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SLOPES OF MODULAR FORMS AND GEOMETRY OF EIGENCURVES

RUOCHUAN LIU, NHA XUAN TRUONG, LIANG XIAO, AND BIN ZHAO

Abstract. Under a stronger genericity condition, we prove the local analogue of ghost
conjecture of Bergdall and Pollack. As applications, we deduce in this case (a) a folklore
conjecture of Breuil–Buzzard–Emerton on the crystalline slopes of Kisin’s crystabelian de-
formation spaces, (b) Gouvêa’s ⌊k−1

p+1
⌋-conjecture on slopes of modular forms, and (c) the

finiteness of irreducible components of the eigencurve. In addition, applying combinatorial
arguments by Bergdall and Pollack, and by Ren, we deduce as corollaries in the reducible and
strongly generic case, (d) Gouvêa–Mazur conjecture, (e) a variant of Gouvêa’s conjecture
on slope distributions, and (f) a refined version of Coleman’s spectral halo conjecture.
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1. Introduction

1.1. Questions of slopes of modular forms. Let p be an odd prime number and let N be
an integer relatively prime to p. The central object of this paper is the Up-slopes, that is, the
p-adic valuations of the eigenvalues of the Up-operator acting on the space of (overconvergent)
modular forms of level Γ0(Np), or on more general space of (overconvergent) automorphic
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forms essentially of GL2(Qp)-type. In this paper, the p-adic valuation is normalized so that
vp(p) = 1.

The general study of slopes of modular forms dates back to 1990’s, when Gouvêa and
Mazur made several profound and intriguing conjectures on these slopes, based on extensive
numerical computations. These conjectures were later extended and refined by Buzzard,
Calegari, and many other mathematicians; see [Bu05, BC04, Cl05, Lo07]; certain very spe-
cial cases were also proved based on either the coincidence that certain modular curve has
genus 0 (e.g. [BC04]), or the still computationally manageable p-adic local Langlands corre-
spondence when the slopes are small (e.g. [BuGe13, BhGh15, GG15, BGR18, Ar21]). Un-
fortunately, despite strong numerical evidences, little theoretic progress was made towards
these conjectures in the general case.

In recent breakthrough work of Bergdall and Pollack [BP19a, BP19b, BP21+], they unified
all historically important conjectures regarding slopes into one conjecture: the ghost con-
jecture, which roughly gives a combinatorially defined ‘toy model”, called the ghost series,
of the characteristic power series of the Up-action on the space of overconvergent modular
forms. The purpose of this work and its prequel [LTXZ22+] is to prove this ghost conjec-
ture and place it under the framework of p-adic local Langlands conjecture. We now state
our main theorem followed by a discussion on all of its corollaries, and then conclude the
introduction with a short overview of the proof.

1.2. Statement of main theorems. To be precise, we fix an odd prime p ≥ 5 and an
isomorphism Qp ≃ C. Let E be a finite extension of Qp with ring of integers O and
residue field F. Let r̄ : GalQ → GL2(F) be an absolutely irreducible representation. Let

Sk(Γ0(Np);ψ)r̄ ⊆ S†
k(Γ0(Np);ψ)r̄ denote the space of classical and overconvergent modular

forms of weight k level Γ0(Np) and nebentypus character ψ of F×
p , localized at the Hecke

maximal ideal corresponding to r̄, respectively. (Our convention on associated Galois repre-
sentation is the cyclotomic twist of that of [Em98, CEGGPS16, CEGGPS18]; see § 1.26 for
more discussion.)

It is a theorem of Coleman and Kisin that Sk(Γ0(Np);ψ)r̄ is “almost” the subspace of

S†
k(Γ0(Np);ψ)r̄ spanned by Up-eigenforms with slopes ≤ k − 1 (the forms of slope k − 1 is a

bit tricky and we do not discuss them in this introduction; see Proposition 2.11(1)). Thus, to
understand the slopes of the Up-action on Sk(Γ0(Np);ψ)r̄, it suffices to understand the slopes

of the Newton polygon of the characteristic power series of the Up-action on S†
k(Γ0(Np);ψ)r̄.

It is a theorem of Coleman that one may interpolate the characteristic power series of
Up-actions on spaces of overconvergent modular forms of all weights k, as follows. Let
ω1 : IQp ։ Gal(Qp(µp)/Qp) ∼= F×

p denote the first fundamental character of the inertial
subgroup IQp at p; so det(r̄|IQp ) = ωc1 for some c ∈ {0, . . . , p−2}. Write ω : F×

p → O× for the

Teichmüller character, and put wk := exp(p(k − 2))− 1 for each k ∈ Z. Then there exists a
power series Cr̄(w, t) ∈ OJw, tK such that

Cr̄(wk, t) = det
(
I∞ − Upt; S†

k(Γ0(Np);ω
k−1−c))r̄

)
.

The ghost conjecture aims, under a condition we specify later, to find a “toy model” power
series Gρ̄(w, t) that has the same Newton polygon as Cr̄(w, t) for every evaluation of w,
but only depends on the restriction ρ̄ = r̄|IQp . Here and later, for a power series C(t) :=

1 + a1t + a2t
2 + · · · ∈ OJtK, the Newton polygon NP(C(t)) is the lower convex hull of the
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points (n, vp(an)) for all n. In particular, the slopes of NP(Cr̄(wk,−)) are precisely the slopes

of Up-action on S†
k(Γ0(Np);ω

k−1−c)r̄.
The key requirement for the ghost conjecture is that r̄p := r̄|GalQp

is reducible and generic,

namely, c ≡ a+ 2b+ 1 mod (p− 1) for some a ∈ {1, . . . , p− 4} and b ∈ {0, . . . , p− 2}, and

• (reducible and nonsplit case) either r̄p|IQp ≃ ρ̄ :=

(
ωa+b+1
1 ∗ 6= 0
0 ωb1

)
, the unique non-

trivial extension in H1(IQp, ω
a+1
1 )GalFp = H1(GalQp, ω

a+1
1 ) or

• (reducible and split case) r̄p|IQp ≃ ρ̄ss := ωa+b+1
1 ⊕ ωb1,

We need one more technical input to state our theorem (which we give a working defini-
tion): there exists an integer m(r̄) such that

dimSk(Γ0(Np);ω
k−1−c)r̄ −

2k

p− 1
m(r̄) is bounded as k →∞.

Suchm(r̄) always exists. In fact, we will prove more precise dimension formulas in Definition-
Proposition 2.12.

For the ρ̄ above, we defined in [LTXZ22+] a power series Gρ̄(w, t) =
∑
n≥0

gn(w)t
n ∈ Zp[w]JtK

analogous to the ghost series in [BP19a]. (We will quickly recall its definition after the
theorem below.)

Our main result is the following. It was essentially conjectured by Bergdall and Pollack
[BP19a, BP19b] (and is slightly adapted in the prequel [LTXZ22+] of this series).

Theorem 1.3 (Ghost conjecture). Assume p ≥ 11. Assume that r̄ : GalQ → GL2(F) is an
absolutely irreducible representation such that r̄|GalQp

is reducible and that r̄|IQp is isomorphic
to either ρ̄ or ρ̄ss above with 2 ≤ a ≤ p− 5. Then for every w⋆ ∈ mCp , the Newton polygon

NP
(
Cr̄(w⋆,−)

)
is the same as the Newton polygon NP

(
Gρ̄(w⋆,−)

)
, stretched in both x- and

y-directions by m(r̄), except possibly for the their slope zero parts.

Remark 1.4. (1) We have complete results for the slope zero part; see Theorem 8.7 for
details. In fact, our Theorem 8.7 is a much more general statement for the space of
automorphic forms of general GL2(Qp)-type.

(2) It is conjectured that Theorem 1.3 holds for a = 1 and a = p − 4, and for smaller
primes p. We explain the technical difficulties later in Remarks 2.8 and 5.6.

(3) In Remark 8.8, we also explain how to extend Theorem 1.3 to the case when the
global representation r̄ is reducible. The only difference is some additional dimension
computation.

We quickly recall the definition of ghost series Gρ̄(w, t) = 1 +
∑
n≥1

gn(w)t
n ∈ Zp[w]JtK; see

Definition 2.5 and the following discussion for examples and formulas. Assume that r̄|IQp ≃ ρ̄.

For each k ≡ a + 2b+ 2 mod (p− 1) and k ≥ 2, define

durk := 1
m(r̄)

dim Sk
(
Γ0(N)

)
r̄

and dIwk := 1
m(r̄)

dim Sk
(
Γ0(Np)

)
r̄
.

Then we have

gn(w) =
∏

k≡a+2b+2 mod (p−1)

(w − wk)mn(k),

3



where the exponents mn(k) are given by the following recipe

mn(k) =

{
min

{
n− durk , dIwk − durk − n

}
if durk < n < dIwk − durk

0 otherwise.

We point out that the ghost series Gρ̄(w, t) depends only on ρ̄, or equivalently the numbers
p, a, and b; it does not depend on N and the global representation r̄.

A very primitive form of the ghost conjecture was first asked in [BC04], which is only for
the case when p = 2 and N = 1. Later similar types of ghost series for other small primes
were conjectured by [Cl05, Lo07]. The general form of the ghost series was first introduced
by Bergdall and Pollack [BP19a, BP19b]. We emphasize that the Bergdall and Pollack’s
work is of crucial importance to this paper.

In [LTXZ22+], we made an analogous local ghost conjecture which, starts with a com-
pletely abstract setting: set Kp = GL2(Zp); consider a primitive OJKpK-projective augmented

module associated to ρ̄, that is, a projective OJKpK-module H̃ on which the Kp-action extends
to a continuous GL2(Qp)-action, satisfying certain appropriate conditions (that are naturally
satisfied in the automorphic setup). From this, one can similarly define analogues of classi-
cal and overconvergent forms, and our main result of this paper is the following analogue of
Theorem 1.3 in the abstract setup, which we call the local ghost theorem.

Theorem 1.5 (Local ghost theorem). Assume that p ≥ 11. Let ρ̄ =

(
ωa+b+1
1 ∗ 6= 0
0 ωb1

)

be the reducible, nonsplit, and generic residual representation with a ∈ {2, . . . , p − 5} and

b ∈ {0, . . . , p − 2} as above. Let H̃ be a primitive OJKpK-projective augmented module of
type ρ̄, and let ε be a character of (F×

p )
2 relevant to ρ̄. Then for the characteristic power

series C
(ε)

H̃
(w, t) of the Up-action on overconvergent forms associated to H̃, and the combi-

natorially defined ghost series G
(ε)
ρ̄ (w, t), we have, for every w⋆ ∈ mCp , NP(G

(ε)
ρ̄ (w⋆,−)) =

NP(C
(ε)

H̃
(w⋆,−)).

Comparing to Theorem 1.3, we here allow characters on both F×
p -factors of the Iwahori

group Iwp =
( Z×

p Zp

pZp Z×
p

)
. We refer to Section 2 for more discussions on undefined notations.

The benefit of extending Theorem 1.3 to the purely local ghost Theorem 1.5 is that the
latter works for the “universal” OJKpK-projective augmented module. More precisely, if
r̄p : GalQp → GL2(F) is a residual local Galois representation whose restriction to IQp is ρ̄,

then Paškūnas in [Pa13] defined a certain projective envelope P̃ of π(r̄p)
∨ in the category

of Pontryagin dual of smooth admissible torsion representations of GL2(Qp), so that the

endomorphism ring of P̃ is isomorphic to the deformation ring Rr̄p of r̄p. The upshot is that
there exists an element x in the maximal ideal of Rr̄p such that for every x⋆ ∈ m′ for m′

the maximal ideal in some finite extension O′ of O, P̃O′/(x − x⋆)P̃O′ is always a primitive
O′JKpK-projective augmented module of type ρ̄. Thus Theorem 1.5 applies and gives the

corresponding slopes for overconvergent forms constructed out of P̃O′/(x− x⋆)P̃O′.
Comparing this with the Galois side, we obtain immediately the list of slopes on the

triangulline deformation space of r̄p à la Breuil–Hellmann–Schraen [BHS17]. (Moreover, we
observe that this also provides the knowledge of the slopes for triangulline deformation space
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of r̄ssp , for free.) Finally, by a bootstrapping argument, our result implies the ghost conjecture
for a general automorphic setup using global triangulation results such as [KPX14, Li15], in
particular Theorem 1.3.

A discussion of the proof of Theorem 1.5 will be given later in § 1.25.

Remark 1.6. We make several quick comments at the philosophical level on the proof.

(1) It essential to work over the entire weight space and harness the integrality of the
characteristic power series over the weight ring OJwK. The pattern of slopes of

G
(ε)
ρ̄ (wk,−) can be very complicated and subtle; see for example the cited proof of

Proposition 2.18. The involved combinatorics seems to suggest: working over a single
weight k to treat all slopes is going to be combinatorially extremely difficult.

(2) The bootstrapping step makes use of essentially the full power of the known p-adic
local Langlands correspondence for GL2(Qp) (which might be downgraded to only
assuming Breuil–Mézard conjecture for GL2(Qp)). But the proof of Theorem 1.5 (in
the primitive case) does not make use of the p-adic local Langlands correspondence.

Remark 1.7. We point to several possible extensions of Theorem 1.5.

(1) In addition to slopes of NP
(
C

(ε)

H̃
(wk,−)

)
, we may ask, for each root α of C

(ε)

H̃
(wk,−),

what α/pvp(α) modulo ̟ is. It seems to be possible that, if we know this for the
Up-action on the space of “modular forms” with weight 2 and character ωb × ωa+b,
then we may deduce this answer for all slopes of multiplicity one. Suggested by
this, it is natural to ask whether for every root α, one may subtract a fixed value

α0 ∈ Cp (combinatorially determined and independent of H̃) so that α−α0 is always
contained in pβmCp for some maximal possible β. Translating this to the Galois
side, we conjecture perhaps overly optimistically that, when r̄|GalQp

is reducible and
generic, each irreducible component of every Kisin’s semistabelian deformation space
has Breuil–Mézard multiplicity 1. In fact, this can be proved in the crystabelian case
with wild inertia type, in the forthcoming work of [AXZ23+].

(2) It is very natural to ask whether the method of this paper extends to the case when
r̄|GalQp

is irreducible, or even non-generic. Our most optimistic answer is “maybe”,
but we have not carefully investigated this case. The key difference is that, when
r̄|GalQp

is irreducible and generic, the smallest slope at any classical point seems to
depend on the automorphic data. However, some initial computation suggests that

although NP(C
(ε)

H̃
(w⋆,−)) can be complicated, if we only consider the convex hull of

points whose horizontal coordinates are even integers, then there might be a hope
of an analogue of ghost series. Analogous to (1), if we are extremely optimistic,
we would make a wild conjecture that, when r̄|GalQp

is irreducible and generic, each
irreducible component of every Kisin’s semistabelian deformation space has Breuil–
Mézard multiplicity 2.

(3) In [Bu05], Buzzard proposed an algorithm which is expected to produce slopes of
modular forms inductively, at least under the Buzzard-regular condition. We will not
include a discussion on this, but leave for the interested readers. We only point out
that this has been numerically verified extensively; see [BP19a, Fact 3.1].

The logical process and relations with various conjectures we address in this paper are
summarized in the following diagram:
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Local ghost conjecture

Paškūnas functor
Triangulline variety

Global triangulation

Slopes on triangulline deformation space

Automorphic ghost conjecture

(a) Breuil–Buzzard–Emerton conjecture

(b) Gouvêa’s
⌊
k−1
p+1

⌋
-conjecture

(c) Irreducible components of eigencurves

(d) Gouvêa–Mazur conjecture

(e) Slope distribution conjecture

(f) Refined spectral halo conjecture

We now discuss these corollaries.

1.8. Application A: Breuil–Buzzard–Emerton conjecture. Let r̄p : GalQp → GL2(F)
be a residual local Galois representation, and let R�

r̄p denote the framed deformation ring.

For k ∈ Z≥2 and a finite-image character ψ = ψ1 ×ψ2 : (Z
×
p )

2 → O×, Kisin [Kis08] defines a

quotient of R
�,k−1,ψ
r̄p parametrizing lifts of r̄p that are potentially crystalline with Hodge–Tate

weights (0, k) and initial type ψ.

For each homomorphism x∗ : R
�,k−1,ψ
r̄p → E ′ with E ′ a finite extension of E, let Vx

denote the deformation of r̄p at x. Then the 2-dimensional space Dpcrys(Vx) carries E ′-linear
commuting actions of Gal(Qp(µp∞)/Qp) and the crystalline Frobenius φ (see Notation 7.1
for the definition of Dpcrys(Vx)).

The following [BuGe16, Conjecture 4.1.1] was initially conjectured by Breuil, Buzzard,
and Emerton in their personal correspondences around 2005.

Theorem 1.9 (Breuil–Buzzard–Emerton conjecture). Assume that p ≥ 11 and that r̄p is
reducible and very generic, that is, r̄p|IQp ≃ ρ̄ or ρ̄ss with ρ̄ defined above and a ∈ {2, . . . , p−5}
and b ∈ {0, . . . , p − 2}. Let k, ψ, R

�,k−1,ψ
r̄p , and x∗ be as above. Let m denote the minimal

positive integer such that ψ1ψ
−1
2 is trivial on (1 + pmZp)

×, and let α be an eigenvalue of φ
acting on the subspace of Dpcrys(Vx) where Gal(Qp(µp∞)/Qp) acts through ψ1. Then

vp(α) ∈
{(

a
2
+ Z

)
∪ Z when m = 1,

1
(p−1)pm−1Z when m ≥ 2.

This is proved in Corollary 7.10, in fact as a corollary of Theorem 7.6 which identifies
all possible slopes on the triangulline deformation spaces with slopes of the Newton poly-

gon of G
(ε)
ρ̄ (w, t). The idea of the proof is essentially explained in the paragraph after

Theorem 1.5, namely, that applying Theorem 1.5 to the universal GL2(Qp)-representation
defined by Paškūnas shows that the slopes of the crystalline Frobenius actions are exactly
determined by the Up-slopes on corresponding overconvergent forms, which is in turn equal

6



to the slopes of G
(ε)
ρ̄ (w, t). Now the integrality statement follows from a (not-at-all-trivial)

property of ghost series [LTXZ22+, Corollaries 4.14 and 5.24].

Remark 1.10. (1) What is originally conjectured in [BuGe16, Corollary 4.1.1] also in-
cludes non-generic cases, which our method cannot treat at the moment.

(2) There have been several attempts [Br03, BuGe13, BhGh15, GG15, BGR18] on var-
ious versions of this theorem, based on mod p local Langlands correspondence. In
fact, their goals are much more ambitious: classify the reduction of all crystalline
or crystabelian representations with slopes less than equal to a particular number,
typically less than or equal to 3. In their range, their work even addresses non-generic
cases that we cannot touch. Our advantage is to be able to treat all possible slopes.

(3) Analogous to Theorem 1.9, Jiawei An obtained some partial results towards the p-adic
valuations of L-invariants of semistable deformations of ρ̄.

1.11. Application B: Gouvêa’s
⌊
k−1
p+1

⌋
-conjecture. In 1990s, Gouvêa numerically com-

puted the Tp-slopes in Sk(Γ0(N)) as k → ∞ and found in [Go01, § 4] that almost always,
the slopes are less than or equal to

⌊
k−1
p+1

⌋
.

Interpreting this using the framework of (p-adic local) Langlands program, we should
consider instead the Tp-slopes on Sk(Γ0(N))r̄ (or equivalently the lesser Up-slopes on old
forms in Sk(Γ0(pN))r̄ after p-stabilization) when localized at a residual Galois representation
r̄ as in § 1.2. If we assume further that r̄|IQp is isomorphic to ρ̄ and ρ̄ss as above, it is expected

that the slopes are always less than or equal to
⌊
k−1
p+1

⌋
.

This conjecture also has its Galois theoretic counterpart, which seems more intrinsic.
Roughly speaking, this folklore conjecture asserts that for any crystalline representation V
of Hodge–Tate weight (0, k − 1), if p-adic valuation of the trace of the φ-action on Dcrys(V )
is strictly larger than

⌊
k−1
p+1

⌋
, then V has an irreducible reduction.

Our following result partially answers the counterpositive statement.

Theorem 1.12 (Gouvêa’s
⌊
k−1
p+1

⌋
-conjecture). Assume p ≥ 11. Let r̄p be a residual local

Galois representation such that r̄p|IQp ≃ ρ̄ or ρ̄ss with ρ̄ defined above and a ∈ {2, . . . , p− 5}
and b ∈ {0, . . . , p− 2}. Let

ψ : (Z×
p )

2
։ ∆2 ω−sε×ω−sε−−−−−−→ O×

be a character with sε ∈ {0, . . . , p− 2}, and fix k ∈ Z≥2 such that k ≡ a+ 2sε mod (p− 1).

Let R
�,k−1,ψ
r̄p be Kisin’s crystabelian deformation ring as above and let x∗ : R

�,k,ψ
r̄p → E ′ be

a homomorphism. Then for the trace ap,x of the φ-action on Dpcrys(Vx), we have

vp(ap,x) ≤
⌊k − 1−min{a+ 1, p− 2− a}

p+ 1

⌋
.

This is proved in Corollary 7.10.

Remark 1.13. (1) We in fact proved a stronger statement with bound
⌊k−1−min{a+1,p−2−a}

p+1

⌋

as opposed to
⌊
k−1
p+1

⌋
. The correct way to interpret this is that: consider a crystalline

representation V where one of the Frobenius eigenvalue has slope
⌊
k−1
p+1

⌋
= k−1−c

p+1
with

c ∈ {0, . . . , p}; then the reduction of V corresponds to the case when a = c − 1 or
7



a = p− 2− c. Such statement might even make sense when “a = −1 or a = p− 2”,
except our theorem will not be able to address this.

(2) The original Galois-theoretic version of Gouvêa’s conjecture was proved with weaker
bounds

⌊
k−1
p−1

⌋
by Berger–Li–Zhu [BLZ04] and bounds

⌊
k−1
p

⌋
by Bergdall–Levin [BL22].

Both results essentially use tools from p-adic Hodge theory: the former one uses Wach
modules and the latter one uses Kisin modules.

(3) The estimate of the slopes of crystalline Frobenius φ comes from the estimate of
slopes of the ghost series, which turns out to involve a rather subtle inequality on
sum of digits of certain number’s p-adic expansions. See [LTXZ22+, Proposition 4.28]
for the non-formal part of the proof.

1.14. Application C: Finiteness of irreducible components of eigencurves. Near the
end of the introduction of the seminal paper [CM98] of Coleman and Mazur, they listed many
far-reaching open questions, among them, one particularly intriguing question is whether the
eigencurve has finitely many irreducible components, as somewhat “suggested” by that all
non-Hida components have infinite degrees over the weight space. As far as we understand,
almost nothing was known towards this question. As a corollary of our main theorem,
we provide we-believe the first positive theoretic evidence towards this question, namely,
the eigencurve associated to r̄ that is reducible and very generic at p, has finitely many
irreducible components.

Let us be more precise. Keep the notation as in Theorem 1.3. Let W := (Spf OJwK)rig
denote the rigid analytic weight open unit disk and let Grig

m denote the rigid analytification of
Gm,Qp. Let Spc(r̄) denote the zero locus of Cr̄(w, t), as a rigid analytic subspace of Grig

m ×W;
it carries a natural weight map wt to W. By Hida theory, this spectral curve is the disjoint
union Spc(r̄) = Spc(r̄)=0⊔Spc(r̄)>0, where Spc(r̄)=0 (possibly empty) is the component with
slope zero, corresponding to the Hida family. It is well known that Spc(r̄)=0 is finite over
W, and hence has finitely many components. We prove the following in Corollary 9.7.

Theorem 1.15. Assume p ≥ 11 and that r̄|GalQp
is reducible and generic with 2 ≤ a ≤ p−5.

Then Spc(r̄)>0 has finitely many irreducible components. In fact, each irreducible component
Z of Spc(r̄)>0 is the zero locus of a power series CZ(w, t) ∈ OJw, tK such that for every w⋆ ∈
mCp , the NP

(
CZ(w⋆,−)

)
is the same as NP

(
Gρ̄(w⋆,−)

)
with the slope-zero part removed,

and stretched in both x- and y-directions by some constant m(Z).
In fact, what we prove is that, for every power series C(w, t) whose positive slopes agree

with the ghost series (up to a fixed multiplicity), any irreducible factor of C(w, t) has the
same property; see Theorem 9.6.

1.16. Application D: Gouvêa–Mazur conjecture. In the pioneer work of Gouvêa and
Mazur [GM92], they investigated how slopes of (classical) modular forms vary when the
weight k changes p-adically. Their extensive numerical data suggests that when the weights
k1 and k2 are p-adically close, then the slopes of modular forms of weights k1 and k2 agree.
More precisely, they made the following conjecture.

Conjecture 1.17 (Gouvêa–Mazur). There is a function M(n) linear in n such that if
k1, k2 > 2n + 2 and k1 ≡ k2 mod (p − 1)pM(n), then the sequences of Up-slopes (with multi-
plicities) on Sk1(Γ0(Np)) and Sk2(Γ0(Np)) agree up to slope n.
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Originally, Gouvêa and Mazur conjectured with M(n) = n, but Buzzard and Calegari
[BC04] found explicit counterexamples. The current modified version Conjecture 1.17 is still
expected by experts. The only proved result is with M(n) quadratic in n by Wan [Wa98].

It is natural to consider this conjecture for each r̄-localized subspaces Sk(Γ0(Np))r̄. Under
the same hypothesis as above, combining Theorem 1.3 with a combinatorial result of ghost
series by Rufei Ren [Re22+], we prove in Theorem 8.10 the following variant of Gouvêa–
Mazur conjecture.

Theorem 1.18. Assume p ≥ 11 and that r̄ : GalQ → GL2(F) is an absolutely irreducible
representation such that r̄p|IQp is isomorphic to ρ̄ or ρ̄ss above with 2 ≤ a ≤ p− 5. Then for

weights k1, k2 > 2n+ 2 such that k1 ≡ k2 ≡ a+ 2b+ 1 mod (p− 1) and vp(k1 − k2) ≥ n+ 5,
the sequence of Up-slopes (with multiplicities) on Sk1(Γ0(Np))r̄ and Sk2(Γ0(Np))r̄ agree up to
slope n.

1.19. Application E: Gouvêa’s slope distribution conjecture. For slopes of modular
forms, Gouvêa made extensive numerical computations. In his paper [Go01], titled “Where
the slopes are”, he made the following intriguing conjecture.

Conjecture 1.20. Fix a tame level N (relatively prime to p). For each k, write α1(k), . . . , αd(k)
for the list of Up-slopes on Sk(Γ0(Np)), and let µk denote the uniform probability measure of

the multiset {α1(k)
k−1

, . . . , αd(k)
k−1
} ⊂ [0, 1]. Then the measure µk weakly converges to

(1.20.1)
1

p + 1
δ[0, 1

p+1
] +

1

p+ 1
δ[ p
p+1

,1] +
p− 1

p+ 1
δ 1

2
,

where δ[a,b] denotes the uniform probability measure on the interval [a, b], and δ 1
2
is the Dirac

measure at 1
2
.

The symmetry between δ[0, 1
p+1

] and δ[0, 1
p+1

] follows from the usual p-stabilization process,

namely the old form slopes can be paired so that the sum of each pair is k − 1. The Dirac

measure at 1
2
corresponds to the newform slope, where the Up-eigenvalues are p

± k−2
2 .

In [BP19b], the authors defined abstract ghost series and showed that the slopes of the
Newton polygon of abstract ghost series satisfy analogue of Gouvêa’s distribution conjecture.
So combining their work and Theorem 1.3, we obtain the following. (See Theorem 8.11.)

Theorem 1.21. Assume p ≥ 11 and that r̄ : GalQ → GL2(F) is an absolutely irreducible
representation such that r̄p|IQp is isomorphic to ρ̄ or ρ̄ss above with 2 ≤ a ≤ p − 5. For

k ≡ a + 2b + 2 mod (p − 1), let α1(k), α2(k), . . . denote the Up-slopes of Sk(Γ0(Np))r̄ in

increasing order, and let µk denote the probability measure for the set {α1(k)
k−1

, α2(k)
k−1

, . . .
}
. Let

m(r̄) be the mod-p-multiplicity defined in § 1.2. Then

(1) When i ≤ dimSk(Γ0(N))r̄, we have αi(k) =
p−1
2m(r̄)

· i+ O(log k) when r̄p|IQp ≃ ρ̄, and

αi(k) =
p−1
m(r̄)
· i+O(log k) when r̄p|IQp ≃ ρ̄ss.

(2) As k →∞ while keeping k ≡ a+2b+2 mod (p−1), the measure µk weakly converges
to the probability measure (1.20.1).

1.22. Application F: a refined Coleman’s spectral halo conjecture. In Coleman and
Mazur’s foundational paper [CM98] on eigencurves, they also raised an important conjecture
regarding the behavior of the associated eigencurve near the boundary of the weight disks:
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they conjecture that the eigencurve is an infinite disjoint union of annuli such that each
irreducible component is finite and flat over the weight annulus; this was largely inspired
by Emerton’s thesis [Em98]. The first proved result in this direction was by Buzzard and
Kilford [BK05], who proved this result when N = 1 and p = 2. Some additional examples
when p is small were subsequently provided [Ja04, Kil08, KM12, Ro14]. The first result
for more general situation was obtained by Daqing Wan, the first and the third authors in
[LWX17], which roughly speaking, proved the following.

Theorem 1.23. Let CD(w, t) denote the characteristic power series analogously defined as
in § 1.2 but for automorphic forms on a definite quaternion algebra D over Q that is split
at p. Let Spc(D) denote the zero locus of CD(w, t) in W ×Grig

m , and

W(0,1) =
{
w⋆ ∈ W

∣∣ vp(w⋆) ∈ (0, 1)
}

and Spc(0,1)(D) = Spc(D) ∩ wt−1(W(0,1)).

Then Spc(0,1)(D) is an infinite disjoint union X0

⊔
X(0,1)

⊔
X1

⊔
X(1,2)

⊔ · · · such that

(1) for each point (w⋆, ap) ∈ XI for I = n = [n, n] or (n, n + 1), we have

vp(ap) ∈ (p− 1) · vp(w⋆) · I,

(2) the weight map wt : XI →W(0,1) is finite and flat.

This was later generalized to the Hilbert case when p splits, by Johansson–Newton [JN19],
and Rufei Ren and the fourth author [RZ22]. The case corresponding to the modular forms,
namely the “original Coleman–Mazur” conjecture was established by Hansheng Diao and
Zijian Yao in [DiYa22+]. Unfortunately, Theorem 1.23 and all these generalizations do not
give further information on the slope ratios vp(ap)/vp(w⋆) inside the open intervals (p− 1) ·
(n, n + 1). When r̄ satisfies the conditions of our ghost theorem, the slopes of ghost series
automatically give the following refined version of the above theorem. (See Theorem 8.12)

Theorem 1.24. Assume p ≥ 11 and that r̄ : GalQ → GL2(F) is an absolutely irreducible
representation such that r̄p|IQp is isomorphic to ρ̄ above with 2 ≤ a ≤ p − 5. Let Spc(r̄)

denote the zero of Cr̄(w, t) inside W × Grig
m , and put Spc(r̄)(0,1) = Spc(r̄) ∩ wt−1(W(0,1)).

Then Spc(r̄)(0,1) is a disjoint union Y1
⊔
Y2
⊔ · · · such that

(1) for each point (w⋆, ap) ∈ Yn, vp(ap) = (deg gn(w)− deg gn−1(w)) · vp(w⋆), and
(2) the weight map wt : Yn →W(0,1) is finite and flat of degree m(r̄).

A similar result can be stated when r̄ is split, we refer to Theorem 8.12 for the details.

1.25. Overview of the proof of Theorem 1.5. There are two main inputs in proving
Theorem 1.5. We explain these first. Recall that Kp = GL2(Zp); we may reduce to the case

when ρ̄ =

(
ωa+1
1 ∗ 6= 0

1

)
, namely b = 0. Theorem 1.5 involves the following local data:

let H̃ be the projective envelope of Syma F⊕2 as a right OJKpK-module, and we extend the
Kp-action to a continuous (right) action by GL2(Qp) so that

(
p 0
0 p

)
acts trivially. Then for

each character ψ of (F×
p )

2 and a character ε1 of F
×
p , we may define spaces of abstract classical
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and overconvergent forms

SIw
k (ψ) = SIw

H̃,k
(ψ) := HomOJIwpK

(
H̃, Symk−2O⊕2 ⊗ ψ

)
,

Sur
k (ε1) = Sur

H̃,k
(ε1) := HomOJKpK

(
H̃, Symk−2O⊕ ⊗ ε1 · det

)
,

S†
k(ψ) = SIw

H̃,k
(ψ) := HomOJIwpK

(
H̃, O〈z〉 ⊗ ψ

)
.(1.25.1)

These abstract and overconvergent forms behave exactly as their automorphic counterparts,
equipped with the corresponding Up-operators, Tp-operators, Atkin–Lehner involutions, and
theta maps. (See § 2.4 and Proposition 2.11.)

Main input I: p-stabilization process; see § 3.3 and Proposition 3.5. When ψ = ε̃1 =
ε1 × ε1, the standard p-stabilization process can be summarized by the following diagram

Sur
H̃,k

(ε1) SIw
H̃,k

(ε̃1)

i1

i2
Tp

Up

AL

pr1

pr2

Here the space Sur
H̃,k

(ε1) carries a natural Tp-action and SIw
H̃,k

(ε̃1) carries a Up-action and an

Atkin–Lehner involution. The maps ι1, ι2, proj1, proj2 are the natural ones. Write durk (ε1) :=
rankO Sur

k,H̃
(ε1) and d

Iw
k (ε̃1) := rankO SIw

k,H̃
(ε̃1). The key observation is the equality:

(1.25.2) Up(ϕ) = ι2(proj1(ϕ))−AL(ϕ) for all ϕ ∈ SIw
H̃,k

(ε̃1).

Under the usual power basis, the matrix of Up on SIw
H̃,k

(ε̃1) is then decomposed as the sum of

• a matrix with rank ≤ durk (ε1) ≈ 1
p+1

dIwk (ε̃1), and

• an antidiagonal matrix for the Atkin–Lehner involution.

Essentially this observation alone already shows that the characteristic power series of the
upper-left n× n submatrix of the Up-action on abstract overconvergent form is divisible by
the ghost series gn(w) (but in a larger ring O〈w/p〉); see Corollary 3.10. Unfortunately, we
need much more work to control the determinant of other minors of the matrix of Up.

Main input II: halo estimate (for the center of the weight disk); see Lemma 3.14 and
the more refined version in Corollary 3.27.

As a right OJIwpK-module, we may write

H̃ = e1OJIwpK⊗O[(F×
p )2],1⊗ωa O ⊕ e2OJIwpK⊗O[(F×

p )2],ωa⊗1 O.
Thus, there is a natural power basis of S†

k(ψ) of the form

e∗1z
sψ,1, e∗1z

sψ,1+p−1, e∗1z
sψ,1+2(p−1), · · · , e∗2zsψ,2 , e∗2zsψ,2+p−1, e∗2z

sψ,2+2(p−1), · · · ,
for some characters sψ,1, sψ,2 ∈ {0, . . . , p− 2} to match the characters; see § 2.10 for details.
It is natural to consider the Up-action with respect to this basis and the associated Hodge
polygon. Some time between the two papers [WXZ17] and [LWX17], the authors realized
that this estimate is not sharp enough. One should use instead the so-called Mahler basis,
or rather the modified Mahler basis, which means to replace the monomials above by the
following polynomials:

f1(z) =
zp − z
p

, fℓ+1(z) =
fℓ(z)

p − fℓ(z)
p

for ℓ ≥ 1;
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for n = n0 + pn1 + p2n2 + · · · , define mn(z) := zn0f1(z)
n1f2(z)

n2 · · · .
Then {fn(z) n ∈ Z≥0} form a basis of the space of continuous functions on Zp, denoted by
C0(Zp;Zp). It turns out that estimate of Up-operator over this basis is slightly sharper than
the estimate for power basis. This improvement is the other key to our proof.

We make two remarks here: first, our modified Mahler basis is an approximation of the
usual Mahler basis

(
z
n

)
; ours have the advantage that each basis element is an eigenform of

the action of F×
p ; second, compare to the estimate in [LWX17], we also need to treat some

“pathological case”, e.g. coefficients when the degree is close to a large power of p. Such
“distractions” complicates our proof a lot.

With the two main input I and II discussed, we now sketch the proof of Theorem 1.5. A
more detailed summary can be found at the beginning of Section 4.

In a rough form, Theorem 1.5 says that C
(ε)

H̃
(w, t) = 1 +

∑
n≥1 cn(w)t

n and G
(ε)
ρ̄ (w, t) =

1 +
∑

n≥1 gn(w)t
n are “close” to each other. The leads us to the following.

Step I: (Lagrange interpolation) For each n, we formally apply Lagrange interpolation to
cn(w) relative to the zeros wk of gn(w) (with multiplicity):

(1.25.3) cn(w) =
∑

mn(k)6=0

ak(w) ·
gn(w)

(w − wk)mn(k)
+ h(w)gn(w).

We give a sufficient condition on the p-adic valuations of the coefficients of ak(w)
that would imply Theorem 1.5. This is Proposition 4.4.
In fact, we prove a similar p-adic valuation condition for all (principal or not)

n × n-submatrices U†(ζ × ξ) of the matrix of Up with respect to the power basis,
where ζ and ξ are row and column index sets.

Step II: (Cofactor expansion argument) The key inequality (1.25.2) writes the matrix U†(ζ×ξ)
as the sum of a matrix which is simple at wk and a matrix which as small rank at
wk. Taking the cofactor expansion with respect to this decomposition, we reduce the
needed the estimate to an estimate on the power series expansion of the character-
istic power series of smaller minors. This step involves some rather subtle inductive
processes that we defer to Section 5 for the discussion.

Step III: (Estimating power series expansion for smaller minors) This is to complete the in-
ductive argument by proving that the known estimate of Lagrange interpolation co-
efficients implies the needed power series expansion of the characteristic power series
of smaller minors. This part is relatively straightforward, but is tangled with some
pathological cases, where the refined halo estimate is essentially needed.

Roadmap of the paper. The first five sections are devoted to proving the local ghost
conjecture (Theorem 1.5 or Theorem 2.7). This is divided as: Section 2 collects background
information on the local ghost conjecture from [LTXZ22+]; Section 3 establishes the two
main inputs of the proof as explained in § 1.25; Sections 4, 5, and 6 treat precisely Step
I, III, and II in 1.25, respectively. (We swapped the order to for logical coherence.) In
Section 7, we recall a known-to-experts result: applying Emerton’s locally analytic Jacquet
functor to the Paškūnas modules precisely outputs Breuil–Hellmann-Schraen’s triangulline
deformation space (Theorem 7.18). Combining this with the local ghost theorem, we deduce
a theorem on the slopes of the triangulline deformation space (Theorem 7.6). Applications
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A and B are corollaries of this. Section 8 is the second part of the bootstrapping argument:
using the knowledge of the slopes on triangulline deformation spaces, we determine the Up-
slopes for any so-called OJKpK-projective arithmetic modules (Theorem 8.7). In the case
of modular forms, this specializes to Theorem 1.3. Applications D, E, and F follow from
this immediately. Finally, in Section 9, we prove the finiteness of irreducible components of
spectral curves, namely Theorem 1.15.
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1.26. Notation and normalization. For a field k, we write k for its algebraic closure.
Throughout the paper, we fix a prime number p ≥ 5. Let IQp ⊂ Gal(Qp/Qp) denote the

inertia subgroup, and ω1 : IQp ։ Gal(Qp(µp)/Qp) ∼= F×
p the the 1st fundamental character.

The reciprocity mapQ×
p → GalabQp is normalized so that p is sent to the geometric Frobenius

element. The character χcycl : Q
×
p → Z×

p given by χcycl(x) = x|x| extends to the cyclotomic
character of GalQp. The Hodge–Tate weight of χcycl in our convention is −1.

Let ∆ ∼= (Z/pZ)× be the torsion subgroup of Z×
p , and let ω : ∆→ Z×

p be the Teichmüller
character. For an element α ∈ Z×

p , we often use ᾱ ∈ ∆ to denote its reduction modulo p.
All hom spaces in this paper refer to the spaces of continuous homomorphisms. For M a

topological O-module, we write C0(Zp;M) for the space of continuous functions on Zp with
values in M .

Let E be a finite extension of Qp(
√
p), as the coefficient field. Let O, F, and ̟ denote its

ring of integers, residue field, and a uniformizer, respectively.
The p-adic valuation vp(−) and p-adic norm are normalized so that vp(p) = 1 and |p| = p−1.
We use ⌈x⌉ to denote the ceiling function and ⌊x⌋ to denote the floor function.

We shall encounter both p-adic logs log(x) = (x−1)− (x−1)2

2
+ · · · for x a p-adic or formal

element, and the natural logs ln(−) in the real analysis.
For each m ∈ Z, we write {m} for the unique integer satisfying the conditions

0 ≤ {m} ≤ p− 2 and m ≡ {m} mod p− 1.

For a square matrixM with coefficients in a ring R, we write Char(M ; t) := det(I−Mt) ∈
RJtK (if it exists), where I is the identity matrix. When U acting on an R-module is given
by such a matrix M , we write Char(U ; t) for Char(M ; t).
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For a power series F (t) =
∑

n≥0 cnt
n ∈ CpJtK with c0 = 1, we use NP(F ) to denote its

Newton polygon, i.e. the convex hull of points (n, vp(cn)) for all n; the slopes the segments
of NP(F ) are often referred to as slopes of F (t). For two Newton polygons A and B, let
A#B denote the Newton polygon (starting at (0, 0)) whose slopes (with multiplicity) is the
disjoint union of those of A and B.

For a formal O-scheme Spf(R), let Spf(R)rig denote the associated rigid analytic space
over E.

2. Recollection of the local ghost conjecture

In [BP16, BP19a, BP19b], Bergdall–Pollack proposed a conjectural combinatorial recipe
to compute the slopes of modular forms. This was reformulated by the authors [LTXZ22+]
in a setup that can be adapted to the context of modularity lifting techniques. In this
section, we first recall the construction as well as the statement of the local ghost conjecture;
notations mostly follow from [LTXZ22+] and we refer to loc. cit. for details. After this, we
quickly recall the power basis of abstract classical and overconvergent forms as well as the
dimension formulas for spaces of abstract classical forms.

Notation 2.1. Recall the following subgroups of GL2(Qp).

Kp := GL2(Zp) ⊃ Iwp :=

(
Z×
p Zp

pZp Z×
p

)
⊃ Iwp,1 :=

(
1 + pZp Zp
pZp 1 + pZp

)
.

