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The local Langlands category

Unipotent Categorical Langlands Correspondence

Classical local Langlands

For a reductive group G over a non-archimedean local field F , classical
local Langlands correspondence roughly predicts a natural bijection:{

Smooth irreducible representations of G (F )
}
↔{

Langlands parameters ϕ : WF → LG up to Ĝ conjugation
}
.

For GLn, “naturality” can be made precise and LLC is a theorem:

Laumon-Rapoport-Stuhler char F > 0,

Harris-Taylor, Henniart char F = 0.

For general G , “naturality” is hard, and the set of Langlands parameters
need to be enhanced.

For example, Kazhdan-Lusztig constructed (for G split) an injective map{
Smooth irr. reps. of G (F ) with Iwahori fixed vectors

}
→{(

ϕ : Ga oWF → Ĝ , ρ ∈ Rep(ZĜ (ϕ))
)

up to Ĝ conjugation
}
.
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Categorical (arithmetic) local Langlands

Both sides of the classical correspondence have some geometric
structure. E.g. Bernstein center, local deformation ring, etc.

There are previous works (e.g. Emerton-Helm) aiming to construct maps
from local deformation rings to (completed integral) Bernstein centers,
known as local Langlands in families.

On the other hand, the appearing of ρ ∈ Rep(ZĜ (ϕ)) in the work of
Kazhdan-Lusztig suggests that there are stacks involved in the story.
Namely, such ρ could be interpreted as a coherent sheaf on the stack

pt/ZĜ (ϕ) ∼=
{
Ĝ -orbit of ϕ : WF → LG

}
/Ĝ

Geometric Langlands suggests that the local Langlands correspondence
can and probably needs to be lifted to an equivalence of categories.
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pt/ZĜ (ϕ) ∼=
{
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The stack of local Langlands parameters

Theorem (Dat-Helm-Kurinczuk-Moss, Fargues-Scholze, Z.)

For every ` 6= p, ∃ an algebraic stack LoccG = Loc2cG/Ĝ over Z`, where

Loc2cG (R) =
{

Continuous ϕ : WF → cG (R) + · · ·
}
,

is represented by disjoint of reduced finite type affine schemes, which are
local complete intersection, flat of relative dim Ĝ over Z`.

Here “continuity” means that when cG ⊂ GLn, ϕ(IF )v ⊂ Rn is a finite
Z`-module for every v ∈ Rn, and the action of IF on ϕ(IF )v is continuous
for the usual `-adic topology on finite Z`-modules.

In categorical (arithmetic) local Langlands, the set of Langlands
parameters is replaced by the (derived) category

Coh(LoccG )

of coherent sheaves on LoccG .
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The local Langlands category

It is natural to replace the set of smooth. irr. reps. of G (F ) by the
(derived) category Rep(G (F )). But this is not quite enough.

This can be seen from classicial points of view (Vogan, Bernstein,
Kottwitz-Kaletha): Better to study representation theory of G (F )
together with its (extended) pure inner forms.

Arithmetic geometry suggests to study the representation theory G (F )
together with its forms {Jb(F )} arising from the Kottwitz set B(G ). In
addition the categories Rep(Jb(F )) can be glued together via the
category of sheaves on certain geometric objects.

There are two approaches to make the idea precise.

Dlis(BunG ,Λ) (Fargues-Scholze);

Shv(IsocG ,Λ) (Xiao-Z., Hemo-Z., Gaitsgory).
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Notations

OF ⊂ F ring of integers, $ ∈ OF a uniformizer.

kF = OF/$ residue field, |kF | = q, σ the q-Frobenius.

For a perfect kF -algebra R, let

WO,n(R) = W (R)⊗Zp (OF/$
n), WO(R) = lim←−

n

WO,n(R).

If R = K is a perfect field, then L := WO(K )[1/$] is a discrete
valued non-archimedean field, with OL := WO(K ) is ring of
integers, e.g. WO(kF ) = O and WO(kF )[1/$] = F .

