Unipotent categorical local Langlands
Correspondence

Xinwen Zhu

Stanford University

Satellite Conference in Number Theory of ICBS
July 12, 2023

Xinwen Zhu Unipotent local Langlands



Introduction

Classical local Langlands

For a reductive group G over a non-archimedean local field F, classical
local Langlands correspondence roughly predicts a natural bijection:

{Smooth irreducible representations of G(F)} <+

{Langlands parameters ¢: Wr — “G up to G conjugation}.
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Introduction

Classical local Langlands

For a reductive group G over a non-archimedean local field F, classical
local Langlands correspondence roughly predicts a natural bijection:

{Smooth irreducible representations of G(F)} <+

{Langlands parameters ¢: Wr — “G up to G conjugation}.

For GL,, “naturality” can be made precise and LLC is a theorem:
@ Laumon-Rapoport-Stuhler char F > 0,
@ Harris-Taylor, Henniart char F = 0.

For general G, "naturality” is hard, and the set of Langlands parameters
need to be enhanced.

For example, Kazhdan-Lusztig constructed (for G split) an injective map
{Smooth irr. reps. of G(F) with Iwahori fixed vectors} —
{((p: Gax Wr — G,p € Rep(Zg(9))) up to G conjugation}.



Introduction

Categorical (arithmetic) local Langlands

Both sides of the classical correspondence have some geometric
structure. E.g. Bernstein center, local deformation ring, etc.
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structure. E.g. Bernstein center, local deformation ring, etc.

There are previous works (e.g. Emerton-Helm) aiming to construct maps
from local deformation rings to (completed integral) Bernstein centers,
known as local Langlands in families.

On the other hand, the appearing of p € Rep(Zz(¢)) in the work of
Kazhdan-Lusztig suggests that there are stacks involved in the story.
Namely, such p could be interpreted as a coherent sheaf on the stack

pt/Ze(p) =2 { G-orbit of ¢ : Wr — -G} /G
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Introduction

Categorical (arithmetic) local Langlands

Both sides of the classical correspondence have some geometric
structure. E.g. Bernstein center, local deformation ring, etc.

There are previous works (e.g. Emerton-Helm) aiming to construct maps
from local deformation rings to (completed integral) Bernstein centers,
known as local Langlands in families.

On the other hand, the appearing of p € Rep(Zz(¢)) in the work of
Kazhdan-Lusztig suggests that there are stacks involved in the story.
Namely, such p could be interpreted as a coherent sheaf on the stack

pt/Ze(p) =2 { G-orbit of ¢ : Wr — -G} /G

Geometric Langlands suggests that the local Langlands correspondence
can and probably needs to be lifted to an equivalence of categories.
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Introduction

The stack of local Langlands parameters

Theorem (Dat-Helm-Kurinczuk-Moss, Fargues-Scholze, Z.)

For every { # p, 3 an algebraic stack Loccg = Loces/ G over Zy, where
Loceg (R) = { Continuous ¢ : Wr — “G(R) + -+ },

is represented by disjoint of reduced finite type affine schemes, which are
local complete intersection, flat of relative dim G over Z;.

Here “continuity” means that when G C GL,,, ¢(lg)v C R" is a finite
Z¢-module for every v € R", and the action of /¢ on ¢(/g)v is continuous
for the usual ¢-adic topology on finite Z,-modules.

Xinwen Zhu Unipotent local Langlands



Introduction

The stack of local Langlands parameters

Theorem (Dat-Helm-Kurinczuk-Moss, Fargues-Scholze, Z.)

For every { # p, 3 an algebraic stack Loccg = Loces/ G over Zy, where
Loceg (R) = { Continuous ¢ : Wr — “G(R) + -+ },

is represented by disjoint of reduced finite type affine schemes, which are
local complete intersection, flat of relative dim G over Z;.

Here “continuity” means that when G C GL,,, ¢(lg)v C R" is a finite
Z¢-module for every v € R", and the action of /¢ on ¢(/g)v is continuous
for the usual ¢-adic topology on finite Z,-modules.

In categorical (arithmetic) local Langlands, the set of Langlands
parameters is replaced by the (derived) category

Coh(Loceg)

of coherent sheaves on Loc.
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The local Langlands category

It is natural to replace the set of smooth. irr. reps. of G(F) by the
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together with its forms {Jp(F)} arising from the Kottwitz set B(G). In
addition the categories Rep(J(F)) can be glued together via the
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Introduction

The local Langlands category

It is natural to replace the set of smooth. irr. reps. of G(F) by the
(derived) category Rep(G(F)). But this is not quite enough.

This can be seen from classicial points of view (Vogan, Bernstein,
Kottwitz-Kaletha): Better to study representation theory of G(F)
together with its (extended) pure inner forms.

