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Endoscopic classification for classical groups, e.g., SO, Sp, U,
including
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What has been done

qs = quasi-split, nqs = non-quasi-split

1 qs Sp, SO: Arthur’s book 2013 (built on ...)

2 qs U: Mok 2015

3 qs GSp, GSO: Bin Xu 2018/21

4 nqs U: Kaletha–Minguez–S.–White 2014–now

5 nqs SOodd: Ishimoto 2023 (tempered)

There are earlier unconditional results like

Clozel, Labesse on cohomological automorphic rep’ns on U,

qs Sp, SO, U: lifting to GL exists under genericity by converse theorem,
due to Cogdell, Kim, Krishnamurthy, Piatetski-Shapiro, Shahidi.

Why care?

fundamental results of intrinsic interest

arithmetic applications: cohomology of Shimura varieties, Langlands reciprocity,
Beilinson–Bloch–Kato conjecture, Euler systems, Gross–Zagier type formulas, ...
(e.g., Liu–Tian–Xiao–Zhang–Zhu, Disegni–Liu, ...)
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Conditionality 1

1 qs Sp, SO: Arthur’s book

2 qs U: Mok

3 qs GSp, GSO: Bin Xu

4 nqs U: Kaletha–Minguez–S.–White

5 nqs SOodd: Ishimoto

(3),(5) are conditional on (1).

(4) is conditional on (2).

Hence let’s look into (1) and (2).
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Conditionality 2

1 qs Sp, SO: Arthur’s book 2013

2 qs U: Mok 2015

At the time, (1),(2) were conditional on the following expected results.

(i) Twisted versions of

stabilization of the trace formula: conditional on (ii)
local trace formula
certain results on endsocopic transfer [A24]

(ii) Weighted Fundamental Lemma for Lie algebras (incl. “non-standard”):
extend Chaudouard–Laumon beyond the split case

(iii) Twisted Fundamental Lemma for full unramified Hecke algebras

(iv) “Duality, Endoscopy, and Hecke operators” [A25]

(v) “A nontempered intertwining relation for GL(N)” [A26]

(vi) “Transfer factors and Whittaker models” [A27]
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Summary of Part I

The whole endoscopic classification for (qs and nqs) classical groups
is still conditional, and should be treated as such.

However there’s some hope.

Henceforth we focus on [A25] since it’s more difficult than [A26], [A27].

Apology and excuse

“KMS” (nqs U, non-tempered) was postponed until [A25].
(This is a sequel to KMSW 2014 on nqs U, tempered.)

2022: resumed KMS, worked on “[A25]” for nqs U (w/o [A25] for qs U).

2023: embarked on [A25] for qs U. cf. Arthur: [A25] for qs Sp, SO.

It made little sense to clarify only [A25]. This led to AGIKMS:
the goal is to make main theorems unconditional for qs U (mod WFL).
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Statement of LIR

G = U(N) qs unitary group / F char 0 local field

M ⊊ G proper Levi (induction hypothesis applies to M)

ϕM ∈ Φ2(M) 7→ ϕ ∈ Φ(G) L-parameters

x ∈ Sϕ = π0(Sϕ/Z(Ĝ)Γ)

Local Intertwining Relation (ref. Arthur §2.4)

f (ϕ, x) = f ′(ϕ, x), f ∈ H(G)
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ϕM and ψM not square-integrable on M.



Statement of LIR

G = U(N) qs unitary group / F char 0 local field

M ⊊ G proper Levi (induction hypothesis applies to M)

ϕM ∈ Φ2(M) 7→ ϕ ∈ Φ(G) L-parameters

x ∈ Sϕ = π0(Sϕ/Z(Ĝ)Γ)
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∑

πM∈ΠϕM

tr(R(ux) ◦ Ind(πM)),

where the intertwining operator R(ux) involves refined LLC for M.

RHS (endoscopic): stable character on endoscopic group (for G)

f ′(ϕ, x) := f ′(ϕ′),

where (ϕ, x) ⇝ (G ′, ϕ′), and f ⇝ f ′ is a transfer from G to G ′.



Why LIR? (global)

1st answer: He tells you so

Arthur proves main local/global theorems by inducting on rank.
LIR is one of the main local theorems.

2nd answer: comparison of spectral/endoscopic expansions

The backbone of the method is comparing

IGdisc(f ) trRG
disc(f )︸ ︷︷ ︸

ultimate interest

+ (proper Levi terms)︸ ︷︷ ︸
analog of f (ϕ,x)

IGdisc(f )
∑
G ′
ι(G ,G ′) · SG ′

disc(f
′).︸ ︷︷ ︸

analog of f ′(ϕ,x)
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Why LIR? (local)

3rd answer: endoscopy and parabolic induction

M ⊊ G proper Levi

ϕM ∈ Φ2(M) 7→ ϕ ∈ Φ(G ) L-parameters

then we want

refined LLC for ΠϕM

par. ind
=⇒ refined LLC for Πϕ.

Can construct Πϕ and Πϕ × Sϕ → C via norm’d intertwining operators,
but need LIR to justify endoscopic character identity:

f ′(ϕ, x)
LIR

f (ϕ, x)
by

construction

∑
π∈Πϕ

⟨x , π⟩trπ(f ).

The same works for A-parameters and A-packets.
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Proof of LIR: Overview

Arthur proves main local theorems (LIR + classification)

for generic parameters (a.k.a. tempered L-parameters) in Ch 6,

for (non-tempered) A-parameters in Ch 7.

Accept Ch 6 is done. In Ch 7, Arthur obtains LIR by

local thm
for

temp param.

local

[A25]
+3

LIR for
some A param.
“seed case”

global +3 LIR for
all A param.

and then proceed to prove A-packet classification.

Key tool for 1st arrow: Aubert–Zelevinsky (AZ) involution

Propagate LIR to some non-temp A-parameters via AZ involution.
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LIR in the “seed case”

Here ϕ̂, π̂ denote AZ dual.

“Seed” A-parameters for unitary groups, d’après Arthur–Mok

Consider only ψ such that ψ = ϕ̂ for tempered ϕ of the form

ϕ =
⊕
i

χi ⊠ νi︸ ︷︷ ︸
WF × SL2

, dimχi = 1 .

For such ψ, we can set Πψ := {π̂ : π ∈ Πϕ}. Note Sψ = Sϕ.

A main result of [A25], informally

AZ duality is compatible with spectral side of LIR (norm’d int. op.),
for “enough” members of the packet.

AZ duality is understood on endoscopic side of LIR (e.g., Hiraga).
So morally we’d obtain LIR for enough members of “seed” A-packets.
Then feed this into global machine to prove full LIR.
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AZ duality is understood on endoscopic side of LIR (e.g., Hiraga).
So morally we’d obtain LIR for enough members of “seed” A-packets.
Then feed this into global machine to prove full LIR.



Problem and a possible resolution

Problem (at least for me)

Assertion of [A25] may not be realistic to prove for all “seed” A-parameters.

The intended proof is based on explicit Hecke algebra computations but

Supercuspidal support︸ ︷︷ ︸
U(m)×

∏
i ResGL(ni )

is “too large”︸ ︷︷ ︸
m≫1

quite often. (Use Moeglin, B.Xu.)

Supercuspidal reps are “singular”.

Argument is not even complete in the Iwahori case (to my knowledge).

Resolution? (AGIKMS, in progress)

local thm
for

temp param.

local

aim less
+3

LIR for
some A param.

“reduced seed case”

global

do more
+3 LIR for

all A param.

E.g., we ensure small sc support (m ≤ 4) in the “reduced seed case”. 2
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