Fix a finite extension E of Qp which contains a chosen square root
√
p of p (for a technical

convenience later). Let Let O, F, and ̟ denote its ring of integers, residue field, and a
uniformizer, respectively.

For a pair of non-negative integers (a, b), we use σa,b to denote the right F-representation

Syma F⊕2⊗detb of GL2(Fp). When a ∈ {0, . . . , p−1} and b ∈ {0, . . . , p−2}, σa,b is irreducible.
These representations exhaust all irreducible (right) F-representations of GL2(Fp). We call
them the Serre weights. We use Proja,b to denote the projective envelope of σa,b as a (right)
F[GL2(Fp)]-module.

Definition 2.2. ([LTXZ22+, Defintion 2.22]) Fix a reducible, nonsplit, and generic residual
representation ρ̄ : IQp → GL2(F) of the inertia subgroup:

(2.2.1) ρ̄ ≃
(
ωa+b+1
1 ∗ 6= 0
0 ωb1

)
for 1 ≤ a ≤ p− 4 and 0 ≤ b ≤ p− 2,

where ω1 is the first fundamental character, and ∗ stands for the unique nontrivial extension
(up to isomorphism) in the class H1(IQp, ω

a+1
1 )GalFp = H1(GalQp, ω

a+1
1 ).

An OJKpK-projective augmented module H̃ is a finitely generated right projective OJKpK-
module whose right Kp-action extends to a right continuous GL2(Qp)-action. We say that

H̃ is of type ρ̄ with multiplicity m(H̃) if

(1) (Serre weight) H := H̃/(̟, I1+pM2(Zp)) is isomorphic to a direct sum of m(H̃) copies
of Proja,b as a right F[GL2(Fp)]-module.

The topology on such H̃ is the one inherited from the OJKpK-module structure.

We say H̃ is primitive if m(H̃) = 1 and H̃ satisfies the following additional conditions:
14



(2) (Central character I) the action of
(
p 0
0 p

)
on H̃ is the multiplication by an invertible

element ξ ∈ O×, and

(3) (Central character II) there exists an isomorphism H̃ ∼= H̃0⊗̂OOJ(1 + pZp)
×K of

O[GL2(Qp)]-modules, where H̃0 carries an action of GL2(Qp) which is trivial on el-
ements of the form

(
α 0
0 α

)
for α ∈ (1 + pZp)

×, and the latter factor OJ(1 + pZp)
×K

carries the natural action of GL2(Qp) through the map GL2(Qp)
det−→ Q×

p

prδ 7→δ/ω(d̄)−−−−−−−→
(1 + pZp)

×.

Remark 2.3. We quickly remind the readers here that, for the local theory of ghost con-
jecture, we only treat the case when ρ̄ is reducible and nonsplit, or equivalently, when there
is only one Serre weight. It is the later bootstrapping argument in § 7 and § 8 that allows
us to deduce the general reducible case from the nonsplit case.

2.4. Space of abstract forms. Let H̃ be an OJKpK-projective augmented module of type

ρ̄ with multiplicity m(H̃).
(1) Set ∆ := F×

p and write ω : F×
p → Z×

p for the Teichmüller character. For each α ∈ Zp,
write ᾱ for its reduction modulo p.

A character ε of ∆2 is called relevant to ρ̄ if it is of the form

ε = ω−sε+b × ωa+sε+b

for some sε ∈ {0, . . . , p− 2}.
Recall that there is a canonical identification OJ(1 + pZp)

×K ∼= OJwK by sending [α] for
α ∈ (1 + pZp)

× to (1+w)log(α)/p, where log(−) is the formal p-adic logarithm. In particular,
for each k ∈ Z, we set

wk := exp(p(k − 2))− 1.

For a character ε of ∆2, write OJwK(ε) for OJwK, but equipped with the universal character

χ
(ε)
univ : ∆× Z×

p OJwK(ε),×

(ᾱ, δ) ε(ᾱ, δ̄) · (1 + w)log(δ/ω(δ̄))/p,

where δ̄ is the reduction of δ modulo p and ω(δ̄) is the Teichmümller lift of δ̄. The weight disk

W(ε) :=
(
Spf OJwK(ε)

)rig
for ε is the associated rigid analytic space over E. The universal

character extends to a character of Bop(Zp) =
( Z×

p 0

pZp Z×
p

)
, still denoted by χ

(ε)
univ, given by

(2.4.1) χ
(ε)
univ

((
α 0
γ δ

)
) = χ

(ε)
univ(ᾱ, δ).

Fix a relevant character ε for the rest of this subsection. Consider the induced represen-
tation (for the right action convention)

Ind
Iwp
Bop(Zp)

(χ
(ε)
univ) :=

{
continuous functions f : Iwp → OJwK(ε);(2.4.2)

f(gb) = χ
(ε)
univ(b) · f(g) for b ∈ Bop(Zp) and g ∈ Iwp

}

∼= C0(Zp;OJwK(ε)),(2.4.3)

where C0(Zp;−) denotes the space of continuous functions on Zp with values in −, the
isomorphism is given by f 7→ h(z) = f

((
1 z
0 1

))
. Our choice of convention is so that the left
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action on its dual, i.e. the distributions D0(Zp;OJwK(ε)) is the natural one, and this will be
compatible with later Emerton’s lower triangular matrix analytic Jacquet functor [Em06];
see § 7.20 for the discussion.

This space (2.4.2) carries an action of the monoid

M1 =
{(

α β
γ δ

)
∈ M2(Zp); p|γ, p ∤ δ, αδ − βγ 6= 0

}
,

given by the explicit formula (setting determinant αδ − βγ = prd with d ∈ Z×
p )

(2.4.4) h
∣∣(
α β
γ δ

)(z) = ε(d̄/δ̄, δ̄) · (1 + w)log((γz+δ)/ω(δ̄))/p · h
(αz + β

γz + δ

)
.

(2) For the H̃ and a relevant character ε as above, use O〈w/p〉(ε) to denote the same ring
O〈w/p〉 equipped the associated universal character as given in (2.4.1). We define the space
of abstract p-adic forms and the space of family of abstract overconvergent forms to be

S
(ε)
p-adic = S

(ε)

H̃,p-adic
:= HomO[Iwp]

(
H̃, Ind

Iwp
Bop(Zp)

(χ
(ε)
univ)

) ∼= HomO[Iwp]

(
H̃, C0(Zp;OJwK(ε))

)
,

S†,(ε) = S
†,(ε)

H̃
:= HomO[Iwp]

(
H̃, O〈w/p〉(ε)〈z〉

)
,

respectively. Viewing power series in z as continuous functions on Zp induces a natural
inclusion

O〈w/p〉(ε)〈z〉 →֒ C0(Zp;OJwK(ε))⊗OJwK O〈w/p〉,
such that the M1-action on the latter space given by (2.4.4) stabilizes the subspace. This
induces a natural inclusion

(2.4.5) S†,(ε) →֒ S
(ε)
p-adic ⊗OJwK O〈w/p〉.

The space S
(ε)
p-adic (resp. S

†,(ε)) carries an OJwK-linear (resp. O〈w/p〉-linear) Up-action: fixing
a decomposition of the double coset Iwp

(
p−1 0
0 1

)
Iwp =

∐p−1
j=0 vjIwp (e.g. vj =

(
p−1 0
j 1

)
and

v−1
j =

(
p 0

−jp 1

)
), the Up-operator sends ϕ ∈ S

(ε)
p-adic (resp. ϕ ∈ S†,(ε)) to

(2.4.6) Up(ϕ)(x) =

p−1∑

j=0

ϕ(xvj)|v−1
j

for all x ∈ H̃.

The Up-operator does not depend on the choice of coset representatives. As explained in
[LTXZ22+, § 2.10 and Lemma 2.14], the characteristic power series of the Up-action on S†,(ε)

and S
(ε)
p-adic are well-defined and are equal; we denote it by

C(ε)(w, t) = C
(ε)

H̃
(w, t) =

∑

n≥0

c(ε)n (w)tn ∈ ΛJtK = OJw, tK.

The main subject of local ghost conjecture is to provide an “approximation” of C(ε)(w, t).
For each integer k ∈ Z, evaluating at w = wk := exp((k − 2)p)− 1, we arrive at the space

of abstract overconvergent forms of weight k and character ψ = ε · (1× ω2−k):

S†
k(ψ) = S†

H̃,k
(ψ) := S†,(ε) ⊗O〈w/p〉,w 7→wk O,

carrying compatible Up-actions. Moreover, the characteristic power series for the Up-action
is precisely C(ε)(wk, t).
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(3) For each integer k ≥ 2, setting ψ = ε · (1× ω2−k), we have a canonical inclusion

O[z]≤k−2 ⊗ ψ ⊂ O〈w/p〉(ε)〈z〉 ⊗O〈w/p〉,w 7→wk O,

such that the M1-action on the latter given by (2.4.4) stabilizes the submodule. So we
may define the space of abstract classical forms of weight k and character ψ to be the Up-
equivariant submodule

SIw
k (ψ) = SIw

H̃,k
(ψ) := HomO[Iwp]

(
H̃, O[z]≤k−2 ⊗ ψ

)
⊂ S†

k(ψ),

where O[z]≤k−2 means the space of polynomials of degree ≤ k − 2. In particular, the
characteristic power series of the Up-action on SIw

k (ψ) divides C(ε)(wk, t).

When H̃ is primitive, set

dIwk (ψ) := rankO SIw
k (ψ).

(4) Recall the notation {−} as defined at the end of the introduction. We define kε :=
2 + {a + 2sε} ∈ {2, . . . , p}. When the character ψ : ∆2 → O× takes the form of ψ = ε̃1 :=
ε1× ε1, and the integer k ∈ Z≥2 satisfies ε̃1 · (1×ωk−2) = ε = ε−sε+b× εa+sε+b, we must have
ε1 = ω−sε+b and k ≡ kε mod p− 1. In this case, O[z]≤k−2 ⊗ ε1 ◦ det carries a natural action
of the monoid M2(Zp)

det 6=0, given by for
(
α β
γ δ

)
∈ M2(Zp) (setting determinant αδ−βγ = prd

with d in Z×
p )

h|(α β
γ δ

)(z) = ε1(d̄) · (γz + δ)k−2h
(αz + β

γz + δ

)
.

Define the space of abstract classical forms with Kp-level of weight k and central character
ε1 to be

Sur
k (ε1) = Sur

H̃,k
(ε1) := HomO[Kp]

(
H̃, O[z]≤k−2 ⊗ ε1 ◦ det

)
.

This space carries an action of Tp-operator: taking a coset decomposition Kp

(
p−1 0
0 1

)
Kp =∐p

j=0 ujKp (e.g. uj =
(
1 jp−1

0 p−1

)
and u−1

j =
(
1 −j
0 p

)
for j = 0, . . . , p− 1, and up =

(
p−1 0
0 1

)
and

u−1
p =

(
p 0
0 1

)
), the Tp-operator sends ϕ ∈ Sur

k (ε1) to

(2.4.7) Tp(ϕ)(x) =

p∑

j=0

ϕ(xuj)|u−1
j

for all x ∈ H̃.

(5) For each relevant character ε = ω−sε+b × ωa+sε+b, set ε̃1 = ω−sε+b × ω−sε+b. Assume

that H̃ is primitive. For each k ∈ Z≥2 satisfying k ≡ kε mod p− 1, set

durk (ε1) := rankO Sur
k (ε1) and dnewk (ε1) := dIwk (ε̃1)− 2durk (ε1)

The ranks dIwk (ψ), durk (ε1) and d
new
k (ε1) defined above depend only on a, b, sε, ψ, and k.

For their precise formulas, see Definition-Proposition 2.12 later.

(6) Since the definition of SIw
k (ψ) and Sur

k (ε1) only uses the Kp-modules structure of H̃, it

follows that, for a Kp-projective augmented module H̃ of type ρ̄ with multiplicity m(H̃),

(2.4.8) rankO SIw
H̃,k

(ψ) = m(H̃) · dIwk (ψ) and rankO Sur
H̃,k

(ε1) = m(H̃) · durk (ε1).
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Definition 2.5. Following [BP16], we define the ghost series of type ρ̄ over W(ε) to be the
formal power series

G(ε)(w, t) = G
(ε)
ρ̄ (w, t) = 1 +

∞∑

n=1

g(ε)n (w)tn ∈ OJw, tK,

where each coefficient g
(ε)
n (w) is a product

(2.5.1) g(ε)n (w) =
∏

k≥2
k≡kε mod p−1

(w − wk)m
(ε)
n (k) ∈ Zp[w]

with exponents m
(ε)
n (k) given by the following recipe

m(ε)
n (k) =

{
min

{
n− durk (ε1), dIwk (ε̃1)− durk (ε1)− n

}
if durk (ε1) < n < dIwk (ε̃1)− durk (ε1)

0 otherwise.

For a fixed k, the sequence (m
(ε)
n (k))n≥1 is given by the following palindromic pattern

(2.5.2) 0, . . . , 0︸ ︷︷ ︸
durk (ε1)

, 1, 2, 3, . . . , 1
2
dnewk (ε1)− 1, 1

2
dnewk (ε1),

1
2
dnewk (ε1)− 1, . . . , 3, 2, 1, 0, 0, . . . ,

where the maximum 1
2
dnewk (ε1) appears at the

1
2
dIwk (ε̃1)th place.

When m
(ε)
n (k) 6= 0, we often refer wk as a ghost zero of g

(ε)
n (w).

Conjecture 2.6 (Local ghost conjecture). Let ρ̄ =
( ωa+b+1

1 ∗6=0

0 ωb1

)
: IQp → GL2(F) be a

reducible, nonsplit, and generic residual representation with a ∈ {1, . . . , p − 4} and b ∈
{0, . . . , p − 2}, as in (2.2.1). Let H̃ be a primitive OJKpK-projective augmented module of
type ρ̄, and let ε be a character of ∆2 relevant to ρ̄. We define the characteristic power series

C(ε)(w, t) of Up-action and the ghost series G(ε)(w, t) for H̃ as in this section. Then for every
w⋆ ∈ mCp , we have NP(G(ε)(w⋆,−)) = NP(C(ε)(w⋆,−)).

The main local result of this paper is the following.

Theorem 2.7. The Conjecture 2.6 holds when p ≥ 11 and 2 ≤ a ≤ p− 5.

Remark 2.8. We point out that the only place that we essentially need a 6∈ {1, p− 4} and
p ≥ 11 is at various places in the proof of Proposition 5.4(1); see also Remark 5.6. We do
not know whether one can make more subtle discussion on boundary cases to retrieve the
theorem when a ∈ {1, p− 4} or p = 7. The condition p ≥ 7 is required at more places, e.g.
[LTXZ22+, Corollary 5.10].

As pointed out in [LTXZ22+, Remark 2.30], after twisting, we may and will assume that

b = 0 and that
(
p 0
0 p

)
acts trivially on H̃.

Hypothesis 2.9. From now on till the end of Section 6 (with the exception of Proposi-

tion 2.14 and the following remarks), we assume that H̃ is a primitive OJKpK-projective
augmented module of type ρ̄, with b = 0 and ξ = 1. In particular, H = H̃/(̟, I1+pM2(Zp)) ≃
Proja,0, and

(
p 0
0 p

)
acts trivially on H̃.
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For the rest of this section, we recall important definitions and results regarding abstract
forms and ghost series that we have proved in the prequel [LTXZ22+]; we refer to loc. cit.
for details and proofs.

2.10. Power basis. In [LTXZ22+, § 3], we constructed a power basis of the space of abstract

(overconvergent) forms. Let H̃ be as above. As explained in [LTXZ22+, § 3.2], we may write

H̃ as an OJIwpK-module

(2.10.1) H̃ ≃ e1O ⊗χ1,O[T̄] OJIwpK⊕ e2O ⊗χ2,O[T̄] OJIwpK

for the two characters χ1 = 1 × ωa and χ2 = ωa × 1 of T̄ = ∆2 (embedded diagonally in
Iwp). Moreover, by [LTXZ22+, Lemma 3.3] we may require that ei

(
0 1
p 0

)
= e3−i for i = 1, 2.

We fix such an isomorphism (2.10.1).
For a relevant character ε = ω−sε × ωa+sε of ∆2, we have

S†,(ε) = HomO[Iwp]

(
H̃, O〈w/p〉〈z〉 ⊗ (ω−sε × ωa+sε)

)

∼= e∗1 ·
(
O〈w/p〉〈z〉 ⊗ (ω−sε × ωa+sε)

)T̄=1×ωa ⊕ e∗2 ·
(
O〈w/p〉〈z〉 ⊗ (ω−sε × ωa+sε)

)T̄=ωa×1
.

It follows that the following list is a basis of S†,(ε) and also a basis of S†
k

(
ε · (1 × ω2−k)

)
for

every k ∈ Z≥2:
(2.10.2)

B(ε) :=
{
e∗1z

sε , e∗1z
p−1+sε , e∗1z

2(p−1)+sε , . . . ; e∗2z
{a+sǫ}, e∗2z

p−1+{a+sǫ}, e∗2z
2(p−1)+{a+sǫ}, . . .

}
.

When k ≥ 2, the subsequence consisting of terms whose power in z is less than or equal to
k − 2 forms a basis of SIw

k

(
ε · (1× ω2−k)

)
.

The degree of each basis element e = e∗i z
j ∈ B(ε) is the exponents on z, namely, deg(e∗i z

j) =

j. We order the elements in B(ε) as e
(ε)
1 , e

(ε)
2 , . . . with increasing degrees. (Under our generic

assumption 1 ≤ a ≤ p − 2, the degrees of elements of B(ε) are pairwise distinct.) Writing

B
(ε)
k for the subset of elements of B(ε) with degree ≤ k−2, it is a basis of SIw

k

(
ε · (1×ω2−k)

)
.

Write U†,(ε) ∈ M∞(O〈w/p〉) for the matrix of the O〈w/p〉-linear Up-action on S†,(ε) with
respect to the power basis B(ε); for k ∈ Z≥2, the evaluation of S†,(ε) at w = wk is the matrix

U
†,(ε)
k of the Up-action on S†

k

(
ε · (1× ω2−k)

)
(with respect to B(ε)). In particular,

Char(U†,(ε); t) = C(ε)(w, t) and Char(U
†,(ε)
k ; t) = C(ε)(wk, t).

The following are standard facts regarding theta maps and the Atkin–Lehner involutions.

Proposition 2.11. Fix notation as above and let k ∈ Z≥2.

(1) (Theta maps) Put ψ = ε · (1× ω2−k), ε′ = ε · (ωk−1 × ω1−k) with sε′ = {sε + 1− k},
and ψ′ = ε′ · (1× ωk) = ψ · ω̃k−1. There is a short exact sequence

(2.11.1) 0→ SIw
k (ψ) −→ S†

k(ψ)
( d
dz

)k−1◦−−−−−→ S†
2−k(ψ

′),

which is equivariant for the usual Up-action on the first two terms and the pk−1Up-

action on the third term. Here the map
(
d
dz

)k−1◦ is given by post-composition with the

element ϕ ∈ S†
k(ψ) when viewing the latter as a map from H̃ to O〈z〉. The sequence

(2.11.1) is right exact when restricted to the subspace where Up-slopes are finite.
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More accurately, the matrix U
†,(ε)
k is a block-upper-triangular matrix of the form

(2.11.2) U
†,(ε)
k =

(
U

Iw,(ε)
k ∗
0 pk−1D−1U

†,(ε′)
2−k D

)
,

where dIwk
(
ε · (1 × ω2−k)

)
× dIwk

(
ε · (1 × ω2−k)

)
upper-left block U

Iw,(ε)
k is the matrix

for the Up-action on SIw
k

(
ε · (1×ω2−k)

)
with respect to B

(ε)
k , D is the diagonal matrix

whose diagonal entries are indexed by e = e∗i z
j ∈ B(ε) with j ≥ k − 1, and are given

by j(j − 1) · · · (j − k + 2).

In particular, all finite Up-slopes of S†
k(ψ) strictly less than k − 1 are the same as

the finite Up-slopes of SIw
k (ψ); and the multiplicity of k − 1 as Up-slopes of S†

k(ψ) is
the sum of the multiplicity of k − 1 as Up-slopes of SIw

k (ψ) and the multiplicity of 0

as Up-slopes of S
†
2−k(ψ

′).

(2) (Atkin–Lehner involutions) Write ψ = ε · (1 × ω2−k) = ψ1 × ψ2 as character of
∆2 (where we allow ψ1 = ψ2). Put ψs = ψ2 × ψ1 and ε′′ = ε · ψs · ψ−1 so that
sε′′ = {k−2−a−sε}. Then we have a well-defined natural Atkin–Lehner involution:

(2.11.3) AL(k,ψ) : S
Iw
k (ψ) // SIw

k (ψs)

ϕ ✤ // ( AL(k,ψ)(ϕ) : x 7→ ϕ
(
x
(
0 p−1

1 0

))∣∣(
0 1
p 0

) ).

Here the last |( 0 1
p 0

) is the usual action on O[z]≤k−2 but the trivial action on the factor

ψs.
Explicitly, for i = 1, 2 and any j, or for any ℓ = 1, . . . , dIwk (ψs),

(2.11.4) AL(k,ψ)(e
∗
i z
j) = pk−2−j · e∗3−izk−2−j , AL(k,ψ)(e

(ε)
ℓ ) = pk−2−deg eℓe

(ε′′)

dIwk (ψs)+1−ℓ
,

where we added superscripts to the power basis element to indicate the corresponding
character. In particular, we have

(2.11.5) AL(k,ψs) ◦ AL(k,ψ) = pk−2.

When ψ1 6= ψ2 (or equivalently k 6≡ kε mod (p− 1)), we have an equality

(2.11.6) Up ◦ AL(k,ψ) ◦ Up = pk−1 · AL(k,ψ)

as maps from SIw
k (ψ) to SIw

k (ψs). Consequently, when ψ1 6= ψ2, we can pair the slopes
for the Up-action on SIw

k (ψ) and the slopes for the Up-action on SIw
k (ψs) so that each

pair adds up to k − 1. In particular all slopes belong to [0, k − 1].

Proof. See [LTXZ22+, Propositions 3.10 and 3.12]. �

The following summarizes the dimension formulas for the spaces of abstract classical forms
(see [LTXZ22+, § 4] for the proofs).

Definition-Proposition 2.12. Let H̃ be a primitive OJKpK-projective augmented module of
type ρ̄ and let ε = ω−sε × ωa+sε be a relevant character of ∆2.

(1) We have

dIwk
(
ε · (1× ω2−k)

)
=
⌊k − 2− sε

p− 1

⌋
+
⌊k − 2− {a + sε}

p− 1

⌋
+ 2.
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(2) Set δε :=
⌊sε + {a+ sε}

p− 1

⌋
. In particular, when k = kε + (p− 1)k• for k• ∈ Z≥0, we

have

dIwk (ε̃1) = 2k• + 2− 2δε.

(3) Introduce two integers t
(ε)
1 , t

(ε)
2 ∈ Z:

• when a + sε < p− 1, t
(ε)
1 = sε + δε and t

(ε)
2 = a+ sε + δε + 2;

• when a + sε ≥ p− 1, t
(ε)
1 = {a+ sε}+ δε + 1 and t

(ε)
2 = sε + δε + 1.

Then for k = kε + (p− 1)k• with k• ∈ Z≥0, we have

durk (ε1) =
⌊k• − t(ε)1

p+ 1

⌋
+
⌊k• − t(ε)2

p+ 1

⌋
+ 2.

(4) Recall the power basis B(ε) = {e(ε)1 , e
(ε)
2 , . . . }. Define the nth Hodge slope to be

λ(ε)n := deg e(ε)n −
⌊deg e(ε)n

p

⌋
.

If a+ sε < p− 1, we have

(2.12.1) deg g
(ε)
n+1(w)− deg g(ε)n (w)− λ(ε)n+1 =





1 if n− 2sε ≡ 1, 3, . . . , 2a+ 1 mod 2p,

−1 if n− 2sε ≡ 2, 4, . . . , 2a+ 2 mod 2p,

0 otherwise.

If a+ sε ≥ p− 1, we have

(2.12.2) deg g
(ε)
n+1(w)− deg g(ε)n (w)− λ(ε)n+1 =





1 if n− 2sε ≡ 2, 4, . . . , 2a+ 2 mod 2p,

−1 if n− 2sε ≡ 3, 5, . . . , 2a+ 3 mod 2p,

0 otherwise.

In either case, we have

(2.12.3) deg g(ε)n (w)− (λ
(ε)
1 + · · ·+ λ(ε)n ) =

{
0 if deg en+1 − deg en = a,

0 or 1 if deg en+1 − deg en = p− 1− a.

Moreover, the differences deg g
(ε)
n+1(w)− deg g

(ε)
n (w) are strictly increasing in n.

Proof. For (1), see [LTXZ22+, Proposition 4.1]. For (2), see [LTXZ22+, Corollary 4.4]. For
(3), see [LTXZ22+, Proposition 4.7]. For (4), see [LTXZ22+, Proposition 4.11]. �

It would be helpful to copy here the following example from [LTXZ22+, Example 2.25],
which may hopefully inspire some of the arguments later.

Example 2.13. Suppose that p = 7 and a = 2. We list below the dimensions dIwk (ε·(1×ω2−k)
for small k’s.
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ε k 2 3 4 5 6 7 8 9 10 11 12 13 14
1× ω2 dIwk (1× ω4−k) = ⌊k+2

6
⌋ + ⌊k+4

6
⌋ 1 1 2∗ 2 2 2 3 3 4∗ 4 4 4 5

ω5 × ω3 dIwk (ω5 × ω5−k) = ⌊k+1
6
⌋+ ⌊k+3

6
⌋ 0 1 1 2 2∗ 2 2 3 3 4 4∗ 4 4

ω4 × ω4 dIwk (ω4 × ω−k) = ⌊k
6
⌋+ ⌊k+2

6
⌋ 0∗ 0 1 1 2 2 2∗ 2 3 3 4 4 4∗

ω3 × ω5 dIwk (ω3 × ω1−k) = ⌊k−1
6
⌋+ ⌊k+1

6
⌋ 0 0 0∗ 1 1 2 2 2 2∗ 3 3 4 4

ω2 × 1 dIwk (ω2 × ω2−k) = ⌊k+4
6
⌋+ ⌊k

6
⌋ 1 1 1 1 2∗ 2 3 3 3 3 4∗ 4 5

ω × ω dIwk (ω × ω3−k) = ⌊k+3
6
⌋+ ⌊k−1

6
⌋ 0∗ 1 1 1 1 2 2∗ 3 3 3 3 4 4∗

The superscript ∗ indicates where the character is equal to ε̃1, in which case durk (ε1) makes
sense. In the table below, we list the information on dimensions of abstract classical forms
with level Kp and Iwp.

ε Triples
(
k, durk (ε1), d

new
k (ε1)

)
on the corresponding weight disk

1× ω2 (4, 1, 0) (10, 1, 2) (16, 1, 4) (22, 1, 6) (28, 2, 6) (34, 2, 8) (40, 2, 10)
ω5 × ω3 (6, 0, 2) (12, 1, 2) (18, 1, 4) (24, 1, 6) (30, 1, 8) (36, 2, 8) (42, 2, 10)
ω4 × ω4 (2, 0, 0) (8, 0, 2) (14, 0, 4) (20, 1, 4) (26, 1, 6) (32, 1, 8) (38, 1, 10)
ω3 × ω5 (4, 0, 0) (10, 0, 2) (16, 0, 4) (22, 0, 6) (28, 1, 6) (34, 1, 8) (40, 1, 10)
ω2 × 1 (6, 0, 2) (12, 1, 2) (18, 1, 4) (24, 1, 6) (30, 1, 8) (36, 2, 8) (42, 2, 10)
ω × ω (2, 0, 0) (8, 0, 2) (14, 0, 4) (20, 1, 4) (26, 1, 6) (32, 1, 8) (38, 1, 10)

The first four terms of the ghost series on the ε = (1× ω2)-weight disk (corresponding to
the first rows in the above two tables).

g
(ε)
1 (w) = 1,

g
(ε)
2 (w) = (w − w10)(w − w16)(w − w22),

g
(ε)
3 (w) = (w − w16)

2(w − w22)
2(w − w28)(w − w34)(w − w40)(w − w46),

g
(ε)
4 (w) = (w − w16)(w − w22)

3(w − w28)
2 · · · (w − w46)

2(w − w52) · · · (w − w70).

Before proceeding, we prove an interesting coincidence of ghost series, for which we tem-
porarily drop the condition b = 0 in Hypothesis 2.9. This is of crucial importance for our
later argument to treat the residually split case.

Proposition 2.14. Consider the residual representation ρ̄′ : IQp → GL2(F) given by

ρ̄′ ≃
(
1 ∗ 6= 0
0 ωa+1

1

)
=

(
ω
(p−3−a)+(a+1)+1
1 ∗ 6= 0

0 ωa+1
1

)
.

Set a′ = p−3−a and b′ = a+1 accordingly. For sε ∈ {0, . . . , p−2}, write s′ε = {a+ sε+1}
so that ε = ω−sε × ωa+sε = ω−s′ε+b

′ × ωa′+s′ε+b′.
(1) When sε /∈ {0, p− 2− a}, we have

G
(ε)
ρ̄ (w, t) = G

(ε)
ρ̄′ (w, t).

In the other two cases, we have

(2.14.1) G
(1×ωa)
ρ̄ (w, t) = 1+tG

(1×ωa)
ρ̄′ (w, t) and G

(ωa+1×ω−1)
ρ̄′ (w, t) = 1+tG

(ωa+1×ω−1)
ρ̄ (w, t).
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(2) Fix w⋆ ∈ mCp . The Newton polygons NP
(
G

(ε)
ρ̄ (w⋆,−)

)
and NP

(
G

(ε)
ρ̄′ (w⋆,−)

)
agree,

except that when ε = 1× ωa (resp. ε = ωa+1 × ω−1), NP
(
G

(ε)
ρ̄ (w⋆,−)

)
has one more

(resp. one less) slope 0 segment than that of NP
(
G

(ε)
ρ̄′ (w⋆,−)

)
.

Remark 2.15. The representations ρ̄ and ρ̄′ have the same semisimplification. On the
Galois side, the Galois representations associated to say overconvergent modular forms are
typically irreducible, in which case one cannot distinguish different reductions ρ̄ and ρ̄′. This
is reflected in the statement of Proposition 2.14: ghost series for ρ̄ is almost the same as
the ghost series for ρ̄′ over the same weight disk. Moreover, the additional subtle relation in
(2.14.1) accounts for the cases when the associated Galois representations are ordinary (and
reducible).

The Galois side of this proposition is discussed later in § 7.11, and later used in Theorem 7.6
to extend our results from the reducible nonsplit case to the reducible split case.

Proof of Proposition 2.14. (1) We add a prime to indicate the corresponding construction
for ρ̄′, e.g. write k′ε, d

Iw′

k (ε̃1) and etc. First of all, for the given sε, we have

kε = 2 + {a+ 2sε} = 2 + {a′ + 2s′ε} = k′ε.

This means the ghost zeros for G
(ε)
ρ̄ (w, t) and for G

(ε)
ρ̄ (w, t) are congruent modulo p−1. The

main difference comes from Definition-Proposition 2.12(2):

δε − δ′ε =
⌊sε + {a+ sε}

p− 1

⌋
−
⌊{a+ sε + 1}+ {sε − 1}

p− 1

⌋
=





−1 if sε = 0

1 if sε = p− 2− a
0 otherwise.

For k = kε + (p− 1)k• with k• ∈ Z≥0, Definition-Proposition 2.12(2) says that

(2.15.1) dIwk (ε̃1) = 2k• + 2− 2δε, dIw′
k (ε̃1) = 2k• + 2− 2δ′ε.

For computing durk (ε1) and dur′k (ε1), we list the values of t
(ε)
1 , t

(ε)
2 , t

(ε)′
1 , and t

(ε)′
2 in the

following table (see the definition in Definition-Proposition 2.12(3)).

sε = 0 1 ≤ sε ≤ p− 3− a sε = p− 2− a sε ≥ p− 1− a
t
(ε)
1 δε sε + δε p− 2− a+ δε a+ sε + δε − p+ 2

t
(ε)
2 a+ δε + 2 a+ sε + δε + 2 p+ δε sε + δε + 1

t
(ε)′

1 a+ δε + 2 s+ δε δε − 1 a+ sε + δε − p+ 2

t
(ε)′

2 p+ 1 + δε a+ sε + δε + 2 p− 2− a+ δε sε + δε + 1

This together with Definition-Proposition 2.12(3) (and (2.15.1)) implies the following.

• When sε 6∈ {0, p−2−a}, t(ε)i = t
(ε)′
i for i = 1, 2. So for every k = kε+(p−1)k• as above,

dIwk (ε̃1) = dIw′
k (ε̃1) and d

ur
k (ε1) = dur′k (ε1). This implies that G

(ε)
ρ̄ (w, t) = G

(ε)
ρ̄′ (w, t).

• When sε = 0, we have ε = 1×ωa. In this case, t
(ε)′
1 = t

(ε)
2 , yet t

(ε)′
2 = t

(ε)
1 + p+1, and

δ′ε = δε + 1. It follows that for every k = kε + (p− 1)k• as above,

dIwk (ε̃1) = dIw′
k (ε̃1) + 2 and durk (ε1) = dur′k (ε1) + 1.

This implies thatm
(ε)
n (k) = m

(ε)′
n+1(k). It follows thatG

(1×ωa)
ρ̄ (w, t) = 1+tG

(1×ωa)
ρ̄′ (w, t).
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• When sε = p− 2− a, ε = ωa+1×ω−1. In this case, the role of ρ̄ and ρ̄′ are somewhat
swapped, and we deduce that

dIw′
k (ε̃1) = dIwk (ε̃1) + 2 and dur′k (ε1) = durk (ε1) + 1.

This implies that G
(ωa+1×ω−1)
ρ̄′ (w, t) = 1 + tG

(ωa+1×ω−1)
ρ̄ (w, t).

Part (2) of the Proposition follows from (1) immediately. �

The slopes predicted by ghost series also satisfy properties analogous to the theta maps
and the Atkin–Lehner involutions, as stated below.

Proposition 2.16. Let ε be a relevant character. For k ≡ kε mod (p− 1), we write

(2.16.1) g
(ε)

n,k̂
(w) := g(ε)n (w)

/
(w − wk)m

(ε)
n (k).

Fix k0 ≥ 2. Write d := dIwk0 (ε · (1× ω2−k0)) in this proposition.

(1) (Compatibility with theta maps) Put ε′ := ε · (ωk0−1×ω1−k0) with sε′ = {sε+1− k0}.
For every ℓ ≥ 1, the (d + ℓ)th slope of NP(G(ε)(wk0,−)) is k0 − 1 plus the ℓth slope
of NP(G(ε′)(wk0 ,−)). In particular, the (d+ ℓ)th slope of NP(G(ε)(wk0,−)) is at least
k0 − 1.

(2) (Compatibility with Atkin–Lehner involutions) Assume that k0 6≡ kε mod (p− 1). Put
ε′′ = ω−sε′′×ωa+sε′′ with sε′′ := {k0−2−a−sε}. Then for every ℓ ∈ {1, . . . , d}, the sum
of the ℓth slope of NP(G(ε)(wk0,−)) and the (d− ℓ+ 1)th slope of NP(G(ε′′)(wk0,−))
is exactly k0 − 1. In particular, the ℓth slope of NP(G(ε)(wk0,−)) is at most k0 − 1.

(3) (Compatibility with p-stabilizations) Assume that k0 ≡ kε mod (p− 1). Then for
every ℓ ∈ {1, . . . , durk0(ε1)}, the sum of the ℓth slope of NP(G(ε)(wk0,−)) and the

(d− ℓ+ 1)th slope of NP(G(ε)(wk0 ,−)) is exactly k0 − 1.
(4) (Gouvêa’s inequality) Assume that k0 ≡ kε mod (p− 1). Then the first durk0(ε1) slopes

of NP(G(ε)(wk0,−)) are all less than or equal to

(2.16.2)
p− 1

2
(durk0(ε1)− 1)− δε + β

(ε)
[durk0

(ε1)−1] ≤
⌊k0 − 1−min{a+ 1, p− 2− a}

p+ 1

⌋
,

where for the relevant ε, we set β
(ε)
[n] =

{
t
(ε)
1 if n is even

t
(ε)
2 − p+1

2
if n is odd.

(5) (Ghost duality) Assume k0 ≡ kε mod (p− 1). Then for each ℓ = 0, . . . , 1
2
dnewk0

(ε1)−1,

(2.16.3) vp
(
g
(ε)

dIwk0
(ε̃1)−durk0

(ε1)−ℓ,k̂0
(wk0)

)
− vp

(
g
(ε)

durk0
(ε1)+ℓ,k̂0

(wk0)
)
= (k0 − 2) · (1

2
dnewk0

(ε1)− ℓ).

In particular, the (durk0(ε1)+1)th to the (dIwk0 (ε̃1)−durk0(ε1))th slopes of NP(G(ε)(wk0,−))
are all equal to k0−2

2
.

(6) (Ghost duality variant) Assume that k0 ≡ kε mod (p− 1). We set

(2.16.4) ∆
′(ε)
k0,ℓ

:= vp
(
g
(ε)
1
2
dIwk0

(ε1)+ℓ,k̂0
(wk0)

)
− k0−2

2
ℓ, for ℓ = −1

2
dnewk0 (ε1), . . . ,

1
2
dnewk0 (ε1).

Let ∆
(ε)
k0

denote the convex hull of the points (ℓ,∆
′(ε)
k0,ℓ

) for ℓ = −1
2
dnewk0

(ε1), . . . ,
1
2
dnewk0

(ε1),

and let (ℓ,∆
(ε)
k0,ℓ

) denote the corresponding points on ∆
(ε)
k0
. Then we have

(2.16.5) ∆
′(ε)
k0,ℓ

= ∆
′(ε)
k0,−ℓ

and ∆
(ε)
k0,ℓ

= ∆
(ε)
k0,−ℓ

for all ℓ = −1
2
dnewk0

(ε1), . . . ,
1
2
dnewk0

(ε1).
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Proof. (1), (2), (3), and (5) are [LTXZ22+, Proposition 4.18(1)(2)(3)(4)], respectively. (4)
is [LTXZ22+, Proposition 4.28]. (6) is a corollary of (5); see [LTXZ22+, Notaiton 5.1] for a
more careful discussion. �

In [LTXZ22+, § 5], we carefully studied the properties of the vertices of the Newton polygon
of ghost series. We record the main definition and results here.

Definition 2.17. ([LTXZ22+, Defintion 5.11]) Fix a relevant character ε = ω−sε × ωa+sε.
For k ≡ kε mod (p− 1) and w⋆ ∈ mCp , let L

(ε)
w⋆,k

denote the largest number (if exists) in

{1, . . . , 1
2
dnewk (ε1)} such that

(2.17.1) vp(w⋆ − wk) ≥ ∆
(ε)

k,L
(ε)
w⋆,k

−∆
(ε)

k,L
(ε)
w⋆,k

−1
.

When such L
(ε)
w⋆,k

exists, we call the intervals

nS
(ε)
w⋆,k

:=
(
1
2
dIwk (ε̃1)−L(ε)

w⋆,k
, 1

2
dIwk (ε̃1)+L

(ε)
w⋆,k

)
⊂ nS

(ε)

w⋆,k :=
[
1
2
dIwk (ε̃1)−L(ε)

w⋆,k
, 1

2
dIwk (ε̃1)+L

(ε)
w⋆,k

]

the near-Steinberg range for (w⋆, k). When no such L
(ε)
w⋆,k

exists, write nS
(ε)
w⋆,k

= nS
(ε)

w⋆,k = ∅.
For a positive integer n, we say (ε, w⋆, n) or simply (w⋆, n) is near-Steinberg if n belongs

to the near-Steinberg range nS
(ε)
w⋆,k

for some k.

Proposition 2.18. Fix a relevant character ε and w⋆ ∈ mCp.

(1) For any integer k′ = kε+ (p− 1)k′• 6= k with vp(wk′ −wk) ≥ ∆k,Lw⋆,k
−∆k,Lw⋆,k−1, we

have the following exclusion

1
2
dIwk′ /∈ nSw⋆,k and durk′ , d

Iw
k′ − durk′ /∈ nSw⋆,k.

(2) For every n ∈ N, the point
(
n, vp(g

(ε)
n (w⋆))

)
is a vertex of NP(G(ε)(w⋆,−)) if and

only if (ε, w⋆, n) is not near-Steinberg.

(3) For a fixed n ∈ N, the set of elements w⋆ ∈ mCp for which
(
n, vp(g

(ε)
n (w⋆))

)
is a vertex

of NP
(
G(ε)(w⋆,−)

)
form a quasi-Stein open subset of the weight disk W(ε)

Vtx(ε)n :=W(ε)\
⋃

k

{
w⋆ ∈ mCp

∣∣∣ vp(w⋆ − wk) ≥ ∆
(ε)

k,| 1
2
dIwk (ε̃1)−n|+1

−∆
(ε)

k,| 1
2
dIwk (ε̃1)−n|

}
,

where the union is taken over all k = kε + (p − 1)k• with k• ∈ Z such that n ∈(
durk (ε1), d

Iw
k (ε̃1)− durk (ε1)

)
.

(4) The set of near-Steinberg ranges nS
(ε)
w⋆,k

for all k is nested, i.e. for any two such open
near-Steinberg ranges, either they are disjoint or one is contained in another.

A near-Steinberg range nS
(ε)
w⋆,k

is called maximal if it is not contained in other near-

Steinberg ranges. Over a maximal near-Steinberg range, the slope of NP(G(ε)(w⋆,−))
belongs to

(2.18.1) a
2
+ Z+ Z

(
max{vp(w⋆ − wk′)|wk′ is a zero of g(ε)n (w) for some n ∈ nS

(ε)
w⋆,k
}
)
.

(5) For k0 ≡ kε mod (p−1), the following statements are equivalent for ℓ ∈ {0, . . . , 1
2
dnewk0

(ε1)−
1}.
(a) The point (ℓ,∆

′(ε)
k0,ℓ

) is not a vertex of ∆
(ε)
k0
,

(b) 1
2
dIwk0 (ε̃1) + ℓ ∈ nSwk0 ,k1 for some k1 > k0, and

25



(c) 1
2
dIwk0 (ε̃1)− ℓ ∈ nSwk0 ,k2 for some k2 < k0.

(6) For any k0 ≡ kε mod (p− 1) and any k ∈ Z, the slopes of NP(G(ε)(wk,−)) and of

∆
(ε)
k0

with multiplicity one belong to Z; other slopes all have even multiplicity and the
slopes belong to a

2
+ Z.

