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e Let X be a smooth and projective curve over Q.
Theorem (Fermat): When the genus of X is 0, then

X(@Q) =0 or [X(Q)=00

Theorem (Mordell): When the genus of X is 1, then

X(@Q) =0 or X(Q)is a finitely generated abelian group

Theorem (Faltings-Vojta-Lawrence-Venkatesh): When the genus of X is

bigger than 1, then
[ X(Q)] < oe.
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|. Introduction

e For higher dimensional smooth and projective variety X over Q, one also
expect that | X (Q)]| is close related to the geometry of X = X xqQ .

e Let Q0 be the sheaf of differentials of X and

dim(X)
wr= N\ 9

be the canonical divisor of X

Definition.

1) X is Fano if w%l is ample (g = 0).

2) X is Calabi-Yau if w is trivial (g = 1).

3) X is of general type if w is ample (g > 1).
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Conjecture (Colliot-Thelene). If X is Fano, then either X(Q) = 0 or
X (Q) is Zariski dense in X.

Conjecture (Bombieri-Lang). If X is of general type, then X (Q) is not
Zariski dense in X.

e Case of Calabi-Yau varieties.
e For abelian varieties, there is a generalization of BSD conjecture.

e There are two classes of 2-dimensional Calabi-Yau varieties: abelian
surfaces and K3 surfaces which are simply connected.

e For a K3 surface X, it is conjectured that either X(Q) = () or X(Q) is
Zariski dense in X.
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Example. Euler generalized the Fermat equation and conjectured
X: af+ay+---+x =1,

has no solution of positive integers for n > 2.

e X is a Calabi-Yau variety.

e Lander and Parkin (1966) found a counterexample
27° + 84° + 110° + 133° = 144°

by a direct computer searching.

e When n =4, X is a K3 surface.

July 9, 2023 5/ 34



|. Introduction

e Elkies (1988) provided a counterexample for n = 4
2682440* + 15365639* + 18796760* = 20615673%

and X (Q) is Zariski dense in X.
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|. Introduction

e Elkies (1988) provided a counterexample for n = 4
2682440% 4 15365639* + 18796760* = 20615673*
and X (Q) is Zariski dense in X.

Sketch of Elkies' idea: There is a morphism 1)

v (u? +2)(552)% = —(3u? — 8u + 6)("4%)? — 2(u? — 2) (%) — 2u
+(u? + 2)t = 4(u® — 2)(552)% + Su(52) + (2 — u?)

— Z: sttt =1}

based on the work of Demjanenko (1974 in Russian).
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e One can partially compactify Y to Y¢ with the fibration Y* 2) P! by
sending (r, s,t,u) — [u, 1]. Moreover, the morphism v can be extended to

$:Y* 2 and $(YO(Q) = Z(Q).
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e One can partially compactify Y to Y¢ with the fibration Y* 2) P! by
sending (r, s,t,u) — [u, 1]. Moreover, the morphism v can be extended to

$:Y* 2 and $(YO(Q) = Z(Q).

e Each fiber of ¢ over P1(Q) is an intersection of two conics over Q. By
using the Hasse principle for conics with several testing, one can choose
¢~ 1([16,—5]) which is

153y% = —7792% — 206z + 80, 153t? = 4122% — 320z — 103

and y = 5°.

where z = T+8
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|. Introduction

e All rational points of first conic can parametrized by

_ 51k? — 34k — 5221 _ 17k* + 7558k — 779
T Tk 1779y YT T 4217k + 779)

by Fermat's method. Substituting this z into the second conic and using
the new coordinates ¢ = (k +2)/7 and 1 = 3(17k% + 779)t/14, one has

n? = —31790¢* + 36941€3 — 56158¢2 + 28849¢ + 22030.
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e All rational points of first conic can parametrized by

_ 51k? — 34k — 5221 _ 17k* + 7558k — 779
T Tk 1779y YT T 4217k + 779)

by Fermat's method. Substituting this z into the second conic and using
the new coordinates ¢ = (k +2)/7 and 1 = 3(17k% + 779)t/14, one has

n? = —31790¢* + 36941€3 — 56158¢2 + 28849¢ + 22030.

e By computer searching, one obtains

31 30731278

&n) =(— 167 W)

July 9, 2023 8 /34
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|. Introduction

Definition. Let X be a smooth and geometrically integral variety over Q.
Then X is called a log K3 surface if X satisfies

1) X is simply connected.

