
DISTINGUISH NEWFORMS VIA THEIR PRIME DIVISORS

WEI WANG AND CHUANGXUN CHENG

Abstract. Given two non-CM newforms with integral Fourier coefficients, in this paper
we study the number of distinct prime divisors of their Fourier coefficients via probability
method. Based on a recent result of El-Baz, Loughran and Sofos, using the Galois represen-
tations attached to newforms and the effective Chebotarev’s density theorem, and assuming
the generalized Riemann hypothesis, we show that the distribution of the number of dis-
tinct primes dividing the Fourier coefficients behaves like the standard multivariate normal
distribution if these newforms are not twists of each other. As a consequence, we prove a
multiplicity one result for modular forms under the generalized Riemann hypothesis.

1. Introduction

The Erdős-Kac theorem provides a splendid connection between probability theory and
number theory. It states that, if denote by ω(n) the number of distinct prime divisors of n,
then the random variables

ω(n)− log log n√
log log n

defined on the set of natural numbers less than x, as x goes to infinity converge in distribution
to the standard normal distribution. More precisely, for any α ∈ R,

lim
x→+∞

1

x
#

{
n ≤ x :

ω(n)− log log n√
log log n

< α

}
= G(α) :=

1√
2π

∫ α

−∞
e−x

2/2dx.

Erdős and Kac’s proof is based on the central limit theorem and sieve methods [6]. They
provide a method to study the properties of arithmetic functions by studying their statistical
properties. Since then, various generalizations of the Erdős-Kac theorem have been studied
by many mathematicians (for example see [5, 7]).

R. Murty and K. Murty proved a modular analogue of the Erdős-Kac theorem [11]. Let
τ(n) denote the Ramanujan τ -function, assuming the Riemann hypothesis for all Dedekind
zeta functions of number fields (GRH), they proved that

lim
x→+∞

1

π(x)
#

{
p ≤ x : τ(p) 6= 0 and

ω (τ(p))− log log p√
log log p

< α

}
= G(α).

Liu proved another prime analogue of the Erdős-Kac theorem regarding elliptic curves [8].
Let E be a non-CM elliptic curve defined over Q. For a prime p of good reduction, denote
by E(Fp) the set of rational points defined over the finite field Fp, under GRH Liu proved
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that

lim
x→+∞

1

π(x)
#

{
p ≤ x : p is of good reduction and

ω(#E (Fp))− log log p√
log log p

< α

}
= G(α).

In a recent paper [10], El-Baz, Loughran and Sofos generalized the work of predecessors and
established a multivariate version of the Erdős-Kac theorem. Roughly speaking, if a family
of integer sequences satisfies certain hypotheses, the number of distinct prime divisors of
these sequences has a probabilistic behavior which fits a multivariate normal distribution.
El-Baz, Loughran and Sofos used their result to study the distributions of integral points on
varieties.

Applying the result of El-Baz, Loughran, Sofos and generalizing the works of R. Murty,
K. Murty and Liu, in this paper we establish some results regarding two or more modular
forms which are not twists of each other. The main result of this paper is the following.

Theorem 1. Let f ∈ Sk1(Γ0(Nf )) and h ∈ Sk2(Γ0(Nh)) be two non-CM newforms with
integral Fourier coefficients ap(f) and ap(h), respectively of weights at least 2. Moreover
we assume that f is not a twist of h, i.e. there exists no Dirichlet character χ such that
f = h⊗χ. Let F1(x, y), F2(x, y) be two bivariate polynomials with integral coefficients which
have the form of ax+ r(y), a 6= 0. Let

T :=
{
p is a prime : F1

(
ap(f), pk1−1

)
6= 0 and F2

(
ap(h), pk2−1

)
6= 0
}
.

For every x > 1, denote by Tx the subset of T consisting of elements less than x. Then under
GRH,

lim
x→+∞

1

|Tx|
#
{
p ∈ Tx : ω

(
F1

(
ap(f), pk1−1

))
< ω

(
F2

(
ap(h), pk2−1

))}
=

1

2
.

In a word, one can distinguish newforms by the number of distinct primes dividing the
Fourier coefficients. In particular, given two non-isogenous non-CM elliptic curves E1 and
E2 over Q, by the modularity theorem [2] and the above result with F1 = F2 = y + 1 − x,
we have the following corollary.

Corollary 2. If E1 is not a quadratic twist of E2, then under GRH,

lim
x→+∞

1

π(x)
# {p ≤ x : p is of good reduction and ω (#E1(Fp)) < ω (#E2(Fp))} =

1

2
.