Proof. (1) is [LTXZ22+, Proposition 5.16(1)]. (2) is [LTXZ22+, Theorem 5.19(2)]. (3) follows
from (2) and Definition 2.17: a point (ε, w⋆, n) is near-Steinberg if and only if

n ∈ nS
(ε)
w⋆,k

=
(
1
2
dIwk (ε̃1)− L(ε)

w⋆,k
, 1

2
dIwk (ε̃1) + L

(ε)
w⋆,k

)
,

or equivalently, |n− 1
2
dIwk (ε̃1)| < L

(ε)
w⋆,k

, for some k = kε+(p−1)k• with k• ∈ Z≥0; by (2.17.1),
this is further equivalent to

vp(w⋆ − wk) ≥ ∆
(ε)

k,| 1
2
dIwk (ε̃1)−n|+1

−∆
(ε)

k,| 1
2
dIwk (ε̃1)−n|

.

(4) is a reformulation of [LTXZ22+, Theorem 5.19(1)(3)]. (5) is [LTXZ22+, Proposi-
tion 5.26]. (6) combines [LTXZ22+, Corollary 5.24 and Proposition 5.26]. �

We conclude this section with recalling a technical estimate on the difference of ∆’s that
we will frequently use in this paper. The following is [LTXZ22+, Corollary 5.10].

Proposition 2.19. Assume p ≥ 7. Take integers ℓ, ℓ′, ℓ′′ ∈ {0, . . . , 1
2
dnewk (ε1)} with ℓ ≤ ℓ′ ≤

ℓ′′ and ℓ′′ > ℓ. Let k′ = kε + (p− 1)k′• be a weight such that

(2.19.1) durk′ (ε1), or d
Iw
k′ (ε̃1)− durk′ (ε1) belongs to

[
1
2
dIwk (ε̃1)− ℓ′, 12dIwk (ε̃1) + ℓ′

]
,

then we have

∆
(ε)
k,ℓ′′ −∆

′(ε)
k,ℓ − (ℓ′′ − ℓ′) · vp(wk − wk′) ≥ (ℓ′ − ℓ) ·

⌊ ln((p+ 1)ℓ′′)

ln p
+ 1
⌋
+

1

2

(
ℓ′′2 − ℓ2

)
.

In particular, we have

∆
(ε)
k,ℓ′′ −∆

′(ε)
k,ℓ ≥

1

2

(
ℓ′′2 − ℓ2

)
+ 1.

Remark 2.20. As pointed out by [LTXZ22+, Corollary 5.10], if there exists k′ such that

vp(wk′ −wk) ≥
⌊ ln((p+1)ℓ′′)

ln p
+2
⌋
, then there are at most two such k′ satisfying vp(wk′ −wk) ≥⌊ ln((p+1)ℓ′′)

ln p
+ 2
⌋
and (2.19.1) with ℓ′ replaced by ℓ. In the case of having two such k′’s, say

k′1, k
′
2; up to swapping k′1 and k

′
2, we have d

ur
k′1
(ε1), d

Iw
k′2
(ε̃1)−durk′2(ε1) ∈

[
1
2
dIwk (ε̃1)−ℓ′, 12dIwk (ε̃1)+

ℓ′
]
; and between durk′1

(ε1) and d
Iw
k′2
(ε̃1)− durk′2(ε1), one is ≥ 1

2
dIwk (ε̃1) and one is ≤ 1

2
dIwk (ε̃1).

Remark 2.21. By [LTXZ22+, Lemma 5.2], asymptotically, ∆
(ε)
k,ℓ+1 − ∆

(ε)
k,ℓ ∼ p−1

2
ℓ (when

ℓ is large). Intuitively and roughly, the set of vertices Vtx(ε)n in Proposition 2.18(3) is to
remove from the open unit disk W(ε), a disk of radius about p−(a+2) or pa+1−p, centered at
w
k
(ε)
mid(n)

, two disks of radius roughly p1−p, centered at w
k
(ε)
mid(n)±(p−1)

, . . . , two disks of radius

roughly p(1−p)ℓ/2, centered at w
k
(ε)
mid(n)±ℓ(p−1)

, where k
(ε)
mid(n) is the unique positive integer

k ≡ kε mod (p− 1) such that 1
2
dIwk (ε̃1) = 2n.
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3. Two key inputs on abstract classical forms

In this section, we give the two key inputs for our proof of local version of ghost conjecture:
(1) The first one is a careful study of the p-stabilization of abstract classical forms;
(2) The second one is to use the modified Mahler basis to give an estimate of U†,(ε).

Notation 3.1. In this section, we fix a residual representation ρ̄ =

(
ωa+1
1 ∗ 6= 0
0 1

)
with

1 ≤ a ≤ p − 4, and a primitive OJKpK-projective augmented module H̃ of type ρ̄ on which(
p 0
0 p

)
acts trivially.

We fix a relevant character ε = ω−sε×ωa+sε of ∆2. When no confusion arises, we suppress
ε from the notation in the proofs (but still keep the full notations in the statements), for
example, writing s, dIwk , and durk for sε, d

Iw
k (ε̃1), and d

ur
k (ε1), respectively.

Before proceeding, we give a very weak Hodge bound for the matrix U†,(ε). A much finer
estimate will be given later in this section.

Proposition 3.2. We have U†,(ε) ∈ M∞(O〈w/p〉). More precisely,

(1) the row of U†,(ε) indexed by e belongs to p
1
2
deg eO〈w/p〉, and

(2) for each k ∈ Z, the row of U†,(ε)|w=wk indexed by e belongs to pdeg eO.

Proof. For a monomial h = zn and
(
pα β
pγ δ

)
∈
( pZp Zp

pZp Z×
p

)
with determinant pd for d ∈ Z×

p , the

action (2.4.4) is given by

h
∣∣(
pα β
pγ δ

)(z) = ε(d̄/δ̄, δ̄) · (1 + w)log((pγz+δ)/ω(δ̄))/p · h
(pαz + β

pγz + δ

)

= ε(d̄/δ̄, δ̄) ·
∑

n≥0

wn
(
log
(
(pγz + δ)/ω(δ̄)

)
/p

n

)
· h
(pαz + β

pγz + δ

)
.

Note that wn

n!
= (w

p
)n · pn/2

n!
·pn/2. So it is not difficult to see that the above expression belongs

to O〈w/p〉〈p1/2z〉. Part (1) of the proposition follows.
When w = wk, we can rewrite the above equality as

h
∣∣(
pα β
pγ δ

)(z) = ε(d̄/δ̄, δ̄)
(pγz + δ

ω(δ̄)

)k
· h
(pαz + β

pγz + δ

)
∈ OJpzK.

From this, we see that the row of U†,(ε)|w=wk indexed by e belongs to pdeg eO. �

3.3. p-stabilization process. Recall from Proposition 2.11(2) the natural Atkin–Lehner
involution

AL(k,ε̃1) : S
Iw
k (ε̃1) −→ SIw

k (ε̃1).

We define the following four maps

Sur
k (ε1) = HomOJKpK

(
H̃, O[z]≤k−2 ⊗ ε̃1

)

ι1
&&
ι2

��

SIw
k (ε̃1) = HomOJIwpK

(
H̃, O[z]≤k−2 ⊗ ε̃1

)
proj1

gg

proj2

ZZ
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given by, for ψ ∈ Sur
k (ε1), ϕ ∈ SIw

k (ε̃1), and x ∈ H̃,

ι1(ψ) = ψ.

ι2(ψ)(x) = ψ
(
x
(
p−1 0
0 1

))∣∣(
p 0
0 1

) = ψ
(
x
(
0 p−1

1 0

))∣∣(
0 1
p 0

) = AL(k,ε̃1)(ι1(ψ))(x).

proj1(ϕ)(x) =
∑

j=0,...,p−1,⋆

ϕ
(
xuj)

∣∣
u−1
j
.

proj2(ϕ)(x) = proj1(AL(k,ε̃1)(ϕ))(x) =
∑

j=0,...,p−1,⋆

ϕ
(
x
(
0 p−1

1 0

)
uj
)∣∣
u−1
j

(
0 1
p 0

).

Here uj =
(
1 0
j 1

)
for j = 0, . . . , p − 1 and u⋆ =

(
0 1
1 0

)
form a set of coset representatives of

Iwp\Kp. (In fact, the definition of proj1 and proj2 do not depend on this choice of coset
representatives.)

Remark 3.4. As we will not need it, we leave as an interesting exercise for the readers to
check that for ψ ∈ Sur

k (ε1) and the Tp-operator defined in (2.4.7), we have

Up(ι1(ψ)) = p · ι2(ψ) and Up(ι2(ψ)) = ι2(Tp(ψ))− pk−2ι1(ψ).

It then follows that the Up-action on the span of ι2(ψ) and ι1(ψ) is given by the matrix
(

Tp p
−pk−2 0

)
.

The following is a key (although simple) feature of p-stabilization.

Proposition 3.5. We have the following equality

(3.5.1) Up(ϕ) = ι2(proj1(ϕ))− AL(k,ε̃1)(ϕ), for all ϕ ∈ SIw
k (ε̃1).

Proof. For ϕ ∈ SIw
k and x ∈ H̃, we have

ι2(proj1(ϕ))(x)−AL(k)(ϕ)(x) =
∑

j=0,...,p−1,⋆

ϕ
(
x
(
p−1 0
0 1

)
uj

)∣∣∣
u−1
j

(
p 0
0 1

) − ϕ
(
x
(
0 p−1

1 0

))∣∣∣(
0 1
p 0

)

=

p−1∑

j=0

ϕ
(
x
(
p−1 0
0 1

)(
1 0
j 1

))∣∣∣( 1 0
j 1

)
−1(

p 0
0 1

) =
p−1∑

j=0

ϕ
(
x
(
p−1 0
j 1

))∣∣∣( p−1 0
j 1

)−1 = Up(ϕ)(x).

Here in the first equality, when we unwind the definition of ι2, we use the matrix
(
p 0
0 1

)

as opposed to
(
0 1
p 0

)
(using the GL2(Zp)-equivariance). The second equality comes from

canceling the last term in the first row with the term j = ⋆ in the sum. �

Proposition 3.6. For k ≡ kε mod (p−1), consider the power basis B(ε)
k = {e(ε)1 , e

(ε)
2 , . . . , e

(ε)

dIwk (ε̃1)
}

of SIw
k (ε̃1) from (2.10.2), ordered with increasing degrees. Let U

Iw,(ε)
k be the matrix of the Up-

operator on SIw
k (ε̃1) under B

(ε)
k .

(1) The matrix L
(ε),cl
k for the AL(k,ε̃1)-action with respect to the basis B

(ε)
k is the anti-

diagonal matrix with entries

pdeg e
(ε)
1 , pdeg e

(ε)
2 , . . . , p

deg e
(ε)

dIw
k

(ε̃1)

from upper right to lower left. (The superscript cl indicates that the matrix is for
classical forms as opposed to overconvergent ones.)
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(2) The matrix U
Iw,(ε)
k is the sum of

• the antidiagonal matrix −L(ε),cl
k above, and

• a dIwk (ε̃1)× dIwk (ε̃1)-matrix with rank ≤ durk (ε1).

Proof. (1) is just a special case of Proposition 2.11 (2), when ψ = ε̃1. (2) follows from (1)
and the equality (3.5.1), because ϕ 7→ ι2(proj1(ϕ)) has rank at most durk as it factors through
the smaller space Sur

k of rank durk . �

Notation 3.7. Here and later, we shall frequently refer to the corank of an n × n-matrix
B; it is n minus the rank of B.

Corollary 3.8. The multiplicities of ±p(k−2)/2 as eigenvalues of the Up-action on SIw
k (ε̃1)

are at least 1
2
dnewk (ε1) each.

Proof. By Proposition 3.6 (1), the matrix Lcl
k for the Atkin–Lehner operator is semisimple

and has eigenvalues ±p(k−2)/2 each with multiplicity 1
2
dIwk ; so Lcl

k ± p(k−2)/2I has rank exactly
1
2
dIwk , where I is the dIwk × dIwk -identity matrix. By Proposition 3.6 (2), UIw

k ± p(k−2)/2I has

corank at least 1
2
dIwk − durk = 1

2
dnewk . The corollary follows. �

Remark 3.9. It will follow from our local ghost conjecture Theorem 2.7 together with
Proposition 2.11(4) that the multiplicities of the eigenvalues ±p(k−2)/2 are exactly 1

2
dnewk (ε1).

The following statement gives a philosophical explanation of the palindromic pattern of
(2.5.2) in Definition 2.5 of ghost series.

Corollary 3.10 (Weak corank theorem). If we write U†,(ε)(n) ∈ Mn(O〈w/p〉) for the upper

left n × n-submatrix of U†,(ε), then det(U†,(ε)(n)) ∈ O〈w/p〉 is divisible by p− deg g
(ε)
n g

(ε)
n (w)

(inside O〈w/p〉).
Proof. We need to show that, for each k ≡ kε mod (p− 1) such that mn(k) > 0, det(U†(n))
is divisible by (w/p− wk/p)mn(k). (Note here the coefficients belong to O〈w/p〉; so we need
to divide each ghost factor by p.) For this, it is enough to show that evaluating U†(n) at

w = wk, i.e. the matrix U†
k(n) has corank ≥ mn(k).

Indeed, let Lcl
k (n) denote the upper left n×n-submatrix of Lcl

k ; then by Proposition 3.6 (1)(2),

rank(U†
k(n)) ≤ durk + rankLcl

k (n) =

{
durk if n ≤ 1

2
dIwk

durk + 2(n− 1
2
dIwk ) if n ≥ 1

2
dIwk .

So the corank of U†
k(n) is at least n− durk if n ≤ 1

2
dIwk , and at least dIwk − durk − n if n ≥ 1

2
dIwk ;

in other words, corankU†
k(n) ≥ mn(k). The corollary is proved. �

Remark 3.11. This corollary seems to have given some theoretical support for the definition
of ghost series, and it already gives us confidence towards proving the local ghost conjecture
(Theorem 2.7). In reality, we still need to combine more sophisticated estimate on the p-adic
valuations with the corank argument in the corollary above.

Remark 3.12. With some effort using the representation theory of F[GL2(Fp)] and consider
the standard Hodge polygon for power basis, one may show that there exists an O-basis
v1, . . . ,vdurk of Sur

k (ε1) such that the following list

p− deg e1ι2(v1), . . . , p
−deg edur

k ι2(vdurk ), edurk +1, . . . , edIwk −durk
, ι1(vdurk ), . . . , ι1(v1)
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gives an O-basis of SIw
k (ε̃1) and the matrix of the Up-action with respect to this basis belongs

to

pdeg e1O pdeg e1O · · · pdeg e1O 0 · · · 0 p1+deg e1

pdeg e2O pdeg e2O · · · pdeg e2O 0 · · · p1+deg e2 0

...
...

. . .
...

... . .
. ...

...

p
deg edur

k O p
deg edur

k O · · · p
deg edur

k O p
1+deg edur

k · · · 0 0

0 0 · · · −pdeg edurk +1 0 · · · 0 0

...
... . .

. ...
...

. . .
...

...

0 −pdeg edIwk −1 · · · 0 0 · · · 0 0

−pdeg edIwk 0 · · · 0 0 · · · 0 0







dIwk − durk durk

durk

.

This refines Remark 3.4.

3.13. A modified Mahler basis. We now come to the second key ingredient of the proof
of the local ghost conjecture (Theorem 2.7): an estimate of the matrix for the Up-operator
with respect to the (modified) Mahler basis. This will in some sense improve Corollary 3.10
on the factors of powers of p.

The same technique was used in [LWX17] to prove the spectral halo conjecture of Coleman–
Mazur–Buzzard–Kilford (over the boundary annulus of the weight space: SpmZpJw, p/wK[1

p
]).

There are two minor modifications we employ here:
(1) Our estimate will be on Spm(Qp〈w/p〉), so we use p as the “anchor uniformizer” as

opposed to w;
(2) The usual Mahler basis 1, z,

(
z
2

)
, . . . does behave well under the T̄-action; so we modified

Mahler basis to “take out only the leading term”.
Consider the following iteratively defined polynomials

(3.13.1) f(z) = f1(z) :=
zp − z
p

, fi+1(z) := f
(
fi(z)

)
=
fi(z)

p − fi(z)
p

for i = 1, 2, . . . .

For example, f2(z) =

(
(zp − z)/p

)p − (zp − z)/p
p

.

For each n ∈ Z≥0, we write it in the p-based expansion n = n0 + pn1 + p2n2 + · · · with
ni ∈ {0, . . . , p− 1} and define the nth modified Mahler basis element to be

(3.13.2) mn(z) := zn0f1(z)
n1f2(z)

n2 · · · .
Roughly speaking, one may think of this basis element mn(z) as taking the “leading terms”
in the binomial function

(
z
n

)
. For example, the degree ofmn(z) is n and the leading coefficient

is

(3.13.3) p−n1p−(p+1)n2 · · · ∈ (n!)−1 · Z×
p .

Lemma 3.14. (1) For every n ∈ Z≥0, the degree of each term in mn(z) is congruent to
n modulo p− 1.
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(2) The basis {mn(z); n ∈ Z≥0} is an orthonormal basis of C0
(
Zp;ZpJwK(ε)

)
.

(3) If P = (Pm,n)m,n≥0 denotes the matrix of the action of
(
α β
γ δ

)
∈ M1 with respect to

the modified Mahler basis, then

(3.14.1) Pm,n ∈
{
pmax{m−n, 0}O〈w/p〉 if

(
α β
γ δ

)
∈M1

pm−⌊n/p⌋O〈w/p〉 if
(
α β
γ δ

)
∈
( pZp Zp

pZp Z×
p

)det 6=0 .

Proof. (1) We need to check that the degrees of each term in each fi(z) is congruent to 1
modulo p − 1. This is true for f1(z), and inductively, we may write fi(z) = zhi(z

p−1) and
see that fi+1(z) =

1
p
zphi(z

p−1)− zhi(zp−1) = 1
p
z
(
zp−1hi(z

p−1)− hi(zp−1)
)
.

(2) Let B = (Bm,n)m,n≥0 denote the change of basis matrix from the usual Mahler basis{(
z
n

)
; n ∈ Z≥0

}
to the modified Mahler basis {mn(z); n ∈ Z≥0} so that

mn(z) =
∞∑

m=0

Bm,n

(
z

m

)
.

Since the degree of mn(z) is n, Bm,n = 0 if m > n. By comparing the coefficients of zn using
(3.13.3), we see that Bn,n ∈ O×. Moreover, since when z ∈ Zp, each fi(z) takes value in
Zp, and thus zn0f1(z)

n1f2(z)
n2 · · · takes values in Zp, so it is an integral linear combination

of 1, z,
(
z
2

)
, . . . ,

(
z
n

)
; so we have Bm,n ∈ Zp for m ≤ n. Therefore, it follows that the infinite

matrix B is an invertible upper triangular matrix in M∞(O). Part (2) follows.
For (3), let P ′ = (P ′

m,n)m,n≥0 denote the matrix of the action of
(
α β
γ δ

)
on C0(Zp;OJwK(ε))

with respect to the Mahler basis 1, z, . . . ,
(
z
n

)
, . . . . Then [LWX17, Proposition 3.14 (1)] im-

plies that
(a) when

(
α β
γ δ

)
∈M1, P

′
m,n ∈ (p, w)max{m−n,0}OJwK ⊆ pmax{m−n,0}O〈w/p〉, and

(b) when
(
α β
γ δ

)
∈
( pZp Zp

pZp Z×
p

)det 6=0
, P ′

m,n ∈ (p, w)max{0,m−⌊n/p⌋}OJwK ⊆ pmax{m−⌊n/p⌋,0}O〈w/p〉.
Changing basis, we have P = B−1P ′B. Yet B ∈ M∞(O) is upper triangular with p-adic

units on the diagonal; the same holds true for B−1. From this, we deduce that P satisfies
the same bound (3.14.1). �

Notation 3.15. By Lemma 3.14 (1), each mn(z) is an eigenvector for the T̄-action. So we
may “distribute the modified Mahler basis over the weight disks” as follows.

For the fixed relevant character ε = ω−sε × ωa+sε (and possibly suppressing ε from the

notation occasionally), recall the power basis e
(ε)
1 , e

(ε)
2 , . . . of S†,(ε) defined in § 2.10. For each

e
(ε)
n = e∗i z

deg e
(ε)
n with i = 1, 2, we define the associated modified Mahler basis

fn = f (ε)n := e∗i ·mdeg e
(ε)
n
(z);

then Lemma 3.14 (1) above implies that f
(ε)
n is a Qp-linear combination of e

(ε)
1 , . . . , e

(ε)
n , and

deg f
(ε)
n = deg e

(ε)
n . Let C = C(ε) denote the collection of f

(ε)
n for all n ∈ Z≥0; it is the modified

Mahler basis of S
(ε)
p-adic introduced in § 2.4(2).

For the rest of this section, we aim to “translate” the halo bound for the Up-action on

S
(ε)
p-adic with respect to C(ε) to a bound on the Up-action with respect to B(ε). (This seems to

be stronger than the naive Hodge bound on the power basis.)
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We write Y = (Ym,n)m,n≥0, Y
(ε) = (Y

e
(ε)
m ,f

(ε)
n
)m,n≥0 ∈ M∞(Qp) for the change of basis matrix

between the modified Mahler basis (3.13.2) and the normalized power basis, that is to write

(3.15.1) mn(z) =
∑

m≥0

Ym,nz
m, and Y

e
(ε)
m ,f

(ε)
n

= Ydeg em,deg fn.

The following estimate on Ym,n is important.

Lemma 3.16. The matrix Y is an upper triangular matrix in M∞(Qp), with diagonal entries
Yn,n ∈ (n!)−1Z×

p . Moreover, Ym,n = 0 unless n−m is divisible by p− 1.

Write the inverse of Y as ((Y −1)m,n)m,n≥0. Then we have an estimate (when n ≥ m):

vp(Ym,n) ≥ −vp(m!) +
⌊m
p

⌋
−
⌊n
p

⌋
−
⌊n−m
p2 − p

⌋
,(3.16.1)

vp((Y
−1)m,n) ≥ vp(n!) +

⌊m
p

⌋
−
⌊n
p

⌋
−
⌊n−m
p2 − p

⌋
.(3.16.2)

Proof. It is clear that Y is upper triangular, and the vanishing of Ym,n when p− 1 does not
divide n − m is also obvious from the definition of modified Mahler basis. The statement
Yn,n ∈ (n!)−1Z×

p already follows from (3.15.1).

Let D (resp. E) denote the diagonal matrix whose nth diagonal entry is equal to p⌊n/p⌋/n!
(resp. p⌊n/p⌋), and set Y ′ = D−1Y E. It suffices to prove that

(3.16.3) vp(Y
′
m,n) ≥ −

⌊n−m
p2 − p

⌋
and vp((Y

′−1)m,n) ≥ −
⌊n−m
p2 − p

⌋

In fact, the second inequality follows from the first (3.16.3). Indeed, Y ′
n,n ∈ Z×

p together

with the condition vp(Y
′
m,n) ≥ −

⌊n−m
p2 − p

⌋
≥ −n−m

p2 − p implies that vp((Y
′−1)m,n) ≥ −

n−m
p2 − p .

Since Y ′−1 ∈ M∞(Qp), we are forced to have that vp((Y
′−1)m,n) ≥ −

⌊n−m
p2 − p

⌋
.

It remains to prove the first estimate (3.16.3) on vp(Y
′
m,n). Rewrite (3.15.1) as (for n =

n0 + pn1 + p2n2 + · · · )

p⌊n/p⌋zn0f1(z)
n1f2(z)

n2 · · · =
n∑

m=0

p⌊m/p⌋

m!
Y ′
m,nz

m =:
n∑

m=0

Y ′′
m,nz

m.

We then need to show that

(3.16.4) vp(Y
′′
m,n) ≥ −

⌊n−m
p2 − p

⌋
− vp

(⌊m
p

⌋
!
)
.

Note that the function on the right hand side of (3.16.4) is sub-additive in both n−m and
m. So it is enough to prove the inequality (3.16.4) for n = pi. One immediately checks the

case of i = 0 and 1. In general, Y ′′
m,n is the zm-coefficient of pp

i−1
fi(z). We prove this by

induction on i, assuming (3.16.4) is already proved for n = pi (i ≥ 1). Then for n = pi+1,
we rewrite

pp
i

fi+1(z) =
1

p

(
pp

i−1

fi(z)
)p

+ pp
i−1(p−1)−1 ·

(
pp

i−1

fi(z)
)
.

The estimate (3.16.4) for the second factor above is clear (as pp
i−1(p−1)−1 has a huge p-adic

valuation). For the first term, we consider the polynomial expression of pp
i−1
fi(z) =

∑
amz

m

and the binomial expansion for the pth power. For the term of not of the form apmz
pm, the
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binomial coefficient is divisible by p and hence cancels the denominator p. The statement
(3.16.4) follows from its convexity in n−m and m and the inductive hypothesis on pp

i−1
fi(z).

For the term in the pth power of the form apmz
pm, the inductive hypothesis says that

vp(am) ≥ −
⌊pi −m
p2 − p

⌋
− vp

(⌊m
p

⌋
!
)
.

From this, we claim that

(3.16.5) vp

(apm
p

)
= pvp(am)− 1 ≥ −

⌊pi+1 − pm
p2 − p

⌋
− vp

(
m!
)
.

Indeed, this follows from the inequality vp(m!) ≥ pvp
(
⌊m/p⌋!

)
+ 1 if m ≥ p, and when

m ∈ {1, . . . , p− 1}, the factorial part has no contribution, and we compute explicitly
⌊pi −m
p2 − p

⌋
= pi−2 + pi−3 + · · ·+ 1;

⌊pi+1 − pm
p2 − p

⌋
=

{
pi−1 + pi−2 + · · ·+ 1 if m = 0, 1

pi−1 + pi−2 + · · ·+ p if m ∈ {2, . . . , p− 1}.
From this, we deduce (3.16.5) when m ≤ p− 1. �

Notation 3.17. We have the following list of matrices of Up with respect to the given bases:

• U† = U†,(ε) =
(
U

†,(ε)
em,en

)
m,n≥0

for Up :
(
S†,(ε),B(ε)

)
−→

(
S†,(ε),B(ε)

)
;

• UC = U
(ε)
C

=
(
U

(ε)
C,fm,fn

)
m,n≥0

for Up :
(
S
(ε)
p-adic,C

(ε)
)
−→

(
S
(ε)
p-adic,C

(ε)
)
;

• UC→B = U
(ε)
C→B

=
(
U

(ε)
C→B,em,fn

)
m,n≥0

for Up :
(
S
(ε)
p-adic,C

(ε)
)
−→

(
S†,(ε),B(ε)

)
.

In particular, we have the following equalities

(3.17.1) U
(ε)
C→B

= Y(ε)U
(ε)
C

and U†,(ε) = U
(ε)
C→B

Y(ε),−1.

A key input in our later proof of local ghost conjecture is that the halo estimate from

[LWX17] “propagates” to estimates on U
(ε)
C

and U
(ε)
C→B

.

Proposition 3.18. The matrix U
(ε)
C

satisfies the following halo estimate:

U
(ε)
C,fm,fn

∈ pdeg e(ε)m −⌊deg e
(ε)
n /p⌋O〈w/p〉.(3.18.1)

Proof. The Up-action on Sp-adic is a uniform limit of finite sums of actions |(α β
γ δ

) with matrices

(
α β
γ δ

)
∈
( pZp Zp

pZp Z×
p

)
det∈pZ×

p (see for example [LTXZ22+, (2.9.1)]). The estimate (3.18.1) for

UC,fm,fn follows from (3.14.1). �

Remark 3.19. This proposition is our new essential input to the local ghost conjecture.
The analogous direct estimate of U†,(ε) is more subtle.

Notation 3.20. For an infinite matrix U (indexed by N) and two finite sets of nonnegative
integers ζ := {ζ1 < ζ2 < · · · < ζn} and ξ := {ξ1 < ξ2 < · · · < ξn}, we write U(ζ × ξ) for the
n×n-submatrix of U with row indices ζ1, . . . , ζn and column indices ξ1, . . . , ξn. When ζ = ξ,
we write U(ζ) instead. For example, we often write n = (1 < 2 < · · · < n) and thus U(n) is
the upper left n× n-submatrix we have considered above.

For ζ ⊂ N a subset, define deg(ζ) :=
∑

ζ∈ζ deg eζ.
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Definition-Proposition 3.21 (General corank theorem). For every k ≡ kε mod (p− 1)
and every two finite sets of integers ζ and ξ of size n as above, we set

rζ×ξ(k) = r
(ε)
ζ×ξ(k) := #

{
i ∈ {1, . . . , dIwk (ε̃1)}

∣∣ i ∈ ξ and dIwk (ε̃1) + 1− i ∈ ζ
}
,

sξ(k) = s
(ε)
ξ (k) := #

{
i ∈ ξ

∣∣ i > dIwk (ε̃1)
}
.

In other words, rζ×ξ(k) is the number of “classical basis” elements in B(ε) indexed by ζ that

are sent to ξ by AL(k,ε̃1), and sξ(k) is the number of basis elements in B(ε) indexed by ξ which
are “non-classical”.

Then the corank of U
†,(ε)
k (ζ × ξ) is at least

(3.21.1) mζ×ξ(k) = m
(ε)
ζ×ξ(k) := n− durk (ε1)− rζ×ξ(k)− sξ(k).

Consequently, det
(
U†,(ε)(ζ × ξ)

)
∈ O〈w/p〉 is divisible by ((w − wk)/p)

max{0,mζ×ξ(k)} in
O〈w/p〉.

When ζ = ξ, we write rζ = r
(ε)
ζ (k) and mζ = m

(ε)
ζ (k) for rζ×ζ(k) and mζ×ζ(k), respectively.

Taking ξ = n with durk (ε1) < n < dIwk (ε̃1)− durk (ε1), we recover Corollary 3.10.

Proof. By the property of theta map (2.11.2), U†
k is a upper triangular block matrix. So

rank
(
U†
k(ζ × ξ)

)
≤ sξ(k) + rank

(
U†
k

(
(ζ ∩ dIwk )× (ξ ∩ dIwk )

))
.

By Proposition 3.6 (3), UIw
k is the sum of a matrix with rank ≤ durk and an anti-diagonal

matrix; so

rank
(
U†
k

(
(ζ ∩ dIwk )× (ξ ∩ dIwk )

))
≤ durk + rζ×ξ(k);

The corank formula (3.21.1) follows from combining above two inequalities
The corollary and the last statement are immediate consequences of the above discussion.

�

3.22. Refined halo estimates. In our later proof of the local ghost theorem, we inevitably
encounter a rather pathological case, which demands a slightly refined halo bound depending
on the p-adic expansions of the row and column indices (see the proof of Proposition 5.4(1)).
The readers are invited to skip the proof in this portion on the first reading, and only comes
back after understanding the complication as shown in the proof of Proposition 5.4(1).

For this part of the argument, we fix a matrix
(
pa b
pc d

)
∈
( pZp Zp

pZp Z×
p

)
with determinant puδ ∈

puZ×
p . Let P = (Pm,n)m,n≥0 and Q = (Qm,n)m,n≥0 denote the matrix of
∣∣(
pa b
pc d

) :
(
C0(Zp;OJwK(ε)), (mn(z))n≥0

)
→

(
C0(Zp;OJwK(ε)), (mn(z))n≥0

)
and

∣∣(
pa b
pc d

) :
(
C0(Zp;OJwK(ε)), (mn(z))n≥0

)
→

(
C0(Zp;OJwK(ε)),

((z
n

))
n≥0

)
,

respectively. Let B denote the change of basis matrix from the usual Mahler basis {
(
z
n

)
;n ∈

Z≥0} to the modified Mahler basis {mn(z);n ∈ Z≥0} as introduced in the proof of Lemma 3.14
so that P = B−1Q. Then (the proof of) Lemma 3.14 implies that B ∈ M∞(Zp) is an upper
triangular matrix with diagonal entries in Z×

p .
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Notation 3.23. For two positive integers m,n, write m = m0 + pm1 + · · · and n = n0 +
pn1 + · · · for their p-adic expansions (so that each mi and ni belongs to {0, . . . , p− 1}). Let
D(m,n) denote the number of indices i ≥ 0 such that ni+1 > mi.

The following are some elementary facts, whose proofs we leave to the readers.

Lemma 3.24. Let m,n be two nonnegative integers.

(1) We have D(m + 1, n) + 1 ≥ D(m,n) and D(m,n) + 1 ≥ D(m,n + c) for any c ∈
{1, . . . , p}.

(2) Assume that m ≥ ⌊n
p
⌋. Then we have

vp

(( m

m− ⌊n
p
⌋

))
≥ D(m,n).

(3) We have an equality
(
z

m

)(
z

n

)
=

m+n∑

j≥max{m,n}

(
j

j −m, j − n,m+ n− j

)(
z

j

)
,

where
(

j
j−m,j−n,m+n−j

)
is the generalized binomial coefficient.

Proposition 3.25. We have the following refined estimate:

(3.25.1) Pm,n, Qm,n ∈ pD(m,n) · pm−⌊n/p⌋O〈w
p
〉.

Proof. We first explain that (3.25.1) for Qm,n implies that for Pm,n. As P = B−1Q, we have
Pm,n =

∑
ℓ≥0(B

−1)m,ℓQℓ,n. So it is enough to prove that (when ℓ ≥ m)

D(ℓ, n) + ℓ− ⌊n/p⌋ ≥ D(m,n) +m− ⌊n/p⌋.
But this follows from Lemma 3.24(1).

Now we focus on proving (3.25.1) for Qm,n. Recall from (2.4.4) that

mn

∣∣(
pa b
pc d

)(z) = ε(δ/d̄, d̄) · (1 + w)
log(pcz+d

ω(d̄)
)/p

mn

(paz + b

pcz + d

)
(3.25.2)

=
∑

r≥0

ε(δ/d̄, d̄) · pr
(w
p

)r
(
log(pcz+d

ω(d̄)
)/p

r

)
·mn

(paz + b

pcz + d

)
.

We need to go back to several argument in [LWX17, § 3]. As proved in [LWX17, Lemma 3.13],(
log(pcz+d

ω(d̄)
)/p

r

)
is a Zp-linear combination of ps−r

(
z

s

)
for s ∈ Z≥0. So to prove (3.25.1) for

Qm,n, it suffices to prove that, for every s ≥ 0, when expanding

ps
(
z

s

)
·mn

(paz + b

pcz + d

)

with respect to the Mahler basis {
(
z
n

)
| n ∈ Z≥0}, the mth coefficient has p-adic valuation

greater than or equal to m−⌊n/p⌋+D(m,n). For this, we need to reproduce the argument
in [LWX17, Lemma 3.12]: write

n! ·mn

(paz + b

pcz + d

)
=
∑

t≥0

ct · t!
(
z

t

)
∈ ZpJpzK,
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then [LWX17, Lemma 3.11] implies that vp(ct) ≥ t. Moreover, as mn(
paz+b
pcz+d

) ∈ C(Zp,O), we
know that (when t < ⌊n

p
⌋), vp(ct) ≥ vp(

n!
t!
). Using the combinatorial identity in Lemma 3.24(3),

we deduce that

ps
(
z

s

)
·mn

(paz + b

pcz + d

)
=
∑

t≥0

ctp
s t!

n!

(
z

s

)(
z

t

)

=
∑

t≥0

s+t∑

j≥max{s,t}

ctp
s t!

n!

(
j

j − s, j − t, s+ t− j

)(
z

j

)
.

Taking the term with j = m ≥ s, we need to show that whenever s+ t ≥ m ≥ t, we have

vp

(
ctp

s t!

n!
·
(

m

m− s,m− t, s+ t−m

))
≥ m−

⌊n
p

⌋
+D(m,n).

Plugging in the earlier inequality vp(ct) ≥ max{t, vp(n!t! )}, we need to show that

(3.25.3) s−m+
⌊n
p

⌋
+max

{
t+ vp

( t!
n!

)
, 0
}
+ vp

(( m

m− s,m− t, s+ t−m

))
≥ D(m,n).

Now we forget the meaning of n and m as indices for basis elements, and prove (3.25.3)
as an abstract inequality.

(i) When t ≥ ⌊n
p
⌋ (so in particular, m ≥ ⌊n/p⌋), we have t + vp

(
t!
n!

)
≥ 0, so it suffices to

prove that

s+ t−m+ vp

( t!

⌊n/p⌋!
)
+ vp

(( m

m− s,m− t, s+ t−m

))
≥ D(m,n).

This follows from the binomial identity and the inequalities below

t!

⌊n/p⌋!

(
m

m− s,m− t, s+ t−m

)
=

(
m

m− ⌊n/p⌋

)(
t

m− s

)
· (m− ⌊n/p⌋)!

(m− t)! ,

vp

(( m

m− ⌊n
p
⌋

))
≥ D(m,n) and s+ t−m ≥ 0.

(ii) When t < ⌊n
p
⌋, the inequality (3.25.3) is equivalent to

(3.25.4) s−m+
⌊n
p

⌋
+ vp

(( m

m− s,m− t, s+ t−m

))
≥ D(m,n).

write ℓ := ⌊n
p
⌋ − t and n′ = n− pℓ. Note that Lemma 3.24(1) implies that

D(m,n′) + ℓ ≥ D(m,n)

So (3.25.4) follows from the same inequality with n replaced by n′. This is the case already
treated in (i). The proposition is proved. �

Notation 3.26. Fix a relevant character ε. Let λ and η be two subsets of positive integers

of cardinality n; for each such integer λi, we write deg e
(ε)
λi

= λi,0 + pλi,1 + · · · in its p-adic

expansion, and similarly for ηi’s. To iterate, we are expanding deg e
(ε)
λi

(as opposed to λi), as
they correspond to the m and n in Proposition 3.25. For each j ≥ 0, we define

D
(ε)
≤α(λ, j) := #{i | λi,j ≤ α},
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counting the number of λi’s whose jth digit is less than or equal to α. When α = 0, we write

D
(ε)
=0(λ, j) for D

(ε)
≤α(λ, j). We define D

(ε)
=0(η, j + 1) similarly (but using the (j + 1)th digit).

We define a tuple version of D(m,n) as follows:

D(ε)(λ, η) =
∑

j≥0

(
max

{
D

(ε)
=0(λ, j)−D(ε)

=0(η, j + 1), 0
})
.

Similar to Lemma 3.24(1), we have the following obvious inequalities: if η′ is given by

η′i = ηi except for one i0 where η′i0 = ηi0 + 1 (so deg e
(ε)
η′i0
− deg e

(ε)
ηi0
∈ {a, p− 1− a}), then

(3.26.1) D(ε)(λ, η′) + 1 ≥ D(ε)(λ, η).

Corollary 3.27. Keep the notation as above. Write U
(ε)
C
(λ × η) for the submatrix of U

(ε)
C

with row indices in λ and column indices in η. Then

(3.27.1) vp
(
det
(
U

(ε)
C
(λ× η)

))
≥ D(ε)(λ, η) +

n∑

i=1

(
deg e

(ε)
λi
−
⌊deg e(ε)ηi

p

⌋)

Proof. Write det
(
UC(λ× η)

)
=
∑
σ∈Sn

sgn(σ) ·UC,fλσ(1) ,fη1
· · ·UC,fλσ(n) ,fηn

. By Proposition 3.25,

for every permutation σ ∈ Sn,

vp
(
UC,fλσ(i) ,fηi

)
≥ deg eλσ(i) −

⌊deg eηi
p

⌋
+D

(
deg eλσ(i), deg eηi

)
.

Then the corollary is reduced to the following combinatorial inequality:

n∑

i=1

D
(
deg eλσ(i), deg eηi

)
≥ D(λ, η).

But this is clear, as the total contribution to all D
(
deg eλσ(i) , deg eηi

)
’s from the jth digit is

at least max
{
D=0(λ, j)−D=0(η, j + 1), 0

}
. �

Remark 3.28. We remark that D(λ, η) is often zero, e.g. when λ = η = n. As stated
earlier, this notation is introduced to treat certain pathological cases; see the proof of Propo-
sition 5.4(1) where our finer estimate in Corollary 3.27 is used.

Moreover, the same argument above in fact proves a stronger statement with D(ε)(λ, η) in

(3.27.1) replaced by
∑
j≥0

(
max

α=0,...,p−2

{
D

(ε)
≤α(λ, j) −D(ε)

≤α(η, j + 1), 0
})

. But (3.27.1) seems to

work better with our later inductive proof of Proposition 5.4(1)

We end this section with a technical lemma that is useful for computing D(ε)(λ, η).

Lemma 3.29. Let n be a positive number.

(1) For every j ≥ 0, we have D
(ε)
=0(n, j) ≤ D

(ε)
=0(n, j + 1).

(2) Write deg e
(ε)
n = n0 + pn1 + · · · in its p-adic expansion. If either nj+1 = p − 1 or

nj = nj+1 = 0, then D
(ε)
=0(n, j) = D

(ε)
=0(n, j + 1).

In particular, D(ε)(n, n) = 0 for any n.
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Proof. Let D̃=0(n, j) be the set of nonnegative integers m ≤ deg en whose p-adic expansion
has jth digit equal to 0 and is congruent to sε or a + sε modulo p − 1. Then D=0(n, j) =

#D̃=0(n, j). The key is that for any nonnegative integer m = m0 + m1p + · · · that is
congruent to a or a+ sε modulo p− 1 and mj = 0, we have

m′ = m0 +m1p+ · · ·+mj−1p
j−1 +mj+1p

j +mj+2p
j+2 + · · · .

Then m↔ m′ defines a bijection among nonnegative integers which are congruent to sε and
a+sε modulo p−1. Yet m ≤ deg en implies that m′ ≤ deg en. So D=0(n, j) ≤ D=0(n, j+1).

The equality holds if and only if m′ ≤ en implies m ≤ deg en. This latter equivalence
condition holds under condition (ii). So under the condition of (ii), we have D=0(n, j) =
D=0(n, j + 1). The lemma follows. �

4. Proof of local ghost conjecture I: Lagrange interpolation

In this and the next two sections, we keep Hypothesis 2.9 on H̃, i.e. H̃ is a primitive
OJKpK-projective augmented module of type ρ̄ =

(
ωa+1
1 ∗6=0
0 1

)
such that

(
p 0
0 p

)
acts trivially

on H̃. We devote this and the next two sections to the proof of the local ghost conjecture,
namely, Theorem 2.7. The proof is roughly divided into three steps, which we give a quick
overview below. To simplify this introduction, we fix a relevant character ε = ω−sε × ωa+sε,
and suppress it from the notation.

In a rough form, Theorem 2.7 says that C(w, t) and G(w, t) are “close” to each other; in
particular, this says that, for each n, near each zero wk of gn(w), the function cn(w) is very
small. The leads us to the following.

Step I: (Lagrange interpolation) For each n, we formally apply Lagrange interpolation to
cn(w) relative to the zeros wk of gn(w) (with multiplicity), that is, to obtain a formula
of the form

(4.0.1) cn(w) =
∑

k≡kε mod (p−1)
mn(k)6=0

ak(w) · gn,k̂(w) + h(w)gn(w).

