Representations of $GL_n(D)$ near the identity

Marie-France Vignéras

Institut de Mathématiques de Jussieu

Satellite Conference in Number Theory of International Congress of Basic Science, 2023 July 13

For any absolutely irreducible admissible infinite dimensional representation π of $G = GL(2, \mathbb{Q}_p)$ over a field R of characteristic p, Morra

◆□ > ◆□ > ◆目 > ◆目 > ● 目 ● のへで

For any absolutely irreducible admissible infinite dimensional representation π of $G = GL(2, \mathbb{Q}_p)$ over a field R of characteristic p, Morra

1. described the restriction of π to the pro-p lwahori subgroup $I_{1/2} = 1 + \mathfrak{i}_{1/2}$ where

$$\mathfrak{i}_{1/2} = \begin{pmatrix} p\mathbb{Z}_p & \mathbb{Z}_p \\ p\mathbb{Z}_p & p\mathbb{Z}_p \end{pmatrix}.$$

◆□ > ◆□ > ◆目 > ◆目 > ● 目 ● のへで

For any absolutely irreducible admissible infinite dimensional representation π of $G = GL(2, \mathbb{Q}_p)$ over a field R of characteristic p, Morra

1. described the restriction of π to the pro-p lwahori subgroup $l_{1/2} = 1 + i_{1/2}$ where $i_{1/2} = \begin{pmatrix} p\mathbb{Z}_p & \mathbb{Z}_p \\ p\mathbb{Z}_p & p\mathbb{Z}_p \end{pmatrix}$.

2. showed that the dimensions of invariants of π by the j-th congruence subgroup $I_{(1/2)+j}=1+p^j\,\mathfrak{i}_{1/2}$ for $j\geq 0$ is

$$\dim_R \pi^{l_{(1/2)+j}} = -2 + 4p^j \text{ (resp. } = -1 + 4p^j \text{)}$$

if π is supersingular (resp. infinite dimensional not supersingular).

For any absolutely irreducible admissible infinite dimensional representation π of $G = GL(2, \mathbb{Q}_p)$ over a field R of characteristic p, Morra

1. described the restriction of π to the pro-p lwahori subgroup $l_{1/2} = 1 + i_{1/2}$ where $i_{1/2} = \begin{pmatrix} p\mathbb{Z}_p & \mathbb{Z}_p \\ p\mathbb{Z}_p & p\mathbb{Z}_p \end{pmatrix}$.

2. showed that the dimensions of invariants of π by the j-th congruence subgroup $I_{(1/2)+j}=1+p^j\,\mathfrak{i}_{1/2}$ for $j\geq 0$ is

$$\dim_R \pi^{l_{(1/2)+j}} = -2 + 4p^j \text{ (resp. } = -1 + 4p^j \text{)}$$

if π is supersingular (resp. infinite dimensional not supersingular). A similar result holds true for *R* of any characteristic.

General F, <u>G</u>, R

◆□ > ◆□ > ◆豆 > ◆豆 > □ = ○ ○ ○ ○

General F, \underline{G}, R F a finite extension of \mathbb{Q}_p or of $\mathbb{F}_p((t))$

◆□ > ◆□ > ◆目 > ◆目 > ● 目 ● のへで

General F, \underline{G}, R

F a finite extension of \mathbb{Q}_p or of $\mathbb{F}_p((t))$ <u>G</u> connected reductive F-group,

◆□ > ◆□ > ◆目 > ◆目 > ● 目 ● のへで

$\begin{array}{c} & \text{General } F, \underline{G}, R\\ F \text{ a finite extension of } \mathbb{Q}_p \text{ or of } \mathbb{F}_p((t))\\ \underline{G} \text{ connected reductive } F \text{-group,}\\ R \text{ field (coefficients, any characteristic, not necessarily algebraically closed).}\\ & \pi \text{ irreducible admissible } R \text{-representation of } G = \underline{G}(F) \end{array}$

General F, G, R

F a finite extension of \mathbb{Q}_p or of $\mathbb{F}_p((t))$

 \underline{G} connected reductive F-group,

R field (coefficients, any characteristic, not necessarily algebraically closed).

 π irreducible admissible *R*-representation of $G = \underline{G}(F)$

admissible: for any K compact open subgroup of G, the space π^{K} of K-fixed vectors has finite dimension and $\pi = \bigcup_{K} \pi^{K}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のので

General F, \underline{G}, R F a finite extension of \mathbb{Q}_p or of $\mathbb{F}_p((t))$ \underline{G} connected reductive F-group, R field (coefficients, any characteristic, not necessarily algebraically closed). π irreducible admissible R-representation of $G = \underline{G}(F)$ admissible: for any K compact open subgroup of G, the space π^K of K-fixed vectors has finite dimension and $\pi = \bigcup_K \pi^K$.

1. Describe the restriction of π to some open compact subgroup ${\it K}$ near the identity.

General F, <u>G</u>, R

F a finite extension of \mathbb{Q}_p or of $\mathbb{F}_p((t))$

<u>G</u> connected reductive F-group,

R field (coefficients, any characteristic, not necessarily algebraically closed).

 π irreducible admissible *R*-representation of $G = \underline{G}(F)$

admissible: for any K compact open subgroup of G, the space π^{K} of K-fixed vectors has finite dimension and $\pi = \bigcup_{K} \pi^{K}$.

1. Describe the restriction of π to some open compact subgroup K near the identity.

2. Compute the dimension of the invariants of π by the *j*-th congruence subgroup of an arbitrary Moy-Prasad pro-*p* subgroup *K* when *j* is large enough

Past Hypotheses $R = \mathbb{C}$, $char_F = 0$

Past Hypotheses $R = \mathbb{C}$, $char_F = 0$ 1973 Casselman $G = GL_2(F)$ 1974 Howe $G = GL_n(F)$, π cuspidal. 1978 Harish-Chandra

◆□ > ◆□ > ◆目 > ◆目 > ● 目 ● のへで

Past Hypotheses $R = \mathbb{C}$, $char_F = 0$ 1973 Casselman $G = GL_2(F)$ 1974 Howe $G = GL_n(F)$, π cuspidal. 1978 Harish-Chandra

1987 Moeglin-Waldspurger $p \neq 2$

◆□ > ◆□ > ◆目 > ◆目 > ● 目 ● のへで

Past Hypotheses $R = \mathbb{C}$, $char_F = 0$ 1973 Casselman $G = GL_2(F)$ 1974 Howe $G = GL_n(F)$, π cuspidal. 1978 Harish-Chandra

1987 Moeglin-Waldspurger $p \neq 2$ 1996 Magdy Assem

(4回) (日) (日) (日) (1000)

Past Hypotheses $R = \mathbb{C}$, $char_F = 0$ 1973 Casselman $G = GL_2(F)$ 1974 Howe $G = GL_n(F)$, π cuspidal. 1978 Harish-Chandra

1987 Moeglin-Waldspurger $p \neq 2$ 1996 Magdy Assem 1997 Huntsinger

(4回) (日) (日) (日) (1000)

Past Hypotheses $R = \mathbb{C}$, $char_F = 0$ 1973 Casselman $G = GL_2(F)$ 1974 Howe $G = GL_n(F)$, π cuspidal. 1978 Harish-Chandra

1987 Moeglin-Waldspurger $p \neq 2$ 1996 Magdy Assem 1997 Huntsinger 2014 Sandeep Varma

Past Hypotheses $R = \mathbb{C}$, $char_F = 0$ 1973 Casselman $G = GL_2(F)$ 1974 Howe $G = GL_n(F)$, π cuspidal. 1978 Harish-Chandra

1987 Moeglin-Waldspurger $p \neq 2$ 1996 Magdy Assem 1997 Huntsinger 2014 Sandeep Varma

New $char_R \neq p$

(4回) (日) (日) (日) (1000)

Past Hypotheses $R = \mathbb{C}$, $char_F = 0$ 1973 Casselman $G = GL_2(F)$ 1974 Howe $G = GL_n(F)$, π cuspidal. 1978 Harish-Chandra

1987 Moeglin-Waldspurger $p \neq 2$ 1996 Magdy Assem 1997 Huntsinger 2014 Sandeep Varma

New $char_R \neq p$ 2023 (arXiv) Henniart-Vignéras $G = GL_n(D)$

Casselman: any two infinite dimensional irreducible complex representations π, π' of $GL_2(F)$ with the same central character restricted to $GL_2(O_F)$ are isomorphic up to finite dimensional parts.

