E ) (w,, —)) can be complicated, if we only consider the convex hull of
points whose horizontal coordinates are even integers, then there might be a hope
of an analogue of ghost series. Analogous to (1), if we are extremely optimistic,
we would make a wild conjecture that, when F\Gal(@p is irreducible and generic, each
irreducible component of every Kisin’s semistabelian deformation space has Breuil—
Mézard multiplicity 2.

In [Bu05], Buzzard proposed an algorithm which is expected to produce slopes of
modular forms inductively, at least under the Buzzard-reqular condition. We will not
include a discussion on this, but leave for the interested readers. We only point out
that this has been numerically verified extensively; see [BP19a, Fact 3.1].

logical process and relations with various conjectures we address in this paper are

summarized in the following diagram:
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Local ghost conjecture

Pasktnas functor
Triangulline variety

(a) Breuil-Buzzard—Emerton conjecture

h'd

Slopes on triangulline deformation space

(b) Gouvéa’s Lfﬁj—conjecture

(d) Gouveéa-Mazur conjecture

h'd

Automorphic ghost conjecture

(e) Slope distribution conjecture

Global triangulation < (¢) Irreducible components of eigencurves

(f) Refined spectral halo conjecture

We now discuss these corollaries.

1.8. Application A: Breuil-Buzzard-Emerton conjecture. Let 7, : Galg, — GLy(IF)
be a residual local Galois representation, and let REP denote the framed deformation ring.
For k € Z>, and a finite-image character 1) = ¢ X ¢, : (Z;)2 — O, Kisin [Kis08] defines a

quotient of REP e parametrizing lifts of 7, that are potentially crystalline with Hodge-Tate
weights (0, k) and initial type 1.

For each homomorphism x* : REP MUY B with E' a finite extension of E.; let V,
denote the deformation of 7, at . Then the 2-dimensional space Dperys(V,) carries E'-linear
commuting actions of Gal(Q,(1p=)/Q,) and the crystalline Frobenius ¢ (see Notation [7]]
for the definition of Dperys(Vy))-

The following [BuGel6, Conjecture 4.1.1] was initially conjectured by Breuil, Buzzard,
and Emerton in their personal correspondences around 2005.

Theorem 1.9 (Breuil-Buzzard-Emerton conjecture). Assume that p > 11 and that 7, is

reducible and very generic, that is, Tpli, =~ p or p* with p defined above and a € {2,...,p—5}

and b € {0,...,p—2}. Letk, 1, RFDp’k_l’g, and x* be as above. Let m denote the minimal

positive integer such that 11y ' is trivial on (1 +p™Z,)*, and let « be an eigenvalue of ¢
acting on the subspace of Dperys(Vy) where Gal(Qy(pip)/Qy) acts through . Then

uy(a) € {(§+Z)UZ when m =1,

This is proved in Corollary [[.10, in fact as a corollary of Theorem which identifies
all possible slopes on the triangulline deformation spaces with slopes of the Newton poly-
gon of G(ﬁa)(w,t). The idea of the proof is essentially explained in the paragraph after
Theorem [ namely, that applying Theorem to the universal GLy(Q))-representation
defined by Pasktinas shows that the slopes of the crystalline Frobenius actions are exactly

determined by the Up-slopes on corresponding overconvergent forms, which is in turn equal
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to the slopes of GE;) (w,t). Now the integrality statement follows from a (not-at-all-trivial)
property of ghost series [LTXZ227| Corollaries 4.14 and 5.24].

Remark 1.10. (1) What is originally conjectured in [BuGel6l Corollary 4.1.1] also in-
cludes non-generic cases, which our method cannot treat at the moment.

(2) There have been several attempts [Br03, BuGel3, BhGh15, IGG15, BGRI§| on var-
ious versions of this theorem, based on mod p local Langlands correspondence. In
fact, their goals are much more ambitious: classify the reduction of all crystalline
or crystabelian representations with slopes less than equal to a particular number,
typically less than or equal to 3. In their range, their work even addresses non-generic
cases that we cannot touch. Our advantage is to be able to treat all possible slopes.

(3) Analogous to Theorem[[.9] Jiawei An obtained some partial results towards the p-adic
valuations of L-invariants of semistable deformations of p.

1.11. Application B: Gouveéa’s Lfﬁj-conjecture. In 1990s, Gouvéa numerically com-
puted the T)-slopes in Si(I'o(N)) as k& — oo and found in [GoO1), § 4] that almost always,
the slopes are less than or equal to L%J

Interpreting this using the framework of (p-adic local) Langlands program, we should
consider instead the T),-slopes on Si(I'o(IV))r (or equivalently the lesser U,-slopes on old
forms in Sk (I (pN))r after p-stabilization) when localized at a residual Galois representation
7 asin §[.2l If we assume further that 7 |I@p is isomorphic to p and p* as above, it is expected

that the slopes are always less than or equal to L%J

This conjecture also has its Galois theoretic counterpart, which seems more intrinsic.
Roughly speaking, this folklore conjecture asserts that for any crystalline representation V'
of Hodge-Tate weight (0, k — 1), if p-adic valuation of the trace of the ¢-action on Deys(V)
is strictly larger than L’;;H, then V' has an irreducible reduction.

Our following result partially answers the counterpositive statement.

Theorem 1.12 (Gouvéa’s L%J-conjecture). Assume p > 11. Let 7, be a residual local

Galois representation such that fp|1Qp ~ p or p* with p defined above and a € {2,...,p — 5}
and b€ {0,...,p—2}. Let

b (Z) e A

be a character with s. € {0,...,p— 2}, and fix k € Z>o such that k = a + 2s. mod (p — 1).
Ok—1,9 0.k,y

Let Rz 7 be Kisin’s crystabelian deformation ring as above and let x* : R; — F' be

a homomorphism. Then for the trace a,, of the ¢-action on Dyerys(Vy), we have

k—l—min{a+1,p—2—a}J

Up(apz) < { 1

This is proved in Corollary [7.T0l

Remark 1.13. (1) We in fact proved a stronger statement with bound Lk_l_min;'ﬂl’p _2_a}J
k—1

as opposed to Lmj The correct way to interpret this is that: consider a crystalline
k—1

representation V' where one of the Frobenius eigenvalue has slope Lmj = k;}rfc with

c € {0,...,p}; then the reduction of V' corresponds to the case when a = ¢ — 1 or
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a = p— 2 — c. Such statement might even make sense when “a = —1 ora =p— 2",
except our theorem will not be able to address this.

(2) The original Galois-theoretic version of Gouvéa’s conjecture was proved with weaker
bounds | 2= | by Berger-Li-Zhu [BLZ04] and bounds | *~1 | by Bergdall-Levin [BL22].
Both results essentially use tools from p-adic Hodge theory: the former one uses Wach
modules and the latter one uses Kisin modules.

(3) The estimate of the slopes of crystalline Frobenius ¢ comes from the estimate of
slopes of the ghost series, which turns out to involve a rather subtle inequality on
sum of digits of certain number’s p-adic expansions. See [LTXZ227 Proposition 4.28]
for the non-formal part of the proof.

1.14. Application C: Finiteness of irreducible components of eigencurves. Near the
end of the introduction of the seminal paper [CM98] of Coleman and Mazur, they listed many
far-reaching open questions, among them, one particularly intriguing question is whether the
eigencurve has finitely many irreducible components, as somewhat “suggested” by that all
non-Hida components have infinite degrees over the weight space. As far as we understand,
almost nothing was known towards this question. As a corollary of our main theorem,
we provide we-believe the first positive theoretic evidence towards this question, namely,
the eigencurve associated to 7 that is reducible and very generic at p, has finitely many
irreducible components.

Let us be more precise. Keep the notation as in Theorem [[L3. Let W := (Spf Ow])"®
denote the rigid analytic weight open unit disk and let G'¢ denote the rigid analytification of
Gum,g,- Let Spe(7) denote the zero locus of Cr-(w, t), as a rigid analytic subspace of GL# x W;
it carries a natural weight map wt to WW. By Hida theory, this spectral curve is the disjoint
union Spc(7) = Spe(7)—oLISpc(7)so, where Spe(7)—¢ (possibly empty) is the component with
slope zero, corresponding to the Hida family. It is well known that Spc(7)—g is finite over
W, and hence has finitely many components. We prove the following in Corollary 0.7

Theorem 1.15. Assume p > 11 and that f|Ga1Qp 1s reducible and generic with 2 < a < p—2>.
Then Spc(T)so has finitely many irreducible components. In fact, each irreducible component
Z of Spc(T)=o is the zero locus of a power series Cz(w,t) € Ofw, t] such that for every w, €
mc,, the NP (Cz(w*, —)) is the same as NP (Gp(w*, —)) with the slope-zero part removed,
and stretched in both x- and y-directions by some constant m(Z).

In fact, what we prove is that, for every power series C'(w,t) whose positive slopes agree
with the ghost series (up to a fixed multiplicity), any irreducible factor of C(w,t) has the
same property; see Theorem

1.16. Application D: Gouvéa—Mazur conjecture. In the pioneer work of Gouvéa and
Mazur [GM92], they investigated how slopes of (classical) modular forms vary when the
weight k& changes p-adically. Their extensive numerical data suggests that when the weights
ki and ko are p-adically close, then the slopes of modular forms of weights k; and ko agree.
More precisely, they made the following conjecture.

Conjecture 1.17 (Gouvéa-Mazur). There is a function M(n) linear in n such that if
ki, ko > 2n+2 and ky = ky mod (p — 1)pM™ | then the sequences of U,-slopes (with multi-
plicities) on Sy, (I'o(Np)) and Sy, (To(Np)) agree up to slope n.
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Originally, Gouvéa and Mazur conjectured with M(n) = n, but Buzzard and Calegari
[BCO4] found explicit counterexamples. The current modified version Conjecture [LI7is still
expected by experts. The only proved result is with M (n) quadratic in n by Wan [Wa98§].

It is natural to consider this conjecture for each 7-localized subspaces Si(I'o(Np))z. Under
the same hypothesis as above, combining Theorem [I.3] with a combinatorial result of ghost
series by Rufei Ren |[Re227], we prove in Theorem R.I0 the following variant of Gouvéa—
Mazur conjecture.

Theorem 1.18. Assume p > 11 and that 7 : Galg — GLy(F) is an absolutely irreducible
representation such that fp|IQP 15 isomorphic to p or p* above with 2 < a < p—>5. Then for
weights ki, ko > 2n+ 2 such that ky = ks = a+2b+ 1 mod (p — 1) and v,(ky — ko) > n+ 5,
the sequence of U,-slopes (with multiplicities) on Sy, (L'o(Np))s and Sk, (Io(Np))r agree up to
slope n.

1.19. Application E: Gouvéa’s slope distribution conjecture. For slopes of modular
forms, Gouvéa made extensive numerical computations. In his paper [Go01], titled “Where
the slopes are”, he made the following intriguing conjecture.

Conjecture 1.20. Fiz a tame level N (relatively prime to p). For each k, write o1 (k), . .., aq(k)

for the list ofU slopes on Sg(T'o(Np)), and let uy, denote the uniform probability measure of

the multiset {5 1 s O;j_(?} C [0,1]. Then the measure uy weakly converges to

1 1 p—1
p+15[0’ﬁ] +p+15[ﬁ’1] +p—|—1 3’

where 0, denotes the uniform probability measure on the interval [a,b], and 5% 1s the Dirac

(1.20.1)

measure at % .

The symmetry between dy L and 9y L follows from the usual p-stabilization process,
’p ’p

namely the old form slopes can be paired so that the sum of each pair is k& — 1. The Dirac
measure at 1 5 corresponds to the newform slope, where the U,-eigenvalues are pjE 7,

In [BP19b] the authors defined abstract ghost series and showed that the slopes of the
Newton polygon of abstract ghost series satisfy analogue of Gouvea’s distribution conjecture.
So combining their work and Theorem [[.3] we obtain the following. (See Theorem [R.111)

Theorem 1.21. Assume p > 11 and that 7 : Galg — GLy(F) is an absolutely irreducible
representation such that fp|1Qp s isomorphic to p or p* above with 2 < a < p — 5. For
k=a+2b+2mod (p—1), let ai(k),as(k),... denote the U,-slopes of Sk(FO(Np))

increasing order, and let py, denote the probability measure for the set {5 O‘z(k } Let

- 1 " h—
m(7) be the mod-p-multiplicity defined in §[L2. Then
(1) When i < dim Si(T'o(N))7, we have a;(k) =
a;(k) = i(rl) i+ O(logk) when Tply, =~ p*
(2) As k — oo while keeping k = a+2b+2 mod (p—1), the measure py, weakly converges
to the probability measure (L20.).

p_(;) ~i+ O(logk) when 7yl1, =~ p, and

1.22. Application F: a refined Coleman’s spectral halo conjecture. In Coleman and
Mazur’s foundational paper [CM98| on eigencurves, they also raised an important conjecture

regarding the behavior of the associated eigencurve near the boundary of the weight disks:
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they conjecture that the eigencurve is an infinite disjoint union of annuli such that each
irreducible component is finite and flat over the weight annulus; this was largely inspired
by Emerton’s thesis [Em98|. The first proved result in this direction was by Buzzard and
Kilford [BKO05], who proved this result when N =1 and p = 2. Some additional examples
when p is small were subsequently provided [Ja04], [Kil08, [KM12, Ro14]. The first result
for more general situation was obtained by Daqing Wan, the first and the third authors in
[LWX17], which roughly speaking, proved the following.

Theorem 1.23. Let Cp(w,t) denote the characteristic power series analogously defined as
in §[1.2 but for automorphic forms on a definite quaternion algebra D over Q that is split
at p. Let Spc(D) denote the zero locus of Cp(w,t) in W x G8, and

Woa) = {w.eWw ‘ vp(w,) € (0,1)}  and Spco,1y (D) = Spe(D) N wt ' W)

Then Speg 1)(D) is an infinite disjoint union Xo| | X1y [ X1 [ Xa2 L+ such that

(1) for each point (w,,a,) € X; for I =n = [n,n] or (n,n+ 1), we have

vp(ap) € (p—1) - vp(wy) - I,
(2) the weight map wt : X; — W) is finite and flat.

This was later generalized to the Hilbert case when p splits, by Johansson-Newton [JN19],
and Rufei Ren and the fourth author [RZ22]. The case corresponding to the modular forms,
namely the “original Coleman—Mazur” conjecture was established by Hansheng Diao and
Zijian Yao in [DiYa227]. Unfortunately, Theorem and all these generalizations do not
give further information on the slope ratios v,(a,)/v,(w,) inside the open intervals (p — 1) -
(n,n 4+ 1). When 7 satisfies the conditions of our ghost theorem, the slopes of ghost series
automatically give the following refined version of the above theorem. (See Theorem B.12I)

Theorem 1.24. Assume p > 11 and that 7 : Galg — GLy(F) is an absolutely irreducible
representation such that fp|1Qp is isomorphic to p above with 2 < a < p — 5. Let Spc(F)

denote the zero of Cr(w,t) inside W x GLE, and put Spe(F) 1) = Spe(7) N wt™ (Wo)).

m 7

Then Spc(7)OY is a disjoint union Y1 | |Ya| |-+ such that

(1) for each point (w,,a,) € Y,, v,(a,) = (deg g,(w) — deg gn—1(w)) - v,(wy), and
(2) the weight map wt : Y, = Wi is finite and flat of degree m(7).

A similar result can be stated when 7 is split, we refer to Theorem R.12] for the details.

1.25. Overview of the proof of Theorem There are two main inputs in proving
Theorem [[L5l. We explain these first. Recall that K, = GLy(Z,); we may reduce to the case

a+1
when p = (

Wy
let H be the projective envelope of Sym® F®? as a right O[K,]-module, and we extend the

K,-action to a continuous (right) action by GL»(Q,) so that (} 2) acts trivially. Then for

each character v of (IE‘;)2 and a character €; of F;, we may define spaces of abstract classical
10
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and overconvergent forms
Sy (v) = ngk(w) = Homojrw,] (ﬁ, Sym* 2 0% ® y),
Si(e1) = Sy (21) = Homoy,j (H, Sym* > 0% @&, - det),
(1.25.1) SL(1) = S, (¥) = Homop, (T, O(2) ® ¥)).

These abstract and overconvergent forms behave exactly as their automorphic counterparts,
equipped with the corresponding U,-operators, T),-operators, Atkin-Lehner involutions, and
theta maps. (See § [2.4] and Proposition 2.111)

Main input I: p-stabilization process; see § B.3] and Proposition When ¢ = &, =
€1 X €1, the standard p-stabilization process can be summarized by the following diagram

i1

/E\,\ U
G O — Sgk(él)/g
AL

pra
Here the space S¥ (1) carries a natural Tp-action and S%”k(él) carries a U,-action and an

Atkin-Lehner involution. The maps ¢1, t2, proj;, proj, are the natural ones. Write dj* () :=
ranko S!"=(¢1) and d}¥(£,) := ranke S} (€1). The key observation is the equality:

(1.25.2) Uy(p) = ta(proj,(¢)) — AL(p) for all p € ngk(él).
Under the usual power basis, the matrix of U, on Sg’k(él) is then decomposed as the sum of

e a matrix with rank < dj*(e1) = S17d}"(é1), and

e an antidiagonal matrix for the Atkin—Lehner involution.
Essentially this observation alone already shows that the characteristic power series of the
upper-left n x n submatrix of the U,-action on abstract overconvergent form is divisible by
the ghost series g,(w) (but in a larger ring O(w/p)); see Corollary B.10l Unfortunately, we
need much more work to control the determinant of other minors of the matrix of U,.

Main input II: halo estimate (for the center of the weight disk); see Lemma B.I4] and
the more refined version in Corollary [3.271
As a right O[Iw,]-module, we may write

H = e10[Iw,] @ oz 2),1000 O @ 20[Iwp] Qo)) wesn O-

Thus, there is a natural power basis of SLW) of the form

eizsw;l’ eizswyl—i_p_l, eTZ8¢y1+2(p_l)7 e 763Z8¢»2’ €;Z8¢»2+p_1’ e;z8¢v2+2(p_1) .

) )

for some characters sy, 1, sy.2 € {0,...,p — 2} to match the characters; see § 2.0l for details.
It is natural to consider the Uj,-action with respect to this basis and the associated Hodge
polygon. Some time between the two papers [WXZ17] and [LWXI17], the authors realized
that this estimate is not sharp enough. One should use instead the so-called Mahler basis,
or rather the modified Mahler basis, which means to replace the monomials above by the
following polynomials:

P =z = fe(2)? — fo(2)
fi(z) = P fer1(2) ll—p

for ¢ > 1;



for n = ng 4+ pny + p*ng +---,  define m,(2) 1= 2" f1(2)™ fo(2)"2 - - -
Then {f,(2) n € Z>o} form a basis of the space of continuous functions on Z,, denoted by
C°(Z,;Z,). It turns out that estimate of U,-operator over this basis is slightly sharper than
the estimate for power basis. This improvement is the other key to our proof.

We make two remarks here: first, our modified Mahler basis is an approximation of the
usual Mahler basis (fl)7 ours have the advantage that each basis element is an eigenform of
the action of F); second, compare to the estimate in [LWX17], we also need to treat some
“pathological case”, e.g. coefficients when the degree is close to a large power of p. Such
“distractions” complicates our proof a lot.

With the two main input I and II discussed, we now sketch the proof of Theorem [LA. A
more detailed summary can be found at the beginning of Section [l

In a rough form, Theorem says that CI%E) (w, 1) =1+ 5, cao(w)t™ and Ggf)(w,t) =
L+ ,51 gn(w)t™ are “close” to each other. The leads us to the following.
Step I: (Lagrange interpolation) For each n, we formally apply Lagrange interpolation to
cn(w) relative to the zeros wy of g, (w) (with multiplicity):

(1.25.3) calw)= Y ak(w)-&))m(w)gﬂ(w).

We give a sufficient condition on the p-adic valuations of the coefficients of ay(w)
that would imply Theorem [I.5l This is Proposition 4.4l

In fact, we prove a similar p-adic valuation condition for all (principal or not)
n x n-submatrices UT(¢ x &) of the matrix of U, with respect to the power basis,
where ¢ and £ are row and column index sets.

Step II: (Cofactor expansion argument) The key inequality (L25.2) writes the matrix UT({ x &)
as the sum of a matrix which is simple at w;, and a matrix which as small rank at
wy. Taking the cofactor expansion with respect to this decomposition, we reduce the
needed the estimate to an estimate on the power series expansion of the character-
istic power series of smaller minors. This step involves some rather subtle inductive
processes that we defer to Section [l for the discussion.

Step III: (Estimating power series expansion for smaller minors) This is to complete the in-
ductive argument by proving that the known estimate of Lagrange interpolation co-
efficients implies the needed power series expansion of the characteristic power series
of smaller minors. This part is relatively straightforward, but is tangled with some
pathological cases, where the refined halo estimate is essentially needed.

Roadmap of the paper. The first five sections are devoted to proving the local ghost
conjecture (Theorem or Theorem 2.7)). This is divided as: Section 2] collects background
information on the local ghost conjecture from [LTXZ227]; Section Bl establishes the two
main inputs of the proof as explained in § [[25] Sections (] Bl and [ treat precisely Step
I, III, and IT in 28] respectively. (We swapped the order to for logical coherence.) In
Section [7, we recall a known-to-experts result: applying Emerton’s locally analytic Jacquet
functor to the Paskuinas modules precisely outputs Breuil-Hellmann-Schraen’s triangulline
deformation space (Theorem [T.18]). Combining this with the local ghost theorem, we deduce

a theorem on the slopes of the triangulline deformation space (Theorem [7.0]). Applications
12



A and B are corollaries of this. Section [§ is the second part of the bootstrapping argument:
using the knowledge of the slopes on triangulline deformation spaces, we determine the U,-
slopes for any so-called O[K,]-projective arithmetic modules (Theorem B7). In the case
of modular forms, this specializes to Theorem [[.3] Applications D, E, and F follow from
this immediately. Finally, in Section [ we prove the finiteness of irreducible components of
spectral curves, namely Theorem
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1.26. Notation and normalization. For a field k, we write k for its algebraic closure.
Throughout the paper, we fix a prime number p > 5. Let Ig, C Gal(@p /Q,) denote the
inertia subgroup, and w; : I, - Gal(Qpy(1p)/Qp) = F); the the 1st fundamental character.
The reciprocity map Q; — Galak; is normalized so that p is sent to the geometric Frobenius
element. The character Xcye @ Q) — Z) given by Xcya(z) = z|z| extends to the cyclotomic
character of Galg,. The Hodge-Tate weight of .y in our convention is —1.
Let A = (Z/pZ)* be the torsion subgroup of Z, and let w : A — Z be the Teichmiiller
character. For an element o € Z;, we often use @ € A to denote its reduction modulo p.
All hom spaces in this paper refer to the spaces of continuous homomorphisms. For M a
topological O-module, we write C°(Z,; M) for the space of continuous functions on Z, with
values in M.

Let £ be a finite extension of Q,(,/p), as the coefficient field. Let O, F, and w denote its
ring of integers, residue field, and a uniformizer, respectively.
The p-adic valuation v,(—) and p-adic norm are normalized so that v,(p) = 1 and |p| = p~'.

We use [z] to denote the ceiling function and |z | to denote the floor function.

1) _ (=—1)?

5— + -+ for x a p-adic or formal

We shall encounter both p-adic logs log(z) = (z —
element, and the natural logs In(—) in the real analysis.

For each m € Z, we write {m} for the unique integer satisfying the conditions
0<{m}<p—2 and m={m}modp—1.

For a square matrix M with coefficients in a ring R, we write Char(M;t) := det(I — Mt) €
R[t] (if it exists), where [ is the identity matrix. When U acting on an R-module is given

by such a matrix M, we write Char(U;t) for Char(M;t).
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For a power series F'(t) = > ., cat" € C,[t] with ¢g = 1, we use NP(F) to denote its
Newton polygon, i.e. the convex hull of points (n,v,(c,)) for all n; the slopes the segments
of NP(F') are often referred to as slopes of F(t). For two Newton polygons A and B, let
A#B denote the Newton polygon (starting at (0,0)) whose slopes (with multiplicity) is the
disjoint union of those of A and B.

For a formal O-scheme Spf(R), let Spf(R)"® denote the associated rigid analytic space
over E.

2. RECOLLECTION OF THE LOCAL GHOST CONJECTURE

In [BP16l, BP19al BP19b], Bergdall-Pollack proposed a conjectural combinatorial recipe
to compute the slopes of modular forms. This was reformulated by the authors [LTXZ227]
in a setup that can be adapted to the context of modularity lifting techniques. In this
section, we first recall the construction as well as the statement of the local ghost conjecture;
notations mostly follow from [LTXZ227| and we refer to loc. cit. for details. After this, we
quickly recall the power basis of abstract classical and overconvergent forms as well as the
dimension formulas for spaces of abstract classical forms.

Notation 2.1. Recall the following subgroups of GL2(Q,).

z< 7, 1+pZ, Z
I%:@d@ﬁﬂ%:<z W)DIN:(p£p1+&J.

Fix a finite extension E of Q, which contains a chosen square root ,/p of p (for a technical
convenience later). Let Let O, F, and w denote its ring of integers, residue field, and a
uniformizer, respectively.

For a pair of non-negative integers (a, b), we use o, to denote the right F-representation
Sym? F®2@det® of GLy(F,). Whena € {0,...,p—1}and b € {0,...,p—2}, 0, is irreducible.
These representations exhaust all irreducible (right) F-representations of GLy(F,). We call
them the Serre weights. We use Proj, , to denote the projective envelope of o, as a (right)
F[GLy(F,)]-module.

Definition 2.2. ([LTXZ22"| Defintion 2.22]) Fix a reducible, nonsplit, and generic residual
representation p : Iy, — GLy(F) of the inertia subgroup:

a+b+1
(2.2.1) ﬁ:(%o *jo) forl<a<p—4and0<b<p-—2
1

where wy is the first fundamental character, and * stands for the unique nontrivial extension
(up to isomorphism) in the class H'(Ig,, w“H)GalFP H'(Galg,, w{*).

An O[K,]-projective augmented module H is a finitely generated right projective O[K,]-
module whose right K,-action extends to a right continuous GLy(Q,)-action. We say that
H is of type p with multiplicity m(ﬁ) if

(1) (Serre weight) H := H/(w, L4 pMa(z,)) is isomorphic to a direct sum of m(H) copies
of Proj,, as a right F[GLy(F,)]-module.

The topology on such H is the one inherited from the O[K,]-module structure.

We say H is primitive if m(H) — 1 and H satisfies the following additional conditions:
14



(2) (Central character I) the action of (82) on H is the multiplication by an invertible
element £ € 0%, and

(3) (Central character II) there exists an isomorphism H = Hy®0O[(1 + pZ,)*] of
O|GL3(Q,)]-modules, where H, carries an action of GL5(Q,) which is trivial on el-
ements of the form (§9) for o € (1 + pZy,)*, and the latter factor O[(1 + pZ,)*]

carries the natural action of GLy(Q,) through the map GL3(Q,) oty Q) LiindliiCN

(14 pZ,)*.

Remark 2.3. We quickly remind the readers here that, for the local theory of ghost con-
jecture, we only treat the case when p is reducible and nonsplit, or equivalently, when there
is only one Serre weight. It is the later bootstrapping argument in § [1 and § 8 that allows
us to deduce the general reducible case from the nonsplit case.

2.4. Space of abstract forms. Let H be an O[K,]-projective augmented module of type
p with multiplicity m(H).

(1) Set A :=TF) and write w : F¥ — Z) for the Teichmiiller character. For each a € Z,,
write & for its reduction modulo p.

A character ¢ of A? is called relevant to p if it is of the form

—se+b a+se+b

E=Ww X W

for some s. € {0,...,p—2}.

Recall that there is a canonical identification O[(1 + pZ,)*] = O[w] by sending [«] for
a € (1+pZ,)* to (1+ w)os@/P where log(—) is the formal p-adic logarithm. In particular,
for each k € 7Z, we set

wy, == exp(p(k —2)) — 1.
For a character ¢ of A2, write O[w]® for Ofw], but equipped with the universal character

(©)

XHI’IIV

(@, 0) ———— e(a, 5) (14 w)log@/w(g))/p’

A X 2 ——— Ow]©

where 4 is the reduction of § modulo p and w(§) is the Teichmiimller lift of . The weight disk

W = (Spf O[[w]](a))rig for € is the associated rigid analytic space over . The universal
ZX
vy T

(2.4.1) X ((98)) = Xt (@, 0).

Fix a relevant character ¢ for the rest of this subsection. Consider the induced represen-
tation (for the right action convention)

character extends to a character of B?(Z,) = ( ) still denoted by Xumv? given by

(2.4.2) Indgvo’; (Xffrlv := {continuous functions f : Iw, — O[w]®;

F(gb) = Xk (0) - f(9) for b € BP(Z,) and g € Iw, }
(2.4.3) ~ C%(Z,; O[w]®),
where C°(Z,; —) denotes the space of continuous functions on Z, with values in —, the

isomorphism is given by f +— h(z) = f (((1) z )) Our choice of convention is so that the left
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action on its dual, i.e. the distributions Dy(Z,; O[w]®)) is the natural one, and this will be
compatible with later Emerton’s lower triangular matrix analytic Jacquet functor [Em06];
see § for the discussion.

This space ([2.4.2)) carries an action of the monoid

M = {(27) € Ma(Zy); plv, pt6, ad — By # 0},
given by the explicit formula (setting determinant ad — fy = p"d with d € Z)

(2.4.4) h| (3 %) (2) = £(d/s,8) - (1 + w)log((’yz+5)/w )/p . h(jﬁi?)

(2) For the H and a relevant character £ as above, use O{w/p)© to denote the same ring
O(w/p) equipped the associated universal character as given in (2.4.]). We define the space
of abstract p-adic forms and the space of family of abstract overconvergent forms to be

S e =S5 = Homopw, (I, Indjyh, (k) = Homop, (H, C°(Z,; O[w] ),

p-adic H,p-adic
gh(e) — S%’(e) = Homopy,) (H, O(w/p> <Z>)v

respectively. Viewing power series in z as continuous functions on Z, induces a natural
inclusion

O(w/p) ) (z) = C°(Zy; O[w]®)) @opuy O(w/p),
such that the Mj-action on the latter space given by (2.4.4)) stabilizes the subspace. This
induces a natural inclusion

(2.4.5) St s 8 e Ropu) Ow/p).
The space Sp ) i (resp. ST()) carries an Ofw]-linear (resp. O{w/p)-linear) U,-action: fixing

a decomposition of the double coset Iw,( 61 )w, = H?;é vilw, (e.g. v; = (p;I 9) and

1
vj_l = (7 0)) the U,-operator sends ¢ € S©) . (resp. p € Sh©) to

jp 1 p-adic (

(2.4.6) U, () (z) = Z plavy)],+ forall z € H.

The U,-operator does not depend on the choice of coset representatives. As explained in
[LTXZ22+, § 2.10 and Lemma 2.14], the characteristic power series of the U,-action on SH)

and S©

padic are well-defined and are equal; we denote it by

CO(w, ) = C(w, 1) = > D (w)t" € At] = Ofw,1].

n>0
The main subject of local ghost conjecture is to provide an “approximation” of C'®)(w,1).

For each integer k € Z, evaluating at w = wy, := exp((k — 2)p) — 1, we arrive at the space
of abstract overconvergent forms of weight k and character ¢ = ¢ - (1 x w?7F):

SL(W = S%,k(¢) = ST( ®(9 (w/p),w—wy O;

carrying compatible U,-actions. Moreover, the characteristic power series for the U,-action
is precisely C)(wy, t).
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(3) For each integer k > 2, setting ¢ = & - (1 x w?*7*), we have a canonical inclusion

O[Z]Sk_2 ® w C O<w/p>(€) <Z> (8(9(u1/10),w»—)w;c 07

such that the M;j-action on the latter given by (2.4.4]) stabilizes the submodule. So we
may define the space of abstract classical forms of weight k and character 1 to be the U,-
equivariant submodule

St (1) = SE (1) == Homo,) (H, O[] 2 @ ¢) C SL(v),

where O[z]<¥~% means the space of polynomials of degree < k — 2. In particular, the
characteristic power series of the U,-action on SL¥ (1) divides C©) (wy, t).

