

Amplifications in Analytic Number Theory

 $Ping~Xi~~<\!\!\mathrm{ping.xi@xjtu.edu.cn}\!\!>$

Xi'an Jiaotong University

Satellite Conference in Number Theory of International Congress of Basic Science July 11,2023

Inequalities as desired

Let $A = \{a_n\}$ be a complex sequence indexed by n in a suitable family \mathcal{F} .

Question

What about the information of a_n as n varies in \mathcal{F} ?

- lower bound
- upper bound
- vanishing or non-vanishing
- equidistribution

Typical instances:

- L-functions (Lindelöf Hypothesis, BSD conjecture, etc)
- Exponential sums (Riemann/Lindelöf Hypothesis, Weil conjecture, etc)

Inequalities as desired

Let $A = \{a_n\}$ be a complex sequence indexed by n in a suitable family \mathcal{F} .

Question

What about the information of a_n as n varies in \mathcal{F} ?

- lower bound
- upper bound
- vanishing or non-vanishing
- equidistribution

Typical instances:

- L-functions (Lindelöf Hypothesis, BSD conjecture, etc)
- Exponential sums (Riemann/Lindelöf Hypothesis, Weil conjecture, etc)

Framework

- Examples (algebraic/analytic exponential sums, *L*-functions)
- Amplification from inside: van der Corput
- Amplification from inside: Vinogradov, Burgess
- Amplification from outside: Kloosterman
- Other amplifications

Example I: algebraic exponential sums

- $q \in \mathbb{Z}^+$
- $\bullet \ \mathrm{e}(z) = \exp(2\pi i z)$
- K(m, n; q): the Kloosterman sum defined by

$$K(m, n; q) = \sum_{a \in (\mathbf{Z}/q\mathbf{Z})^{\times}} e\left(\frac{ma + na^{-1}}{q}\right)$$

Theorem (Kloosterman, 1927)

For all primes $p \nmid mn$, we have

$$|K(m,n;p)| \leqslant 2p^{3/4}.$$

- Kloosterman's circle method and solvability of $N = ax^2 + by^2 + cz^2 + dt^2$
- Is 3/4 is best possible?

Example II: analytic exponential sums

- \bullet $e(z) = \exp(2\pi i z), t \in \mathbf{R}$
- zeta sum $(f(x) = \frac{t}{2\pi} \log x)$

$$\sum_{n \leq N} n^{it} = \sum_{n \leq N} e\left(\frac{t}{2\pi} \log n\right) = \sum_{n \leq N} e(f(n))$$

Theorem (van der Corput, 1921; Vinogradov, 1930's-50's)

For $t \ge N \ge 2$ we have

$$\sum_{n \leqslant N} n^{it} \ll N \cdot (N^{-1/2} t^{1/6} + t^{-1/6}) \log N,$$
$$\sum_{n \leqslant N} n^{it} \ll N \cdot \exp(-c (\log N)^3 (\log t)^{-2}).$$

- $\zeta(\frac{1}{2}+it) \ll t^{1/6+\varepsilon}$ (Weyl. Hardy-Littlewood, Landau)
- upper bound for $\zeta(\sigma + it)$ for σ close to 1, zero-free region of ζ (Vinogradov)

Example III: L-functions

- $q \in \mathbf{Z}^+$
- χ a Dirichlet character of conductor q
- $L(s,\chi)$ the Dirichlet L-function defined by

$$L(s,\chi) = \sum_{n \ge 1} \chi(n) n^{-s}, \Re s > 1$$

- class number of $\mathbb{Q}(\sqrt{-q})$ and $L(1,\chi)$ with χ quadratic
- non-vanishing of $L(1,\chi)$ and primes in arithmetic progressions
- lower bound for $L(1,\chi)$ and Landau–Siegel zero
- upper bound for $L(\frac{1}{2}, \chi)$ and Lindelöf Hypothesis

Amplification of van der Corput

$$S := \sum_{M < n \leqslant M + N} a_n$$

 \blacksquare For all integers h,

$$S = \sum_{M < n+h \le M+N} a_{n+h}.$$

■ Summing over $h \leq H$ gives

$$S = \frac{1}{H} \sum_{M-H < n \le M+N-1} \sum_{\substack{h \le H \\ M-n < h \le M+N-n}} a_{n+h}.$$

■ By Cauchy, we find

$$|S|^2 \leqslant \frac{N+H-1}{H^2} \sum_{n} \Big| \sum_{h} a_{n+h} \Big|^2 \leqslant \frac{N+H-1}{H} \sum_{|h| < H} \Big(1 - \frac{|h|}{H} \Big) \sum_{M < n, n+h \leqslant M+N} a_n \overline{a_{n+h}}.$$

Amplification of van der Corput

$$S(f,I) := \sum_{M < n \leqslant M+N} e(f(n))$$

■ (Weyl differencing)

$$|S(f,I)|^2 \ll \frac{N+H-1}{H} \sum_{|h| < H} \left(1 - \frac{|h|}{H}\right) \sum_{M < n, n+h \leq M+N} e(f(n) - f(n+h)).$$

- In principle, the function $x \mapsto f(x) f(x+h)$ has a slower growth than the original function f(x).
- If f is a polynomial of degree k, one then arrives at a sum along with geometric progressions after k-1 iterations of the above process.
- \blacksquare One may optimize the choice of H in practice.

van der Corput method

There are two innovations of van der Corput:

- Weyl differencing (A-process):

 The parameter H is flexible: new exponential sum with new amplitude function
- Poisson summation (*B*-process):

 Dual sum with (essentially) the same amplitude function, but with longer/shorter length

The original van der Corput method relies on the key feature:

■ The amplitude function f is "smooth" enough.