◆□ > ◆□ > ◆目 > ◆目 > ● 目 ● のへで

Casselman: any two infinite dimensional irreducible complex representations π , π' of $GL_2(F)$ with the same central character restricted to $GL_2(O_F)$ are isomorphic up to finite dimensional parts.

Howe: for any irreducible cuspidal.complex representation π of $G = GL_n(F)$, there are unique integers $c_{\pi}(\lambda) \in \mathbb{Z}$ for the partitions $\lambda = (\lambda_i)$ of *n*, and some open pro-*p* subgroup *K* of *G* such that

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

Casselman: any two infinite dimensional irreducible complex representations π , π' of $GL_2(F)$ with the same central character restricted to $GL_2(O_F)$ are isomorphic up to finite dimensional parts.

Howe: for any irreducible cuspidal.complex representation π of $G = GL_n(F)$, there are unique integers $c_{\pi}(\lambda) \in \mathbb{Z}$ for the partitions $\lambda = (\lambda_i)$ of *n*, and some open pro-*p* subgroup *K* of *G* such that

$$(*) \hspace{0.1in} \pi = \sum_{\lambda \in \mathcal{P}(n)} c_{\pi}(\lambda) \hspace{0.1in} \textit{ind}_{P_{\lambda}}^{\mathcal{G}} 1 \hspace{0.1in} \text{on} \hspace{0.1in} K,$$

and $c_{\pi}(\lambda) = 1$ if $\lambda = (1^n)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

Casselman: any two infinite dimensional irreducible complex representations π , π' of $GL_2(F)$ with the same central character restricted to $GL_2(O_F)$ are isomorphic up to finite dimensional parts.

Howe: for any irreducible cuspidal.complex representation π of $G = GL_n(F)$, there are unique integers $c_{\pi}(\lambda) \in \mathbb{Z}$ for the partitions $\lambda = (\lambda_i)$ of *n*, and some open pro-*p* subgroup *K* of *G* such that

$$(*) \ \ \pi = \sum_{\lambda \in \mathcal{P}(n)} c_{\pi}(\lambda) \ \textit{ind}_{P_{\lambda}}^{G} 1 \ \text{on} \ K,$$

and $c_{\pi}(\lambda) = 1$ if $\lambda = (1^n)$ $B \subset P_{\lambda}, M_{\lambda} \simeq \prod_i GL_{\lambda_i}(F).$

Casselman: any two infinite dimensional irreducible complex representations π , π' of $GL_2(F)$ with the same central character restricted to $GL_2(O_F)$ are isomorphic up to finite dimensional parts.

Howe: for any irreducible cuspidal.complex representation π of $G = GL_n(F)$, there are unique integers $c_{\pi}(\lambda) \in \mathbb{Z}$ for the partitions $\lambda = (\lambda_i)$ of *n*, and some open pro-*p* subgroup *K* of *G* such that

$$(*)$$
 $\pi = \sum_{\lambda \in \mathcal{P}(n)} c_{\pi}(\lambda) \operatorname{ind}_{P_{\lambda}}^{\mathcal{G}} 1 \text{ on } K,$

and $c_{\pi}(\lambda) = 1$ if $\lambda = (1^n)$ $B \subset P_{\lambda}, M_{\lambda} \simeq \prod_i GL_{\lambda_i}(F).$

First part of H. for any irreducible π and implies C because for n = 2 (*) $\pi = c_{\pi}(0) + \operatorname{ind}_{B}^{C} 1$ on K.

Casselman: any two infinite dimensional irreducible complex representations π , π' of $GL_2(F)$ with the same central character restricted to $GL_2(O_F)$ are isomorphic up to finite dimensional parts.

Howe: for any irreducible cuspidal.complex representation π of $G = GL_n(F)$, there are unique integers $c_{\pi}(\lambda) \in \mathbb{Z}$ for the partitions $\lambda = (\lambda_i)$ of *n*, and some open pro-*p* subgroup *K* of *G* such that

$$(*)$$
 $\pi = \sum_{\lambda \in \mathcal{P}(n)} c_{\pi}(\lambda) \operatorname{ind}_{P_{\lambda}}^{\mathcal{G}} 1 \text{ on } K,$

and $c_{\pi}(\lambda) = 1$ if $\lambda = (1^n)$ $B \subset P_{\lambda}, M_{\lambda} \simeq \prod_i GL_{\lambda_i}(F).$

First part of H. for any irreducible π and implies C because for n = 2 (*) $\pi = c_{\pi}(0) + \operatorname{ind}_{B}^{C} 1$ on K.

(*) is an equality of the G-invariant linear forms on $C^{\infty}_{c}(G;\mathbb{C})$

$$f\mapsto trace\pi(f\,dg),\quad \pi(f\,dg)=\int_G f(g)\pi(g)\,dg.$$

Casselman: any two infinite dimensional irreducible complex representations π, π' of $GL_2(F)$ with the same central character restricted to $GL_2(O_F)$ are isomorphic up to finite dimensional parts.

Howe: for any irreducible cuspidal.complex representation π of $G = GL_n(F)$, there are unique integers $c_{\pi}(\lambda) \in \mathbb{Z}$ for the partitions $\lambda = (\lambda_i)$ of *n*, and some open pro-*p* subgroup *K* of *G* such that

$$(*)$$
 $\pi = \sum_{\lambda \in \mathcal{P}(n)} c_{\pi}(\lambda) \operatorname{ind}_{P_{\lambda}}^{\mathcal{G}} 1 \text{ on } K,$

and $c_{\pi}(\lambda) = 1$ if $\lambda = (1^n)$ $B \subset P_{\lambda}, M_{\lambda} \simeq \prod_i GL_{\lambda_i}(F).$

First part of H. for any irreducible π and implies C because for n = 2 (*) $\pi = c_{\pi}(0) + \operatorname{ind}_{B}^{c} 1$ on K.

(*) is an equality of the G-invariant linear forms on $C^{\infty}_{c}(G;\mathbb{C})$

$$f\mapsto trace\pi(f\,dg),\quad \pi(f\,dg)=\int_{\mathcal{G}}f(g)\pi(g)\,dg.$$

 $(**) \ trace\pi(f \ dg) = \sum_{\lambda \in \mathcal{P}(n)} c_{\pi}(\lambda) \ trace(ind_{P_{\lambda}}^{\mathcal{G}} 1(f \ dg))$

for $f \in C_c^{\infty}(K; \mathbb{C})$.

$$trace(ind_{P_{\lambda}}^{G}1(f) dg) = \int_{\mathfrak{O}_{\lambda}} \mathcal{F}(\varphi)(X) dX$$

 $\varphi(X) = f(1+X)$ for $X \in \mathfrak{g}, 1+X \in K$, $\varphi(X) = 0$ otherwise, Fourier transform $\mathcal{F}(\varphi)$.