Arithmetic geometry suggests to study the representation theory G(F)
together with its forms {Jp(F)} arising from the Kottwitz set B(G). In
addition the categories Rep(J(F)) can be glued together via the
category of sheaves on certain geometric objects.

There are two approaches to make the idea precise.
@ Djs(Bung, \) (Fargues-Scholze);
@ Shv(Isocg,A) (Xiao-Z., Hemo-Z., Gaitsgory).
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The local Langlands category

Notations

@ Of C F ring of integers, w € Of a uniformizer.

@ kr = Of/w residue field, |kg| = q, o the g-Frobenius.
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The local Langlands category

Notations

@ Of C F ring of integers, w € Of a uniformizer.
@ kr = Of/w residue field, |kg| = q, o the g-Frobenius.
@ For a perfect kr-algebra R, let
Wo.n(R) = W(R) ®z, (Of/@"), Wo(R) = lim Wo x(R).

If R = K is a perfect field, then L := W (K)[1/w] is a discrete
valued non-archimedean field, with O, := W (K) is ring of
integers, e.g. Wo(kr) = O and Wo(ke)[l/w] = F.

Xinwen Zhu Unipotent local Langlands



The local Langlands category

Notations

@ Of C F ring of integers, w € Of a uniformizer.
@ kr = Of/w residue field, |kg| = q, o the g-Frobenius.
@ For a perfect kr-algebra R, let
Wo.n(R) = W(R) ®z, (Of/@"), Wo(R) = lim Wo x(R).

n

If R = K is a perfect field, then L := W (K)[1/w] is a discrete
valued non-archimedean field, with O, := W (K) is ring of
integers, e.g. Wo(kr) = O and Wo(ke)[l/w] = F.

@ Denote
Dr = SpecWo(R), D = Spec(Wo(R)[1/w]),
thought as family of (punctured) disks parameterized by SpecR.

@ The g-Frobenius of R induces an automorphism og (or denoted by
o for simplicity) of Dg (and Dg).
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The local Langlands category

Isocrystals and the Kottwitz set

If K is a perfect field over kg, an isocrystal over K is a finite dim.
L-vector space V equipped with a Frob. semi-linear bijection ¢ : V = V.
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G-torsor & over Dj; = SpecL equipped with ¢ : o & = £.
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K. It is a natural poset, and minimal element in it are called basic.
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The local Langlands category

Isocrystals and the Kottwitz set

If K is a perfect field over kg, an isocrystal over K is a finite dim.
L-vector space V equipped with a Frob. semi-linear bijection ¢ : V = V.

By Tannakian formalism, one may define a G-isocrystal over K as a
G-torsor & over Dj; = SpecL equipped with ¢ : o & = £.

When K is an algebraically closed field, isomorphism classes of
G-isocrystals over K are bijective to elements in G(L) up to o-conjugacy

g~ htga(h), ge G(L),he G(L).

The quotient set B(G), usually called the Kottwitz set, is independent of
K. It is a natural poset, and minimal element in it are called basic.

For b € G(L), let
Jo(F) = {h e G(L) | h"'bo(h) = b}.
E.g. When b=1, J, = G. In general J, is a form of a Levi of G.
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The local Langlands category

The stack of isosrystals Isocg

The loop group LG of G is an ind-scheme over kg defined by
LG(R) = G(Wo(R)[1/=]).
E.g. LG(ke) = G(F).
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The stack of isosrystals Isocg

The loop group LG of G is an ind-scheme over kg defined by
LG(R) = G(Wo(R)[1/=]).
E.g. LG(ke) = G(F).
We define Isocg as the quotient of LG by o-conjugation
Isocg = LG/Ad,LG.
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The stack of isosrystals Isocg

The loop group LG of G is an ind-scheme over kg defined by
LG(R) = G(Wo(R)[1/=]).
E.g. LG(ke) = G(F).

We define Isocg as the quotient of LG by o-conjugation
Isocg = LG/Ad,LG.

It is slightly subtle in which topology we take the quotient. Using
h-topology leads a neat moduli interpretation (by Anschiitz)

Isocg(R) = {(&,¢)| € is a G-torsor on Di, ¢ : & ~ i€} .
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The loop group LG of G is an ind-scheme over kg defined by
LG(R) = G(Wo(R)[1/=]).

E.g. LG(ke) = G(F).

We define Isocg as the quotient of LG by o-conjugation

Isocg = LG/Ad,LG.

It is slightly subtle in which topology we take the quotient. Using
h-topology leads a neat moduli interpretation (by Anschiitz)

Isocg(R) = {(&,¢)| € is a G-torsor on Di, ¢ : & ~ i€} .

But it is technically more convenient to take quotient in étale topology.
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The local Langlands category

The stack of isosrystals Isocg

The loop group LG of G is an ind-scheme over kg defined by
LG(R) = G(Wo(R)[1/=]).