This paper is organized as follows. El-Baz, Loughran and Sofos’ theorem is briefly reviewed
in Section 2. In Section 3, we use the Galois representations attached to newforms and the
effective Chebotarev density theorem to prove Theorem 1 by applying El-Baz, Loughran and
Sofos’ result. Finally Section 4 contains some examples and generalizations of Theorem 1.

Notation. Let D be a subset of C and let f, g be two complex-valued map defined on D.
If g(x) is positive and there is a constant C such that |f(x)| ≤ Cg(x) for all x ∈ D, we
write either f(x) � g(x) or f(x) = O (g(x)). In the case that D is unbounded, we will
write f(x) = o (g(x)) if limx→∞,x∈D f(x)/g(x) = 0. Throughout this paper, π(x) denotes the
number of primes less than x; p, ` denote prime numbers; k1, k2 denote integers at least 2.
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2. Preliminaries

In this section, we reformulate El-Baz, Loughran and Sofos’ result in a concise form which
is sufficient for our application. Let T be an infinite subset of N. For every x > 1, denote
by Tx the subset of T consisting of elements less than x. Given a family of integer sequences
{ai(n)}1≤i≤m,n∈T , we have the following conditions.

C1. The sequences have polynomial growth, in other words, there exists a constant d > 0
such that ai(n) = O

(
nd
)

for all n. Note that this condition is stronger than the condition
appeared in [10, (2.7)].

C2. For each m-tuple of square-free integers (d1, . . . , dm), write

R(d1, . . . , dm;x) :=
1

|Tx|
# {n ∈ Tx : d1 | a1(n), . . . , dm | am(n)} .

Then there exist two functions g and e such that

R(d1, . . . , dm;x) = g(d1, . . . , dm) + e(d1, . . . , dm;x)

for all m-tuples of square-free integers (d1, . . . , dm) whose prime divisors are greater than
a given constant P . The function g should possess a multiplicative property, that is to
say

g(a1b1, . . . , ambm) = g(a1, . . . , am)g(b1, . . . , bm) if gcd(a1a2 · · · am, b1b2 · · · bm) = 1.

C3. Let y = xF (x), F (x) = log log log x/
√

log log x, then for all γ > 0,

(1)
∑′

|e(d1, . . . , dm;x)| = O
(
(log log x)−γ

)
,

where
∑′

runs through all m-tuples of square-free integers (d1, . . . , dm) which satisfy
that the prime divisors of di are greater than P and di < y for every i.

C4. For each 1 ≤ i, j ≤ n, let

gi(d) := g(1, . . . , 1, d
↑
i

, 1, . . . , 1) and gi,j(d) := g(1, . . . , 1, d
↑
i

, 1, . . . , 1, d
↑
j

, 1, . . . , 1).

Then for every 1 ≤ i ≤ m,

(2)
∑
`>x

g2
i (`) = O

(
1

log x

)
and

∑
`≤x

gi(`) = ci log log x+ c
′

i +O

(
1

log x

)
for some ci > 0, c

′
i ∈ R. Moreover for every 1 ≤ i, j ≤ m, i 6= j,

(3)
∑
`

gi,j(`) < +∞.

Note that this condition implies that the covariance matrix in [10, (2.11)] is trivial.

For each integer x > 0, define a uniform measure Px on T as follows. For any subset A of
T , define the probability measure:

Px(A) :=
1

|Tx|
#{n ≤ x : n ∈ A},
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then equipping with the discrete σ-algebra, T becomes a probability space. Define the
random vector Kx : T → Rn via

Kx(n) :=

(
ω (a1(n))− c1 log log x√

c1 log log x
, . . . ,

ω (am(n))− cm log log x√
cm log log x

)
.

Recall that a sequence of Rm-valued random vectors (Xn)n≥1 converges in distribution to
X if the distribution functions of (Xn)n≥1 converge to the distribution function F of X for
all continuous points of F , it is equivalent to saying that Pn[Xn ∈ A] → P[X ∈ A] for all
Borel sets A ⊆ Rm with P[X ∈ ∂A] = 0 (cf. [1, p.26]).

The result of [10, Theorem 2.1] claims the convergence of the above random vectors.

Theorem 3. If the family of sequences {ai(n)}1≤i≤m,n∈T satisfies C1, C2, C3 and C4, then
the random vectors

(T,Px)→ Rm : n 7→ Kx(n),

converge in distribution as x→ +∞ to the standard multivariate normal distribution.