van der Corput in algebraic situations

- $q \ge 2$ an integer or even a prime power
- V a suitable algebraic variety over \mathbb{Z} , $\mathbb{Z}/q\mathbb{Z}$ or \mathbb{F}_q
- \blacksquare f a rational function over V

Algebraic Exponential Sums

$$\sum_{\mathbf{x} \in V(\mathbf{Z}/q\mathbf{Z})} e\left(\frac{f(\mathbf{x})}{q}\right), \quad \sum_{\mathbf{x} \in V(\mathbf{F}_q)} \psi(f(\mathbf{x}))$$

In general, we may consider the average of $W_q: \mathbb{Z}/q\mathbb{Z} \to \mathbb{C}$:

$$\sum_{n} W_q(n).$$

Typical examples (complete sums)

■ Gauss sum

$$\tau(a,\chi) = \sum_{x \in \mathbf{Z}/q\mathbf{Z}} \chi(x) e\left(\frac{ax}{q}\right)$$

■ Kloosterman sum

$$Kl(a,q) = \frac{1}{\sqrt{q}} \sum_{x \in (\mathbf{Z}/q\mathbf{Z})^{\times}} e\left(\frac{ax + x^{-1}}{q}\right)$$

■ hyper-Kloosterman sum $(k \ge 2)$

$$\mathrm{Kl}_k(a,q) = q^{\frac{1-k}{2}} \sum_{\substack{x_1, x_2, \dots, x_k \in (\mathbf{Z}/q\mathbf{Z})^{\times} \\ x_1x_2 \dots x_k = a}} \mathrm{e}\left(\frac{x_1 + x_2 + \dots + x_k}{q}\right)$$

Typical examples (incomplete sums)

• character sum

$$\sum_{n \in I} \chi(n)$$

■ incomplete Kloosterman sum

$$\sum_{\substack{n \in I \\ (n,q)=1}} e\left(\frac{an^{-1}}{q}\right)$$

■ bilinear form of Kloosterman sums

$$\sum_{m}\sum_{n}\alpha_{m}\beta_{n}\operatorname{Kl}(mn,q)$$

sums of products of Kloosterman sums

$$\sum_{n \in I} \prod_{1 \le j \le r} \mathrm{Kl}(n + h_j, q)$$

van der Corput in algebraic situations

$$S:=\sum_{n\in I}W(n)$$

Lemma (Heath-Brown / Irving)

■ (A-process) Assume $q = q_1q_2$ with $(q_1, q_2) = 1$ and $W_i : \mathbb{Z}/q_i\mathbb{Z} \to \mathbb{C}$. Define $W = W_1W_2$, then for any $1 \le L \le |I|/q_2$ we have

$$|S|^{2} \leq ||W||_{\infty}^{2} L^{-1} |I| \Big(|I| + ||W_{1}||_{\infty}^{-2} \sum_{0 < |\ell| \leq L} \Big| \sum_{n, n + \ell q_{2} \in I} W_{1}(n) \overline{W_{1}(n + \ell q_{2})} \Big| \Big).$$

 \blacksquare (B-process) For $W: \mathbb{Z}/q\mathbb{Z} \to \mathbb{C}$, we have

$$|S| \ll \frac{|I|}{\sqrt{q}} \left(|\widehat{W}(O)| + (\log q) \left| \sum_{h \in \mathcal{I}} \widehat{W}(h) e\left(\frac{ha}{q}\right) \right| \right)$$

for certain $a \in \mathbb{Z}$ and some interval \mathcal{I} not containing 0 with $|\mathcal{I}| \leq q/|I|$, where \widehat{W} denotes the (normalized) Fourier transform of W.

van der Corput in algebraic situations

■ New functions appear:

$$n \mapsto W_1(n)\overline{W_1(n+h)},$$

and

$$n \mapsto \widehat{W}(n)$$

with

$$\widehat{W}(n) = \frac{1}{\sqrt{q}} \sum_{x \in \mathbf{Z}/q\mathbf{Z}} W(x) e\left(\frac{-nx}{q}\right).$$

- $q \ge 3$ is a squarefree number with $P^+(q) < q^{\eta}$ for any small $\eta > 0$
- $K = \prod_{p|q} K_p$ is a compositely amiable trace function (ℓ -adic cohomology)
- We expect the following bound

$$\sum_{n \in I} K(n) \ll N^{\varepsilon} (q/N)^{\kappa} N^{\lambda} \tag{\Omega}$$

holds for some (κ, λ) , where |I| = N < q.

Proposition (Initial choices)

If K is compositely 1-amiable, then (Ω) holds for

$$(\kappa,\lambda)=(0,1),\quad (\tfrac{1}{2},\tfrac{1}{2}).$$

For $J, L \geqslant 1$, put

 $\mathfrak{A}_q(J,L) = \{K \pmod{q} : K \text{ compositely } J\text{-amiable}, \ \widehat{K} \text{ compositely } L\text{-amiable}\}$

Definition (Exponent pairs)

Let $J, L \geqslant 1$ and $N \leqslant q$.

We say (κ, λ) satisfying $0 \le \kappa \le \frac{1}{2} \le \lambda \le 1$ is an exponent pair of width (J; L), if (Ω) holds for all $K \in \mathfrak{A}_q(J, L)$.

An exponent pair of width $(\infty; L)$ with some $L \ge 1$ is called an arithmetic exponent pair.

Theorem (Jie Wu & Xi¹, 2021)

Let $J \ge 1$. If (κ, λ) is an exponent pair of width (J; 1), then

$$A \cdot (\kappa, \lambda) = \left(\frac{\kappa}{2(\kappa + 1)}, \frac{\kappa + \lambda + 1}{2(\kappa + 1)}\right).$$

is an exponent pair of width (J+1;1).