◆□ > ◆□ > ◆目 > ◆目 > □ = ○ ○ ○ ○

$$trace(ind_{P_{\lambda}}^{G}1(f) dg) = \int_{\mathfrak{O}_{\lambda}} \mathcal{F}(\varphi)(X) dX$$

 $\varphi(X) = f(1+X)$ for $X \in \mathfrak{g}, 1+X \in K$, $\varphi(X) = 0$ otherwise, Fourier transform $\mathcal{F}(\varphi)$.

Harish-Chandra: For any irreducible complex representation π of G, there are unique complex numbers $c_{\pi}(\mathfrak{O} \in \mathbb{C}$ for the nilpotent orbits \mathfrak{O} , and some open pro-p subgroup K of G such that for $f \in C_c^{\infty}(K; \mathbb{C})$,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

$$trace(ind_{P_{\lambda}}^{G}1(f) dg) = \int_{\mathfrak{O}_{\lambda}} \mathcal{F}(\varphi)(X) dX$$

 $\varphi(X) = f(1+X)$ for $X \in \mathfrak{g}, 1+X \in K$, $\varphi(X) = 0$ otherwise, Fourier transform $\mathcal{F}(\varphi)$.

Harish-Chandra: For any irreducible complex representation π of G, there are unique complex numbers $c_{\pi}(\mathfrak{O} \in \mathbb{C}$ for the nilpotent orbits \mathfrak{O} , and some open pro-p subgroup K of G such that for $f \in C_c^{\infty}(K; \mathbb{C})$,

(**)
$$trace\pi(f dg) = \sum_{\mathfrak{O} \in \mathfrak{O}(0)} c_{\pi}(\mathfrak{O}) \int_{\mathfrak{O}} \mathcal{F}(\varphi)(X) dX_{\mathfrak{O}} \text{ on } K$$

 $\varphi(X) = f(\exp(X))$ for $X \in \mathfrak{g}, \exp(X) \in K$, $\varphi(X) = 0$ otherwise.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

$$trace(ind_{P_{\lambda}}^{G}1(f) dg) = \int_{\mathfrak{O}_{\lambda}} \mathcal{F}(\varphi)(X) dX$$

 $\varphi(X) = f(1+X)$ for $X \in \mathfrak{g}, 1+X \in K$, $\varphi(X) = 0$ otherwise, Fourier transform $\mathcal{F}(\varphi)$.

Harish-Chandra: For any irreducible complex representation π of G, there are unique complex numbers $c_{\pi}(\mathfrak{O} \in \mathbb{C}$ for the nilpotent orbits \mathfrak{O} , and some open pro-p subgroup K of G such that for $f \in C_c^{\infty}(K; \mathbb{C})$,

(**)
$$trace\pi(f dg) = \sum_{\mathfrak{O} \in \mathfrak{O}(0)} c_{\pi}(\mathfrak{O}) \int_{\mathfrak{O}} \mathcal{F}(\varphi)(X) dX_{\mathfrak{O}} \text{ on } K$$

 $\varphi(X) = f(\exp(X))$ for $X \in \mathfrak{g}, \exp(X) \in K$, $\varphi(X) = 0$ otherwise. The set of maximal elements of

$$WF(\pi) = \{\mathfrak{O} \in \mathfrak{O}(0) \mid c_{\pi}(\mathfrak{O}) \neq 0\}$$

for the usual order $\mathfrak{O}' \leq \mathfrak{O}$ if $\mathfrak{O}' \subset \overline{\mathfrak{O}}$, is sometimes called wave front set of π .

$$trace(ind_{P_{\lambda}}^{G}1(f) dg) = \int_{\mathfrak{O}_{\lambda}} \mathcal{F}(\varphi)(X) dX$$

 $\varphi(X) = f(1+X)$ for $X \in \mathfrak{g}, 1+X \in K$, $\varphi(X) = 0$ otherwise, Fourier transform $\mathcal{F}(\varphi)$.

Harish-Chandra: For any irreducible complex representation π of G, there are unique complex numbers $c_{\pi}(\mathfrak{O} \in \mathbb{C}$ for the nilpotent orbits \mathfrak{O} , and some open pro-p subgroup K of G such that for $f \in C_c^{\infty}(K; \mathbb{C})$,

(**)
$$trace\pi(f dg) = \sum_{\mathfrak{O} \in \mathfrak{O}(0)} c_{\pi}(\mathfrak{O}) \int_{\mathfrak{O}} \mathcal{F}(\varphi)(X) dX_{\mathfrak{O}} \text{ on } K$$

 $\varphi(X) = f(\exp(X))$ for $X \in \mathfrak{g}, \exp(X) \in K$, $\varphi(X) = 0$ otherwise. The set of maximal elements of

$$WF(\pi) = \{\mathfrak{O} \in \mathfrak{O}(0) \mid c_{\pi}(\mathfrak{O}) \neq 0\}$$

for the usual order $\mathfrak{O}' \leq \mathfrak{O}$ if $\mathfrak{O}' \subset \overline{\mathfrak{O}}$, is sometimes called wave front set of π . The dimension of a nilpotent orbit, is an even number dim_{*F*} $\mathfrak{O} = 2d(\mathfrak{O})$. The so-called Gelfand-Kirillov of π is half of the dimension of $WF(\pi)$.

$$trace(ind_{P_{\lambda}}^{G}1(f) dg) = \int_{\mathfrak{O}_{\lambda}} \mathcal{F}(\varphi)(X) dX$$

 $\varphi(X) = f(1+X)$ for $X \in \mathfrak{g}, 1+X \in K$, $\varphi(X) = 0$ otherwise, Fourier transform $\mathcal{F}(\varphi)$.

Harish-Chandra: For any irreducible complex representation π of G, there are unique complex numbers $c_{\pi}(\mathfrak{O} \in \mathbb{C}$ for the nilpotent orbits \mathfrak{O} , and some open pro-p subgroup K of G such that for $f \in C_c^{\infty}(K; \mathbb{C})$,

(**)
$$trace\pi(f dg) = \sum_{\mathfrak{O} \in \mathfrak{O}(0)} c_{\pi}(\mathfrak{O}) \int_{\mathfrak{O}} \mathcal{F}(\varphi)(X) dX_{\mathfrak{O}} \text{ on } K$$

 $\varphi(X) = f(\exp(X))$ for $X \in \mathfrak{g}, \exp(X) \in K$, $\varphi(X) = 0$ otherwise. The set of maximal elements of

$$WF(\pi) = \{\mathfrak{O} \in \mathfrak{O}(0) \mid c_{\pi}(\mathfrak{O}) \neq 0\}$$

for the usual order $\mathfrak{O}' \leq \mathfrak{O}$ if $\mathfrak{O}' \subset \overline{\mathfrak{O}}$, is sometimes called wave front set of π . The dimension of a nilpotent orbit, is an even number dim_{*F*} $\mathfrak{O} = 2d(\mathfrak{O})$. The so-called Gelfand-Kirillov of π is half of the dimension of $WF(\pi)$.