E.g. LG(ke) = G(F).

We define Isocg as the quotient of LG by o-conjugation

Isocg = LG/Ad,LG.

It is slightly subtle in which topology we take the quotient. Using
h-topology leads a neat moduli interpretation (by Anschiitz)

Isocg(R) = {(&,¢)| € is a G-torsor on Di, ¢ : & ~ i€} .
But it is technically more convenient to take quotient in étale topology.

Fortunately, the category of sheaves on Isocs we are going to define does
not depend on the choice of topology.
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The local Langlands category

The Newton Stratification

For every separably closed field K over kg, the set of isomorphism classes
of the groupoid Isocg(K) identifies with the Kottwitz poset B(G).
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The Newton Stratification

For every separably closed field K over kg, the set of isomorphism classes
of the groupoid Isocg(K) identifies with the Kottwitz poset B(G).

For an element b € B(G), we consider

. Jb i<h
ip : Isocg p = Isocg <p = Isocg,
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The Newton Stratification

For every separably closed field K over kg, the set of isomorphism classes
of the groupoid Isocg(K) identifies with the Kottwitz poset B(G).

For an element b € B(G), we consider

. Jb i<h
ip : Isocg p = Isocg <p = Isocg,

Isocg <p(R) = {(5,<p) € IsocG(R)‘ by = (Ex,px) < b, x € SpecR} ,

Isocg p = Isocg <p \ Up<plsoCc <pr-
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The local Langlands category

The Newton Stratification

For every separably closed field K over kg, the set of isomorphism classes
of the groupoid Isocg(K) identifies with the Kottwitz poset B(G).

For an element b € B(G), we consider

. Jb i<h
ip : Isocg p = Isocg <p = Isocg,

Isocg <p(R) = {(5,<p) € IsocG(R)‘ by = (Ex,px) < b, x € SpecR} ,
Isocg p = Isocg <p \ Up<plsoCc <pr-
@ Isocg, b = Byrofet Jo(F);
@ i<y is a finitely presented closed embedding (Rapoport-Richartz);

@ ji, is a fp affine open embedding (Vasiu, Hartl-Viehmann).
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The local Langlands category

The Newton Stratification

For every separably closed field K over kg, the set of isomorphism classes
of the groupoid Isocg(K) identifies with the Kottwitz poset B(G).

For an element b € B(G), we consider

. Jb i<h
ip : Isocg p = Isocg <p = Isocg,

Isocg <p(R) = {(5,<p) € IsocG(R)‘ by = (Ex,px) < b, x € SpecR} ,
Isocg p = Isocg <p \ Up<plsoCc <pr-
@ Isocg, b = Byrofet Jo(F);
@ i<y is a finitely presented closed embedding (Rapoport-Richartz);

@ ji, is a fp affine open embedding (Vasiu, Hartl-Viehmann).

When b € B(G) is basic, Isocg, p = Isocg <p is closed in Isocg.

Xinwen Zhu Unipotent local Langlands



The local Langlands category

(Ind-)construcble sheaves

Let A = Zy,Fy,Qq or their finite algebraic extensions. One can make
sense of the category of A-sheaves on objects like Isocg. Fix a field k of
finite A-coh. dim (e.g. k = k).
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(Ind-)construcble sheaves

Let A = Zy,Fy,Qq or their finite algebraic extensions. One can make
sense of the category of A-sheaves on objects like Isocg. Fix a field k of
finite A-coh. dim (e.g. k = k).

@ If S is a finite type k-scheme, let
Shv (S, A) = Das(S, A), Shv(S,A) =Ind (Sth(S,/\));
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Let A = Zy,Fy,Qq or their finite algebraic extensions. One can make
sense of the category of A-sheaves on objects like Isocg. Fix a field k of
finite A-coh. dim (e.g. k = k).

@ If S is a finite type k-scheme, let
Shv (S, A) = Das(S, A), Shv(S,A) =Ind (Sth(S,/\));

@ If S =1lim; 5; qcgs k-scheme, with S; finite type, let
Shve(S, A) = colim; Shve(S;, A), Shv(S,A) = Ind(Shvc(S, A)), with
transition maps given by !-pullbacks.
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(Ind-)construcble sheaves

Let A = Zy,Fy,Qq or their finite algebraic extensions. One can make
sense of the category of A-sheaves on objects like Isocg. Fix a field k of
finite A-coh. dim (e.g. k = k).

@ If S is a finite type k-scheme, let
Shv (S, A) = Das(S, A), Shv(S,A) =Ind (Sth(S,/\));

@ If S =1lim; 5; qcgs k-scheme, with S; finite type, let
Shv(S, A) = colim; Shv.(S;,A), Shv(S,A) = Ind(Shvc(S,/\)), with
transition maps given by !-pullbacks.