When H is primitive, set
d¥ (¢) := ranke Sp¥ ().

(4) Recall the notation {—} as defined at the end of the introduction. We define k. :=
2+ {a+2s.} €{2,...,p}. When the character 1) : A? — O* takes the form of ¢ = &; :=
g1 X €1, and the integer k € Z>, satisfies &) - (1 x WF™2) = & = £7% 10 x 45 +0 we must have
g1 =w *T and k = k. mod p — 1. In this case, O[2]5¥72 ® &1 o det carries a natural action
of the monoid My(Z,)**#?, given by for (& 7) € My(Z,) (setting determinant ad — By = p'd
with d in Z7)
az + ﬁ)

Ml ny(2) = ei(d) - (2 +5>Hh<vz +0

v 4
Define the space of abstract classical forms with K,-level of weight k and central character
€1 to be

Si'(e1) = Sy (e1) := Homoy,| (H, O[z]*F 2 @ ¢; o det).

This space carries an action of T, operator taking a coset decomposition K ( 01 ?)Kp =
1 _
szoqup (e.g. u; = ((1]]1*;”,1 ) and uj = (0 . ) for j=0,...,p—1, and u, = (pol (1)) and
u,' = (47)), the T,-operator sends ¢ € Si(e1) to
p ~
(2.4.7) T,(0)(x) =Y p(ruy)|,— forall z e H
— J

(5) For each relevant character ¢ = w™%7" x WA+l get &) = w5+ x W™**0  Assume
that H is primitive. For each k € Z>, satisfying k = k. mod p — 1, set

dyf(e1) :==rankp Sy’ (e1) and  d;y(eq) := diw(él) —2d;"(e1)

The ranks d}¥ (), di"(1) and di®"(g1) defined above depend only on a, b, s., ¥, and k.
For their precise formulas, see Definition-Proposition later.

(6) Since the definition of S}¥(¢) and S{"(£1) only uses the K,-modules structure of H, it
follows that, for a K,-projective augmented module H of type p with multiplicity m(H)

(2.4.8) ranko SE', (¢) = m(H) - i () and  ranko S, (e1) = m(H) - d}*(e1).
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Definition 2.5. Following [BP16], we define the ghost series of type p over W) to be the
formal power series

GO(w,t) = G (w,t) =1+ gl (w)t" € Ofw, 1],
n=1

where each coefficient g.° (w) is a product
@)
(25.1) @w = [ @-w)® ez,

k>2
k=ke mod p—1

with exponents mgf)(k:) given by the following recipe
(k) = min {n — dj*(e1), d}¥ (&1) — di*(e1) —n}  if di¥(e1) <n < d¥(&1) — djF(e1)
0 otherwise.

For a fixed k, the sequence (mgf)(k))nzl is given by the following palindromic pattern

(2.5.2)  0,...,0,1,2,3,..., 2y (e1) — 1,37 (e1), 3dp ¥ (e1) — 1,...,3,2,1,0,0, ...,
—_——
dp*(e1)
where the maximum 1d7®¥(e,) appears at the $d;¥(&;)th place.

When m' (k) # 0, we often refer wy, as a ghost zero of g (w).

. . _ wa+b+1 *7&0 )
Conjecture 2.6 (Local ghost conjecture). Let p = ( " » )t lg, = GLy(F) be a
w1

reducible, nonsplit, and generic residual representation with a € {1,...,p — 4} and b €
{0,...,p— 2}, as in (2Z27). Let H be a primitive O[K,]-projective augmented module of
type p, and let € be a character of A? relevant to p. We define the characteristic power series
CE)(w,t) of Uy-action and the ghost series G (w,t) for H as in this section. Then for every
w, € me,, we have NP(GE(w,, —)) = NP(C® (w,, —)).

The main local result of this paper is the following.
Theorem 2.7. The Conjecture holds when p > 11 and 2 < a < p — 5.

Remark 2.8. We point out that the only place that we essentially need a ¢ {1,p — 4} and
p > 11 is at various places in the proof of Proposition [5.4(1); see also Remark We do
not know whether one can make more subtle discussion on boundary cases to retrieve the
theorem when a € {1,p — 4} or p = 7. The condition p > 7 is required at more places, e.g.
[LTXZ227 Corollary 5.10].

As pointed out in [LTXZ227 Remark 2.30], after twisting, we may and will assume that

b= 0 and that () acts trivially on H.

Hypothesis 2.9. From now on till the end of Section [ (with the exception of Proposi-

tion 2.14] and the following remarks), we assume that H is a primitive O[K,]-projective

augmented module of type p, with b = 0 and & = 1. In particular, H = I:i/(w, LipMa(z,))
0

p) acts trivially on H.

Proj, o, and ( 1
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For the rest of this section, we recall important definitions and results regarding abstract
forms and ghost series that we have proved in the prequel [LTXZ227]; we refer to loc. cit.
for details and proofs.

2.10. Power basis. In [LTXZ227| § 3], we constructed a power basis of the space of abstract
(overconvergent) forms. Let H be as above. As explained in [LTXZ227 § 3.2], we may write
H as an O[[pr]]-module

(2.10.1) ~ €0 ®,, o Ollw,] @ €20 ®,, o Olw,]

for the two characters y; = 1 x w® and y2 = w® x 1 of T = A? (embedded diagonally in
Iw,). Moreover, by [LTXZ227, Lemma 3.3] we may require that ei(g é) =e3; fori=1,2.
We fix such an isomorphism (2.I0.1]).

For a relevant character € = w™* x w% of A?, we have

SHO) = Homop,) (H, Ow/p){z) © (w7 x 7)) _
= eT . (O(w/p><z> ® (w—ss % wa—l—ss))T:lxwa o 6; . (O<w/p> <Z> ® (w—sg > wa—l—ss))T:w“Xl'

It follows that the following list is a basis of S**) and also a basis of SL (e (1 x w*k)) for
every k € Z>s:

(2. 10 2)
_ {6* sE Zp—1+sg’6xl<z2(p—l)+sg’“ * {(I"l‘Se} € ¥ P— 1+{a+sc} 6 p 2(p— 1)+{a+55} - }

When k > 2, the subsequence consisting of terms whose power in z is less than or equal to
k — 2 forms a basis of S}¥ (¢ - (1 x w?™")).
The degree of each basis element e = ¢}27 € B(®) is the exponents on z, namely, deg(e}z7) =

j. We order the elements in B as e&a), eg ). with increasing degrees. (Under our generic

assumption 1 < a < p — 2, the degrees of elements of B() are pairwise distinct.) Writing
B for the subset of elements of B© with degree < k—2, it is a basis of SI¥ (e- (1 xw?H)).

Write UM € M, (O(w/p)) for the matrix of the O{w/p)-linear U,-action on S with
respect to the power basis B®); for k € Z>9, the evaluation of S™) at w = wy, is the matrix

UL’(‘S) of the U,-action on S} (e (1 x w**)) (with respect to B)). In particular,
Char(U"®):#) = C©(w,t) and Char(UL’(a); t) = C9(wy, t).
The following are standard facts regarding theta maps and the Atkin—Lehner involutions.

Proposition 2.11. Fix notation as above and let k € Z>,.
(1) (Theta maps) Put i = ¢ - (1 x w?>7*), & = ¢ (W1 x w'F) with s = {s. + 1 — k},
and ' = &' - (1 x w*) =) - &*~1. There is a short exact sequence

(2.11.1) 0 — SY(v) — Sk(v) S, S, (¥),

which is equivariant for the usual U,-action on the first two terms and the p*~1U,-
action on the third term. Here the map (%)k_lo 1s given by post-composition with the

element ¢ € SL(@D) when viewing the latter as a map from H to O(z). The sequence

(ZI1) is right ezact when restricted to the subspace where Uy,-slopes are finite.
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More accurately, the matriz UL’(E) is a block-upper-triangular matriz of the form

Iw,
(2.11.2) gt (U *
k 0 pk_lD_lU;’Eek)D )

where di¥ (e - (1 x w?™")) x d}¥ (e - (1 x w?™)) upper-left block U™ s the matriz
for the U,-action on SLY (5- (1x w2‘k)) with respect to B,(f), D is the diagonal matriz
whose diagonal entries are indeved by e = 27 € B with j > k — 1, and are given
by j(G—1)---( —k+2).

In particular, all finite U,-slopes of SL(@D) strictly less than k — 1 are the same as
the finite U,-slopes of S\ (v); and the multiplicity of k — 1 as U,-slopes of SL(W is
the sum of the multiplicity of k — 1 as U,-slopes of SY¥(¢)) and the multiplicity of 0
as U,-slopes of S_,. (1').

(2) (Atkin—Lehner involutions) Write ¢ = € - (1 x w?7*) = 1)y x 1y as character of
A? (where we allow V1 = 1)). Put ¥* = g X ¢y and " = ¢ - * - ™! so that
Sen ={k—2—a—s.}. Then we have a well-defined natural Atkin—Lehner involution:

(2.11.3) ALy S (¢) Sk ()

pr————=(ALgy(p) 12— <P(93(?”51))\(g(1)) ).

Here the last \(0 1) is the usual action on O[z]=*=2 but the trivial action on the factor

p 0
(o
Explicitly, fori=1,2 and any j, or for any £ =1,...,d>(*),

(2114)  ALgy(efz) = p 7 5277, ALy (ef) = o275l

where we added superscripts to the power basis element to indicate the corresponding
character. In particular, we have

(2.11.5) AL g5y 0 ALGp ) = "2
When 1y # 1y (or equivalently k # k. mod (p — 1)), we have an equality
(2.11.6) Uy o ALy 0 Uy = p" ' - ALy

as maps from Sy (1) to SE¥(¢%). Consequently, when 1y # 1, we can pair the slopes
for the Uy-action on S () and the slopes for the Uy,-action on S}¥ (1) so that each
pair adds up to k — 1. In particular all slopes belong to [0,k — 1].

Proof. See |LIXZ22", Propositions 3.10 and 3.12]. O

The following summarizes the dimension formulas for the spaces of abstract classical forms
(see [LTXZ227| § 4] for the proofs).

Definition-Proposition 2.12. Let H be a primitive O[K,]-projective augmented module of
type p and let € = w=% X w* be a relevant character of A2.

(1) We have

{k—2—38J+Lk—2—{a+sa}

d (e (1 x w?™h) = |+2



se +{a+s:}

(2) Set 5. ::{ .

have

J. In particular, when k = k. + (p — 1)k for ke € Z>qo, we

A (&) = 2ke + 2 — 20..

(3) Introduce two integers t\°,t§) € Z:
o whena+s. <p—1, tf) =s5.+90, andtéa) =a+s.+0.+2;
o whena+s.>p—1,¢9 ={a+s.}+6.+1 andt?) =s. +6.+1.
Then for k = k. + (p — 1)ke with ke € Z>o, we have

ke — tf)J N Lk. — tgs)

+ 2.
p+1 p+1 J

d(e) = |

(4) Recall the power basis B(®) = {ege), ege), ... }. Define the nth Hodge slope to be

)\gls) — deg egLe) . {deg eﬁ;)J |
p

Ifa+s. <p—1, we have

1 ifn—2s.=1,3,...,2a+ 1 mod 2p,
(2.12.1) deg g,(fll(w) — deg ¢\ (w) — )\,(fll =<¢—1 ifn—2s.=2,4,...,2a+ 2 mod 2p,
0 otherwise.

If a+s. >p—1, we have

1 ifn—2s. =2,4,...,2a+ 2 mod 2p,
(2.12.2) degg"), (w) —deg g (w) — A, =3 -1 ifn—2s.=3,5,...,2a+ 3 mod 2p,
0 otherwise.

In either case, we have

3 O . d n — d n — s
(2.12.3)  degg®(w) — (A + .+ = f degenyy —dege, =a
0orl if dege,i 1 —dege,=p—1—a.
Moreover, the differences deg g,(ﬁ)rl(w) — deg gf(f)(w) are strictly increasing in n.
Proof. For (1), see [LIXZ227| Proposition 4.1]. For (2), see [LTXZ22"| Corollary 4.4]. For
(3), see [LTXZ227| Proposition 4.7]. For (4), see [LIXZ227| Proposition 4.11]. O

It would be helpful to copy here the following example from [LTXZ22", Example 2.25],
which may hopefully inspire some of the arguments later.

Example 2.13. Suppose that p = 7 and a = 2. We list below the dimensions d}" (e (1xw?~*)

for small k’s.
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€ k 21314 [5[6[7[8]9]10[11[12]13T 14
Ixw? [ d(Uxw™ M) =[E2]+ B [ 1 [1]27]2][2[2][3[3|4[4]4]4]5
WX W | dY (W x ) =B+ BB o 1] 1]2]27][2]2[3]|3 ][44 ]4]4
wxw!| ! xw M) = [E] 4+ [EE] Jor|o]1|1][2]2]2]2]3[3]4]4]|4
w X WP [P (WP xR =[BT (BT o Jofor 1|1 |2]2 2|23 [3[4]4
W x1 | di¥w xw ) =B+ [E] [ 111 ]1]2°]2]3|3]3[3[4[4]5
wxw | dFwxw™) =[ES]+ [ Jo 1] 1[1]1]2]27|3][3[3]3]4]4

The superscript * indicates where the character is equal to £}, in which case d}*(e1) makes
sense. In the table below, we list the information on dimensions of abstract classical forms
with level K, and Iw,,.

€ Triples (k, dj*(e1), di®"(£1)) on the corresponding weight disk
Txo? |(4,1,0) (10,1,2) (16,1,4) [ (22,1,6) [ (28,2.6) | (34,2,8) | (40,2, 10)
S X ] (6,0,2) ] (12,1,2) | (18,1,4) | (24,1,6) | (30,1,8) | (36,2,8)] (42,2, 10)
oI X W [(2,0,0)] (8,0,2) | (14,0,4) | (20,1,4) | (26,1,6) | (32,1,8) | (38,1, 10)
P X @5 | (4,0,0) | (10,0,2) | (16,0,4) | (22,0,6) | (28,1,6) | (34,1,8) | (40, 1, 10)
27X 1](6,0,2)[(12.1,2) | (18,1,4) | (24,1,6) | (30,1,8) | (36,2,8)] (42,2, 10)
o xw |(2,0,0)] (3,0,2) |(14,0,4) | (20,1,4) | (26,1,6) | (32,1,8)] (35,1, 10)
The first four terms of the ghost series on the ¢ = (1 x w?)-weight disk (corresponding to

g1 (w) =1,

95" (w) = (w — wip) (w — wie) (w — W),

géa)(w) = (w - w16>2(w - w22)2(w - w28)<w - w34)(w - w40)(w - w46)7

g5 (w) = (w — wie) (w — wns)* (w — was)* - (W — W) (w — wsz) -+ (w — wrp).

Before proceeding, we prove an interesting coincidence of ghost series, for which we tem-
porarily drop the condition b = 0 in Hypothesis This is of crucial importance for our
later argument to treat the residually split case.

Proposition 2.14. Consider the residual representation p' : lg, — GLo(IF) given by
ﬁ’ 1 % 7§ 0 _ w§p—3—a)+(a+1)+1 " ?é 0
0 witt 0 witt )

Seta' =p—3—a andl = a+1 accordingly. Fors. € {0,...,p—2}, write s. = {a+s.+1}
50 that € = w5 X WOTse = etV (ya'+sitt

(1) When s. ¢ {0,p—2 —a}, we have
GY (w,t) = G (w,1).

In the other two cases, we have

a-+1 Xw™

(2.14.1) G (w, 1) = 1+1GY*“(w,t) and GY
22
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(2) Fiz w, € mg,. The Newton polygons NP (G (w*, —)) and NP (Gf (ws, —)) agree,
except that when e = 1 X w® (resp. € = w* x w™1) NP (G )(w,, —)) has one more
(resp. one less) slope O segment than that of NP (G(;, (ws, —)).

Remark 2.15. The representations p and p’ have the same semisimplification. On the
Galois side, the Galois representations associated to say overconvergent modular forms are
typically irreducible, in which case one cannot distinguish different reductions p and p’. This
is reflected in the statement of Proposition .14 ghost series for p is almost the same as
the ghost series for g’ over the same weight disk. Moreover, the additional subtle relation in
(2.147)) accounts for the cases when the associated Galois representations are ordinary (and
reducible).

The Galois side of this proposition is discussed later in §[7.11], and later used in Theorem [7.6]
to extend our results from the reducible nonsplit case to the reducible split case.

Proof of Proposition[2.17). (1) We add a prime to indicate the corresponding construction
for 7/, e.g. write k, di (51) and etc. First of all, for the given s., we have

ke=2+{a+2s.} =2+ {d' +2s.} = kL

This means the ghost zeros for GE;E) (w,t) and for GE;) (w, t) are congruent modulo p —1. The
main difference comes from Definition-Proposition 2Z12(2):

-1 ifs. =0
1 ifs,c=p—2—a

s€+{a+s€}J_ L{a+8€+1}+{86_1}J _

56_5;:{ p—1 p—1

0  otherwise.
For k = k. + (p — 1)ke with ke € Z>(, Definition-Proposition 2.12(2) says that
(2.15.1) AV (1) = 2ke +2 —20., d}Y'(8)) = 2ke +2 — 20"

For computing d¥(e;) and d(c;), we list the values of ¢\, t& £ and t& in the
following table (see the definition in Definition-Proposition 2.12)(3)).

s:=0 [1<s.<p—-3—a|sc=p—2—a| s.>p—1—a
¢ 5. Sc + 0. p—2—a+06. |a+s.+0.—p—+2
t9 la+6. 42| a+s.+6.+2 p+ 6. s.+6.+1
tge), a+ 0.+ 2 s+ 0. 0, — 1 a+s.+0.—p+2
t p+1+06.| a+sc40.42 |p—2—a+o. S.+0.+1

This together with Definition-Proposition 2.12(3) (and (2.I5.1])) implies the following.
e When s, & {0,p—2—a}, 1 = ¢\ fori = 1,2. So for every k = k.+(p—1)k, as above,
¥ (&1) = d¥' (1) and d" (1) = d}™(g1). This implies that fo) (w,t) = Gf;,) (w, ).
e When s. = 0, we have ¢ = 1 x w®. In this case, {7 =t yet £ = ¢ 4+ p+1, and
0L =94, + 1. It follows that for every k = k. + (p — 1)ke as above,

d¥(z) =d™(E) +2 and d¥(e;) = di(e;) + L.

This implies that m'" (k) = ﬁf}rl(k‘) It follows that GSX“ (w,t) = 1+tG3Xw (w,t).
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e When s, = p—2—a, ¢ = w*! x w™!. In this case, the role of p and p’ are somewhat
swapped, and we deduce that

dY'(E) =d(E) +2 and  dY(e1) = d(e1) + 1.

This implies that Géfa+lxw71)(w, t)=1+ tG%wa+lxw71)(QU, t).
Part (2) of the Proposition follows from (1) immediately. O

The slopes predicted by ghost series also satisfy properties analogous to the theta maps
and the Atkin—Lehner involutions, as stated below.

Proposition 2.16. Let ¢ be a relevant character. For k = k. mod (p — 1), we write
(2.16.1) ggﬁ}g(w) = g (w) /(w — wk)mgf)(k).
Fiz kg > 2. Write d := d}¥ (e - (1 x w?*)) in this proposition.

(1) (Compatibility with theta maps) Put &' = e - (W= x wI=*0) with s = {s. +1—ko}.
For every £ > 1, the (d + £)th slope of NP(G®) (wy,, —)) is ko — 1 plus the (th slope
of NP(G) (wy,, —)). In particular, the (d+£)th slope of NP(G® (wy,, —)) is at least
ko — 1.

(2) (Compatibility with Atkin—Lehner involutions) Assume that ko # k. mod (p — 1). Put
g’ = wT Xw TS with sen := {kg—2—a—s.}. Then for everyl € {1,...,d}, the sum
of the (th slope of NP(G©) (wy,, —)) and the (d — £ + 1)th slope of NP(GE") (wy,, —))
is evactly ko — 1. In particular, the (th slope of NP(G® (wy,, —)) is at most ko — 1.

(3) (Compatibility with p-stabilizations) Assume that ko = k. mod (p —1). Then for
every £ € {1,...,d{"(e1)}, the sum of the (th slope of NP(G(wy,,—)) and the
(d — €+ 1)th slope of NP(G® (wy,, —)) is exactly ko — 1.

(4) (Gouvéa’s inequality) Assume that ko = k. mod (p — 1). Then the first d}’ (1) slopes
of NP(G®) (wy,, —)) are all less than or equal to

tf) if n s even

téa) — 2t ifn s odd.

(5) (Ghost duality) Assume ko = k. mod (p —1). Then for each £ =0,...,5d;(e1) —1,
(e) (e) _ 1 _jnew
(216?)) UP (gdi‘g(él)—d}jg(ﬂ)—é,ko(ka)) - Up(gdzg(q)-l-é,fco(wk())) - (ko - 2) ’ (Edko (81) - 6)

In particular, the (d (1) +1)th to the (d}¥ (£1) —d}" (e1))th slopes of NP(G®) (wy,, —))

are all equal to %

(6) (Ghost duality variant) Assume that ko = k. mod (p — 1). We set

(216.4) A= (00 o, () = B for €= =3 (e, 3R ().

Let é,(:o) denote the convex hull of the points (¢, A;c((f)é) Jorl = —3die™(e1), ..., 3dp™ (e1),
and let (¢, A](j))g) denote the corresponding points on él(j)). Then we have

(216.5) AL, =AY, and AY, =AY, forall 0= -1 (zy),. .., 1di(ey).
24
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Proof. (1), (2), (3), and (5) are |LTXZ22"| Proposition 4.18(1)(2)(3)(4)], respectively. (4)
is [LTXZ227) Proposition 4.28]. (6) is a corollary of (5); see |LI'XZ22"| Notaiton 5.1] for a
more careful discussion. O

In [LTXZ227| § 5], we carefully studied the properties of the vertices of the Newton polygon
of ghost series. We record the main definition and results here.

Definition 2.17. ([LTXZ22", Defintion 5.11]) Fix a relevant character & = w™% x w".
For k = k. mod (p—1) and w, € mg,, let Lﬁjjk denote the largest number (if exists) in
{1,..., 243" (1)} such that

(2.17.1) vp(w, —wy) > AE L — AP

When such L ., exists, we call the intervals
()= (3 (60) £ B @)+ 1) € WU = [ )~ 2 e0) £

the near-Steinberg range for (wy, k). When no such L( ., exists, write nSw E= nSEU =.
For a positive integer n, we say (&, wy,n) or simply (w*, n) is near—Stemberg if n belongs
to the near-Steinberg range nSfIi . for some k.

Proposition 2.18. Fiz a relevant character € and w, € mc,.

(1) For any integer k' = k. + (p — 1)k, # k with v,(wpy —wi) > Apr,, = DLy, o—1,

have the following exclusion
ldy ¢ nS,, . and dy, &Y — d & nS,, k.

(2) For every n € N, the point (n, vp(gy(f)(w*))) is a vertex of NP(G©®)(w,,—)) if and
only if (€, w,,n) is not near-Steinberg.

(3) For a fitedn € N, the set of elements w, € mc, for which (n, vp(gﬁf) (wy))) is a vertex
of NP (G¥(w,, —)) form a quasi-Stein open subset of the weight disk W

Vix®) = WEN\ U {w* € mg,
k

we

(e) (e)
Op(te = W) 2 By 1) -nir ~ By IW(e&)—m}’

where the union is taken over all k = k. + (p — 1)ke with ke € Z such that n €
(di(e1), ¥ (61) — d}' (e1)) -
(4) The set of near-Steinberg ranges 1&855*)7,f for all k is nested, i.e. for any two such open
near-Steinberg ranges, either they are disjoint or one is contained in another.
A near-Steinberg range nSff*)vk is called maximal if it is not contained in other near-

Steinberg ranges. Over a maximal near-Steinberg range, the slope of NP(G® (w,, —))
belongs to

(218.1) &+ Z + Z( max{v,(w, — wy)|wy is a zero of &) (w) for some n € nSSBk})
(5) For kg = ke mod (p—1), the following statements are equivalent for ¢ € {0, ..., 3dp (e1)—

1}.

(a) The point (¢, A;c(?é) is not a vertez of é,(fo),

(b) 535 (61) + € € 0w, 1, for some ky > ko, and
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(c) 5d(€1) — £ € nSy, k, for some ky < k.
(6) For any ko = k. mod (p — 1) and any k € Z, the slopes of NP(G© (wy, —)) and of

é,(:o) with multiplicity one belong to Z; other slopes all have even multiplicity and the
slopes belong to § + Z.

Proof. (1) is [LTXZ227 Proposition 5.16(1)]. (2) is [LTXZ227) Theorem 5.19(2)]. (3) follows
from (2) and Definition 2. ITt a point (g, wy,n) is near-Steinberg if and only if

nenS, = (4dv(s) - L, Ld () + LY ),

or equivalently, [n—2d;¥(&,)] < Lw o for some &k = k. +(p—1)k, with ke € Zxo; by (ZI7T),
this is further equivalent to

vp (W, — wy) > A(‘E') Al(j?

PLACYEN

(4) is a reformulation of [LTXZ227 Theorem 5.19(1)(3)]. (5) is |[LITXZ22", Proposi-
tion 5.26]. (6) combines [LTXZ22"| Corollary 5.24 and Proposition 5.26]. O

We conclude this section with recalling a technical estimate on the difference of A’s that
we will frequently use in this paper. The following is [LTXZ227 Corollary 5.10].

Proposition 2.19. Assume p > 7. Take integers (,0', (" € {0,...,3dp}*(e1)} with £ < (' <
0" and 0" > L. Let k' = k. + (p — 1)k, be a weight such that

(2.19.1) dii(e1), or dy (£1) — djfi (e1) belongs to [} (1) — €, 1dy (1) + ¢1],

then we have

£ 3 /! / / ]'n +1£” 1 !/
AS), — A — (0" - E)-vp(wk—wk/)z(f—E)-{((pln—p))jtljjti(EZ—fz).

In particular, we have

AG - a9z Lem ey

Remark 2.20. As pointed out by [LTXZ22", Corollary 5.10], if there exists k' such that

v (W —wy,) > [W + 2], then there are at most two such &’ satisfying v,(wy — wy) >

LW + 2| and (ZI9T) with ¢ replaced by £. In the case of having two such k’’s, say

k1, kb; up to swapping k] and &}, we have dy (e1), d}g‘,;’(él) dyy (e1) € [Ady (81) =0, 3d}¥ (&1) +
¢']; and between dyy (e1) and di‘,;’(él) —dy (€1), one is > ldIW(gl) and one is < 1dp¥(£y).

Remark 2.21. By [LTXZ22" Lemma 5.2], asymptotically, A,(f’%ﬂ — A](fz ~ Z%lﬁ (when
¢ is large). Intuitively and roughly, the set of vertices Vtxﬁf) in Proposition 2.I8(3) is to
remove from the open unit disk W), a disk of radius about p~(@*2 or pt1=P_ centered at

W, (=) two disks of radius roughly p'~P, centered at w, () , ..., two disks of radius
kmid( ) km,d( ):I:(p—l)
roughly p(™»)%/2 centered at w, (m)2t(p_1)» Where k:fmd(n) is the unique positive integer
mid

k = k. mod (p — 1) such that £d}"(&;) = 2n.
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3. TWO KEY INPUTS ON ABSTRACT CLASSICAL FORMS

In this section, we give the two key inputs for our proof of local version of ghost conjecture:
(1) The first one is a careful study of the p-stabilization of abstract classical forms;
(2) The second one is to use the modified Mahler basis to give an estimate of UT(®).

. : . . . Wit £ 0\ .
Notation 3.1. In this section, we fix a residual representation p = 10 1 with

1 <a <p-—4, and a primitive O[K,]-projective augmented module H of type p on which
(h7) acts trivially.
We fix a relevant character € = w™% x w*"* of A2, When no confusion arises, we suppress

¢ from the notation in the proofs (but still keep the full notations in the statements), for
example, writing s, d}¥, and d{" for s., d.V(£1), and d*(e;), respectively.

Before proceeding, we give a very weak Hodge bound for the matrix U™, A much finer
estimate will be given later in this section.
Proposition 3.2. We have UH®) € M (O(w/p)). More precisely,

(1) the row of UM indexed by e belongs to p% deee(w/p), and
(2) for each k € Z, the row of UM, _,, indezed by e belongs to pieecO.

Proof. For a monomial h = 2" and (gf/‘ s ) € (zZ Zg ) with determinant pd for d € ZX, the
action (2.4.4)) is given by

— H(d)5 5. log((mr2+8)/w(®)) o _ 1, (POZ + B
M2y (2) = e(d/5,8) - (14 w)el=dlel®) h<mz+5)

- @5y S (*® (ly=+ 0)/(9) (L),

Note that “’7’,1 = (%)" . % -p™2. So it is not difficult to see that the above expression belongs

to O{w/p)(p*/?z). Part (1) of the proposition follows.
When w = wy, we can rewrite the above equality as

-~ = (PYZ O\ paz + 3
h| ( pa =e(d/éd,o R -h{——) € O[pz].
‘(fwg)(z) e(d/ )< w(0) ) (pfyZ—l—é) [p2]

From this, we see that the row of UM)|,_, indexed by e belongs to pi°Q. O

3.3. p-stabilization process. Recall from Proposition [Z11[2) the natural Atkin-Lehner
involution

ALge : S (E1) — SPY(&1).
We define the following four maps

S};r(El) = HOIII(Q[[Kp]] (ﬁ, O[Z]Sk_z (29 51)

L1 < L2 ( > proj) proj;

SI¥(£1) = Homopy,] (H, O[2]%F2® &)
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given by, for ¢ € S¥(g1), ¢ € S}¥(£1), and z € H,
u(y) =.
a(¥)(@) =0 (7y D) (poy = ¢(@(777))| (0 1) = Alwen((@)(@)

T
=
O

st

—

Y

=

~
|

S

—~
8
<

<

N

—

7=0,....p—1,%
proj,(¢)(z) = proj, (ALgey (9)) (@) = Y s@(af(?pgl)u])}ufl(o 1)
7=0,....p—1,% PO
Here u; = (} (1)) for j=0,...,p—1and u, = ((1) é) form a set of coset representatives of

Iw,\K,. (In fact, the definition of proj; and proj, do not depend on this choice of coset
representatives.)

Remark 3.4. As we will not need it, we leave as an interesting exercise for the readers to
check that for ¢ € S;*(1) and the T),-operator defined in (2.4.7)), we have

Up((¥)) =p-12(¢) and  Uy(12(9)) = ta(T, (1)) = p" 201 (¢).
It then follows that the U,-action on the span of t2(¢) and ¢1(¢)) is given by the matrix

T, P
_pk—2 0/

The following is a key (although simple) feature of p-stabilization.
Proposition 3.5. We have the following equality
(3.5.1) Up(¢) = t2(projy () — ALz (),  for all ¢ € Sy (€1).
Proof. For ¢ € S and = € H, we have

(proj, (#))(2) = ALy (9)(@) = > o275 )us)

01
J=0,...,p—1% (p 0)
p—1
10 _ 1o _
- Z ( 1)) (1 o)*l(p 0) Z‘P<x(pj 1)) (! 0)” = Up(p)(2).
J1 01 j=0 J 1
Here in the first equality, when we unwind the definition of 15, we use the matrix ( p (1])
as opposed to (gé) (using the GLg(Z,)-equivariance). The second equality comes from
canceling the last term in the first row with the term j = % in the sum. U
Proposition 3.6. Fork = k. mod (p—1), consider the power basis B,i {e1 ,e2 . ,egv(él)}

of St (&1) from RI0.2), ordered with increasing degrees. Let in’(a) be the matriz of the U,-
operator on S (1) under B\

(1) The matriz L(5 )l for the AL z,)-action with respect to the basis B( ) is the anti-
diagonal matmx with entries

()

o degef? B ey

p P SERRERY 4
from upper right to lower left. (The superscript cl indicates that the matriz is for

classical forms as opposed to overconvergent ones.)
28

deg e;



(2) The matriz UL is the sum of

e the antidiagonal matrix L( above and
o a d¥ (1) x d¥(é,)-matrix wzth rank < dy(e1).