HC. extended only partially H. to any G. No integrality of the coefficients for a good choice of measures. No relation between the nilpotent integral orbitals in the RHS and the trace of a virtual finite length representation.

1987-2014 complex case

◆□ > ◆□ > ◆豆 > ◆豆 > □ = ○ ○ ○ ○

1987-2014 complex case

 $c_{\pi}(\mathfrak{O})$ is the dimension of a space of degenerate Whittaker forms associated to \mathfrak{O} when $\mathfrak{O} \in WF(\pi)$ (Moeglin-Waldspurger 1987 if $p \neq 2$ and Varma 2014 for all p). proved .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

1987-2014 complex case

 $c_{\pi}(\mathfrak{O})$ is the dimension of a space of degenerate Whittaker forms associated to \mathfrak{O} when $\mathfrak{O} \in WF(\pi)$ (Moeglin-Waldspurger 1987 if $p \neq 2$ and Varma 2014 for all p). proved .

 $c_{\pi}(0)$ is the formal degree if π is essentially square-integrable and is 0 if π is tempered but not e.s.i. (Huntsinger 1997).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

1987-2014 complex case

 $c_{\pi}(\mathfrak{O})$ is the dimension of a space of degenerate Whittaker forms associated to \mathfrak{O} when $\mathfrak{O} \in WF(\pi)$ (Moeglin-Waldspurger 1987 if $p \neq 2$ and Varma 2014 for all p). proved .

 $c_{\pi}(0)$ is the formal degree if π is essentially square-integrable and is 0 if π is tempered but not e.s.i. (Huntsinger 1997).

The nilpotent orbital integrals and the Igusa local zeta functions which are rational, and there are measures such that for all field $R \subset \mathbb{C}$, and all $\varphi \in C_c^{\infty}(\mathfrak{g}; E)$, $\int_{\mathfrak{D}} \varphi(X) dX_{\mathfrak{D}} \in E$ (Assem 1995)

1987-2014 complex case

 $c_{\pi}(\mathfrak{O})$ is the dimension of a space of degenerate Whittaker forms associated to \mathfrak{O} when $\mathfrak{O} \in WF(\pi)$ (Moeglin-Waldspurger 1987 if $p \neq 2$ and Varma 2014 for all p). proved .

 $c_{\pi}(0)$ is the formal degree if π is essentially square-integrable and is 0 if π is tempered but not e.s.i. (Huntsinger 1997).

The nilpotent orbital integrals and the Igusa local zeta functions which are rational, and there are measures such that for all field $R \subset \mathbb{C}$, and all $\varphi \in C_c^{\infty}(\mathfrak{g}; E)$, $\int_{\mathfrak{D}} \varphi(X) dX_{\mathfrak{D}} \in E$ (Assem 1995)

There are measures such that $c_{\pi}(\mathfrak{O}) \in \mathbb{Q}$ for all \mathfrak{O} , using A. and generalizing the method of H. (Varma 2014).

 $char_R \neq p$, D central division F-algebra of dimension d^2 H. is true for any irreducible admissible R-representation π of $GL_n(D)$.

◆□ > ◆□ > ◆目 > ◆目 > ● 目 ● のへで

 $char_R \neq p$, D central division F-algebra of dimension d^2 H. is true for any irreducible admissible R-representation π of $GL_n(D)$. The proof uses the works of Lemaire ($char_F = p$), Minguez-Sécherre ($char_R = \ell$).

 $char_R \neq p$, D central division F-algebra of dimension d^2 H. is true for any irreducible admissible R-representation π of $GL_n(D)$. The proof uses the works of Lemaire $(char_F = p)$, Minguez-Sécherre $(char_R = \ell)$.

• There are (unique) integers $c_{\pi}(\lambda)$ for $\lambda \in \mathcal{P}(n)$ such that the restrictions of π and of $\bigoplus_{\lambda} c_{\pi}(\lambda) \operatorname{ind}_{P_{\lambda}}^{\mathcal{P}} 1$ to some open compact subgroup are isomorphic.

 $char_R \neq p$, D central division F-algebra of dimension d^2 H. is true for any irreducible admissible R-representation π of $GL_n(D)$. The proof uses the works of Lemaire $(char_F = p)$, Minguez-Sécherre $(char_R = \ell)$.

• There are (unique) integers $c_{\pi}(\lambda)$ for $\lambda \in \mathcal{P}(n)$ such that the restrictions of π and of $\bigoplus_{\lambda} c_{\pi}(\lambda) \operatorname{ind}_{P}^{\mathcal{P}}$. I to some open compact subgroup are isomorphic.

• dim_R $\pi^{G_{x,r+j}} = P(q^{d_j})$ for j >> 0, where $P(X) = \sum_{\lambda} c_{\pi}(\lambda) |P_{\lambda} \setminus G/G_{x,r}| X^{d_{\lambda}}$ is a polynomial in $\mathbb{Z}[X]$ of degree max $\{d_{\lambda} | c_{\pi}(\lambda) \neq 0\}$.

・ロット (雪) (日) (日) (日)

 $char_R \neq p$, D central division F-algebra of dimension d^2 H. is true for any irreducible admissible R-representation π of $GL_n(D)$. The proof uses the works of Lemaire $(char_F = p)$, Minguez-Sécherre $(char_R = \ell)$.

• There are (unique) integers $c_{\pi}(\lambda)$ for $\lambda \in \mathcal{P}(n)$ such that the restrictions of π and of $\bigoplus_{\lambda} c_{\pi}(\lambda) \operatorname{ind}_{P}^{\mathcal{P}}$. I to some open compact subgroup are isomorphic.

• dim_R $\pi^{G_{x,r+j}} = P(q^{d_j})$ for j >> 0, where $P(X) = \sum_{\lambda} c_{\pi}(\lambda) |P_{\lambda} \setminus G/G_{x,r}| X^{d_{\lambda}}$ is a polynomial in $\mathbb{Z}[X]$ of degree max $\{d_{\lambda} | c_{\pi}(\lambda) \neq 0\}$.

• For λ minimal in $\{\lambda \in \mathfrak{P}(n) \mid c_{\pi}(\lambda) \neq 0\}$, $c_{\pi}(\lambda)$ is the dimension of degenerate Whittaker forms, if R is algebraically closed.

 $char_R \neq p$, D central division F-algebra of dimension d^2 H. is true for any irreducible admissible R-representation π of $GL_n(D)$. The proof uses the works of Lemaire $(char_F = p)$, Minguez-Sécherre $(char_R = \ell)$.

• There are (unique) integers $c_{\pi}(\lambda)$ for $\lambda \in \mathcal{P}(n)$ such that the restrictions of π and of $\bigoplus_{\lambda} c_{\pi}(\lambda) \operatorname{ind}_{P}^{\mathcal{P}}$. I to some open compact subgroup are isomorphic.

• dim_R $\pi^{G_{x,r+j}} = P(q^{d_j})$ for j >> 0, where $P(X) = \sum_{\lambda} c_{\pi}(\lambda) |P_{\lambda} \setminus G/G_{x,r}| X^{d_{\lambda}}$ is a polynomial in $\mathbb{Z}[X]$ of degree max $\{d_{\lambda} | c_{\pi}(\lambda) \neq 0\}$.

• For λ minimal in $\{\lambda \in \mathfrak{P}(n) \mid c_{\pi}(\lambda) \neq 0\}$, $c_{\pi}(\lambda)$ is the dimension of degenerate Whittaker forms, if R is algebraically closed.