Theorem (Jie Wu & Xi, 2021)

If (κ, λ) is an exponent pair of width (1; 1), then so is

$$B \cdot (\kappa, \lambda) = \left(\lambda - \frac{1}{2}, \ \kappa + \frac{1}{2}\right).$$

¹J. Wu & P. Xi, Arithmetic exponent pairs for algebraic trace functions and applications, with an appendix by Will Sawin, *Algebra Number Theory* 15 (2021), 2123—2172.

$$\sum_{M < n \leqslant M+N} K(n) \ll N^{\varepsilon} (q/N)^{\kappa} N^{\lambda}.$$

Processes	A	A^2	A^3	BA^2
(κ,λ)	$\left(\frac{1}{6},\frac{2}{3}\right)$	$\left(\frac{1}{14},\frac{11}{14}\right)$	$(\frac{1}{30}, \frac{26}{30})$	$(\frac{2}{7},\frac{4}{7})$
Processes	BA^3	ABA^2	A^2BA^2	$BABA^2$
(κ,λ)	$(\frac{11}{30}, \frac{16}{30})$	$(\frac{2}{18}, \frac{13}{18})$	$(\frac{2}{40}, \frac{33}{40})$	$(\frac{4}{18}, \frac{11}{18})$

- estimates for short algebraic exponential sums
- applications to distribution of primes, *L*-functions, etc

Amplification of I. M. Vinogradov

$$\sum_{a < n \leqslant b} e(f(n))$$

■ Small shift & averaging

$$\sum_{a-xy < n \le b-xy} e(f(n+xy)) \approx \frac{1}{XY} \sum_{a < n \le b} \sum_{x \sim X} \sum_{y \sim Y} e(F_n(xy))$$

■ Hölder & grouping variables (Take $F(t) = \sum_{1 \le i \le k} \alpha_i t^i$)

$$\sum_{x \sim X} \left| \sum_{y \sim Y} \mathbf{e}(F(xy)) \right|^r = \sum_{x \sim X} \theta(x) \sum_{y_1, \dots, y_r} \mathbf{e}(F(xy_1) + \dots + F(xy_r))$$

$$= \sum_{\lambda_1, \dots, \lambda_k} \nu(\lambda_1, \dots, \lambda_k) \sum_{x \sim X} \theta(x) \mathbf{e}(\alpha_1 \lambda_1 x + \dots + \alpha_k \lambda_k x^k),$$

where $\nu(\lambda_1, \dots, \lambda_k)$ counts the solutions to the system of equations

$$y_1^i + \dots + y_r^i = \lambda_i, \quad 1 \leqslant i \leqslant \frac{k}{k}.$$

Amplification of I. M. Vinogradov

$$\sum_{\lambda_1,\dots,\lambda_k} \nu(\lambda_1,\dots,\lambda_k) \sum_{x \sim X} \theta(x) e(\alpha_1 \lambda_1 x + \dots + \alpha_k \lambda_k x^k)$$

■ By Hölder, we need to consider

$$\sum_{\lambda_1, \dots, \lambda_k} \nu(\lambda_1, \dots, \lambda_k)^2, \quad \sum_{\lambda_1, \dots, \lambda_k} \left| \sum_{x \sim X} \theta(x) e(\alpha_1 \lambda_1 x + \dots + \alpha_k \lambda_k x^k) \right|^{2s}.$$

■ The second moment of ν is equal to $J_{r,k}(Y)$, the number of solutions to

$$y_1^i + \dots + y_r^i = y_{r+1}^i + \dots + y_{2r}^i, \quad 1 \le i \le \frac{k}{k}.$$

■ $J_{r,k}(Y)$ lies in the heart of Vinogradov's method, and it is exactly equal to

$$\int_0^1 \cdots \int_0^1 \left| \sum_{x \in X} e(\alpha_1 x + \cdots + \alpha_k x^k) \right|^{2r} d\alpha_1 \cdots d\alpha_k.$$

■ See the works of Vinogradov (1935), Hua (1949), Karatsuba (1973), Wooley (2016), Bourgain–Demeter–Guth (2016).

Burgess's method after Vinogradov

Let χ be a non-trivial Dirichlet character mod p. Let w be a smooth function mimicking the indicator function of [1, 2]. Put

$$S := \sum_{n \in \mathbf{Z}} w\left(\frac{n}{N}\right) \chi(n).$$

• For all integers u, v, we have (Trivial!)

$$S = \sum_{n \in \mathbf{Z}} w \left(\frac{n + uv}{N} \right) \chi(n + uv).$$

■ Summing over $u \sim U, v \sim V$, we have (Trivial!)

$$S \approx \frac{1}{UV} \sum_{u \sim U} \sum_{v \sim V} \sum_{n \in \mathbf{Z}} w \left(\frac{n + uv}{N}\right) \chi(n + uv).$$

- For (u, p) = 1, observe that $\chi(n + uv) = \chi(u)\chi(n\overline{u} + v)$. (Closer to non-trivial!)
- How to group u, u and separate u, v?