@ For every prestack X': Perf, — Ani (i.e. a(n accessible) functor),
let Shv(X', A) = lims_,x Shv(S, A);
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(Ind-)construcble sheaves

Let A = Zy,Fy,Qq or their finite algebraic extensions. One can make
sense of the category of A-sheaves on objects like Isocg. Fix a field k of
finite A-coh. dim (e.g. k = k).

@ If S is a finite type k-scheme, let
Shv (S, A) = Das(S, A), Shv(S,A) =Ind (Sth(S,/\));

@ If S =1lim; 5; qcgs k-scheme, with S; finite type, let
Shv(S, A) = colim; Shv.(S;,A), Shv(S,A) = Ind(Shvc(S,/\)), with
transition maps given by !-pullbacks.

@ For every prestack X': Perf, — Ani (i.e. a(n accessible) functor),
let Shv(X', A) = lims_,x Shv(S, A);

@ A natural transformation f: X — Y induces a functor
f': Shv(Y, A) — Shv(X,A);
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The local Langlands category

(Ind-)construcble sheaves

Let A = Zy,Fy,Qq or their finite algebraic extensions. One can make
sense of the category of A-sheaves on objects like Isocg. Fix a field k of
finite A-coh. dim (e.g. k = k).

@ If S is a finite type k-scheme, let
Shv (S, A) = Das(S, A), Shv(S,A) =Ind (Sth(S,/\));

@ If S =1lim; 5; qcgs k-scheme, with S; finite type, let
Shve(S, A) = colim; Shve(S;, A), Shv(S,A) = Ind(Shvc(S, A)), with
transition maps given by !-pullbacks.

@ For every prestack X': Perf, — Ani (i.e. a(n accessible) functor),
let Shv(X', A) = lims_,x Shv(S, A);

@ A natural transformation f: X — Y induces a functor
f': Shv(Y, A) — Shv(X,A);

@ For a large class of morphisms (including representable fp
morphisms) f : X — ), can define £, : Shv(X,A) — Shv(), A)
satisfying base change.
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The local Langlands category

Examples and features

Here are examples and features of Shv comparing with the usual theory
of étale sheaves.
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Here are examples and features of Shv comparing with the usual theory
of étale sheaves.

@ If S is of finite type over k and A finite, then Shv(S,A) = D(Set, N).
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The local Langlands category

Examples and features

Here are examples and features of Shv comparing with the usual theory
of étale sheaves.

@ If S is of finite type over k and A finite, then Shv(S,A) = D(Set, N).

@ If S =1im; S; is a profinite set, thought as an affine Z-scheme, then
Shv(Sk, A) = Qcoh(Sp).
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The local Langlands category

Examples and features

Here are examples and features of Shv comparing with the usual theory
of étale sheaves.
@ If S is of finite type over k and A finite, then Shv(S,A) = D(Set, N).
@ If S =1im; S; is a profinite set, thought as an affine Z-scheme, then
Shv(Sk, A) = Qcoh(Sp).
@ If S = Speck(X) for a curve X over k, then Shv (S, A) is the
(opposite) category of cont. reps. of [',(x) (on perfect A-modules)

that are unramified almost everywhere, while Dy¢(S, A) is the
category of all continuous representations of I'y(x).
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The local Langlands category

Examples and features

Here are examples and features of Shv comparing with the usual theory
of étale sheaves.

@ If S is of finite type over k and A finite, then Shv(S,A) = D(Set, N).

@ If S =1im; S; is a profinite set, thought as an affine Z-scheme, then
Shv(Sk, A) = Qcoh(Sp).

@ If S = Speck(X) for a curve X over k, then Shv (S, A) is the
(opposite) category of cont. reps. of [',(x) (on perfect A-modules)
that are unramified almost everywhere, while Dy¢(S, A) is the
category of all continuous representations of I'y(x).

@ If Ais finite, Shv (S, A) = Des(S, A)°P and does not depend on the
base field k but if A = Zy, Shv (S, A) # Dae(S, A)°P, and does
depend on the base k;
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The local Langlands category

Examples and features

Here are examples and features of Shv comparing with the usual theory
of étale sheaves.

@ If S is of finite type over k and A finite, then Shv(S,A) = D(Set, N).

@ If S =1im; S; is a profinite set, thought as an affine Z-scheme, then
Shv(Sk, A) = Qcoh(Sp).

@ If S = Speck(X) for a curve X over k, then Shv (S, A) is the
(opposite) category of cont. reps. of [',(x) (on perfect A-modules)
that are unramified almost everywhere, while Dy¢(S, A) is the
category of all continuous representations of I'y(x).