Denote

DR = SpecWO(R), D∗R = Spec(WO(R)[1/$]),

thought as family of (punctured) disks parameterized by SpecR.

The q-Frobenius of R induces an automorphism σR (or denoted by
σ for simplicity) of DR (and D∗R).
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Isocrystals and the Kottwitz set

If K is a perfect field over kF , an isocrystal over K is a finite dim.
L-vector space V equipped with a Frob. semi-linear bijection ψ : V ∼= V .

By Tannakian formalism, one may define a G -isocrystal over K as a
G -torsor E over D∗K = SpecL equipped with ψ : σ∗KE ∼= E .

When K is an algebraically closed field, isomorphism classes of
G -isocrystals over K are bijective to elements in G (L) up to σ-conjugacy

g ∼ h−1gσ(h), g ∈ G (L), h ∈ G (L).

The quotient set B(G ), usually called the Kottwitz set, is independent of
K . It is a natural poset, and minimal element in it are called basic.

For b ∈ G (L), let

Jb(F ) = {h ∈ G (L) | h−1bσ(h) = b}.

E.g. When b = 1, Jb = G . In general Jb is a form of a Levi of G .
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The stack of isosrystals IsocG

The loop group LG of G is an ind-scheme over kF defined by

LG (R) = G (WO(R)[1/$]).

E.g. LG (kF ) = G (F ).

We define IsocG as the quotient of LG by σ-conjugation

IsocG = LG/AdσLG .

It is slightly subtle in which topology we take the quotient. Using
h-topology leads a neat moduli interpretation (by Anschütz)

IsocG (R) =
{

(E , ϕ)
∣∣ E is a G -torsor on D∗R , ϕ : E ' σ∗RE

}
.

But it is technically more convenient to take quotient in étale topology.
Fortunately, the category of sheaves on IsocG we are going to define does
not depend on the choice of topology.
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IsocG (R) =
{

(E , ϕ)
∣∣ E is a G -torsor on D∗R , ϕ : E ' σ∗RE

}
.

But it is technically more convenient to take quotient in étale topology.
Fortunately, the category of sheaves on IsocG we are going to define does
not depend on the choice of topology.

Xinwen Zhu Unipotent local Langlands



Introduction
The local Langlands category

Unipotent Categorical Langlands Correspondence

The Newton Stratification

For every separably closed field K over kF , the set of isomorphism classes
of the groupoid IsocG (K ) identifies with the Kottwitz poset B(G ).

For an element b ∈ B(G ), we consider

ib : IsocG ,b
jb
↪→ IsocG ,≤b

i≤b

↪→ IsocG ,

IsocG ,≤b(R) =
{

(E , ϕ) ∈ IsocG (R)
∣∣ bx := (Ex , ϕx) ≤ b, x ∈ SpecR

}
,

IsocG ,b = IsocG ,≤b \ ∪b′<bIsocG ,≤b′ .

IsocG ,b ∼= BprofetJb(F );

i≤b is a finitely presented closed embedding (Rapoport-Richartz);

jb is a fp affine open embedding (Vasiu, Hartl-Viehmann).

When b ∈ B(G ) is basic, IsocG ,b = IsocG ,≤b is closed in IsocG .
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For an element b ∈ B(G ), we consider

ib : IsocG ,b
jb
↪→ IsocG ,≤b

i≤b

↪→ IsocG ,

IsocG ,≤b(R) =
{

(E , ϕ) ∈ IsocG (R)
∣∣ bx := (Ex , ϕx) ≤ b, x ∈ SpecR

}
,

IsocG ,b = IsocG ,≤b \ ∪b′<bIsocG ,≤b′ .

IsocG ,b ∼= BprofetJb(F );

i≤b is a finitely presented closed embedding (Rapoport-Richartz);

jb is a fp affine open embedding (Vasiu, Hartl-Viehmann).