• $(-1)^{dn} c_{\tau}(d\lambda) = (-1)^n c_{JL(\tau)}(\lambda)$ for any irreducible admissible representation τ of $G = GL_{dn}(F)$, and any partition λ of n, if R is algebraically closed.

 $char_R \neq p$, D central division F-algebra of dimension d^2 H. is true for any irreducible admissible R-representation π of $GL_n(D)$. The proof uses the works of Lemaire $(char_F = p)$, Minguez-Sécherre $(char_R = \ell)$.

• There are (unique) integers $c_{\pi}(\lambda)$ for $\lambda \in \mathcal{P}(n)$ such that the restrictions of π and of $\bigoplus_{\lambda} c_{\pi}(\lambda) \operatorname{ind}_{\mathcal{P}}^{\mathcal{P}}$. I to some open compact subgroup are isomorphic.

• dim_R $\pi^{G_{x,r+j}} = P(q^{d_j})$ for j >> 0, where $P(X) = \sum_{\lambda} c_{\pi}(\lambda) |P_{\lambda} \setminus G/G_{x,r}| X^{d_{\lambda}}$ is a polynomial in $\mathbb{Z}[X]$ of degree max $\{d_{\lambda} | c_{\pi}(\lambda) \neq 0\}$.

• For λ minimal in $\{\lambda \in \mathfrak{P}(n) \mid c_{\pi}(\lambda) \neq 0\}$, $c_{\pi}(\lambda)$ is the dimension of degenerate Whittaker forms, if R is algebraically closed.

• $(-1)^{dn} c_{\tau}(d\lambda) = (-1)^n c_{JL(\tau)}(\lambda)$ for any irreducible admissible representation τ of $G = GL_{dn}(F)$, and any partition λ of n, if R is algebraically closed.

x in the Bruhat-Tits of G, $r \in \mathbb{R}_{>0}$, $G_{x,r}$ is the Moy-Prasad subgroup of G, $G_{x,r+j}$ the *j*-th congruence subgroup, q order of the residue field of F.

 $char_R \neq p$, D central division F-algebra of dimension d^2 H. is true for any irreducible admissible R-representation π of $GL_n(D)$. The proof uses the works of Lemaire $(char_F = p)$, Minguez-Sécherre $(char_R = \ell)$.

• There are (unique) integers $c_{\pi}(\lambda)$ for $\lambda \in \mathcal{P}(n)$ such that the restrictions of π and of $\bigoplus_{\lambda} c_{\pi}(\lambda) \operatorname{ind}_{\mathcal{P}}^{\mathcal{P}}$. I to some open compact subgroup are isomorphic.

• dim_R $\pi^{G_{x,r+j}} = P(q^{d_j})$ for j >> 0, where $P(X) = \sum_{\lambda} c_{\pi}(\lambda) |P_{\lambda} \setminus G/G_{x,r}| X^{d_{\lambda}}$ is a polynomial in $\mathbb{Z}[X]$ of degree max $\{d_{\lambda} | c_{\pi}(\lambda) \neq 0\}$.

• For λ minimal in $\{\lambda \in \mathfrak{P}(n) \mid c_{\pi}(\lambda) \neq 0\}$, $c_{\pi}(\lambda)$ is the dimension of degenerate Whittaker forms, if R is algebraically closed.

• $(-1)^{dn} c_{\tau}(d\lambda) = (-1)^n c_{JL(\tau)}(\lambda)$ for any irreducible admissible representation τ of $G = GL_{dn}(F)$, and any partition λ of n, if R is algebraically closed.

x in the Bruhat-Tits of G, $r \in \mathbb{R}_{>0}$, $G_{x,r}$ is the Moy-Prasad subgroup of G, $G_{x,r+j}$ the *j*-th congruence subgroup, q order of the residue field of F. dim_F $\mathfrak{D}_{\lambda} = 2d_{\lambda}$, $d_{\lambda} = \sum_{i < j} \lambda_i \lambda_j$, possible values $(0, n - 1, \dots, n(n - 1)/2)$.

 $char_R \neq p$, D central division F-algebra of dimension d^2 H. is true for any irreducible admissible R-representation π of $GL_n(D)$. The proof uses the works of Lemaire $(char_F = p)$, Minguez-Sécherre $(char_R = \ell)$.

• There are (unique) integers $c_{\pi}(\lambda)$ for $\lambda \in \mathcal{P}(n)$ such that the restrictions of π and of $\bigoplus_{\lambda} c_{\pi}(\lambda) \operatorname{ind}_{\mathcal{P}}^{\mathcal{P}}$. I to some open compact subgroup are isomorphic.

• dim_R $\pi^{G_{x,r+j}} = P(q^{d_j})$ for j >> 0, where $P(X) = \sum_{\lambda} c_{\pi}(\lambda) |P_{\lambda} \setminus G/G_{x,r}| X^{d_{\lambda}}$ is a polynomial in $\mathbb{Z}[X]$ of degree max $\{d_{\lambda} | c_{\pi}(\lambda) \neq 0\}$.

• For λ minimal in $\{\lambda \in \mathfrak{P}(n) \mid c_{\pi}(\lambda) \neq 0\}$, $c_{\pi}(\lambda)$ is the dimension of degenerate Whittaker forms, if R is algebraically closed.

• $(-1)^{dn} c_{\tau}(d\lambda) = (-1)^n c_{JL(\tau)}(\lambda)$ for any irreducible admissible representation τ of $G = GL_{dn}(F)$, and any partition λ of n, if R is algebraically closed.

x in the Bruhat-Tits of G, $r \in \mathbb{R}_{>0}$, $G_{x,r}$ is the Moy-Prasad subgroup of G, $G_{x,r+j}$ the *j*-th congruence subgroup, q order of the residue field of F. $\dim_F \mathfrak{D}_{\lambda} = 2d_{\lambda}$, $d_{\lambda} = \sum_{i < j} \lambda_i \lambda_j$, possible values $(0, n - 1, \dots, n(n - 1)/2)$. H-V. extends to the Grothendieck group $Gr_R(G)$ of admissible finite length representations and is compatible with Langlands-Jacquet *LJ* from $GL_{dn}(F)$ to $GL_n(D)$ when *R* is algebraically closed of characteristic $\neq p$ (Badulescu, Minguez-Sécherre).

The minimal GK-dimension of π infinite dimensional is n-1 (this was conjectured for $F = D = \mathbb{Q}_p$ in 2012 Calegari-Emerton's paper on homological stability for completed cohomology).

◆□ > ◆□ > ◆目 > ◆目 > ● 目 ● のへで

The minimal GK-dimension of π infinite dimensional is n-1 (this was conjectured for $F = D = \mathbb{Q}_p$ in 2012 Calegari-Emerton's paper on homological stability for completed cohomology). The maximal one is n(n-1)/2.

 $G = GL_2(D)$

The minimal GK-dimension of π infinite dimensional is n-1 (this was conjectured for $F = D = \mathbb{Q}_p$ in 2012 Calegari-Emerton's paper on homological stability for completed cohomology). The maximal one is n(n-1)/2.