@ If Ais finite, Shv (S, A) = Des(S, A)°P and does not depend on the
base field k but if A = Zy, Shv (S, A) # Dae(S, A)°P, and does
depend on the base k;

@ Pro-étale descent fails for Shv (e.g. k(X)/k(X)) but h-descent
holds;
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The local Langlands category

Examples and features

Here are examples and features of Shv comparing with the usual theory
of étale sheaves.

@ If S is of finite type over k and A finite, then Shv(S,A) = D(Set, N).

@ If S =1im; S; is a profinite set, thought as an affine Z-scheme, then
Shv(Sk, A) = Qcoh(Sp).

@ If S = Speck(X) for a curve X over k, then Shv (S, A) is the
(opposite) category of cont. reps. of [',(x) (on perfect A-modules)
that are unramified almost everywhere, while Dy¢(S, A) is the
category of all continuous representations of I'y(x).

@ If Ais finite, Shv (S, A) = Des(S, A)°P and does not depend on the
base field k but if A = Zy, Shv (S, A) # Dae(S, A)°P, and does
depend on the base k;

@ Pro-étale descent fails for Shv (e.g. k(X)/k(X)) but h-descent
holds;

@ One can define “motivic sheaves” via this procedure.
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The local Langlands category

The category of sheaves on the Kottwitz stack

We base change everything to k = kr. Now, we have categories
Shv(Isocg, A), Shv(Isocg b, A), etc, and functors iy ., it!> and jbv*,j},, etc.
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The local Langlands category

The category of sheaves on the Kottwitz stack

We base change everything to k = kr. Now, we have categories
Shv(Isocg, A), Shv(Isocg b, A), etc, and functors i, ., if) and jb,*,jt!,, etc.

Theorem (Hemo-Z.)

(1) For every b € B(G) there is a canonical equivalence
ShV(ISOCQb, /\) = Rep(Jb(F), /\)

(2) There are adjoint functors

i i*
Isocg p =<—j'— Isocg <p <—is— Isocg <p.
’ — = " o )

Jx* I

inducing semi-orthogonal decomposition of Shv(Isocg, \) in terms
of {Shv(Isocg b, \)}b.
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The local Langlands category

The category of sheaves on the Kottwitz stack

Theorem (Hemo-Z., cont'd)

(3) The category Shv(Isocg, ) is compactly generated, and compact
objects are those whose restriction to each Isocg p is compact and
is zero for almost all b’s.

(4) There is a self-duality Shv(Isocg, A)
D" Shy(Isocg, A)* ~ (Shv(Isocg, A)*)°P
such that for every b € B(G)
Db 2 ip DR ()0 [ (205 )]
(5) There is a natural perverse t-structure obtained by gluing (shifted)

standard t-structures on various Shv(Isocg p,\), preserved by D=°"
if \ is a field.
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The local Langlands category

Categorical Arithmetic Local Langlands Correspondence

Let A = Q. Assume G is quasi-split with a pinning (B, T, e) and fix
1 : F — N*. There is a canonical equivalence of co-categories

L¢: Coh(Loceg a) ~ Shv(Isocg, N)*,
compatible with parabolic induction, intertwining duality, and (after
ind-completion) sending Oloce , to i1,+VV where W := c- indggg(d) oe)

v
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The local Langlands category

Categorical Arithmetic Local Langlands Correspondence

Let A = Q. Assume G is quasi-split with a pinning (B, T, e) and fix
1 : F — N*. There is a canonical equivalence of co-categories

L¢: Coh(Loceg a) ~ Shv(Isocg, N)*,
compatible with parabolic induction, intertwining duality, and (after
ind-completion) sending Oloce , to i1,+VV where W := c- indggg(d) oe)

v

@ For general A, one needs to slightly modify one of the categories.
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The local Langlands category

Categorical Arithmetic Local Langlands Correspondence

Let A = Q. Assume G is quasi-split with a pinning (B, T, e) and fix
1 : F — N*. There is a canonical equivalence of co-categories

L¢: Coh(Loceg a) ~ Shv(Isocg, N)*,
compatible with parabolic induction, intertwining duality, and (after
ind-completion) sending Oloce , to i1,+VV where W := c- indggg(d) oe)

v

@ For general A, one needs to slightly modify one of the categories.

@ Analogous conjecture by Fargues-Scholze using Djs(Bung, A).
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The local Langlands category

Categorical Arithmetic Local Langlands Correspondence

Let A = Q. Assume G is quasi-split with a pinning (B, T, e) and fix
1 : F — N*. There is a canonical equivalence of co-categories

L¢: Coh(Loceg a) ~ Shv(Isocg, N)*,

compatible with parabolic induction, intertwining duality, and (after
ind-completion) sending Oloce , to i1,+VV where W := c- indggg(d) oe).

@ For general A, one needs to slightly modify one of the categories.
@ Analogous conjecture by Fargues-Scholze using Djs(Bung, A).