When b ∈ B(G ) is basic, IsocG ,b = IsocG ,≤b is closed in IsocG .
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Unipotent Categorical Langlands Correspondence

(Ind-)construcble sheaves

Let Λ = Z`,F`,Q` or their finite algebraic extensions. One can make
sense of the category of Λ-sheaves on objects like IsocG . Fix a field k of
finite Λ-coh. dim (e.g. k = k̄).

If S is a finite type k-scheme, let
Shvc(S ,Λ) = Dctf(S ,Λ), Shv(S ,Λ) = Ind

(
Shvc(S ,Λ)

)
;

If S = limi Si qcqs k-scheme, with Si finite type, let
Shvc(S ,Λ) = colimi Shvc(Si ,Λ), Shv(S ,Λ) = Ind

(
Shvc(S ,Λ)

)
, with

transition maps given by !-pullbacks.

For every prestack X : Perfk → Ani (i.e. a(n accessible) functor),
let Shv(X ,Λ) = limS→X Shv(S ,Λ);

A natural transformation f : X → Y induces a functor
f ! : Shv(Y,Λ)→ Shv(X ,Λ);

For a large class of morphisms (including representable fp
morphisms) f : X → Y, can define f∗ : Shv(X ,Λ)→ Shv(Y,Λ)
satisfying base change.

Xinwen Zhu Unipotent local Langlands



Introduction
The local Langlands category

Unipotent Categorical Langlands Correspondence

(Ind-)construcble sheaves

Let Λ = Z`,F`,Q` or their finite algebraic extensions. One can make
sense of the category of Λ-sheaves on objects like IsocG . Fix a field k of
finite Λ-coh. dim (e.g. k = k̄).

If S is a finite type k-scheme, let
Shvc(S ,Λ) = Dctf(S ,Λ), Shv(S ,Λ) = Ind

(
Shvc(S ,Λ)

)
;

If S = limi Si qcqs k-scheme, with Si finite type, let
Shvc(S ,Λ) = colimi Shvc(Si ,Λ), Shv(S ,Λ) = Ind

(
Shvc(S ,Λ)

)
, with

transition maps given by !-pullbacks.

For every prestack X : Perfk → Ani (i.e. a(n accessible) functor),
let Shv(X ,Λ) = limS→X Shv(S ,Λ);

A natural transformation f : X → Y induces a functor
f ! : Shv(Y,Λ)→ Shv(X ,Λ);

For a large class of morphisms (including representable fp
morphisms) f : X → Y, can define f∗ : Shv(X ,Λ)→ Shv(Y,Λ)
satisfying base change.

Xinwen Zhu Unipotent local Langlands



Introduction
The local Langlands category

Unipotent Categorical Langlands Correspondence

(Ind-)construcble sheaves

Let Λ = Z`,F`,Q` or their finite algebraic extensions. One can make
sense of the category of Λ-sheaves on objects like IsocG . Fix a field k of
finite Λ-coh. dim (e.g. k = k̄).

If S is a finite type k-scheme, let
Shvc(S ,Λ) = Dctf(S ,Λ), Shv(S ,Λ) = Ind

(
Shvc(S ,Λ)

)
;

If S = limi Si qcqs k-scheme, with Si finite type, let
Shvc(S ,Λ) = colimi Shvc(Si ,Λ), Shv(S ,Λ) = Ind

(
Shvc(S ,Λ)

)
, with

transition maps given by !-pullbacks.

For every prestack X : Perfk → Ani (i.e. a(n accessible) functor),
let Shv(X ,Λ) = limS→X Shv(S ,Λ);

A natural transformation f : X → Y induces a functor
f ! : Shv(Y,Λ)→ Shv(X ,Λ);

For a large class of morphisms (including representable fp
morphisms) f : X → Y, can define f∗ : Shv(X ,Λ)→ Shv(Y,Λ)
satisfying base change.