Burgess's method after Vinogradov

■ Put $\varrho(a) = |\{(n, u) : |n| \leq N, u \sim U, n \equiv ua \pmod{p}\}|$, so that

$$S \ll \frac{1}{UV} \sum_{a \pmod p} \varrho(a) \Big| \sum_{v \sim V} \theta_v \chi(a+v) \Big|, \quad \theta_v \in S^1.$$

■ By Hölder, we are led to

$$\sum_{a \pmod{p}} \varrho(a)^2, \quad \sum_{a \pmod{p}} \left| \sum_{v \sim V} \theta_v \chi(a+v) \right|^{2r}.$$

■ The second average is at most

$$\sum_{\mathbf{v}\in[1,V]^{2r}}\left|\sum_{x \pmod p}\chi\left(\frac{(x+v_1)\cdots(x+v_r)}{(x+v_{r+1})\cdots(x+v_{2r})}\right)\right|.$$

Burgess's method after Vinogradov

■ Put $\varrho(a) = |\{(n, u) : |n| \leq N, u \sim U, n \equiv ua \pmod{p}\}|$, so that

$$S \ll \frac{1}{UV} \sum_{a \pmod{p}} \varrho(a) \Big| \sum_{v \sim V} \theta_v \chi(a+v) \Big|, \quad \theta_v \in S^1.$$

■ By Hölder, we are led to

$$\sum_{a \pmod{p}} \varrho(a)^2, \quad \sum_{a \pmod{p}} \left| \sum_{v \sim V} \theta_v \chi(a+v) \right|^{2r}.$$

■ The second average is at most

$$\sum_{\mathbf{v}\in[1,V]^{2r}}\left|\sum_{x\pmod{p}}\chi\left(\frac{(x+v_1)\cdots(x+v_r)}{(x+v_{r+1})\cdots(x+v_{2r})}\right)\right|.$$

• complete character sums over finite fields: RH/F_q

Burgess bound

Theorem (Burgess, 1960-70's)

Let p be a large prime and χ a non-trivial character modulo p. For all $r \in \mathbf{Z}^+$ we have

$$\sum_{M < n \le M + N} \chi(n) \ll N^{1 - \frac{1}{r}} p^{\frac{r+1}{4r^2} + \varepsilon}$$

for any $\varepsilon > 0$.

Burgess bound

Theorem (Burgess, 1960-70's)

Let p be a large prime and χ a non-trivial character modulo p. For all $r \in \mathbf{Z}^+$ we have

$$\sum_{M < n \leqslant M+N} \chi(n) \ll N^{1-\frac{1}{r}} p^{\frac{r+1}{4r^2} + \varepsilon}$$

for any $\varepsilon > 0$.

- Trivial bound: $\min\{q, N\}$.
- Burgess is non-trivial as long as $N > p^{1/4+\varepsilon}$.
- Burgess's method requires the periodic and multiplicative feature.

Applications of Burgess's method to bilinear forms

$$\sum_{m}\sum_{n}\alpha_{m}\beta_{n}K(mn)$$

- Friedlander-Iwaniec, Fouvry-Michel, Kowalski-Michel-Sawin, et al.
- The aim is to beat the Pólya–Vinogradov barrier:

$$\sum_{m} \left| \sum_{n} \beta_{n} K(mn) \right|^{2} = \sum_{n_{1}} \sum_{n_{2}} \beta_{n_{1}} \overline{\beta}_{n_{2}} \sum_{m} K(mn_{1}) \overline{K(mn_{2})}$$

Theorem (Fouvry, Kowalski & Michel, 2014)

Let p be a large prime. For all "good" K and $1 \leq M, N \leq p$, we have

$$\sum_{m \leq M} \sum_{n \leq N} \alpha_m \beta_n K(mn, p) \ll \|\boldsymbol{\alpha}\| \|\boldsymbol{\beta}\| (MN)^{\frac{1}{2}} (N^{-\frac{1}{2}} + M^{-\frac{1}{2}} p^{\frac{1}{4}} \log p).$$

Applications of Burgess's method to bilinear forms

$$\mathrm{Kl}_k(n,p) := p^{\frac{1-k}{2}} \sum_{\substack{x_1, \cdots, x_k \in \mathbf{F}_p^* \\ x_1 \cdots x_k = n}} \mathbf{e} \Big(\frac{x_1 + \cdots + x_k}{p} \Big).$$

Theorem (Kowalski-Michel-Sawin, 2017²)

Let p be a large prime. For each fixed $k \ge 2$, we have

$$\sum_{m \le M} \sum_{n \le N} \alpha_m \beta_n \operatorname{Kl}_k(mn, p) \ll \|\boldsymbol{\alpha}\| \|\boldsymbol{\beta}\| (MN)^{\frac{1}{2}} (N^{-\frac{1}{2}} + (MN)^{-\frac{3}{16}} p^{\frac{11}{64}}) p^{\varepsilon}$$

for

$$p^{4\varepsilon} < N < Mp^{\frac{1}{4}}, \ p^{\frac{11}{12}} < MN < p^{\frac{5}{4}}.$$

- This is non-trivial as long as $M = N > p^{\frac{11}{24} + \varepsilon}$.
- ²E. Kowalski, Ph. Michel & W. Sawin, Bilinear forms with Kloosterman sums and applications, *Annals of Math.* **186** (2017), 413–500.

Bilinear forms over arbitrary subsets

Let $\mathcal{M}, \mathcal{N} \subseteq \mathbf{F}_p$ be two arbitrary subsets and consider a function $K : \mathbf{F}_p \to \mathbf{C}$. Assume $\boldsymbol{\alpha} = (\alpha_m)$ and $\boldsymbol{\beta} = (\beta_n)$ are arbitrary coefficients with supports in \mathcal{M}, \mathcal{N} , respectively. Put

$$\mathcal{B}(\boldsymbol{\alpha}, \boldsymbol{\beta}; K) = \sum_{m \in \mathcal{M}} \sum_{n \in \mathcal{N}} \alpha_m \beta_n K(mn). \tag{1}$$

- Neither of \mathcal{M}, \mathcal{N} is obviously contained in suitable intervals, there is no hope to transform incomplete sums to complete sums directly by Fourier analysis (as in the Pólya–Vinogradov method).
- By raising powers in the application of Hölder's inequality, we are able to prove non-trivial bounds for some general K and $|\mathcal{M}| > p^{1/2+\varepsilon}$, $|\mathcal{N}| > p^{\varepsilon}$.