@ The spectral action of Perf(Loce) on Shv(Isocg, A) is currently
unknown. Fargues-Scholze have such action in their version.
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The local Langlands category

Categorical Arithmetic Local Langlands Correspondence

Let A = Q. Assume G is quasi-split with a pinning (B, T, e) and fix
1 : F — N*. There is a canonical equivalence of co-categories

L¢: Coh(Loceg a) ~ Shv(Isocg, N)*,
compatible with parabolic induction, intertwining duality, and (after
ind-completion) sending Oloce , to i1,+VV where W := c- indggg(d) oe)

v

@ For general A, one needs to slightly modify one of the categories.
@ Analogous conjecture by Fargues-Scholze using Djs(Bung, A).

@ The spectral action of Perf(Loce) on Shv(Isocg, A) is currently
unknown. Fargues-Scholze have such action in their version.

@ There is, however, some convincing evidence that the above version
should also be true.
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Unipotent Categorical Langlands Correspondence

The Unipotent Langlands Category

Assume G is unramified, i.e. quasi-split and split over an unramified
extension of F. We fix (B, T, e, ).
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Unipotent Categorical Langlands Correspondence

The Unipotent Langlands Category

Assume G is unramified, i.e. quasi-split and split over an unramified
extension of F. We fix (B, T, e, ). Let

Shv“"P(Isocg, Q) € Shv(Isocs, Q)
consisting of those F such that for all b € B(G), the cohomologies of
iy F € Rep(Js(F), Qy)

are unipotent in the sense of Lusztig. l.e. they are quotient of (direct

sums of) c- ind#’(F)ﬂ, for some parahoric subgroup P C J,(F) and some
unipotent cuspidal representation 7 of the Levi quotient Lp of P (which
is a finite group of Lie type).
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Unipotent Categorical Langlands Correspondence

The Unipotent Langlands Category

Assume G is unramified, i.e. quasi-split and split over an unramified
extension of F. We fix (B, T, e, ). Let

Shv“"P(Isocg, Q) € Shv(Isocs, Q)
consisting of those F such that for all b € B(G), the cohomologies of

iy F € Rep(Js(F), Q)

are unipotent in the sense of Lusztig. l.e. they are quotient of (direct

sums of) c- ind#’(F)ﬂ, for some parahoric subgroup P C J,(F) and some
unipotent cuspidal representation 7 of the Levi quotient Lp of P (which
is a finite group of Lie type).

We mention one can similarly define Shv®®™¢(Isocg, Q) consisting of F
such that cohomologies of i F are depth zero representations of J,(F).
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Unipotent Categorical Langlands Correspondence

The Stack of Unipotent Langlands Parameters

On the other hand, consider the open and closed substacks

uni;L C tame _
LOCCG,QL; - LOCCG,@K - LoccG’Qz

classifying representations which factor through the tame quotient of Wg
(resp. carry unipotent monodromy).
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Unipotent Categorical Langlands Correspondence

The Stack of Unipotent Langlands Parameters

On the other hand, consider the open and closed substacks

uni;L C tame _
LOCCG,QL; - LOCCG,@K - LoccG’Qz

classifying representations which factor through the tame quotient of Wg
(resp. carry unipotent monodromy).

Fix a topological generator 7 of tame inertia and a lifting of the
Frobenius o, one has a presentation:

tame

Locg™® =~ {(g7 hye G x Go C G x G| hgh™* :g"}/é
unip

Loc™P  ~ {(g, h) €Us x Go C G x G | hgh™* :gq}/é,
G,Q,

where U C G is the variety of unipotent elements.
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Unipotent Categorical Langlands Correspondence

The Stack of Unipotent Langlands Parameters

On the other hand, consider the open and closed substacks

uni;L C tame _
LOCCG,QL; - LOCCG,@K - LoccG’Qz

classifying representations which factor through the tame quotient of Wg
(resp. carry unipotent monodromy).

Fix a topological generator 7 of tame inertia and a lifting of the
Frobenius o, one has a presentation:

Loceg™ ~ {(g7 hye G x GoCGxG|hgh™?t= g"} /G

LOCuni& ~ {(g, h) c U@ X GO' C G x °G ‘ hghfl = gq} /év
G,Qq

where U C G is the variety of unipotent elements.

The stack Loc';'G"% is connected, with irreducible components
1Nl

parameterized by unipotent conjugacy classes of G.
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Unipotent Categorical Langlands Correspondence

Main theorem

Let | C G(F) be the lwahori (determined by the pinning).

Theorem (Hemo-Z.)