Remark 1. Although in the statement of [10] g is defined on all Nm, from El-Baz, Loughran
and Sofos’ proof it is enough to assume that the support of g is the set of vectors (d1, . . . , dm)
with square-free entries whose prime divisors are greater than P .

Remark 2. In order that the error function satisfies condition (1), it suffices to check the
following stronger condition: there exist constants k, δ > 0 such that

(4) e(d1, . . . , dm;x) = O
(
(d1 · · · dm)kx−δ

)
.

Indeed, if inequality (4) holds, then∑′

|e(d1, . . . , dm;x)| � x−δ
∑′

(d1 · · · dm)k

� x−δ
∑′

ymk � x−δymk+m � x−δ,

where
∑′

runs through all m-tuples of square-free integers (d1, . . . , dm) such that di < y and
p | di ⇒ p > P . The last inequality holds since y = o(xε) for any ε > 0.

Remark 3. If the family of sequences {ai(n)}1≤i≤m,n∈T satisfies C1, C2, C3 and C4, by
Theorem 3 we have the following Erdős-Kac type theorem: for any Borel set A ⊆ Rm,

lim
x→+∞

1

|Tx|
#

{
n ∈ Tx :

(
ω (a1(n))− c1 log log x√

c1 log log x
, . . . ,

ω (am(n))− cm log log x√
cm log log x

)
∈ A

}
=

1

(2π)m/2

∫
A

e−
1
2

(x21+···+x2m)dx1 · · · dxm.

Moreover if c1 = · · · = cm and A = {(x1, . . . , xm) ∈ Rm : x1 < · · · < xm}, we have

lim
x→+∞

1

|Tx|
# {n ∈ Tx : ω (a1(n)) < · · · < ω (am(n))} =

1

m!
.

3. Proof of theorem 1

To simplify the notation, we illustrate the result for two newforms. In this section, we
choose the elements of the sequences in Section 2 to be the Fourier coefficients of certain
newforms. We then check that these sequences satisfy all the conditions in Section 2, then
by Theorem 3 and Remark 3 we get the desired result.
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3.1. Images of Galois representations. Let f =
∑∞

n=1 an(f)qn ∈ ZJqK ∩ Sk1(Γ0(Nf ))
be a newform which does not have complex multiplication (non-CM, for short). Ribet has
pointed out in [12, Remark 2] that for a non-CM newform with integral Fourier coefficients,
the Nebentypus character associated to it must be trivial. Since Sk (Γ0(N), χ) = 0 unless
χ(−1) = (−1)k, our conditions entail that the weight is even.

Following the construction of Shimura and Deligne (cf. [3]), attached to f , there exists an
`-adic Galois representation ρf,` : Gal(Q/Q) → GL2(Z`) which is unramified outside `Nf .
Composing with the natural projection GL2(Z`) → GL2(Z/`Z), we obtain a mod ` Galois
representation ρf,` such that for any p - `Nf ,

tr ρf,` (Frobp) ≡ ap(f) mod ` and det ρf,` (Frobp) ≡ pk1−1 mod `.

By Ribet’s work [13], the image of the mod ` representations can be well described. For any
sufficiently large prime `, the image of ρf,` is

G(`, 1) :=
{
u ∈ GL2(Z/`Z) : detu = vk1−1 for some v ∈ (Z/`Z)∗

}
.

Let h =
∑∞

n=1 an(h)qn ∈ ZJqK∩Sk2(Γ0(Nh)) be another non-CM newform, and we assume
that there is no Dirichlet character χ such that f = h ⊗ χ. Loeffler described the image of
the adelic Galios representation ρ̂f × ρ̂h, and he proved that the image of the adelic Galios
representation is open in the sense of [9, Theorem 3.4.1]. For sufficiently large primes ` and
`
′
, consider the direct sum

ρ`,`′ := ρf,` ⊕ ρh,`′ : Gal(Q/Q)→ GL2(Z/`Z)×GL2(Z/`′Z).

If ` = `
′
, Loeffler’s result implies that the image of ρ`,`′ is

G(`, `) :=

{
(u1, u2) ∈ GL2(Z/`Z)×GL2(Z/`Z) :

detu1 = vk1−1, detu2 = vk2−1 for some v ∈ (Z/`Z)∗

}
.