We give a sufficient condition on the p-adic valuations of the coefficients of ak(w)
that would imply Theorem 2.7. This is Proposition 4.4.

In fact, we shall prove a similar p-adic valuation condition for all (principal or not) n×n-
submatrices of the matrix of Up with respect to the power basis. More precisely, given two
tuples ζ and ξ of n positive integers, we apply the same Lagrange interpolation (4.0.1) to

det(U†(ζ × ξ)) in place of cn(w), and we shall fix ζ and ξ for the rest of this introduction
and still use ak(w) and h(w) to denote the corresponding power series appearing in (4.0.1)
(with cn(w) replaced by det(U†(ζ × ξ))).

We point out that this is a question for each individual zero wk of g
(ε)
n (w). To simplify the

discussion of this introduction, we only consider one such k for which n < 1
2
dIwk ; the other

case has little variation. We write each ak(w) as ak,0 + ak,1(w − wk) + ak,2(w − wk)2 + · · · ,
and we need to prove that for every i < mn(k),

(4.0.2) vp(ak,i) ≥ ∆k, 1
2
dnewk −i −∆′

k, 1
2
dnewk −mn(k)

+
1

2

(
deg(ζ)− deg(ξ)

)
,
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where the term 1
2
(deg(ζ) − deg(ξ)) is introduced to “balance” the total degrees of basis

elements in ζ and ξ. Here, a subtle technical point is that we truly need to use ∆ − ∆′ in
order to implement the induction we perform later; see the comments after the statement of
Proposition 4.7. As we shall explain just after the statement of Theorem 5.2, the proof of
Theorem 2.7 is then reduced to prove (4.0.2).

Step II: (Cofactor expansion argument) We reduce the proof of (4.0.2) to an estimate on the

determinant of the minors of U†(ζ × ξ) of smaller size.

For simplicity, assume that sξ(k) = 0 (see Definition-Proposition 3.21). Then the corank

theorem (Definition-Proposition 3.21) implies that ak,i = 0 when i < mζ×ξ(k) − 2rζ×ξ(k).

Moreover, we can write U†(ζ × ξ) = Tk(ζ × ξ) + Ak(ζ × ξ), where Ak(ζ × ξ) has coefficients
in E and has exactly rζ×ξ(k) nonzero entries (coming from the matrix for the Atkin–Lehner

operator at wk), and Tk(ζ × ξ) is a matrix in E〈w/p〉 whose evaluation at w = wk has rank
at most durk .

We apply a version of cofactor expansion to U†(ζ × ξ) = Ak(ζ × ξ) +Tk(ζ × ξ), to express

det
(
U†(ζ×ξ)

)
as a linear combination of the determinant of smaller minors of U†(ζ×ξ) plus

a term that is divisible by (w − wk)mζ×ξ(k). This way, we essentially reduce the question of
estimating vp(ak,i) to the question of estimating the Taylor coefficients for the determinant of
smaller minors, when expanded as a power series in EJw−wkK (see the Step III below). There
are several subtleties when executing this plan; we leave the discussion to the corresponding
points, especially the discussion before Lemma 6.4 and § 6.10.

Step III: (Estimating power series expansion for smaller minors) Interestingly enough, what
is needed in the Step II from the inductive proof is an estimate of vp(a

′
k,i) in the

expansion of cn′(w)/gn′,k̂(w) =
∑

i≥0 a
′
k,i(w − wk)i in EJw − wkK not for i < mn′(k)

but for i ≥ mn′(k).

This estimate will be deduced in Proposition 5.4 from the estimate of the Lagrange interpo-
lation coefficients a′k′,i of cn′(w) for other k′ 6= k and i ≤ mn′(k′), as well as the polynomial
h′(w) that appears in the Lagrange interpolation of the determinant of the smaller minor.
The latter gives the most trouble; in most of the case, it follows immediately from the usual
halo estimate, but in some pathological case, we need to invoke the refined halo estimate in
Proposition 3.25.

To streamline the logical flow, we will prove Step I in this section, and first prove Step III
in the next section, and finally complete Step II in Section 6.

We first give a quick discussion on the “ordinary” part of the characteristic power series.

Proposition 4.1. (1) For a relevant character ε, c
(ε)
1 (w) ∈ OJwK is a unit if and only if

ε = 1× ωa.
(2) For a relevant character ε and k ∈ Z≥2, writing dε,k := dIwk (ε · (1 × ω2−k)), then(

dε,k, vp(c
(ε)
dε,k

(wk))
)
is a vertex of NP(C(ε)(wk,−)), and

(
dε,k, vp(g

(ε)
dε,k

(wk))
)
is a vertex

of NP(G(ε)(wk,−)).

Proof. (1) We first show that for sε > 0, c
(ε)
1 (w) is not a unit in OJwK. Indeed, in this case,

Definition-Proposition 2.12(3) implies that t
(ε)
1 , t

(ε)
2 ≥ δε+1; so for k = kε+(p−1)δε = 2+sε+

{a + sε}, Definition-Proposition 2.12(2)(3) imply respectively durk (ε1) = 0, and dIwk (ε̃1) = 2.
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This means that SIw
k (ε̃1) consists of only new forms; so Up-slopes are

k−2
2

= sε+{a+sε}
2

> 0. In

particular, this shows that vp(c
(ε)
1 (wk)) > 0 and thus c

(ε)
1 (w) is not a unit.

When sε = 0 (and thus ε = 1 × ωa), c(1×ωa)1 (w2) is a p-adic unit as proved in [LTXZ22+,

Proposition A.7]. So c
(1×ωa)
1 (w) ∈ OJwK×.

(2) By part (1) and Proposition 2.11(2), the dε,kth slope in NP(C(wk,−)) is ≤ k − 1
and the equality holds precisely when sε′′ := {k − 2 − a − sε} = 0. Similarly, part (1) and
Proposition 2.11(1) imply that the (dε,k+1)th slope is ≥ k− 1 and the equality holds if and
only if sε′ := {1+sε−k} = 0. Yet, Clearly, 1+sε and 2+a+sε are never congruent modulo
p−1. So the dε,kth slope and the (dε,k+1)th slope of NP(C(wk,−)) are never equal, proving
that

(
dε,k, vp(cdε,k(wk))

)
is a vertex of NP(C(wk,−)).

The same argument above with Proposition 2.11 replaced by Proposition 2.16 proves that(
dε,k, vp(gdε,k(wk))

)
is a vertex of NP(G(wk,−)), �

We recall the standard Lagrange interpolation formula, as our main tool to study local
ghost conjecture.

Definition-Lemma 4.2. Let f(w) ∈ O〈w/p〉 be a power series, and let g(w) = (w −
x1)

m1 · · · (w − xs)ms ∈ Zp[w] be a polynomial with zeros x1, . . . , xs ∈ pZp and multiplicities
m1, . . . , ms ∈ N. Then we can uniquely write f(w) as

(4.2.1) f(w) =

s∑

i=1

(
Ai(w)

g(w)

(w − xi)mi
)
+ h(w) · g(w),

where each Aj(w) ∈ E[w] is a polynomial of degree < mj, and h(w) ∈ E〈w/p〉, characterized
by the condition that for each i, f(w) ≡ Ai(w)

g(w)
(w−xi)mi

modulo (w − xi)mi when viewed as

power series in EJw − xiK.
We call the expression (4.2.1) the Lagrange interpolation of f(w) along g(w).

Notation 4.3. For n ∈ N and a relevant character ε, recall the notation g
(ε)

n,k̂
(w) from

(2.16.1). We write the nth coefficient c
(ε)
n (w) of the characteristic power series C(ε)(w, t) in

terms of its Lagrange interpolation along g
(ε)
n (w) as follows.

(4.3.1) c(ε)n (w) =
∑

k≡kε mod (p−1)

m
(ε)
n (k)6=0

(
A

(n,ε)
k (w) · g(ε)

n,k̂
(w)
)
+ h(ε)n (w) · g(ε)n (w),

where A
(n,ε)
k (w) = A

(n,ε)
k,0 + A

(n,ε)
k,1 (w − wk) + · · · + A

(n,ε)

k,m
(ε)
n (k)−1

(w − wk)
m

(ε)
n (k)−1 ∈ E[w] is a

polynomial of degree ≤ m
(ε)
n (k)− 1, and h

(ε)
n (w) ∈ E〈w/p〉.

Proposition 4.4. To prove Theorem 2.7, it suffices to prove that, for every relevant char-

acter ε, every n ∈ N, and every ghost zero wk of g
(ε)
n (w), we have

(4.4.1) vp(A
(n,ε)
k,i ) ≥ ∆

(ε)

k, 1
2
dnewk (ε1)−i

−∆
(ε)′

k, 1
2
dnewk (ε1)−m

(ε)
n (k)

for i = 0, 1, . . . , m(ε)
n (k)− 1.

Proof. We assume that (4.4.1) holds for every ε, n, k as above. Then Theorem 2.7 clearly
follows from the following two claims:

Claim 1 Every point (n, vp(c
(ε)
n (w⋆))) lies on or above NP(G(ε)(w⋆,−)).
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Claim 2 If
(
n, vp(g

(ε)
n (w⋆))

)
is a vertex of NP(G(ε)(w⋆,−)), then we have vp(c

(ε)
n (w⋆)) = vp(g

(ε)
n (w⋆)).

Through the Lagrange interpolation (4.3.1), we will reduce the two Claims to the following.

Statement 4.5. For each w⋆ ∈ mCp and each k = kε + (p− 1)k• such that m
(ε)
n (k) 6= 0,

(1) The point
(
n, vp

(
A

(n,ε)
k (w⋆)g

(ε)

n,k̂
(w⋆)

))
lies on or above the Newton polygon NP(G(ε)(w⋆,−));

and
(2) moreover if

(
n, vp(g

(ε)
n (w⋆))

)
is a vertex of NP(G(ε)(w⋆,−)), then vp

(
A

(n,ε)
k (w⋆)g

(ε)

n,k̂
(w⋆)

)
>

vp
(
g
(ε)
n (w⋆)

)
.

Indeed, we will prove (a strengthened version of) this later in Proposition 4.7. We now
assume Statement 4.5 to finish the proof of Proposition 4.4. For this, we fix a relevant
character ε and omit it from the notations when no confusion arises.

Proof of Claim 1 assuming Statement 4.5(1).
Fix n ∈ N. First, by Proposition 2.19, ∆k, 1

2
dnewk −i > ∆′

k, 1
2
dnewk −mn(k)

for any i = 0, . . . , mn(k)−
1; so condition (4.4.1) implies that each A

(n)
k,i (w) ∈ O[w]. But we know that cn(w) ∈ OJwK; it

follows that hn(w) ∈ OJwK (even though the Lagrange interpolation happens in a bigger ring
E〈w/p〉). From this, we deduce that the last term in (4.3.1) satisfies: for every w⋆ ∈ mCp,

vp
(
hn(w⋆) · gn(w⋆)

)
≥ vp(gn(w⋆)).

By Statement 4.5(1), the evaluations at w⋆ of all other terms in the Lagrange interpola-
tion (4.0.1) have p-adic valuation greater than or equal to the height of G(ε)(w⋆,−) at x = n.
Claim 1 follows.

Proof of Claim 2 assuming Statement 4.5(2).

It is enough to show that, in the Lagrange interpolation (4.3.1), h
(ε)
n (w) ∈ OJwK× is a

unit. Indeed, if this is known, and if
(
n, vp(g

(ε)
n (w⋆))

)
is a vertex of NP(G(ε)(w⋆,−)), then

Statement 4.5(2) implies

vp
(
Ak(w⋆)g

(ε)

n,k̂
(w⋆)

)
> vp(g

(ε)
n (w⋆)) yet vp

(
h(ε)n (w⋆)g

(ε)
n (w⋆)

)
= vp(g

(ε)
n (w⋆)).

From this, we deduce that vp(c
(ε)
n (w)) = vp(g

(ε)
n (w)).

To prove that h
(ε)
n (w) is a unit, we take one k 6≡ kε mod (p− 1) such that dIwk (ε · (1 ×

ω2−k)) = n. (This is possible because per Definition-Proposition 2.12(1), sε and {a + sε}
are not “adjacent” in the cycle modulo p − 1.) Set sε′′ := {k − 2 − a − sε}. By Proposi-

tion 4.1(2),
(
n, vp(c

(ε)
n (wk))

)
is a vertex of NP(C(ε)(wk,−)) and

(
n, vp(c

(ε′′)
n (wk))

)
is a vertex

of NP(C(ε′′)(wk,−)).
We use the Atkin–Lehner involution between SIw

k (ε · (1 × ω2−k) and SIw
k (ε′′ · (1 × ω2−k)).

Combining Proposition 2.11(2) and Proposition 2.16(2), we deduce that

vp(c
(ε)
n (wk)) + vp(c

(ε′′)
n (wk)) = (k − 1)n = vp(g

(ε)
n (wk)) + vp(g

(ε′′)
n (wk)).

As argued above, for each zero wk1 of g
(ε)
n (w) and each zero wk2 of g

(ε′′)
n (w), we have

vp
(
Ak1(wk)g

(ε)

n,k̂1
(wk)

)
> vp(g

(ε)
n (wk)) and vp

(
Ak2(wk)g

(ε′′)

n,k̂2
(wk)

)
> vp(g

(ε′′)
n (wk)).

From this together with (4.0.1), we deduce that

vp(g
(ε)
n (wk)h

(ε)
n (wk)) + vp(g

(ε′′)
n (wk)h

(ε′′)
n (wk)) = (k − 1)n = vp(g

(ε)
n (wk)) + vp(g

(ε′′)
n (wk)).
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Since h
(ε)
n (w), h

(ε′′)
n (w) ∈ OJwK, we deduce that h

(ε)
n (wk), h

(ε′′)
n (wk) ∈ O×; so h

(ε)
n (w) and

h
(ε′′)
n (w) are both units in OJwK.
To sum up, we have completed the proof of Proposition 4.4 assuming Statement 4.5. �

We record here a technical result [LTXZ22+, Proposition 5.16] that we shall frequently
use in the proof of Statement 4.5.

Proposition 4.6. Fix w⋆ ∈ mCp and a weight k ≡ kε mod (p− 1).

(1) Let nS
(ε)
w⋆,k

=
(
1
2
dIwk (ε̃1)−L(ε)

w⋆,k
, 1

2
dIwk (ε̃1)+L

(ε)
w⋆,k

)
be a near-Steinberg range. Then for

any integer k′ = kε + (p − 1)k′• 6= k such that vp(wk′ − wk) ≥ ∆
(ε)

k,L
(ε)
w⋆,k

− ∆
(ε)

k,L
(ε)
w⋆,k

−1
,

the ghost multiplicity m
(ε)
n (k′) is linear in n when n ∈ nS

(ε)

w⋆,k.
(2) Let k := {k, k1, . . . , kr} with each ki ≡ kε mod (p−1) be a set of integers including k.

Suppose that there is an interval [n−, n+] such that, for any k′ = kε + (p− 1)k′• /∈ k

with vp(wk′ − wk) ≥ vp(w⋆ − wk), the ghost multiplicity m
(ε)
n (k′) is linear in n when

n ∈ [n−, n+]. Then for any set of constants (An)n∈[n−,n+], the two lists of points

Pn =
(
n,An + vp(g

(ε)

n,k̂
(w⋆))

)
, Qn =

(
n,An + vp(g

(ε)

n,k̂
(wk))

)
with n ∈ [n−, n+]

differ by a linear function, where g
(ε)

n,k̂
(wk) := g

(ε)

n,k̂
(wk)/

∏
k′∈k,k′ 6=k

(wk − wk′)m
(ε)
n (k′).

Here and later, we say two sets of points Pn = (n,An) and Qn = (n,Bn) with integers
n ∈ [a, b] are differed by a linear function if there exist real numbers α, β ∈ R such that
Bn − An = αn+ β for all integers n ∈ [a, b].

The following is a generalization of Statement 4.5.

Proposition 4.7. Assume that p ≥ 7. Fix ε a relevant character, n ∈ N, and k = kε+ (p−
1)k• so that m

(ε)
n (k) 6= 0. Fix i ∈ {0, . . . , m(ε)

n (k)− 1}. Let A ∈ mCp be such that

(4.7.1) vp(A) ≥ ∆
(ε)

k, 1
2
dnewk (ε1)−i

−∆
(ε)′

k, 1
2
dnewk (ε1)−m

(ε)
n (k)

.

For each w⋆ ∈ mCp , the point
(
n, vp

(
A(w⋆ − wk)ig(ε)n,k̂(w⋆)

))

lies on or above the Newton polygon NP(G(ε)(w⋆,−)); and it lies strictly above this Newton

polygon if
(
n, vp(g

(ε)
n (w⋆))

)
is a vertex.

More generally, for any integer k0 = kε + (p− 1)k0• 6= k for which m
(ε)
n (k0) 6= 0, we have

an analogous statement: assume condition (4.7.1), then for w⋆ = wk0, the point
(
n, vp

(
A(wk0 − wk)ig(ε)n,k̂,k̂0(wk0)

))

lies on or above the lower convex hull of points
(
n′, vp(g

(ε)

n′,k̂0
(wk0))

)
n′∈[durk0

(ε1),dIwk0
(ε̃1)−durk0

(ε1)]
.

Statement 4.5 follows by applying Proposition 4.7 to A = A
(n,ε)
k,i with i = 0, . . . , m

(ε)
n (k)−1.

As we will see in the Case A of the proof, in the condition (4.4.1) or equivalently (4.7.1), we
truly need an estimate of the form ∆−∆′ (which is stronger than a similar estimate of the
form ∆−∆ or ∆′ −∆′).
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Proof. In this proof, ε will be fixed throughout; so we suppress it from the notation. We will
treat the two statements uniformly. In the proof below, when writing k0 we mean an empty
object in the case of first statement and the given weight k0 in the second statement, (as
how [LTXZ22+, Theorem 5.19] is proved in a way applicable also to [LTXZ22+, Proposition
5.26]). Moreover, when treating the second statement, we will write w⋆ for wk0. We separate
the discussion into the following three cases:

Case A: Assume that n ∈ nSw⋆,k so that (n, vp(gn(w⋆))) is not a vertex of NP(G(w⋆,−))
by Proposition 2.18(2). We need to prove a non-strict inequality in this case.

Write L = Lw⋆,k for short, so n ∈ nSw⋆,k = (1
2
dIwk − L, 1

2
dIwk + L) and vp(w⋆ − wk) ≥

∆k,L − ∆k,L−1. We quickly remark that, for the second statement, the condition vp(wk0 −
wk) ≥ ∆k,L −∆k,L−1 implies that the ghost multiplicity mn′(k0) is linear in n

′ ∈ nSwk0 ,k by

Proposition 4.6(1). In particular, nSwk0 ,k ⊆ [durk0, d
Iw
k0
− durk0].

We need to prove that, for each i = 0, . . . , mn(k)− 1, the point

P :=
(
n, vp

(
A(w⋆ − wk)i · gn,k̂,k̂0(w⋆)

))

lies on or above the line segment Q−Q+ with

Q− :=
(
1
2
dIwk − L, vp

(
g 1

2
dIwk −L,k̂0

(w⋆)
))

and Q+ :=
(
1
2
dIwk + L, vp

(
g 1

2
dIwk +L,k̂0

(w⋆)
))
.

(Here we do not need to require that Q− and Q+ are vertices of the lower convex hull of all
points

(
n′, vp(gn′,k̂0

(wk0))
)
n′∈N

.)

Applying Proposition 4.6(2) to the case with k = {k, k0}, w⋆, and [n−, n+] =
[
1
2
dIwk −

L, 1
2
dIwk + L

]
, we are reduced to prove that the point

P ′ =
(
n, vp(A) + i · vp(w⋆ − wk) + vp

(
gn,k̂,k̂0(wk)

))

lies on or above the line segment Q′
−Q

′
+ with

Q′
− =

(
1
2
dIwk − L, (12dnewk − L) · vp(w⋆ − wk) + vp

(
g 1

2
dIwk −L,k̂,k̂0

(wk)
))
,

Q′
+ =

(
1
2
dIwk + L, (1

2
dnewk − L) · vp(w⋆ − wk) + vp

(
g 1

2
dIwk +L,k̂,k̂0

(wk)
))
.

Moreover, if we write n = 1
2
dIwk + ℓ, then

vp
(
gn,k̂,k̂0(wk)

)
= ∆′

k,ℓ +
k−2
2
ℓ−mn(k0) · vp(wk − wk0) and

vp
(
g 1

2
dIwk ±L,k̂,k̂0

(wk)
)

= ∆′
k,±L ± k−2

2
L−m 1

2
dIwk ±L(k0) · vp(wk − wk0).

So to prove that P ′ lies strictly above the Q′
−Q

′
+, (through shifting in the y-direction by

a linear function with slope k−2
2

or slope k−2
2
± vp(wk − wk0) for the second statement and

shifting in the x-direction by 1
2
dIwk ), it is equivalent to show that the point

P ′′ :=
(
ℓ, vp(A) +

(
i− 1

2
dnewk + L

)
· vp(w⋆ − wk) + ∆′

k,ℓ

)

lies strictly above the line connecting the points

Q′′
− := (−L, ∆′

k,−L) and Q′′
+ := (L, ∆′

k,L).

By ghost duality (2.16.5), ∆′
k,−L = ∆′

k,L. So Q′′
− and Q′′

+ have the same y-coordinate.
Therefore, we need only to prove the following inequality

vp(A) +
(
i− 1

2
dnewk + L

)
· vp(w⋆ − wk) ≥ ∆′

k,L −∆′
k,|ℓ|.
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Using condition (4.7.1) vp(A) ≥ ∆k, 1
2
dnewk −i −∆′

k,|ℓ| and using ∆k,L = ∆′
k,L (as (L,∆k,L) is a

vertex of ∆k), we are reduced to prove that

(4.7.2) ∆k, 1
2
dnewk −i −∆′

k,L = ∆k, 1
2
dnewk −i −∆k,L ≥

(
1
2
dnewk − i− L

)
· vp(w⋆ − wk).

But this follows from the convexity of ∆k and the fact

∆k,L −∆k,L−1 ≤ vp(w⋆ − wk) < ∆k,L+1 −∆k,L.

This concludes the proof of the first statement of the proposition when n ∈ nSw⋆,k.

Case B: We assume that n /∈ nSw⋆,k, and that
(
1
2
dnewk −mn(k),∆

′
k, 1

2
dnewk −mn(k)

)
is a vertex

of ∆k, so that ∆′
k, 1

2
dnewk −mn(k)

= ∆k, 1
2
dnewk −mn(k). In this case, we have

(4.7.3) vp(w⋆ − wk) < ∆k, 1
2
dnewk −mn(k)+1 −∆k, 1

2
dnewk −mn(k).

We need to prove that for every i = 0, . . . , mn(k)− 1,

(4.7.4) vp
(
A(w⋆ − wk)i · gn,k̂,k̂0(w⋆)

)
> vp

(
gn,k̂0(w⋆)

)
.

But this inequality is equivalent to

(4.7.5) vp(A) > (mn(k)− i) · vp(w⋆ − wk).
This follows from the following sequence of inequalities:

vp(A)
(4.7.1)

≥ ∆k, 1
2
dnewk −i −∆′

k, 1
2
dnewk −mn(k)

= ∆k, 1
2
dnewk −i −∆k, 1

2
dnewk −mn(k)

convexity of ∆k≥ (mn(k)− i) ·
(
∆k, 1

2
dnewk −mn(k)+1 −∆k, 1

2
dnewk −mn(k)

)

(4.7.3)
> (mn(k)− i) · vp(w⋆ − wk).

This checks the proposition in this case (with strict inequality).

Case C: We assume that n /∈ nSw⋆,k and that
(
1
2
dnewk − mn(k),∆

′
k, 1

2
dnewk −mn(k)

)
is not a

vertex of ∆k. Then by Proposition 2.18(5), there exists k′ = kε + (p − 1)k′• such that
n ∈ nSwk,k′ = (1

2
dIwk′ − L′, 1

2
dIwk′ + L′), where L′ = Lwk,k′. We take k′ to be the one with the

biggest L′. So that (
1
2
dIwk′ ± L′ − 1

2
dIwk , ∆k, 1

2
dIw
k′

±L′− 1
2
dIwk

)

are the two endpoints of a segment of ∆k.
We assume that n > 1

2
dIwk ; the argument in the other case is “symmetric”. Before proceed-

ing, let us clarify the rough size of the numbers k•, k
′
•, and L

′, where we write k = kε+(p−1)k•
and k′ = kε + (p− 1)k′•. The condition n ∈ nSwk,k′ and Proposition 2.19 implies that

(4.7.6) vp(wk − wk′) ≥ ∆k′,L′ −∆′
k′,L′−1 ≥ L′ + 1

2
.

Since the left hand side is an integer, we deduce that vp(k
′
• − k•) ≥ L′. In particular,

|k′• − k•| =
∣∣ 1
2
dIwk′ − 1

2
dIwk
∣∣ is huge compared to L′. This together with the assumption that

n > 1
2
dIwk shows that k′• > k• and n > k•.

First, consider the easier case: vp(w⋆ − wk) ≤ vp(wk − wk′). It suffices to prove that the
point

(
n, vp

(
A(w⋆ −wk)ign,k̂,k̂0(w⋆)

))
lies strictly above the point

(
n, vp

(
gn,k̂0(w⋆)

))
. This is

equivalent to

(4.7.7) vp(A) ≥ (mn(k)− i) · vp(w⋆ − wk).
44



Set γ := vp(k − k′) ≥ 1. Then

(4.7.8) 1
2
dnewk −mn(k) ≥ 1

2
dIwk′ − 1

2
dIwk − L′ = k′• − k• − L′ ≥ pγ − L′

(4.7.6)

≥ pγ − γ > γ + 1.

By Proposition 2.19,

vp(A) ≥ ∆k, 1
2
dnewk −i −∆′

k, 1
2
dnewk −mn(k)

> (mn(k)− i)
(
1
2
dnewk −mn(k)

)

(4.7.8)
> (mn(k)− i)(γ + 1) ≥ (mn(k)− i) · vp(w⋆ − wk).

So (4.7.7) holds and the proposition is proved in this case.

For the rest of the discussion, we assume that vp(w⋆ − wk) > vp(wk − wk′). So
(4.7.9) vp(w⋆ − wk) > ∆′

k′,L′ −∆′
k′,L′−1 and vp(wk − wk′) = vp(w⋆ − wk′).

In particular, nSwk,k′ = nSw⋆,k′. (This implies that n is a not a vertex of NP(G(w⋆,−))
by Proposition 2.18(2); so we need to prove a non-strict inequality in this case.) When
considering the second statement, (4.7.9) and Proposition 4.6(1) implies that mn′(k0) is
linear in n′ ∈ nSwk0 ,k′. This in particular implies that nSwk0 ,k′ ⊆ [durk0, d

Iw
k0
− durk0].

Back to our general case, we need to show that the point

P :=
(
n, vp

(
A(w⋆ − wk)i · gn,k̂,k̂0(w⋆)

))

lies above the line segment R−R+ with

R− :=
(
1
2
dIwk′ − L′, vp

(
g 1

2
dIw
k′

−L′,k̂0
(w⋆)

))
and R+ :=

(
1
2
dIwk′ + L′, vp

(
g 1

2
dIw
k′

+L′,k̂0
(w⋆)

))
.

For this, we apply Proposition 4.6 twice to each of the points w⋆ and wk relative to the
distinguished weight k′, the near-Steinberg range [n−, n+] = nSw⋆,k′ = nSwk,k′, and k =
{k, k′, k0}. This allows us to relate the values of gj,k̂(w) at w⋆ first to values at wk′ and then
to values at wk. Thus, we need only to prove that the point

P ◦ :=
(
n, vp(A) + i · vp(w⋆ − wk) +mn(k

′)vp(w⋆ − wk′) + vp
(
gn,k̂(wk)

))

(4.7.9)
=
(
n, vp(A) + i · vp(w⋆ − wk) + vp

(
gn,k̂,k̂0(wk)

))

lies above the line segment R◦
−R

◦
+ with

R◦
± :=

(
1
2
dIwk′ ± L′, vp

(
g 1

2
dIw
k′

±L′,k̂(wk)
)
+m 1

2
dIw
k′

±L′(k) · vp(w⋆ − wk) + L′ · vp(w⋆ − wk′)
)

(4.7.9)
=
(
1
2
dIwk′ ± L′, vp

(
g 1

2
dIw
k′

±L′,k̂,k̂0
(wk)

)
+m 1

2
dIw
k′

±L′(k) · vp(w⋆ − wk)
)
.

We substitute the equalities vp(g 1
2
dIwk +ℓ,k̂,k̂0

(wk)) = ∆′
k,ℓ+

k−2
2
ℓ−mn(k0) · vp(wk0−wk) for ℓ ∈

{−L′, . . . , L′} into the above expression of points. (Here when considering the first statement,
we ignore the term involving weight k0.) Note that Proposition 4.6(1) implies that mn(k)
(and mn(k0) if we are considering the second statement) are linear for n ∈ nSwk,k′ = nSwk0 ,k′.
So we may further shift down these points in the y-direction by a linear function of slope
k−2
2

+ vp(w⋆ − wk)± vp(wk0 − wk), to reduce to prove that the point

P ◦◦ :=
(
n, vp(A) + (i−mn(k)) · vp(w⋆ − wk′) + ∆′

k, 1
2
dnewk −mn(k)

)

lies above the segment R◦◦
−R

◦◦
+ with

R◦◦
± :=

(
1
2
dIwk′ ± L′, ∆′

k, 1
2
dIw
k′

±L′− 1
2
dIwk

)
=
(
1
2
dIwk′ ± L′, ∆′

k, 1
2
dIw
k′

±L′− 1
2
dIwk

)
.
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Recall that the two points R◦◦
± correspond to two endpoints of a segment on ∆k by our choice

of L′. So this is equivalent to proving that

vp(A) + (i−mn(k)) · vp(w⋆ − wk) + ∆′
k, 1

2
dnewk −mn(k)

≥ ∆k, 1
2
dnewk −mn(k).

Taking into account of (4.7.1), it suffices to show that

∆k, 1
2
dnewk −i + (i−mn(k)) · vp(w⋆ − wk) ≥ ∆k, 1

2
dnewk −mn(k).

But this follows from that vp(w⋆−wk) < ∆k, 1
2
dnewk −mn(k)+1−∆k, 1

2
dnewk −mn(k) and the convexity

of ∆k. The proposition is proved in this case. �

Proposition 4.7 completes the proof of Proposition 4.4. To summarize, in this section, we
reduced the proof of Theorem 2.7 to proving the condition (4.4.1).

5. Proof of local ghost conjecture II: halo bound estimates

In this section, we implement Step III of the proof of Theorem 2.7 as laid out at the
beginning of § 4; the Step II will be discussed in the next section.

As in the previous section, we fix a primitive OJKpK-projective augmented module H̃
satisfying Hypothesis 2.9. We will also fix a relevant ε = ω−sε × ωa+sε through out this and
the next section, and suppress it entirely from the notation. For this and the next section,
we assume that 2 ≤ a ≤ p− 5; this is used in the proof of Proposition 5.4(1).

To prove the estimate (4.4.1), we will show a similar result about the Lagrange interpola-
tion of the determinant of every (not necessarily principal) minor.

Notation 5.1. Let ζ = {ζ1, . . . , ζn} and ξ = {ξ1, . . . , ξn} be two sets of n positive integers,

and let U†(ζ×ξ) be the ζ×ξ-minor of the matrix of Up-action on the power basis. Applying

the Lagrange interpolation (Definition-Lemma 4.2) to det(U†(ζ × ξ)) along gn(w), we have

(5.1.1) det
(
U†(ζ × ξ)

)
=

∑

k≡kε mod (p−1)
mn(k)6=0

(
A

(ζ×ξ)

k (w) · gn,k̂(w)
)
+ hζ×ξ(w) · gn(w),

where hζ×ξ(w) ∈ E〈w/p〉 and A
(ζ×ξ)

k (w) is a polynomial in E[w] of degree ≤ mn(k) − 1,
expanded as

(5.1.2) A
(ζ×ξ)

k (w) = A
(ζ×ξ)

k,0 + A
(ζ×ξ)

k,1 (w − wk) + · · ·+ A
(ζ×ξ)

k,mn(k)−1(w − wk)mn(k)−1.

Theorem 5.2. Assume that 2 ≤ a ≤ p− 5. For every finite subsets ζ and ξ of size n, and
every ghost zero wk of gn(w), we have the following inequality for every i = 0, 1, . . . , mn(k)−1,
(5.2.1) vp(A

(ζ×ξ)

k,i ) ≥ ∆k, 1
2
dnewk −i −∆′

k, 1
2
dnewk −mn(k)

+ 1
2

(
deg(ζ)− deg(ξ)

)
.

Since cn(w) = (−1)n∑ξ det
(
U′†(ξ × ξ)

)
is the sum over all principal minors of size n, we

see that, for each n and each ghost zero wk of gn(w),

A
(n)
k,i = (−1)n

∑

ξ

A
(ξ×ξ)

k,i .

So condition (4.4.1) (and hence Theorem 2.7) follows from Theorem 5.2 above. The proof
of Theorem 5.2 will be concluded in § 6.8 (and § 6.13).
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5.3. Proof of Theorem 5.2 when n = 1. When n = 1, the condition m1(k) > 0 for
k = kε + (p − 1)k• is equivalent to that durk = 0 and dIwk = 2k• + 2 − δε ≥ 2. In this case,
m1(k) = 1, so we need only to consider the case with i = 0. For one such ghost zero k

and indices ζ, ξ ∈ N, A
(ζ×ξ)

k,0 = U†
eζ ,eξ
|w=wk . Moreover, note that (1

2
dnewk ,∆′

k, 1
2
dnewk

) is always a

vertex of ∆k, so

∆k, 1
2
dnewk

= k−2
2
· 1
2
dnewk and ∆k, 1

2
dnewk −1 = vp(g1,k̂(wk)) +

k−2
2
· (1

2
dnewk − 1).

It suffices to prove that

(5.3.1) vp(U
†
eζ ,eξ
|w=wk) ≥ k−2

2
− vp

(
g1,k̂(wk)

)
+ 1

2
(deg eζ − deg eξ).

If ξ > dIwk , (5.3.1) follows from combining the inequalities 1
2
(k − 2 − deg eξ) ≤ 0 and

vp(U
†
eζ ,eξ
|w=wk) ≥ deg(eζ) by Proposition 3.2(2).

If ζ > dIwk , (5.3.1) follows from the inequality vp(U
†
eζ ,eξ
|w=wk) ≥ deg(eζ) ≥ 1

2
(k−2+deg(eζ))

by Proposition 3.2(2).
When ζ, ξ ∈ {1, . . . , dIwk }, U†

eζ ,eξ
(dIwk )|w=wk is the anti-diagonal matrix, set ζop = dIwk +1−ζ .

In this case,

vp(U
†
eζ ,eζop

|w=wk) = deg eζ =
k−2
2

+ 1
2
deg eζ − 1

2
deg eζop .

(5.3.1) follows from this. This completes the proof of Theorem 5.2 when n = 1. �

The following is the main result for Step III in the proof of Theorem 2.7.

Proposition 5.4. Assume that p ≥ 11 and that 2 ≤ a ≤ p−5. Fix a relevant character ε of
∆2 and subsets ζ and ξ of positive integers of cardinality n. Recall the Lagrange interpolation
formula from Notation 5.1:

(5.4.1) det
(
U†(ζ × ξ)

)
=

∑

k≡kε mod (p−1)
mn(k)6=0

(
A

(ζ×ξ)

k (w) · gn,k̂(w)
)
+ hζ×ξ(w) · gn(w),

with A
(ζ×ξ)

k (w) = A
(ζ×ξ)

k,0 + A
(ζ×ξ)

k,1 (w − wk) + · · ·+ A
(ζ×ξ)

k,mn(k)−1(w − wk)mn(k)−1.

Assume that, for every ghost zero wk of gn(w), the inequality (5.2.1) holds. Then

(1) hζ×ξ(w) ∈ p
1
2
(deg(ζ)−deg(ξ))O〈w/p〉; and

(2) for every ghost zero wk0 of gn(w), if we expand formally in EJw − wk0K:

(5.4.2) det
(
U†(ζ × ξ)

)/
gn,k̂0(w) =

∑

i≥0

a
(ζ×ξ)

k0,i
(w − wk0)i,

then we have the following estimate for i = mn(k0), . . . ,
1
2
dnewk0

:
(5.4.3)

vp
(
a
(ζ×ξ)

k0,i

)
≥ 1

2

(
deg(ζ)−deg(ξ)+(1

2
dnewk0
− i)2−(1

2
dnewk0
−mn(k0))

2
)
+∆k0,

1
2
dnewk0

−i−∆′
k0,

1
2
dnewk0

−i
.

Remark 5.5. This proposition involves the coefficients of the Taylor expansion of some
determinant of the minor with exponent greater than or equal to the corresponding ghost
multiplicity; in contrast, condition (5.2.1) concerns the coefficients in the Taylor expansions of
det
(
U†(ζ×ξ)

)
/gn,k̂(w) with exponents strictly less than the corresponding ghost multiplicity.
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Proof of Proposition 5.4. We first show that (2) follows from (1). We fix a ghost zero wk0 for
the discussion. It suffices to prove analogue of (5.4.3) for each of the factors in the Lagrange
interpolation (5.4.1), that is, explicitly,

(a) if we expand formally hζ×ξ(w) =
∑

i≥0 ak0,h,i(w−wk0)i in EJw−wk0K, then vp(ak0,h,i) ≥
1
2

(
deg(ζ)− deg(ξ)

)
; and

(b) for each ghost zero wk 6= wk0 of gn(w) and each j = 0, . . . , mn(k) − 1, if we expand
formally in EJw − wk0K,

(5.5.1) A
(ζ×ξ)

k,j (w − wk)j ·
(w − wk0)mn(k0)
(w − wk)mn(k)

=
∑

i≥mn(k0)

a
(j)
k0,k,i

(w − wk0)i,

then we have
(5.5.2)

vp(a
(j)
k0,k,i

) ≥ 1
2

(
deg(ζ)−deg(ξ)+(1

2
dnewk0 − i)2− (1

2
dnewk0 −mn(k0))

2
)
+∆k0,

1
2
dnewk0

−i−∆′
k0,

1
2
dnewk0

−i
,

for i = mn(k0), . . . ,
1
2
dnewk0

.

(a) follows from part (1) of the proposition, and we prove (b) as follows. The case when i =
mn(k0) is essentially already handled by Proposition 4.7: indeed, from the formal expansion
(5.5.1), we deduce that

vp(a
(j)
k0,k,mn(k0)

) = vp
(
A

(ζ×ξ)

k,j

)
− (mn(k)− j) · vp(wk0 − wk).

But the second statement of Proposition 4.7 together with the assumed condition (5.2.1)
implies that

vp
(
A

(ζ×ξ)

k,j

)
+j·vp(wk0−wk)+vp

(
gn,k̂,k̂0(wk0)

)
≥ 1

2

(
deg(ζ)−deg(ξ)

)
+∆k0,n−

1
2
dIwk0

+k0−2
2

(
n−1

2
dIwk0
)
.

Combining these two gives

vp(ak0,k,mn(k0))

≥ 1
2

(
deg(ζ)− deg(ξ)

)
+∆k0,n−

1
2
dIwk0

+ k0−2
2

(n− 1
2
dIwk0 )− vp

(
gn,k̂,k̂0(wk0)

)
−mn(k) · vp(wk0 − wk)

= 1
2

(
deg(ζ)− deg(ξ)

)
+∆k0,

1
2
dIwk0

−n −∆′
k0,

1
2
dIwk0

−n
.

This is the same as (5.5.2) (when i = mn(k0)).
The case when i > mn(k0) is easier (compared to the proof of Proposition 4.7). In this

case, we will prove an inequality stronger than (5.5.2) without the ∆ −∆′ at the end. The
estimate (5.2.1) we assumed implies that, for j = 0, . . . , mn(k)− 1,

vp
(
A

(ζ×ξ)

k,j

)
≥ 1

2

(
deg(ζ)− deg(ξ)

)
+∆k, 1

2
dnewk −j −∆′

k, 1
2
dnewk −mn(k)

≥ 1
2

(
deg(ζ)− deg(ξ)

)
+ 1 + 1

2
(1
2
dnewk − j)2 − 1

2
(1
2
dnewk −mn(k))

2,

where the second inequality follows from Proposition 2.19. So we need to prove the following
inequality:

1
2
(1
2
dnewk −mn(k0))

2 − 1
2
(1
2
dnewk − i)2 + 1 + 1

2
(1
2
dnewk − j)2 − 1

2
(1
2
dnewk −mn(k))

2

≥ (1 + vp(k• − k0•)) ·
(
(i−mn(k0)) + (mn(k)− j)

)
.
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To simplify notations, we set γ := vp(k• − k0•), x = 1
2
dnewk0

− mn(k0) > y = 1
2
dnewk0

− i ≥ 0,

and z = 1
2
dnewk − j > w = 1

2
dnewk −mn(k) ≥ 0. We need to prove that

(5.5.3) x2 − y2 + 2 + z2 − w2 ≥ 2(1 + γ)(x− y + z − w).
When γ = 0, the inequality (5.5.3) is straightforward. So we assume γ ≥ 1 below. Note

that |k• − k0•| ≥ pγ and so |1
2
dIwk − 1

2
dIwk0 | ≥ pγ . So we have x+ w ≥ pγ . We separate several

cases:

• If x+ y ≥ 2γ + 2 and z + w ≥ 2γ + 2, the inequality (5.5.3) is clear.
• If z + w ≤ 2γ + 1, then w ≤ γ. The condition x + w ≥ pγ implies that x ≥ pγ − w.
So

(z − w)(2 + 2γ − z − w) ≤
((z − w) + 2 + 2γ − z − w

2

)2
= (γ + 1− w)2,

(x− y)(x+ y − (2 + 2γ)) ≥ pγ − w − 2− 2γ.

The difference of the term (plus 2) is

pγ − w − 2γ − (γ + 1− w)2 ≥ pγ − 3γ − (γ + 1)2 ≥ 0 if γ ≥ 2.

When γ = 1 and w = 1, the left hand side is also larger than 0. When γ = 1 and
w = 0, we have x ≥ p, and so

(x− y)(x+ y − 4) ≥ 2x− 5 ≥ 5 and (z − w)(4− z − w) ≤ 4.

(5.5.3) still holds.
• If x+ y ≤ 2γ + 1, a similar argument proves (5.5.3); we leave this as an exercise for
interested readers.

This completes the proof of (2) assuming (1).