Proof. (1) is just a special case of Proposition 2.111(2), when ¢ = &;. (2) follows from (1)
and the equality ([B.5.1]), because ¢ — 15(proj, (¢)) has rank at most d}}* as it factors through
the smaller space S;" of rank d}". O

Notation 3.7. Here and later, we shall frequently refer to the corank of an n x n-matrix
B; it is n minus the rank of B.

Corollary 3.8. The multiplicities of £p*=2/% as eigenvalues of the Up-action on S (&;)
are at least d3™ (e1) each.

Proof. By Proposition B.6](1), the matrix L for the Atkin—Lehner operator is semisimple
and has eigenvalues +p*=2/2 each with multlphclty 1dp; so Lgl £ p*=/2] has rank exactly
sdiY, where I is the dY¥ x d;¥-identity matrix. By Proposmon B.61(2), U 4+ p=2)/2] has
corank at least 2d}" — dif = 1d}°. The corollary follows. O

Remark 3.9. It will follow from our local ghost conjecture Theorem 2.7 together with
Proposition 2.11I(4) that the multiplicities of the eigenvalues £p*~2)/2 are exactly %dzew(al).

The following statement gives a philosophical explanation of the palindromic pattern of
(252) in Definition [2.5] of ghost series.

Corollary 3.10 (Weak corank theorem). If we write UM (n) € M,,(O{w/p)) for the upper

left n x n-submatriz of UM then det(UHE)(n)) € O(w/p) is divisible by p~ degg’(f)gff) (w)
(inside O{w/p)).

Proof. We need to show that, for each k = k. mod (p — 1) such that m,,(k) > 0, det(Uf(n))
is divisible by (w/p — wy/p)™*). (Note here the coefficients belong to O{w/p); so we need
to divide each ghost factor by p) For this, it is enough to show that evaluating UT(n) at
w = wy, i.e. the matrix Ul(n) has corank > m, (k).

Indeed, let L¢!(n) denote the upper left n xn-submatrix of L¢l; then by PropositionB.6(1)(2),

dyr it n < Ll

k UT < dur kLCl
rank(Ui(@)) < dif 4 rank L (n) = {dur+2(n——dIW) if n > L.

So the corank of Uj(n) is at least n — di if n < 1d}¥, and at least di¥ — dj* —n if n > 1d"
in other words, corank Ul (n) > m,, (k). The corollary is proved. O

Remark 3.11. This corollary seems to have given some theoretical support for the definition
of ghost series, and it already gives us confidence towards proving the local ghost conjecture
(Theorem 2.7). In reality, we still need to combine more sophisticated estimate on the p-adic
valuations with the corank argument in the corollary above.

Remark 3.12. With some effort using the representation theory of F[GL4(F,)] and consider
the standard Hodge polygon for power basis, one may show that there exists an O-basis
Vi, ..., Var of Si¥(e1) such that the following list

p—doge1L2(V1>’ . p—dogedur (Vd‘”) edz’—l-lv ce edLW—dzrv Ll(der), cey Ll(Vl)
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gives an O-basis of S}¥(£;) and the matrix of the U,-action with respect to this basis belongs
to

b — dyr dyr
[ pdegel(g pdegel(g . pdegel(f) 0 . 0 p1+dege1 T
. pdeg ex() pdeg ex() . pdeg e2() 0 . p1+deg e 0
ay
pdeg ed‘lirO pdeg ed‘lirO pdeg edzr O p1+deg ed};r . 0 0
0 0 oo —pleEedra 0 e 0 0
dege 1w
0 —p 0 0 0 0
—p e 0 0 0 0 0 |

This refines Remark [3.4].

3.13. A modified Mahler basis. We now come to the second key ingredient of the proof
of the local ghost conjecture (Theorem 27): an estimate of the matrix for the U,-operator
with respect to the (modified) Mahler basis. This will in some sense improve Corollary [3.10]
on the factors of powers of p.

The same technique was used in [LWX17] to prove the spectral halo conjecture of Coleman—
Mazur-Buzzard-Kilford (over the boundary annulus of the weight space: Spm Z,[w, p/w] [%])
There are two minor modifications we employ here:

(1) Our estimate will be on Spm(Q,(w/p)), so we use p as the “anchor uniformizer” as
opposed to w;

(2) The usual Mahler basis 1, z, (;), ... does behave well under the T-action; so we modified
Mabhler basis to “take out only the leading term”.

Consider the following iteratively defined polynomials

2P —z fi(2)P — filz ,
B3 [ = A = T2 )= () = T i
p_ P_(p_
For example, f(z) = (2= 2)/p)” — (2 z)/p
p
For each n € Zsg, we write it in the p-based expansion n = ng + pny + p?ng + - - with
n; € {0,...,p— 1} and define the nth modified Mahler basis element to be

(3.13.2) m,(z) = 2" f1(2)" fo(2)"*- - - .

Roughly speaking, one may think of this basis element m,(z) as taking the “leading terms”
in the binomial function (fl) For example, the degree of m,,(z) is n and the leading coefficient
is

(3.13.3) pmpT P (nl) T 2

Lemma 3.14. (1) For every n € Zsq, the degree of each term in m,(2) is congruent to

n modulo p — 1.
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(2) The basis {m,(2); n € Zso} is an orthonormal basis of C°(Zy; Z,[w]®).
(3) If P = (Prn)mn>o denotes the matriz of the action of (?Y‘ {2) € M, with respect to
the modified Mahler basis, then

L [row i (55) e My
"oy i (98) e (P )

Proof. (1) We need to check that the degrees of each term in each f;(z) is congruent to 1
modulo p — 1. This is true for fi(z), and inductively, we may write fi(2) = zh;(2P~!) and
see that fi1(2) = J2Phi(2P71) = 2R (2P71) = 22(2P 7 ha(2271) — ha(271)).

(2) Let B = (Byn)mn>o0 denote the change of basis matrix from the usual Mahler basis
{(?); n € Zso} to the modified Mahler basis {m,(z); n € Zs} so that

m,(z) = B, . (;) )
0

m=

(3.14.1) det£0 -

Since the degree of m,,(z) is n, B, , = 0 if m > n. By comparing the coeflicients of 2™ using
BI33), we see that B,, € O*. Moreover, since when z € Z,, each f;(z) takes value in
Ly, and thus 2™ f1(z)™ fa(2)"* - - - takes values in Z,, so it is an integral linear combination
of 1, z, (;), e (2)7 so we have B,,,, € Z, for m < n. Therefore, it follows that the infinite
matrix B is an invertible upper triangular matrix in M, (O). Part (2) follows.

For (3), let P' = (P, ,)mn>0 denote the matrix of the action of ('fy‘ ?) on C%(Z,; Ow]®)

with respect to the Mahler basis 1, z,..., (z), .... Then [LWXI17, Proposition 3.14 (1)] im-
plies that
(a) when (f{‘ §) eMy, P, € (p, w)medm=n0t O] C pradm=r0O(w /p), and
o det#£0

Zp Z max m—n max{m—|n
(b)when (55) € (17 %) Pro € (pyw)>Om=/eO[w] C prextm=1n/eLO O w /p).
Changing basis, we have P = B™'P'B. Yet B € M (O) is upper triangular with p-adic
units on the diagonal; the same holds true for B~!. From this, we deduce that P satisfies

the same bound (B.I4.1]). O

Notation 3.15. By Lemma B.14(1), each m,(2) is an eigenvector for the T-action. So we
may “distribute the modified Mahler basis over the weight disks” as follows.
For the fixed relevant character ¢ = w™* x w** (and possibly suppressing ¢ from the

notation occasionally), recall the power basis ef’, ege), ... of SH(®) defined in § ZI0. For each

el = e} zdee o with i = 1,2, we define the associated modified Mahler basis

£f,=f :=¢".m ©(2);

n z deg ey,

then Lemma BI4(1) above implies that £ is a Q,-linear combination of €\, ... e and

deg £17) = dege!?). Let C = C© denote the collection of £ for all n € Z>; it is the modified
Mahler basis of S}i;dic introduced in § 2.4)(2).

For the rest of this section, we aim to “translate” the halo bound for the Up,-action on
S;Ei;dic with respect to C©) to a bound on the U,-action with respect to B). (This seems to

be stronger than the naive Hodge bound on the power basis.)
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We write Y = (Yon)mn>o0, Y@ = (Y ) ¢ )mmn>0 € Moo (Q,) for the change of basis matrix
between the modified Mahler basis (8.13.2)) and the normalized power basis, that is to write
(3.15.1) m,(z) = Z Vinn2™, and Y @ () = Yacgen deg -

m>0

The following estimate on Y, , is important.

Lemma 3.16. The matrizY is an upper triangular matriz in Mo (Q,), with diagonal entries
Yon € (n!)_lZ;. Moreover, Y, ,, = 0 unless n —m is divisible by p — 1.
Write the inverse of Y as (Y™ )mn)mm>0. Then we have an estimate (when n > m):

(3.16.1) Vp(Ym) = —vp(m) + L%J - L%J - LZ;_”;J,
(3.16.2) 0y (Y ") = vy(nl) + L%J - L%J - {Z;_”;J.

Proof. 1t is clear that Y is upper triangular, and the vanishing of Y, , when p — 1 does not
divide n — m is also obvious from the definition of modified Mahler basis. The statement
Yon € (n!)7'ZX already follows from (B.I5.1).

Let D (resp. E) denote the diagonal matrix whose nth diagonal entry is equal to pl"/?l /n!
(resp. pl/Pl), and set Y’ = DY E. It suffices to prove that
n—m J "1 {n —m J

and v,((Y' " )pn) > —
p2 —p P(( ) ) ) p2 —p
In fact, the second inequality follows from the first (3.16.3). Indeed, Y, € ZX together
with the condition v,(Y/, ) > — an_ mJ > 2 jmplies that v,((Y" " )pn) > ———o.
7 pT=0D pm—=p pm—=p
n—m
Since Y71 € M, (Q,), we are forced to have that v,((Y'™ 1)) > —{ 5 J
pr—p

It remains to prove the first estimate (3.I6.3) on v,(Y,,,). Rewrite (B.I5.1) as (for n =

no + pny + pPng + -+ +)

(3.16.3) vp(Yon) > —L

n

PPl f ()™M fo(2)2 - =

n

/ m o __. " m
Yoo = E Yon2™

p m/p]

We then need to show that

" _|rzm_ m l)
(3.16.4) v (YL,) > L?? _pJ upqp J .
Note that the function on the right hand side of (8:16.4) is sub-additive in both n —m and
m. So it is enough to prove the inequality (3.I6.4) for n = p’. One immediately checks the
case of i = 0 and 1. In general, Y7  is the 2"-coefficient of """ fi(z). We prove this by
induction on 7, assuming (3.I6.4)) is already proved for n = p* (i > 1). Then for n = p'*t
we rewrite

ppifi-i-l(z) _ %(ppzlfz(z))p _I_ppiﬂ(p_l)—l . (ppzﬂfz(z))

The estimate (3.16.4]) for the second factor above is clear (as p”iil(”_l)‘l_ has a huge p-adic
valuation). For the first term, we consider the polynomial expression of p fi(2) = amzm

and the binomial expansion for the pth power. For the term of not of the form a? 2™, the
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binomial coefficient is divisible by p and hence cancels the denominator p. The statement
([BI6.4) follows from its convexity in n—m and m and the inductive hypothesis on p*~ f;(z).
For the term in the pth power of the form a? 2P, the inductive hypothesis says that

wlam) = —| 522 o, (|2]1):

p?—p P

From this, we claim that

aP pH —pm
(3.16.5) v <—m) =pvy(a,) — 1> — 7J — v, (ml).
"\'p : L p2—p »(m!)
Indeed, this follows from the inequality v,(m!) > pvp(Lm/ pJ!) + 11if m > p, and when
m € {1,...,p — 1}, the factorial part has no contribution, and we compute explicitly
P _m . .
\‘p2 J: z—2+p2—3+._.+1;
p=Dp

Pt — pm plap24+... 41 ifm=0,1
L p?—p J - {pi_1+pi_2+"'+p itme{2,...,p—1}.
From this, we deduce (3.16.5) when m <p — 1. O
Notation 3.17. We have the following list of matrices of U, with respect to the given bases:
o« Ul = UMD = (UL, ., for U, : (S0€), BO) — (51, BE);
¢ Uc=U¢ = (Ug?fmfn)m,nzo for U, : (Sy hyie: C©) — (Syhaie: C©);
e Ucn = UG = (Uin e t)mnso 08 Uyt (s CO) — (SHE), BE).
In particular, we have the following equalities
(3.17.1) U8 5 =YOUY and UME = UL y©-1
A key input in our later proof of local ghost conjecture is that the halo estimate from
[LWX17] “propagates” to estimates on U(é) and U(éLB.

Proposition 3.18. The matriz Ug) satisfies the following halo estimate:

(e (e
(3.18.1) UE, o € plesen ~ldeeel bl oy /).
Proof. The U,-action on S, uqic is a uniform limit of finite sums of actions | (a B) with matrices
vy 9
(5 7)€ (zZ Zg )dt€rZs (see for example [LTXZ22, (2.9.1)]). The estimate (3IS.I) for
Ucy,, £, follows from (B.I4.0)). O

Remark 3.19. This proposition is our new essential input to the local ghost conjecture.
The analogous direct estimate of UH() is more subtle.

Notation 3.20. For an infinite matrix U (indexed by N) and two finite sets of nonnegative
integers ( == {1 < G < < Gtand £:={& <& < -0 <&}, we write U(C x §) for the
n x n-submatrix of U with row indices (i, . .., (, and column indices &, . ..,&,. When ¢ = €,
we write U(() instead. For example, we often write n = (1 <2 < --- < n) and thus U(n) is
the upper left n x n-submatrix we have considered above.
For ¢ C N a subset, define deg(¢) := >_ ., degec.
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Definition-Proposition 3.21 (General corank theorem). For every k = k. mod (p — 1)
and every two finite sets of integers ¢ and § of size n as above, we set

rexe(k) = 7‘5 k) {16{1 LAY () ‘Zeganddlw(el)—i—l—zec}

(k)

se(k) = s“’(/f =#{icc|i>dr@E)}
)
&)

3
In other words, r¢x¢ (k) is the number of “classical basis” elements in B(€ indezed by ¢ that

are sent to § by AL
are ‘“non- classzcal”
Then the corank of UL’(‘E)(C x &) is at least

(3.21.1) Mexe(k) = éx)é(k‘) =n—dy(e1) — rexe(k) — se(k).

Consequently, det(UM) (¢ x &) € O(w/p) is divisible by ((w — wy,) /p)mxOmexe® i
O{w/p).

When ¢ = §, we write r; = réa)(k) and m¢ = mc ( ) for rexe(k) and mex(k), respectively.

Taking & = n with dj*(e1) < n < &} (1) — dj* (1), we recover Corollary 310,

and 85(k‘) is the number of basis elements in B indezed by § which

Proof. By the property of theta map (2.11.2), U; is a upper triangular block matrix. So
rank (UL(C x €)) < s¢(k) +rank (UL((CNdY) x (£NdY))).

By Proposition B.6(3), U}¥ is the sum of a matrix with rank < dj* and an anti-diagonal
matrix; so

rank (UL((CNdY) x (ENdY))) < df + rexelk);

The corank formula (B:21.1]) follows from combining above two inequalities

The corollary and the last statement are immediate consequences of the above discussion.
O

3.22. Refined halo estimates. In our later proof of the local ghost theorem, we inevitably
encounter a rather pathological case, which demands a slightly refined halo bound depending
on the p-adic expansions of the row and column indices (see the proof of Proposition [1.4[(1)).
The readers are invited to skip the proof in this portion on the first reading, and only comes
back after understanding the complication as shown in the proof of Proposition B.4(1).

For this part of the argument, we fix a matrix (’;‘Z Z) € (zZ Zg ) with determinant p*d €

p'Zy. Let P = (Ppn)manzo0 and Q = (Qpmn)mmzo denote the matrix of
}(pa ) ¢ (C(Zy; OTw]9), (M (2))nz0) —  (CO(Zy; O[w]®), (M (2))nz0) and

pc d

€ g z
5y £ (€01, () = (@011 ()),00)
pc

respectively. Let B denote the change of basis matrix from the usual Mahler basis {(Z) in €
Z>o } to the modified Mahler basis {m,,(2);n € Zx(} as introduced in the proof of Lemma[3.14]
so that P = B~'Q. Then (the proof of) Lemma 314 implies that B € M, (Z,) is an upper

triangular matrix with diagonal entries in Z.
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Notation 3.23. For two positive integers m,n, write m = mg +pmy + --- and n = ng +
pny + -+ for their p-adic expansions (so that each m; and n; belongs to {0,...,p—1}). Let
D(m,n) denote the number of indices ¢ > 0 such that n;;; > m;.

The following are some elementary facts, whose proofs we leave to the readers.

Lemma 3.24. Let m,n be two nonnegative integers.
(1) We have D(m + 1,n) +1 > D(m,n) and D(m,n) + 1 > D(m,n + ¢) for any c €
{1,....p}.

(2) Assume that m > [%]. Then we have

%(mng>Z”Wm-
(3) We have an equality

@) (Z) N % (j—m,j—i,mm—j) @

j>max{m,n}

J

o ) 1s the generalized binomial coefficient.
j—m.j—nmtn—j

where (

Proposition 3.25. We have the following refined estimate:
(3.25.1) Pony @ € P07 - pmPlO(),
Proof. We first explain that ([8:25.0]) for @, implies that for P, ,. As P = B~'Q, we have
P, = Zezo(B_l)m,EQf,n- So it is enough to prove that (when ¢ > m)
D(l,n)+{—|n/p] > D(m,n) +m — |n/p].

But this follows from Lemma [3:24)(1).
Now we focus on proving ([3.25.1)) for @), . Recall from (2.4.4]) that

_ 7R log(244) /p paz +b

B2 ] (ay() = <0/ (14 )5 mn(pcz+d)
B o owne (log(B0) /p) - rpaz +b
_§5(5/d,d) p (E) < r m”(pcz+d>'

We need to go back to several argument in [LWX17, § 3]. As proved in [LWX17, Lemma 3.13],
log(255) /p
w(d)
-
Qm.n, it suffices to prove that, for every s > 0, when expanding

e ( paz +b )
. mn
b S pez +d
with respect to the Mahler basis {(?) | n € Zxo}, the mth coefficient has p-adic valuation
greater than or equal to m — |n/p| 4+ D(m,n). For this, we need to reproduce the argument
in [LWX17, Lemma 3.12]: write

b
n!-m, (paz i ) =) ¢ -t (j) € Zy[pz],

pcz +d

2
) is a Z,-linear combination of p*~" for s € Z>g. So to prove ([B.25.7]) for
s >
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then [LWX17, Lemma 3.11] implies that v,(c;) > t. Moreover, as mn(ggjﬁl) € C(Zy,O), we
know that (when ¢t < [2]), vp(ce) > vp(%). Using the combinatorial identity in LemmaB3.24)(3),
we deduce that
e paz+b) B RINSANE-
b (s) m"(pcz+d —thp n!\s/) \t

t>0

s+t

-3 Y wrh j Z
- PaG—si—ts+t—j)\j)

t>0 j>max{s,t}

Taking the term with j = m > s, we need to show that whenever s +t > m > t, we have

(c 1 " ) >m VLJ + D(m,n)
v i — = n).
P\ P m—sm-—ts+t—m)/ — P ’

Plugging in the earlier inequality v,(c;) > max{t,v,(%)}, we need to show that
n t! m
(3.25.3) s—m+ LEJ +max{t+vp<a),0} +vp<(m Csm—tstt m)) > D(m,n).

Now we forget the meaning of n and m as indices for basis elements, and prove (3.25.3)
as an abstract inequality.

(i) When ¢ > [2] (so in particular, m > |n/p]), we have ¢ + vp(£) = 0, so it suffices to
prove that

S_l—t_m_l—vp(ﬁ!pj!)+Up<(m—s,m—nz,s+t—m)) = Dlm.n).

This follows from the binomial identity and the inequalities below

-t m) = (o= o) )

vp<(minL%J)>ED(m,n) and s+t—m>0.

(ii) When ¢ < [ 2], the inequality (3.25.3) is equivalent to
(3.25.4) s—m+ {%J +vp(<m_ . _”;Sﬂ_ m)) > D(m,n).
write £ := [2] —t and n’ = n — pl. Note that Lemma [3.24(1) implies that
D(m,n')+ ¢ > D(m,n)

So ([B:25.4) follows from the same inequality with n replaced by n’/. This is the case already
treated in (i). The proposition is proved. O
Notation 3.26. Fix a relevant character €. Let A and n be two subsets of positive integers
of cardinality n; for each such integer \;, we write deg ;&i) = Xio +DpAig + -+ in its p-adic

expansion, and similarly for n;’s. To iterate, we are expanding deg ef\i_) (as opposed to \;), as
they correspond to the m and n in Proposition .25, For each 7 > 0, we define

DEY(A5) = #{i | Ay < a},
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counting the number of \;’s whose jth digit is less than or equal to . When o = 0, we write
DE)(A, 5) for Dg@,j). We define D(:E())(Q,j + 1) similarly (but using the (j + 1)th digit).
We define a tuple version of D(m,n) as follows:

O =Y (max (DY, 5) - DS, j + 1), 0}).
Jj=20
Similar to Lemma [3.24)(1), we have the following obvious inequalities if o is given by
n; = n; except for one o where 1; = 17;, + 1 (so dege / —deg emo € {a,p—1—a}), then
O

(3.26.1) DO\ ) +1= D9\ n).

Corollary 3.27. Keep the notation as above. Write Ug (A x ) for the submatriz of Ug)
with row indices in A and column indices in 1. Then

n (e)
(3.27.1) 0y (det(UE A x 1)) = DI )+ ((degef - iidegpem )
i=1

Proof. Write det(Uc(Ax n)) = Y sgn(o)- Ucy, 0y B - Ugpg, oy Frn By Proposition [3.25]
7E€Sy 7 o
for every permutation o € S,,,

dege,,
p

Then the corollary is reduced to the following combinatorial inequality:

Up (UC’on(i) ,fm_) > deg e\ — L J + D ( deg €,z deg e,h.).

Z D( deg ey, deg e, ) > D(\n).

i=1
But this is clear, as the total contribution to all D(deg e, deg em.) 's from the jth digit is
at least max { D—o(}, j) — D=o(n,j + 1), 0}. O

Remark 3.28. We remark that D(),n) is often zero, e.g. when A = n = n. As stated
earlier, this notation is introduced to treat certain pathological cases; see the proof of Propo-
sition 5.4)(1) where our finer estimate in Corollary is used.

Moreover, the same argument above in fact proves a stronger statement with D®)(), n) in

B2ZTI) replaced by > ( max {D<a (A ) — D n,j+1), }) But (B27.1)) seems to

7>0 =0,...,
work better with our later 1nduct1ve proof of Proposition [5.4)(1)

We end this section with a technical lemma that is useful for computing D) (), ).

Lemma 3.29. Let n be a positive number.
(1) For every j > 0, we have ng(ﬂ,j) < ng(ﬂ,j +1).
(2) Write deg el = no + pny + -+ - in its p-adic expansion. If either njyy =p—1 or
n; =njp =0, then DE(n, j) = DE)(n, j +1).

In particular, D) (n,n) = 0 for any n.
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Proof. Let 15:0 (n, j) be the set of nonnegative integers m < dege,, whose p-adic expansion
has jth digit equal to 0 and is congruent to s. or a + s. modulo p — 1. Then D_y(n,j) =
#D_o(n,j). The key is that for any nonnegative integer m = mgy + myp + --- that is
congruent to a or a 4+ s, modulo p — 1 and m; = 0, we have

m' =mo+mp+---+map Tt map’ +myep’

Then m <> m’ defines a bijection among nonnegative integers which are congruent to s, and
a+ s. modulo p—1. Yet m < dege,, implies that m’ < dege,,. So D—o(n,j) < D—o(n,j+1).

The equality holds if and only if m’ < e, implies m < dege,. This latter equivalence
condition holds under condition (ii). So under the condition of (ii), we have D_y(n,j) =
D_y(n,j + 1). The lemma follows. O

4. PROOF OF LOCAL GHOST CONJECTURE [: LAGRANGE INTERPOLATION

In this and the next two sections, we keep Hypothesis on H, ie. H is a primitive

O[K,]-projective augmented module of type p = (W?OH *#0) such that (f ») acts trivially

on H. We devote this and the next two sections to the proof of the local ghost conjecture,
namely, Theorem 2.7l The proof is roughly divided into three steps, which we give a quick
overview below. To simplify this introduction, we fix a relevant character ¢ = w™ x w5,
and suppress it from the notation.

In a rough form, Theorem 2.7 says that C'(w,t) and G(w,t) are “close” to each other; in
particular, this says that, for each n, near each zero wy of g, (w), the function ¢, (w) is very
small. The leads us to the following.

Step I: (Lagrange interpolation) For each n, we formally apply Lagrange interpolation to
cn(w) relative to the zeros wy of g, (w) (with multiplicity), that is, to obtain a formula
of the form

(4.0.1) c(w)= > ap(w)- g, ;(w)+ h(w)g.(w).
k=ke mod (p—1)
mn (k)#£0

We give a sufficient condition on the p-adic valuations of the coefficients of ax(w)
that would imply Theorem 2.7l This is Proposition (4.4

In fact, we shall prove a similar p-adic valuation condition for all (principal or not) n x n-
submatrices of the matrix of U, with respect to the power basis. More precisely, given two
tuples ¢ and § of n positive integers, we apply the same Lagrange interpolation (L0.I]) to

det(UT(¢ x €)) in place of ¢,(w), and we shall fix ¢ and & for the rest of this introduction
and still use a(w) and h(w) to denote the corresponding power series appearing in (Z0.1)
(with ¢, (w) replaced by det(UT(¢ x €))).

We point out that this is a question for each individual zero wy, of g,(f) (w). To simplify the
discussion of this introduction, we only consider one such k for which n < %d}c‘”; the other
case has little variation. We write each ay(w) as ago + ap1(w — wy,) + ago(w — wg) + - - -,
and we need to prove that for every i < m,,(k),

1
(4.0.2) 0p@1i) 2 Ay g = Ny o + 5 (deg(€) — deg(©)),
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where the term 3(deg(¢) — deg(€)) is introduced to “balance” the total degrees of basis
elements in ¢ and &. Here, a subtle technical point is that we truly need to use A — A’ in
order to implement the induction we perform later; see the comments after the statement of
Proposition .7l As we shall explain just after the statement of Theorem [(.2], the proof of
Theorem 2.7 is then reduced to prove (A.0.2).

Step II: (Cofactor expansion argument) We reduce the proof of ([£0.2)) to an estimate on the
determinant of the minors of UT(¢ x &) of smaller size.

For simplicity, assume that s¢(k) = 0 (see Definition-Proposition B.21]). Then the corank
theorem (Definition-Proposition B.21)) implies that ay; = 0 when i < m¢xe(k) — 2rexe(k).
Moreover, we can write UT(¢ x &) = Tr(¢ x &) + Ap(¢ x &), where Ay (¢ x €) has coefficients
in £ and has exactly r¢.¢ (k) nonzero entries (coming from the matrix for the Atkin-Lehner
operator at wy), and Ty (¢ x &) is a matrix in E(w/p) whose evaluation at w = wj has rank
at most dj".

We apply a version of cofactor expansion to Ut(¢ x &) = Ag({ x &) + Ty(¢ X §), to express
det (UT(¢x §)) as a linear combination of the determinant of smaller minors of UT(¢ x &) plus

a term that is divisible by (w — wg)™<¢™ . This way, we essentially reduce the question of
estimating v, (ay;) to the question of estimating the Taylor coefficients for the determinant of
smaller minors, when expanded as a power series in EJw—wy] (see the Step III below). There
are several subtleties when executing this plan; we leave the discussion to the corresponding
points, especially the discussion before Lemma and §

Step III: (Estimating power series expansion for smaller minors) Interestingly enough, what
is needed in the Step II from the inductive proof is an estimate of v,(aj ;) in the
expansion of ¢, (w)/g,, 1 (w) = 3750 @ (0 — wy)" in Efw — wi] not for i < my, (k)
but for i > m,, (k). -

This estimate will be deduced in Proposition [5.4] from the estimate of the Lagrange interpo-
lation coefficients aj, ; of ¢,/(w) for other k' # k and i < m,(k'), as well as the polynomial
h'(w) that appears in the Lagrange interpolation of the determinant of the smaller minor.
The latter gives the most trouble; in most of the case, it follows immediately from the usual
halo estimate, but in some pathological case, we need to invoke the refined halo estimate in
Proposition

To streamline the logical flow, we will prove Step I in this section, and first prove Step III
in the next section, and finally complete Step II in Section [6l

We first give a quick discussion on the “ordinary” part of the characteristic power series.

Proposition 4.1. (1) For a relevant character e, ¢\ (w) € O[w] is a unit if and only if
e=1xw"
(2) For a relevant character ¢ and k € Zsy, writing d.p := di¥(e - (1 x w*7*)), then

(d&k, vp(cz)k(wk))) is a vertexr of NP(C®)(wy, —)), and (de,k, vp(gc(li)k(wk))) is a vertex
of NP(G® (wy, —)).

Proof. (1) We first show that for s. > 0, cga)(w) is not a unit in Ofw]. Indeed, in this case,

Definition-Proposition [Z.12/(3) implies that tga), téa) > 0.+1;s0for k =k.+(p—1)6. = 2+s.+

{a + s.}, Definition-Proposition 2.12(2)(3) imply respectively di* (1) = 0, and di¥(£;) = 2.
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This means that SI¥(£) consists of only new forms; so U,-slopes are %2 = wy’sf} > 0. In

P
particular, this shows that v,(c\” (wy,)) > 0 and thus ¢{ (w) is not a unit.

When s, = 0 (and thus ¢ = 1 x w?), cglxwa)(wg) is a p-adic unit as proved in [LTXZ227|
Proposition A.7]. So ¢{"*“")(w) € Ow]*.

(2) By part (1) and Proposition 2.11(2), the d. xth slope in NP(C(wy,—)) is < k —1
and the equality holds precisely when s.» := {k —2 —a — s.} = 0. Similarly, part (1) and
Proposition 2.11)(1) imply that the (d. x + 1)th slope is > k — 1 and the equality holds if and
only if s, := {1+s.—k} = 0. Yet, Clearly, 1 +s. and 2+ a+ s. are never congruent modulo
p—1. So the d. xth slope and the (d. + 1)th slope of NP(C(wy, —)) are never equal, proving
that (dzx, vp(ca. . (wr))) is a vertex of NP(C'(w, —)).

The same argument above with Proposition 2.11] replaced by Proposition proves that
(de s vp(ga, . (wy))) s a vertex of NP(G(wy, —)), O

We recall the standard Lagrange interpolation formula, as our main tool to study local
ghost conjecture.

Definition-Lemma 4.2. Let f(w) € O{w/p) be a power series, and let g(w) = (w —

x1)™ - (w — xs)™ € Zy[w] be a polynomial with zeros x1,...,xs € pZ, and multiplicities
my,...,ms € N. Then we can uniquely write f(w) as

N (g 9@) |
(42.1) ) =3 (Al T + hiw): ato)

where each A;(w) € Ew] is a polynomial of degree < m;, and h(w) € E{w/p), characterized

by the condition that for each i, f(w) = Ai(w)(wi(;z;mi modulo (w — ;)™ when viewed as

power series in Ew — x;].