 $G = GL_2(D)$

Moy-Prasad lattices

$$\mathfrak{k}_{0} = \begin{pmatrix} O_{D} & O_{D} \\ O_{D} & O_{D} \end{pmatrix} \supset \mathfrak{i}_{0} = \begin{pmatrix} O_{D} & O_{D} \\ P_{D} & O_{D} \end{pmatrix} \supset \mathfrak{i}_{1/2} = \begin{pmatrix} P_{D} & O_{D} \\ P_{D} & P_{D} \end{pmatrix}$$

 $\supset p_D \mathfrak{k}_0 \supset p_D \mathfrak{i}_0 \supset p_D \mathfrak{i}_{1/2} \supset \dots$ (indices multiplied by d)

The minimal GK-dimension of π infinite dimensional is n-1 (this was conjectured for $F = D = \mathbb{Q}_p$ in 2012 Calegari-Emerton's paper on homological stability for completed cohomology). The maximal one is n(n-1)/2.

 $G = GL_2(D)$

Moy-Prasad lattices

$$\mathfrak{k}_{0} = \begin{pmatrix} O_{D} & O_{D} \\ O_{D} & O_{D} \end{pmatrix} \supset \mathfrak{i}_{0} = \begin{pmatrix} O_{D} & O_{D} \\ P_{D} & O_{D} \end{pmatrix} \supset \mathfrak{i}_{1/2} = \begin{pmatrix} P_{D} & O_{D} \\ P_{D} & P_{D} \end{pmatrix}$$

 $\supset p_D \mathfrak{k}_0 \supset p_D \mathfrak{i}_0 \supset p_D \mathfrak{i}_{1/2} \supset \dots$ (indices multiplied by d)

Moy-Prasad subgroups

 $\mathcal{K}_0 = \mathcal{GL}_2(\mathcal{O}_D) = \mathfrak{k}_0^* \supset \mathcal{I}_0 = \mathfrak{i}_0^*$ Iwahori group $\supset \mathcal{I}_{1/2} = 1 + \mathfrak{i}_{1/2}$ pro-p Iwahori group

$$\supset K_1 = 1 + p_D \mathfrak{k}_0 \supset I_1 = 1 + p_D \mathfrak{i}_0 \supset I_{1/2+1} = 1 + p_D \mathfrak{i}_{1/2} \supset \dots$$

$$|B \setminus G/I_{1/2}| = 2, \ |B \setminus G/K_1| = q^d + 1, \ |B \setminus G/I_1| = 2q^d, \ |B \setminus G/H_j| = |B \setminus G/H_0|q^{dj}.$$

$$|B \setminus G/I_{1/2}| = 2, \ |B \setminus G/K_1| = q^d + 1, \ |B \setminus G/I_1| = 2q^d, \ |B \setminus G/H_j| = |B \setminus G/H_0|q^{dj}.$$

B upper triangular group, $H_j = I_{1/2+j}, K_{1+j}, I_{1+j}, j \in \mathbb{N}.$

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・ ・ の へ の ・

B upper triangular group, $H_j = I_{1/2+j}, K_{1+j}, I_{1+j}, j \in \mathbb{N}.$

• R of any characteristic.

B upper triangular group, $H_j = I_{1/2+j}, K_{1+j}, I_{1+j}, j \in \mathbb{N}.$

• R of any characteristic.

Parabolic induction, σ irreducible smooth *R*-representation of the diagonal subgroup,

$$\operatorname{ind}_B^G \sigma = \oplus^{\dim_R \sigma} \operatorname{ind}_B^G 1$$
 on H_j , $j \ge j_\sigma$, $(j_\sigma = 0 \text{ if } char_R = p)$,

and $\dim_R(\operatorname{ind}_B^G \sigma)^{H_j} = \dim_R \sigma |B \setminus G/H_0| q^{dj}$.

B upper triangular group, $H_j = I_{1/2+j}, K_{1+j}, I_{1+j}, j \in \mathbb{N}.$

• R of any characteristic.

Parabolic induction, σ irreducible smooth *R*-representation of the diagonal subgroup,

$$\operatorname{ind}_B^G \sigma = \oplus^{\dim_R \sigma} \operatorname{ind}_B^G 1$$
 on H_j , $j \ge j_\sigma$, $(j_\sigma = 0 \text{ if } char_R = p)$,

and $\dim_R(\operatorname{ind}_B^G \sigma)^{H_j} = \dim_R \sigma |B \setminus G/H_0| q^{dj}$.

Steinberg $0 \to 1 \to \operatorname{ind}\nolimits^G_B 1 \to \operatorname{St} \to 0$ exact

 $0 \to 1 \to (\operatorname{ind}_B^G 1)^{H_j} \to \operatorname{St}^{H_j} \to 0$ exact (Morra for $F = \mathbb{Q}_p$)

 $\dim_R \operatorname{St}^{H_j} = -1 + |B \setminus G/H_0| q^{dj}$

B upper triangular group, $H_j = I_{1/2+j}, K_{1+j}, I_{1+j}, j \in \mathbb{N}.$

• R of any characteristic.

Parabolic induction, σ irreducible smooth *R*-representation of the diagonal subgroup,

$$\operatorname{ind}_B^G \sigma = \oplus^{\dim_R \sigma} \operatorname{ind}_B^G 1$$
 on H_j , $j \ge j_\sigma$, $(j_\sigma = 0 \text{ if } char_R = p)$,

and $\dim_R(\operatorname{ind}_B^G \sigma)^{H_j} = \dim_R \sigma |B \setminus G/H_0| q^{dj}$.

Steinberg $0 \rightarrow 1 \rightarrow \operatorname{ind}_B^G 1 \rightarrow \operatorname{St} \rightarrow 0$ exact

 $0 \to 1 \to (\operatorname{ind}_B^G 1)^{H_j} \to \operatorname{St}^{H_j} \to 0$ exact (Morra for $F = \mathbb{Q}_p$)

 $\dim_R \operatorname{St}^{H_j} = -1 + |B \setminus G/H_0| q^{dj}$

• $char_R \neq p$ and $\pi \in Gr_R(G)$. There are integers $a_{\pi}, b_{\pi}, j_{\pi}$ such that

 $\pi = a_{\pi} + b_{\pi} \operatorname{ind}_{B}^{G} 1 \text{ on } H_{j}, \ j \ge j_{\pi}$ $\dim_{B} \pi^{H_{j}} = a_{\pi} + b_{\pi} |B \setminus G/H_{0}| \ a^{dj}.$

 $a_{\pi} = -\dim_R LJ(\pi)$

(For $\tau \in Gr_R(D_{2d})$ not 0, dim_R $\tau = 0$ is possible).

 $a_{\pi} = -\dim_R LJ(\pi)$

(For $\tau \in Gr_R(D_{2d})$ not 0, dim_R $\tau = 0$ is possible). Moreover, if π is irreducible infinite dimensionail

 $b_{\pi} = \dim_R V_{U,\theta} \neq 0$

for any non-trivial smooth *R*-character ψ of the strictly upper trianglar group *U*, $\pi_{U,\psi}$ the maximal quotient of π on which *U* acts by ψ .

 $a_{\pi} = -\dim_R LJ(\pi)$

(For $\tau \in Gr_R(D_{2d})$ not 0, dim_R $\tau = 0$ is possible). Moreover, if π is irreducible infinite dimensionail

 $b_{\pi} = \dim_R V_{U,\theta} \neq 0$

for any non-trivial smooth *R*-character ψ of the strictly upper trianglar group *U*, $\pi_{U,\psi}$ the maximal quotient of π on which *U* acts by ψ .