We now turn to prove (1) of Proposition 5.4. The proof resembles the proof of Claim 1 in
Proposition 4.4. By (5.2.1) and Proposition 2.19,

vp(A
(ζ×ξ)

k,i ) ≥ 1
2

(
deg(ζ)− deg(ξ)

)
+∆k, 1

2
dnewk −i −∆′

k, 1
2
dnewk −mn(k)

≥ 1
2

(
deg(ζ)− deg(ξ)

)
+mn(k)− i

A
(ζ×ξ)

k (w) · gn,k̂(w) ∈ p
1
2
(deg(ζ)−deg(ξ))+deg gn(w) · O[w/p].

So if we can prove that

(5.5.4) det
(
U†(ζ × ξ)

)
∈ p 1

2
(deg(ζ)−deg(ξ))+deg gn(w) · O〈w/p〉,

then we would deduce that hζ×ξ(w) · gn(w) ∈ p
1
2
(deg(ζ)−deg(ξ))+deg gn(w) · O〈w/p〉, from this it

would follow that hζ×ξ(w) ∈ p
1
2
(deg(ζ)−deg(ξ)) · O〈w/p〉. So we now focus on proving (5.5.4).

We go back to the discussion of halo estimate near the end of Section 3. Recall the matrix
UC and Y from Notation 3.17. For each ordered tuple η = (η1, . . . , ηn) ∈ Nn, write UC(ζ×η)
for the submatrices with rows in ζ and columns in η. Then the equality U† = YUCY

−1 of
(3.17.1) implies that
(5.5.5)

det
(
U†(ζ × ξ)

)
=
∑

λ,η

(
Yeζ1

,eλ1
· · ·Yeζn ,eλn

· det
(
UC(λ× η)

)
· (Y−1)eη1 ,eξ1 · · · (Y

−1)eηn ,eξn

)
,
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where the sum runs over all ordered tuples λ = (λ1, . . . , λn), η = (η1, . . . , ηn) ∈ Nn. It is
enough to check (5.5.4) for each term above when λi ≥ ζi and ηi ≤ ξi for every i (as Y and
Y−1 are upper triangular by Lemma 3.16).

Note that the condition λi ≥ ζi and Lemma 3.16 imply that

vp(Yeζi
,eλi

) +
1

2

(
deg eλi − deg eζi

)
+ vp(deg eλi !)

≥ deg eλi − deg eζi
2

+ vp

(deg eλi !
deg eζi !

)
+
⌊deg eζi

p

⌋
−
⌊deg eλi

p

⌋
−
⌊deg eλi − deg eζi

p2 − p
⌋

≥ deg eλi − deg eζi
2

+ vp

(⌊deg eλi
p

⌋
!
)
− vp

(⌊deg eζi
p

⌋
!
)
−
⌊deg eλi − deg eζi

p2 − p
⌋
≥ 0

By a similar argument, the condition ξi ≥ ηi and Lemma 3.16 imply that

vp
(
(Y−1)eηi ,eξi

)
≥ 1

2

(
deg eηi − deg eξi

)
+ vp(deg eηi !).

So to prove that each term of the right hand side of (5.5.5) belongs to p
1
2
(deg(ζ)−deg(ξ))+deg gn(w) ·

O〈w/p〉, it suffices to show the following
Claim: Assume that λ1 < · · · < λn and η1 < · · · < ηn. We have vp

(
det
(
UC(λ × η)

))

(meaning the p-adic valuation in the ring O〈w/p〉) is greater than or equal to

deg(ζ)−deg(ξ)

2
+ deg gn(w) +

n∑

i=1

(
deg eλi−deg eζi

2
+ vp(deg eλi !) +

deg eξi−deg eηi
2

− vp(deg eηi !)
)

= deg gn(w) +
deg(λ)− deg(η)

2
+

n∑

i=1

vp

(deg eλi!
deg eηi !

)
.

To be extremely careful about the boundary case, we set

(5.5.6) δ := deg gn(w)−
n∑

i=1

(
deg ei −

⌊deg ei
p

⌋) (2.12.3)
∈ {0, 1}.

Moreover, we point out that δ = 1 can only possibly happen when deg en+1 − deg en =
p − 1 − a. We first treat two special cases of the Claim, representing different strategies,
which are introduced to treat with the subtlety that δ might be 1.

(i) when λ = n and η 6= n, Proposition 3.18 implies that

vp
(
detUC(n×η)

)
≥

n∑

i=1

(
deg ei−

⌊deg eηi
p

⌋)
(5.5.6)
= deg gn(w)−δ−

n∑

i=1

(⌊deg eηi
p

⌋
−
⌊deg ei

p

⌋)
.

Comparing this with the Claim, it suffices to prove
n∑

i=1

(
deg eηi − deg ei

2
+ vp

(deg eηi !
deg ei!

)
−
⌊deg eηi

p

⌋
+
⌊deg ei

p

⌋)
≥ δ.

We may assume that ηi ≥ i for each i and ηn ≥ n + 1. Then the needed inequality
follows from combining the following two inequalities:

deg en+1 − en

2
≥ δ and vp

(deg eηi !
deg ei!

)
−
⌊deg eηi

p

⌋
+
⌊deg ei

p

⌋
= vp

(⌊deg eηi/p⌋!
⌊deg ei/p⌋!

)
≥ 0,
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where the first inequality uses the precise condition when δ could be equal to 1 as
discussed above.

(ii) When λ = {1, . . . , n− 1, n+ 1} and η = n. Let γ be the largest nonnegative integer
such that pγ divides a number in {deg en + 1, . . . , deg en+1}. Then vp(deg en+1!) −
vp(deg en!) = γ. We need to prove

(5.5.7) vp
(
det
(
UC(λ, n)

))
≥ deg gn(w) +

deg en+1 − deg en
2

+ γ.

By Corollary 3.27, we have

vp
(
det
(
UC(λ, n)

))
≥ D(λ, n) +

n∑

i=1

(
deg ei −

⌊deg ei
p

⌋)
+
(
deg en+1 − deg en

)
.

It suffices to prove that

D(λ, n) +
deg en+1 − deg en

2
≥ δ + γ.

As δ = 1 only happens when deg en+1−en = p−1−a, the condition 2 ≤ a ≤ p−5 is
enough to imply that deg en+1−deg en

2
≥ δ + 1. On the other hand, we use Lemma 3.29

to note that D=0(n, 0) = · · · = D=0(n, γ − 1), so for every j = 0, . . . , γ − 2

D=0(λ, j) = D=0(n, j + 1) + 1.

It follows that D(λ, n) ≥ γ − 1. This Claim in this case is proved.

We remark that, the proof of (i) follows from standard halo estimate Proposition 3.18. On
the other hand, as shown by the proof of (ii), the usual halo bound Proposition 3.18 cannot
be used to control the γ on the right hand side of (5.5.7). The subtle improvement of halo
estimate in Corollary 3.27 is essential for this proof.

We now prove Claim under the assumption that λ 6= n, which share certain similarity
with the proof of (ii). By Corollary 3.27, it suffices to show that

D(λ, η) +
n∑

i=1

(
deg eλi −

⌊deg eηi
p

⌋)
≥ deg gn(w) +

n∑

i=1

(
deg eλi − deg eηi

2
+ vp

(deg eλi !
deg eηi !

))
,

or equivalently, to show that

(5.5.8) D(λ, η) +
n∑

i=1

(
deg eλi + deg eηi

2
+ vp

(⌊deg eηi
p

⌋
!
))
≥ deg gn(w) +

n∑

i=1

vp(deg eλi !).

We first reduce to the case when η = n. For this, it suffices to show that for a subset
η′ ⊂ N of size n with η′i = ηi for all i except some i = i0 when η′i0 − ηi0 = 1, we have

(5.5.9) D(λ, η′) +
deg eη′i0

− deg eηi0
2

+ vp

(⌊deg eη′i0/p⌋!
⌊deg eηi0/p⌋!

)
≥ D(λ, η).

The condition 2 ≤ a ≤ p − 5 implies that deg eηi0 − deg eη′i0
≥ 2; so (5.5.9) follows from

(3.26.1).
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Now, we assume η = n. It remains to show for any subset λ ⊆ N (but λ 6= n),

(5.5.10) D(λ, n) +
n∑

i=1

deg eλi − deg ei
2

≥ δ +
n∑

i=1

vp

(deg eλi !
deg ei!

)
.

Moreover, we may assume that λ 6= {1, . . . , n− 1, n+ 1} as it has been treated in (ii).

For this, we make an induction on λ; each time, we replace the largest element in λ, say
λn, by the smallest element in n but not in λ, say n−. Since we have ruled out two special
cases of λ, we must have λn − n− ≥ 2.

Write λ′ = λ ∪ {n−}\{λn}. We need to prove

D(λ, n) +
deg eλn − deg en−

2
≥ δ +D(λ′, n) + vp

(deg eλn !
deg en−

!

)
.

Indeed, if λ′ 6= n, we did not even need the δ on the right hand side to complete the induction.
If λ′ = n, the above inequality is equivalent to (5.5.10) by Lemma 3.29.

Write γ for the maximal p-adic valuation for integers between deg en−
+ 1 and deg eλn ; so

that we must have vp
( deg eλn !

deg en− !

)
≤ γ +

⌊deg eλn−deg en−−2

p−1

⌋
. We need to prove

(5.5.11) D(λ, n) +
deg eλn − deg en−

2
−
⌊deg eλn − deg en−

− 2

p− 1

⌋
≥ δ +D(λ′, n) + γ.

Put δ to be unique integer such that deg eλn−deg en−
∈
(
(p−1)pδ−1, (p−1)pδ

]
; it is clear

that γ ≥ δ − 1. The case when γ ≤ δ is easier, which we discuss first. In this case, when
changing deg eλn to deg en−

, only the last γ digits in the p-adic expansion may change from
some nonzero number to 0. So D(λ, n) ≥ D(λ′, n)− γ. We need to prove that

(5.5.12)
deg eλn − deg en−

2
−
⌊deg eλn − deg en−

− 2

p− 1

⌋
≥ 2γ + δ.

If γ = 0, then deg eλn − deg en−
= p − 1; so (5.5.12) says p−1

2
≥ δ, which is obvious. If

δ ≥ γ = 1, the condition 2 ≤ a ≤ p − 5 implies that the left hand side ≥ p−1
2
≥ 2 + δ. If

δ ≥ γ ≥ 2, it is clear that the left hand side ≥ 1
4
(p − 1)pγ−1 > 2γ + δ. This completes the

proof of (5.5.12) when γ ≤ δ.
From now on, we assume that γ > δ; in this case, the p-adic expansions of deg eλn and

deg en−
look like

deg eλn = · · · · · · αγ+2 αγ+1αγ 0 0 · · · · · · · · · 0 0αδ · · ·α0,(5.5.13)

deg en−
= · · · · · · αγ+2 αγ+1(αγ − 1) (p− 1) · · · (p− 1)α′

δ · · ·α′
0.

Here each αj and α′
j belong to {0, . . . , p − 1} (and αγ ≥ 1), and the two numbers deg eλn

and deg en−
agree beyond the (γ + 1)th digits. The condition deg eλn − deg en−

≤ (p− 1)pδ

implies that α′
δ 6= 0.

We need to trace back to the definition of D(λ, n) in Notation 3.26 to compute

D(λ, n)−D(λ′, n)(5.5.14)

=
∑

j≥0

(
max

{
D=0(λ, j)−D=0(n, j + 1), 0

}
−max

{
D=0(λ

′, j)−D=0(n, j + 1), 0
})
.
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By Lemma 3.29 and the fact n− ≤ n ≤ λn,

D=0(n, δ + 1) = · · · = D=0(n, γ − 1).

It is not hard to see that for every j ∈ {δ + 1, . . . , γ − 2}
D=0(λ

′, j) ≥ D=0(n, j) = D=0(n, j + 1).

Yet (5.5.13) implies that for each such j, D=0(λ, j) = D=0(λ
′, j)+1. The contribution of jth

term to (5.5.14) is 1. For j = γ, Lemma 3.29 implies that

D=0(λ
′, γ) ≤ D=0(n, γ) ≤ D=0(n, γ + 1).

So the (j = γ)th term in (5.5.14) is zero.
Summarizing the above discussion, we have

(5.5.15) D(λ, n) ≥ D(λ′, n) + max{γ − δ − 2, 0} − δ,
where the term γ − δ − 2 comes from jth term with j ∈ {δ + 1, . . . , γ − 2} and the term
−δ corresponds to j ∈ {0, . . . , δ − 1}. The terms with j = δ or γ − 1 has nonnegative
contribution to (5.5.14). To prove (5.5.11), it suffices to show that

(5.5.16)
deg eλn − deg en−

2
−
⌊deg eλn − deg en−

− 2

p− 1

⌋
≥ 2δ + 2 + δ.

If δ = 0, then deg eλn − deg en−
= p− 1; so (5.5.15) says p−1

2
≥ 2 + δ, which is obvious. If

δ ≥ 2, it is clear that the left hand side ≥ 1
4
(p−1)pδ−1 > 2δ+2+δ. If δ = 1 and λn−n− ≥ 4,

the left hand side ≥ p− 2 ≥ 4 + δ.
For the remaining case λn − n− = 3, we have δ = 1. Now (5.5.16) becomes

deg eλn − deg en−

2
−
⌊deg eλn − deg en−

− 2

p− 1

⌋
≥ 4 + δ.

The left hand side is ≥ p−1
2
≥ 4 + δ as we have assumed p ≥ 11. This finishes the proof of

Claim under the assumption that λ 6= n.
Finally we prove Claim for λ = ξ = n. By (5.5.5) and the fact that Y −1 is uppertriangular,

we have

det(U†(n)) =
∑

λ,η∈Nn

det(UC(λ× η))
n∏

i=1

Yei,eλiY
−1
eηi ,ei

=
∑

λ∈Nn

det(UC(λ× n))
n∏

i=1

Yei,eλiY
−1
ei,ei

As Claim has been proved for all UC(λ×n)’s with λ 6= n, if we write f(w) = det(U†(n))−
det(UC(n)), we have f(w) ∈ pdeg gn(w)O〈w

p
〉. By Corollary 3.10, there exists h(w) =

∑
n≥0

hn ·

(w
p
)n ∈ O〈w

p
〉, hn ∈ O for all n, such that det(U†(n)) = p− deg gn(w)gn(w)h(w). For sim-

plicity, we set d = deg gn(w) and gn(w) =
∑d

i=0 p
iciw

d−i with c0 = 1 and ci ∈ Zp,
i = 1, . . . , d. If there exists an integer M satisfying vp(hM) < d, let m be the largest
integer with this property (it exists as h(w) ∈ O〈w

p
〉). The wd+m-coefficient of det(U†(n)) =

p− deg gn(w)gn(w)h(w) is p
−d
∑d

i=0 p
ici

hm+i

pm+i , which has p-adic valuation −d+vp(hmpm ) < −m. On

the other hand, it follows from Lemma 3.14 that det(UC(n)) ∈ OJwK, and we see from the
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equality det(U†(n)) = det(UC(n))+f(w) that the p-adic valuation of the wd+m-coefficient of
det(UC(n)) is greater or equal to −m, which is a contradiction. Hence vp(hm) ≥ d for all m
and det(U†(n)) ∈ gn(w)O〈wp 〉 ⊂ pdeg gn(w)O〈w

p
〉. So we also have det(UC(n)) ∈ pdeg gn(w)O〈wp 〉.

This concludes the proof of Claim as well as the proof of Proposition 5.4. �

Remark 5.6. We point out that the proof of this proposition is where the condition a /∈
{1, p − 4} and p ≥ 11 are used. The problem is rooted in the number δ = deg gn(w) −∑n

i=1 deg ei −
⌊
deg ei
p

⌋
∈ {0, 1} measuring the error from halo estimate in Corollary 3.27.

6. Proof of local ghost conjecture III: cofactor expansions

Now, we come to explain Step II as outlined at the beginning of Section 4, which aims to
reduce Theorem 5.2 to the estimate we have proved in Proposition 5.4 for subminors. We
conclude the proof of Theorem 5.2 and hence Theorem 2.7 at the end of this section.

Keep the notations from the previous section, and recall that a relevant character ε is
fixed throughout yet suppressed from the notation.

Notation 6.1. We fix n ∈ N and a weight k = kε + (p− 1)k• such that mn(k) 6= 0.
Similar to Proposition 3.6(2), let Lk ∈ M∞(O) denote the following infinite matrix:

• The upper-left (dIwk ×dIwk )-block of Lk is the Atkin–Lehner operator AL(k,ε̃1) acting on
the power basis Bk; it is an antidiagonal matrix whose (i, dIwk +1− i)-entry is pdeg ei .
• Entries of Lk other than the upper-left dIwk × dIwk are the same as the corresponding
entries of U† evaluated at w = wk.

This matrix Lk is block upper triangular by (2.11.2) of Proposition 2.11(1). Set

Tk := U† − Lk ∈ M∞(O〈w/p〉).
For two subsets of integers ζ = (ζ1 < · · · < ζn) and ξ = (ξ1 < · · · < ξn) of cardinality n, we
let Lk(ζ × ξ) (resp. Tk(ζ × ξ)) denote the submatrices of Lk (resp. Tk) with rows in ζ and

columns in ξ. Then Definition-Proposition 3.21 says that the corank of U†(ζ × ξ)|w=wk is at
least n − durk − rζ×ξ(k) − sξ(k). In the following discussion, we will use the sets ζ and ξ as

the natural row and column index sets of the matrices U†(ζ × ξ), Lk(ζ × ξ) and Tk(ζ × ξ).
We also need a sign convention: when computing the determinant of a matrix like U†(ζ×ξ),

we write the row and columns in increasing order of the numbers in ζ and ξ. For a subset
I ⊆ ζ, we write sgn(I, ζ) to mean the sign of permutation that sends ζ to the ordered disjoint
union of I ⊔ (ζ − I), where elements in each of I and ζ − I are in increasing order.

The following key linear algebra result roughly states that, modulo an appropriate power of
w−wk, we may express the determinant of U†(ζ×ξ) as the linear combination of determinants
of minors of smaller sizes.

Lemma 6.2. Let k, U†, Tk, Lk, ζ, and ξ be as above. Fix J0 ⊆ ξ a subset of cardinality j0.

We write Tk(ζ × ξ; J0) for the ζ × ξ-matrix whose (ξ − J0)-columns are given by that of U†

and whose J0-columns are given by that of Tk. Then

det
(
Tk(ζ × ξ; J0)

)
=
∑

J⊆J0

∑

I⊆ζ
#I=#J

(−1)#Jsgn(I, ζ)sgn(J, ξ)(6.2.1)

· det
(
Lk(I × J)

)
· det

(
U†((ζ − I)× (ξ − J))

)
.
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In particular, as power series in EJw − wkK, we have the following congruence

det
(
U†(ζ×ξ)

)
≡
∑

J⊆J0
J 6=∅

∑

I⊆ζ
#I=#J

(−1)#J−1sgn(I, ζ)sgn(J, ξ) · det
(
Lk(I × J)

)
(6.2.2)

· det
(
U†((ζ − I)× (ξ − J))

)
mod (w − wk)corankTk(ζ×ξ;J0)|w=wk .

Proof. The equality (6.2.1) is a purely formal linear algebra equality and it does not need
the special properties of the matrices U†, Tk, and Lk beyond the equality Lk + Tk = U†.
Indeed, we may write Tk(ζ× ξ; J0) = U†(ζ× ξ)+(−Lk(ζ×J0)), where we view Lk(ζ×J0) as
a ζ × ξ-matrix whose (ξ − J0)-columns are zero. Since taking determinant is (multi)-linear
with respect to the columns, taking the cofactor expansion with respect to the expression
above exactly gives (6.2.1). For example, if Lk(ζ × ξ) has only four nonzero entries, at the
(upper left) {ζ1, ζ2} × {ξ1, ξ2}-minor, and J0 = {ξ1, ξ2}, then Tk(ζ × ξ; J0) = Tk(ζ × ξ) and
the formula (6.2.1) reads

det
(
Tk(ζ × ξ; J0)

)
= det

(
U†(ζ × ξ)

)
−

2∑

i,j=1

(−1)i−jLζi,ξjdet
(
U†((ζ − ζi)× (ξ − ξj)

)

+ det

(
Lζ1,ξ1 Lζ1,ξ2
Lζ2,ξ1 Lζ2,ξ2

)
· det

(
U†((ζ − {ζ1, ζ2})× (ξ − {ξ1, ξ2})

)
.

Here Lζi,ξj is the (ζi, ξj)-entry of Lk.
The congruence relation (6.2.2) follows immediately from (6.2.1) and the observation that

Tk(ζ × ξ; J0) is divisible by (w − wk)corankTk(ζ×ξ;J0)|w=wk in EJw − wkK. �

Notation 6.3. Now, we apply Lemma 6.2 to the situation of Theorem 5.2 with the fixed
integer n ≥ 2, a ghost zero wk of gn(w), and subsets ζ and ξ of cardinality n. Then we

have U†(ζ × ξ), Tk(ζ × ξ), Lk(ζ × ξ), rζ×ξ(k), and sξ(k) as defined above. Let Jζ×ξ denote

the set consisting of all ξj ∈ ξ such that either ξj > dIwk or dIwk + 1 − ξj ∈ ζ. Then
#Jζ×ξ = rζ×ξ(k) + sξ(k).

We introduce the following notation to reorganize the congruence relation from Lemma 6.2.
For every j ≤ rζ×ξ(k) + sξ(k), we denote

(6.3.1)

det
(
U†(ζ × ξ)

)
j
:=
∑

I⊆ζ
#I=j

∑

J⊆Jζ×ξ
#J=j

sgn(I, ζ)sgn(J, ξ) · det
(
Lk(I × J)

)
· det

(
U†((ζ − I)× (ξ− J))

)
.

This is a signed sum of the products of the determinants of some minors of U† of size n− j,
with the determinants of the complement minors in Lk. In particular, det

(
U†(ζ × ξ)

)
0
=

det
(
U†(ζ × ξ)

)
, and the Lemma 6.2 above (applied to the case J0 = Jζ×ξ) in particular

implies that

det
(
U†(ζ × ξ)

)
≡ det

(
U†(ζ × ξ)

)
1
− det

(
U†(ζ × ξ)

)
2
+ · · ·(6.3.2)

+ (−1)rζ×ξ(k)+sξ(k)−1det
(
U†(ζ × ξ)

)
rζ×ξ(k)+sξ(k)

mod (w − wk)n−d
ur
k .

(Note that by Definition-Proposition 3.21 implies that Tk(ζ × ξ; Jζ×ξ)
∣∣
w=wk

has corank at

least n− durk .)
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Our argument needs an elaborated version of (6.3.2), with one goal: we try to write
det
(
U†(ζ × ξ)

)
as a linear combination of minors of smallest possible size (after modulo an

appropriate power of w − wk). This is the following.

Lemma 6.4. Keep the notation as above. For a fixed nonnegative integer j0 ≤ rζ×ξ(k) +

sξ(k)− 1, we have the following congruence of power series in EJw − wkK:
(6.4.1)

det
(
U†(ζ × ξ)

)
≡
∑

j>j0

(−1)j−j0−1

(
j − 1

j0

)
· det

(
U†(ζ × ξ)

)
j

mod (w − wk)max{0,n−durk −j0}.

More generally, for every nonnegative integers ℓ ≤ j0 < rζ×ξ(k)+sξ(k), we have the following

congruence of power series in EJw − wkK:
(6.4.2)

det
(
U†(ζ×ξ)

)
ℓ
≡
∑

j>j0

(−1)j−j0−1

(
j − ℓ− 1

j0 − ℓ

)(
j

ℓ

)
·det

(
U†(ζ×ξ)

)
j

mod (w−wk)max{0,n−durk −j0}.

Proof. We first prove (6.4.2) in the special case when ℓ = j0. When ℓ = j0 = 0, this is exactly
(6.3.2). To treat the general case with ℓ = j0, we apply Lemma 6.2 (especially (6.2.2)) to
each factor det

(
U†((ζ − I)× (ξ − J))

)
appearing in (6.3.1), to deduce the following:

det
(
U†(ζ × ξ)

)
j0
:=

∑

I⊆ζ
#I=j0

∑

J⊆Jζ×ξ
#J=j0

sgn(I, ζ)sgn(J, ξ) · det
(
Lk(I × J)

)
· det

(
U†((ζ − I)× (ξ − J))

)

≡
∑

I⊆ζ
#I=j0

∑

J⊆Jζ×ξ
#J=j0

sgn(I, ζ)sgn(J, ξ) · det
(
Lk(I × J)

)
·

∑

J ′⊆Jζ×ξ−J

J ′ 6=∅

∑

I′⊆ζ−I

#I′=#J ′

(−1)#J ′−1

sgn(I ′, ζ − I)sgn(J ′, ξ − J) · det
(
Lk(I

′ × J ′)
)
· det

(
U†((ζ − I − I ′)× (ξ − J − J ′))

)

modulo (w − wk)max{0,n−durk −j0}. Here we make use of Definition-Proposition 3.21 to deduce
that rank Tk

(
(ζ − I)× (ξ− J); Jζ×ξ− J

)
|w=wk is at most durk and hence its corank is at least

n− j0 − durk .
We set I ′′ = I ⊔ I ′ and J ′′ = J ⊔ J ′ and set j := #I ′′ = #J ′′ > j0. Then the above long

expression is equal to

∑

j>j0

(−1)j−j0−1
∑

I′′⊆ζ

#I′′=j

∑

J ′′⊆Jζ×ξ
#J ′′=j

∑

I⊆I′′

#I=j0

∑

J⊆J ′′

#J=j0

sgn(I, ζ)sgn(J, ξ)sgn(I ′′ − I, ζ − I)sgn(J ′′ − J, ξ − J)

· det
(
Lk(I × J)

)
· det

(
Lk((I

′′ − I)× (J ′′ − J))
)
· det

(
U†((ζ − I ′′)× (ξ − J ′′))

)
.

Using the sign equality

sgn(I, ζ)sgn(I ′′ − I, ζ − I) = sgn(I ′′, ζ)sgn(I, I ′′)
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and the similar sign equality for ξ, J , J ′, and J ′′, we may rewrite the above sum as
∑

j>j0

(−1)j−j0−1
∑

I′′⊆ζ

#I′′=j

∑

J ′′⊆Jζ×ξ
#J ′′=j

sgn(I ′′, ζ)sgn(J ′′, ξ) · det
(
U†((ζ − I ′′)× (ξ − J ′′))

)

·
∑

I⊆I′′

#I=j0

∑

J⊆J ′′

#J=j0

sgn(I, I ′′)sgn(J, J ′′) · det
(
Lk(I × J)

)
· det

(
Lk((I

′′ − I)× (J ′′ − J))
)
.

But the sum in the second line is simply
(
j
j0

)
times det

(
Lk(I

′′ × J ′′)
)
by Laplace expansion

theorem on determinants, where the factor
(
j
j0

)
corresponds to the number of choices of the

subset I ⊆ I ′′. From this, we deduce that

det
(
U†(ζ × ξ)

)
j0
≡
∑

j>j0

(−1)j−j0−1
∑

I′′⊆ζ

#I′′=j

∑

J ′′⊆Jζ×ξ
#J ′′=j

sgn(I ′′, ξ)sgn(J ′′, ξ)

· det
(
U†((ξ − I ′′)× (ξ − J ′′))

)
·
(
j

j0

)
· det

(
Lk(I

′′ × J ′′)
)

mod (w − wk)max{0,n−durk −j0}. This is exactly (6.4.2) when ℓ = j0.
We now prove the general case by induction on the difference j0 − ℓ. The base case when

ℓ = j0 is just treated. Assume that we have proved (6.4.2) with smaller j0 − ℓ. Then we
have the following congruences (corresponding to the cases of (ℓ, j0 − 1) and (j0, j0)).

det
(
U†(ζ × ξ)

)
ℓ
≡
∑

j>j0−1

(−1)j−j0
(
j − ℓ− 1

j0 − ℓ− 1

)(
j

ℓ

)
· det

(
U′†(ζ × ξ)

)
j
mod (w − wk)max{0,n−durk −j0+1},

det
(
U†(ζ × ξ)

)
j0
≡
∑

j>j0

(−1)j−j0−1

(
j

j0

)
· det

(
U†(ζ × ξ)

)
j

mod (w − wk)max{0,n−durk −j0}.

Plugging the second congruence into the first one (and modulo the smaller power (w −
wk)

max{0,n−durk −j0}), we immediate deduce (6.4.2) by noting
(
j0
ℓ

)(
j

j0

)
−
(
j − ℓ− 1

j0 − ℓ− 1

)(
j

ℓ

)
=

(
j − ℓ− 1

j0 − ℓ

)(
j

ℓ

)
.

�

Remark 6.5. We point out a variant of the above lemma that we will use later. Fix any
power series η(w) ∈ 1 + (w − wk)EJw − wkK. For J0 ⊆ Jζ×ξ, write

T̃k(ζ × ξ; J0) := U†(ζ × ξ)− η(w)−1 · Lk(ζ × J0) ∈ M∞(EJw − wkK);
then we obtain a formula of det

(
T̃k(ζ × ξ; J0)

)
analogous to (6.2.1), with additional factor

η(w)−#J on the right hand side. Yet T̃k(ζ × ξ; J0)|w=wk = Tk(ζ × ξ; J0)|w=wk have the same
corank. So if we define the analogue of (6.3.1) to be

det
(
U†(ζ × ξ)

)∼
j
:= η(w)−j · det

(
U†(ζ × ξ)

)
j

(6.5.1)

=
∑

I⊆ζ
#I=j

∑

J⊆Jζ×ξ
#J=j

sgn(I, ζ)sgn(J, ξ) · η(w)−j · det
(
Lk(I × J)

)
· det

(
U†((ζ − I)× (ξ − J))

)
,
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exactly the same argument in Lemmas 6.2 and 6.4 shows that, for every nonnegative integers
ℓ ≤ j0 < rζ×ξ(k) + sξ(k), we have the following congruence of power series in EJw − wkK:
(6.5.2)

det
(
U†(ζ×ξ)

)∼
ℓ
≡
∑

j>j0

(−1)j−j0−1

(
j − ℓ− 1

j0 − ℓ

)(
j

ℓ

)
·det

(
U†(ζ×ξ)

)∼
j

mod (w−wk)max{0,n−durk −j0}.

Notation 6.6. To further simplify notations later, we normalize

(6.6.1) B
(ζ×ξ)

k,i := p
1
2
(deg(ξ)−deg(ζ)) · A(ζ×ξ)

k,i · gn,k̂(wk).
So condition (5.2.1) is equivalent to, for i = 0, 1, . . . , mn(k)− 1,

(6.6.2) vp
(
B

(ζ×ξ)

k,i

)
≥ ∆k, 1

2
dnewk −i − k−2

2
(1
2
dIwk − n).

Further, we normalize the minors appearing in the formula (6.4.2) as follows and consider
their expansions as power series in EJw − wkK:

(6.6.3) p
1
2
(deg(ξ)−deg(ζ)) ·

det
(
U†(ζ × ξ)

)
ℓ

gn−ℓ,k̂(w)/gn−ℓ,k̂(wk)
=
∑

i≥0

B
(ζ×ξ,ℓ)

k,i (w − wk)i.

This normalization has in mind that the natural way to understand each sum of minor de-
terminants appearing in det

(
U†(ζ×ξ)

)
ℓ
is through its Lagrange interpolation along gn−ℓ(w).

In particular, when ℓ = 0, B
(ζ×ξ,0)

k,i is equal to B
(ζ×ξ)

k,i in (6.6.1) for i = 0, . . . , mn(k)− 1.

As a convention, if i < 0, we set B
(ζ×ξ,ℓ)

k,i = 0.

The following estimate on B
(ζ×ξ,ℓ)

k,i can be harvested from the inductive hypothesis and
Proposition 5.4.

Lemma 6.7. Assume that p ≥ 11 and 2 ≤ a ≤ p − 5. Keep the notation as above and
assume that Theorem 5.2 holds for minors of size strictly smaller than n. Assume that
ℓ ∈

{
1, 2, . . . ,min{n−durk , rζ×ξ(k)+sξ(k)}

}
is taken so that mn−ℓ(k) ≤ mn(k)−1 (the latter

condition is equivalent to requiring ℓ ≥ 2n − dIwk + 1 when n ≥ 1
2
dIwk ). We have, for every

i ∈ {mn−ℓ(k), . . . , mn(k)− 1},

vp
(
B

(ζ×ξ,ℓ)

k,i

)
≥ ∆k, 1

2
dnewk −mn−ℓ(k)

− k−2
2

(
1
2
dIwk − n

)
− 1

2

(
(1
2
dnewk −mn−ℓ(k))

2 − (1
2
dnewk − i)2

)
(6.7.1)

≥ ∆k, 1
2
dnewk −i − k−2

2

(
1
2
dIwk − n

)
.(6.7.2)

Later, we will refer (6.7.1) as the strong estimate and (6.7.2) the weak estimate.

Proof. Here the second inequality follows from Proposition 2.19. We now prove the first one.
Recall that det

(
U†(ζ × ξ)

)
ℓ
is a Z-linear combination of

det
(
Lk(I × J)

)
· det

(
U†((ζ − I)× (ξ − J))

over subsets I ⊆ ζ and J ⊆ Jζ×ξ of cardinality ℓ. Consider the following Taylor expansion

in EJw − wkK:

(6.7.3)
det
(
Lk(I × J)

)
· det

(
U†((ζ − I)× (ξ − J))

gn−ℓ,k̂(w)
=
∑

i≥0

A
(ζ×ξ,I,J)

k,i (w − wk)i;

58



comparing to (6.6.3), we did not multiply the left hand side with p
1
2
(deg(ξ)−deg(ζ)) · gn−ℓ,k̂(wk).

As vp(gn−ℓ,k̂(wk)) = ∆′
k, 1

2
dnewk −mn−ℓ(k)

− k−2
2

(
1
2
dnewk −mn−ℓ(k)

)
, to prove condition (6.7.1), it

is enough to show that

vp
(
A

(ζ×ξ,I,J)

k,i

)
≥ ∆k, 1

2
dnewk −mn−ℓ(k)

−∆′
k, 1

2
dnewk −mn−ℓ(k)

+ k−2
2
· ℓ(6.7.4)

− 1
2

(
(1
2
dnewk −mn−ℓ(k))

2 − (1
2
dnewk − i)2

)
+ 1

2
(deg(ζ)− deg(ξ)).

(Here we secretly used the condition that mn−ℓ(k) < mn(k)− 1.)
Using the notation from Proposition 5.4(2) to write

det
(
U†((ζ − I)× (ξ − J))

)/
gn,k̂(w) =

∑

i≥0

a
((ζ−I)×(ξ−J))

k,i (w − wk)i,

then Proposition 5.4(2) and the inductive assumption of the lemma shows that

vp
(
a
((ζ−I)×(ξ−J))

k,i

)
≥ ∆k, 1

2
dnewk −mn−ℓ(k)

−∆′
k, 1

2
dnewk −mn−ℓ(k)

− 1
2

(
− deg(ζ − I) + deg(ξ − J) + (1

2
dnewk −mn−ℓ(k))

2 − (1
2
dnewk − i)2

)
.

Therefore, to prove (6.7.4) and hence the lemma, it is enough to show that

vp
(
det(Lk(I × J))

)
≥ k−2

2
· ℓ+ 1

2

(
deg(ζ)− deg(ξ)

)
− 1

2

(
deg(ζ − I)− deg(ξ − J)

)
(6.7.5)

= k−2
2
· ℓ+ 1

2
(deg(I)− deg(J)).

Write J = J ′ ⊔ J ′′ with J ′ = J ∩ dIwk . For each ξ ∈ J ′, write ξop := dIwk + 1− ξ ∈ ζ (since

ξ ∈ Jζ,ξ). Define I ′ := {ξop | ξ ∈ J ′} and I ′′ = I\I ′. Then the ξth column of Lk(I × J) has
only one nonzero entry at (ξop, ξ), which is pdeg eξop as introduced in Notation 6.1. So

det(Lk(I × J)) = p
∑
ξ∈J′ deg eξop · det(Lk(I ′′ × J ′′)).

Note that for each ξ ∈ J ′, there is a tautological equality deg eξop = k−2
2
+ 1

2

(
deg eξop−deg eξ

)
.

So (6.7.5) is equivalent to the following inequality

(6.7.6) vp
(
det(Lk(I

′′ × J ′′))
)
≥ k−2

2
·#J ′′ + 1

2
(deg(I ′′)− deg(J ′′)).

But this is clear as every element ξ ∈ J ′′ satisfies deg eξ > k−2; so k−2
2
#J ′′ ≤ 1

2
deg(J ′′), and

every entry of U†(I ′′ × J ′′) in the ζ ’s row belongs to p
1
2
deg(eζ )O〈w/p〉 by Proposition 3.2; so

its evaluation at w = wk belongs to p
1
2
deg(eζ)O. (6.7.6) clearly follows from this weak Hodge

bound estimate. The lemma is proved. �

6.8. Proof of Theorem 5.2. We are now ready to start the proof of Theorem 5.2, by
induction on n, that is, we assume that Theorem 5.2 has been proved for all minors of size
strictly smaller than n, and we hope to prove Theorem 5.2 for all n× n minors. The case of
n = 1 has been handled in § 5.3.

We quickly recall the setup: we have fixed a relevant character ε (and suppressed it from
all notations), an integer n ≥ 2, two finite subsets ζ and ξ of cardinality n, and an integer

k = kε + (p − 1)k• such that mn(k) 6= 0. The elements B
(ζ×ξ)

k,i for i = 1, . . . , mn(k) − 1

are defined in Notation 6.6 by the Lagrange interpolation of det
(
U†(ζ × ξ)

)
along gn(w)

(after an appropriate normalization), or equivalently determined by the Taylor expansion of
det
(
U†(ζ × ξ)

)
as a power series in EJw − wkK. We will prove inductively the following.
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Statement 6.9. Keep the notation as above. For every i ≤ mn(k) − 1 and every ℓ ∈{
0, 1, . . . ,min{n−durk , rζ×ξ(k)+sξ(k)}

}
, such thatmn−ℓ(k) ≤ mn(k) (which, when n ≥ 1

2
dIwk ,

is equivalent to requiring that ℓ ≥ 2n− dIwk or ℓ = 0), we have

(6.9.1) vp
(
B

(ζ×ξ,ℓ)

k,i

)
≥ ∆k, 1

2
dnewk −i − k−2

2

(
1
2
dIwk − n

)
.

Then condition (6.6.2) or equivalently Theorem 5.2 is the special case of Statement 6.9
when ℓ = 0.

For the rest of this section, as k is already fixed, we will write rζ,ξ, sξ, and mζ,ξ for rζ,ξ(k),

sξ(k), and mζ,ξ(k), respectively.

6.10. First stab at Statement 6.9. Definition-Proposition 3.21 says that det
(
U†(ζ × ξ)

)

and more generally every det
(
U†(ζ×ξ)

)
ℓ
is divisible by (w−wk)max{0,n−durk −rζ×ξ−sξ} in EJw−

wkK. So if i < n − durk − rζ×ξ − sξ, B
(ζ×ξ,ℓ)

k,i = 0 and the corresponding condition (6.9.1)
automatically holds.

Now consider the next easiest case when i = n− durk − rζ×ξ − sξ = mζ×ξ. We may assume

that i ≥ 0, otherwise there is nothing to prove. In this case, mn−rζ×ξ−sξ(k) = mζ×ξ(k) = i.

So in the particular case when ℓ = rζ×ξ + sξ, the weak estimate (6.7.2) exactly gives (6.9.1).

Now we assume that ℓ ∈ {0, . . . , rζ×ξ + sξ − 1}. Applying Lemma 6.4 to the case when
j0 = rζ×ξ + sξ − 1, we deduce that

det
(
U†(ζ × ξ)

)
ℓ
≡
(
rζ×ξ + sξ

ℓ

)
· det

(
U†(ζ × ξ)

)
rζ×ξ+sξ

mod (w − wk)i+1.

Comparing the coefficients of (w − wk)i, we immediately deduce that

vp
(
B

(ζ×ξ,ℓ)

k,i

)
= vp

((rζ×ξ + sξ

ℓ

)
B

(ζ×ξ,rζ×ξ+sξ)

k,i

) (6.7.2)

≥ ∆k, 1
2
dnewk −i − k−2

2

(
1
2
dIwk − n

)
.

This proves Statement 6.9 in the corresponding situation.

Since the situation in general is more complicated, we consider another case when i =
mζ×ξ+1 = n−durk −rζ×ξ−sξ+1, to illustrate the new phenomenon by spelling out all the terms
involved. First of all, in the special cases ℓ = rζ×ξ + sξ and ℓ = rζ×ξ + sξ − 1, Statement 6.9

just restates the weak estimate (6.7.2). So we assume below that ℓ ∈ {0, . . . , rζ×ξ + sξ − 2}.
We apply Lemma 6.4 to the case when j0 = rζ×ξ+sξ−2 to deduce that, modulo (w−wk)i+1

det
(
U†(ζ × ξ)

)
ℓ
≡
(
j0 + 1

ℓ

)
det
(
U†(ζ × ξ)

)
j0+1
− (j0 − ℓ+ 1)

(
j0 + 2

ℓ

)
det
(
U†(ζ × ξ)

)
j0+2

.

Dividing both sides by p
1
2
(deg(ξ)−deg(ζ)) · gn−ℓ,k̂(w)/gn−ℓ,k̂(wk) and further by (w−wk)i (to kill

the auxiliary powers), we arrive at, modulo (w − wk)2,
B

(ζ×ξ,ℓ)

k,i−1 +B
(ζ×ξ,ℓ)

k,i (w − wk)(6.10.1)

≡
(
j0 + 1

ℓ

)
gn−j0−1,k̂(w)/gn−j0−1,k̂(wk)

gn−ℓ,k̂(w)/gn−ℓ,k̂(wk)

(
B

(ζ×ξ,j0+1)

k,i−1 +B
(ζ×ξ,j0+1)

k,i (w − wk)
)

−(j0 − ℓ+ 1)

(
j0 + 2

ℓ

)
gn−j0−2,k̂(w)/gn−j0−2,k̂(wk)

gn−ℓ,k̂(w)/gn−ℓ,k̂(wk)

(
B

(ζ×ξ,j0+2)

k,i−1 +B
(ζ×ξ,j0+2)

k,i (w − wk)
)
.
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Suggested by this, we consider the following.

Notation 6.11. For every j ≥ 0, we write the following power series expansion:

(6.11.1) ηj(w) :=
gn−j,k̂(w)/gn−j,k̂(wk)

gn,k̂(w)/gn,k̂(wk)
= 1+ηj,1(w−wk)+ηj,2(w−wk)2+ · · · ∈ EJw−wkK.