We call the expression (L21]) the Lagrange interpolation of f(w) along g(w).
(e)
n,k
(2I6T]). We write the nth coefficient o (w) of the characteristic power series C®)(w, ) in

terms of its Lagrange interpolation along gﬁf) (w) as follows.

Notation 4.3. For n € N and a relevant character e, recall the notation ¢ :(w) from

(4.3.1) dw) =" Y (A" w) gOh ) + ) (w) - g (w),
k=ke mod (p—1)
mis (k)70

where A" (w) = A,%E) + Al(ﬂa)(w —wy) + -+ A](g"’ags)(k)_l(w - wk)me)(k)_l € Elw] is a

polynomial of degree < mgf)(k) — 1, and A (w) € E{w/p).

Proposition 4.4. To prove Theorem[2.7, it suffices to prove that, for every relevant char-
acter €, every n € N, and every ghost zero wy, of gna)(w), we have

(n,e) (e) _ Aley - (e) _
(4.4.1)  v(A4.7) > Ak,%d};ew(el)—i Ak,%d‘écw(al)—mf)(k) for i=0,1,...,m; (k) — 1.
Proof. We assume that (A4.1]) holds for every e, n, k as above. Then Theorem 2.7 clearly
follows from the following two claims:

Claim 1 Every point (n, v,(c}f (w,))) lies on or above NP(G®© (w,, —)).
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Claim 2 If (n, vp(g,(f) (wy))) is a vertex of NP(G®)(w,, —)), then we have vp(cgf) (wy)) = vp(gﬁf) (wy)).
Through the Lagrange interpolation (A3.1]), we will reduce the two Claims to the following.
Statement 4.5. For each w, € mc, and each k = k. + (p — 1)k, such that mgf)(k:) # 0,
(1) The point (n, v, (A,ﬁ"’a) (w*)g(al)%(w*))) lies on or above the Newton polygon NP(G®) (w,, —));

n,

and
(2) moreover if (n, v, (g (w,))) is a vertex of NP(G®) (w,, —)), then v, (A,ﬁ"’a) (w*)gia}g(w*)) >
Up (gf(ze) (w*)) .

Indeed, we will prove (a strengthened version of) this later in Proposition [1.7. We now
assume Statement to finish the proof of Proposition [4.4l For this, we fix a relevant
character ¢ and omit it from the notations when no confusion arises.

Proof of Claim 1 assuming Statement [{.5(1).

Fix n € N. First, by Proposition2.19] A, Lanew_; > AV ) forany i =0,...,m,(k)—
’ 2% T

mp (k
1; so condition (£.4.1]) implies that each A,(:i) (w) € Olw]. But we know that ¢,(w) € Ofw]; it
follows that h,(w) € Ofw] (even though the Lagrange interpolation happens in a bigger ring
E(w/p)). From this, we deduce that the last term in ([£.3.1) satisfies: for every w, € mc,,

Up (hn(w*) : gn(w*)) > Up(gn(w*))'

By Statement [L5(1), the evaluations at w, of all other terms in the Lagrange interpola-
tion (Z0.I) have p-adic valuation greater than or equal to the height of G©)(w,, —) at = n.
Claim 1 follows.

Proof of Claim 2 assuming Statement [].5(2).

It is enough to show that, in the Lagrange interpolation (@31), h'Y(w) € Ow]* is a
unit. Indeed, if this is known, and if (n, vp(g,(f) (wy))) is a vertex of NP(G®)(w,, —)), then
Statement FL0(2) implies

vp(Ak(w*)gfj,é(w*)) > up(g5 (w,)) yet vy (B (we)g (w,)) = vp(g (w,).

From this, we deduce that vp(cﬁf) (w)) = vp(gﬁf) (w)).

To prove that Al (w) is a unit, we take one k # k. mod (p — 1) such that d}¥(e - (1 x
w?7*)) = n. (This is possible because per Definition-Proposition ZI2(1), s. and {a + s.}
are not “adjacent” in the cycle modulo p — 1.) Set s.» := {k —2 — a — s.}. By Proposi-
tion ELT)(2), (n, v, () (wr))) is a vertex of NP(C®) (wy, —)) and (n, vp(cgfn)(wk))) is a vertex
of NP(CE") (wy, —)).

We use the Atkin—Lehner involution between SH(e - (1 x w?7*) and SV (¢” - (1 x w?7*)).
Combining Proposition 2.11[(2) and Proposition 2.16(2), we deduce that

up(el) (wi)) + vp(elf ) (wi) = (k = D)n = v,(97 (wi)) + w957 (wi)).

As argued above, for each zero wy, of gﬁf)(w) and each zero wy, of gﬁfﬁ)(w), we have

vy (A, (W) g (wr)) > v, (98 (wi))  and v, (A, (wi)g'") (wi)) > v, (95" (i)

n,k1 n,k2

From this together with (4.0.1]), we deduce that

V(9 (wi) WS (wy)) + vp<g§”><wk>h§”><wk;4>l = (k — 1)n = v,(g& (wy.)) + v, (9" (wy,)).



Since hf)(w),hfﬂ)(w) € Ofw], we deduce that hf)(wk),hfﬁ)(wk) € O%; so hf)(w) and
h'") (w) are both units in Ofw].
To sum up, we have completed the proof of Proposition [4.4] assuming Statement .5 [

We record here a technical result [LTXZ227 Proposition 5.16] that we shall frequently
use in the proof of Statement

Proposition 4.6. Fiz w, € mg, and a weight k = k. mod (p — 1).

(1) Let HSS*),k = (A (&) - LS o 3dY(E )+L &) be a near-Steinberg range. Then for

: _ ( (e)
any integer k' = k. + (p — 1)k, # k such that vp (W — wy) > A]:L(E) — AI:L(E)7 o

the ghost multiplicity m' (k:’) is linear in n when n € n_SE,i’k

(2) Letk :={k,ky,..., k.} with each k; = k. mod (p—1) be a set of integers including k.
Suppose that there is an interval [n_,n| such that, for any k' = k. + (p — 1)k, ¢ k
with vy(wy — wg) > vy(w, — wy), the ghost multiplicity mgf)(k’) is linear in m when
n € [n_,ny]. Then for any set of constants (Ap)nen_n,], the two lists of points

P, = (n, A, +vp(g(€) (), Qn=(n,A4, +vp(g( L(wk))) with n € [n_,n4|

differ by a linear function, where g(aiz(wk) =g ;(wk)/ [T (we— wk/)mgf)(k/).
v ™ K ek,k' £k
Here and later, we say two sets of points P, = (n, A,) and @, = (n, B,) with integers
n € la,b] are differed by a linear function if there exist real numbers a, 8 € R such that
B, — A, = an + f for all integers n € [a, b].
The following is a generalization of Statement .35l

Proposition 4 7 Assume that p > 7. Fize a relevant character, n € N, and k = k. + (p —
1)k, so that m' ( ) # 0. Fizie{0,.. mgf)(k) —1}. Let A € mg, be such that

(e) (e)
(4.7.1) v,(A) > Ak Lapew(ey)—i Ak,%d;CW(al)—mS>(k)'

For each w, € mc,, the point
(s vp (Alw, = we) g (w,))

lies on or above the Newton polygon NP(G®) (w,, —)); and it lies strictly above this Newton
polygon if (n, vp(gﬁf) (w*))) is a vertex.
More generally, for any integer ko = k. + (p — 1)koe # k for which mgf)(ko) # 0, we have

an analogous statement: assume condition (A1), then for w, = wy,, the point

(n, Up (A(wko - wk)igi?;7,;0 (wko)>)

; - / (e)
lies on or above the lower convex hull of points (n ,vp(gn,j€O (wko)))n/g[dgg(51),diﬁ(51)—dzg(€l)].
Statement .5 follows by applying Proposition .7 to A = A&’a) withi=0,...,m (k)—1.
As we will see in the Case A of the proof, in the condition (£.4.1]) or equivalently (A.7.1), we
truly need an estimate of the form A — A’ (which is stronger than a similar estimate of the
form A — A or A" — A').
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Proof. In this proof, € will be fixed throughout; so we suppress it from the notation. We will
treat the two statements uniformly. In the proof below, when writing ky we mean an empty
object in the case of first statement and the given weight ko in the second statement, (as
how [LTXZ227, Theorem 5.19] is proved in a way applicable also to [LTXZ22", Proposition
5.26]). Moreover, when treating the second statement, we will write w, for wy,. We separate
the discussion into the following three cases:

Case A: Assume that n € nS,, ; so that (n,v,(g,(w,))) is not a vertex of NP(G(w,, —))
by Proposition 2.18|(2). We need to prove a non-strict inequality in this case.

Write L = L, j for short, so n € nS,,, = (34} — L, 3d)¥ + L) and v,(w, — wy,) >
Apr — Ay —1. We quickly remark that, for the second statement, the condition v, (wg, —
wyg) > Ay — Ay -1 implies that the ghost multiplicity m,, (ko) is linear in n’ € n_kaO,k by
Proposition L.6[(1). In particular, n_kaovk C [dy, dy —dpy].

We need to prove that, for each ¢ = 0,...,m,(k) — 1, the point

Pi= (n, vp(Aws = w)" - g, 1 1, ()
lies on or above the line segment Q_ Q. with
Q= (3" — L, vp(gyam 14y (w))) and Qo= (A7 + Ly vp(g30v 41,5, (w))-
(Here we do not need to require that Q_ and @), are vertices of the lower convex hull of all
points (n’, vp(gn,ﬁo (wko)))n,eN.)

Applying Proposition L6(2) to the case with k = {k, ko}, w,, and [n_,ny] = [1di¥ —
L, %d}fw + L}, we are reduced to prove that the point

P'= (n, vy(A) +i-vy(we — wi) +v,(9,, 44, (Wr)))
lies on or above the line segment m with
QL = (3" — L, (3™ — L) - vp(ws — wie) + v (91ae 1 i, (W) ),
Q= (3" + Lo GAI™ — L) - vp(we — wi) + (91 s iy (W)
Moreover, if we write n = %d}f + ¢, then
Up(Gniio(Wr)) = A g+ 5520 — mp (ko) - vp(wy — wy,)  and

Up (g%diw:l:[/,l;,l;o (wk>) = ;g,:l:L + %L - m%dkwiL(ko) . /Up('l,Uk — U)ko).

So to prove that P’ lies strictly above the Q”_(), (through shifting in the y-direction by

a linear function with slope k—gz or slope % + v, (wy, — wg,) for the second statement and

shifting in the z-direction by %d}fw), it is equivalent to show that the point
P" = (€, vy(A) + (i — 3di™ + L) - vp(we — wi) + A )
lies strictly above the line connecting the points
"= (=L, A}_p) and QF = (L, A} ).

By ghost duality 2.I6.5), A, ;, = A} ;. So Q” and @' have the same y-coordinate.
Therefore, we need only to prove the following inequality

vp(A) + (z - %dgew + L) v (Wi — wy) > A;aL - ;c,m'
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Using condition @ZI) vy(A) = Ay 1 gnew_;
vertex of A, ), we are reduced to prove that
(4.7.2) Ak,%dgcvv—i - ;c,L - Ak,%d‘,;cw—i —App 2 (%diew —1 = L) - Up (Wi — wp).

— A} g and using Ay = A} (as (L,Ayp) is a

But this follows from the convexity of A, and the fact
Apr— D1 < vp(we —wg) < Appy1 — DL

This concludes the proof of the first statement of the proposition when n € nS,,, .

Case B: We assume that n ¢ nS,, &, and that (3d3 —mp(k), A} | e (k)) is a vertex
’2 k n
of A, so that A;édgew—mn(k) = Akédzew_mn(k). In this case, we have

(473) Up(w* — UJk;) < Ak7%dzcw—mn(k)+l — Ak,%dzcw—mn(k)'

We need to prove that for every i = 0,...,m, (k) — 1,

(4.7.4) vp (A(ws —wi)" - g, 17 (0s)) > (9, 4, (w4))-
But this inequality is equivalent to
(4.7.5) Up(A) > (my (k) — 1) - vp(w, — wy).

This follows from the following sequence of inequalities:
/
Up(A) Z Ak’%dzew_i - Ak,%dr,;cw—mn(k)) - Ak’%dzew_i - Ak,%dzew—mn(k)

convexity of A,

> (mn(k) — 1) - (Ak,%dzcw—mn(k)—i-l - Ak,%dzcw—mn(k))

&EZ3) .
> (mn (k) — 1) - vp(wye — wy).
This checks the proposition in this case (with strict inequality).

. 1 / :
Case C: We assume that n ¢ nS,, x and that (3dp — m”(k)’Ak,%dgew—mn(k)) is not a

vertex of A,. Then by Proposition 2.I8(5), there exists &' = k. + (p — 1)k, such that
n €nSyw = (3diy — L', 3di¥ + L'), where L' = L, js. We take k' to be the one with the
biggest L’. So that
(%d}f +L - %d}fwj Ak,%d}yiy—%d}y)

are the two endpoints of a segment of A,.

We assume that n > %diw; the argument in the other case is “symmetric”. Before proceed-
ing, let us clarify the rough size of the numbers k,, k,, and L', where we write k = k.+(p—1)k,
and k' = k. + (p — 1)k,. The condition n € nS,, »» and Proposition implies that

(476) Up(wk - wk’) Z Ak’,L’ - A;;:’,L’—l Z L/ —|— %

Since the left hand side is an integer, we deduce that v,(k, — ks) > L'. In particular,
|k, — ko| = }%d}f — %d}fw‘ is huge compared to L’. This together with the assumption that
n > %d}c‘” shows that k., > k, and n > k,.

First, consider the easier case: v,(w, — wy) < v,(wy — wyr). It suffices to prove that the
point (n, v, (A(w, — W) G, ki ko (w,))) lies strictly above the point (n, v, (gnjm (w,))). This is
equivalent to
(4.7.7) Up(A) > (my (k) — 1) - vp(w, — wy).
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Set v := v,(k — k') > 1. Then

@I5)
(4.7.8) Ly —mu(k) > iy — Ly — L' =k, —ke—L' >p"—L > p' —y>v+1
By Proposition 219,

vp(A) > Ay rgen; — A > (mn(k) —9) (3™ — my (k)

k,2dieY —my, (k)

" k) = )+ 1) 2 (ma (k) = 1) - vyl — i),
So ([A77) holds and the proposition is proved in this case.
For the rest of the discussion, we assume that v,(w, — wy) > v,(w, — wx). So
(4.7.9) vp(we —wi) > Ay — Ay and - vp(wy, — W) = vp(we — wi).

In particular, nS,, x = nS,, . (This implies that n is a not a vertex of NP(G(w,, —))
by Proposition [2.18/(2); so we need to prove a non-strict inequality in this case.) When
considering the second statement, (£7.9) and Proposition [6[(1) implies that m, (ko) is
linear in n’ € H_kao,k’- This in particular implies that n_kaO,kr C [dy, d}QVOV —dpr].

Back to our general case, we need to show that the point

P .= (n, Uy (A(w* —wy)’ ‘gn7]%7]%0(w*)))
lies above the line segment R_ R, with
R_:=(iay - L, vp(g%d?y_yv,%o(w*))) and Ry := (3dy + L, vp(g%d?HL,J;o(w*))).

For this, we apply Proposition twice to each of the points w, and wy relative to the
distinguished weight k', the near-Steinberg range [n_,n,] = nS,, p = nS,, x, and k =
{k, k', ko}. This allows us to relate the values of g; i (w) at w, first to values at wy and then
to values at wy. Thus, we need only to prove that the point

P° = (TL, Up(A) + - 'Up(w* - 'wk) + mn(k,)vp(w* - wk') + 'Up(gn,é(wk)))

B (1, 0, (A) + i - vy (w, — wg) + 0y (9, 1.1, (W)

lies above the line segment R° RS with
L= (3 L v (yayer w(wn) + Mgy (k) - vp(w, —wi) + L vp(wy — wye))

@(%d?y L, v (Q%d}yiy,k,ko (wk)) + m%d}fﬂ:L’(k> - Up(Ws — wk))

We substitute the equalities vp(g%d}y“’,;’,;o(wk)) =N}, + B2 — my, (ko) - vp(wy, — wy,) for € €
{=L',..., L'} into the above expression of points. (Here when considering the first statement,
we ignore the term involving weight kq.) Note that Proposition 6(1) implies that m,, (k)
(and m,, (ko) if we are considering the second statement) are linear for n € nS,, » = n_kaovk/.
So we may further shift down these points in the y-direction by a linear function of slope
E=2 4 vy (w, — w) £ vy(wy, — wy), to reduce to prove that the point

P = (n> UP(A) + (Z - mn(k)) ' Up(w* - wk’) + A;7%dzew_mn(k)>
lies above the segment R°°RS° with
oo . (1 jlw / / _ (11w / /
Ry = (Edk’ + L, k,%d}yiy—%d}y) - (Edk’ =L, k,%d}yiy—%d}y)'
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Recall that the two points RS correspond to two endpoints of a segment on A, by our choice
of L. So this is equivalent to proving that

vp(A) + (i = mn (k) - vp (Wi — k) + A s grev_n ) Z Dk 2o —ma ()
Taking into account of (L.7.1]), it suffices to show that
Ak,%d‘,;cw—i + (1 = ma(k)) - vp(we — wy) 2 Ak,%d‘gcw—mn(k)'

But this follows from that v,(w, —wy,) < A 1anes k)11~ D Lanew _m,,(r) and the convexity
of A,. The proposition is proved in this case. 0

Proposition 7] completes the proof of Proposition .4l To summarize, in this section, we
reduced the proof of Theorem 27 to proving the condition (£4.1)).

5. PROOF OF LOCAL GHOST CONJECTURE II: HALO BOUND ESTIMATES

In this section, we implement Step III of the proof of Theorem 2.7 as laid out at the
beginning of § 4} the Step II will be discussed in the next section. N

As in the previous section, we fix a primitive O[K,]-projective augmented module H
satisfying Hypothesis 2291 We will also fix a relevant ¢ = w™* x w®"* through out this and
the next section, and suppress it entirely from the notation. For this and the next section,
we assume that 2 < a < p — 5; this is used in the proof of Proposition G.4(1).

To prove the estimate ({L4.T]), we will show a similar result about the Lagrange interpola-
tion of the determinant of every (not necessarily principal) minor.

Notation 5.1. Let ( = {(1,..., ¢} and £ = {1, ..., &} be two sets of n positive integers,
and let UT (¢ x &) be the ¢ x {-minor of the matrix of Uy-action on the power basis. Applying
the Lagrange interpolation (Definition-Lemma £.2) to det(UT(¢ x £)) along g,(w), we have

¢x§g
(5.1.1) det(UICx0) = D (A7 (W) g,1)) +hexe(w) - guw).
k=ke mod (p—1)
my (k)#0
where h¢ye(w) € E(w/p) and A,(fxé)(w) is a polynomial in E[w] of degree < m, (k) — 1,
expanded as

(cx©) (Cx8) | ,(cx®) (%) (k)
Theorem 5.2. Assume that 2 < a < p—5. For every finite subsets ¢ and § of size n, and
every ghost zero wy, of g,(w), we have the following inequality for everyi =0,1,... my(k)—1,
(€x€)
(5.2.1) Up(Al{,z'X* ) = Ak,%dgew—i - A;g,%dgcw_mn(k) + %(deg(g) - deg(§)).

Since ¢, (w) = (=1)" >_, det (UT(€ x €)) is the sum over all principal minors of size n, we
see that, for each n and each ghost zero wy, of g, (w),

Al(c,i) =(-1) ZAk_,i I
3

So condition (44.1]) (and hence Theorem 2.7)) follows from Theorem above. The proof

of Theorem [5.2] will be concluded in § (and § 6.13)).
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5.3. Proof of Theorem when n = 1. When n = 1, the condition m,(k) > 0 for
k = k. + (p — 1)ke is equivalent to that dj" = 0 and d}ﬁw = 2ke + 2 — 6. > 2. In this case,
my(k) = 1, so we need only to consider the case with ¢ = 0. For one such ghost zero k

and indices (, ¢ € N, A,%OX O_ut

w=w,- Moreover, note that dmeW A is always a
€¢,e¢ k y

k dIleW
vertex of A, so

Ak,%dgcw = ’“—52 : %diew and Ak,%dgcvv—1 = Up(91,1;(wk)) + % : (%dzew —1).

It suffices to prove that
(5.3.1) Up(UL, o lwmwy) > 552 = vp(gy 1 (wr)) + 3(degec — degeg).

If £ > d, (5:30) follows from combining the inequalities 1(k — 2 — dege¢) < 0 and
vp(Ul<7e£|w:wk) > deg(e¢) by Proposition [3.2(2).

If ¢ > db, (E30) follows from the inequality v, (U
by Proposition 3.2(2).

When ¢, € € {1,...,d™}, Ul
In this case,

lw=w,) > deg(e¢) > 5(k—2-+deg(ec))

€¢.e¢

L, eg(dlw)|w w, 15 the anti-diagonal matrix, set (°P = dL¥ +1—C.

v, (Ul lw—w,) = degec = E2 4+ L degec — 1 deg econ.

e< ecop

(5310 follows from this. This completes the proof of Theorem 5.2l when n = 1. O
The following is the main result for Step III in the proof of Theorem 2.7

Proposition 5.4. Assume that p > 11 and that 2 < a < p—>5. Fix a relevant character € of
A? and subsets ¢ and § of positive integers of cardinality n. Recall the Lagrange interpolation
formula from Notation [5 1

($33)
(5.4.1) det(UT(g X §)) — Z (Ak_ ~(w) ‘gn,k(w)) + e (w) - go(w),
k=ke mod (p—1)
my (k)#0
with  AF (w) = ASY + ASD (w — wy) + -+ AZE L (w — wy) @

Assume that, for every ghost zero wy of g,(w), the inequality (m holds. Then

(1) hexe(w) € pa Q=4 O(w /p); and
(2) for every ghost zero wy, of gn(w), if we expand formally in EJw — wy,]:

(5.4.2) det(UT (¢ x¢) /gn oo (W ZakOZ (w — wy,)",
>0
then we have the following estimate for i = m,(ko),. .., %dggW:
(5.4.3)

(C é‘) new N new
v ( Ao i ) 2 %(deg(@_deg(@Jr(%dko _1)2_(%%0 _mn(ko))2)+Ako,%dng—i_ ;fo,%dggmi

Remark 5.5. This proposition involves the coefficients of the Taylor expansion of some

determinant of the minor with exponent greater than or equal to the corresponding ghost

multiplicity; in contrast, condition (5.2.1]) concerns the coefficients in the Taylor expansions of

det (UT(¢xE))/ 9, j.(w) with exponents strictly less than the corresponding ghost multiplicity.
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Proof of Proposition[5.4]. We first show that (2) follows from (1). We fix a ghost zero wy, for
the discussion. It suffices to prove analogue of (5.4.3]) for each of the factors in the Lagrange
interpolation (5.4.1), that is, explicitly,
(a) if we expand formally hexe(w) = 37,2 @noni(w—wk,)" in Efw—wg,], then v,(ag,pi) >
1 (deg(¢) — deg()); and
(b) for each ghost zero wy # wy, of g,(w) and each j = 0,...,m,(k) — 1, if we expand
formally in Ew — wy,],
w — wk mn(kO

€9 - (
(551) A " (w wky (U) wk mn(k - Z akokz w— wko)v

i>mn (ko)

then we have
(5.5.2)

vplai) > 5 (deg(Q) —dea(€)+ (i — i) — (i = (Ko))®) Ay, gy s = Af 4o

for i = my(ko), ..., 3dp™.

(a) follows from part (1) of the proposition, and we prove (b) as follows. The case when i =
m., (ko) is essentially already handled by Proposition .7t indeed, from the formal expansion
(.50, we deduce that

j (€x8) .
Up(a’l(cjo),k,mn(ko)) =Up (Ak_,j - ) — (mn (k) = ) - vp(wiy — wi).

But the second statement of Proposition E7 together with the assumed condition (5.2.1))
implies that

0p (A v (wrg =01+ 0y (9 0 () = 5 (deg(¢)—deg (€))+Ay,,

Combining these two gives

(5.

Up(ako,k,mn(ko)>
> 5(deg(¢) — deg(
= 5 (deg(¢) — deg(
This is the same as (5.5.2]) (when i = m,,(ko)).

The case when i > m,, (ko) is easier (compared to the proof of Proposition A.7). In this
case, we will prove an inequality stronger than (B.5.2]) without the A — A’ at the end. The
estimate (52.1]) we assumed implies that, for j =0,...,m, (k) — 1,

(€33
Up(Akj]-X‘) > %(deg(g) - deg(§)) + Ak,%dgcw ‘ A; Ldpev —my, (k)
> 3(deg(Q) —deg(§)) + 1+ 3(3d;™ — ‘)2 — 3G = ma(k))?,
where the second inequality follows from Proposition So we need to prove the following
inequality:
3G = mu(ko))? = (G — 1) + 14+ 3 (5™ = §)° = 3 (G — ma(k))?
> (14 vp(ke — koa)) ( i — my (ko)) + (M (k) — J))
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To simplify notations, we set v := v,(ke — ko), = 3dp™ — my (ko) > y = 3dj™ —i > 0,
and z = $dp° — j > w = $d}™ — m,, (k) > 0. We need to prove that

(5.5.3) -+ 24+ 22— > 21+ )z —y+ 2z —w).

When ~ = 0, the inequality (55.3) is straightforward. So we assume v > 1 below. Note
that |ke — koe| > p7 and so |%d}fw — %d}:ﬂv\ > p?. So we have  +w > p?. We separate several
cases:

o Ifx+y>2y+2and 2+ w > 2y + 2, the inequality (55.3) is clear.
o If 24w < 2v+1, then w < ~. The condition x + w > p” implies that x > p” — w.
So

(z—w)(24+2y—z—w)

IN

((z—w)+2+27—z—
(z—y)z+y—(2+2y) > py—w—2—§7-
The difference of the term (plus 2) is
Plmw=2y—(y+1-w)?>p" =3y —(y+1)?>0if y > 2.
When 7 = 1 and w = 1, the left hand side is also larger than 0. When v = 1 and
w = 0, we have x > p, and so
(r—y)r+y—4)>2x—-5>5 and (z—w)d—z—w)<4.

(BEE3) still holds.
o If z +y <2vy+ 1, a similar argument proves (5.5.3)); we leave this as an exercise for
interested readers.

w)2= (v +1-w)?

This completes the proof of (2) assuming (1).

We now turn to prove (1) of Proposition [5.4l The proof resembles the proof of Claim 1 in
Proposition .4l By (5.2.1) and Proposition 2.19]

(€33, /
vp(Ayy =) 2 5 (deg(¢) — deg(§)) + T Ak,%d;CW—mn(k)
> 5 (deg(¢) — deg(€)) +mn(k) —i

A (w) - g, 4(w) € pHesO-den@)tdezant) . Ofyy ).
So if we can prove that
(5.5.4) det(UT(¢ x ) € pHass@—teat®)+osante) . O ),

then we would deduce that h¢xe(w) - g, (w) € prldea(Q—des(@)+deagn(w) . (4 /p), from this it

would follow that heye(w) € p2(des©—des©) . Oy /p). So we now focus on proving (5.5.4).
We go back to the discussion of halo estimate near the end of Section 3l Recall the matrix
Uc and Y from Notation[3.I7 For each ordered tuple n = (n1,...,7,) € N, write Uc (¢ x7)
for the submatrices with rows in ¢ and columns in 7. Then the equality Ul = YUgY ™! of
(BI7T) implies that B B
(5.5.5)
det (UT(Q X §)) = Z <Yeg1 en, " Yeg, e, - det (UC(A X ﬂ)) . (Y_l)em e, "'(Y_l)enn,egn)’

A
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where the sum runs over all ordered tuples A = (A1,...,\y),
enough to check (5.5.4) for each term above when \; > (; and
Y~! are upper triangular by Lemma B3.16]).

Note that the condition \; > (; and Lemma imply that

cmn) € N' It is

n= (7717
n; < & for every i (as Y and

1
Up(Yeq en,) + i(deg ey, — degec,) + v,(degey,!)

dege,, — dege, L (degeAi!) n {degeCiJ _ {dege,\iJ _ {dege)\i — degeCiJ

N 2 "\dege,! p p p*—p
> dege,, — dege, +qudegeAiJ!> B qudegecij!) _ Ldege&. — degeCiJ >0
2 p pP—p

By a similar argument, the condition &; > n; and Lemma [3.16] imply that
_ 1
Up((Y l)eni,egi) > 2 ( dege,, —deg e&) + v, (deg em!)-

So to prove that each term of the right hand side of (5.5.5) belongs to p%(dog(ﬁ)_dog@)erog gn(w).
O(w/p), it suffices to show the following

Claim: Assume that \; < --- < A\, and n; < --- < n,. We have vp(det(Uc(A X Q)))
(meaning the p-adic valuation in the ring O(w/p)) is greater than or equal to

deg(C)zdeg + deg gn ) i Z (degemgdegeci + vp(deg e)\i!) + degeei;degem N vp(deg em!)>

1=1

deg ()

A) —deg(n) <~ /degey,!
= deg g, (w) + 5 + ;vp <7deg em!).

To be extremely careful about the boundary case, we set

(5.5.6) & := deg gn(w) — i (deg e; — Lde]gg eJ) B2 10,1,

1=

Moreover, we point out that & = 1 can only possibly happen when dege, .| — dege, =
p—1—a. We first treat two special cases of the Claim, representing different strategies,
which are introduced to treat with the subtlety that 4 might be 1.

(i) when A = n and 7 # n, Proposition B.I8 implies that

vp(detUc(@xQ)) > z": (degei—L%J) deg g, (w)—6— Z Qdegen J LdegeiD‘

i= b

Comparing this with the Claim, it suffices to prove

ZZ:; (degeni 2— deg e; +Up((igg(z!!> B {degpemJ . LdeieiJ) .

We may assume that n; > ¢ for each ¢ and 7, > n + 1. Then the needed inequality
follows from combining the following two inequalities:

degenii—en o\ g Up<degem!) 3 LdegemJ N LdegeiJ . (Ldegem/pﬂ) >0,
2 dege;! p p |deg e;/p]!
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where the first inequality uses the precise condition when § could be equal to 1 as
discussed above.

(ii)) When A ={1,...,n—1,n+ 1} and n = n. Let  be the largest nonnegative integer
such that p7 divides a number in {dege, + 1,...,dege,+1}. Then v,(dege,+1!) —
vp(dege,!) = . We need to prove

deg eniy — degey,

(5.5.7) vp(det(Uc(A,n))) > deg gn(w) + 5

By Corollary 3.27] we have

n

deg e;

J) + (dege 41 — dege,).

i=1

It suffices to prove that

dege,y1 — dege,
2

As 8 = 1 only happens when dege, 1 —e, = p—1—a, the condition 2 < a < p—>5is
enough to imply that w > § + 1. On the other hand, we use Lemma [3.29)
to note that D_g(n,0) = --- = D_g(n,y — 1), so for every j =0,...,7v—2

D—o(A,j) = D=o(n,j +1) + 1.

It follows that D(A,n) > v — 1. This Claim in this case is proved.

We remark that, the proof of (i) follows from standard halo estimate Proposition 318 On
the other hand, as shown by the proof of (ii), the usual halo bound Proposition B.I8 cannot
be used to control the v on the right hand side of (5.5.7)). The subtle improvement of halo
estimate in Corollary is essential for this proof.

D()\,n) + > 8+ 7.