If ` 6= `
′
, by Loeffler’s result again, the image of ρ`,`′ is{

(u1, u2) ∈ GL2(Z/`Z)×GL2(Z/`′Z);

detu1 = vk1−1
1 , detu2 = vk2−1

2 for some v1 ∈ (Z/`Z)∗ and v2 ∈ (Z/`′Z)∗

}
.

For two square-free integers d1, d2, if their prime factorizations are d1 = p1 · · · pr and
d2 = q1 · · · qs, consider

ρd1,d2 := ρf,p1 ⊕ · · · ⊕ ρf,pr ⊕ ρh,q1 ⊕ · · · ⊕ ρh,qs .

Without loss of generality, we write d1 = LP, d2 = LQ, gcd(P,Q) = 1. By Loeffler’s result
and the Chinese remainder theorem, the image of ρd1,d2 is

G(d1, d2) :=


(u1, u2, u3, u4) ∈ GL2(Z/LZ)×GL2(Z/LZ)×GL2(Z/PZ)×GL2(Z/QZ) :

detu1 = αk1−1, detu2 = αk2−1 for some α ∈ (Z/LZ)∗,

detu3 = βk1−1 for some β ∈ (Z/PZ)∗,

detu4 = γk2−1 for some γ ∈ (Z/QZ)∗

 .
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3.2. Chebotarev’s density theorem. To gain the arithmetic information from the Galois
representations, we need the effective Chebotarev’s density theorem. The following version
of Chebotarev’s density theorem is from Serre [14, Théorème 4].

Theorem 4. Let K/Q be a finite Galois extension of number fields with Galois group G.
Let C be a subset of G which is stable under conjugation, and let Frobp be the Frobenius
element at an unramified prime p. Denote by πC(x) the set of primes p unramified in K for
which Frobp ∈ C and p ≤ x. Assuming that the Dedekind zeta function ζK(s) satisfies the
Riemann Hypothesis, then

πC(x) =
|C|
|G|

π(x) +O

(
|C|x

1
2

(
log dK
nK

+ log x

))
,

where dK and nK are the discriminant and the degree of the extension K/Q, respectively.

The following estimate is useful in our computation:

(5) log dK ≤ (nK − 1)
∑

p∈P (K)

log p+ nK |P (K)| log nK ,

where P (K) denotes the set of ramified primes [14, Proposition 6].
We follow the notation in Section 3.1. Given two bivariate polynomials F1, F2 with integral

coefficients, and for two square-free integers d1, d2 whose prime divisors are large enough,
define

C(d1, d2) :=

{
(u1, u2, u3, u4) ∈ G(d1, d2) :

F1(tr u1, detu1) = 0, F1(tr u3, detu3) = 0

F2(tr u2, detu2) = 0, F2(tr u4, detu4) = 0

}
.

It is a subset of G(d1, d2) which is stable under conjugation.
Applying the effective Chebotarev’s density theorem for the fixed field of ker ρd1,d2 , we get

1

π(x)

{
p ≤ x : d1 | F1

(
ap(f), pk1−1

)
and d2 | F2

(
ap(h), pk2−1

)}
=
|C(d1, d2)|
|G(d1, d2)|

+ e(d1, d2;x).

Let g(d1, d2) := |C(d1, d2)|/|G(d1, d2)|. The multiplicativity of g follows from the isomor-
phism G(d1d

′
1, d2d

′
2) ∼= G(d1, d2)×G(d

′
1, d

′
2) for gcd(d1d2, d

′
1d
′
2) = 1.

For the remainder term, the degree of the extension is O ((d1d2)4) (cf. Lemma 5), by
inequality (5) we have

π(x)e(d1, d2;x) = O
(

(d1d2)4x
1
2 log

(
(d1d2)5NfNhx

))
.

So for some ε > 0,

e(d1, d2;x) = O
(

(d1d2)5xε−
1
2

)
.

Remark 4. Note that the above error estimation has a similar form with condition (4).
Rather, according to Remark 2, a quasi-GRH, which assumes that the associated zeta func-
tions have no zero in the region Re(s) > δ for some δ ∈ (1

2
, 1), is sufficient for our purpose,

while it seem as difficult as the original GRH. It is a valuable challenge to seek an uncondi-
tional proof of inequality (1).
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3.3. Calculate conjugacy classes. In this section, we verify the conditions (2) (3) in some
special cases. Throughout this section, we keep the notation in Section 3.2.