Comparing the (w − wk)-coefficients in (6.10.1), we deduce

B
(ζ×ξ,ℓ)

k,i =

(
j0 + 1

ℓ

)
B

(ζ×ξ,j0+1)

k,i − (j0 − ℓ+ 1)

(
j0 + 2

ℓ

)
B

(ζ×ξ,j0+2)

k,i

+

(
j0 + 1

ℓ

)
(ηj0+1,1 − ηℓ,1)B

(ζ×ξ,j0+1)

k,i−1 − (j0 − ℓ+ 1)

(
j0 + 2

ℓ

)
(ηj0+2,1 − ηℓ,1)B

(ζ×ξ,j0+2)

k,i−1 .

By the weak estimate (6.7.2), the first two terms have p-adic valuation greater than or equal
to ∆k, 1

2
dnewk −i − 1

2
(dIwk − n). But we need to show the sum of the latter two terms does not

interfere here. Our strategy is to show that the power series ηj(w) is “approximately” the
same as η1(w)

j, and thus each ηj,1 is “approximately” equal to j · η1,1, and thus we are
reduced to prove

(6.11.2)

(
j0 + 1

ℓ

)
· (j0 − ℓ+ 1) ·B(ζ×ξ,j0+1)

k,i−1 = (j0 − ℓ+ 2)(j0 − ℓ+ 1)

(
j0 + 2

ℓ

)
·B(ζ×ξ,j0+2)

k,i−1 ,

which follows from what we just proved in the case of i = mζ×ξ(k), namely

B
(ξ,j0+1)

k,mζ×ξ(k)
= (j0 + 2) ·B(ξ,j0+2)

k,mζ×ξ(k)
.

Remark 6.12. Note that it is important to cancel major terms in different η-functions,
especially when i is almost as large as 1

2
dnewk ; in this case, the difference ∆k, 1

2
dnewk −(i−1) −

∆k, 1
2
dnewk −i ≈ p−1

2
(1
2
dnewk − i), yet the term ηℓ,1 roughly has p-adic valuation equal to the

maximal vp(wk′−wk), for all k′ running over the zeros of gn(w), which is about ln k/ ln p. As
we will show below that the terms that do not get canceled through (6.11.2) have relatively
large p-adic valuation, controlled by the difference ∆k, 1

2
dnewk −(i−1) −∆k, 1

2
dnewk −i.

To implement this strategy in the special case is not particularly easier than the general
case. So we now proceed directly to prove Statement 6.9 (in the general case).

6.13. Proof of Statement 6.9. The proof is by induction on i, starting with the smallest
case i = mζ×ξ = n−durk −rζ×ξ−sξ already treated in § 6.10 (and when i < mζ×ξ, Statement 6.9

also holds automatically.) Now, let i0 ∈ {mζ×ξ + 1, . . . , mn(k) − 1}, and suppose that
Statement 6.9 has been proved for all nonnegative integers i < i0. We may clearly assume
that i0 ≥ 0, as otherwise there is nothing to prove. We set

j0 := rζ×ξ + sξ − (i0 −mζ×ξ + 1) = n− durk − i0 − 1.

Then when ℓ > j0, one can check that i0 ≥ mn−ℓ(k) and thus Statement 6.9 just repeats
(6.7.1). We henceforth assume ℓ ∈ {0, . . . , j0}. First, we apply Lemma 6.4 to deduce that

(6.13.1) det
(
U†(ξ)

)
ℓ
≡
∑

j>j0

(−1)j−j0−1

(
j − ℓ− 1

j0 − ℓ

)(
j

ℓ

)
· det

(
U†(ξ)

)
j

mod (w − wk)i0+1.
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We point out that, the condition j > j0 = n− durk − i0 − 1 implies that

(6.13.2) mn−j(k) = n− j − durk = i0 + 1− (j − j0) < mn(k).

Instead of using the the numbers B
(ζ×ξ,j)

k,i ’s to express the Taylor expansion of above in
EJw − wkK, we define the following:

(6.13.3)
(∑

i≥0

B
(ζ×ξ,j)

k,i (w − wk)i
)
· ηj(w)
η1(w)j

=
∑

i≥0

C
(ζ×ξ,j)

k,i (w − wk)i ∈ EJw − wkK.

Or equivalently by (6.6.3), in EJw − wkK, we have an equality

(6.13.4) p
1
2
(deg(ξ)−deg(ζ)) ·

det
(
U†(ζ × ξ)

)
j

gn,k̂(w)/gn,k̂(wk)
· η1(w)−j =

∑

i≥0

C
(ζ×ξ,j)

k,i (w − wk)i.

In fact, changing to B
(ζ×ξ,j)

k,i to C
(ζ×ξ,j)

k,i is “harmless” for the purpose of our proof.

Proposition 6.14. Fix j ∈ {0, . . . ,min{n − durk , rζ×ξ + sξ}} such that mn−j(k) ≤ mn(k)

(which, when n ≥ 1
2
dIwk , is equivalent to requiring that j ≥ 2n − dIwk or j = 0), and assume

that Statement 6.9 holds true for all nonnegative integers i < i0, then

vp
(
B

(ζ×ξ,j)

k,i0

)
≥ ∆k, 1

2
dnewk −i0

− k−2
2

(
1
2
dIwk − n

)

⇐⇒ vp
(
C

(ζ×ξ,j)

k,i0

)
≥ ∆k, 1

2
dnewk −i0

− k−2
2

(
1
2
dIwk − n

)
.

We temporarily assume this technical result, whose proof will be given later in § 6.18.

Remark 6.15. For the rest of the inductive proof of Statement 6.9, we will only need the

analogue of the seemingly weaker version of Lemma 6.7, namely vp
(
C

(ζ×ξ,ℓ)

k,i

)
≥ ∆′

k, 1
2
dnewk −i

−
k−2
2

(
1
2
dIwk − n

)
when i ≥ mn−j(k). The stronger inequality in Lemma 6.7 is only used to

enable transferring estimates between B
(ζ×ξ,ℓ)

k,i ’s and C
(ζ×ξ,ℓ)

k,i ’s.

Lemma 6.16. For every nonnegative integer ℓ′ ≤ j′0 < rζ×ξ + sξ, we have

(6.16.1) C
(ζ×ξ,ℓ′)

k,n−durk −j′0−1 =

rζ×ξ+sξ∑

j′=j′0+1

(−1)j′−j′0−1

(
j′ − ℓ′ − 1

j′0 − ℓ′
)(

j′

ℓ′

)
C

(ζ×ξ,j′)

k,n−durk −j′0−1

Proof. Applying Remark 6.5 to the case η(w) := η1(w), then (6.5.2) implies that for every
nonnegative integer ℓ′ ≤ j′0 < rζ×ξ + sξ, modulo (w − wk)max{0,n−durk −j0} in EJw − wkK,

det
(
U†(ζ × ξ)

)
ℓ′
· η1(w)−ℓ

′ ≡
∑

j′>j′0

(−1)j′−j′0−1

(
j′ − ℓ′ − 1

j′0 − ℓ′
)(

j′

ℓ′

)
· det

(
U†(ζ × ξ)

)
j′
· η1(w)−j

′

.

(6.16.1) follows from dividing the above congruence by p
1
2
(deg(ζ)−deg(ξ)) · gn,k̂(w)/gn,k̂(wk) and

then taking the coefficient of (w − wk)n−durk −j′0−1. �
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6.17. Proof of Statement 6.9 assuming Proposition 6.14. Continuing with the induc-
tive proof of Statement 6.9 initiated in § 6.13. Recall that the inductive hypothesis says
that Statement 6.9 holds for all i < i0 for some i0 ∈ {mζ×ξ + 1, . . . , mn(k) − 1} By the

inductive hypothesis, the assumption for Proposition 6.14 holds, and thus vp
(
C

(ζ×ξ,j)

k,i0

)
≥

∆′
k, 1

2
dnewk −i0

− k−2
2

(
1
2
dIwk − n

)
for every j > j0 by Lemma 6.7 and Proposition 6.14, where

j0 = rζ×ξ + sξ − (i0 −mζ×ξ + 1). (In particular, if n ≥ 1
2
dIwk , j0 ≥ 2n− dIwk .)

Then using the formula (6.16.1) in the case when j′0 = j0, ℓ
′ = ℓ (and thus n−durk −j′0−1 =

i0), we deduce that C
(ζ×ξ,ℓ)

k,i0
is a Z-linear combination of C

(ζ×ξ,j)

k,i0
’s with j > j0. Thus,

vp
(
C

(ζ×ξ,ℓ)

k,i0

)
≥ ∆′

k, 1
2
dnewk −i0

− k−2
2

(
1
2
dIwk − n

)
. By Proposition 6.14 again, we deduce that

B
(ζ×ξ,ℓ)

k,i0
has the same estimate; this then completes the inductive proof of Statement 6.9,

and hence conclude the proof of the local ghost Theorem 2.7 (assuming Proposition 6.14).

6.18. Proof of Proposition 6.14. We now come back to prove this last missing piece for
the proof of Statement 6.9 and the local ghost Theorem 2.7. We claim that if we expand

ηj(w)

η1(w)j
= 1 + η(j),1(w − wk) + η(j),2(w − wk)2 + · · · ∈ EJw − wkK,

then for every t ∈ {1, . . . , mn(k)− 1}, setting qt := min{mn(k)− t,mn−j(k)}, we have

(6.18.1) vp(η(j),t) > ∆k, 1
2
dnewk −(qt+t) −∆k, 1

2
dnewk −qt +

1
2

(
(1
2
dnewk − qt)2 − (1

2
dnewk − (qt + t))2

)
.

We first prove the statement of this lemma assuming this claim: from the definition of

C
(ζ×ξ,j)

k,i in (6.13.3), we see that,

C
(ζ×ξ,j)

k,i0
= B

(ζ×ξ,j)

k,i0
+

i0−1∑

i=0

B
(ζ×ξ,j)

k,i · η(j),i0−i.

When i < mn−j(k) (and i < i0), set t := i0 − i so that qt = min{mn(k) + i− i0, mn−j(k)}.
In particular, qt + t > i0 as i < mn−j(k) and i0 < mn(k). In either case, we have

vp
(
B

(ζ×ξ,j)

k,i η(j),i0−i
)
≥ ∆k, 1

2
dnewk −i − k−2

2

(
1
2
dIwk − n

)
+
(
∆k, 1

2
dnewk −(qt+t) −∆k, 1

2
dnewk −qt

)

≥ ∆k, 1
2
dnewk −i − k−2

2

(
1
2
dIwk − n

)
+
(
∆k, 1

2
dnewk −i0

−∆k, 1
2
dnewk −i

)

= ∆k, 1
2
dnewk −i0

− k−2
2

(
1
2
dIwk − n

)
.

Here, for first inequality, we used Statement 6.9 to estimate vp
(
B

(ζ×ξ,j)

k,i

)
and used (6.18.1)

(but forgetting the term 1
2

(
(1
2
dnewk − qt)

2 − (1
2
dnewk − (qt + t))2

)
) to estimate η(j),i0−i. The

second inequality follows from the convexity of ∆k and that qt + t > i0.
When i ≥ mn−j(k) (and i < i0 < mn(k)), we need the strong estimate in (6.7.1). Set

t = i0 − i and in this case,

qt + t = min{mn(k), mn−j(k) + i0 − i} = mn−j(k) + i0 − i ≤ i0.

In this case, we have mn−j(k) = qt ≤ qt + t ≤ i0 < mn(k).
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By the stronger estimate (6.7.1) and (6.18.1), we have

vp
(
B

(ζ×ξ,j)

k,i η(j),i0−i
)

≥
(
∆k, 1

2
dnewk −mn−j(k)

− 1
2

(
(1
2
dnewk −mn−j(k))

2 − (1
2
dnewk − i)2

)
− k−2

2

(
1
2
dIwk − n

))

+
(
∆
k,

1
2
dnewk −(qt+t)

−∆k, 1
2
dnewk −mn−j(k)

+ 1
2

(
(1
2
dnewk −mn−j(k))

2 − (1
2
dnewk − (qt + t))2

))

= ∆
k,

1
2
dnewk −(qt+t)

− 1
2

(
(1
2
dnewk − (qt + t))2 − (1

2
dnewk − i)2

)
− k−2

2

(
1
2
dIwk − n

)

≥ ∆
k,

1
2
dnewk −(qt+t)

− 1
2

(
(1
2
dnewk − (qt + t))2 − (1

2
dnewk − i0)2

)
− k−2

2

(
1
2
dIwk − n

)

≥ ∆k, 1
2
dnewk −i0

− k−2
2

(
1
2
dIwk − n

)
,

where the last inequality follows from Proposition 2.19. The lemma then follows from the
two estimates above.

It remains to prove the claim, namely the inequality (6.18.1). By the definition of ηj in
Notation 6.11, we may rewrite

ηj(w) =
∏

k′≡kε mod (p−1)
k′ 6=k

(
1 +

w − wk
wk − wk′

)mn−j (k′)−mn(k′)
,

ηj(w)

η1(w)j
=

∏

k′≡kε mod (p−1)
k′ 6=k

(
1 +

w − wk
wk − wk′

)mn−j(k′)−mn(k′)−j(mn−1(k′)−mn(k′))

(6.18.2)

= 1 + η(j),1(w − wk) + η(j),2(w − wk)2 + · · · .

Set mn,j(k
′) := mn−j(k

′) − mn(k
′) − j(mn−1(k

′) − mn(k
′)). The weight k′ term in the

product expression of
ηj(w)

η1(w)j
is not 1 (or equivalently mn,j(k

′) 6= 0) only when the function

n′ 7→ mn′(k′) for n′ ∈ [n− j, n] fails to be linear, or equivalently, at least one of durk′ , d
Iw
k′ −durk′ ,

or 1
2
dIwk′ belongs to (n− j, n). We call those weights k′ bad weights.

The upshot of the proof is the following: (6.18.2) implies that for t ∈ {1, . . . , mn(k)− 1},
η(j),t is the sum of terms of the form

(6.18.3)
t∏

α=1

1

wk − wk′α
,

where each k′α is a bad weights, satisfying certain constraints: ifmn,j(k
′
α) > 0, the multiplicity

of k′α appearing in (6.18.3) is less than or equal to mn,j(k
′
α); if mn,j(k

′
α) < 0, the expansion

(6.18.2) is considered as a Taylor expansion; so there is no constraint in the multiplicity
of k′α appearing in (6.18.3). Roughly speaking, we will prove that, among all these bad
weights, there is at most one k′α such that vp(wk − wk′α) is extraordinarily large. When
we cite Proposition 2.19 later, most of the vp(wk − wk′α) will be controlled by the term

(ℓ′ − ℓ) ·
⌊ ln((p+1)ℓ)

ln p
+ 1
⌋
and the exceptional wk′α corresponds to the distinguished weight k′α

there in.
64



We now make this proof more precise. Write n∗ := n if n ≤ 1
2
dIwk and n∗ = dIwk − n if

n ≥ 1
2
dIwk . In particular, mn∗(k) = mn(k) and n

∗ ≤ n. From the above discussion, we reduce
the proof to the following:

let S = {k′α|α = 1, . . . , t} be a set of bad weights (not necessarily distinct) satisfying that
if mn,j(k

′
α) > 0 for some α ∈ [1, t], the multiplicity of k′α in S is less or equal to mn,j(k

′
α).

Then we have

(6.18.4)
t∑

α=1

vp(wk−wk′α) ≤ ∆k, 1
2
dnewk −qt−∆k, 1

2
dnewk −(qt+t)−

1

2

(
(
1

2
dnewk −qt)2−(

1

2
dnewk −(qt+t))2

)

Suppose that there exists some α ∈ [1, t] such that either durk′α or dIwk′α − durk′α belongs to

[n∗, dIwk − n∗). Without loss of generality, we can assume α = t.

(1) When t ≤ mn(k) − mn−j(k), we have qt = qt−1 = mn−j(k). The number s :=
1
2
dnewk − qt − t + 1 satisfies 1

2
dIwk − n∗ ≤ s − 1, and hence [n∗, dIwk − n∗) ⊂ [1

2
dIwk −

(s − 1), 1
2
dIwk + (s − 1)]. Proposition 2.19 (with ℓ = ℓ′ = s − 1 < ℓ′′ = s) implies

vp(wk−wk′t) ≤ ∆k,s−∆k,s−1− 1
2
(s2− (s− 1)2). To prove (6.18.4), it suffices to prove

(6.18.5)
t−1∑

α=1

vp(wk−wk′α) ≤ ∆k, 1
2
dnewk −qt−1

−∆k, 1
2
dnewk −(qt−1+t−1)−

1

2

(
(
1

2
dnewk −qt−1)

2−(1
2
dnewk −(qt−1+t−1))2

)
.

(2) When t > mn(k)−mn−j(k), we have qt = mn(k)− t and qt−1 = qt + 1. The number
s := 1

2
dnewk − qt satisfies 1

2
dIwk − n∗ ≤ s− 1. A similar argument as in (1) implies that

we can reduce to prove (6.18.5).

Repeating the above argument, we can assume that none of the bad weights k′α in (6.18.4)
satisfies that either durk′α or dIwk′α − d

ur
k′α

belongs to [n∗, dIwk − n∗).

Set γ := ⌊ ln((p+1)( 1
2
dnewk −qt))

ln p
+1⌋. We first remark that if some k′α satisfies 1

2
dIwk′α ∈ (n− j, n),

then |k′α• − k•| < j. By our assumption mn−j(k) ≤ mn(k) we always have 1
2
dnewk − qt ≥ j

2

and hence vp(wk − wk′α) ≤ 1 + ⌊ ln j
ln p
⌋ ≤ γ.

(1) If vp(wk − wk′α) ≤ γ for all α ∈ [1, t], since (n − j, n) ⊂ [1
2
dIwk − (1

2
dnewk − qt), 12dIwk +

(1
2
dnewk −qt)], we can apply Proposition 2.19 to l = 1

2
dnewk −(qt+t) < l′ = l′′ = 1

2
dnewk −qt

and k′ = k′α for all α ∈ [1, t], and have

t∑

α=1

vp(wk−wk′α) ≤ t ·γ ≤ ∆k, 1
2
dnewk −qt−∆k, 1

2
dnewk −(qt+t)−

1

2

(
(
1

2
dnewk −qt)2−(

1

2
dnewk −(qt+ t))

2
)
.

(2) If vp(wk − wk′) ≥ γ + 1 for some k′ ∈ S, we assume that the multiplicity of k′

in S is M > 0 and k′ = k′α for α ∈ [t − M + 1, t]. It follows from Remark 2.20
and our assumption on S that k′ is the unique element in S with the property
vp(wk − wk′) ≥ γ + 1. Moreover we have that either durk′ or dIwk′ − durk′ belongs to
(n− j, n∗) while 1

2
dIwk′ /∈ (n− j, n).

When durk′ ∈ (n−j, n∗), we have 1
2
dIwk′ ≥ n and hence mn−j(k

′) = 0,mn(k
′) = n−durk′

and mn−1(k
′) = mn(k

′)− 1. It follows that mn,j(k
′) = durk′ − n+ j > 0 and

(6.18.6)
1

2
dIwk − durk′ =

1

2
dIwk − n+ j −mn,j(k) ≤

1

2
dnewk − qt −mn,j(k

′).
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When dIwk′ −durk′ ∈ (n−j, n∗), we have 1
2
dIwk′ ≤ n−j and hence mn−j(k

′) = dIwk′ −durk′−
(n− j) > 0 and mn−1(k

′) = mn(k
′) = 0. It follows that mn,j(k

′) = dIwk′ − durk′ − (n− j)
and

(6.18.7)
1

2
dIwk − (dIwk′ − durk′ ) =

1

2
dIwk − n+ j −mn,j(k

′) ≤ 1

2
dnewk − qt −mn,j(k

′).

Let ℓ = 1
2
dnewk − (qt + t), ℓ′′ = 1

2
dnewk − qt and ℓ′ = ℓ′′ −M ∈ [ℓ, ℓ′′]. It follows from

(6.18.6) and (6.18.7) that either durk′ or d
Iw
k′ − durk′ belongs to [1

2
dIwk − ℓ′, 12dIwk + ℓ′]. We

apply Proposition 2.19 to ℓ, ℓ′, ℓ′′ and k′, and have

t∑

α=1

vp(wk − wk′α) ≤ (t−M) · γ +M · vp(wk − wk′) ≤ ∆k,ℓ′′ −∆k,ℓ −
1

2
(ℓ′′2 − ℓ2)

= ∆k, 1
2
dnewk −qt −∆k, 1

2
dnewk −(qt+t) −

1

2

(
(
1

2
dnewk − qt)2 − (

1

2
dnewk − (qt + t))2

)
.

This completes the proof of the claim and thus Proposition 6.14 and Theorem 2.7. �

7. Triangulline deformation space and crystalline slopes

In this section, we recall the triangulline deformation space defined by Breuil–Hellman–
Schraen [BHS17] and then compare it with the eigenvariety attached to Paškūnas’ universal
deformation of representations of GL2(Qp) [Pa13]. This together with the known p-adic
local Langlands correspondence for GL2(Qp) allows us to transport the local ghost theorem
to results regarding slopes on triangulline deformation spaces.

The argument in this section is relatively well known to experts, but some of the awkward
arguments are inserted to treat central characters for completeness.

Notation 7.1. As in previous sections, let p be an odd prime, and let E,O,F be coefficient
rings as in § 1.26. For a formal O-scheme Spf(R), let Spf(R)rig denote the associated rigid
analytic space over E. We will later frequently write E ′ to mean a finite extension of E,
typically in the situation of referring to a point of Spf(R)rig over E ′; we will freely do so
without defining E ′, and in such case, we use O′, ̟′, and F′ denote the corresponding ring
of integers, the uniformizer, and the residue field, respectively.

For a crystabelian representation V of GalQp (with coefficients in E ′), write Dpcrys(V ) for
the limit of the crystalline functor for Qp(µpn) with n sufficiently large.

We normalize the local class field theory so that the Artin map Q×
p → GalabQp sends p to

the geometric Frobenius. In what follows, we will practically identify characters of Q×
p (with

values in O× or F×) and characters of GalQp.
We use the following notations for local Galois representations:

• For α ∈ F× or O×, write ur(α) for the one-dimensional unramified representation of
GalQp sending the geometric Frobenius element to α.
• Let ω1 : GalQp → Gal(Qp(µp)/Qp) ∼= F×

p denote the first fundamental character of
GalQp.

• Let χcycl : Q
×
p ⊂ GalabQp → Gal(Qp(µp∞)/Qp) ∼= Z×

p denote the cyclotomic character;
its reduction modulo p is precisely ω1.

Recall ∆ := F×
p , the isomorphism OJ(1 + pZp)

×K ∼= OJwK, and the universal character

χ
(ε)
univ : ∆× Z×

p → OJwK(ε),× associated to a character ε of ∆2 from § 2.4(1). For each ε, call
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W(ε) := (Spf OJwK(ε))rig the weight space labeled by ε. Put W :=
⋃
εW(ε); it parametrizes

continuous characters of ∆ × Z×
p . Write χuniv : ∆ × Z×

p → O×
W for the universal character.

Put W0 := (Spf OJwK)rig, parametrizing continuous characters of (1 + pZp)
×.

Let W̃ := (Spf OJ(Z×
p )

2K)rig be the rigid analytic space parametrizing continuous charac-

ters of (Z×
p )

2. There is a natural isomorphism

(7.1.1)
W ×W0 W̃
(χ, η)

(
(α, δ) 7→ α · χ(δ̄, α) · η(αδω(ᾱδ̄)−1) for α, δ ∈ Z×

p

)
.

∼=

Here, we used χ(δ̄, α) as opposed to χ(ᾱ, δ) because our later convention uses the lower
triangular matrix local analytic Jacquet functor. The additional factor α at the beginning
indicates a twist by cyclotomic character in our convention. Under this isomorphism, we

may view W as a subspace of W̃ where the universal character is trivial on {1}× (1+pZp)
×;

and at the same time, we have a projection map prW : W̃ → W, along W0.

Later, we often consider a rigid analytic space X and the morphism idX ×prW : X ×W̃ →
X ×W; we write prW for it when no confusion arises.

Notation 7.2. For the rest of this paper, we use r̄p : GalQp → GL2(F) to denote a reducible
and generic residual local Galois representation

r̄p =

(
ur(ᾱ1)ω

a+b+1
1 ∗

0 ur(ᾱ2)ω
b
1

)
: GalQp → GL2(F)

with a ∈ {1, . . . , p− 4}, b ∈ {0, . . . , p− 2}, and ᾱ1, ᾱ2 ∈ F×. We say r̄p is split if ∗ = 0 and
nonsplit if ∗ 6= 0. The condition on a ensures that there is a unique such nontrivial extension
when r̄p is nonsplit, because H1(GalQp, ur(ᾱ

−1
2 ᾱ1)ω

a+1) is one-dimensional.
We often write ρ̄ : IQp → GL2(F) for the corresponding residual inertia representation:

• (nonsplit case) ρ̄ =

(
ωa+b+1
1 ∗ 6= 0
0 ωb1

)
, where ∗ is the unique nontrivial extension (up

to isomorphism) in the class H1(IQp, ω
a+1
1 )GalFp = H1(GalQp, ω

a+1
1 ); and

• (split case) ρ̄ss = ωa+b+1
1 ⊕ ωb1.

We occasionally use a companion representation ρ̄′ for the same construction with parameters

(a, b) changed to (a′, b′) = (p− 3− a, a+ b+ 1), or equivalently, ρ̄′ =

(
ωa+b+1
1 0
∗ 6= 0 ωb1

)
.

These notations ρ̄, ρ̄′ and ρ̄ss are fixed throughout the rest of this paper.

7.3. Triangulline deformation spaces. Let T denote the rigid analytic space parametriz-
ing continuous characters of (Q×

p )
2, or more precisely,

(7.3.1) T =
(
Grig
m × (Spf ZpJZ×

p K)rig
)2 ∼= (Grig

m )2 × W̃ ,

where Grig
m = ∪n∈N Spm

(
Qp〈 upn ,

pn

u
〉
)
is the rigid analytic Gm. The point on T associated

to a character (δ1, δ2) : (Q
×
p )

2 → C×
p is (δ1(p), δ2(p), δ1|Z×

p
, δ2|Z×

p
). There is a natural weight

map wt : T → W̃ . Define Treg to be the Zariski open subspace of T , where neither δ1/δ2 nor
δ2/δ1 is a character of Q×

p in the following list:

x 7→ xn and x 7→ xnχcycl(x) with n ∈ Z≥0.
67



Let r̄p : GalQp → GL2(F) be a residual Galois representation. Let R�

r̄p denote the framed
deformation ring of r̄p parametrizing deformations of r̄p into matrix representations of GalQp
with coefficients in noetherian complete local O-algebras. Then the Krull dimension of R�

r̄p

is 9. Let V �

univ denote the universal (matrix) representation over R�

r̄p .

Let X�

r̄p denote the rigid analytic space over E associated to the formal scheme Spf R�

r̄p;

it has dimension 8. Write V�

univ for the associated universal representation over X�

r̄p. For a

point x ∈ X�

r̄p over E ′, write Vx for universal Galois representation of GalQp over E
′ at x.

Following [BHS17, Definition 2.4], we define the triangulline deformation space as follows.

Definition 7.4. Let U�,tri
r̄p,reg denote the set of closed points (x, δ1, δ2) ∈ X�

r̄p×Treg (with some

residue field E ′) such that the associated (ϕ,Γ)-module D†
rig(Vx) sits in an exact sequence

(7.4.1) 0→RE′(δ1)→ D†
rig(Vx)→ RE′(δ2)→ 0,

where RE′ is the Robba ring for Qp with coefficients in E ′; see [KPX14, § 6] and [Li15] for
the notation RE′(−) and related discussions on triangulations of (ϕ,Γ)-modules.

The triangulline deformation space of r̄p, denoted by X�,tri
r̄p , is the Zariski closure of U�,tri

r̄p,reg

inside the product X�

r̄p × T .

Proposition 7.5. (1) The space X�,tri
r̄p is a subspace of X�

r̄p × T consisting of points

(x, δ1, δ2) for which det(Vx) corresponds to δ1δ2 under local class field theory. More-

over, set X�,tri,◦
r̄p := X�,tri

r̄p ∩
(
Xr̄p×(Grig

m )2×W
)
, then (7.1.1) induces an isomorphism

X�,tri,◦
r̄p ×W0 X�,tri

r̄p

(
(Vx, δ1, δ2), η

)
(Vx ⊗ η, δ1 ⊗ η, δ2 ⊗ η),

which is compatible with projections to the factor (Grig
m )2.

(2) The set U�,tri
r̄p,reg is the set of closed points of a Zariski open and dense subspace U�,tri

r̄p,reg

of X�,tri
r̄p . The space X�,tri

r̄p is equidimensional of dimension 7.

Proof. (1) obviously holds for points in U�,tri
r̄p,reg and hence for X�,tri

r̄p . (2) is proved in [BHS17,
Théorèm 2.6]. �

The main theorem of this section is the following.

Theorem 7.6. Assume that p ≥ 11. Let r̄p : GalQp → GL2(F) be a residual local Galois
representation as in Notation 7.2 with 2 ≤ a ≤ p − 5, and let ρ̄ be as defined therein.
Let X�,tri

r̄p be the triangulline deformation space defined above. Let x = (x, δ1, δ2) be an

E ′-point of X�,tri
r̄p . Then the character ε = δ2|∆ × δ1|∆ · ω−1 is relevant to r̄p|IQp . Put

w⋆ := (δ1δ
−1
2 χ−1

cycl)(exp(p))− 1 (for the image of x in W under prW ).

(1) If vp(δ1(p)) = −vp(δ2(p)) > 0, then vp(δ1(p)) is equal to a slope appearing in NP
(
G

(ε)
ρ̄ (w⋆,−)

)
.

(2) If vp(δ1(p)) = 0, then either ε = ωb × ωa+b, or ε = ωa+b+1 × ωb−1 and r̄p|IQp ≃ ρ̄ss.

(3) If vp(δ1(p)) =
k
2
− 1 and δ1|Z×

p
= χk−1

cycl δ2|Z×
p
for some integer k ∈ Z≥2, then δ1(p) =

pk−2δ2(p).
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Conversely, fix characters δ1|Z×
p

and δ2|Z×
p

such that ε defined above is relevant to r̄p|IQp .
Then every nonzero slope of NP

(
G

(ε)
ρ̄ (w⋆,−)

)
for w⋆ := (δ1δ

−1
2 χ−1

cycl)(exp(p))− 1, appears as

vp(δ1(p)) at some closed point x = (x, δ1, δ2) ∈ X�,tri
r̄p (for some continuous characters δ1, δ2

of Q×
p extending the given δ1|Z×

p
and δ2|Z×

p
).

The proof of this theorem will occupy the rest of this section, and is concluded in § 7.22.
We quickly remark that case (1) corresponds to the case when Vx is reducible, and case (3)
mostly concerns the case when Vx is semistable and noncrystalline (after a twist).

Temporarily admitting this theorem, we first deduce a couple of corollaries that partially
answer a conjecture of Breuil–Buzzard–Emerton on crystalline slopes of Kisin’s crystabelian
deformation spaces and a conjecture of Gouvêa on slopes of crystalline deformation spaces.

7.7. Kisin’s crystabelian deformation space. Let r̄p, R
�

r̄p , and V �

univ be as above. Let

ψ = ψ1 × ψ2 : (Z×
p )

2 → E× be a finite character, and let k = (k1, k2) ∈ Z2 with k1 < k2
be a pair of Hodge–Tate weights. (In our convention, χcycl has Hodge–Tate weight −1.)
In [Kis08], Kisin proved that there is a unique O-flat quotient R

�,k,ψ
r̄p of R�

r̄p, called the

Kisin’s crystabelian deformation ring, such that every homomorphism x∗ : R�

r̄p → E ′ factors

through R
�,k,ψ
r̄p if and only if Vx is potentially crystalline with Hodge–Tate weights (k1, k2)

and the action of IQp on Dpcrys(Vx) is isomorphic to ψ1 ⊕ ψ2. (Here Dpcrys(−) is defined

in Notation 7.1.) When R
�,k,ψ
r̄p is nonempty, each of its irreducible component has Krull

dimension is 6. Moreover, the associated rigid analytic space X�,k,ψ
r̄p :=

(
Spf R

�,k,ψ
r̄p

)rig
is

smooth of dimension 5 over E.

Corollary 7.8. Assume that p ≥ 11. Let r̄p : GalQp → GL2(F) be a residual local Galois
representation as in Notation 7.2 with 2 ≤ a ≤ p− 5. Let ψ and k be as above, and let x be

an E ′-point of X�,k,ψ
r̄p . Let αx be an eigenvalue of the φ-action on the subspace of Dpcrys(Vx)

where Gal(Qp(µp∞)/Qp) acts through ψ1. Write w⋆ := (ψ1ψ
−1
2 )(exp(p)) exp(p(k2−k1−1))−1

(for the image of x in W under prW ). Then the character ε = ψ2|∆ · ω−k2 × ψ1|∆ · ω−k1−1 is
relevant to r̄p|IQp , and

(1) if vp(αx)−k1 /∈ {0, k2−k1}, then it is equal to a slope appearing in NP
(
G

(ε)
ρ̄ (w⋆,−)

)
;

(2) if vp(αx) ∈ {k1, k2}, then Vx is reducible; and
(3) in the special case ψ1 = ψ2, we have vp(αx) 6= k2−k1

2
− 1.

Conversely, every slope of NP
(
G

(ε)
ρ̄ (w⋆,−)

)
belonging to (0, k2 − k1) (but not equal to

k2−k1
2
− 1 when ψ1 = ψ2) appears as the vp(αx)− k1 at some point x ∈ X�,k,ψ

r̄p .

Proof. If vp(αx) ∈ {k1, k2}, the standard p-adic Hodge theory implies that Vx is reducible.
We henceforth assume that we are in situation (1), i.e. vp(αx) /∈ {k1, k2}. This essentially

follows from Theorem 1.5 because all crystabelian representations are triangulline. More

precisely, let x ∈ X�,k,ψ
r̄p (E ′) be a closed point. By possibly replacing E ′ by a quadratic

extension, the action of crystalline Frobenius φ and Gal(Qp(µp∞)/Qp) on Dpcrys(Vx) have
two (generalized) eigencharacters: (α1, ψ1) and (α2, ψ2), with ψ1, ψ2 in the data defining the
deformation space and α1, α2 ∈ E ′×. We can also always assume that (α1, ψ1) is a genuine
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eigencharacter. Define characters δi : Q
×
p → E ′× with i = 1, 2 by

δi(p) = p−kiαi, δi|Z×
p
= x−kiψi.

Standard facts of Berger’s functor provides a triangulation

(7.8.1) 0→RE′(δ1)→ Drig(Vx)→ RE′(δ2)→ 0.

Indeed, if this fails, it must be that the eigenspace for (α1, ψ1) agrees with Filk2Dpcrys(Vx);
then the admissibility condition for Dpcrys(Vx) forces vp(α1) = k2, contradicting our assump-
tion.

Now, (7.8.1) upgrades x to a point (x, δ1, δ2) of X�,tri
r̄p , for which vp(δ1(p)) = vp(α1)− k1.

(1) now follows from Theorem 7.6, with

(7.8.2) w⋆ := (δ1δ
−1
2 χ−1

cycl)(exp(p))− 1 = (ψ1ψ
−1
2 )(exp((p)) exp(p(k2 − k1 − 1))− 1.

It remains to prove (3). Assume that ψ1 = ψ2. Suppose that the subspace Y of X�,k,ψ
r̄p

where vp(αx) =
k2−k1

2
−1 is nonempty. Then this is a rigid analytic subspace, so in particular,

dimY = 5. For each x ∈ Y , δ1|Z×
p

= χk2−k1cycl δ2|Z×
p
. Theorem 7.6(3) implies that δ1(p) =

pk2−k1−2δ2(p). This means that Y is confined in the subspace where the ratio of two Frobenius
eigenvalues on Dpcrys(Vx) is precisely p. Let x be a point of Y . The dimension of the tangent

space ofX�,k,ψ
r̄p at x is equal to 1+3+dimH1

f(GalQp,Ad(Vx)), where 1 comes from infinitesimal
central twist of Vx by an unramified representation, 3 comes from the framing variables, and
the one-dimensional H1

f(GalQp,Ad(Vx)) corresponds to varying the ratio of two Frobenius
eigenvalues. But our earlier discussion shows that the ratio of two Frobenius eigenvalues on
Dpcrys(Vx) is fixed to be p. (3) is proved.

Conversely, given a slope of NP
(
G

(ε)
ρ̄ (w⋆,−)

)
belonging to (0, k2−k1) (and not being equal

to k2−k1
2
− 1 when ψ1 = ψ2), Theorem 7.6 defines a triangulation (7.8.1) with Vx having the

reduction r̄p. The slope condition implies that (7.8.1) belongs to the type S cris
+ in [Colm08].

So Vx is crystabelian. �

Remark 7.9. (1) We omitted a full discussion when αx ∈ {k1, k2}, which is a standard
exercise in p-adic Hodge theory.

(2) (Possibly up to replacing E by a degree 2 extension when ψ1 = ψ2), it is possible

embed X�,k,ψ
r̄p into X�,tri

r̄p as a rigid analytic subspace, but this construction is a little
messy to present, in the ordinary, critical, or Frobenius non-semisimple cases. We
content ourselves with a pointwise description and leave the “global” argument to
interested readers.

The following answers positively a conjecture by Breuil–Buzzard–Emerton, and a conjec-
ture of Gouvêa, when the residual Galois representation is reducible and generic. We refer to
§ 1.8 and § 1.11 for the discussion on their history, and Remarks 1.10 and 1.13 for comments
on prior related works.

Corollary 7.10. Assume that p ≥ 11. Let r̄p : GalQp → GL2(F) be a residual local Galois
representation as in Notation 7.2 with 2 ≤ a ≤ p−5. Let ψ, k, x, αx be as in Corollary 7.8.
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(1) If m denotes the minimal positive integer such that ψ1ψ
−1
2 is trivial on (1+ pmZp)

×,
then

vp(αx) ∈
{(

a
2
+ Z

)
∪ Z when m = 1,

1
(p−1)pm−1Z when m ≥ 2.

(2) If ψ1 = ψ2, then

vp(αx)− k1 or k2 − 1− vp(αx) belongs to
[
0,
k2 − k1 − 1−min{a+ 1, p− 2− a}

p+ 1

]
.

Proof. (1) When m = 1, this follows from Corollary 7.8 and Proposition 2.18(6). When

m ≥ 2, vp(w⋆) = 1
(p−1)pm−1 , and the slopes of NP

(
G

(ε)
ρ̄ (w⋆,−)

)
are precisely vp(w⋆) ·(

deg g
(ε)
n (w) − deg g

(ε)
n−1(w)

)
for some n ∈ N with multiplicity one, by the last line of

Definition-Proposition 2.12(4). In this case, (1) follows from this and Corollary 7.8.

(2) If ψ1 = ψ2, then vp(α1)− k1 is a slope of NP
(
G

(ε)
ρ̄ (wk2−k1 ,−)

)
which is not k2−k1

2
− 1.

By Proposition 2.16(3)(4), either vp(αx)− k1 belongs to
[
0, k2−k1−1−min{a+1,p−2−a}

p+1

]
, or (k2−

k1 − 1)− (vp(αx)− k1) = k2 − 1− vp(αx) belongs to this set. �

The rest of this section is devoted to proving Theorem 7.6, which is completed in § 7.22.

7.11. Reducing Theorem 7.6 to the nonsplit case. We first show that Theorem 7.6 for
r̄p nonsplit implies the theorem for r̄p split. This is essentially because, at least pointwise
for an irreducible triangulline representation, there are lattices with different reductions.

To make this precise, we first note that the character ε = δ2|∆ × δ1|∆ · ω−1 is always
relevant to r̄p|IQp by considering the detVx. Next, by twisting all representations by ω ◦ω−b

1 :

GalQp → F×
p → O×, we may reduce to the case when b = 0.

Now suppose that Theorem 7.6 holds for nonsplit residual local Galois representations.
Let r̄p be a split residual local Galois representation as in Notation 7.2 with ∗ = 0 and b = 0.
Then there is a unique nonsplit residual local Galois representation r̄′p which is an extension

of ur(ᾱ2) by ur(ᾱ1)ω
a+1. In particular, r̄′p|IQp ≃ ρ̄ =

(
ωa+1
1 ∗6=0
0 1

)
as in Notation 7.2.

Let x = (x, δ1, δ2) be an E ′-point of U�,tri
r̄p,reg . (By Zariski density, it is enough to consider

points in the regular locus.) We separate two cases.
(1) If Vx is irreducible, then it is well known that, after possibly enlarging E ′, Vx admits

an O′-lattice V◦
x such that V◦

x/̟
′V◦
x ≃ r̄′p. It follows that x

′ := (V◦
x, δ1, δ2) also defines a point

on U�,tri
r̄′p,reg

. Theorem 7.6 for x′ implies that for Theorem 7.6 for x.

(2) If Vx is reducible, i.e. there exists an exact sequence 0 → V+
x → Vx → V−

x → 0 of
representations of GalQp. There are two possibilities:

(2a) If δ1(p) ∈ O′×, then (7.4.1) produces an exact sequence of Galois representations. In
particular, RE′(δ1) is isomorphic to either Drig(V+

x ) or Drig(V−
x ). This will imply that

δ2|∆ × δ1|∆ · ω−1 = 1× ωa or ωa+1 × ω−1, proving (2a).
(2b) If vp(δ1(p)) > 0, this falls in the case of S ord

+ per classification of triangulline repre-
sentations in [Colm08, § 1.2]. In particular, vp(δ1(p)) = w(δ1δ

−1
2 ) ∈ N, where

w(δ1δ
−1
2 ) := lim

γ∈Z×
p

γ→1

log(δ1δ
−1
2 )

log(χcycl(γ))
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is the (negative of) generalized Hodge–Tate weight. (In [Colm08], Colmez calls
w(δ1δ

−1
2 ) the Hodge–Tate weight because in his convention the cyclotomic charac-

ter has Hodge–Tate weight 1.) Put k := w(δ1δ
−1
2 ) + 1. In this case, there is another

triangulation

0→ tk−1RE′(δ2)→ Drig(Vx)→ t1−kRE′(δ1)→ 0,

which produces precisely the exact sequence 0 → V+
x → Vx → V−

x → 0. This in
particularly shows that

ε = δ2|∆ × δ1|∆ · ω−1 = ωa−k+2 × ωk−2.