Xinwen Zhu Unipotent local Langlands



Introduction
The local Langlands category

Unipotent Categorical Langlands Correspondence

(Ind-)construcble sheaves

Let Λ = Z`,F`,Q` or their finite algebraic extensions. One can make
sense of the category of Λ-sheaves on objects like IsocG . Fix a field k of
finite Λ-coh. dim (e.g. k = k̄).

If S is a finite type k-scheme, let
Shvc(S ,Λ) = Dctf(S ,Λ), Shv(S ,Λ) = Ind

(
Shvc(S ,Λ)

)
;

If S = limi Si qcqs k-scheme, with Si finite type, let
Shvc(S ,Λ) = colimi Shvc(Si ,Λ), Shv(S ,Λ) = Ind

(
Shvc(S ,Λ)

)
, with

transition maps given by !-pullbacks.

For every prestack X : Perfk → Ani (i.e. a(n accessible) functor),
let Shv(X ,Λ) = limS→X Shv(S ,Λ);

A natural transformation f : X → Y induces a functor
f ! : Shv(Y,Λ)→ Shv(X ,Λ);

For a large class of morphisms (including representable fp
morphisms) f : X → Y, can define f∗ : Shv(X ,Λ)→ Shv(Y,Λ)
satisfying base change.

Xinwen Zhu Unipotent local Langlands



Introduction
The local Langlands category

Unipotent Categorical Langlands Correspondence

(Ind-)construcble sheaves

Let Λ = Z`,F`,Q` or their finite algebraic extensions. One can make
sense of the category of Λ-sheaves on objects like IsocG . Fix a field k of
finite Λ-coh. dim (e.g. k = k̄).

If S is a finite type k-scheme, let
Shvc(S ,Λ) = Dctf(S ,Λ), Shv(S ,Λ) = Ind

(
Shvc(S ,Λ)

)
;

If S = limi Si qcqs k-scheme, with Si finite type, let
Shvc(S ,Λ) = colimi Shvc(Si ,Λ), Shv(S ,Λ) = Ind

(
Shvc(S ,Λ)

)
, with

transition maps given by !-pullbacks.

For every prestack X : Perfk → Ani (i.e. a(n accessible) functor),
let Shv(X ,Λ) = limS→X Shv(S ,Λ);

A natural transformation f : X → Y induces a functor
f ! : Shv(Y,Λ)→ Shv(X ,Λ);

For a large class of morphisms (including representable fp
morphisms) f : X → Y, can define f∗ : Shv(X ,Λ)→ Shv(Y,Λ)
satisfying base change.

Xinwen Zhu Unipotent local Langlands



Introduction
The local Langlands category

Unipotent Categorical Langlands Correspondence

(Ind-)construcble sheaves

Let Λ = Z`,F`,Q` or their finite algebraic extensions. One can make
sense of the category of Λ-sheaves on objects like IsocG . Fix a field k of
finite Λ-coh. dim (e.g. k = k̄).

If S is a finite type k-scheme, let
Shvc(S ,Λ) = Dctf(S ,Λ), Shv(S ,Λ) = Ind

(
Shvc(S ,Λ)

)
;

If S = limi Si qcqs k-scheme, with Si finite type, let
Shvc(S ,Λ) = colimi Shvc(Si ,Λ), Shv(S ,Λ) = Ind

(
Shvc(S ,Λ)

)
, with

transition maps given by !-pullbacks.

For every prestack X : Perfk → Ani (i.e. a(n accessible) functor),
let Shv(X ,Λ) = limS→X Shv(S ,Λ);

A natural transformation f : X → Y induces a functor
f ! : Shv(Y,Λ)→ Shv(X ,Λ);

For a large class of morphisms (including representable fp
morphisms) f : X → Y, can define f∗ : Shv(X ,Λ)→ Shv(Y,Λ)
satisfying base change.