Bilinear forms over arbitrary subsets

Theorem (Xi^3 , 2023)

Let $K = \mathrm{Kl}_k(a \cdot, p)$ with $a \in \mathbf{F}_p^{\times}$ and $k \geqslant 2$. For all $r \geqslant 2$ and $\mathcal{M}, \mathcal{N} \subseteq \mathbf{F}_p$ satisfying $|\mathcal{M}|, |\mathcal{N}| \leqslant p^{\frac{2}{3}}, |\mathcal{N} + \mathcal{N}| \leqslant \lambda |\mathcal{N}| (\lambda \geqslant 1),$

we have

$$\mathcal{B}(\boldsymbol{\alpha},\boldsymbol{\beta};K) \ll \|\boldsymbol{\alpha}\|_{\infty} \|\boldsymbol{\beta}\|_{\infty} |\mathcal{M}||\mathcal{N}| \Big\{ |\mathcal{M}|^{-\frac{1}{2}} + \Big(\frac{p^{3+\frac{9\lambda}{4r}}}{|\mathcal{M}|^4|\mathcal{N}|^3} \Big)^{\frac{1}{8r}} (\log p)^{\frac{1}{2r}} \Big\},$$

where the implied constant depends only on (r, λ) and polynomially on k.

■ This is non-trivial as long as

$$|\mathcal{M}| = |\mathcal{N}| > p^{\frac{3}{7} + \varepsilon}$$

 $^{^3}$ P. Xi, Bilinear forms with trace functions over arbitrary sets, and applications to Sato–Tate, to appear in SCIENCE CHINA Math., 2023

Bilinear forms over arbitrary subsets

We need the following Freiman type theorem from additive combinatorics.

Lemma (M.-C. Chang, 2002)

Assume that $A \subseteq \mathbb{Z}$ is a finite set with $|A + A| \leq \lambda |A|$ for some $\lambda \geq 1$. Then A is contained in a proper d-dimensional arithmetic progression P with

$$d \le \lambda - 1$$
, $\log(|\mathcal{P}|/|\mathcal{A}|) \le C\lambda^2(\log \lambda)^3$.

■ While working with generalized arithmetic progressions, one is able to introduce the +ab shift to amplify the original sum.

Multilinear character sums

■ joint with É. Fouvry & I. E. Shparlinski (in progress, double Burgess)

$$\sum_{m \sim M} \sum_{n \sim N} \sum_{k \sim K} \alpha_m \beta_{n,k} \chi(mn+k)$$

$$\sum_{m \sim M} \sum_{n \sim N} \sum_{k \sim K} \sum_{l \sim L} \alpha_{m,l} \beta_{n,k} \chi(mn + kl)$$

Amplification of Kloosterman

$$K(m, n; q) = \sum_{a \in (\mathbf{Z}/q\mathbf{Z})^{\times}} e\left(\frac{ma + na^{-1}}{q}\right)$$

$$\max_{(m,p)=1} |K(m,1;p)| \leqslant 2p^{3/4}.$$

■ Kloosterman evaluated the fourth moment

$$\sum_{m \in (\mathbf{Z}/p\mathbf{Z})^{\times}} |K(m,1;p)|^4 = 2p^3 - 3p^2 - 3p - 1.$$

■ The square root cancellation philosophy predicts that

$$\max_{(m,p)=1} |K(m,1;p)| \leqslant c\sqrt{p}.$$

• c = 2 is admissible thanks to Weil (1940's): Riemann Hypothesis over finite fields

A trivial amplification

Let $A = \{a_n\}$ be a complex sequence indexed by n in a suitable family \mathcal{F} .

• Consider the moment $(k \in \mathbf{Z}^+)$

$$M_k(\mathcal{F}) = \sum_{n \in \mathcal{F}} |a_n|^k.$$

■ Trivially, $\max_{n \in \mathcal{F}} |a_n|^k \leq M_k(\mathcal{F})$, which yields

$$\|\mathcal{A}\|_{\infty} \leqslant \|\mathcal{A}\|_{\ell^k}$$
.

■ This becomes stronger if one may bound M_k effectively for

larger k or smaller \mathcal{F}

The trivial amplification: second moment

Consider the second moment of Kloosterman sums

$$\sum_{m \in (\mathbf{Z}/p\mathbf{Z})^{\times}} |K(m,1;p)|^2 = p^2 - p - 1.$$

This can only produce the trivial bound by the trivial amplification.

The trivial amplification: second moment

■ Let f be a holomorphic cusp form for $SL_2(\mathbf{Z})$. Given a non-trivial Dirichlet character mod p, consider the second moment of twisted L-functions:

$$\sum_{\chi \pmod{p}}^* |L(1/2, f \otimes \chi)|^2.$$

We expect a non-trivial upper bound for $L(1/2, f \otimes \chi)$.

The trivial amplification: second moment

■ Let f be a holomorphic cusp form for $SL_2(\mathbf{Z})$. Given a non-trivial Dirichlet character mod p, consider the second moment of twisted L-functions:

$$\sum_{\chi \pmod{p}}^* |L(1/2, f \otimes \chi)|^2.$$

We expect a non-trivial upper bound for $L(1/2, f \otimes \chi)$.

■ The Phragmen–Lindelöf principle implies $L(1/2, f \otimes \chi) \ll_f p^{1/2+\varepsilon}$, and Lindelöf Hypothesis predicts that $L(1/2, f \otimes \chi) \ll p^{\varepsilon}$.

The trivial amplification: second moment

■ Let f be a holomorphic cusp form for $SL_2(\mathbf{Z})$. Given a non-trivial Dirichlet character mod p, consider the second moment of twisted L-functions:

$$\sum_{\chi \pmod{p}}^* |L(1/2, f \otimes \chi)|^2.$$

We expect a non-trivial upper bound for $L(1/2, f \otimes \chi)$.