We need to show that, k − 1 is a slope in NP
(
G

(ε)
ρ̄ (w⋆,−)

)
, (by directly exhibiting

such a slope). There are two subcases we need to consider.
(2bi) If δ1|(1+pZp)× = δ2|(1+pZp)× , then w⋆ = (δ1δ

−1
2 χ−1

cycl)(exp(p)) = wk. We invoke the com-
patibility of Atkin–Lehner involution and p-stabilization with ghost series in Propo-

sition 2.16(2)(3): the dIwk (ωa−k+2 × 1)th slope of NP
(
G

(ε)
ρ̄ (wk,−)

)
is precisely k − 1

minus the first slope of NP
(
G

(ε′′)
ρ̄ (wk,−)

)
with sε′′ = k− 2− a− (k− 2− a) = 0. So

the latter ghost slope is 0, and thus the former ghost slope is k − 1, i.e. vp(δ1(p)) is

a slope of NP
(
G

(ε)
ρ̄ (wk,−)

)
.

(2bii) If the minimal positive integerm such that δ1|(1+pmZp)× = δ2|(1+pmZp)× satisfiesm ≥ 2,
then we are in the “halo region”; in particular, vp(w⋆) = 1

pm−2(p−1)
. In this case,

Definition-Proposition 2.12(4) implies that the nth slope of NP
(
G

(ε)
ρ̄ (w⋆,−)

)
is just

1
pm−2(p−1)

(
deg g

(ε)
n (w)− deg g

(ε)
n−1(w)

)
. We compute this explicitly using the formulas

in Definition-Proposition 2.12(4) with sε = {k − a− 2},
• If a+ sε < p− 1, note that pm−1(k− 1)− 1 ≡ k− 2 ≡ a+ sε mod (p− 1). So for

N = pm−1(k−1)−1−{k−2}
p−1

+ 1, we have e
(ε)
2N = e∗2z

pm−1(k−1)−1. Moreover, we have

pm−1(k−1)−1−{k−2}
p−1

+ 1− {k − 2− a} − (a+ 2) ≡ {k − 2} − {k − 2− a} − a = 0 (mod p).

This implies by (2.12.1) with n = 2N−1 and the “otherwise case” (as 2N−2sε ≡
2a+ 4 (mod p)),

deg g
(ε)
2N(w)− deg g

(ε)
2N−1(w) = deg e

(ε)
2N −

⌊deg e(ε)2N

p

⌋
= pm−2(p− 1)(k − 1).

So the 2Nth slope of NP
(
G

(ε)
ρ̄ (w⋆,−)

)
is k − 1.

• If a+sε ≥ p−1, the argument is similar. Still, we put N = pm−1(k−1)−1−{k−2}
p−1

+1,

but e
(ε)
2N−1 = e∗2z

pm−1(k−1)−1. We have a similar congruence

N + 1− {k − 2− a} − (a + 3) ≡ {k − 2} − {k − 2− a} − a + 3 = p ≡ 0 (mod p).

This implies by (2.12.2) with n = 2N −1 and the “otherwise case” (as 2N −1−
2sε ≡ 2a+ 5 (mod p)) that

deg g
(ε)
2N−1(w)− deg g

(ε)
2N−2(w) = deg e

(ε)
2N−1 −

⌊deg e(ε)2N−1

p

⌋
= pm−2(p− 1)(k − 1).

This means that the (2N − 1)th slope of NP
(
G

(ε)
ρ̄ (w⋆,−)

)
is k − 1.
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Up to now, we have checked (1)–(3) of Theorem 7.6. Conversely, if δ1|Z×
p
and δ2|Z×

p
are given

as in Theorem 7.6. Put w⋆ := (δ1δ
−1
2 χ−1

cycl)(exp(p))−1. Let λ be a slope of NP
(
G

(ε)
ρ̄ (w⋆,−)

)
.

(1)’ If λ > 0, Theorem 7.6 for the nonsplit representation r̄′p produces an E ′-point x′ =

(x′, δ1, δ2) ∈ X�,tri
r̄′p

with vp(δ1(p)) = λ. Reversing the argument in (1) gives the needed

point of X�,tri
r̄′p

.

(2)’ If λ = 0, we must have ε = 1 × ωa. We construct a point on X�,tri
r̄p directly. Lift

ᾱi ∈ F× for each i = 1, 2 to δi(p) ∈ O×. Then RE′(δ1)⊕RE′(δ2) is the (ϕ,Γ)-module
of δ1 ⊕ δ2, which reduces to r̄p automatically, with the correct slope and characters.

This completes the reduction of Theorem 7.6 to the reducible, nonsplit, and generic case.

Remark 7.12. (1) Supposedly, the proof of (2bii) should also follow from an analogous
compatibility of Atkin–Lehner involution for ghost series with wild characters. We
leave that for interested readers.

(2) It is a very interesting question to ask whether the above correspondence of points

between U�,tri
r̄p,reg and U�,tri

r̄′p,reg
can be made “globally” at the level of rigid analytic spaces

or even at the level of formal schemes. This seems to be a rather subtle yet very
interesting question.

Assumption 7.13. In view of § 7.11, we assume that r̄p is nonsplit for the rest of this
section. In particular, r̄p|IQp ≃ ρ̄. We write r̄p : GalQp → GL2(F) as

(7.13.1) r̄p =

(
χ̄1 ∗ 6= 0
0 χ̄2

)
, with χ̄1 = ur(ᾱ1) · ωa+b+1

1 and χ̄2 = ur(ᾱ2) · ωb1.

7.14. Paškūnas modules. To relate the study of local ghost series with the triangulline
deformation space, we make use of the Paškūnas modules in [Pa13] for deformation of p-
adic representations of GL2(Qp). As [Pa13] mainly considers the case with a fixed central
character, some of our constructions later may be slightly awkward. Similar arguments to
remove central character constraints can be found in [BD20, Appendix A] and [CEGGPS18].
Let ζ : GalQp → O× be a character that induces a character of Q×

p by local class field theory.

• Let Modpro
GalQp

be the category of profinite O-modules V with continuous GalQp-

actions.
• Let C be the category of profinite O-modules M with continuous right GL2(Qp)-
actions for which

– the right GL2(Zp)-action onM extends to a right OJGL2(Zp)K-module structure
on M , and

– for every vector v in the Pontryagin dualM∨ := HomO(M,E/O) equipped with
the induced left GL2(Qp)-action, the left O[GL2(Qp)]-submodule generated by
v is of finite length.

• Let Cζ be the subcategory of C consisting of objects on which Q×
p acts by ζ .

We chose to work with right OJGL2(Qp)K-actions on objects of C to match our definition of
OJKpK-projective augmented modules in Definition 2.2. This can be easily translated from
references [Pa13, Pa15, HP19, BD20] by considering the inverse action.

There is a natural covariant modified Colmez functor

V̌ζ : Cζ → Modpro
GalQp

,
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which is compatible with taking projective limits and whose evaluation on finite length
objects M is given by V̌ζ(M) := V(M∨)∨(χcyclζ), where (−)∨ = HomO(−, E/O) is the
Pontryagin duality and V(−) is the functor defined in [Colm10b]. In particular, for two
characters η̄1, η̄2 : Q

×
p → F× such that η̄1η̄2χ̄

−1
cycl = ζ mod ̟,

V̌ζ

(
Ind

GL2(Qp)
B(Qp)

(
η̄1 ⊗ η̄2χ̄−1

cycl

)∨) ∼= η̄1.

We note that for a different character ζ ′ : GalQp → O×,

(7.14.1) V̌ζζ′(M ⊗ ζ ′ ◦ det) ∼= V̌ζ(M)⊗ ζ ′.
We focus on the case of Assumption 7.13. Take the earlier ζ to satisfy ζ ≡ ωa+2b mod ̟.
Let π(r̄p) denote the smooth representation of GL2(Qp) over F associated to r̄p by the

mod p Langlands correspondence. Explicitly, π(r̄p) is the nontrivial extension π̄1 − π̄2 with

π̄1 = Ind
GL2(Qp)

B(Qp)

(
χ̄2 ⊗ χ̄1χ̄

−1
cycl

)
and π̄2 = Ind

GL2(Qp)

B(Qp)

(
χ̄1 ⊗ χ̄2χ̄

−1
cycl

)
.

In particular, we have

V̌ζ(π(r̄p)
∨) ∼= V̌ζ(π̄

∨
2 − π̄∨

1 )
∼= (χ̄1 − χ̄2) ∼= r̄p.

This is independent of the choice of ζ and agrees with [Pa13, § 8]; yet [Pa15, § 6.1] seems to
have a minor error by swapping the π̄1 with π̄2, which is later corrected in [HP19].

Let 1tw denote OJu, vK equipped with a Q×
p -action where p acts by multiplication by 1+u

and a ∈ Z×
p acts by multiplication by (1 + v)log(a/ω(ā))/p; such action extends to an action of

GalQp via local class field theory.
As EndGalQp

(r̄p) ∼= F, the deformation problem of r̄p is representable by a noetherian

complete local O-algebra Rr̄p. Let R
ζ
r̄p denote the quotient parametrizing the deformations of

r̄p with fixed determinant ζ ; let mRζr̄p
denote its maximal ideal. Let V ζ

univ denote the universal

deformation of r̄p over R
ζ
r̄p. It is well known that there is a (noncanonical) isomorphism

R�

r̄p
∼= Rζ

r̄p⊗̂OOJu, v, z1, z2, z3K,
so that the framed and unframed universal deformations of r̄p satisfy:

V ζ
univ⊠̂O1tw⊗̂OOJz1, z2, z3K ∼= V �

univ.

Following [Pa13, § 8], we have the following.

Theorem 7.15. Keep the notation as above. Let P̃ζ ։ π̄∨
1 be a projective envelope of π∨

1 in

Cζ and put Rπ1,ζ := EndCζ(P̃ζ).

(1) The V̌ζ(P̃ζ) can be viewed as a 2-dimensional representation of GalQp over Rπ1,ζ

lifting r̄p; this induces an isomorphism Rζ
r̄p

∼=−−→ Rπ1,ζ, and V̌ζ(P̃ζ) ∼= V ζ
univ.

(2) Define the following object in C:

(7.15.1) P̃� := P̃ζ⊠̂O1tw⊗̂OOJz1, z2, z3K,
equipped with the tensor product right GL2(Qp)-action (which is OJz1, z2, z3K-linear).
Then P̃� carries a natural R�

r̄p-action from the left that commutes with the right

GL2(Qp)-action. Moreover, P̃� does not depend on the choice of ζ.
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(3) There exists x ∈ mRζr̄p
\
(
m2
Rζr̄p

+ (̟)
)
such that P̃� is isomorphic to the projective

envelope of Syma F⊕2 ⊗ detb as a right OJu, x, z1, z2, z3KJGL2(Zp)K-module.

Proof. (1) is [Pa13, Corollary 8.7]. For (2), the left R�

r̄p-action comes from the isomorphism

Rζ
r̄p
∼= Rπ,ζ proved in (1). The uniqueness follows from (7.14.1).

We now prove (3). For A = O or OJxK, let Modfg
AJGL2(Zp)K,ζ

denote the category of finitely

generated right AJGL2(Zp)K-modules with the scalar Z×
p acting by ζ . By [Pa15, Theo-

rem 5.2], there exists x ∈ mRζr̄p
such that x : P̃ζ → P̃ζ is injective and P̃ζ/xP̃ζ is the

projective envelope of (socGL2(Zp)π̄1)
∨ = Syma F⊕2 ⊗ detb in Modfg

OJGL2(Zp)K,ζ
. In addition,

[HP19, Theorem 3.3(iii)] proves that x /∈
(
m2

Rζr̄p
+ (̟)

)
. It then remains to show that P̃ζ is

projective in the Modfg
OJxKJGL2(Zp)K,ζ

, as the projectivity is preserved for tensor products of the

form in (7.15.1). (Note that the variable v in P̃ζ measuring the central twist of (1 + pZp)
×

is “absorbed” into the projective envelope as an OJGL2(Zp)K-module.) Choose a character

η of (1 + pZp)
× such that ζ |(1+pZp)× = η2. Then it is enough to show that P̃ζ ⊗ η−1 ◦ det is a

projective right OJxKJHK-module with H = GL2(Zp)/(1 + pZp)
×, or equivalently,

Tor
OJxKJHK
>0 (P̃ζ ⊗ η−1 ◦ det, F) = 0.

But this follows immediately from the spectral sequence

E2
•,• = TorOJHK

•

(
TorOJxKJHK

•

(
P̃ζ ⊗ η−1 ◦ det, OJHK

)
, F
)
⇒ TorOJxKJHK

•

(
P̃ζ ⊗ η−1 ◦ det, F

)

and the properties of P̃ζ/xP̃ζ above. �

Remark 7.16. (1) It is proved in [CEGGPS18, Theorem 6.18] that P̃ζ⊠̂O1tw is isomor-
phic to the projective envelope of π∨

1 in C.
(2) It is tempting to use the “less-heavy” tool of patched completed homology of Caraiani–

Emerton–Gee–Geraghty–Paškūnas–Shin in [CEGGPS16] and the globalization pro-
cess therein, to reproduce the above construction instead of using the Paškūnas
module. Unfortunately, we do not know how to implement this idea. The main
difficulty is that, while [CEGGPS16] provides a “minimal patching” in the sense that
the patched module is of rank 1 over the patched version of the local Galois defor-
mation ring R∞[1/p], to invoke our local ghost Theorem 2.7, we need the patched
completed homology to be the projective envelope as an S∞JGL2(Zp)K-module of a
Serre weight. So we would need a certain mod-p-multiplicity-one assumption that
compares S∞ with R∞, which does not seem to be available.

7.17. Comparison with triangulline deformation space. Continue to consider the r̄p
in (7.13.1). We apply Emerton’s locally analytic Jacquet functor [Em06] to P̃� ∈ C and

compare it with the triangulline deformation space X�,tri
r̄p . In a nutshell, we will prove that

the reduced eigenvariety Eig(P̃�)red associated to P̃� is isomorphic to X�,tri
r̄p and the Up-

action on Eig(P̃�) corresponds to the universal character δ2(p)
−1 on X�,tri

r̄p .
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We first recall the formal part of the construction from [BHS17, § 3] and [BD20, § A.4].
Write S� := OJu, x, z1, z2, z3K, viewed as a natural subring of R�

r̄p, which induces a morphism

pr� : X�

r̄p → S� := Spf(S�)rig.

Consider the Schikhof dual of P̃�:

Π� := Homcont
O

(
P̃�, E

)
.

Applying the locally analytic Jacquet functor construction of Emerton [Em06], we obtain

(7.17.1) M� := swap∗
(
JB̄
(
(Π�)S

�-an
)′
b

) ∼= swap∗
(
JB̄
(
(Π�)R

�
r̄p

-an
)′
b

)
,

which may be viewed as a coherent sheaf over the Stein space X�

r̄p × T that further induces

a coherent sheaf pr�∗M� over S� × T (where T = (Grig
m )2 × W̃ is defined in (7.3.1)). Here,

• (Π�)R
�
r̄p

-an ⊆ (Π�)S
�-an are respectively locally R�

r̄p-analytic and S�-analytic vectors

as defined in [BHS17, Définition 3.2], and they are equal by [BHS17, Proposition 3.8]

as P̃� is finitely generated over S�JGL2(Zp)K;
• JB̄(−) is the locally analytic Jacquet functor of Emerton defined in [Em06] (with
respect to the lower triangular matrices to match our computation with the setup in
§ 2.4, which further agrees with [Bu07]);
• (−)′b is the strong dual for Fréchet spaces; and
• swap : T → T is the morphism swapping two factors, i.e. sending (δ1, δ2) 7→ (δ2, δ1).
(This is inserted because we used the locally analytic Jacquet functor relative to the
lower triangular Borel subgroup, in contrast to [BHS17] and [BD20] where the upper
triangular Borel subgroup are used.)

Theorem 7.18. Let Eig(P�) denote the schematic support ofM� over X�

r̄p × T .
(1) The space Eig(P�) is contained in the subspace of X�

r̄p × T consisting of points

(x, δ1, δ2) for which det(Vx) corresponds to δ1δ2 under the local class field theory.
(2) The reduced subscheme of Eig(P�) is precisely the triangulline deformation space

X�,tri
r̄p (Definition 7.4).

Proof. (1) is clear because (if ζ(p) = ζ(1+p) = 1), the right actions of
(
p 0
0 p

)
and the diagonal

Z×
p on P̃� are precisely given on 1tw, which agrees with the OJu, vK-action as described just

before Theorem 7.15.
(2) is proved at the beginning of [BD20, Page 134] (except that we have the framing

variables, and we used the lower triangular Borel subgroup for the locally analytic Jacquet
functor). We summarize the gist for the benefit of the readers.

At an E ′-point x ∈ (Vx, δ1,x, δ2,x) ∈ X�

r̄p × T , let px ⊆ R�

r̄p be the corresponding prime

ideal. Then Π�[px] = π(Vx) is the p-adic Banach space representation over E ′ attached to

Vx. So x lies in X�,tri
r̄p if and only if there is a (Q×

p )
2-embedding

δ2,x × δ1,x →֒ JB̄
(
Π�,R�

r̄p
-an[px]

)
= JB̄(π(Vx)an).

(Note that, comparing to [BD20] where JB(−) is used, the lower triangular locally analytic
Jacquet functor has the effect of “swapping” two factors.) By the description of locally
analytic vectors for p-adic local Langlands correspondence [Colm10a, LXZ12] (and the full

power of p-adic local Langlands correspondence), there is an embedding U�,tri
r̄p,reg →֒ Eig(P�).
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Applying a typical construction of eigenvarieties shows that points in U�,tri
r̄p,reg are also Zariski-

dense and accumulating in Eig(P�). This completes the proof of that X�,tri
r̄p is isomorphic

to the reduced subscheme of Eig(P�). �

Remark 7.19. In fact, one can prove that, in our case, Eig(P�) = X�,tri
r̄p .

7.20. Relating locally analytic Jacquet functor with local ghost theorem I. We

will deduce Theorem 7.6 by applying local ghost Theorem 2.7 to P̃� with all possible eval-
uations of the formal variables u, x, z1, z2, z3. For this, we need an intermediate step to
relate the characteristic power series of abstract p-adic forms in the local ghost theorem with
the abstract construction of eigenvarieties in § 7.17 This is essentially explained in [Em06,

Proposition 4.2.36]: one may compute the locally analytic Jacquet functor when P̃� is a
finite projective S�JKpK-module, using the eigenvariety machine of Buzzard.

Let dN̄ denote the right ideal of OJIwpK generated by
[(

1 0
p 1

)]
− 1; then by Iwasawa

decomposition, we may write

(7.20.1) OJIwpK/dN̄ ∼= D0

((
1 Zp
0 1

)
; O

r(
Z×
p

Z×
p

)z)
= D0

(
Zp; OJ(Z×

p )
2K
)
,

where the D0

(
Zp;−) is the space of measures on Zp, dual to C0(Zp;−). Here the induced left

Iwp-action on the right hand side of (7.20.1) extends to an action of M1 =
(

Zp Zp

pZp Z×
p

)det 6=0

given by, for
(
α β
γ δ

)
∈M1 with αδ − βγ = prd for d ∈ Z×

p ,

〈(
α β
γ δ

)
· µ, h(z)

〉
=
〈
µ,
[( d

γz + δ
, γz + δ

)]
· h
(αz + β

γz + δ

)〉
.

Note that (after tensored with OJwK(ε),) this is precisely dual to the right M1-action on

C0
(
Zp;OJwK(ε)

)
given by (2.4.4). We define the abstract p-adic distribution associated to P̃�

to be

S∨
P̃�,p-adic

:= P̃�⊗̂OJIwpKD0

(
Zp; OJ(Z×

p )
2K
)
,

equipped with the infinite product topology (which is automatically compact). Then we
have a tautological isomorphism (from the tensor-hom adjunction)

(7.20.2) HomS�J(Z×
p )2K

(
S∨
P̃�,p-adic

, S�JwK(ε)
)
∼= HomS�JIwpK

(
P̃�, C0

(
Zp; S

�JwK(ε)
))
.

Define an S�J(Z×
p )

2K-linear operator U∨
p on S∨

P̃�,p-adic
given by (choosing a coset decompo-

sition Iwp

(
p−1 0
0 1

)
Iwp =

∐p−1
j=0 vjIwp, e.g. vj =

(
p−1 0
j 1

)
and v−1

j =
(

p 0
−jp 1

)
),

U∨
p (x⊗ µ) :=

p−1∑

j=0

xvj ⊗ v−1
j µ for x ∈ P̃� and µ ∈ D0

(
Zp; OJ(Z×

p )
2K
)
.

Applying an argument similar to [LTXZ22+, § 2.10] (or essentially Buzzard’s original eigen-
varieties machine in [Bu07]), we may define a characteristic power series for the S�J(Z×

p )
2K-

linear U∨
p -action on S∨

P̃�,p-adic
:

CP̃�(t) = 1 + c1t + c2t
2 + · · · ∈ S�J(Z×

p )
2KJtK.
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Let S̃pc(P̃�) denote the hypersurface of S�×W̃ ×Grig
m cut out by CP̃�(t). Then the general

Buzzard’s eigenvariety machine of [Bu07] outputs a coherent sheaf N� on S̃pc(P̃�). On

the other hand, the left R�

r̄p-action on P̃� (extending the S∞-action) induces an action of

R�

r̄p on the coherent sheaf N� over S� × W̃ × Grig
m . Considering the image of R�

r̄p in the

endomorphism algebra EndSpc
P̃�

(N�) induces a coherent sheafM�′ on X�

r̄p×W̃×Grig
m whose

pushforward along X�

r̄p → S∞ is isomorphic to N�.

In fact, M�′ is essentially the same as M� of (7.17.1) in the following sense. By Theo-
rem 7.18(1),M� is supported on the subspace

(7.20.3) Z =
{
(x, δ1, δ2) ∈ X�

r̄p × T
∣∣ detVx(p) = δ1(p)δ2(p)

}
.

The natural map

(7.20.4)
X�

r̄p × T X�

r̄p × W̃ ×Grig
m

(x, δ1, δ2)
(
x, δ2|Z×

p
, δ1χ

−1
cycl|Z×

p
, δ2(p)

)

induces an isomorphism ι : Z ∼=−→ X�

r̄p × W̃ × Grig
m . Then ι∗M�′ ∼= M�; in particular, the

reduced subscheme of the support ofM�′ is precisely X�,tri
r̄p by Theorem 7.18. Here we point

out three subtleties in normalizations:

(1) The U∨
p -operator is associated to the double coset Iwp

(
p−1 0
0 1

)
Iwp, and the zeros of

CP̃�(t) gives the reciprocal of U∨
p -eigenvalues;

(2) the swapping of δ1 and δ2 caused by taking JB̄(−) as opposed to JB(−); and
(3) another twist of cyclotomic character is built-in for the theory of locally analytic

Jacquet functors.

7.21. Relating locally analytic Jacquet functor with local ghost theorem II. It
remains to relate CP̃�(t) and the slopes appearing in the local ghost Theorem 2.7. For

each homomorphism y∗ : S� = OJu, x, z1, z2, z3K → O′, write P̃y := P̃�⊗̂S�,y∗O′. Then

Theorem 7.15(3) implies that P̃y is a primitive OJKpK-projective augmented module of type
ρ̄, where the conditions (2) and (3) of Definition 2.2 are clear from (7.15.1).

For a relevant character ε of ∆2, recall there is a natural quotient map

(7.21.1)
ε∗ : OJ(Z×

p )
2K OJwK(ε)

[α, δ] ε(ᾱ, δ̄)(1 + w)log(δ/ω(δ̄))/p

for α, δ ∈ Z×
p . Note that this quotient map is a twist of (7.1.1). The homomorphism (7.21.1)

together with y∗ defines an embedding

y ⊗ ε :W(ε)
O′ →֒ S� × W̃ .

The isomorphism (7.20.2) implies a canonical O′JwK-linear isomorphism

(7.21.2) S∨
P̃�,p-adic

⊗S�J(Z×
p )2K,y∗⊗ε∗ O′JwK(ε) HomO′JwK(ε)

(
S
(ε)

P̃�
y ,p-adic

,O′JwK(ε)
)
,∼=
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which can be expressed in terms of a pairing: for x ∈ P̃�, µ ∈ D0

(
Zp; O′JwK(ε)

)
, and

ϕ ∈ S
(ε)

P̃�
y ,p-adic

,
〈
ϕ, x⊗ µ

〉
:= 〈ϕ(x), µ〉.

We deduce the compatibility of U∨
p -operator on the left hand side of (7.21.2) and the dual

of Up-action on the right hand side easily as: with the notation as above and vj =
(
p−1 0
j 1

)

for j = 0, . . . , p− 1,

〈Up(ϕ), x⊗ µ〉 = 〈Up(ϕ)(x), µ〉 =
〈 p−1∑

j=0

ϕ(xvj)|v−1
j
, µ
〉
=
〈 p−1∑

j=0

ϕ(xvj), v
−1
j µ
〉

=
〈
ϕ,

p−1∑

j=0

xvj ⊗ v−1
j µ
〉
= 〈ϕ, U∨

p (x⊗ µ)〉.

This in particular means that, under the map y∗⊗ ε∗ : S�J(Z×
p )

2K→ O′JwK(ε), we have an
identity of characteristic power series:

(7.21.3) (y∗ ⊗ ε∗)
(
CP̃�(t)

)
= C

(ε)

P̃�
y

(w, t).

Writing Spc(ε)(P̃�

y ) for the zero locus of C
(ε)

P̃�
y

(w, t) insideW(ε)×Grig
m . Then (y⊗ε)−1

(
S̃pc(P̃�)

)
=

Spc(ε)(P̃�

y ).

7.22. Proof of Theorem 7.6. Now, we conclude the proof of Theorem 7.6. By the discus-
sion in § 7.11, we may assume that r̄p is reducible, nonsplit and generic with a ∈ {2, . . . , p−5}
and b = 0. Let x = (x, δ1, δ2) ∈ X�,tri

r̄p be an E ′-point; set w⋆ := (δ1δ
−1
2 χ−1

cycl)(exp(p))− 1 and

ε = δ2|∆ × δ1|∆ · ω−1, which is relevant as already shown in § 7.11. we need to show that

−vp(δ2(p)) is equal to a slope appearing in NP
(
G

(ε)
ρ̄ (w⋆,−)

)
.

The argument is summarized by the following diagram:

(7.22.1)

Grig
m

X�,tri
r̄p

Supp(pr�∗M�) S̃pc(P̃�) Spc(ε)(P̃�

y )

X�

r̄p

S� × W̃ S� × W̃ {y} ×W(ε).

S�

δ2(p)

∼=

δ2(p)

(7.20.4)

prW of (7.1.1)

y⊗ε

By Proposition 7.5(5), we may assume that δ2|(1+pZp)× is trivial. Write y for the image of
x in S� and let y∗ : S� → E ′ be the induced map. Then the image of x in Supp(pr�∗M�)

is precisely given by (y, δ1, δ2). In particular, the map taking the value of δ2(p) on X�,tri
r̄p

factors through Supp(pr�∗M�).
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As explained in § 7.20, the image of x in S̃pc(P̃�) admits a cyclotomic twist from (7.20.4);

so it is x′ := (y, δ2, δ1χ
−1
cycl). In particular, the image of x′ in S�×W̃ is precisely y⊗ε(w⋆) with

w⋆ = δ1χ
−1
cycl(exp(p))−1 and ε = δ2|∆×δ1|∆·ω−1. So vp(δ2(p)) at x

′ can be seen on Spc(ε)(P̃�

y ).

By local ghost Theorem 2.7, −vp(δ2(p)) is a slope of NP
(
G

(ε)
ρ̄ (w⋆,−)

)
. Theorem 7.6 except

(3) is proved.
For Theorem 7.6(3), we may twist the point x so that δ1(p)δ2(p) = 1; this translate to

that
(
p 0
0 p

)
acts trivially on P̃�. As argued above, it suffices to show that for the given

k, all slopes k−2
2

appearing in NP
(
C

(ε)

P̃�
y

(wk,−)
)
(with multiplicity dnewk (ε1)) genuinely come

from the zeros ±p−(k−2)/2 of C
(ε)

P̃�
y

(wk,−). Indeed, by Corollary 3.8, the multiplicities of

Up-eigenvalues ±p−(k−2)/2 on SIw
P̃�
y ,k

(ε̃1) are
1
2
dnewk (ε1) each. Theorem 7.6(3) is proved.

8. Bootstrapping and ghost conjecture

In this section, we perform a bootstrapping argument to prove a global ghost conjecture
(Theorem 1.3) when the residual Galois representation r̄ is irreducible yet its restriction to
GalQp is reducible and very generic (2 ≤ a ≤ p− 5 and p ≥ 11). The global ghost conjecture
implies the following (with the help of [BP19b] and [Re22+]) for the r̄-localized space of
modular forms:

• a version of the Gouvêa–Mazur conjecture,
• Gouvêa’s conjecture on slope distributions, and
• a refined version of Coleman–Mazur–Buzzard–Kilford spectral halo conjecture.

In fact, we adopt an axiomatic approach to proving the global ghost conjecture, borrowing
a setup from [CEGGPS18], [GN22, §5], and [DoLe21, §4.2]; this allows our theorem to be
applicable to the cohomology of general Shimura varieties associated to a group G which is
essentially GL2(Qp) at a p-adic place.

In this section, let r̄p be a residual local Galois representation as in Notation 7.2.

8.1. Hecke actions. Instead of developing the theory of Hecke actions for general Kp-types
as in [CEGGPS16, § 4], we focus on the simplest case with one-dimensional representations.

Let ε = ω−sε+b × ωa+sε+b be a relevant character of ∆2; write ε1 = ω−sε+b as before, and

set kε := 2 + {a + 2sε} ∈ {2, . . . , p}. Let H̃ be a Kp-projective augmented module. For
each k = kε + (p − 1)k• with k• ∈ Z≥0, we defined a Tp-operator in § 2.4(4) on Sur

k (ε1) =

HomOJKpK

(
H̃,O[z]≤k−2 ⊗ ε1 ◦ det

)
. There is also a similarly defined operator Sp on Sur

k (ε1)

given by, for ϕ ∈ Sur
k (ε1) and x ∈ H̃,

Sp(ϕ)(x) = ϕ
(
x
(
p−1 0
0 p−1

))
.

The action of Sp is invertible and commutes with the Tp-operator. So Sur
k (ε1) admits a

O[Tp, S±1
p ]-module structure.

Recall the associated Kisin’s crystabelian deformation ring from § 7.7. Let R�,1−k,ε1
r̄p be

the quotient of R�

r̄p parametrizing crystabelian representations with Hodge-Tate weight (1−
k, 0) such that Gal(Qp/Qp) acts on Dpcrys(−) by ε1 (see Notation 7.1 for the definition of

Dpcrys(−)). Let V1−k denote the universal representation on X�,1−k,ε1
r̄p :=

(
Spf R�,1−k,ε1

r̄p

)rig
,
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then Dpcrys(V1−k) is locally free of rank two over X�,1−k,ε1
r̄p , equipped with a linear action of

crystalline Frobenius φ. In particular, our condition says that V1−k ⊗ ε−1
1 is crystalline.

Define elements sp ∈ O
(
X�,1−k,ε1
r̄p

)×
and tp ∈ O

(
X�,1−k,ε1
r̄p

)
such that

det(φ) = pk−1s−1
p and tr(φ) = s−1

p tp.

As both sp and tp take bounded values, we have sp ∈ R�,1−k,ε1
r̄p

[
1
p

]×
and tp ∈ R�,1−k,ε1

r̄p

[
1
p

]
.

Following [CEGGPS16, § 4], we define a natural homomorphism

(8.1.1) ηk : O[Tp, S±1
p ]→ R�,1−k,ε1

r̄p

[
1
p

]
given by ηk(Tp) = tp, and ηk(Sp) = sp.

Definition 8.2. Recall Kp = GL2(Zp), and the representations ρ̄ and ρ̄ss from Notation 7.2.
For a Serre weight σa,b, write ProjOJKpK(σa,b) for the projective envelope of σa,b as an OJKpK-
module.

An OJKpK-projective arithmetic module of type r̄p is an OJKpK-projective augmented mod-

ule H̃ equipped with a continuous left action of R�

r̄p satisfying the following conditions.

(1) The left R�

r̄p-action on H̃ commutes with the right GL2(Qp)-action

(2) The induced Kp-action makes H̃ a right OJKpK-module isomorphic to

• ProjOJKpK(σa,b)
⊕m(H̃) for some m(H̃) ∈ N, if r̄p|IQp ≃ ρ̄, or

• ProjOJKpK(σa,b)
⊕m′(H̃) ⊕ ProjOJKpK(σp−3−a,a+b+1)

⊕m′′(H̃) for some m′(H̃), m′′(H̃) ∈
N, if r̄p|IQp ≃ ρ̄ss (writing m(H̃) := m′(H̃) +m′′(H̃) in this case).

(3) For every relevant character ε = ω−sε+b × ωa+sε+b and every k = kε + (p− 1)k• with

k• ∈ Z≥0, the induced R�

r̄p-action on Sur
H̃,k

(ε1) factors through the quotient R�,1−k,ε1
r̄p .

Moreover, the Hecke action of O[Tp, S±1
p ] on Sur

H̃,k
(ε1) defined in § 8.1 agrees with the

composition

O[Tp, S±1
p ]

ηk−−→ R�,1−k,ε1
r̄p

[
1
p

]
→ EndE

(
Sur
H̃,k

(ε1)⊗O E
)
.

When r̄p|IQp = ρ̄, we say that H̃ is primitive if m(H̃) = 1.

In either case, we call m(H̃) the multiplicity of H̃.

Remark 8.3. (1) In applications, all the OJKpK-projective arithmetic modules we en-
counter are known to satisfy conditions analogous to Definition 8.2(3) for all crysta-
belian representations. (Such compatibility can be alternatively deduced by compar-
ing to triangulline deformations.) But formulating of such condition is slightly more
subtle; we refer to for example [CEGGPS18, Definition 1.5] or [DoLe21, § 4.2].

(2) Our definition is essentially different from and (in most cases) weaker than the notion
of O[GL2(Qp)]-modulesM∞ with arithmetic actions (see for example, [CEGGPS18,
GN22, DoLe21]) in the following aspects: (a) their M∞ is a module of R∞ =

R�

r̄pJz1, . . . , zgK for some dummy variables; ours H̃ may be viewed asM∞ after eval-

uating zi’s; (b) they typically require M∞⊗̂ Symk−2O⊕2 to be a maximal Cohen–

Macaulay over R�,k−1
ρ̄ Jz1, . . . , zgK; we do not need this.

(3) When r̄p|IQp = ρ̄ss, it may happen in practice that m′(H̃) 6= m′′(H̃).

(4) We do not need to require primitive OJKpK-projective arithmetic modules to satisfy
the two additional conditions in Definition 2.2(2)(3).
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Example 8.4 (Quaternionic case). We illustrate by an example how our abstract setup
appears naturally in the study of cohomology of Shimura varieties.

Fix an absolutely irreducible residual Galois representation r̄ : GalQ → GL2(F) such that
r̄|GalQp

≃ r̄p for a residual local representation that we consider in Notation 7.2. Let D be a

quaternion algebra over Q that is unramified at p; we fix an isomorphism D⊗Qp
∼= M2(Qp).

Set

i(D) :=

{
1 if D ⊗Q R ∼= M2(R), which we call the indefinite case;

0 if D ⊗Q R ∼= H, which we call the definite case.

Fix an open compact subgroup Kp ⊆ (D ⊗ Ap
f)

× such that KpKp is neat, i.e. gD×g−1 ∩
KpKp = {1} for every g ∈ (D ⊗ Af)

×. For any open compact subgroup K ′
p ⊆ Kp, let

ShD×(KpK ′
p) denote the associated (complex) Shimura variety, with C-points given by

ShD×(KpK ′
p)(C) =

{
D×\(D ⊗ Af)

×/KpK ′
p when i(D) = 0

D×\H± × (D ⊗ Af )
×/KpK ′

p when i(D) = 1,

where H± := C\R. Then for n ∈ N, the tower of subgroups Kp,n :=
(

1+pnZp pnZp
pnZp 1+pnZp

)
⊆ Kp

defines a tower of Shimura varieties:

· · · → ShD×(KpKp,n)→ · · · → ShD×(KpKp,1)→ ShD×(KpKp).

The i(D)th completed homology group localized at r̄ (with h = 0)

H̃∞ := lim←−
n

HBetti
i(D)

(
ShD×(KpKp,n)(C),O

)cplx=1

r̄
,

where the subscript mr̄ indicates localization at the maximal Hecke ideal at r̄, and the
superscript cplx=1 is meaningless when i(D) = 0, and means to take the subspace where
the complex conjugation acts by 1 (so that we only take a one-dimensional subspace of the
associated 2-dimensional Galois representation).

This H̃∞ is a Kp-projective augmented module. Indeed, this is obvious if i(D) = 0; when
i(D) = 1, this is because, for any open compact subgroup K ′

p ⊆ GL2(Qp), the localization

(8.4.1) HBetti
i

(
ShD×(KpK ′

p)(C),F
)
r̄
= 0 unless i = 1,

and the projectivity of H̃∞ follows from studying the usual Tor-spectral sequence. Moreover,

H̃∞ carries an action of Rr̄, the Galois deformation ring of r̄. To make this compatible with
our setup of Definition 8.2, we choose an isomorphism R�

r̄
∼= Rr̄Jy1, y2, y3K and demand that

y1, y2, y3 act trivially on H̃∞. This then induces a natural R�

r̄p-action on H̃∞, upgrading H̃∞

to an OJKpK-projective arithmetic module of type r̄p, where the condition Definition 8.2(3)
is the usual local-global compatibility of automorphic forms on D×.
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In this case, the spaces of abstract classical forms defined in § 2.4 recover the usual étale
cohomology groups: for k ∈ Z≥2 and characters ε1 of ∆ and ψ of ∆2, we have

Sur
H̃,k

(ε1) ⊗O E = HomOJKpK

(
H̃, E[z]≤k−2 ⊗ ε1 ◦ det

)

∼= H
i(D)
Betti

(
ShD×(KpKp)(C), Sym

k−2H⊗ ε1 ◦ det
)cplx=1

r̄
∼=
(
SDk (K

pKp)⊗ ε1 ◦ det
)
r̄
,

SIw
H̃,k

(ψ) ⊗O E = HomOJIwpK

(
H̃, E[z]≤k−2 ⊗ ψ

)

∼= H
i(D)
Betti

(
ShD×(KpIwp)(C), Sym

k−2H⊗ ψ
)cplx=1

r̄
∼= SDk (K

pIwp;ψ)r̄.

Here H is the usual rank 2 local system on ShD×(KpK ′
p) associated to the dual of standard

representation of K ′
p ⊂ Kp, S

D
k (−) denotes the space of automorphic forms on ShD× , and

the isomorphisms are as Hecke modules. This example allows us to deduce results regarding
classical modular forms or quaternionic automorphic forms from our abstract setup.

Remark 8.5. Similar constructions can be made for Shimura varieties associated to a more
general group G for which Gad

Qp
admits a factor isomorphic to PGL2,Qp (after properly treating

the central characters), as long as one can prove certain vanishing result similar to (8.4.1).
(Such techniques are available for example in [CS17].)

Example 8.6 (Patched version). Another source of OJKpK-projective arithmetic modules
is the patched completed homology of Caraiani–Emerton–Gee–Geraghty–Paškūnas–Shin in
[CEGGPS16]. More precisely, let G2 be the group scheme over Z defined in [CHT08, §2.1],
which contains GL2×GL1 as a subgroup of index 2, and admits a natural homomorphism
ν : G2 → GL1. Let F be a CM field with maximal totally real subfield F+, r̄ : GalF+ → G2(F)
a residual global representation, and G a definite unitary group over F+ satisfying the
following list of properties:

(1) r̄−1(GL2(F) × F×) = GalF , and write r̄|GalF for the representation r̄ : GalF →
GL2(F)× F× pr1−−→ GL2(F);

(2) ν ◦ r̄ = χ̄−1
cycl, where χ̄cycl is the reduction of the cyclotomic character;

(3) there is a p-adic place p of F+ which splits into p̃p̃c in F such that Fp̃
∼= F+

p
∼= Qp

and r̄|GalF
p̃

∼= r̄p, for r̄p we consider in Notation 7.2;

(4) r̄(GalF (ζp)) is adequate in the sense of [Th12, Definition 2.3]; in particular, r̄ is irre-
ducible;

(5) F
ker adr̄|GalF does not contain F (ζp).

(6) G is an outer form of GL2 with G×F+ F ∼= GL2,F ;
(7) if v is a finite place of F+, then G is quasi-split at v;
(8) if v is an infinite place of F+, then G(F+

v )
∼= U2(R), and

(9) r̄ is automorphic in the sense of [EG14, Definition 5.3.1].

Fix an isomorphism G(OF+
p
) ∼= GL2(Zp) = Kp, and fix a neat open compact subgroup

Kp ⊆ G(A
(p)
F+,f). As above, consider the subgroups Kp,n :=

(
1+pnZp pnZp
pnZp 1+pnZp

)
⊆ Kp for each n.

With these global data, [CEGGPS16] constructed a patched completed homology H̃∞, that
patches the usual completed homology

H̃0

(
G(Q)\G(Af)/K

p,O
)
r̄
:= lim←−

n→∞

H0

(
G(Q)\G(Af)/K

pKp,n,O
)
r̄
.
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The additional structure associated to H̃∞ is explained by the following diagram

(8.6.1)

R�

r̄p lim←−nR
�

r̄,Qn
/mn

Qn
H̃∞ H̃y

S∞ O′.
y∗

• S∞ = OJz1, . . . , zhK is the ring of formal power series formed by patching variables
and framing variables;
• H̃∞ is a projective right S∞JKpK-module isomorphic to

– ProjS∞JKpK(σa,b)
⊕m(H̃) for some m(H̃) ∈ N, if r̄p|IQp ≃ ρ̄, or

– ProjS∞JKpK(σa,b)
⊕m′(H̃)⊕ProjS∞JKpK(σp−3−a,a+b+1)

⊕m′′(H̃) for somem′(H̃), m′′(H̃) ∈
N, if r̄p|IQp ≃ ρ̄ss;

• the right Kp-action on H̃∞ extends to a continuous right GL2(Qp)-action;

• H̃∞ is essentially constructed as an inverse limit, carrying an action of the inverse limit
of deformation rings R�

r̄,Qn
/mn

Qn
, which commutes with the right GL2(Qp)-action;

• the action of S∞ on H̃∞ factors through that of lim←−nR
�

r̄,Qn
/mn

Qn
;

• the local deformation ring R�

r̄p naturally maps to lim←−nR
�

r̄,Qn
/mn

Qn
and acts on H̃∞;

• one may lift the homomorphism S∞ → lim←−nR
�

r̄,Qn
/mn

Qn
to a homomorphism to R�

r̄p

(somewhat arbitrarily).

Then a main result of [CEGGPS16, Theorem 4.1] shows that, for any homomorphism y∗ :

S∞ → O′, H̃y := H̃∞⊗̂S∞
O′ carries naturally a structure of OJKpK-projective arithmetic

module in the sense of Definition 8.2 by verifying the local-global compatibility condition
(3).