We now prove Claim under the assumption that A # n, which share certain similarity
with the proof of (ii). By Corollary [3.27] it suffices to show that

DA, n) + i (degeAi - {degTenJ) > deg gn(w) + i (dege% ;degem +Up<32§2:'!))7
= i=1

or equivalently, to show that

(5.5.8) D(An) + i (deg e ;deg Cn 4 qudeiemj v)) > deg gn(w) + ivp(deg exl).
i=1 =1

We first reduce to the case when n = n. For this, it suffices to show that for a subset
7" C N of size n with n; = n; for all i except some i = iy when 7 —n;, = 1, we have

(5.5.9) D) + > D\, 7).

deg e, — dege,, . (Ldeg e, / pJ!)
2 "\ ldege,, /p]!
The condition 2 < a < p — 5 implies that dege,, — deg ey, = 2; 80 (E59) follows from

B261).
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Now, we assume 7 = n. It remains to show for any subset A C N (but A # n),

" dege, — dege, - dege,,!
5.1 D), : > 5 (S22,
(5.5.10) (_@y+Z; 5 __-+Z;% Tovo.
Moreover, we may assume that A # {1,...,n — 1,n+ 1} as it has been treated in (ii).

For this, we make an induction on A; each time, we replace the largest element in A, say
An, by the smallest element in n but not in A, say n_. Since we have ruled out two special
cases of A\, we must have \,, — n_ > 2.

Write A = AU {n_}\{\.}. We need to prove

dege,, —dege,_ , dege,,!
D)+ 2 26+D(A’ﬂ)+Up<degen!>'

Indeed, if A" # n, we did not even need the § on the right hand side to complete the induction.
If ' = n, the above inequality is equivalent to (5.5.10) by Lemma 329
Write v for the maximal p-adic valuation for integers between dege,,_ + 1 and dege,_; so

dOgeAn!) <yt Ldegekn—degen7—2
dege,_ !/ — p—1

that we must have v, ( |. We need to prove

(5.5.11)  D(A\,n)+

dege,, —dege,_ {deg e,, —dege, —
2 p—1

Put § to be unique integer such that dege,,K —dege,_ € ((p —1D)p> L (p— l)pﬂ; it is clear
that v > 0 — 1. The case when v < § is easier, which we discuss first. In this case, when
changing dege,, to dege,_, only the last v digits in the p-adic expansion may change from
some nonzero number to 0. So D(A,n) > D()N',n) — . We need to prove that

2
J25+D@ny+m

(5.5.12) degey, —dege, Ldeg e,, —dege, —

2 p—1

If v = 0, then dege,, — dege,_ = p — 1; so (BL.5I2) says p—gl > 6, which is obvious. If
0 >~ =1, the condition 2 < a < p — 5 implies that the left hand side > p—gl >24+0. If
0 > v > 2, it is clear that the left hand side > i(p — 1)p"~t > 2y + §. This completes the
proof of (5.5.12) when v < 6.

From now on, we assume that v > ¢; in this case, the p-adic expansions of dege,, and

dege,_ look like

QJ > 2y + 4.

(5513) dege)\n R a7+2 047+104~/00 ......... 00a6 ...a07

degen,: ...... a7+2a7+1(a,\/_1)(p_1)...(p_l)a:s...ag'

Here each a; and o} belong to {0,...,p — 1} (and @, > 1), and the two numbers dege,,
and dege,_ agree beyond the (v + 1)th digits. The condition degey, —dege, < (p—1)p°
implies that af # 0.

We need to trace back to the definition of D(A,n) in Notation to compute

(5.5.14) D(\n)— D(N,n)
:E:(mw{pﬂgg)—pﬂmg+ﬁx0}—mw{Dﬂ@Qﬁ—Lgdgj+nAn)

Jj=0
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By Lemma and the fact n_ <n <\,
D_o(n,0+1)=---= D_g(n,y—1).
It is not hard to see that for every j € {6 +1,...,7v—2}
D_o(X,j) = D=o(n, j) = D=o(n,j + 1).
Yet (55.13) implies that for each such j, D_g(), j) = D=o(A’, j) + 1. The contribution of jth
term to (.5.14) is 1. For j =, Lemma 329 implies that
D_o(X,7) < D—o(n,7) < D—o(n,y +1).

So the (j = v)th term in (B.5.14) is zero.

Summarizing the above discussion, we have
(5.5.15) D(A,n) > DN, n) + max{y —§ — 2, 0} =,

where the term v — § — 2 comes from jth term with j € {6 + 1,...,v — 2} and the term
—¢ corresponds to j € {0,...,0 — 1}. The terms with j = § or v — 1 has nonnegative
contribution to (5.5.14). To prove (5.5.10)), it suffices to show that

dege,, —dege,_ Ldeg e,, —dege, —
2 p—1
If 6 =0, then dege,, —dege, = p—1; so (5.5.15) says p—gl > 2 + 8, which is obvious. If
§ > 2, it is clear that the left hand side > (p—1)p°~* > 26+2+6. If § = 1 and A, —n_ > 4,
the left hand side > p—2 >4+ 4.
For the remaining case A\, —n_ = 3, we have § = 1. Now (B.5.16]) becomes
dege,, —dege,_ Ldeg ey, —dege, —
2 -1
The left hand side is > 22 > 4 4+ § as we have assumed p > 11. This finishes the proof of
Claim under the assumptlon that A\ # n.

Finally we prove Claim for A = £ = n. By (5.5.5) and the fact that Y~ is uppertriangular,
we have

(5.5.16)

2J225+2+5.

2J24+5.

n

det(Ut(n) = 3 det(Ucd x 0) [] Yeres, Yo e,

)\QGN” =1
n
=Y det(Uc(A x ) [ [ Yerer, Yore
AEN™ =1

As Claim has been proved for all Ug(A x n)’s with A # n, if we write f(w) = det(UT(n)) —
det(Ug(n)), we have f(w) € pdegg”(“’)O(%). By Corollary BI0] there exists h(w) = > h, -

n>0
(2)" € O(%), hy, € O for all n, such that det(U(n)) = p~deeang (w)h(w). For sim-
plicity, we set d = degg,(w) and g,(w) = S oPlew?™ with ¢g = 1 and ¢; € Z,,
i = 1,...,d. If there exists an integer M satisfying v,(hy) < d, let m be the largest
integer with this property (it exists as h(w) € O(%)). The witm-coefficient of det(UT(n)) =

pdeson(@) g (w)h(w)is p~ dzz N Z,’Zij,whlch has p-adic valuation d+vp(p ) < —m. On

the other hand, it follows from Lemma B.14 that det(Uc(n)) € OJw], and we see from the
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equality det(UT(n)) = det(Ug(n))+ f(w) that the p-adic valuation of the w*™-coefficient of
det(Uc(n)) is greater or equal to —m, which is a contradiction. Hence v,(h,,,) > d for all m
and det(UT(n)) € gn(w)O(2) C pdegg"(w)(’)<%>. So we also have det(Ug(n)) € pdegg"(w)(’X%).
This concludes the proof of Claim as well as the proof of Proposition [5.4l O

Remark 5.6. We point out that the proof of this proposition is where the condition a ¢
{1,p — 4} and p > 11 are used. The problem is rooted in the number § = degg,(w) —
v dege; — [%J € {0, 1} measuring the error from halo estimate in Corollary 3.27

6. PROOF OF LOCAL GHOST CONJECTURE III: COFACTOR EXPANSIONS

Now, we come to explain Step II as outlined at the beginning of Section [4], which aims to
reduce Theorem to the estimate we have proved in Proposition [5.4] for subminors. We
conclude the proof of Theorem and hence Theorem [2.7] at the end of this section.

Keep the notations from the previous section, and recall that a relevant character ¢ is
fixed throughout yet suppressed from the notation.

Notation 6.1. We fix n € N and a weight k& = k. + (p — 1)k, such that m, (k) # 0.
Similar to Proposition B.6[2), let Ly € M (O) denote the following infinite matrix:
e The upper-left (d}* x d")-block of Ly, is the Atkin-Lehner operator AL ¢,y acting on
the power basis By; it is an antidiagonal matrix whose (i, di" + 1 — i)-entry is pdeei.
e Entries of L other than the upper-left di¥ x d}¥ are the same as the corresponding
entries of UT evaluated at w = wy.

This matrix Ly is block upper triangular by (2.11.2) of Proposition 2.IT[1). Set
Ty :=Ul =L, € Moo(O{w/p)).

For two subsets of integers { = (1 < --- < () and § = (§ < -+ < &,) of cardinality n, we
let Li(¢ x &) (resp. Ty(¢ x 5)) denote the submatrices of Ly, (resp. Tj) with rows in ¢ and
columns in . Then Definition-Proposition B:2Tl says that the corank of UT({ X ) |uw—uw, is at
least n — i — 1¢xg(k) — s¢(k). In the following discussion, we will use the sets ¢ and £ as
the natural row and column index sets of the matrices UT(¢ x €), Li(¢ x &) and Ty(¢ x §).

We also need a sign convention: when computing the determinant of a matrix like UT(Q x§),
we write the row and columns in increasing order of the numbers in ¢ and . For a subset
I C ¢, we write sgn(I, ¢) to mean the sign of permutation that sends ¢ to the ordered disjoint
union of I L (¢—1), where elements in each of I and ¢ — 1 arein increasing order.

The following key linear algebra result roughly states that, modulo an appropriate power of
w—wy,, we may express the determinant of UT (¢x¢) as the linear combination of determinants
of minors of smaller sizes.

Lemma 6.2. Let k, UT, Ty, Ly, C, and § be as above. Fix Jy C § a subset of cardinality jo.

We write Ty.(¢ x &; Jo) for the ¢ x &-matriz whose (€ — Jo)-columns are given by that of UT
and whose Jy-columns are given by that of Ty. Then

(6.2.1) det(Tr(¢ x &) = Y > (=1)*/sgn(l, {)sgn(J,€)

JCJo ICC
H#I=#J

~det(Ly (I x J)) - det(UT((¢ = I) x (£ = J))).
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In particular, as power series in Ew — wg], we have the following congruence

(622) det(UT(¢x€) = > Y (=1)*'sgn(l, O)sgn(J,§) - det(Ly(I x J))
T i

. det(UT((g —I)x (£—1))) mod (w — wy )0k Tr(EXEJo)lw=uy

Proof. The equality (6.2.]) is a purely formal linear algebra equality and it does not need
the special properties of the matrices UT, T}, and L; beyond the equality L, + T) = UT.
Indeed, we may write Ty (¢ x §; Jy) = UT(C x §) + (=Li(¢ x Jo)), where we view Ly (¢ x Jo) as
a ¢ x &-matrix whose (€ — Jo)-columns are zero. Since taking determinant is (multi)-linear
with respect to the columns, taking the cofactor expansion with respect to the expression
above exactly gives ([6.2.I]). For example, if Li({ x &) has only four nonzero entries, at the
(upper left) {Ci, G2} x {&1, §2}-minor, and Jo = {&1, &}, then Ty (¢ x & Jo) = Ti(¢ x §) and
the formula (6.2.1]) reads

2

det (Ty(¢ x & Jo)) = det(UT(¢ x €)) = D (—1)" 7 L¢, ¢, det (UT((C — ¢) x (£ — &)

ij=1

+de t(éz Z éz Z) -det(UT((g_ {G,G}) x (€ —{&,&))).

Here L, ¢, is the (G, &;)-entry of Ly.
The congruence relation ([6.2.2) follows immediately from (6.2.1]) and the observation that
Tr(¢ x & Jo) is divisible by (w — wy,) @ Telex&To)lv=vy in Blw — wy]. O

Notation 6.3. Now, we apply Lemma [6.2] to the situation of Theorem [5.2 with the fixed
integer n > 2, a ghost zero wy of g,(w), and subsets ¢ and { of cardinality n. Then we
have UT(¢ x &), Ti(¢ x &), Lr(¢ X §), rcxe(k), and s¢(k) as defined above. Let Jee denote
the set consisting of all §; € £ such that either f; > dYoor Y +1-¢ € ¢. Then
#Hoxe = roxe(k) + se(k).

We introduce the following notation to reorganize the congruence relation from Lemma [6.2]
For every j < rexe(k) + se(k), we denote

(6.3.1)

det(UT(Cx ), ==Y D sen(l, Osgn(J,€) - det(L(I x J)) - det (UT((C — 1) x (€= 1))
ICC JCJexe
#I1=j #J=j

This is a signed sum of the products of the determinants of some minors of U' of size n — j,
with the determinants of the complement minors in Ly. In particular, det(UT(¢ x £)), =

det(UT(¢ x €)), and the Lemma 6.2 above (applied to the case Jo = Joxe) in particular
implies that
(6.3.2) det(UT(¢ x §)) = det(U T(g x £)), — det(UT(¢{ x £)), +

+ (—1)ree®Te®=1qet (UT(¢ x g))w (R seh) mod (w — wy)" "%

(Note that by Definition-Proposition [3.21] implies that Ty (¢ x &; ngé)‘w:wk has corank at

least n — d}*.)
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Our argument needs an elaborated version of (6.3.2]), with one goal: we try to write
det (UT(Q X §)) as a linear combination of minors of smallest possible size (after modulo an
appropriate power of w — wy). This is the following.

Lemma 6.4. Keep the notation as above. For a fixed nonnegative integer jo < rgxé(k:) +

s¢(k) — 1, we have the following congruence of power series in Ew — wg]:
(6.4.1)

det(UT(g X §)) = Z(_l)j—jo—l (j _ 1) ) det(UT(g > §))j mod (’UJ . wk)max{om—dzr—jo}_

J>jo Jo

More generally, for every nonnegative integers £ < jo < rgxﬁ(k:)%—s&(k‘), we have the following

congruence of power series in Efw — wg]: -
(6.4.2)

o 0 —1\ /i .y
det(UT(¢(x€)), =D _(=1)7 " a ¢ J {det(UT(¢(x€)).  mod (w—uwy,)mex{0n=di'=io},
=2 L Jo— 1 l = 2
J>Jo
Proof. We first prove (6.4.2]) in the special case when ¢ = jo. When ¢ = j, = 0, this is exactly
[632). To treat the general case with £ = j;, we apply Lemma 6.2 (especially ([6.2.2)) to
each factor det(UT((¢ —I) x (£ — J))) appearing in (G3.I), to deduce the following:

det(UT(¢ x €)= > > sen(l,Qsgn(J,§) - det (Ly(1 x J)) - det (UT((¢ = I) x (£ = J)))

IS¢ JCJexe
#I=jo #J=jo
= Y ) sen(I,Qsen(SE) - det(Lp(I x ) - > Y (=pF
IS¢ JCJcxe J'Clexe—d I'CC—1
#I1=jo #J=jo J£0 I =#J

sgn(l’, ¢ — Dsgn(J', & — J) - det(Ly(I' x J)) - det(UN((C =T = I') x (£ = T = J)))
modulo (w — wy){0n=di’~jo}  Here we make use of Definition-Proposition B.21] to deduce
that rank Ty ((C —1) X (£ = J); Jexe — J) lw=uw, is at most di* and hence its corank is at least
n — jo — dzr

We set I” =1TUI"and J" = JU J" and set j := #I" = #J” > jy,. Then the above long
expression is equal to

D=1 YN Y > sen(I,¢)sen(J,E)sgn(I” — 1, — Dsgn(J" — J,€ = J)

J>jo I"C¢ J'"Clexe ICI" JCJ”

#1"=j pgr=; #I=jo #J=jo
~det (Lg(1 x J)) - det(Lg(I" = I) x (J" = J))) -det(UT((g— 1"y x (£—=J"))).

Using the sign equality

sgn(1, ()sgn(I” —1,{ —1I) = sgn(I", {)sgn(l,I")
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and the similar sign equality for &, J, J’, and J”, we may rewrite the above sum as

D=1 YT N sgn(I”, Qsgn(J",§) - det (UT((¢ = I") x (£ = J")))

J>Jjo I"C¢ J"Clexe
#I":j #JH;]f
S Y sen(1, I")sgn( ], ") - det (Li(1 x J)) - det(Li(I" = I) x (J” = J))).
IQI” JQJH
#1=jo #J=Jo

But the sum in the second line is simply (3{)) times det (Lk(l " J" )) by Laplace expansion
theorem on determinants, where the factor (j{)) corresponds to the number of choices of the
subset I C I”. From this, we deduce that

det (UT(C x ©),, = D (=170 > > sen(I” &sen(J", )

J>Jjo I"C¢ J'"Clexe
#I//:j #J//;j,
. det(UT((f — I//) X (5 — J”))) . (j) -det(Lk(I// X J//))
- - 0

mod (w — wy,)m@{0n=di’=jo} This is exactly (6.4.2) when £ = jo.

We now prove the general case by induction on the difference j; — £. The base case when
¢ = jo is just treated. Assume that we have proved (6.4.2) with smaller j, — ¢. Then we
have the following congruences (corresponding to the cases of (¢, jo — 1) and (jo, jo))-

dﬁ(UW§><§»fEzj;;;f_lyim<ﬁf:étli><i)'(thYW§><§»j mod (1 — O]

det(UT(¢( x §)), =D (~1) 7! (‘7

J>jo Jo

) - det (UT(¢ x

), mod (1 — w0

Plugging the second congruence into the first one (and modulo the smaller power (w —
wy,)m{0n=di"=5o}) " we immediate deduce (6.4.2) by noting

JoN(IY _(F—C=1\(3) _ (I—C=1\(J

¢ ) \Jo Jo—L—=1)\L Jo—1 t)
Remark 6.5. We point out a variant of the above lemma that we will use later. Fix any
power series n(w) € 1+ (w — wg) E[w — wy]. For Jo C Jeye, write

T X & Jo) = UM(C x &) = n(w) ™"+ Lal(¢ X o) € Mao(Bw — wi]);

then we obtain a formula of det (Tk (¢ x & Jo)) analogous to (B21)), with additional factor
n(w)~#7 on the right hand side. Yet Tk(g X & Jo)lw=uw, = Tr(¢ X &; Jo)|w=w, have the same
corank. So if we define the analogue of (6.3.1]) to be
(6.5.1) det(UT(¢ x €))7 = n(w) ™ - det (UN(¢ x §)),

= > > sgn(l, Qsgn(J,§) - n(w) 7 - det(Ly( x J)) - det (UT((¢ = I) x (£ = J))),

ICC JCexe
#1=7 #J=j

O
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exactly the same argument in Lemmas and shows that, for every nonnegative integers
0 < jo < rexe(k) + s¢(k), we have the following congruence of power series in Ew — wy]:
(6.5.2)

der(U1(¢x8); = -1y (7

J>Jjo

B =1\ (J ~det(UT(<X5))§ mod (w—wk)maX{O’n_dzr_jo}‘
Jo—1 l -

Notation 6.6. To further simplify notations later, we normalize

(6.6.1) B = phs @) A8E g ().

So condition (B.2T]) is equivalent to, for i = 0,1, ... ,m,(k) — 1,
(cx€) o1 e
(6.6.2) w(Bii ) = A Lo — 25" —n).

Further, we normalize the minors appearing in the formula (6.4.2) as follows and consider
their expansions as power series in FJw — wg]:

det (UT(¢ x §)),

1
(6.6.3) p(deB(©)—des(0) .
gn—é,k( w)/g,_ ok (wg)

ZB(CXEZ )Z

This normalization has in mind that the natural way to understand each sum of minor de-
terminants appearing in det (UT(¢ x & )) is through its Lagrange interpolation along g, _¢(w).

(Qxé’ Vs equal to B in (6.6.1) fori =0,...,m,(k) — 1.
(xgé —0

In particular, when ¢ = 0, By
As a convention, if 7 < 0, we set B

The following estimate on kai <0

Proposition [5.4]

can be harvested from the inductive hypothesis and

Lemma 6.7. Assume that p > 11 and 2 < a < p — 5. Keep the notation as above and
assume that Theorem [0.2 holds for minors of size strictly smaller than n. Assume that
(e {1,2,..., min{n—dy, Texe(k) +s§(k‘)}} is taken so that m,_,(k) < m,(k)—1 (the latter
condition is equivalent to requiring { > 2n — d;¥ + 1 when n > 3d;¥). We have, for every
i€ {mpu_o(k),...,m,(k)— 1},
(6.7.1)
(Ex&,0) w new new .

w(By =) = A Lo —m, (k) ~ B2 (5 —n) — 5((GR™ — maie(k))” — (Gdy™ —i)?)
(672) Z Ak7%d2ew_i - %(%d}g - n)

Later, we will refer (6.7.I]) as the strong estimate and (6.7.2]) the weak estimate.

Proof. Here the second inequality follows from Proposition 2.19. We now prove the first one.
Recall that det (UT(¢ x €)) , 1s a Z-linear combination of

det(Li(I x J)) - det(UT((¢ = 1) x (£ J))
over subsets [ C ¢ and J C J¢ye of cardinality £. Consider the following Taylor expansion
in Flw — wg]:
det(Ly(I x J)) - det(UT((¢ — 1 « .
et (Li( )) - det (UT((¢ — 1) x ZA@ &80 (0 — )

(6.7.3)
gn—f,fc(w> i>0




comparing to (6.6.3), we did not multlply the left hand side with pz(des(©)—des(©) . G (WE).
As vy(g,_pp(wr)) = Ak,%dzcw—mn,g(k) 2 (zd;;ew mn_g(k)), to prove condition (6.7.1]), it
is enough to show that

(CxE0,T) k=2
(674) 'UP (Ak,l ) Z A ldncw— 7Z(k? - A, 7%dzew_mnfl(k) _I_ T ‘ g

— 3 (GG = mo(k))? = (3™ — 1)) + 5(deg(¢) — deg(€)).

(Here we secretly used the condition that m,,_,(k) < m,(k) —1.)
Using the notation from Proposition £.4(2) to write

det(UH((C = 1) x (€ = 7)) /g, i(w) = 3 at D — ),

then Proposition [5.4)(2) and the inductive assumption of the lemma shows that

(C-D)x(E~T))
vplags ) = A aapen o) — A

ke, Ldnev —m,, (k)
— %( —deg(¢ — 1) +deg({ — J) + (%dﬁew — (k) — (%dﬁew — 1)2)
Therefore, to prove (G.7.4]) and hence the lemma, it is enough to show that

(6.7.5) vp(det(Lu( x J))) = 552 - €+ 5 (deg(C) — deg(€)) — 3 (deg( — 1) — deg(€ — 7))
= 2.0+ L(deg(I) — deg(J)).
Write J = J' U J” with J' = Jﬂdliw. For each & € J', write £ := d}¥ + 1 — £ € ( (since
£ € Jeg) Define I' := {§°P | £ € J'} and " = I\I'. Then the {th column of Ly (I x J) has
only one nonzero entry at (£°P, £), which is p®8€® as introduced in Notation 6.1l So

det(Li(1 x J)) = peer deseer . det(Ly (1" x J")).

Note that for each £ € .J', there is a tautological equality deg egor = k—

So ([6.7.5) is equivalent to the following inequality

(6.7.6) vp(det(Ly(I” x J"))) > 52 4" + L(deg(I") — deg(J")).

But this is clear as every element & € J” satisfies deg e > k—2;s0 k_z#J” < 1 deg(J"), and
every entry of UT(I” x J”) in the (’s row belongs to pz ) O(w/p) by Proposmon B.2 so

its evaluation at w = wy, belongs to pz 3 deg(ec) ), (622.0) clearly follows from this weak Hodge
bound estimate. The lemma is proved. O

+1(deg ecor —deg eg).

6.8. Proof of Theorem . We are now ready to start the proof of Theorem [5.2] by
induction on n, that is, we assume that Theorem [5.2] has been proved for all minors of size
strictly smaller than n, and we hope to prove Theorem for all n x n minors. The case of
n = 1 has been handled in § 5.3

We quickly recall the setup: we have fixed a relevant character ¢ (and suppressed it from
all notations), an integer n > 2, two finite subsets ¢ and £ of cardinality n, and an integer

k = k. + (p — 1)k, such that m, (k) # 0. The elements B,i%xé) fori =1,...,m,(k) —1
are defined in Notation by the Lagrange interpolation of det(UT(¢ x §)) along g, (w)
(after an appropriate normalization), or equivalently determined by the Taylor expansion of
det (UT(¢ x §)) as a power series in E[w — wy]. We will prove inductively the following.
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Statement 6.9. Keep the notation as above. For every i < m,(k) — 1 and every { €
{0,1,..., min{n—d", TCXg(]{?)—i-Sé(l{Z)}}, such that my,,_¢(k) < m, (k) (which, when n > Zd}"
is equ1valent to requiring that ¢ > 2n — d}¥ or £ = 0), we have

(6.9.1) Up(B,%ng)) > Ak,%dgeW—i _ %(%d}cw _ n)

Then condition ([G.6.2]) or equivalently Theorem is the special case of Statement
when ¢ = 0.

For the rest of this section, as k is already fived, we will write r¢¢, s¢, and me¢ for re ¢(k),
se(k), and me¢(k), respectively. - N N

6.10. First stab at Statement Definition-Proposition B.21] says that det(UT(¢ x £))
and more generally every det(UT(¢ x€)), is divisible by (w — wy) O rexe e iy Blw —

wg]. So if i < n —di" — rece — s B(CXE “ = 0 and the corresponding condition (6.9.1])
automatically holds.

Now consider the next easiest case when i = n — df — r¢exe — 5¢ = mexe. We may assume
that i > 0, otherwise there is nothing to prove. In this case, mn:?“g*xs—;s (k) = mexe(k) = 1.
So in the particular case when ¢ = r¢y¢ + S¢, the weak estimate (G.7.2) exactly gives (6.9.1)).
Now we assume that ¢ € {0,...,7cx¢ + s¢ — 1}. Applying Lemma to the case when

Jo = r¢xe + 8¢ — 1, we deduce that

(U x ), = ("4) aer(Ulic < )

mod (w — wy,)"

l

Comparing the coefficients of (w — wy,)?, we immediately deduce that

(CxE,0) Texe + 8¢\ o (CxErexetse)) ELD _ w
(B = (9 B B e - 20 - ).

This proves Statement in the corresponding situation.

Texgtse

Since the situation in general is more complicated, we consider another case when ¢ =
Mexetl =n—di' —rexe—se+1, to illustrate the new phenomenon by spelling out all the terms
involved. First of all, in the special cases ¢ = Texe + S¢ and ¢ = Texe + S¢ — 1, Statement [6.9]
just restates the weak estimate (6.7.2]). So we assume below that £ € {0, ..., 7exe + s¢ — 2}
We apply Lemma [6.4to the case when jy = r¢xe + ¢ — 2 to deduce that, modufo Ew —zuk)i+1

Jo+1 4 Jo+ 2
det (UT(¢ % §),= ( ’ ¢ )det(UT(g X §))j0+1 — o=t 1)< i ¢ )det(UT(g X §))j0+2'
Dividing both sides by p3(des(©)—des(©)) Gy (W) /9, _y j(wr) and further by (w —wy)" (to kill
the auxiliary powers), we arrive at, modulo (w — wy)?,
(6.10.1) BI(C%X_%E) i B(CXU)(
_ (jo + 1) gn_j0_1,z;(w)/9n_jo_1,z;(w ) (B(Cxﬁ,Jo+1) n B(C><5Jo+1)(w B wk))
( I (W) /Gy (W) bt ot
: Jo + 2\ Injo—2,6 (W) Gr—jo—2i(Wh) 1 _(cxeot) | L (CxEo+2)
¢ In—i(W)/ Gy (W) mt e
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Suggested by this, we consider the following.
Notation 6.11. For every j > 0, we write the following power series expansion:

. gn_j,k(w)/gn_j,lé(wk)
AL o) = = T, o)

Comparing the (w — wy)-coefficients in (6.10.1]), we deduce

. | . |
BEEY _ (Jo + ) BEE _ () (Jo + ) B&+)

= 1+77j,1(w—wk)+77j,2(w—wk)2+- € E[[w—wk]].

14 4

Jo+1 (CxEgo+D) . Jo+2 (¢x€.jo+2)
+ ( / )(Ujo+1,1 — 1) By T —(o—t+ 1)( / (Mjor21 — Me1) By 5 o
By the weak estimate (G27.2]), the first two terms have p-adic valuation greater than or equal
b0 Ay 1 gnew_; — $(d¥ —n). But we need to show the sum of the latter two terms does not
interfere here. Our strategy is to show that the power series n;(w) is “approxzimately” the
same as m(w)?, and thus each 7, is “approximately” equal to j - 7,1, and thus we are
reduced to prove
Jo+1

X&,J . . ‘ 2 x&,7
(6.11.2) ( , ).(j0_£+1).3,§fij”“>:(30_£+2)(j0—£+1)<]°£+ ).B,ifi_ﬁ””’,

which follows from what we just proved in the case of i = m¢x¢(k), namely

(&gotl) . (€,50+2)

komexe(k) (']0 T 2) ' Bkvmﬁxgk)’
Remark 6.12. Note that it is important to cancel major terms in different n-functions,
especially when ¢ is almost as large as £di°; in this case, the difference Ay Lgnew (1) —
Ay Lapew i R %(%dg@w — 1), yet the term n,; roughly has p-adic valuation equal to the
maximal v, (wy —wy), for all &’ running over the zeros of ¢, (w), which is about Ink/Inp. As
we will show below that the terms that do not get canceled through (6.I1.2]) have relatively
large p-adic valuation, controlled by the difference Ak,% v _(i-1) — Ay 1 gnew_j-

To implement this strategy in the special case is not particularly easier than the general
case. So we now proceed directly to prove Statement (in the general case).

6.13. Proof of Statement The proof is by induction on ¢, starting with the smallest
case i = Mexe = N—dj" —r¢xe—Se already treated in §[6.10 (and when i < mgy¢, Statement [6.9]
also holds automatically.) Now, let iy € {mexe + 1,...,m,(k) — 1}, and suppose that
Statement has been proved for all nonnegative integers i < io. We may clearly assume
that 79 > 0, as otherwise there is nothing to prove. We set

Jo ::7“§X§+s§—(io—m§x§+1):n—d};r—io—l.

Then when ¢ > jy, one can check that ig > m,_,(k) and thus Statement just repeats
(ET). We henceforth assume ¢ € {0, ..., jo}. First, we apply Lemma [6.4] to deduce that

0130) der(U(©), = S0 (T () den(U19), mod (- )
J>Jjo "



We point out that, the condition j > jo = n — d;" — iy — 1 implies that
(6.13.2) Mp—j(k) =n—j7—d =ig+1— (5 — jo) <myu(k).

Instead of using the the numbers B,%Z.Xé’j)’s to express the Taylor expansion of above in
EJw — wy], we define the following:

(6.13.3) (ZB (X869 )i) (w) =N S w—w) € Efw— .

>0 >0

Or equivalently by (6.6.3), in E[w — wg], we have an equality

det (UT(C x §)), | (xed) |
6.13.4 pides(@)—des(s) X)) = ST (i
( | 9 i(W)/ g, 1 (W) 1(w) ; ki k)

(C><€ 7) to C(CX&J')

In fact, changing to B;’ vi  1s “harmless” for the purpose of our proof.