Lemma 5. Let δ = gcd(`− 1, k1− 1) and d = gcd(`− 1, k1− 1, k2− 1), then for sufficiently
large prime `,

|G(`, 1)| = (`− 1)2`(`+ 1)

δ
and |G(`, `)| = (`− 1)3`2(`+ 1)2

d
.

Proof. The first assertion follows from the exact sequence

1→ SL2(F`) −→ G(`, 1) −→ F∗δ` → 1.

Similarly, we have the exact sequence

1→ SL2(F`)× SL2(F`) −→ G(`, `) −→ D → 1,

where D = {(vk1−1, vk2−1) : v ∈ F∗`}. The order of D can be calculated from

1→ 〈g
`−1
d 〉 −→ F∗`

ϕ−→ D → 1,

where g is a generator of F∗` and ϕ is given by v 7→ (vk1−1, vk2−1), so

|D| = `− 1

d
,

the lemma follows. �

Lemma 6. Let ` be an odd prime. For given t ∈ F` and d ∈ F∗` ,

# {u ∈ GL2(F`) : tr u = t, detu = d} = `2 +

(
t2 − 4d

`

)
`,

where
(·
`

)
denotes the Legendre symbol modulo `.

Proof. This follows easily from the following table.

Table 1. conjugacy classes of GL2(F`)

Representative No. of elements in each class No. of classes tr2 − 4 det(
x 0
0 x

)
1 `− 1 0(

x 1
0 x

)
`2 − 1 `− 1 0(

x 0
0 y

)
`2 + ` (`− 1)(`− 2)/2 (x− y)2(

x εy
y x

)
`2 − ` `(`− 1)/2 4εy2

ε is a quadratic nonresidue (mod `)

�
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Lemma 7. For every δ | k1 − 1, define

Lδ = {` : gcd(k1 − 1, `− 1) = δ}.

Given a bivariate polynomial F1(x, y) with integral coefficients, for every sufficiently large
` ∈ Lδ, let

NF1(`) =
{

(x, y) ∈ F` × F∗δ` : F1(x, y) = 0
}
.

Assuming that there exist constants ε ∈ (0, 1] and cδ ∈ R>0 such that

#NF1(`) = cδ`+O(`1−ε),

then

g(`, 1) =
cδδ

`
+O

(
`−1−ε) ,

and there exist constants c1 ∈ R>0 and c
′ ∈ R such that∑

`>x

g(`, 1)2 = O

(
1

log x

)
and

∑
`≤x

g(`, 1) = c1 log log x+ c
′
+O

(
1

log x

)
.

Proof. According to Lemma 6, we have

|C(`, 1)| = #
{
u ∈ GL2(F`) : F1(tr u, detu) = 0, detu ∈ F∗δ`

}
=

∑
(x,y)∈NF1 (`)

# {u ∈ GL2(F`) : tr u = x, detu = y}

= `2#NF1(`) + `
∑

(x,y)∈NF1 (`)

(
x2 − 4y

`

)
= `3cδ +O(`3−ε).

By Lemma 5, |G(`, 1)| = `4/δ +O(`3), hence

g(`, 1) =
cδδ

`
+O

(
`−1−ε) , ` ∈ Lδ.

The first assertion follows easily from the Euler summation formula.
To check that g(`, 1) has average order c log log x, we need the Mertens’ theorem for

arithmetic progressions [15]: for any integer m ≥ 1 and integer a which is coprime with m,
there exists a constant cm,a such that∑

`≤x,`≡a(m)

1

`
=

1

ϕ(m)
log log x+ cm,a +O

(
1

log x

)
,

where ϕ(m) denotes Euler’s totient function. If a is not coprime with m, the above sum is
bounded as x varies. Note that the set {n ∈ N : gcd(n− 1, k1 − 1) = δ} can be divided into
disjoint arithmetic progressions modulo k1 − 1, so there exist constants αδ, βδ such that∑

`≤x,`∈Lδ

1

`
= αδ log log x+ βδ +O

(
1

log x

)
.
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Then we have ∑
`≤x

g(`, 1) =
∑
δ|k1−1

∑
`≤x,`∈Lδ

g(`, 1)

=
∑
δ|k1−1

cδδ
∑

`≤x,`∈Lδ

1

`
+O(1)

=

 ∑
δ|k1−1

cδαδδ

 log log x+ c
′
+O

(
1

log x

)
.

�

Lemma 8. For every d | gcd(k1 − 1, k2 − 1), define

Pd = {` : gcd(k1 − 1, k2 − 1, `− 1) = d}.