Xinwen Zhu Unipotent local Langlands



Introduction
The local Langlands category
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Examples and features

Here are examples and features of Shv comparing with the usual theory
of étale sheaves.

If S is of finite type over k and Λ finite, then Shv(S ,Λ) = D(Set,Λ).

If S = limi Si is a profinite set, thought as an affine Z-scheme, then
Shv(Sk ,Λ) = Qcoh(SΛ).

If S = Speck(X ) for a curve X over k, then Shvc(S ,Λ) is the
(opposite) category of cont. reps. of Γk(X ) (on perfect Λ-modules)
that are unramified almost everywhere, while Dctf(S ,Λ) is the
category of all continuous representations of Γk(X ).

If Λ is finite, Shvc(S ,Λ) = Dctf(S ,Λ)op and does not depend on the
base field k but if Λ = Z`, Shvc(S ,Λ) 6= Dctf(S ,Λ)op, and does
depend on the base k;

Pro-étale descent fails for Shv (e.g. k(X )/k(X )) but h-descent
holds;

One can define “motivic sheaves” via this procedure.
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The category of sheaves on the Kottwitz stack

We base change everything to k = kF . Now, we have categories
Shv(IsocG ,Λ), Shv(IsocG ,b,Λ), etc, and functors ib,∗, i

!
b and jb,∗, j

!
b, etc.

Theorem (Hemo-Z.)

(1) For every b ∈ B(G ) there is a canonical equivalence

Shv(IsocG ,b,Λ) ∼= Rep(Jb(F ),Λ).

(2) There are adjoint functors

IsocG ,b
j∗

11

j! --
IsocG ,≤bj !oo

i∗ --

i !

11 IsocG ,<b.i∗oo

inducing semi-orthogonal decomposition of Shv(IsocG ,Λ) in terms
of {Shv(IsocG ,b,Λ)}b.
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The category of sheaves on the Kottwitz stack

Theorem (Hemo-Z., cont’d)

(3) The category Shv(IsocG ,Λ) is compactly generated, and compact
objects are those whose restriction to each IsocG ,b is compact and
is zero for almost all b’s.

(4) There is a self-duality Shv(IsocG ,Λ)

Dcoh : Shv(IsocG ,Λ)ω ' (Shv(IsocG ,Λ)ω)op

such that for every b ∈ B(G )

Dcohib,∗ ' ib,!Dcoh
Rep(Jb(F ),Λ)[〈2ρ, νb〉].

(5) There is a natural perverse t-structure obtained by gluing (shifted)
standard t-structures on various Shv(IsocG ,b,Λ), preserved by Dcoh

if Λ is a field.
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Categorical Arithmetic Local Langlands Correspondence

Conjecture

Let Λ = Q`. Assume G is quasi-split with a pinning (B,T , e) and fix
ψ : F → Λ×. There is a canonical equivalence of ∞-categories

LG : Coh(LoccG ,Λ) ' Shv(IsocG ,Λ)ω,

compatible with parabolic induction, intertwining duality, and (after

ind-completion) sending OLoccG,Λ to i1,∗W where W := c - ind
G(F )
U(F )(ψ ◦ e).

For general Λ, one needs to slightly modify one of the categories.

Analogous conjecture by Fargues-Scholze using Dlis(BunG ,Λ).

The spectral action of Perf(LoccG ) on Shv(IsocG ,Λ) is currently
unknown. Fargues-Scholze have such action in their version.

There is, however, some convincing evidence that the above version
should also be true.
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The Unipotent Langlands Category

Assume G is unramified, i.e. quasi-split and split over an unramified
extension of F . We fix (B,T , e, ψ).