- The Phragmen–Lindelöf principle implies $L(1/2, f \otimes \chi) \ll_f p^{1/2+\varepsilon}$, and Lindelöf Hypothesis predicts that $L(1/2, f \otimes \chi) \ll p^{\varepsilon}$.
- The subconvexity problem aims to prove, for some constant $\delta > 0$, that

$$L(1/2, f \otimes \chi) \ll p^{1/2-\delta}$$
.

The trivial amplification: second moment

■ Let f be a holomorphic cusp form for $SL_2(\mathbf{Z})$. Given a non-trivial Dirichlet character mod p, consider the second moment of twisted L-functions:

$$\sum_{\chi \pmod{p}}^* |L(1/2, f \otimes \chi)|^2.$$

We expect a non-trivial upper bound for $L(1/2, f \otimes \chi)$.

- The Phragmen–Lindelöf principle implies $L(1/2, f \otimes \chi) \ll_f p^{1/2+\varepsilon}$, and Lindelöf Hypothesis predicts that $L(1/2, f \otimes \chi) \ll p^{\varepsilon}$.
- The subconvexity problem aims to prove, for some constant $\delta > 0$, that

$$L(1/2, f \otimes \chi) \ll p^{1/2-\delta}$$
.

■ (Kowalski, Michel & Sawin, 2017)

$$\sum_{\chi \pmod{p}}^{*} |L(1/2, f \otimes \chi)|^{2} = c_{1} p \log p + c_{2} p + O(p^{1-\eta}).$$

The trivial amplification gives a trivial bound.

A non-trivial amplification: twisted second moment

Given an arbitrary coefficient $\mathbf{c} = (c_{\ell})_{\ell \sim L}$ with $\|\mathbf{c}\|_{\infty} \leq 1$, consider

$$M(\mathbf{c},p) := \sum_{\chi \pmod{p}}^* \Big| \sum_{\ell \sim L} c_\ell \chi(\ell) \Big|^2 |L(1/2,f \otimes \chi)|^2.$$

Approximate functional equation yields that

$$M(\mathbf{c}, p) \approx \sum_{\ell_1, \ell_2 \sim L} \sum_{\substack{\ell_1, \ell_2 \sim L \\ m_1 \ell_1 \equiv m_2 \ell_2 \pmod{p}}} \lambda_f(m_1) \overline{\lambda_f(m_1)} \ll pL + p^{1-2\delta} L^2.$$

■ For each non-trivial character $\chi_1 \pmod{p}$, choose $c_\ell = \overline{\chi}_1(\ell)$, so that

$$L^2|L(1/2, f \otimes \chi_1)|^2 \ll M(\mathbf{c}, p) \ll pL + p^{1-\delta}L^2.$$

A non-trivial amplification: twisted second moment

Given an arbitrary coefficient $\mathbf{c} = (c_{\ell})_{\ell \sim L}$ with $\|\mathbf{c}\|_{\infty} \leq 1$, consider

$$M(\mathbf{c}, p) := \sum_{\chi \pmod{p}}^* \Big| \sum_{\ell \sim L} c_{\ell} \chi(\ell) \Big|^2 |L(1/2, f \otimes \chi)|^2.$$

Approximate functional equation yields that

$$M(\mathbf{c}, p) \approx \sum_{\ell_1, \ell_2 \sim L} \sum_{\substack{\ell_1, \ell_2 \sim L \\ m_1 \ell_1 \equiv m_2 \ell_2 \pmod{p}}} \lambda_f(m_1) \overline{\lambda_f(m_1)} \ll pL + p^{1-2\delta} L^2.$$

■ For each non-trivial character $\chi_1 \pmod{p}$, choose $c_\ell = \overline{\chi}_1(\ell)$, so that

$$L^2|L(1/2, f \otimes \chi_1)|^2 \ll M(\mathbf{c}, p) \ll pL + p^{1-\delta}L^2.$$

$$L(1/2, f \otimes \chi_1) \ll \sqrt{p/L} + p^{1/2-\delta}$$
.

Well done!

A non-trivial amplification: twisted second moment

$$L(1/2,f), \qquad L(1/2,f\otimes\chi), \qquad L(1/2,f\otimes g)$$

- [1] W. Duke, J. B. Friedlander, H. Iwaniec, Bounds for automorphic *L*-functions, *Invent. math.* **112** (1993), 1–8.
- [2] W. Duke, J. B. Friedlander, H. Iwaniec, Bounds for automorphic *L*-functions II, *Invent. math.* **115** (1994), 219–239; erratum, ibid. 140 (2000), 227–242.
- [3] W. Duke, J. Friedlander, H. Iwaniec, Class group *L*-functions, *Duke Math. J.* **79** (1995), 1–56.
- [4] W. Duke, J. B. Friedlander, H. Iwaniec, Bounds for automorphic *L*-functions II, *Invent. math.* **143** (2001), 221–248.
- [5] E. Kowalski, Ph. Michel, J. VanderKam, Rankin–Selberg *L*-functions in the level aspect, *Duke Math. J.* **114** (2002), 123–191.
- [6] Ph. Michel, The subconvexity problem for Rankin--Selberg *L*-functions and equidistribution of Heegner points. *Ann. Math.* **160** (2004), 185–236.

Another amplification: cubic moment

- Omniscient narration: $L(1/2, f \otimes \chi) \ll p^{\varepsilon}$ for all $\chi \pmod{p}$.
- Suppose we are able to prove the cubic moment

$$\sum_{\chi \pmod{p}} |L(1/2, f \otimes \chi)|^3 \ll p^n.$$

A trivial amplification yields

$$L(1/2, f \otimes \chi) \ll p^{n/3}$$
.