Given two bivariate polynomials F1(x, y), F2(x, y) with integral coefficients, for every suffi-
ciently large ` ∈ Pd, let

NF1,F2(`) = {(x1, x2, y1, y2) ∈ F` × F` ×D : Fi(xi, yi) = 0, i = 1, 2} .

Assuming that there exist constants ε ∈ (0, 1] and cd ∈ R>0 such that

(6) #NF1,F2(`) = cd`+O(`1−ε),

then ∑
`

g(`, `) < +∞.

Proof. For any ` ∈ Pδ, by Lemma 6 we have

|C(`, `)| = #

{
(u1, u2) ∈ GL2(F`)×GL2(F`) :

F1(tr u1, detu1) = 0,

F2(tr u2, detu2) = 0,
(detu1, detu2) ∈ D

}
=

∑
(xi,yi)∈NF1,F2 (`)

#

{
u1 ∈ GL2(F`) :

tr u1 = x1

detu1 = y1

}
#

{
u2 ∈ GL2(F`) :

tr u2 = x2

detu2 = y2

}
= `4#NF1,F2(`) +O(`4)

= `5cd +O(`5−ε).

By Lemma 5, |G(`, `)| = `7/d+O(`6), we have

g(`, `) =
cdd

`2
+O

(
`−2−ε) , for ` ∈ Pd.

Hence ∑
`≤x

g(`, `) =
∑

d|(k−1,k′−1)

∑
`≤x,`∈Pd

g(`, `)�
∑
`≤x

1

`2
,

the last series converges, which completes the proof. �

Lemma 9. If F1(x, y) and F2(x, y) have the form of ax + r(y), a ∈ Z \ {0}, r(y) ∈ Z[y],
then conditions (2) (3) are satisfied and the constants c1, c2 in condition (2) are equal to 1.

9



Proof. For sufficiently large `, ax+ r(y) ≡ 0 mod ` if and only if x ≡ −a−1r(y) mod `. For
any δ | k − 1, ` ∈ Lδ,

#NF1(`) =
∑
y∈F∗δ`

#
{
x ∈ F` : x = −a−1

1 r1(y)
}

=
∑
y∈F∗δ`

1 =
`− 1

δ
.

By Lemma 7, g(`, 1) = `−1 + O(`−2) for all sufficiently large ` and in the same manner
g(1, `) = `−1 +O(`−2). Therefore condition (2) follows from the Mertens’ theorem. Similarly
for any d | (k − 1, k

′ − 1), ` ∈ Pd,

#NF1,F2(`) =
∑

(y1,y2)∈D

#
{

(x1, x2) ∈ F` × F` : x1 = −a−1
1 r1(y1), x2 = −a−1

2 r2(y2)
}

=
∑

(y1,y2)∈D

1 =
`− 1

d
,

this calculation combined with Lemma 8 completes the proof. �

3.4. Conclusion. The polynomial growth condition C1 follows from Ramanujan’s bound [4,
Théorème(8.2)]. We have checked the multiplicativity of g and the error condition in Section
3.2, then combined with Lemma 9, all the conditions C1-C4 have been verified. Theorem 1
then follows from Theorem 3 and Remark 3.

4. Remarks and generalizations

4.1. Examples. Let f and h be two newforms as in Theorem 1 and assuming that the
generalized Riemann hypothesis is true for all Dedekind zeta functions of number fields. We
choose F1 = F2 = x, y − x+ 1, respectively. Then by Theorem 1, we have

lim
x→+∞

1

π(x)
# {p ≤ x : ap(f), ap(h) 6= 0, ω (ap(f)) < ω (ap(h))} =

1

2
,

lim
x→+∞

1

π(x)
#
{
p ≤ x : p - NfNh, ω

(
pk1−1 − ap(f) + 1

)
< ω

(
pk2−1 − ap(h) + 1

)}
=

1

2
.

We give an example in which the polynomials are not of the form ax + r(y). Take F1 =
F2 = x2 − y and write δi = gcd(`− 1, ki − 1). Since ki is even, we have

|NFi(`)| = #
{

(x, y) ∈ F` × F∗δi` : x2 = y
}

=
`− 1

δi
.

Let D = {(vk1−1, vk2−1) : v ∈ F∗`}, then

|NF1,F2(`)| =#
{

(x1, x2, y1, y2) ∈ F` × F` ×D : x2
1 = y1, x

2
2 = y2

}
=

∑
(y1,y2)∈D

(
1 +

(
y1

`

))(
1 +

(
y2

`

))
= O(`).