Recall the residual representations ρ̄, ρ̄′, and ρ̄ss from Notation 7.2. The main theorem of
this paper is the following.

Theorem 8.7. Assume that p ≥ 11. Let r̄p be a residual local Galois representation as in

Notation 7.2 with a ∈ {2, . . . , p − 5}. Let H̃ be an OJKpK-projective arithmetic module of

type r̄p and multiplicity m(H̃) in the sense of Definition 8.2. Fix a relevant character ε of

∆2. Let C
(ε)

H̃
(w, t) denote the characteristic power series for the Up-action on the space of

abstract p-adic forms associated to H̃, as defined in § 2.4(2).

Then for every w⋆ ∈ mCp , the Newton polygon NP
(
C

(ε)

H̃
(w⋆,−)

)
is the same as the Newton

polygon NP
(
G

(ε)
ρ̄ (w⋆,−)

)
, stretched in both x- and y-directions by m(H̃), except that the slope

zero part of NP
(
C

(ε)

H̃
(w⋆,−)

)

• has length m′(H̃) when r̄p is split and ε = ωb × ωa+b, and
• has length m′′(H̃) when r̄p is split and ε = ωa+b+1 × ωb−1.

The Newton polygon described in Theorem 8.7(2) is the convex polygon whose slope

multiset is the disjoint union of m′(H̃) copies of slope multiset of NP
(
G

(ε)
ρ̄ (w⋆,−)

)
and

m′′(H̃) copies of slope multiset of NP
(
G

(ε)
ρ̄′ (w⋆,−)

)
, by Proposition 2.14.

In view of Example 8.4, Theorem 1.3 follows immediately from this theorem.
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Proof. This is divided into two steps. We first show that at each point w⋆ ∈ mCp, all possible

slopes of NP
(
C

(ε)

H̃
(w⋆,−)

)
are contained in the set of slopes of the Newton polygon of the

corresponding ghost series; this comes from “embedding” the eigencurve into the triangulline
deformation space (essentially following the standard classicality argument and the global
triangulations [KPX14, Li15]). With this at hand, we can “link” together the slopes at

various w⋆ to determine the multiplicities of each slope appearing in NP
(
C

(ε)

H̃
(w⋆,−)

)
.

We fix a relevant character ε throughout the entire proof.

Step I: Let Spc(ε)(H̃) denote the hypersurface inW(ε)×Grig
m defined by C

(ε)

H̃
(w, t); it is the

spectral curve in the sense of [Bu07]. Applying the construction of [Bu07, §5] to the algebra

R�

r̄p[Up] acting on H̃, we obtain an eigenvariety Eig(ε)(H̃) over Spc
(ε)

H̃
(which also lives over

X�

r̄p). The following commutative diagram summarizes the relations between the spectral
and eigenvarieties.

Eig(ε)(H̃) Spc(ε)(H̃)

X�

r̄p ×W(ε) ×Grig
m W(ε) ×Grig

m W(ε).

wt

Consider the following natural embedding

(8.7.1)
ι(ε) : X�

r̄p ×W(ε) ×Grig
m X�

r̄p × T
(x, w⋆, ap) (x, δ1, δ2),

where δ1 and δ2 are continuous characters of Q×
p uniquely determined by the conditions

• δ2(p) = a−1
p , δ1(p)δ2(p) = det(Vx)(p),

• δ1(exp(p)) = w⋆, δ2(exp(p)) = 1, and
• ε = δ2|∆ × δ1|∆ · ω−1.

We claim that ι(ε)
(
Eig(ε)(H̃)red

)
⊆ X�,tri

r̄p . This is a standard argument using the density
of classical points; we only sketch the argument.

First we prove this for very classical points : an E ′-point x = (x, w⋆, ap) ∈ X�

r̄p ×W(ε) is

called very classical if w⋆ = wk with k ≥ 2 and k ≡ kε mod (p − 1), and if vp(ap) <
k−2
2
.

For such a point, classicality result Proposition 2.11(1) shows that the abstract p-adic Up-
eigenform associated to the point x belongs to Sur

k (ε1). So condition Definition 8.2(3) implies

that x in fact belongs to Spf(R�,k−1,ε1
r̄p )rig, which further implies that Vx is crystalline, and

the two characters δ1 and δ2 exactly upgrades it to a point in X�,tri
r̄p , i.e. ι(ε)(x) ∈ X�,tri

r̄p .
It remains to show that very classical points are Zariski dense in each irreducible compo-

nent of Eig(ε)(H̃). As Spc(ε)(H̃) is defined by Fredholm series, [Con99, Theorem 4.2.2] shows

that every irreducible component of Spc(ε)(H̃) is defined by a Fredholm series and hence is sur-

jective ontoW. Fix an irreducible component Z of Eig(ε)(H̃) and pick a point x = (x, wkε, ap).
There exists an open affinoid neighborhood U of x that maps surjectively to an open neigh-
borhood wt(U) of wkε ∈ W(ε) and that vp(δ2(p)) is constant on U . Then there are infinitely
many weights wk ∈ wt(U) with k ≡ kε mod (p − 1) and k > 2vp(ap) + 2, and each point
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in wt−1(wk) ∩ U is a very classical point. This means that very classical points are Zariski

dense in U and hence in Z. Taking Zariski closure proves that ι(ε)
(
Eig(ε)(H̃)red

)
⊆ X�,tri

r̄p .

As a corollary of this claim and Theorem 7.6, for each closed point x = (w⋆, ap) ∈ Spc(ε)(H̃),

vp(ap) is always a slope of NP
(
G

(ε)
ρ̄ (w⋆,−)

)
, with only one possible exception: vp(ap) = 0, r̄p

is split, and ε = ωa+b+1×ωb−1. (Recall that ρ̄ always denotes the nonsplit reducible residual
representation of IQp regardless of r̄p is split or not; see Notation 7.2.)

Step II: Write wt : Spc(ε)(H̃) →֒ W(ε) ×Grig
m →W(ε) for the natural weight map. Recall

from Proposition 2.18(3) that, for each fixed n ∈ N, all elements w⋆ ∈ W(ε) for which

(n, vp(g
(ε)
n (w⋆))) is a vertex of NP

(
G

(ε)
ρ̄ (w⋆,−)

)
form a quasi-Stein open subspace of W(ε):

Vtx(ε)n :=W(ε)\
⋃

k

{
w⋆ ∈ mCp

∣∣∣ vp(w⋆ − wk) ≥ ∆
(ε)

k,| 1
2
dIwk (ε̃1)−n|+1

−∆
(ε)

k,| 1
2
dIwk (ε̃1)−n|

}
,

where the union is taken over all k = kε+(p−1)k• with k• ∈ Z such that n ∈
(
durk (ε1), d

Iw
k (ε̃1)−

durk (ε1)
)
. The space Vtx(ε)n is irreducible because it is obtained by removing finitely many

closed disks from W(ε). For a rigorous argument, we write

Vtx(ε)n =
⋃

δ∈Q>0, δ→0+

Vtx(ε),δn with

Vtx(ε),δn :=

{
w⋆ ∈ mCp

∣∣∣∣∣

vp(w⋆) ≥ δ, and
for each k = kε + (p− 1)k• s.t. n ∈

(
durk (ε1), d

Iw
k (ε̃1)− durk (ε1)

)
,

vp(w⋆ − wk) ≤ ∆
(ε)

k,| 1
2
dIwk (ε̃1)−n|+1

−∆
(ε)

k,| 1
2
dIwk (ε̃1)−n|

− δ.

}
.

Note that for every w⋆ ∈ Vtxn, the left slope at x = n of NP
(
G

(ε)
ρ̄ (w⋆,−)

)
is strictly less than

the right slope because (n, vp(g
(ε)
n (w⋆))) is a vertex of NP

(
G

(ε)
ρ̄ (w⋆,−)

)
. By compactness,

we deduce that for each such δ ∈ (0, 1) ∩ Q, there exists an ǫδ ∈ (0, 1) ∩ Q such that the
following two subspaces are the same:

Spc(ε)(H̃)δn :=

{
(w⋆, ap) ∈ Spc(ε)(H̃)

∣∣∣∣
w⋆ ∈ Vtx

(ε),δ
n , and

−vp(ap) ≤ the left slope at x = n of NP
(
G

(ε)
ρ̄ (w⋆,−)

)
}
,

Spc(ε)(H̃)δ,+n :=

{
(w⋆, ap) ∈ Spc(ε)(H̃)

∣∣∣∣
w⋆ ∈ Vtx

(ε),δ
n , and

−vp(ap) ≤ ǫδ + the left slope at x = n of NP
(
G

(ε)
ρ̄ (w⋆,−)

)
}
.

By (the proof of) Kiehl’s finiteness theorem, this implies that wt∗(OSpc(ε)(H̃)δn
) is finite over

Vtx(ε),δn . Yet, Spc(ε)(H̃)δn is flat over Vtx(ε),δn by [Bu07, Lemma 4.1] and Vtx(ε),δn is irreducible.

So Spc(ε)(H̃)δn has constant degree over Vtx(ε),δn . Letting δ → 0+ (while ǫδ → 0+), we deduce

that Spc(ε)(H̃)n =
⋃
δ→0+ Spc(ε)(H̃)δn is finite and flat of constant degree over Vtx(ε)n .

It remains to compute this degree for each n. We have proved in Proposition 4.1(2) that

for each k such that n = dIwk (ε · (1×ω2−k)),
(
n, vp(g

(ε)
n (wk))

)
is a vertex of NP

(
G

(ε)
ρ̄ (w⋆,−)

)
;

in particular, wk ∈ Vtx(ε)n . In this case, § 2.4(6) (applying separately to ProjOJKpK(σa,b) and
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to ProjOJKpK(σp−1−a,a+b+1) if r̄p is split) implies that

deg
(
Spc(ε)(H̃)n

/
Vtx(ε)n

)
= rankO SIw

H̃,k
(ε · (1× ω2−k))

=





m(H̃) · n when r̄p is non-split,

m(H̃) · n when r̄p is split and ε /∈ {ωb × ωa+b, ωa+b+1 × ωb−1},
m(H̃) · (n− 1) +m′(H̃) when r̄p is split and ε = ωb × ωa+b,
m(H̃) · n +m′′(H̃) when r̄p is split and ε = ωa+b+1 × ωb−1.

Here we implicitly used Proposition 2.14 to identify the ghost series for ρ̄ and for ρ̄′. In

particular, when r̄p is split, the first slope of NP(G
(ε)
ρ̄ (w⋆,−)) is zero if ε = ωb × ωa+b and is

nonzero if ε = ωa+b+1 × ωb−1; hence the slight variant description above.
We also point out that when r̄p is split and ε = ωa+b+1×ωb−1, applying the same argument

above using ρ̄′ in places of ρ̄, we may deduce that the slope zero part of Spc(ε)(H̃) has degree

m′′(H̃) over W(ε).

From this, we immediately deduce the slopes of NP
(
C

(ε)

H̃
(w⋆,−)

)
at each point w⋆ ∈ mCp

are exactly m(H̃) disjoint copies of the multiset of the slopes of NP
(
G

(ε)
ρ̄ (w⋆,−)

)
, except

that for the slope zero part of NP
(
C

(ε)

H̃
(w⋆,−)

)

• has length m′(H̃) when r̄p is split and ε = ωb × ωa+b+1, and

• has length m′′(H̃) when r̄p is split and ε = ωa+b+1 × ωb−1.

Theorem 8.7 is proved. �

Remark 8.8. (1) The construction of spectral curve in Step I using Buzzard’s machine
in Step I agrees with Emerton’s construction as explained in the proof of [Em06, Proposi-
tion 4.2.36].

(2) We expect that our method of proof can be generalized to the case of r̄-localized space
of modular forms when the residual Galois representation r̄ is reducible. In this case, the

corresponding H̃ is no longer projective as an OJKpK-module, causing some trouble. We
leave this to interested readers.

In what follows, we give three applications: Gouvêa–Mazur conjecture, Gouvêa’s distribu-
tion conjecture, and a refined spectral halo theorem. We refer to § 1.16, § 1.19, and § 1.22,
respectively, for a discussion on the history of these conjectures. Here, we give directly their
statements and proofs. These applications share the following setup.

Notation 8.9. For the rest of this section, assume that p ≥ 11. Let r̄p be a residual Galois

representation as in Notation 7.2 with a ∈ {2, . . . , p − 5}. Let H̃ be an OJKpK-projective
arithmetic module of type r̄p and multiplicity m(H̃).

Fix a relevant character ε of ∆2. For each k ∈ Z≥2, let

(8.9.1) α
(ε)
1 (k), α

(ε)
2 (k), . . .

denote the list of Up-slopes on S
†,(ε)
k counted with multiplicity, which contains the Up-slopes

on SIw
k (ε · (1× ω2−k)) as the first dIwk (ε · (1× ω2−k)) terms.

Theorem 8.10 (r̄p-version of Gouvêa–Mazur conjecture). Keep the notation and assump-
tions in Notation 8.9. Let n ≥ N. For weights k1, k2 > 2n + 2 such that k1 ≡ k2 ≡
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a+ 2b+ 1 mod (p− 1) and vp(k1 − k2) ≥ n+ 5, the sequence of Up-slopes (8.9.1) for k1 and
for k2 agree up to slope n.

Proof. By Theorem 8.7, the sequence (8.9.1) (except for possibly the first several zeros) is

precisely the slopes of NP
(
G

(ε)
ρ̄ (wk,−)

)
with multiplicity m(H̃). This then follows from the

main theorem of [Re22+, Theorem 1.4], who proved the corresponding statement for the
ghost slopes. �

Theorem 8.11 (r̄p-version of Gouvêa’s slope distribution conjecture). Keep the notation
and assumption in Notation 8.9. For each k ≡ kε mod (p− 1), write µk denote the uniform
probability measure for the multiset

{
α
(ε)
1 (k)

k − 1
,
α
(ε)
2 (k)

k − 1
, . . . ,

α
(ε)

dIwk (ε̃1)
(k)

k − 1

}
⊂ [0, 1].

(1) When an positive integer i satisfies

i <





m(H̃) · durk (ε1)−m′′(H̃) if r̄p is split and ε = ωb × ωa+b+1,

m(H̃) · durk (ε1) +m′′(H̃) if r̄p is split and ε = ωa+b+1 × ωb−1,

m(H̃) · durk (ε1) otherwise,

we have αi(k) =
p− 1

2
· i

m(H̃)
+O(log k).

(2) As k →∞ while keeping k ≡ kε mod (p− 1), the measure µk weakly converges to the
probability measure

1

p + 1
δ[0, 1

p+1
] +

1

p+ 1
δ[ p
p+1

,1] +
p− 1

p+ 1
δ 1

2
,

where δ[a,b] denotes the uniform probability measure on the interval [a, b], and δ 1
2
is

the Dirac measure at 1
2
.

Proof. By Theorem 8.7, the sequence (8.9.1) is precisely the slopes of NP
(
G

(ε)
ρ̄ (wk,−)

)
with

multiplicity m(H̃) (except when ρ̄ is split and ε = ωb × ωa+b or ωa+b+1 × ωb−1, the multi-

plicity of the slope zero part are precisely m′(H̃) and m′′(H̃), respectively). The power series

G
(ε)
ρ̄ (w, t) is an abstract ghost series in the sense of [BP19a] with

A =
2m(H̃)

p+ 1
and B =

2(p− 1) ·m(H̃)

p+ 1

by Definition-Proposition 2.12 (and § 2.4(6)). With this, (1)–(4) follow from [BP19b, Theo-
rem 3.1 and Corolllary 3.2]. �

Theorem 8.12 (refined spectral halo conjecture). Keep the notation and assumptions in

Notation 8.9. Let wt :W(ε)×Grig
m →W(ε) be the projection to weight space, and let Spc(ε)(H̃)

denote the zero locus of C
(ε)

H̃
(w, t) in W(ε) ×Grig

m . Set

W(ε)
(0,1) =

{
w⋆ ∈ W(ε)

∣∣ vp(w⋆) ∈ (0, 1)
}

and Spc
(ε)
(0,1)(H̃) = Spc(ε)(H̃) ∩ wt−1(W(ε)

(0,1)).

Then Spc
(ε)
(0,1)(H̃) is a disjoint union Y0

⊔
Y1
⊔
Y2
⊔ · · · such that
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(1) Y0 is non-empty only when r̄p is split and ε = ωa+b+1× ωb−1, in which case, for each

point (w⋆, ap) ∈ Y0, vp(ap) = 0, and deg
(
Y0/W(ε)

(0,1)

)
= m′′(H̃).

(2) for each point (w⋆, ap) ∈ Yn with n ≥ 1, vp(ap) = (deg g
(ε)
n (w)−deg g

(ε)
n−1(w)) · vp(w⋆),

and
(3) the weight map wt : Yn → W(ε)

(0,1) is finite and flat of degree m(H̃), except when r̄p is

split, ε = ωb × ωa+b, and n = 1, in which case deg
(
Y1/W(ε)

(0,1)

)
= m′(H̃).

Proof. By Theorem 8.7, the sequence (8.9.1) is precisely the slopes of NP
(
G

(ε)
ρ̄ (wk,−)

)
with

multiplicity m(H̃) (except when ρ̄ is split and ε = ωb×ωa+b or ωa+b+1×ωb−1, the multiplicity
of the slope zero part are precisely m′(H̃) andm′′(H̃), respectively). But when vp(w⋆) ∈ (0, 1),

we have vp(g
(ε)
n (w⋆)) = deg g

(ε)
n (w) · vp(w⋆). Moreover, Definition-Proposition 2.12(4) says

that the differences deg g
(ε)
n (w) − deg g

(ε)
n−1(w) is strictly increasing in n. It follows that we

may “distribute” the points (w⋆, ap) ∈ Spc
(ε)
(0,1)(H̃) by the ratio vp(ap)/vp(w⋆) into the disjoint

spaces Yn as described in (1) and (2). The theorem is clear. �

9. Irreducible components of eigencurves

In this section, we prove the finiteness of irreducible components of the spectral curve

associated to an OJKpK-projective arithmetic module H̃ of type r̄p. In particular, this applies
to the case of eigencurves associated to overconvergent modular forms (with appropriate
Hecke maximal ideal localization) and provides some positive theoretical evidence towards
a question asked by Coleman and Mazur in their seminal paper [CM98, page 4], under our
reducible nonsplit and very generic condition.

We will separate the discussion for ordinary part and the non-ordinary part.

Notation 9.1. Let r̄p and ρ̄ be as in Notation 7.2 and let H̃ be an OJKpK-projective arith-

metic module of type r̄p and multiplicity m(H̃).
For each relevant character ε of ∆2, define the nonordinary part of the ghost series to be

G
(ε)
ρ̄,nord(w, t) :=

{(
G

(ωb×ωa+b)
ρ̄ (w, t)− 1

)
/t if ε = ωb × ωa+b,

G
(ε)
ρ̄ (w, t) otherwise.

The following is the main subject of our study.

Definition 9.2. Fix a rational number λ ∈ (0, 1) ∩ Q. Put W≥λ := SpmE〈w/pλ〉. Let
A1,rig =

⋃
n∈N(SpmE〈pnt〉) denote the rigid affine line.

(1) A Fredholm series over W≥λ is a power series F (w, t) ∈ E〈w/pλ〉JtK such that
f(w, 0) = 1 and F (w, t) converges over W≥λ × A1,rig. Let Z(F ) denote its zero
in W≥λ × A1,rig, as a rigid analytic subvariety. We say F is nontrivial if F 6= 1.

(2) A Fredholm series F (w, t) is of ghost type r̄p and ε, if for every w⋆ ∈ W≥λ(Cp),

NP(F (w⋆,−)) is the same as NP
(
G

(ε)
ρ̄,nord(w⋆,−)

)
, but stretched in the x- and y-

directions by some m(F ) ∈ N. This m(F ) is called the multiplicity of F . We also
call the subvariety Z(F ) of ghost type r̄p and ε.

We emphasize that the condition λ ∈ (0, 1) ∩ Q implies that W≥λ contains some “halo
region”, namely some part that Theorem 8.12 applies (even though our argument does not
use Theorem 8.12 logically).
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The following lemma factors out the slope zero part of the characteristic power series.

Lemma 9.3. Let r̄p, ε, and H̃ be as in Notation 9.1 with a ∈ {2, . . . , p− 5} and p ≥ 11. Let

C
(ε)

H̃
(w, t) = 1+

∑
n≥1 c

(ε)
n (w)tn ∈ OJw, tK denote the characteristic power series of Up-action

on the abstract overconvergent forms associated to H̃. Then there is a canonical factorization
in OJw, tK:

(9.3.1) C
(ε)

H̃
(w, t) = C

(ε)

H̃,ord
(w, t) · C(ε)

H̃,nord
(w, t),

where C
(ε)

H̃,nord
(w, t) is a Fredholm series of ghost type r̄p and ε with multiplicity m(H̃) and

C
(ε)

H̃,ord
(w, t) is a polynomial

• of degree m(H̃) when ε = ωb × ωa+b and r̄p is nonsplit,

• of degree m′(H̃) when ε = ωb × ωa+b and r̄p is split,

• of degree m′′(H̃) when ε = ωa+b+1 × ωb−1 and r̄p is split, and
• of degree 0 otherwise.

Moreover, the constant term of C
(ε)

H̃,ord
(w, t) is 1 and the top degree coefficient of C

(ε)

H̃,ord
(w, t)

belongs to OJwK×.

Proof. This follows from Theorem 8.7 and the standard Weierstrass Preparation Theorem.
�

Remark 9.4. In fact, Lemma 9.3 holds under much weaker assumption such as 1 ≤ a ≤ p−4
and p ≥ 5.

Proposition 9.5. Let F (w, t) ∈ E〈w/pλ〉JtK be a nontrivial Fredholm series. Then there
exists a unique nonempty set of positive integers {ni} and nonempty finite set of distinct
irreducible nontrivial Fredholm series {Pi} such that F =

∏
P ni
i . Moreover, the irreducible

components of Z(F ) endowed with their reduced structures are the Z(Pi)’s.
Proof. This is [CM98, Theorem 1.3.7] and [Con99, Corollary 4.2.3]. �

The main theorem of this section is the following (which holds under weaker conditions
p ≥ 5 and 1 ≤ a ≤ p− 4).

Theorem 9.6. Let F (w, t) ∈ E〈w/pλ〉JtK be a nontrivial Fredholm series of ghost type r̄p
and ε with multiplicity m(F ). Then any Fredholm series H(w, t)|F (w, t) is of ghost type ρ̄
and ε with some multiplicity m(H) ≤ m(F ).

The proof of Theorem 9.6 will occupy the rest of this section. We note the following.

Corollary 9.7. Let r̄p, ε, and H̃ be as in Lemma 9.3, and in particular a ∈ {2, . . . , p− 5}
and p ≥ 11. Then Spc(ε)(H̃) = Spc

(ε)
ord(H̃)

⊔
Spc

(ε)
nord(H̃) is a disjoint union of the slope zero

subspace and the positive slope subspace.

(1) The ordinary subspace Spc
(ε)
ord(H̃) is nonzero only when ε = ωb × ωa+b, or when ε =

ωa+b+1 × ωb−1 and ρ̄ is split. In this case, wt : Spc
(ε)
ord(H̃)→W(ε) is finite and flat of

degree m(H̃).
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(2) The nonordinary subspace Spc
(ε)
nord(H̃) has finitely many irreducible component and

every irreducible component is of ghost type r̄p and ε, and the total multiplicity is

m(H̃).

Proof. The factorization in Lemma 9.3 gives the decomposition Spc(ε)(H̃) = Spc
(ε)
ord(H̃)

⊔
Spc

(ε)
nord(H̃),

and (2) follows from Theorem 9.6 immediately. �

Further specializing Corollary 9.7 to the case of modular forms proves Theorem 1.15.

Remark 9.8. (1) While Theorem 9.6 works for a ∈ {1, . . . , p − 4}, Corollary 9.7 holds
under the slightly more restrictive assumption that a ∈ {2, . . . , p − 5} and p ≥ 11,
which is needed for Theorem 8.7.

(2) A philosophical implication of Theorem 9.6 and Corollary 9.7 is that the non-ordinary
part of the spectral curve seems to share certain “rigidity” or “finiteness” similar to
that of the ordinary part.

(3) It is clear from Corollary 9.7 that if ρ̄ is nonsplit and m(H̃) = 1, then Spc
(ε)
nord(H̃) is

irreducible. It is natural to ask: when ρ̄ is split and m(H̃) = 2, can one prove that

Spc
(ε)
nord(H̃) is irreducible?

In general, suppose that we are in an automorphic setting with all tame local
conditions being “primitive” (e.g. having ℓ-adic Breuil–Mézard multiplicity one),

does it imply that Spc
(ε)
nord(H̃) is irreducible?

Notation 9.9. Fix λ ∈ (0, 1) ∩ Q for the rest of this section. In what follows, we write W
to denote the base change of the rigid analytic space W to Cp. For a rigid analytic space X
over Cp, write XBerk

for the associated Berkovich space.

For a Fredholm series F (w, t) = 1+ f1(w)t+ · · · ∈ E〈w/pλ〉JtK and w⋆ ∈ WBerk

≥λ , define the

Newton polygon NP
(
F (w⋆,−)

)
to be the convex hull of (0, 0) and
(
n,− ln |fn(w⋆)|

ln p

)
for n ∈ N.

Then w⋆ 7→ NP
(
F (w⋆,−)

)
is continuous over WBerk

≥λ .

For a closed point w⋆ ∈ W and r ∈ Q>0, write

D(w⋆, r) :=
{
w ∈ W(Cp)

∣∣ wp(w − w⋆) ≥ r
}

for the closed disk, and ηw⋆,r for the associated Gaussian point.

The following standard harmonicity fact is the key to our proof of Theorem 9.6; see for
example [Ke10, Proposition 11.1.2].

Definition-Lemma 9.10. Use Ŏ to denote the completion of the maximal unramified exten-
sion of O with fraction field Ĕ and residual field F. Let f(w) ∈ E〈w/pλ〉 be a power series,
w⋆ ∈ W≥λ(Cp) a closed point, and µ ∈ (λ,∞) ∩ Z. Define the following slope derivatives:
for ᾱ ∈ F (fixing a lift α ∈ OĔ of ᾱ)

V +
w⋆,µ(f) := lim

ǫ→0+

(
− ln

∣∣f(ηw⋆,µ−ǫ)
∣∣− ln

∣∣f(ηw⋆,µ)
∣∣

ln p · ǫ
)
,

V ᾱ
w⋆,µ(f) := lim

ǫ→0+

(
− ln

∣∣f(ηw⋆+αpµ,µ+ǫ)
∣∣− ln

∣∣f(ηw⋆+αpµ,µ)
∣∣

ln p · ǫ
)
.

(9.10.1)
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Then we have

(9.10.2) V +
w⋆,µ(f) +

∑

ᾱ∈F

V ᾱ
w⋆,µ(f) = 0.

Here each of V ᾱ
w⋆,µ(f) does not depend on the choice of the lift α; and all but finitely many

terms in the sum (9.10.2) is zero.
Such definition and harmonicity (9.10.2) extends in a natural way to rational functions of

the form f(w)/g(w) with f(w), g(w) ∈ E〈w/pλ〉 by setting V ?
w⋆,µ(f/g) := V ?

w⋆,µ(f)− V ?
w⋆,µ(g)

with ? = + or ᾱ ∈ F (whenever the limits exists).

9.11. Proof of Theorem 9.6. In this entire proof, we fix a relevant character ε and sup-
press all superscripts (ε). Assume that F (w, t) = H(w, t) · H ′(w, t) for Fredholm series
H,H ′ ∈ E〈w/pλ〉JtK. Then for any w⋆ ∈ W≥λ(Cp), the slopes in NP

(
H(w⋆,−)

)
(resp.

NP
(
H ′(w⋆,−)

)
) form a subset of slopes of NP

(
F (w⋆,−)

)
, which is further a subset of

slopes of NP
(
Gρ̄,nord(w⋆,−)

)
. Put

F (w, t) = 1 + f1(w)t+ · · · , H(w, t) = 1 + h1(w)t+ · · · , and H ′(w, t) = 1 + h′1(w)t+ · · · .

Recall from Proposition 2.18(3) that, for each fixed n ∈ N, all elements w⋆ ∈ W≥λ(Cp) for
which (n, vp(gn(w⋆))) is a vertex of NP

(
Gρ̄p,nord(w⋆,−)

)
form an open subspace of W≥λ:

Vtxn,≥λ :=W≥λ

∖⋃

k

D
(
wk, ∆k,| 1

2
dIwk (ε̃1)−n|+1 −∆k,| 1

2
dIwk (ε̃1)−n|

)
,

where D(wk, r) is the base change of D(wk, r) over Cp, and the union is taken over all
k = kε + (p − 1)k• with k• ∈ Z such that n ∈

(
durk (ε1), d

Iw
k (ε̃1) − durk (ε1)

)
. The Berkovich

space Vtx
Berk

n,≥λ is clearly connected.

In what follows, we write slpn(w⋆) for the nth slope in NP
(
Gρ̄,nord(w⋆,−)

)
. The proof is

divided into three steps.
Step I: For each n, we will prove that the total multiplicity of the n smallest slopes of

NP
(
Gρ̄,nord(w⋆,−)

)
in NP

(
H(w⋆,−)

)
is constant in w⋆ ∈ Vtx

Berk

n,≥λ; write m(H, n) for this
constant. We define m(H ′, n) for H ′ similarly. It is then clear that m(H, n) +m(H ′, n) =
n ·m(F ).

To this end, it is sufficient to show that the total multiplicity totmultn(w⋆) of those slopes
in NP(H(w⋆,−)) that are less than or equal to slpn(w⋆), is a locally constant function on

Vtx
Berk

n,≥λ. We proceed by induction on n and start from the case n = 0. Now suppose the claim

is proved for smaller n. For w⋆ ∈ Vtx
Berk

n,≥λ, suppose totmultn(w⋆) = m, which is obviously

less than or equal to n · m(F ). Since (n, vp(gn(w⋆))) is a vertex of NP
(
Gρ̄p,nord(w⋆,−)

)
,

µ = slpn+1(w⋆) − slpn(w⋆) > 0. On the other hand, note that w⋆ 7→ NP
(
H(w⋆,−)

)
is

continuous for the Berkovich topology. We may choose a neighborhood U of w⋆ in Vtx
Berk

n,≥λ

such that the following conditions hold for any w′
⋆ ∈ U ,

• slpn+1(w
′
⋆)− slpn(w

′
⋆) >

µ
2
,

• for every 1 ≤ i ≤ n, the difference between the i-th slopes of NP
(
H(w⋆,−)

)
and

NP
(
H(w′

⋆,−)
)
is strictly less than µ

3n·m(F )
, and
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• for every 1 ≤ i ≤ n,

|vp(hi(w⋆))− vp(hi(w′
⋆))| <

µ

6
.

Suppose totmultn(w
′
⋆) = m′. If m′ < m, then by the inductive hypothesis and the first two

conditions, we may deduce that the sum of the first m slopes of NP
(
H(w′

⋆,−)
)
minus the

sum of the first m slopes of NP
(
H(w⋆,−)

)
, which is nothing but vp(hm(w

′
⋆))− vp(hm(w⋆)),

is at least µ
2
− mµ

3nm(F )
≥ µ

2
− µ

3
= µ

6
. This makes a contradiction with the third condition.

Hence m′ ≥ m. Similar argument yields that m ≥ m′.

Step II: We prove a technical claim. For each integer n ≥ 1, Definition-Proposition 2.12(2)
implies that there is a unique weight k = kε+(p−1)(n+δε−2) such that k ≡ kε mod (p−1)
and 1

2
dIwk (ε̃1) = n− 1.

Claim: for all ǫ ∈ (0, 1
2
) and all α ∈ OCp,

(1) the point ηwk,∆k,1−∆k,0−ǫ belongs to the subspaces Vtx
Berk

n,≥λ and Vtx
Berk

n−1,≥λ ofW≥λ, and

(2) the points η
wk+αp

∆k,1−∆k,0 ,∆k,1−∆k,0+ǫ
belongs to the subspaces Vtx

Berk

n,≥λ and Vtx
Berk

n−2,≥λ

but not Vtx
Berk

n−1,≥λ.

Proof: By Proposition 2.18(3), Vtx
Berk

n−1,≥λ does not contain the disc D(wk,∆k,1−∆k,0), so

for ǫ ∈ (0, 1
2
),

• the points η
wk+αp

∆k,1−∆k,0 ,∆k,1−∆k,0+ǫ
do not belong to Vtx

Berk

n−1,≥λ, and

• the point δwk,∆k,1−∆k,0−ǫ does not belong to the removed disc D(wk,∆k,1 −∆k,0).

On the other hand, to get Vtx
Berk

n−1±1,≥λ, we need to remove the disc D(wk,∆k,2 −∆k,1). But
by [LTXZ22+, Lemmas 5.6 and 5.8], we have ∆k,2 −∆k,1 ≥ ∆k,1 −∆k,0 + 1; so none of the

points in (1) and (2) belong to this disc D(wk,∆k,2 − ∆k,1). So (1) and (2) hold for this
particular “removed disc centered at wk”. We need to explain that other discs removed to

get Vtx
Berk

n−1−s,≥λ with s ∈ {±1, 0} will not interfere with the points in (1) and (2).

Now, take any k′ = k′•+(p−1)kε 6= k and any s ∈ {±1, 0}. The condition 1
2
dIwk (ε̃1) = n−1

can be rewritten (via Definition-Proposition 2.12) as

(n− 1− s)− 1
2
dIwk′ (ε̃1) = k• − k′• − s.

By Proposition 2.18(3), the corresponding disc removed from W≥λ to get Vtx
Berk

n−1−s,≥λ is

precisely D(wk′,∆k′,|k•−s−k′•|+1 −∆k′,|k•−s−k′•|).

Suppose for contrary that D(wk′,∆k′,|k•−s−k′•|+1 −∆k′,|k•−s−k′•|) contains one of the points
in (1) and (2) for some s ∈ {±1, 0}. Then we have

• (for the radii) ∆k,1 −∆k,0 + ǫ ≥ ∆k′,|k•−s−k′•|+1 −∆k′,|k•−s−k′•|, and

• (for the centers) vp(wk′ −wk) ≥ min
{
∆k′,|k•−s−k′•|+1−∆k′,|k•−s−k′•|, ∆k,1−∆k,0− ǫ

}
.

Yet the differences ∆k′,|k•−s−k′•|+1 − ∆k′,|k•−s−k′•| and ∆k,1 − ∆k,0 belong to 1
2
Z by Propo-

sition 2.18(6), and vp(wk′ − wk) ∈ Z. The condition ǫ ∈ (0, 1
2
) guarantees that the two

inequalities above still hold after setting ǫ = 0 by integrality. In particular,

(9.11.1) vp(wk′ − wk) ≥ ∆k′,|k•−s−k′•|+1 −∆k′,|k•−s−k′•|.
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This inequality implies that n−1−s ∈ nSwk′ ,k by Definition 2.17, and thus nSwk′ ,k contains
at least one of {n−3, n−2, . . . , n+1}. This would imply by Proposition 2.18(5) that at least
one of (0,∆k,0), (1,∆k,1), or (2,∆k,2) is not a vertex of ∆k; this contradicts with [LTXZ22+,
Lemmas 5.6 and 5.8] (which says that the “first” p − 1 points on ∆k are vertices). This
completes the proof of the Claim in Step II.

Step III: Write m(H) := m(H, 1) and m(H ′) := m(H ′, 1). We will prove inductively
that m(H, n) = n ·m(H) and m(H ′, n) = n ·m(H ′).

The inductive base is clear. We assume that the above statement holds for smaller n’s.
For the integer n in consideration, we take the weight k as in Step II.

By Step II(1), ηwk,∆k,1−∆k,0−ǫ belongs to both Vtx
Berk

n,≥λ and Vtx
Berk

n−1,≥λ for all ǫ ∈ (0, 1
2
). By

Step I and the inductive hypothesis, we have

|hm(H,n)(ηwk,∆k,1−∆k,0−ǫ)| =
∣∣∣gm(H)
n−1 (ηwk,∆k,1−∆k,0−ǫ) ·

( gn
gn−1

)m(H,n)−m(H,n−1)

(ηwk,∆k,1−∆k,0−ǫ)
∣∣∣.

By continuity, the above equality holds for ǫ = 0 as well. So in particular, for the slope
derivatives at ηwk,∆k,1−∆k,0 defined in (9.10.1), we have

(9.11.2) V +
wk,∆k,1−∆k,0

(hm(H,n)) = V +
wk,∆k,1−∆k,0

(
g
m(H)
n−1 ·

( gn
gn−1

)m(H,n)−m(H,n−1))
.

On the other hand, by Step II(2), for every α ∈ OCp and any ǫ ∈ [0, 1
2
), η

wk+αp
∆k,1−∆k,0 ,∆k,1−∆k,0+ǫ

is contained in Vtx
Berk

n,≥λ and Vtx
Berk

n−2,≥λ but not in Vtx
Berk

n−1,≥λ. It follows that the Newton poly-
gon of Gρ̄,nord(w,−) at each of those points is a straight line of width 2 from n− 2 to n. We

therefore deduce that for ᾱ ∈ F,

(9.11.3) V ᾱ
wk,∆k,1−∆k,0

(hm(H,n)) = V ᾱ
wk,∆k,1−∆k,0

(
g
m(H)
n−2 ·

( gn
gn−2

)(m(H,n)−m(H,n−2))/2)
.

Taking the sum of (9.11.2) and (9.11.3) for all ᾱ ∈ F and using the harmonicity equality
(9.10.2) (for hm(H,n) in the first equality and for gn and gn−2 in the third equality), we deduce
that

0
(9.10.2)
= V +

wk,∆k,1−∆k,0
(hm(H,n)) +

∑

ᾱ∈F

V ᾱ
wk,∆k,1−∆k,0

(hm(H,n))

= V +
wk,∆k,1−∆k,0

(
g
m(H)
n−1 ·

( gn
gn−1

)m(H,n)−m(H,n−1))

+
∑

ᾱ∈F

V ᾱ
wk,∆k,1−∆k,0

(
g
m(H)
n−2 ·

( gn
gn−2

)(m(H,n)−m(H,n−2))/2)

(9.10.2)
= V +

wk,∆k,1−∆k,0

((gngn−2

g2n−1

)(m(H,n)−m(H,n−1)−m(H))/2)
.

(The third equality also makes use of m(H, n− 1)−m(H, n− 2) = m(H) on the exponents
of gn and gn−2.)

To show that m(H, n) = n ·m(H), or equivalently m(H, n)−m(H, n−1) = m(H), it then
suffices to show that

(9.11.4) 2V +
wk,∆k,1−∆k,0

(gn−1) 6= V +
wk,∆k,1−∆k,0

(gn) + V +
wk,∆k,1−∆k,0

(gn−2).
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By definition, for i ∈ {n− 1, n, n+ 1}, we have

(9.11.5) V +
wk,∆k,1−∆k,0

(gi) =
∑

vp(wk′−wk)≥∆k,1−∆k,0

mi(k
′)

is the sum of ghost zero multiplicities for those weights k′ ≡ kε mod (p − 1) such that
vp(wk′−wk) ≥ ∆k,1−∆k,0. Note that the function i 7→ mi(k

′) is linear over i ∈ {n−1, n, n+1}
except that i is equal to 1

2
dIwk′ , d

Iw
k′ −durk′ , and durk′ . However, by the definition of near-Steinberg

range in Definition 2.17, the condition vp(wk′ −wk) ≥ ∆k,1−∆k,0 implies that n− 1 belongs
to the near-Steinberg range for (wk′, k). Yet Proposition 2.18(1) (for Lwk′ ,k ≥ 1) implies that
the condition vp(k

′
• − k•) ≥ ∆k,1 − ∆k,0 excludes the case that i = dIwk′ − durk′ or i = durk′ . So

the only k′ that appears in the sum of (9.11.5) and that i 7→ mi(k
′) is not linear is when

k′ = k, in which case 2mn−1(k)−mn(k)−mn−2(k) = 2. It then follows that

2V +
wk,∆k,1−∆k,0

(gn−1)− V +
wk,∆k,1−∆k,0

(gn)− V +
wk,∆k,1−∆k,0

(gn−2) = 2.

So (9.11.4) is not an equality. This completes the inductive proof of Step II.

Remark 9.12. The claim in Step II can be probably proved without referencing to the
heavy results such as Proposition 2.18(3)(4)(5), but that would make the proof longer.

References

[AXZ23+] J. An, L. Xiao, and B. Zhao, A refined spectral halo theorem, in preparation.
[Ar21] B. Arsovski, On the reductions of certain two-dimensional crystabelline representations. Res. Math.

Sci. 8 (2021), no. 1, Paper No. 12, 50 pp.
[BL22] J. Bergdall and B. Levin, Reductions of some two-dimensional crystalline representations via Kisin

modules, Int. Math. Res. Not. (2022), no. 4, 3170—3197.
[BP16] J. Bergdall and R. Pollack, Arithmetic properties of Fredholm series for p-adic modular forms,

Proc. Lond. Math. Soc. 113 (2016), no. 4, 419–444.
[BP19a] J. Bergdall and R. Pollack, Slopes of modular forms and the ghost conjecture, Int. Math. Res. Not.,

(2019), 1125–1244.
[BP19b] J. Bergdall and R. Pollack, Slopes of modular forms and the ghost conjecture II, Trans. Amer.

Math. Soc., 372 (2019), no. 1, 357–388.
[BP21+] J. Bergdall and R. Pollack, Slopes of modular forms and reducible Galois representations: an

oversight in the ghost conjecture, arXiv:2110.07973.
[BLZ04] L Berger, H. Li, and H. J. Zhu, Construction of some families of 2-dimensional crystalline repre-

sentations, Math. Ann. 329 (2004), no. 2, 365–377.
[BhGh15] S. Bhattacharya and E. Ghate, Reductions of Galois representations for slopes in (1, 2), Doc.

Math. 20 (2015), 943–987.
[BGR18] S.Bhattacharya, E.Ghate, and S. Rozensztajn, Reduction of Galois Representations of slope 1, J.

Algebra 508 (2018), 98–156.
[Br] C. Breuil, notes for his lecture at Columbia university, available on his webpage.
[Br03] C. Breuil, Sur quelques représentations modulaires et p-adiques de GL2(Qp), II, J. Inst. Math.

Jussieu 2 (2003), no. 1, 23–58.
[BD20] C. Breuil and Y. Ding, Higher L-invariants for GL3(Qp) and local-global compatibility, Camb. J.

Math. 8 (2020), no. 4, 775–951.
[BHS17] C. Breuil, E. Hellmann, and B. Schraen, Une interprétation modulaire de la variété trianguline,
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