There is a canonical equivalence of co-categories

Lg: Coh(Loc™™P ) ~ Shv""P(Isocg, Q,)*
G,Q

sending O to c-ind? (@) @p, W'

G
For every c- indg(F)w, with P a parahoric of G(F) and 7 a cusipdal
irreducible unipotent representation of Lp as before,

A i= Lt (in,4(c- indg(F)ﬂ))
is a maximal Cohen-Macauly coherent sheaf (rather than a complex of

sheaves) on Loc.c".
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Unipotent Categorical Langlands Correspondence

Spectral Deligne-Lusztig stacks |

We can match some objects under the equivalence.
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Unipotent Categorical Langlands Correspondence

Spectral Deligne-Lusztig stacks |

We can match some objects under the equivalence. Let
° Z]G —Ug C G the (multiplicative) Springer resolution over Q;

o StW'P = L~{G XI& Z]@ is the unipotent Steinberg variety.
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Unipotent Categorical Langlands Correspondence

Spectral Deligne-Lusztig stacks |

We can match some objects under the equivalence. Let
° Z] —Ug C G the (multiplicative) Springer resolution over Q;
° St”"'p L~{G XI& Z]@ is the unipotent Steinberg variety.

Consider the (derived) stack

unip

LOCCG = LOCump XG/G UG/G

classifying triples (g, h, B’) consisting of a unipotent parameter (g, h)
and a Borel B/ C G containing g.
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Unipotent Categorical Langlands Correspondence

Spectral Deligne-Lusztig stacks |

We can match some objects under the equivalence. Let
° HG —Ug C G the (multiplicative) Springer resolution over Q;
° St‘é"ip — L~{G XI& Z]@ is the unipotent Steinberg variety.

Consider the (derived) stack

Loc:gp = Loc!pP xé/é L{G/G

classifying triples (g, h, B’) consisting of a unipotent parameter (g, h)
and a Borel B/ C G containing g.

Via the projection
Loceg. —Ug/G = U/B — BT

every character of T gives a line bundle O()) on E(\)E:gp.
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Unipotent Categorical Langlands Correspondence

Spectral Deligne-Lusztig stacks Il

There is also a map

———uni

P ip A
Loccg — StE™/G,

sending a triple (g, h, é’) to the triple (g, B, hé’hfl).
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Unipotent Categorical Langlands Correspondence

Spectral Deligne-Lusztig stacks Il

There is also a map

Nunl

LoccG — St““'p/@,

sending a triple (g, h, é’) to the triple (g, B, hé’hfl).

For w € W in the finite Weyl group of G, there is a (derived) closed
substack, which | call the (unipotent) spectral Deligne-Lusztig stack

un| unlp
LoccG w C Loceg

which, roughly speaking classifying those (g, h, B’) such that B’ and
hB'h~1 has relative position < w1,
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Unipotent Categorical Langlands Correspondence

Spectral Deligne-Lusztig stacks Il

There is also a map

Nunl

LoccG — St““'p/@,

sending a triple (g, h, é’) to the triple (g, B, hé’hfl).

For w € W in the finite Weyl group of G, there is a (derived) closed
substack, which | call the (unipotent) spectral Deligne-Lusztig stack

un| unlp
LoccG w C Loceg

which, roughly speaking classifying those (g, h, B’) such that B’ and
hB'h~1 has relative position < w1,
The natural map

unlp unlp

n
T LocCG w — Locc

which is a proper and (derived) schematic morphism.
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Unipotent Categorical Langlands Correspondence

Matching objects

For a basic element b € B(G), there is a length zero element wj, in the
Iwahori-Weyl group whose o-conjugacy class represents b.
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Unipotent Categorical Langlands Correspondence

Matching objects

For a basic element b € B(G), there is a length zero element wj, in the
Iwahori-Weyl group whose o-conjugacy class represents b.

Using some general combinatorics of lwahori-Weyl group, one can write
Wp = A\pWp f

with A\, anti-dominant weight of T and wpr € W.
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Unipotent Categorical Langlands Correspondence

Matching objects

For a basic element b € B(G), there is a length zero element wj, in the
Iwahori-Weyl group whose o-conjugacy class represents b.

Using some general combinatorics of lwahori-Weyl group, one can write
Wp = A\pWp f

with A\, anti-dominant weight of T and wpr € W.

Theorem (Hemo-Z.)

We have

Lo (i (Opsume (M) = b« (c-ind;2(ITQy),

OCc G, ¢

where I, C Jp(F) is an Iwahori.

There is a generalization for every b using some work of X. He.
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Unipotent Categorical Langlands Correspondence

Example: Coherent Springer sheaf

If w=1, then

Nunl

Loci y = Loci® ~ {(g, h)y el x Bo C B x B | hgh™* = }/é.

ump

We write CohSpre; = ﬁ;'";p(’)

Loc,
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Unipotent Categorical Langlands Correspondence

Example: Coherent Springer sheaf

If w=1, then

Nunl

Locigy = Locig® = {(g.h) € U x Bo < B x B | hgh™* = g7} /B.
We write CohSpreg = m5""PO, _ wis. So for b =1,
) B

L¢(CohSpreg) = iy (c- ind,G(F)@e).