Proposition 6.14. Fiz j € {0,...,min{n — dii", 7¢xe + s¢}} such that m,_;(k) < mu(k)
(which, when n > 1d , is equivalent to requiring that j > 2n — d-¥ or j = 0), and assume
that Statement|[6.9 holds true for all nonnegative integers i < ig, then

(B(Cxﬁj ) > Akédgw_

ko - 2G4 - n)

20
— (ng 2 k=2 (1 jlw
0 (Criy ) 2 A apev—io = 25" —n).
We temporarily assume this technical result, whose proof will be given later in §[6.18

Remark 6.15. For the rest of the inductive proof of Statement [6.9, we will only need the

analogue of the seemingly weaker version of Lemma [6.7] namely v, (C’,i%xé’z)) > A;

ldncw_i
27k
%(ldlw — n) when i > m,,_;(k). The stronger inequality in Lemma is only used to

enable transferring estimates between B,(fz 95 and C’(ng s

Lemma 6.16. For every nonnegative integer ' < ji < T¢xe + Sg, we have

Texgtse

(Cx&) g (7= =1\ (37 Alexed)
(6161) Ckn dur_j —1 = Z (_1)] 7o ( ](/) _ g/ El Ck,n—dl,;r_j(,)_l

Jr=jb+1
Proof. Applying Remark [6.5] to the case n(w) := n;(w), then ([6.5.2) implies that for every
nonnegative integer £/ < ji < rexe + 8¢, modulo (w — wy) 0= =0} in Bw — w],

(U 9), mn = S (T L) () U g), mie)

3">7h

=

([EI6.1) follows from dividing the above congruence by p2(4°8(©)=des() G i(w)/ g, 1 (wy) and

then taking the coefficient of (w — wy)" % ~Jo—1, O
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6.17. Proof of Statement [6.9] assuming Proposition [6.14. Continuing with the induc-

tive proof of Statement [6.9] initiated in § [6.13] Recall that the inductive hypothesis says

that Statement holds for all i < ig for some ig € {m¢xe + 1,...,m,(k) — 1} By the
1 (R3]

inductive hypothesis, the assumption for Proposition B.I4 holds, and thus v, (Cy5 =) >
A Ly ~ E=2(1d}¥ — n) for every j > jo by Lemma 6.7 and Proposition .14, where

Jo = Texe + ¢ — (1o — Mexe + 1). (In particular, if n > 1dk , jo > 2n — dv.)
Then using the formula (€16.1]) in the case when jj = jo, ¢’ = ¢ (and thus n—djf —ji,—1 =

(¢x€,6) (€x€,9)
Ckﬁ'o B Ckﬁ'o =

ip), we deduce that is a Z-linear combination of s with 7 > j9. Thus,

vp(C,i%?’z)) > A = k—f(%d}cw — n) By Proposition [6.14] again, we deduce that

k dl’leW
7Z . . .
B,%;é ) has the same estlmate; this then completes the inductive proof of Statement [6.9]

and hence conclude the proof of the local ghost Theorem 2.7 (assuming Proposition [6.14)).

6.18. Proof of Proposition [6.14. We now come back to prove this last missing piece for
the proof of Statement and the local ghost Theorem 2.7l We claim that if we expand

n;(w)
m(w)?

then for every ¢t € {1,...,m, (k) — 1}, setting ¢ := min{m,, (k) —t,m,_;(k)}, we have
(6181) 'Up('f]U)J) > Ak,%dgcw—(qt—‘rt) - Ak,%dgcw—[h + %((%dzow — %)2 _ (%dzl()w _ (Qt _'_ t>>2>

We first prove the statement of this lemma assuming this claim: from the definition of

CX€] in ([6I33), we see that,

= 14101 (w = wi) + g a(w — wp)? + - - - € Elw —wy],

t0—1

(Cx€,9) (Ex&,9) (CXEJ
Ck‘,io Bk: ,0 Z B ), i0—i-

When ¢ < m,_;(k) (and i < i), set ¢t := g — i so that ¢ = min{m, (k) + i — g, m,—;(k)}.
In particular, ¢ +t > ip as ¢ < m,_;(k) and ig < m, (k). In either case, we have

(3] k=2 (1 jlw
Up(Byy = MGrio—i) 2 Argapee—s = 7 (37 =) + (Desapv—grn = Drtap—a,)
k=2 (11
> Ay rgen s — (5 — 1) + (D papew iy — Dy 1apew i)
_ k=2 (1 glw
= Asger—iy — (347 — )
Here, for first inequality, we used Statement [6.9] to estimate v, (B (£x69) ) and used (6181

(but forgetting the term % ((3dp™ — ¢;)* — (3di*™ — (¢ + t))?)) to estimate 7;);,—;. The
second inequality follows from the convexity of A, and that ¢, +t > 4.

When i > m,_;(k) (and i < iy < my(k)), we need the strong estimate in (6.7.1). Set
t = ig — ¢ and in this case,

¢t +t = min{m, (k), m,_;(k) +io — i} = m,_;(k) + iy — i <.

In this case, we have m,,_;(k) = ¢ < ¢ +t < iy < m, (k).
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By the stronger estimate (6.7.1]) and (G.I81]), we have
(S3F)
Op(Bri = o)
> (D g — 3G = mass (1) = Gl = 0%) = 522 (3df — m))
(

1 1 _mew 2
(Bt = Dt + HEE™ = my(0)°

= A e (o~ S = (@ 0)° = G —i)?) — 2 (3" — )
2 Ay e~ HGA = 0+ )7 = G — o) — 522 (3 = )

k)7§d§;ew—(qt+t
k—2 Iw
> Ay rgev—iy = 7 (38" — 1),

where the last inequality follows from Proposition 2.191 The lemma then follows from the
two estimates above.

It remains to prove the claim, namely the inequality (G.I8T]). By the definition of 7, in
Notation [0.11] we may rewrite

w — wy, \ Mn—i (k) =mn (k)
nj(w) = H <1 + 7) ,

Wg — Wy

‘ — M —j (k") =mn (k") =5 (mn—1 (k") —mn (k"))
(6.18.2) ) (14 =)™ 1
Wi — Wy
k'=ke mod (p—1)
k' #k

=14 )1 (w —wg) + ngy2(w — wk>2 + -
Set my, ; (k') = my,_;j(K") — m, (k') — j(myu—1(k") — m,(k")). The weight k' term in the

n; (w)
i (w)?
n' + m, (k') for n’ € [n— j, n] fails to be linear, or equivalently, at least one of d}¥, d}y — d3%

or %d}j,v belongs to (n — j,n). We call those weights k" bad weights.
The upshot of the proof is the following: (G.I8.2) implies that for ¢t € {1,...,m,(k) — 1},
N, is the sum of terms of the form

(6.18.3) ﬁ %7

where each £/, is a bad weights, satisfying certain constraints: if m,, ;(k.,) > 0, the multiplicity
of k], appearing in (6.I83) is less than or equal to m,, ;(k.); if m, ;(k,) < 0, the expansion
(6.18.2)) is considered as a Taylor expansion; so there is no constraint in the multiplicity
of k!, appearing in (6.I83]). Roughly speaking, we will prove that, among all these bad
weights, there is at most one k, such that v,(wy — wy, ) is extraordinarily large. When
we cite Proposition later, most of the v,(w, — wy,) will be controlled by the term

-2 - LW + IJ and the exceptional wy, corresponds to the distinguished weight £/,
there in.

product expression of is not 1 (or equivalently m,, ;(k’) # 0) only when the function
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We now make this proof more precise. Write n* := n if n < 3d)¥ and n* = d¥ — n if
n > 1dp¥. In particular, m,-(k) = m, (k) and n* < n. From the above discussion, we reduce
the proof to the following:

let S = {k/Ja=1,...,t} be a set of bad weights (not necessarily distinct) satisfying that
if m,, ;(k!,) > 0 for some a € [1,t], the multiplicity of £/, in S is less or equal to m,, ;(k.).
Then we have

t

1 1 new 1 new
(6184) Z’Up(ﬂ)k_wk&) S Aky%dzew—%_Ak,%dzew—(4t+t)_§((ﬁdk —qt>2—(§dk _(qt_'_t))Q)
a=1
Suppose that there exists some « € [1,t] such that either Jr OF d}gv,z — dyy belongs to

n*, d¥ —n*). Without loss of generality, we can assume a = t.
k
1) When t < m, (k) — m,_;(k), we have ¢4 = ¢4—1 = my,_;(k). The number s =
J J

T — gy — t + 1 satisfies 3d)Y —n* < s — 1, and hence [n*,d}Y —n*) C [1d}" —
(s —1),3d}Y + (s — 1)]. Proposition ZI9 (with ¢ = ¢/ = s —1 < (" = s) implies
V(W — Wi ) < Ap s — A g1 — 2(s2— (s —1)?). To prove , it suffices to prove
w( t) , ; 2 p p

(6.18.5)

= 1 1 new 2 1 new 2
Z%(wk—wk;) < Ak,%dgew—qt,l_Ak,%dgeW—(qt,1+t—1)_§((§dk —qi-1) _(idk —(g—1+t=1)) )
a=1

(2) When t > my, (k) — m,_;(k), we have ¢ = m,,(k) —t and ¢;—1 = ¢ + 1. The number
s = 2dp™ — g, satisfies 1d}¥ —n* < s — 1. A similar argument as in (1) implies that

we can reduce to prove ([6.I8.7).

Repeating the above argument, we can assume that none of the bad weights £/, in (6.18.4))
satisfies that either dj or d}f‘z — dj; belongs to [n*, ¥ —n*).

1 _mew __
Set v == Lln((pﬂ)(?d’“ «) 4 1]. We first remark that if some £/, satisfies %d}f‘z € (n—j,n),

Inp

then |k}, — ki| < j. By our assumption m,_;(k) < m, (k) we always have $dp" — g, > 1
and hence v,(wy — wyy ) < 1+ Hﬁ—;j <7.

(1) If vy(w — wyy,) < 7 for all @ € [1,¢], since (n — j,n) C 3diY — (3™ — @), 3d)" +
(3d7° —q;)], we can apply Proposition 219 to | = 1di® —(q+t) < I = 1" = 3d}*" —q,
and k' = k!, for all a € [1,], and have

t
1
Z Up(wi —wyy,) Sty < Ak,%dgew—qt - Ak,%d;;eW—(th) D) ((

a=1

1
2

1

dzew _qt>2 - (2

4™ = (q:+1))%).
(2) If vy(wg —wy) > v+ 1 for some k' € S, we assume that the multiplicity of &’
inSis M > 0and k' =k, for a € [t — M + 1,t]. It follows from Remark
and our assumption on S that &’ is the unique element in S with the property
vp(wy — wy) > v+ 1. Moreover we have that either dif or di — d belongs to
(n — j,n*) while 3d¥" ¢ (n — j,n).
When d} € (n—j,n*), we have d;%’ > n and hence m,,_;(k') = 0,m, (k') = n—d}
and my,_1 (k") = m, (k') — 1. It follows that m,, ;(k¥') = d}y —n+j > 0 and
1

1 . L oew
(6.18.6) §d}y —dY = §d}€w —n4j—mu (k) < §dk —q — my (K.
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When df —dj¥ € (n—j,n*), we have d}¥ < n—j and hence m,,_;(k') = &}y —d} —
(nd—j) > 0 and my,—1(k") = m, (k') = 0. It follows that m,, ;(k') = &y —d}¥ — (n—j)
an

(6.18.7) L

1 . L oew
id}f — (dy —df) = §d}fw —n+j—mu (k) < idk — g — mn (K.

Let £ = 1dp™ — (¢ + 1), (" = 2dp™ — ¢, and ¢/ = 0" — M € [(,¢"]. It follows from
([6I86) and ([GI8T) that either dif or dp — dj belongs to [$diY — ¢, 3di¥ + ¢']. We
apply Proposition to £, V', 0" and k', and have

t

1
vp(wy —wiy ) < (E=M) -y + M -vy(wy, —wiy) < Dppr — Agy — 5(6”2 —?)
a=1
1 1 new 2 1 new 2
= A 1anew g, = By 1anew (g, 40) — 5((5% —q)" - (idk — (@ +1))?).

This completes the proof of the claim and thus Proposition [6.14] and Theorem .71  [J

7. TRIANGULLINE DEFORMATION SPACE AND CRYSTALLINE SLOPES

In this section, we recall the triangulline deformation space defined by Breuil-Hellman—
Schraen [BHS17] and then compare it with the eigenvariety attached to Paskunas’ universal
deformation of representations of GLy(Q,) [Pal3]. This together with the known p-adic
local Langlands correspondence for GLy(Q,) allows us to transport the local ghost theorem
to results regarding slopes on triangulline deformation spaces.

The argument in this section is relatively well known to experts, but some of the awkward
arguments are inserted to treat central characters for completeness.

Notation 7.1. As in previous sections, let p be an odd prime, and let E, O, F be coefficient
rings as in § For a formal O-scheme Spf(R), let Spf(R)"® denote the associated rigid
analytic space over E. We will later frequently write £’ to mean a finite extension of E,
typically in the situation of referring to a point of Spf(R)"& over E’; we will freely do so
without defining E’, and in such case, we use O, @’, and [’ denote the corresponding ring
of integers, the uniformizer, and the residue field, respectively.

For a crystabelian representation V' of Galg, (with coefficients in E'), write Dperys(V') for
the limit of the crystalline functor for Q,(,n) with n sufficiently large.

We normalize the local class field theory so that the Artin map Q — Galak; sends p to
the geometric Frobenius. In what follows, we will practically identify characters of Q, (with
values in O* or F*) and characters of Galg,.

We use the following notations for local Galois representations:

e For a € F* or O, write ur(«) for the one-dimensional unramified representation of
Galg, sending the geometric Frobenius element to a.
o Let w; : Galg, — Gal(Q,(u,)/Qp) = F denote the first fundamental character of
Gal@p.
o Let Xeya : Q) C Galak; — Gal(Qp(pp>~)/Qp) = Z) denote the cyclotomic character;
its reduction modulo p is precisely wy.
Recall A := [, the isomorphism O[(1 + pZ,)*] = O[w], and the universal character

XEfn)iv A X 2 — Ow]©* associated to a character e of A? from § 2.4(1). For each ¢, call
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WE) = (Spf O[w]®))" e the weight space labeled by e. Put W := [J, W©); it parametrizes
continuous characters of A x Z, . Write Xuniy A X Ly — O, for the universal character.
Put W, := (Spf Ow])"8, parametrizing continuous characters of (1 + pZ,)*.

Let W := (Spf O[(Zx)?])" be the rigid analytic space parametrizing continuous charac-
ters of (Z))*. There is a natural isomorphism

~ —~

W X W > W
(x.n) — ((,0) = o= x(6, ) - p(adw(@d) ™) for a,é € Z).

(7.1.1)

Here, we used x(8,q) as opposed to x(a,8) because our later convention uses the lower
triangular matriz local analytic Jacquet functor. The additional factor a at the beginning
indicates a twist by cyclotomic character in our convention. Under this isomorphism, we
may view WV as a subspace of W where the universal character is trivial on {1} x (1+pZ,)*;
and at the same time, we have a projection map pry; : W — W, along W.

Later, we often consider a rigid analytic space X and the morphism idy X pry, : X' X W —
X x W; we write pry, for it when no confusion arises.

Notation 7.2. For the rest of this paper, we use 7, : Galg, — GL2(F) to denote a reducible
and generic residual local Galois representation

_ (ur(ay)wotttt * . Cal L.(F
Tp — ( O U_r(@2)wll’ . Ga Qp — G 2( )
witha € {1,...,p—4},b€{0,...,p— 2}, and @y, @z € F*. We say 7, is split if x = 0 and
nonsplit if x # 0. The condition on a ensures that there is a unique such nontrivial extension
when 7, is nonsplit, because H' (Galg,, ur(@; '@; )w™!) is one-dimensional.

We often write p : Iy, = GLa(IF) for the corresponding residual inertia representation:

a+b+1
g * 7£b 0

e (nonsplit case) p = (w , where x is the unique nontrivial extension (up

0 wy
to isomorphism) in the class H' (Ig,, w{™") " = H'(Galg,,w{™"); and
o (split case) p* = w1 @ Wb
We occasionally use a companion representation p’ for the same construction with parameters
a+b+1
(a,b) changed to (a',b') = (p — 3 — a,a+ b+ 1), or equivalently, o’ = <Cil7é 0 u(;)b)

These notations p, p' and p* are fixed throughout the rest of this paper.

7.3. Triangulline deformation spaces. Let T denote the rigid analytic space parametriz-
ing continuous characters of (@;)2, or more precisely,

(7.3.1) T = (G x (Spt Z,[Z])"8)” = (G'#)2 x W,
where G'® = U, cy Spm (Qp(ﬁ, %n>) is the rigid analytic G,,. The point on 7 associated

to a character (01,02) : (Q))* = C is (01(p), 02(p), 01lzx . 02|z ). There is a natural weight

map wt : T — W. Define Treg to be the Zariski open subspace of T, where neither ¢, /d2 nor
d2/01 is a character of Q) in the following list:

z+— 2" and x — 2" Xcya(z) With n € Zsg.
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Let 7, : Galg, — GLy(FF) be a residual Galois representation. Let REP denote the framed
deformation ring of 7, parametrizing deformations of 7, into matrix representations of Galg,
with coefficients in noetherian complete local O-algebras. Then the Krull dimension of RFD,,
is 9. Let V;, denote the universal (matrix) representation over R .

Let Xg denote the rigid analytic space over F associated to the formal scheme Spf REP ;
it has dimension 8. Write V5. for the associated universal representation over X,_E. For a

point x € X,_E over I, write V, for universal Galois representation of Galg, over £’ at .
Following [BHS17, Definition 2.4], we define the triangulline deformation space as follows.

Definition 7.4. Let Ug’frreig denote the set of closed points (z,d1,d2) € X,_E X Treg (With some

residue field E’) such that the associated (g, I')-module D!

rig(Vz) sits 1n an exact sequence

(7.4.1) 0— Rp(6) — DI

rig(VﬂU) — RE’(52) - Ov

where Ry is the Robba ring for Q, with coefficients in E’; see [KPX14, § 6] and [Lil5] for

the notation Rpr(—) and related discussions on triangulations of (i, I')-modules. .
The triangulline deformation space of 7, denoted by XFE s the Zariski closure of U™

TpoTeg
inside the product A7) x T.

Proposition 7.5. (1) The space X2 s g subspace of Xg x T consisting of points

(z,61,02) for which det(Vx) corresponds to 0105 under local class field theory. More-
over, set Xg’m’o = X,—f’t“ﬂ (X, x (GH8)2x W), then (TLI) induces an isomorphism

Xg,tri,o x WO y Xpo,tri
((Vz, o1, 52),7]) —— (Ve ®n,00®1,0,@7),

which is compatible with projections to the factor (G}#)*. .
(2) The set U%;ilg is the set of closed points of a Zariski open and dense subspace U,%’,irelg
of Xg’m. The space Xg’m is equidimensional of dimension 7.

Proof. (1) obviously holds for points in UEP ﬁiig and hence for X,-g ™ (2) is proved in [BHSIT,
Théorem 2.6]. O

The main theorem of this section is the following.

Theorem 7.6. Assume that p > 11. Let 7, : Galg, — GLo(IF) be a residual local Galois
representation as in Notation [7.0 with 2 < a < p — 5, and let p be as defined therein.
Let Xg’m be the triangulline deformation space defined above. Let x = (x,01,02) be an

E'-point of Xg’m. Then the character € = d|a X di|a - w™t is relevant to Fp|1Qp. Put
Wy 1= (5152_lxc_yld)(exp(p)) — 1 (for the image of x in VW under pry, ).

(1) Ifv,(01(p)) = —vp(02(p)) > 0, then v,(d1(p)) is equal to a slope appearing in NP (G(E) (ws, —)).

pi

(2) Ifvp(0i(p)) = 0, then either e = w® x W, or e = W x W1 and Ty, =~ p*.
(3) If vp(61(p)) = &£ — 1 and O1lgx = Xlgy?;}52|zg for some integer k € Zs, then §;(p) =
k=2
p*262(p)
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Conversely, fix characters 61|yx and da|zx such that € defined above is relevant to Tplyg, .
Then every nonzero slope of NP (G(ﬁa)(w*, —)) for w, = (5152_1X(;101)(6Xp(p)) — 1, appears as

v,(01(p)) at some closed point x = (x,81,02) € X,—g’tri (for some continuous characters 01,0y
of @ extending the given b1|zx and dafyx ).

The proof of this theorem will occupy the rest of this section, and is concluded in § [.22]
We quickly remark that case (1) corresponds to the case when V), is reducible, and case (3)
mostly concerns the case when V), is semistable and noncrystalline (after a twist).

Temporarily admitting this theorem, we first deduce a couple of corollaries that partially
answer a conjecture of Breuil-Buzzard—Emerton on crystalline slopes of Kisin’s crystabelian
deformation spaces and a conjecture of Gouvéa on slopes of crystalline deformation spaces.

T univ be as abOVe. Let
% = 1 X Py : (25)2 — E* be a finite character, and let k = (ki, k) € 72 with ki < ky
be a pair of Hodge Tate weights. (In our convention, Xy has Hodge Tate weight —1.)

In [KisO8], Kisin proved that there is a unique O-flat quotient RE,, Yo RFD,, , called the

Kisin’s crystabelian deformation ring, such that every homomorphism z* : REP — F' factors

through RE P25t and only if V), is potentially crystalline with Hodge-Tate weights (k1, k2)

P

and the action of Iy, on Dyerys(V,) is isomorphic to ¢y @ 1Ps. (Here Dperys(—) is defined
in Notation [[Jl) When REE@

P

7.7. Kisin’s crystabelian deformation space. Let 7,, RQP, and VU

is nonempty, each of its irreducible component has Krull
. L . - . 0.k, Ok, rig .
dimension is 6. Moreover, the associated rigid analytic space A7 L (Spf Ry f)ng is

smooth of dimension 5 over FE.

Corollary 7.8. Assume that p > 11. Let 7, : Galg, — GLy(F) be a residual local Galois
representation as in Notation[7.4 with 2 < a < p—>5. Let v and k be as above, and let x be

an E'-point of Xs’ﬁ’f. Let o, be an eigenvalue of the ¢-action on the subspace of Dperys(Vy)

where Gal(Q, (= )/Q,) acts through 1. Write w, := (15 ") (exp(p)) exp(p(ko—k; —1))—1
(for the image of x in W under pry, ). Then the character € = y|a - w™*2 x Wy |a - w K171 s
relevant to 7|1, , and

(1) if vp(ay) — k1 ¢ {0, ka—k1}, then it is equal to a slope appearing in NP (G%E) (e, —));
(2) if vp(ay) € {k1,ka}, then V, is reducible; and
(3) in the special case 1 = 1y, we have vy(ay) # 258 — 1.

Conversely, every slope of NP (G(;) (ws, —)) belonging to (0,ky — k1) (but not equal to

’”2;”“ — 1 when 1 = 1) appears as the vy(a,) — ki at some point x € XS’E@.

Proof. If vy(c,) € {k1, k2}, the standard p-adic Hodge theory implies that V), is reducible.
We henceforth assume that we are in situation (1), i.e. v,(a,) & {k1, ka}. This essentially

follows from Theorem because all crystabelian representations are triangulline. More

precisely, let x € Xs ’E’f(E’ ) be a closed point. By possibly replacing E’ by a quadratic

extension, the action of crystalline Frobenius ¢ and Gal(Q,(pp<)/Qp) on Dyerys(Vy) have

two (generalized) eigencharacters: (aq,v1) and (s, 1), with 11,1 in the data defining the

deformation space and ay,ay € E'*. We can also always assume that («q,1)1) is a genuine
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eigencharacter. Define characters ¢; : Q — E"™ with i = 1,2 by

8i(p) =p e, Oilzyx = x ™My,

Standard facts of Berger’s functor provides a triangulation
(7.8.1) 0= Re(61) = Dyig(Ve) = Rpr(02) — 0.

Indeed, if this fails, it must be that the eigenspace for (aq,1;) agrees with FilkZ]Dpcrys(Vx);
then the admissibility condition for Dyeys(Vy) forces v,(ay) = ko, contradicting our assump-
tion.

Now, (Z.81]) upgrades z to a point (z,d;,d2) of X,—g’tri, for which v,(6:(p)) = vp(aq) — k1.
(1) now follows from Theorem [T.6] with

(7.82)  wy:= (6105 'Xgye) (exp(p)) — 1= (¥n1)3 ") (exp((p)) exp(p(ka — k1 — 1)) = 1.

[t remains to PTOVe (3). Assume that 1)1 = 1. Suppose that the subspace ) of X, D’M’

where v, (a,) = k2 —1 is nonempty. Then this is a rigid analytic subspace, so in partlcular

dim) = 5. For each €Y, bl = chdk152|2x Theorem [7.6(3) implies that 6;(p) =

pF2=k1=25,(p). This means that ) is confined in the subspace where the ratio of two Frobenius
eigenvalues on Dyeys(Vy) is precisely p. Let  be a point of Y. The dimension of the tangent

space of X,—S B at v is equal to 1+3+dim H}(Galg,, Ad(V,)), where 1 comes from infinitesimal
central twist of V, by an unramified representation, 3 comes from the framing variables, and
the one-dimensional H}(Galg,, Ad(V,)) corresponds to varying the ratio of two Frobenius
eigenvalues. But our earlier discussion shows that the ratio of two Frobenius eigenvalues on
Dperys(Vy) is fixed to be p. (3) is proved

Conversely, given a slope of NP (G )(w*, —)) belonging to (0, ks —k1) (and not being equal

to k22kL 1 when 1, = v,), Theorem [7.6 defines a triangulation (Z8.1]) with V, having the
reductlon 7. The slope condition implies that (Z.81]) belongs to the type . in [Colm08].
So V, is crystabelian. O

Remark 7.9. (1) We omitted a full discussion when «, € {ki, ko}, which is a standard
exercise in p-adic Hodge theory.
(2) (Possibly up to replacing E by a degree 2 extension when 11 = 1)y), it is possible

embed X— P into X, a5 a rigid analytic subspace, but this construction is a little
messy to present in the ordinary, critical, or Frobenius non-semisimple cases. We
content ourselves with a pointwise description and leave the “global” argument to
interested readers.

The following answers positively a conjecture by Breuil-Buzzard—Emerton, and a conjec-
ture of Gouvéa, when the residual Galois representation is reducible and generic. We refer to

§ L8 and § [Tl for the discussion on their history, and Remarks [[LT0 and [L13] for comments
on prior related works.

Corollary 7.10. Assume that p > 11. Let 7, : Galg, — GLy(F) be a residual local Galois
representation as in Notation[7.Q with 2 < a <p—>5. Let Y, k, x, a, be as in Corollary[7.§
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(1) If m denotes the minimal positive integer such that 111y " is trivial on (1 +p"Zy)*,

then
S+Z)UZ h =1
vp(az)e{(2+ ) when m ,

(2) If th1 = oo, then
ko —ki —1—min{a+1,p—2—a}
p+1 '

Proof. (1) When m = 1, this follows from Corollary [I.§ and Proposition 2.18(6). When

W, and the slopes of NP (G(;) (ws, —)) are precisely v,(w,) -

(deg gf(f)(w) — deg g,(f_)l(w)) for some n € N with multiplicity one, by the last line of
Definition-Proposition Z12(4). In this case, (1) follows from this and Corollary [.8

(2) If ¢4 = 1y, then v,(ay) — ki is a slope of NP (G%E) (Why—k1, —)) which is not N
By Proposition 2.I6/(3)(4), either v,(a,) — k1 belongs to [0, k2_k1_1_m;i{1a+l’p_2_a}}, or (ky —
ki —1) — (vy(ay) — k1) = ka — 1 — v,(a,) belongs to this set. O

The rest of this section is devoted to proving Theorem [7.6] which is completed in § [7.22]

vp(ay) — k1 or ky — 1 —wv,(ay) belongs to [0,

m > 2, vy(w,) =

7.11. Reducing Theorem to the nonsplit case. We first show that Theorem for
7, nonsplit implies the theorem for 7, split. This is essentially because, at least pointwise
for an irreducible triangulline representation, there are lattices with different reductions.

To make this precise, we first note that the character € = da|a X 01|a - w™! is always
relevant to fp|1Qp by considering the detV,. Next, by twisting all representations by w o w; b,
Galg, — F; — O, we may reduce to the case when b = 0.

Now suppose that Theorem holds for nonsplit residual local Galois representations.
Let 7, be a split residual local Galois representation as in Notation[l.2l with * = 0 and b = 0.
Then there is a unique nonsplit residual local Galois representation 7, which is an extension

of ur(ay) by ur(a;)w*!. In particular, 7|, ~p = (“’(foﬂ *#0) as in Notation

Let z = (z,01,0d2) be an E’-point of Z/I,Pp ’frfg . (By Zariski density, it is enough to consider
points in the regular locus.) We separate two cases.

(1) If V, is irreducible, then it is well known that, after possibly enlarging E’, V, admits
an O'-lattice Vg such that V; /@'Vy ~ . It follows that 2’ := (Vy, 01, 02) also defines a point
on Z/{S, ’;reig. Theorem for 2’ implies that for Theorem for x.

(2) If V, is reducible, i.e. there exists an exact sequence 0 — V7 — V, — V, — 0 of
representations of Galg,. There are two possibilities:

(2a) If 91(p) € O™, then (T.4.1]) produces an exact sequence of Galois representations. In
particular, Rz (d;) is isomorphic to either Dy, (V) or Dy (V). This will imply that
Gala X 01a-w™h =1 x w® or w*! x w™!, proving (2a).

(2b) If v,(d1(p)) > 0, this falls in the case of .2 per classification of triangulline repre-
sentations in [Colm08| §1.2]. In particular, v,(6;(p)) = w(6:0; ") € N, where

-1
vez; 108(Xeyer (7))
y—1
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is the (negative of) generalized Hodge-Tate weight. (In [Colm08], Colmez calls
w(016, ") the Hodge Tate weight because in his convention the cyclotomic charac-
ter has Hodge Tate weight 1.) Put k := w(d;6, ') + 1. In this case, there is another
triangulation

0 — t" "Ry (02) — Dug(Vs) = " "R (61) — 0,

which produces precisely the exact sequence 0 — V7 — V, — V, — 0. This in
particularly shows that

g = 52|A X (51‘A . w_l = w“_k+2 X wk_2.
We need to show that, k — 1 is a slope in NP (G (w*, —)), (by directly exhibiting
such a slope). There are two subcases we need to consider.

(2bi) If 61](14pz,)« = O2|(14pz,)*, then w, = (51551X(jy£1)(exp(p)) = wy. We invoke the com-
patibility of Atkin—Lehner involution and p-stabilization with ghost series in Propo-
sition ZT6(2)(3): the di¥(wa*+2 x 1)th slope of NP (G(f) (wr, —)) is precisely k — 1
minus the first slope of NP (G(—E”)(wk, —)) with s.r =k—2—a—(k—2—a) =0. So

p
the latter ghost slope is 0, and thus the former ghost slope is k — 1, i.e. v,(d1(p)) is

a slope of NP (G (wk, -)).
(2bii) If the minimal positive integer m such that 01| 4pmz,)x = d2|( (42, satisfies m > 2,

then we are in the “halo region”; in particular, v,(w,) = m In this case,

Deﬁnition—Proposition (4) implies that the nth slope of NP (G )(w,, —)) is just
W (deg g ( ) — deg gn_l( )). We compute this explicitly using the formulas
in Definition-Proposition 212(4) with s. = {k —a — 2},

e Ifa+s. <p—1,note that p™ '(k—1)—1=k—-2=a+s. mod (p—1). So for

N = ;) o2 41 we have el = e;2#" ' k=D=1  Moreover, we have

PPk 9 gl — (a+2)={k—2)—{k—2—a}—a=0 (mod p).

p—1
This implies by (2.12.1]) with n = 2N —1 and the “otherwise case” (as 2N —2s, =
2a 4+ 4 (mod p)),

deg elf)

2=yt — 1)k - 1),
p

So the 2Nth slope of NP (G(;)(w*, —))isk—1.

o Ifat+s. > p—1, the argument is similar. Still, we put N =
m— 1(k 1

deg gé‘?,(w) — deg gé’j&_l(w) = deg eéi& — {

p Nk—1)—1—{k—2}
p—1 +1

but eé‘aj\),_l = e3P . We have a similar congruence
N+1—-{k—-2—-a}—(a+3)={k—-2}—{k—2—a}—a+3=p=0 (mod p).
This implies by ([2.12.2]) with n = 2N — 1 and the “otherwise case” (as 2N — 1 —
2s. =2a+5 (mod p)) that
d (e)
SRS 2y 1) (k- 1),
p
This means that the (2N — 1)th slope of NP (G%E)(w*, —))is k—1.
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Up to now, we have checked (1)—(3) of Theorem Conversely, if 01],x and 02|,x are given
as in Theorem Put w, := (51551nglcl)(exp(p)) —1. Let X be a slope of NP (G%E)(w*, -)).
(1) If A > 0, Theorem for the nonsplit representation 7, produces an E'-point 1’ =
(',01,09) € X,Ep’tri with v,(61(p)) = A. Reversing the argument in (1) gives the needed

point of ng s,

(2) If A = 0, we must have ¢ = 1 x w*. We construct a point on XFE 1 directly. Lift
a; € F* for each i = 1,2 to 0;(p) € O*. Then Rg/(01) B Re:(d2) is the (¢, T')-module
of 61 @ 02, which reduces to 7, automatically, with the correct slope and characters.