By Theorem 3, Remark 3, Lemma 7 and Lemma 8, we conclude that

lim
x→+∞

1

π(x)
# {p ≤ x : p - NfNh, ω (ap2(f)) < ω (ap2(h))} =

1

2
.
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4.2. Multiplicity one. We describe the above phenomena more precisely. Take F1 = F2 =
x as an example, Theorem 3 states that the following two random variables(

ω (ap(f))− log log x√
log log x

,
ω (ap(h))− log log x√

log log x

)
behave like two independent normally distributed random variables when x goes to infinity,
so the random variables

Rx(p) :=
ω (ap(f))− ω (ap(h))√

log log x

converge in distribution to a difference of two independent standard normal distributions,
i.e. a normal distribution with mean 0 and variance 2. Hence for any ε > 0,

lim
x→+∞

1

π(x)
#

{
p ≤ x : ap(f), ap(h) 6= 0,

|ω (ap(f))− ω (ap(h)) |√
log log x

> ε

}
=

1

2
√
π

∫ ∞
ε

e−x
2/4dx.

This implies that for any constant C ≥ 0, the set

{p : ap(f), ap(h) 6= 0, |ω (ap(f))− ω (ap(h)) | ≥ C}

has natural density 1. In other words, we have the following result.

Proposition 10. Let f ∈ Sk1(Γ0(Nf )) and h ∈ Sk2(Γ0(Nh)) be two non-CM newforms with
integral Fourier coefficients an(f) and an(h), respectively of weights at least 2. If for some
constant C ≥ 0,

lim sup
x→+∞

1

π(x)
{p : ap(f), ap(h) 6= 0, |ω (ap(f))− ω (ap(h)) | ≤ C} > 0,

then assuming GRH, there exists a Dirichlet character χ such that f = h⊗ χ.

4.3. On m newforms. Loeffler pointed out that the open image theorem also holds for
three or more newforms which are not twists of each other (see [9, Theorem 3.4.2]). Similar
arguments can be applied to these newforms and we have the following generalization.

Theorem 11. Let f1, . . . , fm be a family of non-CM newforms with integral Fourier coef-
ficients ap(f1), . . . , ap(fm) of weights k1, . . . , km ≥ 2, respectively. Let F1(x, y), . . . , Fm(x, y)
be bivariate polynomials with integral coefficients which have the form of ax + r(y), a 6= 0.
For every x > 0, let

Tx :=
{
p ≤ x : Fi(ap(fi), p

ki−1) 6= 0, i = 1, . . . ,m
}
.

For simplicity of notation, we write ωi instead of ω
(
Fi(ap(fi), p

ki−1)
)
. Assuming GRH, then

either

• there is a Dirichlet character χ such that fi = fj ⊗ χ for some i 6= j;
• or for any permutation σ ∈ Sn,

lim
x→+∞

1

|Tx|
#
{
p ∈ Tx : ωσ(1) < · · · < ωσ(m)

}
=

1

m!
.
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4.4. On combinations of newforms. Let f ∈ Sk1(Γ0(N1)) be a cusp form such that

(i) f =
∑m

i=1 aifi, where each fi is a non-CM newform with integral Fourier coefficients
and ai ∈ Z \ {0}.

(ii) For i 6= j, there exists no Dirichlet character χ such that fi = fj ⊗ χ.

It is worth pointing out that the eigenform fi is not necessary a newform at level N1, it
may be a newform of Sk1(Γ0(M)), where M | N1. Let h ∈ Sk2(Γ0(N2)) be another cusp
form satisfying the above conditions, write h as a sum of distinct newforms: h =

∑n
j=1 bjhj.

We further assume that there exists no Dirichlet character χ such that fi = hj ⊗ χ for
1 ≤ i ≤ m, 1 ≤ j ≤ n. For every x > 0, let

Tx := {p ≤ x : ap(f) 6= 0 and ap(h) 6= 0} .

Proposition 12. With the above notation, under GRH, for any constant C ≥ 0,

lim
x→+∞

1

|Tx|
# {p ∈ Tx : |ω (ap(f))− ω (ap(h)) | ≥ C} = 1.