Hj ~ REnd, _ i (Cthpr”"'p).
CGYQ

For split groups, this has been proved by Ben-Zvi-Chen-Helm-Nadler, and
Hellmann (G = GL,).
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Example: Coherent Springer sheaf

If w=1, then

Nunl

Locigy = Locig® = {(g.h) € U x Bo < B x B | hgh™* = g7} /B.
We write CohSpreg = m5""PO, _ wis. So for b =1,
) B

Ls(CohSpreg) = i1 .(c- ind,G(F)@e).

Hj ~ REnd, _ i (Cthpr”"'p).
CGYQ

For split groups, this has been proved by Ben-Zvi-Chen-Helm-Nadler, and
Hellmann (G = GL,).

We mention one can similarly prove

HK >~ REnd unip (OLOCU"’

6.0 6,3,

Xinwen Zhu Unipotent local Langlands
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Unipotent Categorical Langlands Correspondence

Example: Steinberg and trivial representations

Now let G = PGL5. Then
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Unipotent Categorical Langlands Correspondence

Example: Steinberg and trivial representations

Now let G = PGL5. Then

Loc"™_ = Loc® — U Loc™ CohSpr 2 O

G,Q G,Q¢ <G,Q¢’ unip D OLocng .

Loceg
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Example: Steinberg and trivial representations

Now let G = PGL5. Then

Loc"™_ = Loc® — U Loc™ CohSpr 2 O

G,Q G,Q¢ <G,Q¢’ unip D OLocng .

Loceg

Locally around the intersection, the stack looks like

(SpecQq[x, y1/(x))/Gm
where x has G,-weight 2 and y has weight 0.

Xinwen Zhu Unipotent local Langlands



Unipotent Categorical Langlands Correspondence

Example: Steinberg and trivial representations

Now let G = PGL5. Then

Loc"™_ = Loc® — U Loc™ CohSpr 2 O

G,Q G,Q¢ <G,Q¢’ unip D OLocng .

Loceg

Locally around the intersection, the stack looks like

(SpecQq[x, y1/(x))/Gm
where x has G,-weight 2 and y has weight 0.

Recall the short exact sequence of smooth representations of G(F)

0 — St — Measure(P'(F)) L5 triv = 0,

It corresponds to

OLocsctG — OLocitGﬁLocg'G — OLocsctG [_1](_2)
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Unipotent Categorical Langlands Correspondence

Example: quaternion algebra

For G = PGL; and w = s is the unique simple reflection,
unip

unip —unip
mg P Loceg ¢ — Lo

@ is birational over the Steinberg component of Loc!a®, and

@ is a generic P!-fibration over the unramified component.
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Example: quaternion algebra

For G = PGL; and w = s is the unique simple reflection,
unip

unip —unip
mg P Loceg ¢ — Lo

@ is birational over the Steinberg component of Loc!a®, and

@ is a generic P!-fibration over the unramified component.

For b= <p 1), so J, = D> /F*, the line bundle O()\}) restricted to
Pl is Op(—1).
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Example: quaternion algebra

For G = PGL; and w = s is the unique simple reflection,
unip

unip —unip
mg P Loceg ¢ — Lo

@ is birational over the Steinberg component of Loc!a®, and

@ is a generic P!-fibration over the unramified component.

For b= <p 1), so J, = D> /F*, the line bundle O()\}) restricted to
Pl is O[pl(—l) So
— -1 b(F) uni ~
LGI(C‘ '”d/:( )Qe) = ﬂs,*p(?&zgi?s(’\b) = OLoci‘G(—l)

is a self-dual Cohen-Macaulay sheaf fully supported on the Steinberg
component. An integral version of the sheaf appears in Manning's work.
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A sample global application

Let (G, X) be an adjoint Shimura datum of abelian type unramified at p,
and K C G(Af) with K, lwahori. Let G’ be the inner form of G that is
trivial outside {p, 0o} and Gy, is compact. Choose 6 : Gyr = Gy,

f
compatible with inner twist and let K’ = KF’)K”’ where K, is lwahori and
K'? = 0(KP).

Theorem

There is a natural global Jacquet-Langlands transfer map

Homcoh(Locgnip)(mJb,Ibv V ® CohSpr) — Homp, (C(G"(Q\G'(Ar) /K", Qp), Cc(Shy, Qp)),

° Loc;jniID the stack of unipotent parameters for Gg,;

@ V the vector bundle on it given by the Shimura cocharacter —p;

o Ay = wt'v';if’*(ogcﬁgap (A\p)), where b € B(G, —u) is basic.

b,f
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Thank You!

Xinwen Zhu
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