This completes the reduction of Theorem to the reducible, nonsplit, and generic case.

Remark 7.12. (1) Supposedly, the proof of (2bii) should also follow from an analogous
compatibility of Atkin—Lehner involution for ghost series with wild characters. We
leave that for interested readers.

(2) It is a very interesting question to ask whether the above correspondence of points
between Z/{Ep ’;fg and L{S ’;fg can be made “globally” at the level of rigid analytic spaces
or even at the level of formal schemes. This seems to be a rather subtle yet very
interesting question.

Assumption 7.13. In view of § [[.IIl we assume that 7, is nonsplit for the rest of this
section. In particular, 7|, ~ p. We write 7, : Galg, — GLa(F) as

(7.13.1) = (%1 *;0) with ¥, = ur(@;) - w1 and ¥, = ur(as) - wl.
7.14. Paskuinas modules. To relate the study of local ghost series with the triangulline
deformation space, we make use of the Paskinas modules in [Pal3] for deformation of p-
adic representations of GLy(Q,). As [Pal3] mainly considers the case with a fixed central
character, some of our constructions later may be slightly awkward. Similar arguments to
remove central character constraints can be found in [BD20, Appendix A] and [CEGGPSIS].
Let ¢ : Galg, — O be a character that induces a character of Q' by local class field theory.
e Let Modgaﬁ@p be the category of profinite O-modules V' with continuous Galg,-
actions.
o Let € be the category of profinite O-modules M with continuous right GL2(Q,)-
actions for which
— the right GLy(Z,)-action on M extends to a right O[GL2(Z,)]-module structure
on M, and
— for every vector v in the Pontryagin dual M"Y := Home (M, E/QO) equipped with
the induced left GL2(Q))-action, the left O[GL2(Q,)]-submodule generated by
v is of finite length.
e Let € be the subcategory of € consisting of objects on which Q' acts by (.

We chose to work with right O[GLy(Q,)]-actions on objects of € to match our definition of
O[K,]-projective augmented modules in Definition 2.2 This can be easily translated from
references [Pal3l, [Pal5l [HP19, BD20] by considering the inverse action.
There is a natural covariant modified Colmez functor
Vi pro
VC : Q:C — MOdGalQp>
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which is compatible with taking projective limits and whose evaluation on finite length
objects M is given by V(M) := V(M")(Xeya(), where (—)¥ = Homgp(—, F/O) is the
Pontryagin duality and V(—) is the functor defined in [Colm10b]. In particular, for two
characters 1,7z : Q; — F* such that ﬁlﬁgfgc_yld = ( mod w,

vV, ( IndB(é(Qp (m ® 772>Z§y1c1)v> = 1.
We note that for a different character ¢’ : Galg, — O,

We focus on the case of Assumption [[.I3l Take the earlier ¢ to satisfy ¢ = w**? mod w.
Let m(7,) denote the smooth representation of GLy(Q,) over F associated to 7, by the
mod p Langlands correspondence. Explicitly, m(7,) is the nontrivial extension 71, — 7y with

71 = In dB(é(Qp (X2 ® )Zl)Zc_yld) and 7y = IndB(é(?p) (1 ® )Zg)Zc_yld).

In particular, we have
Ve(m(ip)Y) = Ve(my — ) 2 (1 — X2) =7
This is independent of the choice of ¢ and agrees with [Pal3l §8]; yet [Pal5l §6.1] seems to

have a minor error by swapping the 7, with 7y, which is later corrected in [HP19].
Let 1y, denote Ofu,v] equipped with a Q)-action where p acts by multiplication by 1+u

and a € Z) acts by multiplication by (1 + v)los(@/w@)/p such action extends to an action of
Galg, via local class field theory.
As Endgal, (7)) = F, the deformation problem of 7, is representable by a noetherian
P

complete local O-algebra R; . Let Rgp denote the quotient parametrizing the deformations of

Tp with fixed determinant ¢; let m,¢ denote its maximal ideal. Let Kfmv denote the universal
Tp

deformation of 7, over Rgp. It is well known that there is a (noncanonical) isomorphism
REP = R§p®ooﬂu7 v, 21, %2, 23]]7
so that the framed and unframed universal deformations of Fp satisfy:
Vunlvgoltw(goo[[zl’ 22, 23]] - un1v
Following [Pal3l § 8], we have the following.

Theorem 7.15. Keep the notation as above. Let ﬁ{ — 7, be a projective envelope of wy in
Q:C and put RWhC = El’ld@c (Pc)
(1) The Vc(ﬁg) can be viewed as a 2-dimensional representation of Galg, over Ry .
lifting 7,; this induces an isomorphism Rgp = R ¢, and \V/'C(ﬁg) Ve
(2) Define the following object in €:
(7.15.1) PP = PMolyw®00[2, 22, 23],
equipped with the tensor product right GLa(Q))-action (which is O[z1, za, 23] -linear).
Then PS carries a natural R%-action from the left that commutes with the right

GL3(Q,)-action. Moreover, PP does not depend on the choice of C.
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(3) There erists x € mpc \(miEC + (w)) such that P9 is isomorphic to the projective
P Tp

envelope of Sym®F®? @ det® as a right Ofu, x, 21, 29, 23] [CLa(Z,)]-module.

Proof. (1) is [Pal3] Corollary 8.7]. For (2), the left REP -action comes from the isomorphism
Rf;p = R, proved in (1). The uniqueness follows from (Z.I4.]).

We now prove (3). For A = O or O[z], let 1\/[odf§[[GL2 (z,)].¢ denote the category of finitely
generated right A[GLy(Z,)]-modules with the scalar ZX acting by ¢. By [Pal3, Theo-

rem 5.2, there exists € mp such that z : ﬁc — P is injective and ﬁ(/l’ﬁg is the
Tp
projective envelope of (socgr,(z,)m1)" = Sym®F®? @ det in Modfg[[GL2(Zp)ﬂ ¢~ In addition,
[HP19, Theorem 3.3(iii)] proves that x ¢ (mif + (w)). It then remains to show that ﬁc is
Tp

projective in the Modfgﬂmﬂ [GLaZ,)L.¢0 85 the projectivity is preserved for tensor products of the

form in (ZI5.0). (Note that the variable v in P; measuring the central twist of (1 4 pZ,)*
is “absorbed” into the projective envelope as an O[GLy(Z,)]-module.) Choose a character
n of (1+pZ,)* such that |a4pz,)x = n*. Then it is enough to show that ﬁg ®ntodetis a
projective right O[z][H]-module with H = GLy(Z,)/(1 + pZ,)*, or equivalently,

Tor 2 (P @ ' o det, F) = 0.
But this follows immediately from the spectral sequence

E;, = TorOIH] (Tor?[[zﬂ[[m] (ﬁg ®n~'odet, O[H]), IF) = Tor¢lIlH] (]54 ®n~"' odet, F)

and the properties of 154 / xﬁg above. O

Remark 7.16. (1) It is proved in [CEGGPSIS8| Theorem 6.18] that ﬁg@oltw is isomor-
phic to the projective envelope of 7y in €.

(2) It is tempting to use the “less-heavy” tool of patched completed homology of Caraiani—
Emerton-Gee-Geraghty—Paskunas—Shin in [CEGGPSI16] and the globalization pro-
cess therein, to reproduce the above construction instead of using the Pasktinas
module. Unfortunately, we do not know how to implement this idea. The main
difficulty is that, while [CEGGPSI6| provides a “minimal patching” in the sense that
the patched module is of rank 1 over the patched version of the local Galois defor-
mation ring R.[1/p], to invoke our local ghost Theorem 2.7, we need the patched
completed homology to be the projective envelope as an S [GLa(Z,)]-module of a
Serre weight. So we would need a certain mod-p-multiplicity-one assumption that
compares S, with R, which does not seem to be available.

7.17. Comparison with triangulline deformation space. Continue to consider the 7,
in (ZI31). We apply Emerton’s locally analytic Jacquet functor [Em06] to P2 € € and
compare it with the triangulline deformation space Xg " Tn a nutshell, we will prove that
the reduced eigenvariety Eig(ﬁm)red associated to P is isomorphic to X,—g 1 and the Up,-
action on Eig(P") corresponds to the universal character d,(p)~! on X,—g ot
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We first recall the formal part of the construction from [BHS17, §3] and [BD20, § A.4].
Write 57 := Ofu, x, 21, 2, 23], viewed as a natural subring of R_ | which induces a morphism

prt XS — S := Spf(S)",
Consider the Schikhof dual of P
7 := Hom%" (PY, B).
Applying the locally analytic Jacquet functor construction of Emerton [Em06], we obtain
* U_an ~ * L _an

(7.17.1) M = swap* (Jp((I17)° );) =~ swap* (J5((117) " );)’
which may be viewed as a coherent sheaf over the Stein space Xg x T that further induces
a coherent sheaf pro M over SY x T (where T = (G%)2 x W is defined in (Z31)). Here,

o (II9)R52" ¢ (TI7)S™-n are respectively locally R -analytic and S7-analytic vectors
as defined in [BHS17, Définition 3.2], and they are equal by [BHS17, Proposition 3.§]
as PY is finitely generated over SP[GLy(Z,)];

e Jz(—) is the locally analytic Jacquet functor of Emerton defined in [Em06] (with
respect to the lower triangular matrices to match our computation with the setup in
§ 241 which further agrees with [Bu07]);

e (—); is the strong dual for Fréchet spaces; and

e swap : 7 — T is the morphism swapping two factors, i.e. sending (41, d2) +— (d2, 7).
(This is inserted because we used the locally analytic Jacquet functor relative to the
lower triangular Borel subgroup, in contrast to [BHS17] and [BD20] where the upper
triangular Borel subgroup are used.)

Theorem 7.18. Let Eig(P") denote the schematic support of M over Xg X T.

(1) The space Eig(PS) is contained in the subspace of Xg x T consisting of points
(x,01,09) for which det(V,) corresponds to 6109 under the local class field theory.
(2) The reduced subscheme of Eig(PY) is precisely the triangulline deformation space

Xg’m (Definition[7.4)).

Proof. (1) is clear because (if ((p) = ((14p) = 1), the right actions of (} 2) and the diagonal
Z) on PP are precisely given on 1y, which agrees with the O[u, v]-action as described just
before Theorem

(2) is proved at the beginning of [BD20, Page 134] (except that we have the framing
variables, and we used the lower triangular Borel subgroup for the locally analytic Jacquet
functor). We summarize the gist for the benefit of the readers.

At an E'-point & € (Vy,014,00.) € A7) x T, let p, € R be the corresponding prime
ideal. Then IT"[p,] = 7(V,) is the p-adic Banach space representation over E’ attached to
V,. So z lies in X" if and only if there is a (Q)*embedding

Saw X Orp = J5(MPED ™ p.]) = J5(m(Va)™).

(Note that, comparing to [BD20] where Jg(—) is used, the lower triangular locally analytic
Jacquet functor has the effect of “swapping” two factors.) By the description of locally
analytic vectors for p-adic local Langlands correspondence [Colm10al [LXZ12] (and the full

power of p-adic local Langlands correspondence), there is an embedding Z/{Ep ’friig — Eig(P").
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Applying a typical construction of eigenvarieties shows that points in Z/I,Pp ’,trreig are also Zariski-

dense and accumulating in Eig(PY). This completes the proof of that X,-g 1 ig isomorphic
to the reduced subscheme of Eig(P"). O

Remark 7.19. In fact, one can prove that, in our case, Eig(P”) = X, "

7.20. Relating locally analytic Jacquet functor with local ghost theorem I. We
will deduce Theorem by applying local ghost Theorem 2.7 to PP with all possible eval-
uations of the formal variables wu,z, z1, 22, 23. For this, we need an intermediate step to
relate the characteristic power series of abstract p-adic forms in the local ghost theorem with
the abstract construction of eigenvarieties in § [[.I7] This is essentially explained in [EmO06],
Proposition 4.2.36]: one may compute the locally analytic Jacquet functor when PYis a
finite projective SY[K,]-module, using the eigenvariety machine of Buzzard.

Let 5 denote the right ideal of O[lw,] generated by [(;9)] — 1; then by Iwasawa
decomposition, we may write

(7.20.) Ol /ox = Do((57): O] (7 45 )] ) = ol@ss O1Z; D).

where the Dy (Zp; —) is the space of measures on Z,, dual to C°(Z,; —). Here the induced left
Zp Tp )det;éO

Iw,-action on the right hand side of (Z.20.I]) extends to an action of My = <pr 7
P

given by, for (: §) € M, with ad — By = pd for d € Z,

((38) 1 ha) = ([ (5 2+ 6)] -0 (E25) )

Note that (after tensored with O[w]®),) this is precisely dual to the right M;-action on

C%(Zy; O[w]®) given by ZZ4). We define the abstract p-adic distribution associated to PH
to be

S\IgD \p- adlc : PD@O[IWP]]DO (ZP; O[[(Z;)2]])>

equipped with the infinite product topology (which is automatically compact). Then we
have a tautological isomorphism (from the tensor-hom adjunction)

(7202)  Homgoyy (s%%_adicj SD[[w]](€>) ~ Homgop, | ( B (2, SD[[w]](E’)).

Define an SY[(Z)*]-linear operator U, on S\ém’p_a 4 8iven by (choosing a coset decompo-

sition pr( 0 1)pr H?;(l] vilwy, e.g. v; = (p;l (1)) and Uj—l — (_*j.p (1]))7

(x @ p) va] ® vy Y for z € P” and e DO(ZP; O[[(Z;)z]]).

Applying an argument similar to [LTXZ227| § 2.10] (or essentially Buzzard’s original eigen-
varieties machine in [BuQ7]), we may define a characteristic power series for the S7[(Z)?]-

\% Vv
linear U, -action on Sz, padic’

Cpo(t) =1+ it + cat® + - - € SP[(Z)?][¢].-
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Let Spc(PY) denote the hypersurface of SZ x W x Gr# cut out by Cpn(t). Then the general
Buzzard’s eigenvariety machine of [Bu07] outputs a coherent sheaf A on Spc(PY). On
the other hand, the left REP -action on PY (extending the S,-action) induces an action of

RZ on the coherent sheaf N'™ over S x W x G, Considering the image of R7 in the

endomorphism algebra Endgpc ., (NY) induces a coherent sheaf M on XT% X W x Gri& whose
pushforward along Xg — S, is isomorphic to NV,

In fact, M"Y is essentially the same as M" of (TIZT) in the following sense. By Theo-
rem [Z.I8(1), M" is supported on the subspace

(7.20.3) Z = {(x,01,02) € X x T | detVu(p) = 61(p)32(p) }-
The natural map
XSXT—>XSXVN\/XGS§

(z,01,02) —— ($752|Z;,51X(?y1c1|z;a52(p))

(7.20.4)

induces an isomorphism ¢ : Z = X X W x G¥&. Then ;*M” = MY; in particular, the
reduced subscheme of the support of M"Y is precisely X,-g 1 by Theorem [7.181 Here we point
out three subtleties in normalizations:

(1) The U)-operator is associated to the double coset Iw,(?, 0 1)pr, and the zeros of
Cpa(t) gives the reciprocal of Uy/-eigenvalues;

(2) the swapping of §; and J, caused by taking Jz(—) as opposed to Jp(—); and

(3) another twist of cyclotomic character is built-in for the theory of locally analytic
Jacquet functors.

7.21. Relating locally analytic Jacquet functor with local ghost theorem II. It
remains to relate Cpo(t) and the slopes appearing in the local ghost Theorem 27 For

each homomorphism y* : SY = Ofu, z, 21, 20, 23] — O, write ﬁy = JBD@)SDMO’. Then

Theorem [Z.15(3) implies that ﬁy is a primitive O[K,]-projective augmented module of type
p, where the conditions (2) and (3) of Definition 22 are clear from (ZI5.T]).
For a relevant character € of A2, recall there is a natural quotient map

(7.21.1) et 0[(Z))Y] ———— O[w]®
[, 6] ———— (@, 8)(1 + w)'os@/=)/p

for o, 6 € Z. Note that this quotient map is a twist of (ZLI). The homomorphism (Z.2L.T))
together with y* defines an embedding

y@e: W) < ST x W.
The isomorphism (7.20.2)) implies a canonical O'[w]-linear isomorphism

(7.21.2) S%o adic ©SO[@2 )]y s O'w]® =~ Homey e (S;Dp o O'Tw] s))
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which can be expressed in terms of a pairing: for = € Po, 1w € Dy (Zp; o4 [[w]](a)), and
pE 3t)

P':’ ,p-adic’
(2@ p) = (p(), ).
We deduce the compatibility of U)/-operator on the left hand side of (Z2L.2) and the dual

of U,-action on the right hand side easily as: with the notation as above and v; = (”;1 ?)
fory=0,....,p—1,

011 = 00 = (2 ol ) = Seten o)
= <80, 2_::):21]- ®vj_1,u> = (o, U) (z ® ).

=0
This in particular means that, under the map y* ®@e* : SP[(ZX)?] — O'[w]®, we have an

identity of characteristic power series:

(7.21.3) (y* @ ") (Cpa(t) = O (w, t).

Writing Spc© ( ) for the zero locus of C](fc)l (w,t) inside W xGHe. Then (y@e) ! (éﬁ?}(ﬁu)) =
Spc® (PD)

7.22. Proof of Theorem [7.6l. Now, we conclude the proof of Theorem [7.6l By the discus-
sion in § [L.T1], we may assume that 7p is reducible, nonsplit and generic with a € {2,...,p—>5}
and b =0. Let z = (z,01,02) € X,:E’tri be an E’-point; set w, 1= (5152_1X;y£1)(exp(p)) — 1 and
€ = 0a|a X O1]|a - w™t, which is relevant as already shown in § [.IIl we need to show that
—v,(02(p)) is equal to a slope appearing in NP (GE;) (wy, —))

The argument is summarized by the following diagram:

rig
G

d2(p)

O,tri
erp 52(p)

Supp(pryM®) —=— Spe(PY) «—— Spc®(PY)

ST x W 22 ST W —— {y} x W)
y®e

+ / \/

SEI
pryy of (CLI)

(7.22.1)

By Proposition [Z.5(5), we may assume that da|4pz,)x is trivial. Write y for the image of
z in SY and let y* : S¥ — E’ be the induced map. Then the image of z in Supp(prEMD)
is precisely given by (y,d1,d2). In particular, the map taking the value of d2(p) on Xg o

factors through Supp(prZ MP).
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As explained in § [7.20] the image of z in SEE(ﬁD) admits a cyclotomic twist from (7.20.4);
so it is 2’ 1= (y, ds, 51X&101)- In particular, the image of 2’ in SYx W is precisely y®¢e(w,) with
Wy = 61 X oyer (€xp(p)) —1 and & = dafa X 01| a-w™". Sov,(d2(p)) at 2’ can be seen on Spc(e)(ﬁym).

By local ghost Theorem 2.7 —v,(d2(p)) is a slope of NP (G%E) (ws, —)). Theorem [7.0 except
(3) is proved.
For Theorem [T.6(3), we may twist the point = so that d,(p)d2(p) = 1; this translate to

that (82) acts trivially on PY. As argued above, it suffices to show that for the given

k, all slopes 22 appearing in NP (C’% (wk, —)) (with multiplicity dj*¥ (1)) genuinely come
from the zeros £p~(*=2/2 of 01%:)1 (wg, —). Indeed, by Corollary B.8 the multiplicities of

U,-eigenvalues +p~(k=2/2 on S%D,k(él) are 3d*¥(g1) each. Theorem [7.6](3) is proved.

8. BOOTSTRAPPING AND GHOST CONJECTURE

In this section, we perform a bootstrapping argument to prove a global ghost conjecture
(Theorem [L.3]) when the residual Galois representation 7 is irreducible yet its restriction to
Galg, is reducible and very generic (2 < a < p—>5 and p > 11). The global ghost conjecture
implies the following (with the help of [BP19b] and [Re227]) for the 7-localized space of
modular forms:

e a version of the Gouvéa—Mazur conjecture,
e Gouveéa’s conjecture on slope distributions, and
e a refined version of Coleman—Mazur—Buzzard—Kilford spectral halo conjecture.

In fact, we adopt an axiomatic approach to proving the global ghost conjecture, borrowing
a setup from [CEGGPSI1S], [GN22, §5], and [DoLe21], §4.2]; this allows our theorem to be
applicable to the cohomology of general Shimura varieties associated to a group G which is
essentially GLy(Q,) at a p-adic place.

In this section, let 7, be a residual local Galois representation as in Notation

8.1. Hecke actions. Instead of developing the theory of Hecke actions for general K,-types
as in [CEGGPSI16, § 4], we focus on the simplest case with one-dimensional representations.

Let € = w7 x w %+t be a relevant character of AZ; write £; = w**? as before, and
set k. := 24 {a+2s.} € {2,...,p}. Let H be a K,-projective augmented module. For
each k = k. + (p — 1)k, with ks € Z>(, we defined a T,-operator in § 2.4(4) on S}*(e1) =

Homoxk,] (ﬁ, O[z]<F"2 ® €1 o det). There is also a similarly defined operator S, on Sj*(e;)

given by, for ¢ € S}*(1) and = € H,
Spl)@) = e(e(?y ,0))-

The action of S, is invertible and commutes with the 7),-operator. So S;*(e1) admits a

O[T}, S;']-module structure.

Recall the associated Kisin’s crystabelian deformation ring from § [Z.7l Let REP Amhen he
the quotient of REP parametrizing crystabelian representations with Hodge-Tate weight (1 —
k,0) such that Gal(Q,/Q,) acts on Dyerys(—) by €1 (see Notation 1l for the definition of

Dperys(—)). Let Vi_j denote the universal representation on X,—g’l_k’al = (Spf RFDp’l_k’El)rig,
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then Dyeys(Vi—k) is locally free of rank two over Xg ’l_k’el, equipped with a linear action of
crystalline Frobenius ¢. In particular, our condition says that V;_; ® ;' is crystalline.
Define elements s, € O(X;' ™)™ and t, € O(X;' ™) such that

det(¢) =p*'s;" and tr(¢) = s, 't

p

As both s, and ¢, take bounded values, we have s, € R;)' ™" H “andt, € RN HE
Following [CEGGPSI16, § 4], we define a natural homomorphism

(8.1.1) e - O[T, S;tl] — RD 1-ke1 [p} given by n(T},) =t,, and n,(S,) = $,.

Definition 8.2. Recall K, = GL3(Z,), and the representations p and p* from Notation [7.2]
For a Serre weight 0,5, write Projork (04) for the projective envelope of g, as an O[K,]-
module.

An O[K,]-projective arithmetic module of type 7, is an O[K,]-projective augmented mod-

ule H equipped with a continuous left action of RFD,, satisfying the following conditions.

(1) The left RZ -action on H commutes with the right GLy(Q,)-action
(2) The induced K, actlon makes H a right O[K,]-module isomorphic to
® Projoqk,j(0ap)™ H) for some m(H) € N, if Tplig, =~ p, or

. PrOjO[[Kp}](Ua,b)@m( ) ® Projok,1 (0p-3- watb) ¥ for some m!(H),m" (H) €

N, if 7plr,, =~ p* (writing m(H) := m/(H) + m”(H) in this case).
(3) For every relevant character &€ = w=*:7t x W+ and every k = k. + (p — 1)k, with
ke € Z>, the induced RD action on Si (51) factors through the quotient R?p’l_k’al.

Moreover, the Hecke action of O[T, Sil] on Sy, (€1) defined in § BTl agrees with the

pr~p
composition

O[T, 5;'] = Re ™ [A] = Endy (S, (21) @0 E).

When 7y[1,, = p, we say that H is primitive if m(H) = 1.
In either case, we call m(H) the multiplicity of H.

Remark 8.3. (1) In applications, all the O[K,]-projective arithmetic modules we en-
counter are known to satisfy conditions analogous to Definition [8.2)(3) for all crysta-
belian representations. (Such compatibility can be alternatively deduced by compar-
ing to triangulline deformations.) But formulating of such condition is slightly more
subtle; we refer to for example [CEGGPSI1S8| Definition 1.5] or [DoLe21] § 4.2].

(2) Our definition is essentially different from and (in most cases) weaker than the notion
of O[GL2(Q,)]-modules M, with arithmetic actions (see for example, [CEGGPSIE|
GN22, DoLe21]) in the following aspects: (a) their M., is a module of R, =
REP [z1,- .., 2] for some dummy variables; ours H may be viewed as M, after eval-
uating z;’s; (b) they typically require Mo® Sym* 2 ©0%? to be a maximal Cohen—
Macaulay over R@ k- 1[[,21, ..., 2Zg]; we do not need this.
(3) When 7[5, = p*, it may happen in practice that m/(H) # m"(H).
(4) We do not need to require primitive O[K,]-projective arithmetic modules to satisfy

the two additional conditions in Definition 2.2/(2)(3).
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Example 8.4 (Quaternionic case). We illustrate by an example how our abstract setup
appears naturally in the study of cohomology of Shimura varieties.

Fix an absolutely irreducible residual Galois representation 7 : Galg — GLy(FF) such that
7 |Ga1Qp ~ 7, for a residual local representation that we consider in Notation Let D be a

quaternion algebra over Q that is unramified at p; we fix an isomorphism D ® Q, = M(Q,).
Set

i(D) = 1 if D®gR = My(R), which we call the indefinite case;
"~ |0 if D®gR = H, which we call the definite case.

Fix an open compact subgroup K? C (D ® A?)X such that K?PK, is neat, i.e. gD*g™' N
KPK, = {1} for every g € (D ® Ay)*. For any open compact subgroup K, C K,, let
Shpx (K?K]) denote the associated (complex) Shimura variety, with C-points given by

D*\(D ® Ay)*/KPK], when (D) =0
1

Shpx (KPI)(C) = {Dx\ﬁi X (D@ Ap)*/KPK, when (D) =

where % := C\R. Then for n € N, the tower of subgroups K,,,, := (1;52” 1_’;%%) CK,

defines a tower of Shimura varieties:
e — Sth (Kpr,n) rd e Sth (Kpr’l) — Sth (Kpr)
The i(D)th completed homology group localized at 7 (with h = 0)

Heo = Jim HESHY (Shp (K7K,,,)(C), 0) 77

T

where the subscript m; indicates localization at the maximal Hecke ideal at 7, and the
superscript cplx=1 is meaningless when i(D) = 0, and means to take the subspace where
the complex conjugation acts by 1 (so that we only take a one-dimensional subspace of the
associated 2-dimensional Galois representation).

This Hy is a K,-projective augmented module. Indeed, this is obvious if i(D) = 0; when
i(D) = 1, this is because, for any open compact subgroup K, C GL3(Q,), the localization

(8.4.1) HP*" (Shp« (KPK)(C),F)_ =0 unless i = 1,

and the projectivity of H., follows from studying the usual Tor-spectral sequence. Moreover,
ﬁoo carries an action of R, the Galois deformation ring of 7. To make this compatible with
our setup of Definition B.2] we choose an isomorphism RY = R.[y, y2, y3] and demand that
Y1, Y2, Y3 act trivially on ItIoo. This then induces a natural REP -action on I:[oo, upgrading IA:IOO
to an O[K,]-projective arithmetic module of type 7,, where the condition Definition [B.2)(3)

is the usual local-global compatibility of automorphic forms on D*.
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In this case, the spaces of abstract classical forms defined in § 2.4 recover the usual étale
cohomology groups: for k € Z>, and characters £, of A and 1) of A% we have

Slflik(gl) ®(9 E = HOl’Ilo[[Kpﬂ (ﬁ, E[Z]Sk_z & £10 det)

= Hi") (Shp« (KPK,)(C), Sym" 2 H @ &) o det) ™" 2 (SP(K?K,) @ &, o det) ,
S, (¥) ®o E = Homop, | (H, E[2]¥7* © )

=~ HiD) (Shpx (KPIw,,) (C), Sym* 24 @ ¢) P 2 SP(KPTw,; ),

Here H is the usual rank 2 local system on Shpx (K?K)) associated to the dual of standard
representation of K, C K, SP(—) denotes the space of automorphic forms on Shpx, and
the isomorphisms are as Hecke modules. This example allows us to deduce results regarding
classical modular forms or quaternionic automorphic forms from our abstract setup.

Remark 8.5. Similar constructions can be made for Shimura varieties associated to a more
general group G for which G&i admits a factor isomorphic to PGLj g, (after properly treating
the central characters), as long as one can prove certain vanishing result similar to (8.4.1]).
(Such techniques are available for example in |CS17].)

Example 8.6 (Patched version). Another source of O[K,]-projective arithmetic modules
is the patched completed homology of Caraiani-Emerton—Gee—Geraghty—Pasktnas—Shin in
[CEGGPS16]. More precisely, let Go be the group scheme over Z defined in [CHTO08, §2.1],
which contains GL, x GL; as a subgroup of index 2, and admits a natural homomorphism
v : Gy — GLy. Let F be a CM field with maximal totally real subfield F*, 7 : Galg+ — Go(TF)
a residual global representation, and G a definite unitary group over F* satisfying the
following list of properties:

(1) 7 (GLy(F) x F*) = Galp, and write 7|ga, for the representation 7 : Galp —
GLy(F) x F* 2% GLy(F);

(2) vor = )Zc_yld, where Yyq is the reduction of the cyclotomic character;

(3) there is a p-adic place p of F'* which splits into pp¢ in F' such that Fj = FF = Q,
and 7|gal 5y = r,, for 7, we consider in Notation [7.2}

(4) 7(Galp(c,)) is adequate in the sense of [Th12, Definition 2.3]; in particular, 7 is irre-
ducible;

Fheradriaa
e G does not contain F'({,).
G is an outer form of GLy with G X p+ F' = GLg p;

5) F

6)

7) if v is a finite place of F'*, then G is quasi-split at v;

8) 1f v is an mﬁnlte place of FJr then G(F+) Us(R), and
)T

Fix an isomorphism G(OF;) = GLy(Z,) = Kp, and fix a neat open compact subgroup
K? C G( i f) As above, consider the subgroups K, ,, := <1;ffZ” 1_’;%%) C K, for each n.
With these global data, [CEGGPSI16] constructed a patched completed homology ﬁoo, that

patches the usual completed homology

Ho(G(Q\G(As)/K?,0), = lim Ho(G(Q\G(As)/ KK, O)..

n—oo
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The additional structure associated to He is explained by the following diagram

R —>y_ RrQn/mQ (_ He —> H,

(8.6.1) ,\ U U

TS —»O’

Seo = O[z1,...,2p] is the ring of formal power series formed by patching variables
and framing variables;
e H_ is a projective rlght S [K,]-module isomorphic to

— Projs._gx,1(0a) ™™

— Projg_x,1(7ab)
N, if ’fthp ~ pss;

) for some m(H) € N, if Tplg, =~ p, or

em/( EBProij[[Kp]] (ap_3_a7a+b+1)@m”(ﬁ) for some m’(H), m” (H) €

the right K,-action on Ho, extends to a continuous right GLy(Q,)-action;

He is essentially constructed as an inverse limit, carrying an action of the inverse limit
of deformation rings R7q, /mg , which commutes with the right GLy(Q,)-action;

the action of S, on ﬁoo factors through that of @n RE’QH / mg, ;

the local deformation ring Rpo naturally maps to @n Ran /mg, and acts on I:IOO;
e one may lift the homomorphism S, — l&nn RE,Qn /mg, to a homomorphism to Rpo
(somewhat arbitrarily).
Then a main result of [CEGGPSI6 Theorem 4.1] shows that, for any homomorphism y*

Se — O, H, = Hoo®5' O’ carries naturally a structure of O[K,]-projective arlthmetlc
module in the sense of Definition R.2] by verifying the local-global compatibility condition

(3)-

Recall the residual representations p, g/, and p* from Notation [Z.2l The main theorem of
this paper is the following.
Theorem 8.7. Assume that p > 11. Let 7, be a residual local Galois representation as in
Notation [7.3 with a € {2,...,p —5}. Let H be an O[K,]-projective arithmetic module of
type 7, and multiplicity m(ﬁ) in the sense of Definition[82. Fix a relevant character € of
A2, Let Cg)(w,t) denote the characteristic power series for the Uy-action on the space of

abstract p-adic forms associated to ﬁ as defined in §[2.7)(2).
Then for every w, € me,, the Newton polygon NP (C( )(w*, )) is the same as the Newton

polygon NP (G(ﬁ6 (W, —)) , stretched in both x- and y-directions by m(ﬁ), except that the slope
zero part of NP (C@ (ws, —))

b +b

e has length m'(H ) when 7, is split and € = w and

e has length m” (H) when 7, is split and ¢ = w™+ x wb_l.