■ An admissible choice $n = 3/2 - \delta$ is sufficient to produce subconvexity.

Cubic moment in the spirit of Motohashi ⁴

Theorem. If $0 < \Delta < T(\log T)^{-1}$, then there exist absolute constants c(a,b;k,l) such that

$$(\Delta\sqrt{\pi})^{-1} \int_{-\infty}^{\infty} \left| \zeta\left(\frac{1}{2} + i(T+t)\right) \right|^{4} e^{-(t/\Delta)^{2}} dt$$

$$= (\Delta\sqrt{\pi})^{-1} \int_{-\infty}^{\infty} \operatorname{Re}\left[\sum_{\substack{a,b,k,l \geq 0 \\ ak+bl \leqslant 4}} c(a,b;k,l) \left(\frac{\Gamma^{(a)}}{\Gamma}\right)^{k} \left(\frac{\Gamma^{(b)}}{\Gamma}\right)^{l} \left(\frac{1}{2} + i(T+t)\right) \right] e^{-(t/\Delta)^{2}} dt$$

$$+ \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\left| \zeta\left(\frac{1}{2} + it\right) \right|^{6}}{\left| \zeta(1+2it) \right|^{2}} \Theta(t;T,\Delta) dt + \sum_{j=1}^{\infty} \alpha_{j} H_{j} \left(\frac{1}{2}\right)^{3} \Theta(\varkappa_{j};T,\Delta)$$

$$+ \sum_{k=6}^{\infty} \sum_{j=1}^{\vartheta(k)} \alpha_{j,k} H_{j,k} \left(\frac{1}{2}\right)^{3} \Theta\left(i\left(\frac{1}{2} - k\right);T,\Delta\right) + O(T^{-1}(\log T)^{2}).$$

$$(1.16)$$

⁴Y. Motohashi, An explicit formula for the fourth power mean of the Riemann zeta-function, *Acta Math.* 170 (1993), 181–220.

Cubic moment in the spirit of Motohashi

■ (Motohashi, 1993)

$$\int_{\mathbb{R}} |\zeta(\frac{1}{2} + it)|^4 w(t) dt = \sum_f L(\frac{1}{2}, f)^3 \check{w}(t_f) + (\text{Eisenstein part}),$$

where the sum runs over all holomorphic/Maass forms f with spectral parameter t_f for the group $\mathrm{SL}_2(\mathbb{Z})$.

■ (Conrey-Iwaniec, 2000; Petrow-Young, 2020)

$$\sum_{f \in \mathcal{F}(T)} L(\frac{1}{2}, f \otimes \chi)^3 + \int_{-T}^T L(\frac{1}{2} + it, \chi)^6 dt \rightsquigarrow \text{fourth moment of GL}_1 \text{ L-functions}$$

Cubic moment in the spirit of Motohashi

Theorem (Petrow-Young⁵ ⁶, 2020/2023)

Let χ be a non-trivial character mod q. Then

$$L(\frac{1}{2}+it,\chi) \ll ((1+|t|)q)^{\frac{1}{6}+\varepsilon}.$$

- Conrey–Iwaniec⁷ treated the case of quadratic χ with a larger exponent in t.
- Number Fields: Balkanova, Frolenkov & Han Wu⁸ and Nelson⁹

 $^{^5\}mathrm{I}.$ Petrow & M. Young, The Weyl bound for Dirichlet L-functions of cube-free conductor, Ann. Math. 192 (2020), 437–486.

 $^{^6}$ I. Petrow & M. Young, The fourth moment of Dirichlet L-functions along a coset and the Weyl bound, to appear in <code>Duke Math. J.</code>, DOI: 10.1215/00127094-2022-0069.

⁷J. B. Conrey & H. Iwaniec, The cubic moment of central values of automorphic *L*-functions, *Ann. Math.* **151** (2000), 1175–1216.

⁸O. Balkanova, D. Frolenkov & H. Wu, On Weyl's subconvex bound for cube-free Hecke characters: totally real case. arXiv: 2108.12283.

 $^{^9\}mathrm{P.}$ Nelson, Eisenstein series and the cubic moment for PGL2, arXiv:1911.06310.

From GL₁ to GL₂

Theorem (Petrow-Young¹⁰, 2020)

Let p be an odd prime, and suppose F is a Hecke-Maass newform of level $q = p^2$, trivial central character, and spectral parameter t_F . If the local representation of $GL_2(\mathbb{Q}_p)$ associated to F is not supercuspidal, then

$$L(\frac{1}{2},F) \ll (q(1+|t_F|^2))^{\frac{1}{6}+\varepsilon}.$$

¹⁰I. Petrow & M. Young, The Weyl bound for Dirichlet *L*-functions of cube-free conductor, *Ann. Math.* **192** (2020), 437–486.

 $^{^{11}}$ H. Wu & P. Xi, A uniform Weyl bound for L-functions of Hilbert modular forms, arXiv: 2302:14652.

From GL₁ to GL₂

Theorem (Petrow-Young¹⁰, 2020)

Let p be an odd prime, and suppose F is a Hecke-Maass newform of level $q = p^2$, trivial central character, and spectral parameter t_F . If the local representation of $GL_2(\mathbb{Q}_p)$ associated to F is not supercuspidal, then

$$L(\frac{1}{2},F) \ll (q(1+|t_F|^2))^{\frac{1}{6}+\varepsilon}.$$

Theorem (Han Wu & Xi¹¹, 2023)

The above assumption on "supercuspidal" can be removed.

 $^{^{10}}$ I. Petrow & M. Young, The Weyl bound for Dirichlet *L*-functions of cube-free conductor, *Ann. Math.* **192** (2020), 437–486.