Let

Shvunip(IsocG ,Q`) ⊆ Shv(IsocG ,Q`)

consisting of those F such that for all b ∈ B(G ), the cohomologies of

i∗bF ∈ Rep(Jb(F ),Q`)

are unipotent in the sense of Lusztig. I.e. they are quotient of (direct

sums of) c - ind
Jb(F )
P π, for some parahoric subgroup P ⊂ Jb(F ) and some

unipotent cuspidal representation π of the Levi quotient LP of P (which
is a finite group of Lie type).

We mention one can similarly define Shvtame(IsocG ,Q`) consisting of F
such that cohomologies of i∗bF are depth zero representations of Jb(F ).
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The Stack of Unipotent Langlands Parameters

On the other hand, consider the open and closed substacks

Locunip
cG ,Q`

⊆ Loctame
cG ,Q`

⊂ LoccG ,Q`

classifying representations which factor through the tame quotient of WF

(resp. carry unipotent monodromy).

Fix a topological generator τ of tame inertia and a lifting of the
Frobenius σ, one has a presentation:

Loctame
cG '

{
(g , h) ∈ Ĝ × Ĝσ ⊂ cG × cG | hgh−1 = gq

}
/Ĝ

Locunip
cG ,Q`

'
{

(g , h) ∈ UĜ × Ĝσ ⊂ cG × cG | hgh−1 = gq
}
/Ĝ ,

where UĜ ⊂ Ĝ is the variety of unipotent elements.

The stack Locunip
cG ,Q`

is connected, with irreducible components

parameterized by unipotent conjugacy classes of Ĝ .
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/Ĝ ,
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Main theorem

Let I ⊂ G (F ) be the Iwahori (determined by the pinning).

Theorem (Hemo-Z.)

There is a canonical equivalence of ∞-categories

LG : Coh(Locunip
cG ,Q`

) ' Shvunip(IsocG ,Q`)ω

sending OLocunip
cG

to c - ind
G(F )
I (Q`)⊗HI

W I .

For every c - ind
G(F )
P π, with P a parahoric of G (F ) and π a cusipdal

irreducible unipotent representation of LP as before,

Aπ := L−1
G

(
i1,∗(c - ind

G(F )
P π)

)
is a maximal Cohen-Macauly coherent sheaf (rather than a complex of

sheaves) on Locunip
cG .
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Spectral Deligne-Lusztig stacks I

We can match some objects under the equivalence.

Let

ŨĜ → UĜ ⊂ Ĝ the (multiplicative) Springer resolution over Q`;

Stunip

Ĝ
= ŨĜ ×L

Ĝ
ŨĜ is the unipotent Steinberg variety.

Consider the (derived) stack

L̃oc
unip
cG := Locunip

cG ×
L
Ĝ/Ĝ
ŨĜ/Ĝ

classifying triples (g , h, B̂ ′) consisting of a unipotent parameter (g , h)
and a Borel B̂ ′ ⊂ Ĝ containing g .

Via the projection

L̃oc
unip
cG → ŨĜ/Ĝ = Û/B̂ → BT̂

every character of T̂ gives a line bundle O(λ) on L̃oc
unip
cG .
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Spectral Deligne-Lusztig stacks II

There is also a map
L̃oc

unip
cG → Stunip

Ĝ
/Ĝ ,

sending a triple (g , h, B̂ ′) to the triple (g , B̂ ′, hB̂ ′h−1).

For w ∈W in the finite Weyl group of Ĝ , there is a (derived) closed
substack, which I call the (unipotent) spectral Deligne-Lusztig stack

L̃oc
unip
cG ,w ⊂ L̃oc

unip
cG ,

which, roughly speaking classifying those (g , h, B̂ ′) such that B̂ ′ and
hB̂ ′h−1 has relative position ≤ w−1.

The natural map

πunip
w : L̃oc

unip
cG ,w → Locunip

cG

which is a proper and (derived) schematic morphism.
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Matching objects

For a basic element b ∈ B(G ), there is a length zero element wb in the
Iwahori-Weyl group whose σ-conjugacy class represents b.