X w?

The Newton polygon described in Theorem B.7(2) is the convex polygon whose slope
multiset is the disjoint union of m/(H) copies of slope multiset of NP (GE;) (ws, —)) and
m”(H) copies of slope multiset of NP (Gg?) (wy, —)), by Proposition 2.141

In view of Example R4, Theorem follows immediately from this theorem.
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Proof. This is divided into two steps. We first show that at each point w, € mc,, all possible

slopes of NP (C’I%6 ) (wy, —)) are contained in the set of slopes of the Newton polygon of the
corresponding ghost series; this comes from “embedding” the eigencurve into the triangulline
deformation space (essentially following the standard classicality argument and the global
triangulations [KPX14, [Li15]). With this at hand, we can “link” together the slopes at
various w, to determine the multiplicities of each slope appearing in NP (C’I%€ ) (wy, —))

We fix a relevant character £ throughout the entire proof.

Step I: Let Spc(e)(ﬁ) denote the hypersurface in W) x G'# defined by C’g ) (w, t); it is the
spectral curve in the sense of [Bu07]. Applying the construction of [Bu07, §5] to the algebra
R7 [U,] acting on H, we obtain an eigenvariety Eig® (H) over Spcg) (which also lives over
XT%). The following commutative diagram summarizes the relations between the spectral
and eigenvarieties.

Eig® (H) ——— Spc®(H)

| [
et

XU x WE) x Gls —— W) x Glls —— W),
Tp m m
Consider the following natural embedding

s.7.1) L9 X X WE) x Glif —— XD x T

(.2?, Wy, a’p) — (:Ev 517 52)7

where 0; and d, are continuous characters of @ uniquely determined by the conditions

® 0s(p) = a,", 61(p)da(p) = det(Ve)(p),
e Ji(exp(p)) = wy, d2(exp(p)) = 1, and
®c = 52|A X 51|A cwL

We claim that () ( Eig(e)(ﬁ)md) C X,—g 1 This is a standard argument using the density
of classical points; we only sketch the argument.

First we prove this for very classical points: an E'-point z = (z,w,, a,) € XFE x W) is
called very classical if w, = wy with k > 2 and k = k. mod (p — 1), and if v,(a,) < £2.
For such a point, classicality result Proposition 2.11[(1) shows that the abstract p-adic U,-
eigenform associated to the point z belongs to Si¥(e1). So condition Definition B.23) implies
that x in fact belongs to Spf (REP ’k_l’el)rig, which further implies that V), is crystalline, and

the two characters ¢; and d, exactly upgrades it to a point in XFE e () e X,-g s,

It remains to show that very classical points are Zariski dense in each irreducible compo-
nent of Eig® (H). As Spc® (H) is defined by Fredholm series, [Con99, Theorem 4.2.2] shows
that every irreducible component of Spc'®) (ﬁ) is defined by a Fredholm series and hence is sur-
jective onto W. Fix an irreducible component Z of Eig® (H) and pick a point z = (z, wy,, ap).
There exists an open affinoid neighborhood U of x that maps surjectively to an open neigh-
borhood wt(U) of wy. € W) and that v,(d2(p)) is constant on U. Then there are infinitely

many weights wy, € wt(U) with & = k. mod (p — 1) and k& > 2v,(a,) + 2, and each point
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in wt™!(wy) N U is a very classical point. This means that very classical points are Zariski
dense in U and hence in Z. Taking Zariski closure proves that L(E)(Eig(e)(ﬁ)red) - Xg o

As a corollary of this claim and Theorem[7.6], for each closed point z = (wy, a,) € Spcl®) (ﬁ),
vp(ay,) is always a slope of NP (G )(w*, —)), with only one possible exception: v,(a,) = 0, 7,
is split, and & = wT*! x WP (Recall that p always denotes the nonsplit reducible residual
representation of Ig, regardless of 7, is split or not; see Notation [7.2)

Step IL: Write wt : Spc® (H) < WE x GI's — WE) for the natural weight map. Recall

from Proposition ELI8(3) that, for each fixed n € N, all elements w, € W® for which

(n, vp(gg )( .))) is a vertex of NP (G )(w*, —)) form a quasi-Stein open subspace of W):

vp(w, — wy) > A,

k|3 Ldlv(&1)—nl|+1

()
- A |

(&) . (e
Vitx,/ =W \U {w* € mg, , %d}y(él)—m}’
k

where the union is taken over all k = k.+(p—1)k, with k, € Z such that n € (dj*(e1), di¥ (61)—
d};r(el)). The space Vtxﬁf) is irreducible because it is obtained by removing finitely many
closed disks from W), For a rigorous argument, we write

Vix(®) = U Vix(&9  with

5€Q>0, 6—0T

vp(wy) > 0, and

Vtxﬁf)"s — {w* € me, for each k = k. 4—(( 1)k, s.t. gdur e1),dyY(€1) — dzr(ﬁl))’ }

Note that for every w, € Vtx,, the left slope at x = n of NP ( G (wy,

-)
the right slope because (n, vp(gﬁf) (w,))) is a vertex of NP (G(6 (ws, —)). By compactness,
we deduce that for each such 6 € (0,1) N Q, there exists an €5 € (0,1) N Q such that the
following two subspaces are the same:

) is strictly less than

Wy € Vtx(a) , and

—vp(ap) < the left slope at © = n of NP (G%E) (Wi, —)) }’

Spc®(H)S = {(w*,ap) € Spc® (1) ‘

(€),6
Spel®) ()} = {<w*,ap> € Spe®(H) ' v € Vi, and © }
—vp(ap) < €5 + the left slope at © = n of NP (G5’ (ws, —))

By (the proof of) Kiehl’s finiteness theorem, this implies that wt, (OSpC(E)(~)5) is finite over

Vix(®) . Yet, Spc® (H)? is flat over Vix(&h by [Bu07, Lemma 4.1] and Vtx¥ is irreducible.
So Spc )(H ) has constant degree over Vt:x;(6 . Letting 06 — 07 (while ¢5 — 07), We deduce

that Spc®(H),, = U;_,o+ Spc'® (H)? is finite and flat of constant degree over Vtx'®
It remains to compute this degree for each n. We have proved in Proposition IID( ) that

for each k such that n = d* (e - (1 x w?*7%)), (n, (g (wr))) is a vertex of NP (G ) (w,, -));

in particular, w;, € Vtng). In this case, § 2.4(6) (applying separately to Projoyk,j(0as) and
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to Projok,j(0p-1-a,atbs1) if 7 is split) implies that

deg (Spc(a)(ﬁ)n/\/txf)) = rankp S%’fk(a (1 x w?™F)

m(H) -n when 7, is non-split,
) m(H) -0 when 7, is split and € ¢ {w® x w0, WATPFL x W01}
" Ym@H) - (n—1)+m/(H) when 7, is split and & = wb x WY,

m(H) - n + m”(H) when 7, is split and & = w0+ x b1,

Here we implicitly used Proposition 2.14] to identify the ghost series for p and for p'. In
particular, when 7, is split, the first slope of NP(GE;)(w*, —)) is zero if £ = w” x W and is
nonzero if ¢ = w*! x w1 hence the slight variant description above.

We also point out that when 7, is split and ¢ = w1 xwW?~1 applying the same argument
above using 7 in places of p, we may deduce that the slope zero part of Spc'®) (ﬁ) has degree
m/ (H) over W),

From this, we immediately deduce the slopes of NP (C’I%6 ) (wy, —)) at each point w, € mg,

are exactly m(ﬁ) disjoint copies of the multiset of the slopes of NP (G%‘E)

that for the slope zero part of NP (CI%E) (ws, —))

(wy, —)) , except

e has length m/(H) when 7, is split and € = wb x w**1 and
atbtl g b1

e has length m”(H) when 7, is split and e = w X W
Theorem [8.7]is proved. O

Remark 8.8. (1) The construction of spectral curve in Step I using Buzzard’s machine
in Step I agrees with Emerton’s construction as explained in the proof of [Em06l Proposi-
tion 4.2.36].

(2) We expect that our method of proof can be generalized to the case of 7-localized space
of modular forms when the residual Galois representation 7 is reducible. In this case, the
corresponding H is no longer projective as an O[K,]-module, causing some trouble. We
leave this to interested readers.

In what follows, we give three applications: Gouvea—Mazur conjecture, Gouveéa’s distribu-
tion conjecture, and a refined spectral halo theorem. We refer to § [LT6], § .19, and § .22,
respectively, for a discussion on the history of these conjectures. Here, we give directly their
statements and proofs. These applications share the following setup.

Notation 8.9. For the rest of this section, assume that p > 11. Let 7, be a residual Galois
representation as in Notation with a € {2,...,p — 5}. Let H be an O[K,]-projective

arithmetic module of type 7, and multiplicity m(H).
Fix a relevant character € of A?. For each k € Z>s, let

(8.9.1) a\9(k), ol (k), . ..

denote the list of U,-slopes on SL’(E) counted with multiplicity, which contains the U,-slopes
on SM (e - (1 x w?7k)) as the first di¥ (e - (1 x wW?7F)) terms.

Theorem 8.10 (7,-version of Gouvéa-Mazur conjecture). Keep the notation and assump-

tions in Notation [8.9. Let n > N. For weights ki,ko > 2n + 2 such that ki = ky =
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a+2b+1mod (p—1) and vy(ky — ko) > n+ 5, the sequence of Uy,-slopes (89T for ki and
for ko agree up to slope n.

Proof. By Theorem [B.7], the sequence (8.9.1]) (except for possibly the first several zeros) is
precisely the slopes of NP (G%‘E)(wk, —)) with multiplicity m(ﬁ) This then follows from the
main theorem of [Re22", Theorem 1.4], who proved the corresponding statement for the
ghost slopes. O

Theorem 8.11 (7,-version of Gouvéa’s slope distribution conjecture). Keep the notation
and assumption in Notation[89. For each k = k. mod (p — 1), write uy denote the uniform
probability measure for the multiset
(e)
o) P Care®)
k—1" k—1""""7 k-1 Y

(1) When an positive integer i satisfies

m(H) - di*(e,) —m"(H) if 7, is split and & = w® x WO+
i < {mH) - di(e)) +m"(H) if 7, is split and e = W™ x WP,
m(ﬁ) ~di(e1) otherwise,
we have a;(k) = pTl . mzﬁ) + O(log k).
(2) As k — oo while keeping k = k. mod (p — 1), the measure p, weakly converges to the
probability measure

1 1 p—1
PR TS R R
where .4 denotes the uniform probability measure on the interval [a,b], and 5% 18

the Dirac measure at %

Proof. By Theorem B, the sequence (8.9.1]) is precisely the slopes of NP (GE;) (wy, —)) with
multiplicity m(H) (except when p is split and & = w® x W™ or W* x W'~ the multi-
plicity of the slope zero part are precisely m’(H) and m”(H), respectively). The power series

GE;E) (w,t) is an abstract ghost series in the sense of [BP19a] with

L) 2 1) m(f)
p+1 p+1
by Definition-Proposition (and § [241(6)). With this, (1)—(4) follow from [BP19bl, Theo-
rem 3.1 and Corolllary 3.2]. O

Theorem 8.12 (refined spectral halo conjecture). Keep the notation and assumptions in
Notation[89. Let wt : WE) x Gl& — W) be the projection to weight space, and let Spc'® (H)
denote the zero locus of C’I%E) (w,t) in WE) x G, Set

Wighy = {we € W | uy(w,) € (0,1)} and  Spelg), () = Spe® (I) N wt~ (W)

Then Spcgg?l)(ﬁ) is a disjoint union Yo | |Y1| | Yol |-+ such that
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(1) Yy is non-empty only when ¥, is split and & = w1 x Wb~ in which case, for each

point (wy, a,) € Yy, vy(a,) =0, and deg (YO/W((S,)l)) = m”(H).
(e

(2) for each point (wy,a,) € Y, withn > 1, v,(a,) = (deg gn )(w) —deg g,(f_)l(w)) vp(wy),
and
(3) the weight map wt : Y, — Wég?l) is finite and flat of degree m(H), except when 7, is

split, e = wW® x W, and n = 1, in which case deg (K/W((g?l)) = m’(ﬁ).

Proof. By Theorem R the sequence (8.9.0)) is precisely the slopes of NP (G(;) (wr, —)) with

T b a+b+1

multiplicity m(H) (except when p is split and £ = w” x w**™ or w x w’~1 the multiplicity

of the slope zero part are precisely m/(H) and m” (H), respectively). But when v,(w,) € (0, 1),
we have v,(g (w,)) = deg g\ (w) - v,(w,). Moreover, Definition-Proposition ZI2(4) says
(e)

that the differences deg g\’ (w) — deg g, (w) is strictly increasing in n. It follows that we

may “distribute” the points (w,, a,) € Spcgg?l)(ﬁ) by the ratio v,(a,)/v,(w,) into the disjoint
spaces Y,, as described in (1) and (2). The theorem is clear. O

9. IRREDUCIBLE COMPONENTS OF EIGENCURVES

In this section, we prove the finiteness of irreducible components of the spectral curve
associated to an O[K,]-projective arithmetic module H of type 7,. In particular, this applies
to the case of eigencurves associated to overconvergent modular forms (with appropriate
Hecke maximal ideal localization) and provides some positive theoretical evidence towards
a question asked by Coleman and Mazur in their seminal paper [CM98| page 4], under our
reducible nonsplit and very generic condition.

We will separate the discussion for ordinary part and the non-ordinary part.

Notation 9.1. Let 7, and p be as in Notation [7.2 and let H be an O[K,]-projective arith-

metic module of type 7, and multiplicity m(H).
For each relevant character € of A2, define the nonordinary part of the ghost series to be

(w t) o {(Gguwaa+b)(w’t) o ].)/t if e = wb % wa—i—b’

G(E)
G%‘E) (w,t) otherwise.

p,nord

The following is the main subject of our study.

Definition 9.2. Fix a rational number A € (0,1) N Q. Put W) := Spm E(w/p*). Let
Alrie = (Spm E(p"t)) denote the rigid affine line.

(1) A Fredholm series over W-, is a power series F(w,t) € FE{w/p)[t] such that
f(w,0) = 1 and F(w,t) converges over W, x AbM8. TLet Z(F) denote its zero
in Wsy x AbM8 as a rigid analytic subvariety. We say F' is nontrivial if F # 1.

(2) A Fredholm series F(w,t) is of ghost type 7, and ¢, if for every w, € Ws,(C,),

NP(F(w,, —)) is the same as NP (Gﬁ-fl)qord(w*, —)), but stretched in the z- and y-
directions by some m(F') € N. This m(F) is called the multiplicity of F'. We also

call the subvariety Z(F') of ghost type 7, and .

We emphasize that the condition A € (0,1) N Q implies that WS>, contains some “halo
region”, namely some part that Theorem [R.12] applies (even though our argument does not

use Theorem B.12 logically).
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The following lemma factors out the slope zero part of the characteristic power series.

Lemma 9.3. Let 7, €, and H be as in Notation DD with a € {2,...,p—=5} andp > 11. Let
Cg)(w, =143, ch)(w)t” € Ofw, t] denote the characteristic power series of Uy-action

on the abstract overconvergent forms associated to H. Then there is a canonical factorization
in Olw, t]:

(e) — (e ()
(9.3.1) Cyl(w,t) = Cﬁ’ord(w,t) : Cﬁ’nord(w, t),
where Cglord(w, t) is a Fredholm series of ghost type 7, and e with multiplicity m(H) and
c® (w,t) is a polynomial

H,ord

b

e of degree m(H) when & = w® x w**? and 7, is nonsplit,

e of degree m'(H) when € = wb x W and 7, is split,
e of degree m"(H) when ¢ = w1 x w1 and 7, is split, and

e of degree 0 otherwise.

Moreover, the constant term of C’glrd(w,t) is 1 and the top degree coefficient of Cg)ord(w,t)
belongs to OJw]*.

Proof. This follows from Theorem R.7] and the standard Weierstrass Preparation Theorem.
O

Remark 9.4. In fact, Lemma[9.3 holds under much weaker assumption such as 1 < a < p—4
and p > 5.

Proposition 9.5. Let F(w,t) € E{w/p*)[t] be a nontrivial Fredholm series. Then there
exists a unique nonempty set of positive integers {n;} and nonempty finite set of distinct
irreducible nontrivial Fredholm series {P;} such that F' =[] P"*. Moreover, the irreducible
components of Z(F') endowed with their reduced structures are the Z(P;)’s.

Proof. This is [CM98|, Theorem 1.3.7] and [Con99, Corollary 4.2.3]. O

The main theorem of this section is the following (which holds under weaker conditions
p>band 1 <a<p-—4).

Theorem 9.6. Let F(w,t) € E{w/p)[t] be a nontrivial Fredholm series of ghost type T,
and € with multiplicity m(F"). Then any Fredholm series H(w,t)|F(w,t) is of ghost type p
and € with some multiplicity m(H) < m(F).

The proof of Theorem will occupy the rest of this section. We note the following.

Corollary 9.7. Let 7,, €, and H be as in Lemmald3, and in particular a € {2,...,p—5}
and p > 11. Then Spc® (H) = Spc((frll(H) L] Spcffo)rd(H) is a disjoint union of the slope zero
subspace and the positive slope subspace.

(1) The ordinary subspace Spc((frzi(ﬁ) is nonzero only when € = W x W, or when ¢ =

WAt Wb and p is split. In this case, wt : Spc((frzl(ﬁ) — W) s finite and flat of

degree m(ﬁ)
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(2) The nonordinary subspace Spcnord(H) has finitely many irreducible component and
every irreducible component is of ghost type 7, and €, and the total multiplicity is

Proof. The factorization in Lemma @3 gives the decomposition Spc® (H) = Spcord( H) || Spcnord(N),
and (2) follows from Theorem [0.6] immediately. O

Further specializing Corollary to the case of modular forms proves Theorem [L.T5l

Remark 9.8. (1) While Theorem works for a € {1,...,p — 4}, Corollary holds
under the slightly more restrictive assumption that a € {2,...,p — 5} and p > 11,
which is needed for Theorem [R.7

(2) A philosophical implication of Theorem [@.6land Corollary @.7is that the non-ordinary
part of the spectral curve seems to share certain “rigidity” or “finiteness” similar to
that of the ordinary part.

(3) It is clear from Corollary 0.7 that if 7 is nonsplit and m(H) = 1, then Spcfi))rd(ﬁ) is
irreducible. It is natural to ask: when p is split and m(ﬁ) = 2, can one prove that
Spcnord(ﬁ) is irreducible?

In general, suppose that we are in an automorphic setting with all tame local
conditions being ° prlmltlve (e.g. having f-adic Breuil-Mézard multiplicity one),

does it imply that Spcnord(H) is irreducible?
Notation 9.9. Fix A € (0,1) N Q for the rest of this section. In what follows, we write W
to denote the base change of the rigid analytic space W to C,. For a rigid analytic space X
over C,, write A7 for the associated Berkovich space.
——Berk

For a Fredholm series F(w,t) = 1+ fi(w)t+--- € E{w/p")[t] and w, € W, ", define the
Newton polygon NP (F(w,,—)) to be the convex hull of (0,0) and

(n, —w) for n € N.
Inp

Then w, — NP (F(w,, —)) is continuous over W;\rk.

For a closed point w, € W and r € Qs, write
D(w,,7) := {w € W(C,) | wy(w — w,) >}
for the closed disk, and 7, , for the associated Gaussian point.
The following standard harmonicity fact is the key to our proof of Theorem 0.6} see for
example [Kel0O, Proposition 11.1.2].

Definition-Lemma 9.10. Use O to denote the completion of the mazimal unramified exten-
sion of O with fraction field E and residual field F. Let f(w) € E{w/p*) be a power series,
w, € Wsa(C,) a closed point, and p € (X, 00) N Z. Define the following slope derivatives:
for a € F (fizing a lift « € Op of &)

Vi (f) = lim (-

e—0t

Y

In ‘f(nw*,,u—e) —In ‘f(nw*,u)‘ )

(9.10.1) Inp-e

In }f(nw*-i-ap“,u-i-e)‘ —In }f(nw*-i-ap%u) } )

Ve ()= lim (= o

e—0t
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Then we have

(9.10.2) )+ Vi

acF

Here each of Vfw(f) does not depend on the choice of the lift a; and all but finitely many
terms in the sum (Q10.2)) is zero.

Such definition and harmonicity (O.10.2) extends in a natuml way to mtz’onal functions of
the form f(w)/g(w) with f(w), g(w) € E{w/p*) by setting V. M(f/g) V. u(f) — szw(g)
with ? = + or & € F (whenever the limits exists).

9.11. Proof of Theorem [9.6l In this entire proof, we fix a relevant character ¢ and sup-
press all superscripts (). Assume that F'(w,t) = H(w,t) - H'(w,t) for Fredholm series
H,H" € E{w/p")[t]. Then for any w, € Wx,(C,), the slopes in NP (H(w,,—)) (resp.
NP (H'(w,,—))) form a subset of slopes of NP (F(w,,—)), which is further a subset of
slopes of NP (G,—,mrd(w*, —)) Put

Flw,t) =1+ fi(w)t+---, Hw,t) =1+ hy(w)t+---, and H (w,t) = 1+ hj(w)t +

Recall from Proposition 2I8(3) that, for each fixed n € N, all elements w, € Wx,(C,) for
which (n, v,(gn(wy))) is a vertex of NP (G, nord (w4, —)) form an open subspace of W :

Vix, o = WzA\ UD (we, A ratvery-nier = Dr2atvie-n):
k

where D(wy,7) is the base change of D(wy,r) over C,, and the union is taken over all
k = k. + (p — 1)ke with k, € Z such that n € (dj*(e1),d}¥(¢1) — dj*(£1)). The Berkovich

space Wf?} is clearly connected.

In what follows, we write slp,,(w,) for the nth slope in NP (G} nora(ws, —)). The proof is
divided into three steps.

Step I: For each n, we will prove that the total multiplicity of the n smallest slopes of

NP (Gppora(wy, —)) in NP (H(w,, —)) is constant in w, € Wfﬁi, write m(H,n) for this
constant. We define m(H', n) for H' similarly. It is then clear that m(H,n) + m(H',n) =
n-m(F).

To this end, it is sufficient to show that the total multiplicity totmult,, (w,) of those slopes

in NP(H (w,, —)) that are less than or equal to slp, (w,), is a locally constant function on

Vtxse;l; We proceed by induction on n and start from the case n = 0. Now suppose the claim

is proved for smaller n. For w, € Vtxm2 \» suppose totmult, (w,) = m, which is obviously
less than or equal to n - m(F). Since (n,v,(ga(ws))) is a vertex of NP (G, nora(ws, —)),

p = slp, 1 (w,) — slp,(w,) > 0. On the other hand, note that w, — NP (H(w,,—)) is

continuous for the Berkovich topology. We may choose a neighborhood U of w, in Vtxneii

such that the following conditions hold for any w) € U,

L4 Slpn—i—l( ) Slpn( ) > %7
e for every 1 < ¢ < n, the difference between the i-th slopes of NP (H (wy, —)) and

NP (H(w,,—)) is strictly less than Sy and
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o for every 1 < i <mn,

[op(hs(u)) = vy (ha(w))] < %.

Suppose totmult, (w),) = m’. If m’ < m, then by the inductive hypothesis and the first two
conditions, we may deduce that the sum of the first m slopes of NP (H(w, —)) minus the

sum of the first m slopes of NP (H (w,, —)), which is nothing but v, (h,,(w})) — v,(hy(w,)),

is at least % — 3n"n1’(‘F) > % — % = %. This makes a contradiction with the third condition.

Hence m’ > m. Similar argument yields that m > m/’.

Step II: We prove a technical claim. For each integer n > 1, Definition-Proposition [2Z12](2)
implies that there is a unique weight & = k. + (p—1)(n+4. —2) such that £ = k. mod (p—1)
and (1) =n — 1.

Claim: for all € € (0,1) and all & € Oc,,

(1) the point 7y, A, ,—A, o belongs to the subspaces WEO; and WSiriZ/\ of Ws,, and

. w5—Berk —Berk
(2) the points 1, axi-8k0 A, _a, ,4e PElONgS to the subspaces Vix;, ~, and Vix,, 55,
> —Berk

but not Vtx,,_; .

Proof: By Proposition 2ZI8|(3), VtXSiriZ)\ does not contain the disc D(wy, Ag1 — Agp), S0
for e € (0, 3),

e the points 7 do not belong to mﬁfﬂﬁ >y and

A=Ay
wr+ap~ k1 TTR0 AL 3 —Ap gte

e the point y,. A, ,—a,,— does not belong to the removed disc D(wy, Ap — Ayp).

On the other hand, to get Wfirfﬂ?/\, we need to remove the disc D(wy, Ay — Ay). But
by [LTXZ227| Lemmas 5.6 and 5.8] . we have Ago — Ag1 > Ap1 — Ak + 1; so none of the
points in (1) and (2) belong to this disc D(wg, Aga — Ag1). So (1) and (2) hold for this
particular “removed disc centered at w;”. We need to explain that other discs removed to
get Wsﬂ{_&» with s € {£1,0} will not interfere with the points in (1) and (2).

Now, take any k' = k4 (p—1)k. # k and any s € {1,0}. The condition sdiY (&) =n—1
can be rewritten (via Definition-Proposition 2.12]) as

(n—1-3s)—idV(&) =ke — Kk, —s.

. . . — ——Berk .
By Proposition 2.18(3), the corresponding disc removed from Ws) to get Vtxnirl_se)\ is
precisely D(wk/’ Ak’,\k.—s—k”—l—l__ Ak’,“ﬁ.—s—k’.‘)'
Suppose for contrary that D(wp, Aps gy —s—ki+1 — Dk jke—s—kj|) contains one of the points

in (1) and (2) for some s € {£1,0}. Then we have

® (fOI' the radu) Ak,l — Ak70 +e€ 2 Ak’,\k.—s—k”—l—l — Ak’,|k.—s—k’.\a and

o (for the centers) v,(wy — wy) > min {Ak’,\k.—s—kﬂ—l—l — A he—s—ti]s Drg— Apo— e}.
Yet the differences Ap g, —s—iy+1 — Ak jke—s—ky) and Ap; — Ay belong to %Z by Propo-
sition 2I8(6), and v,(wy — wy) € Z. The condition € € (0,1) guarantees that the two
inequalities above still hold after setting e = 0 by integrality. In particular,
(9111) Up(’wk/ — wk) Z Ak’,|k.—s—k’.\+l — Ak’,\k.—s—k”'
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This inequality implies that n—1—s € n_ka,,k by Definition .17, and thus nS,,, » contains
at least one of {n—3,n—2,... n+1}. This would imply by Proposition 2-T§|(5) that at least
one of (0,Ax), (1, Ag1), or (2,Ag2) is not a vertex of A,; this contradicts with [LTXZ227]
Lemmas 5.6 and 5.8] (which says that the “first” p — 1 points on A, are vertices). This
completes the proof of the Claim in Step II.

Step III: Write m(H) := m(H,1) and m(H') := m(H',1). We will prove inductively
that m(H,n) =n-m(H) and m(H',n) =n-m(H").

The inductive base is clear. We assume that the above statement holds for smaller n’s.
For the integer n in consideration, we take the weight £ as in Step II.

By Step II(1), Nuy,A,,-A, o—e belongs to both WST; and Wfﬂ;/\ for all € € (0, 3). By
Step I and the inductive hypothesis, we have - -

In ) m(H,n)—m(H,n—1)

9n—-1
By continuity, the above equality holds for ¢ = 0 as well. So in particular, for the slope
derivatives at 7y, A, ,-a,, defined in (L.I0I), we have

m(H
‘hm(H»") (nwk,Ak,l_Ak,O_f)‘ = gn—(l )(nwk7Ak,1_Ak,O_€) ’ < (nwmAkJ—Ak,o—ﬁ) .

m(H In m(H,n)—m(H,n—1)
(9-11-2) VL,AM—Ak,O(hm(H,n)) = VJ;,AM—AM <9n (1) (;) )

On the other hand, by Step I1(2 ) for every o € O¢, and any € € [0, 1

is contained in Vtxn >1; and Vtxn 2 > but not in Vtxn f >y~ [t follows that the Newton poly-

gon of G nora(w, —) at each of those points is a straight line of width 2 from n — 2 to n. We
therefore deduce that for @ € F,

)’ L JAg1—Ag ote

o a m(H Gpn O\ (M(Hn)=m(Hn—-2))/2
(911.3) Vi aprapo(mm) = Vi s - avs <gn_<2> _ (E) )

Taking the sum of (IIT.2) and (@IL3) for all @ € F and using the harmonicity equality
(@I02) (for Aum(m,ny in the first equality and for g, and g, in the third equality), we deduce
that
m)

VU—): Ap1—Ag, o m(H" + Z &Ar,1—Ak o m(Hv"))
acF

m(H In m(H,n)—m(H,n—1)
Vo ()

m(H) n (m(H,n)—m(H,n—2))/2
Z Wk, Ak,1—Ak 0 <gn—2 ’ <g ) )
n—2

acF
m n <<gngn—2 ) (m(H,n)—m(H,n—l)—m(H))/2>
Wi, A, 1—Ag 0 2 .
In—1

(The third equality also makes use of m(H,n — 1) — m(H,n —2) = m(H) on the exponents
of g, and g,_».)

To show that m(H,n) = n-m(H), or equivalently m(H,n) —m(H,n—1) = m(H), it then
suffices to show that

(9'11'4) 2v Ak I_Ak O(Qn 1) # V’u—):,Ak’l—Akyo(gn> + v Ak I_Ak O(QTL 2)
94

0




By definition, for i € {n — 1,n,n + 1}, we have

(9.11.5) Vi g (0i) = > m;(K')

Vp(Wyr —wg) > A 1—Ag 0

is the sum of ghost zero multiplicities for those weights &' = k. mod (p — 1) such that
Up(wp —wy) > Ag1—Ago. Note that the function i — m;(k’) is linear over i € {n—1,n,n+1}
except that 7 is equal to %d}c‘?’, diy —d%, and d. However, by the definition of near-Steinberg
range in Definition 2.17] the condition v,(wy —wg) > Ag 1 — Ay implies that n — 1 belongs
to the near-Steinberg range for (wy, k). Yet Proposition 2I8(1) (for L., > 1) implies that
the condition v, (k, — ke) > Ag1 — Ay excludes the case that i = diY — d}¥ or i = d}¥. So
the only &’ that appears in the sum of (O.IL5) and that ¢ — m; (k') is not linear is when
k' =k, in which case 2m,,_1(k) — m, (k) — m,_2(k) = 2. It then follows that

2VU—1:7AI€,1_AI¢,O (g”_l) o vﬂ—;,Ak,l—Ak,o (g”) o vﬂ—;,Ak,l—Ak,o (g"_z) =2.
So ([@IT4) is not an equality. This completes the inductive proof of Step II.

Remark 9.12. The claim in Step II can be probably proved without referencing to the
heavy results such as Proposition 2.18(3)(4)(5), but that would make the proof longer.
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