 $^{^{11}}$ H. Wu & P. Xi, A uniform Weyl bound for L-functions of Hilbert modular forms, arXiv: 2302:14652.

Motohashi's formula in number fields

$$\begin{split} \mathrm{M}_3(\Psi) := \sum_{\pi \text{ cuspidal}} \mathrm{M}_3(\Psi \mid \pi) + \sum_{\chi \in \mathbb{R}_+ \widehat{\mathbf{F}^{\times}} \setminus \mathbb{A}^{\times}} \int_{-\infty}^{\infty} \mathrm{M}_3(\Psi \mid \chi, i\tau) \frac{\mathrm{d}\tau}{4\pi}, \\ \mathrm{M}_4(\Psi) = \frac{1}{\zeta_{\mathbf{F}}^*} \sum_{\chi \in \mathbb{R}_+ \widehat{\mathbf{F}^{\times}} \setminus \mathbb{A}^{\times}} \int_{\Re s = \frac{1}{2}} \mathrm{M}_4(\Psi \mid \chi, s) \frac{\mathrm{d}s}{2\pi i}. \end{split}$$

Theorem (Han Wu¹², 2022)

Let $\Psi \in \mathcal{S}(M_2(\mathbb{A}))$ be a Schwartz function. Then

$$M_3(\Psi) + \frac{1}{\zeta_{\mathbf{F}}^*} \mathop{\rm Res}_{s = \frac{1}{2}} M_3(\Psi \mid 1, s) = M_4(\Psi) + \frac{1}{\zeta_{\mathbf{F}}^*} \left\{ \mathop{\rm Res}_{s = 1} M_4(\Psi \mid 1, s) - \mathop{\rm Res}_{s = 0} M_4(\Psi \mid 1, s) \right\}.$$

¹²H. Wu, On Motohashi's formula, Trans. Amer. Math. Soc. 375 (2022), 8033-8081.

Motohashi's formula in number fields

$$\mathrm{M}_3(\Psi) := \sum_{\pi \text{ cuspidal}} \mathrm{M}_3(\Psi \mid \pi) + \sum_{\chi \in \mathbb{R}_+ \widehat{\mathbf{F}^{\times} \setminus \mathbb{A}^{\times}}} \int_{-\infty}^{\infty} \mathrm{M}_3(\Psi \mid \chi, i\tau) \frac{\mathrm{d}\tau}{4\pi},$$

$$M_4(\Psi) = \frac{1}{\zeta_{\mathbf{F}}^*} \sum_{\chi \in \mathbb{R} + \widehat{\mathbf{F}^{\times} \setminus \mathbb{A}^{\times}}} \int_{\Re s = \frac{1}{2}} M_4(\Psi \mid \chi, s) \frac{\mathrm{d}s}{2\pi i}.$$

Theorem (Han Wu^{13} , 2022)

Let $\Psi \in \mathcal{S}(M_2(\mathbb{A}))$ be a Schwartz function. Then

$$M_3(\Psi) + \frac{1}{\zeta_{\mathbf{F}}^*} \mathop{\mathrm{Res}}_{s = \frac{1}{2}} M_3(\Psi \mid 1, s) = M_4(\Psi) + \frac{1}{\zeta_{\mathbf{F}}^*} \left\{ \mathop{\mathrm{Res}}_{s = 1} M_4(\Psi \mid 1, s) - \mathop{\mathrm{Res}}_{s = 0} M_4(\Psi \mid 1, s) \right\}.$$

¹³H. Wu, On Motohashi's formula, Trans. Amer. Math. Soc. 375 (2022), 8033–8081.

Motohashi's formula in number fields

- M₃, M₄ can be expressed as products of local zeta integrals over all places.
- The novelty of this formulation is that one may construct the weight functions place by place; i.e., it suffices to work locally.
- We are led to several cases according to the sizes of conductor components $\mathfrak{a}(\pi)$ of $\pi = \pi_v$.
- For π supercuspidal with $\mathfrak{a}(\pi) = 2$, it has depth 0 and is constructed from a character of the group of invertible elements of the quadratic field extension of the residual field.
- Works of Deligne and Katz are employed to bound the double character sum

$$\sum_{\alpha \in \mathbb{F}_q} \rho(\alpha + \omega) \sum_{t \in \mathbb{F}_q} \chi(t) \eta(\alpha^2 - \omega^2 t) \overline{\eta}(1 - t),$$

where ω is a primitive element in \mathbb{F}_{q^2} such that $\omega^2 \in \mathbb{F}_q$, χ , η are non-trivial multiplicative characters of \mathbb{F}_q^{\times} and ρ is that of $\mathbb{F}_{q^2}^{\times}$.

Amplifications in other situations

■ (Selberg sieve; upper bound)

$$\sum_{\substack{n \in \mathcal{A} \\ (n,P(z))=1}} 1 \leqslant \sum_{n \in \mathcal{A}} \left(\sum_{d \mid (n,P(z))} \lambda_d \right)^2$$

• (prime gaps; GPY and Yitang Zhang)

$$\sum_{x < n \leqslant 2x} \left(\sum_{1 \leqslant j \leqslant k} 1_{n+h_j \text{ prime}} - 1 \right) \left(\sum_{d \mid (n+h_1) \cdots (n+h_k)} \lambda_d \right)^2$$

■ (Mollification; non-vanishing of *L*-functions)

$$\left|\frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}} L(\frac{1}{2}, f) M(f)\right|^2 \leqslant \left(\frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}, \ L(\frac{1}{2}, f) \neq 0} 1\right) \left(\frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}} |L(\frac{1}{2}, f) M(f)|^2\right)$$