• $R = \mathbb{F}_p^{ac}$, $p \neq 2$, $G = GL_2(\mathbb{Q}_p)$, π irreducible supersingular. By Morra,

 $a_{\pi} = -\dim_R LJ(\pi)$

(For $\tau \in Gr_R(D_{2d})$ not 0, dim_R $\tau = 0$ is possible). Moreover, if π is irreducible infinite dimensionail

 $b_{\pi} = \dim_R V_{U,\theta} \neq 0$

for any non-trivial smooth *R*-character ψ of the strictly upper trianglar group *U*, $\pi_{U,\psi}$ the maximal quotient of π on which *U* acts by ψ .

• $R = \mathbb{F}_p^{ac}$, $p \neq 2$, $G = GL_2(\mathbb{Q}_p)$, π irreducible supersingular. By Morra,

 $\dim_R \pi^{H_j} = a_{\pi,H_0} + 2|B \setminus G/H_0| p^j$

 $a_{\pi} = -\dim_R LJ(\pi)$

(For $\tau \in Gr_R(D_{2d})$ not 0, dim_R $\tau = 0$ is possible). Moreover, if π is irreducible infinite dimensionail

 $b_{\pi} = \dim_R V_{U,\theta} \neq 0$

for any non-trivial smooth *R*-character ψ of the strictly upper trianglar group *U*, $\pi_{U,\psi}$ the maximal quotient of π on which *U* acts by ψ .

• $R = \mathbb{F}_p^{ac}$, $p \neq 2$, $G = GL_2(\mathbb{Q}_p)$, π irreducible supersingular. By Morra,

 $\dim_R \pi^{H_j} = a_{\pi,H_0} + 2|B \setminus G/H_0| p^j$

 $a_{\pi,H_0} = \begin{cases} -2 \text{ if } H_0 = I_{1/2} \\ -3 \text{ if } H_0 = K_1 \text{ and } \pi = \chi \pi_0 \text{ is the twist of } \pi_0 \text{ by a smooth character } \chi \\ -4 \text{ if } H_0 = K_1 \text{ and } \pi \text{ not as above} \\ \pi_0 = \text{supersingular quotient of } R[\mathbb{Q}_p^* GL_2(\mathbb{Z}_p) \backslash GL_2(\mathbb{Q}_p)]. \end{cases}$

 $a_{\pi} = -\dim_R LJ(\pi)$

(For $\tau \in Gr_R(D_{2d})$ not 0, dim_R $\tau = 0$ is possible). Moreover, if π is irreducible infinite dimensionail

 $b_{\pi} = \dim_R V_{U,\theta} \neq 0$

for any non-trivial smooth *R*-character ψ of the strictly upper trianglar group *U*, $\pi_{U,\psi}$ the maximal quotient of π on which *U* acts by ψ .

• $R = \mathbb{F}_p^{ac}$, $p \neq 2$, $G = GL_2(\mathbb{Q}_p)$, π irreducible supersingular. By Morra,

 $\dim_R \pi^{H_j} = a_{\pi,H_0} + 2|B \setminus G/H_0| p^j$

 $a_{\pi,H_0} = \begin{cases} -2 \text{ if } H_0 = I_{1/2} \\ -3 \text{ if } H_0 = K_1 \text{ and } \pi = \chi \pi_0 \text{ is the twist of } \pi_0 \text{ by a smooth character } \chi \\ -4 \text{ if } H_0 = K_1 \text{ and } \pi \text{ not as above} \end{cases}$ $\pi_0 = \text{supersingular quotient of } R[\mathbb{Q}_p^* GL_2(\mathbb{Z}_p) \setminus GL_2(\mathbb{Q}_p)].$ (missing $H_0 = I_1$),

(ロ) (四) (日) (日) (日)

◆□ → ◆□ → ◆三 → ◆三 → ○ へ ⊙

For an open compact subgroup K of G, the algebraic dual π^{\vee} of π is a finitely generated module over the Iwasawa R-algebra of K

 $R[[K]] = \mathop{\rm proj\,lim}_{U \subset _0 K} K/U$

For an open compact subgroup K of G, the algebraic dual π^{\vee} of π is a finitely generated module over the Iwasawa *R*-algebra of *K*

$$R[[K]] = \operatorname{proj}_{U \subset_0 K} \lim K/U$$

Any K contains an open normal uniform subgroup.

For an open compact subgroup K of G, the algebraic dual π^{\vee} of π is a finitely generated module over the Iwasawa *R*-algebra of *K*

$$R[[K]] = \operatorname{proj}_{U \subset_0 K} \lim K/U$$

Any K contains an open normal uniform subgroup. Uniform= torsion free, pro-p group, powerful:

For an open compact subgroup K of G, the algebraic dual π^{\vee} of π is a finitely generated module over the Iwasawa R-algebra of K

$$R[[K]] = \operatorname{proj}_{U \subset_0 K} K/U$$

Any K contains an open normal uniform subgroup. Uniform= torsion free, pro-p group, powerful: K/K^p is abelian if $p \neq 2$, K/K^4 is abelian if p = 2,

 $K^{p^{j}}$ is the closure of the subgroup generated by the p^{j} -th power of the elements of K.

・ロト (局) (日) (日) (日) (日)

For an open compact subgroup K of G, the algebraic dual π^{\vee} of π is a finitely generated module over the Iwasawa R-algebra of K

$$R[[K]] = \operatorname{proj}_{U \subset 0} \lim_{K} K/U$$

Any K contains an open normal uniform subgroup. Uniform= torsion free, pro-p group, powerful:

 K/K^p is abelian if $p \neq 2$, K/K^4 is abelian if p = 2,

 $K^{p^{j}}$ is the closure of the subgroup generated by the p^{j} -th power of the elements of K.

When K is uniform, R[[K]] is a local non-commutative Noetherian, Auslander regular ring (Venjakob), J its Jacobson radical, the graded ring gr(R[[K]]) with respect to the J-adic filtration, is a polynomial ring in $m = \dim_{\mathbb{Q}_p} \mathfrak{g}$ variables.

For an open compact subgroup K of G, the algebraic dual π^{\vee} of π is a finitely generated module over the Iwasawa R-algebra of K

$$R[[K]] = \operatorname{proj}_{U \subset 0} \lim_{K} K/U$$

Any K contains an open normal uniform subgroup.

Uniform= torsion free, pro-*p* group, powerful:

 K/K^p is abelian if $p \neq 2$, K/K^4 is abelian if p = 2,

 $K^{p^{i}}$ is the closure of the subgroup generated by the p^{i} -th power of the elements of K.

When K is uniform, R[[K]] is a local non-commutative Noetherian, Auslander regular ring (Venjakob), J its Jacobson radical, the graded ring gr(R[[K]]) with respect to the J-adic filtration, is a polynomial ring in $m = \dim_{\mathbb{Q}_p} \mathfrak{g}$ variables.

The characteristic variety of the R[[K]]-module π^{\vee} is the affine variety $Ch_{K}(gr(\pi^{\vee}))$ associated to the radical ideal

$$J(\pi^{\vee}) = \sqrt{Ann(gr(\pi^{\vee}))}, \quad Ann(gr(\pi^{\vee})) = \{f \in gr(R[[K]]) \mid f gr(M) = 0\}.$$

For an open compact subgroup K of G, the algebraic dual π^{\vee} of π is a finitely generated module over the Iwasawa R-algebra of K

$$R[[K]] = \operatorname{proj}_{U \subset_0 K} K/U$$

Any K contains an open normal uniform subgroup.