Using some general combinatorics of Iwahori-Weyl group, one can write

wb = λbwb,f

with λb anti-dominant weight of T̂ and wb,f ∈W .

Theorem (Hemo-Z.)

We have

LG

(
πunip
wb,f ,∗(OL̃oc

unip
c G,wb,f

(λb))
)

= ib,∗
(
c - ind

Jb(F )
Ib

Q`
)
,

where Ib ⊂ Jb(F ) is an Iwahori.

There is a generalization for every b using some work of X. He.
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Example: Coherent Springer sheaf

If w = 1, then

L̃oc
unip
cG ,1
∼= Locunip

cB '
{

(g , h) ∈ Û × B̂σ ⊂ cB × cB | hgh−1 = gq
}
/B̂.

We write CohSprcG = πunip
1,∗ OLocunip

cB
.

So for b = 1,

LG (CohSprcG ) ∼= i1,∗(c - ind
G(F )
I Q`).

Corollary

HI ' REndLocunip
cG,Q`

(
CohSprunip

cG

)
.

For split groups, this has been proved by Ben-Zvi-Chen-Helm-Nadler, and
Hellmann (G = GL2).

We mention one can similarly prove

HK ' REndLocunip
cG,Q`

(OLocunr
cG,Q`

).
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Example: Steinberg and trivial representations

Now let G = PGL2. Then

Locunip
cG ,Q`

= Locst
cG ,Q` ∪ Locur

cG ,Q` , CohSprcG
∼= OLocunip

cG
⊕OLocur

cG
.

Locally around the intersection, the stack looks like

(SpecQ`[x , y ]/(xy))/Gm

where x has Gm-weight 2 and y has weight 0.

Recall the short exact sequence of smooth representations of G (F )

0→ St→ Measure(P1(F ))
∫
−→ triv→ 0.

It corresponds to

OLocst
cG
→ OLocst

cG
∩Locur

cG
→ OLocst

cG
[−1](−2).
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Example: quaternion algebra

For G = PGL2 and w = s is the unique simple reflection,

πunip
s : L̃oc

unip
cG ,s → Locunip

cG

is birational over the Steinberg component of Locunip
cG , and

is a generic P1-fibration over the unramified component.

For b =

(
1

p

)
, so Jb = D×/F×, the line bundle O(λb) restricted to

P1 is OP1 (−1). So

L−1
G (c - ind

Jb(F )
Ib

Q`) = πunip
s,∗ OL̃oc

unip
cG,s

(λb) ∼= OLocst
cG

(−1)

is a self-dual Cohen-Macaulay sheaf fully supported on the Steinberg
component. An integral version of the sheaf appears in Manning’s work.
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A sample global application

Let (G ,X ) be an adjoint Shimura datum of abelian type unramified at p,
and K ⊂ G (Af ) with Kp Iwahori. Let G ′ be the inner form of G that is
trivial outside {p,∞} and G ′R is compact. Choose θ : GAp

f

∼= G ′Ap
f

compatible with inner twist and let K ′ = K ′pK
′p where K ′p is Iwahori and

K ′
p

= θ(K p).

Theorem

There is a natural global Jacquet-Langlands transfer map

Hom
Coh(Loc

unip
p )

(
AJb,Ib

, Ṽ ⊗ CohSpr
)
→ HomHKp

(
C(G ′(Q)\G ′(Af )/K ′,Q`), Cc (Shµ,Q`)

)
,

Locunip
p the stack of unipotent parameters for GQp ;

Ṽ the vector bundle on it given by the Shimura cocharacter −µ;

AJb,Ib = πunip
wb,f ,∗(OL̃oc

unip
cG,wb,f

(λb)), where b ∈ B(G ,−µ) is basic.
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Thank You!

Xinwen Zhu Unipotent local Langlands


	Introduction
	The local Langlands category
	Unipotent Categorical Langlands Correspondence