Proof. The strategy is the same as the proof of Theorem 1, we sketch the proof in the
following. We need to check that the pair (ap(f), ap(h)) satisfies C1, C2, C3 and C4 in
Section 2. The polynomial growth condition is obvious. For two square-free integers d1, d2

with sufficiently large prime divisors , we consider the Galios representation

ρd1,d2 =
⊕

1≤i≤m

ρfi,d1 ×
⊕

1≤j≤n

ρhj ,d2 .

The image of ρd1,d2 is well described by Loeffler’s theorem. It has a similar form with G(d1, d2)

in Section 3.1, denote by G̃(d1, d2) the image of ρd1,d2 . Without loss of generality, we write

d1 = LP, d2 = LQ, gcd(P,Q) = 1, then G̃(d1, d2) is the direct product of the following two
groups:

G̃(L,L) =


(u1, . . . , um, v1, . . . , vn) ∈

m∏
i=1

GL2(Z/LZ)×
n∏
j=1

GL2(Z/LZ) :

∀i, j, detui = αk1−1, det vj = αk2−1 for some α ∈ (Z/LZ)∗

 ,

G̃(P,Q) =


(u1, . . . , um, v1, . . . , vn) ∈

m∏
i=1

GL2(Z/PZ)×
n∏
j=1

GL2(Z/QZ) :

∀i, detui = αk1−1 for some α ∈ (Z/PZ)∗,

∀j, det vj = βk2−1 for some β ∈ (Z/QZ)∗

 .

By the Chebotarev’s density theorem, we have

1

π(x)
{p ≤ x : d1 | ap(f), d2 | ap(h)} =

|C̃(d1, d2)|
|G̃(d1, d2)|

+ ẽ(d1, d2;x),

where C̃(d1, d2) is the union of the conjugacy classes of G̃(d1, d2) whose elements satisfy a
trace zero condition. For example, if gcd(d1, d2) = 1 or d1 = d2, then

C̃(d1, d2) =

{
(u1, . . . , um, v1, . . . , vn) ∈ G(d1, d2) :

m∑
i=1

ai trui = 0,
n∑
j=1

bj tr vj = 0

}
.
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Let g̃(d1, d2) := |C̃(d1, d2)|/|G̃(d1, d2)|, according to our construction, the multiplicativity
of g̃ is obvious. Under GRH, the error condition (4) is satisfied. We need to check condtions
(2) and (3). We claim that for any sufficiently large `,

g̃(`, 1) =
1

`
+O

(
1

`2

)
and g̃(1, `) =

1

`
+O

(
1

`2

)
.

The proof runs as in that of Lemma 7. Let δ = (`− 1, k1 − 1), the order of

G̃(`, 1) =

{
(u1, . . . , um) ∈

m∏
i=1

GL2(F`) : ∀i, detui = αk1−1, α ∈ F∗`

}
is `3m+1/δ +O(`3m). It remains to calculate the order of C̃(`, 1). Note that the order of

N(`) := {(x1, . . . , xm) ∈ F` × · · · × F` : a1x1 + · · ·+ amxm = 0}
is `m−1. Let ∆ := {(vk1−1, . . . , vk1−1) : v ∈ F∗`}, we have

|C̃(`, 1)| = #
{

(u1, . . . , um) ∈ G̃(`, 1) : a1 tru1 + · · ·+ am trum = 0
}

=
∑

(x1,...,xm)∈N(`)

∑
(y1,...,ym)∈∆

∏
1≤i≤m

# {ui ∈ GL2(F`) : tr ui = xi, detui = yi}

=
∑

(x1,...,xm)∈N(`)

∑
(y1,...,ym)∈∆

(
`2m +O

(
`2m−1

))
= `3m/δ +O

(
`3m−1

)
.

Similar calculation holds for g̃(1, `) and the claim follows. Using the same argument as
before, we have

|G̃(`, `)| = `3m+3n+1/d+O
(
`3m+3n

)
and |C̃(`, `)| = `3m+3n−1/d+O

(
`3m+3n−2

)
,

where d = gcd(k1 − 1, k2 − 1, `− 1). Hence∑
`

g̃(`, `) < +∞,

and this finishes the proof. �

References

1. P. Billingsley, Convergence of probability measures, John Wiley & Sons, 2013.
2. C. Breuil, B. Conrad, F. Diamond, and R. Taylor, On the modularity of elliptic curves over Q: Wild

3-adic exercises, Journal of the American Mathematical Society 14 (2001), no. 4, 843–939.
3. P. Deligne, Formes modulaires et representations `-adiques, Séminaire Bourbaki vol. 1968/69 Exposés
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