Uniform= torsion free, pro-*p* group, powerful:

 K/K^p is abelian if $p \neq 2$, K/K^4 is abelian if p = 2,

 $K^{p^{i}}$ is the closure of the subgroup generated by the p^{i} -th power of the elements of K.

When K is uniform, R[[K]] is a local non-commutative Noetherian, Auslander regular ring (Venjakob), J its Jacobson radical, the graded ring gr(R[[K]]) with respect to the J-adic filtration, is a polynomial ring in $m = \dim_{\mathbb{Q}_p} \mathfrak{g}$ variables.

The characteristic variety of the R[[K]]-module π^{\vee} is the affine variety $Ch_{K}(gr(\pi^{\vee}))$ associated to the radical ideal

$$J(\pi^{\vee}) = \sqrt{Ann(gr(\pi^{\vee}))}, \quad Ann(gr(\pi^{\vee})) = \{f \in gr(R[[K]]) \mid f gr(M) = 0\}.$$

Its dimension $d(\pi)$, called the canonical dimension (Ardakov-Brown 2006), does not depend on the choice of K.

For an open compact subgroup K of G, the algebraic dual π^{\vee} of π is a finitely generated module over the Iwasawa R-algebra of K

$$R[[K]] = \operatorname{proj}_{U \subset_0 K} K/U$$

Any K contains an open normal uniform subgroup.

Uniform= torsion free, pro-*p* group, powerful:

 K/K^p is abelian if $p \neq 2$, K/K^4 is abelian if p = 2,

 $K^{p^{j}}$ is the closure of the subgroup generated by the p^{j} -th power of the elements of K.

When K is uniform, R[[K]] is a local non-commutative Noetherian, Auslander regular ring (Venjakob), J its Jacobson radical, the graded ring gr(R[[K]]) with respect to the J-adic filtration, is a polynomial ring in $m = \dim_{\mathbb{Q}_p} \mathfrak{g}$ variables.

The characteristic variety of the R[[K]]-module π^{\vee} is the affine variety $Ch_{K}(gr(\pi^{\vee}))$ associated to the radical ideal

$$J(\pi^{\vee}) = \sqrt{Ann(gr(\pi^{\vee}))}, \quad Ann(gr(\pi^{\vee})) = \{f \in gr(R[[K]]) \mid f gr(M) = 0\}.$$

Its dimension $d(\pi)$, called the canonical dimension (Ardakov-Brown 2006), does not depend on the choice of K.

There exist an integer j_{π} and real positive numbers a_{π}, a'_{π} such that for $j \ge j_{\pi}$,

$$a_{\pi}p^{jd(\pi)} \leq \dim_R \pi^{K^{p^j}} \leq a'_{\pi}p^{jd(\pi)}$$

(Emerton-Paskunas 2020, $d(\pi)$ has been called the Gelfand-Kirillov dimension of π).

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 - のへぐ

Is $d(\pi)$ equal to $(1/2) \dim_{\mathbb{Q}_p}(\mathfrak{O})$ for a nilpotent orbit \mathfrak{O} of \mathfrak{g} ?

◆□ > ◆□ > ◆目 > ◆目 > ● 目 ● のへで

Is $d(\pi)$ equal to $(1/2) \dim_{\mathbb{Q}_p}(\mathfrak{O})$ for a nilpotent orbit \mathfrak{O} of \mathfrak{g} ?

Is $a_{\pi,H_0} + 2|B \setminus G/H_0| X$ a certain Hilbert-Serre polynomial ?

◆□ > ◆□ > ◆目 > ◆目 > ● 目 ● のへで

Is $d(\pi)$ equal to $(1/2) \dim_{\mathbb{Q}_p}(\mathfrak{O})$ for a nilpotent orbit \mathfrak{O} of \mathfrak{g} ?

Is $a_{\pi,H_0} + 2|B \setminus G/H_0| X$ a certain Hilbert-Serre polynomial ? Yongquan Hu (yes for $I_{1/2}$).

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

Is $d(\pi)$ equal to $(1/2) \dim_{\mathbb{Q}_p}(\mathfrak{O})$ for a nilpotent orbit \mathfrak{O} of \mathfrak{g} ?

Is $a_{\pi,H_0} + 2|B \setminus G/H_0| X$ a certain Hilbert-Serre polynomial ? Yongquan Hu (yes for $I_{1/2}$).

 $d(\pi)$ appears in different papers related to the search on the mod p local Langlands correspondence

Is $d(\pi)$ equal to $(1/2) \dim_{\mathbb{Q}_p}(\mathfrak{O})$ for a nilpotent orbit \mathfrak{O} of \mathfrak{g} ?

Is $a_{\pi,H_0} + 2|B \setminus G/H_0| X$ a certain Hilbert-Serre polynomial ? Yongquan Hu (yes for $I_{1/2}$).

 $d(\pi)$ appears in different papers related to the search on the mod p local Langlands correspondence

2017 Kohlhaase's paper on derived smooth duality.

Is $d(\pi)$ equal to $(1/2) \dim_{\mathbb{Q}_p}(\mathfrak{O})$ for a nilpotent orbit \mathfrak{O} of \mathfrak{g} ?

Is $a_{\pi,H_0} + 2|B \setminus G/H_0| X$ a certain Hilbert-Serre polynomial ? Yongquan Hu (yes for $I_{1/2}$).

 $d(\pi)$ appears in different papers related to the search on the mod p local Langlands correspondence

2017 Kohlhaase's paper on derived smooth duality. 2020 Gee-Newton's paper on patching and the complete homology of locally symmetric spaces.

Is $d(\pi)$ equal to $(1/2) \dim_{\mathbb{Q}_p}(\mathfrak{O})$ for a nilpotent orbit \mathfrak{O} of \mathfrak{g} ?

Is $a_{\pi,H_0} + 2|B \setminus G/H_0| X$ a certain Hilbert-Serre polynomial ? Yongquan Hu (yes for $I_{1/2}$).

 $d(\pi)$ appears in different papers related to the search on the mod p local Langlands correspondence

2017 Kohlhaase's paper on derived smooth duality.

2020 Gee-Newton's paper on patching and the complete homology of locally symmetric spaces.

Since 2020, Breuil-Herzig-Hu-Morra-Schraen, and Hu-Wang 's papers, proved that $d(\pi) = [F : \mathbb{Q}_p]$ for certain admissible *R*-representations π of $GL_2(F)$ with a central character for F/\mathbb{Q}_p unramified appearing in the mod *p* cohomology of Shimura varieties.

Is $d(\pi)$ equal to $(1/2) \dim_{\mathbb{Q}_p}(\mathfrak{O})$ for a nilpotent orbit \mathfrak{O} of \mathfrak{g} ?

Is $a_{\pi,H_0} + 2|B \setminus G/H_0| X$ a certain Hilbert-Serre polynomial ? Yongquan Hu (yes for $I_{1/2}$).

 $d(\pi)$ appears in different papers related to the search on the mod p local Langlands correspondence

2017 Kohlhaase's paper on derived smooth duality.

2020 Gee-Newton's paper on patching and the complete homology of locally symmetric spaces.

Since 2020, Breuil-Herzig-Hu-Morra-Schraen, and Hu-Wang 's papers, proved that $d(\pi) = [F : \mathbb{Q}_p]$ for certain admissible *R*-representations π of $GL_2(F)$ with a central character for F/\mathbb{Q}_p unramified appearing in the mod *p* cohomology of Shimura varieties.

When $[F : \mathbb{Q}_p] \leq 2$ they have finite length (Timmings 2023)