2) There is a smooth compactification X < X over Q such that
D = X\ X is a simple normal crossing divisor.

3) [D] + wxe =0 in Pic(X°).
e A log K3 surface is a generalization of K3 surface.

Conjecture (Vojta). If X be a log K3 surface over Q and X be an
integral model of X over Z, then there is a number field F' such that
X(Op) is Zariski dense in X where Op is the ring of integers of F'.
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Bri(X) = ker(Br(X) — Br(X)).

e Let Ag be the adeles and Aé be the finite adeles of Q. Write

X(Ag)P™) = {(z,) € X(Ag): Y invy(&(xp)) =0; V€€ Br(X)}

p<oo

where
inv, : Br(Q,) — Q/Z

is the invariant map from the local class field theory for p < oco.
e The class field theory implies
X(Q) € X(Ag)™™ C X(Ag).
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[I. Brauer-Manin obstruction

Definition. We say X satisfies strong approximation with the
Brauer-Manin obstruction if

X(Q) is dense in prf(X(AQ)Br(X))

where
prf X (Ag) — X(A))

is the projection map.

Conjecture (Skorobogatov). If X is a K3 surface, then X satisfies strong
approximation with the Brauer-Manin obstruction.

Proposition. Skorobogatov's conjecture implies that either X (Q) = 0 or
X (Q) is Zariski dense in X.

July 9, 2023 11 /34



[1l. Markoff surfaces

o Let
U 224124+ 22—zyz=m

where m is a fixed integer. Then U,, = U, X7z Q is called a Markoff
surface over Q.

July 9, 2023 12 / 34



[1l. Markoff surfaces

o Let
U 224124+ 22—zyz=m

where m is a fixed integer. Then U,, = U, X7z Q is called a Markoff
surface over Q.

e When m # 0 and 4, then U, is smooth.

July 9, 2023 12 / 34



[1l. Markoff surfaces

o Let
U 224124+ 22—zyz=m

where m is a fixed integer. Then U,, = U, X7z Q is called a Markoff
surface over Q.

e When m # 0 and 4, then U, is smooth.
e A smooth compactification X,,, of U, is
t(x? +y* + 2%) — ayz = mt?

a cubic surfaces in P2 for m # 0 and 4.
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[1l. Markoff surfaces

o Let X,, = P2 be a blowing down the following six lines in X,

;

li:z=2t, y—z=(vVm—4)t
lo: y=2t, z—x=(vVm—4)t
ls: z2=2t, x —y=(vVym—4)t
lo: o= (Vmlt, y = 5(vVm+vm—4)z
sy = (Vimt, = = b(vim + Vi =)
lo: 2= (Vmt, © = S(vm + Vm =Dy

and L is the inverse image of a line in P2, Then Pic(X,,) = Z" is
generated by L,ly,--- ,lg such that

<L,L> = 1, <L, ll> =0 and <ll,ll> =-1
for 1 <4 <6 and (l;,1;) =0 for i # j.
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[1l. Markoff surfaces

e The canonical divisor w of X, satisfies

6
wg, =—3L+> I in Pic(Xp).

i=1
e The divisor D,,, = X,,, \ Uy, consists of three lines

Li:{t=x=0}, Ly:{t=y=0}, Ly:{t=2=0}

and

L1:L—l1—l4, LQZL—ZQ—Z57 L3=L—13—l6 in PlC(Xm)

e U,, is simply connected.

Conclusion. U, is a log K3 surface.
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[1l. Markoff surfaces

e Basic question: For which m, $4,,,(Z) # 0 ?

Proposition.

Hum(zp) =10
p
if and only if m =3 mod 4 or m = £3 mod 9.

Proposition. il,, admits an automorphism group I' generated by
(a) The Vieta involution: (z,y,2) — (yz — x,y, 2);
(b) The sign change: (z,y,2) — (—x,—y, 2);

(c) The permutations of z,y, z.

e I acts on ,,,(Z) naturally.
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[1l. Markoff surfaces

Theorem (Markoff, Hurwitz, Mordell, ..., Ghosh-Sarnak)

When m < 0, then each orbit of I' contains a unique integral solution
(o, Yo, z0) such that

1
3§x0§y0§20§§960y0

and the number of I'-orbits is finite.
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[1l. Markoff surfaces

Theorem (Markoff, Hurwitz, Mordell, ..., Ghosh-Sarnak)

When m < 0, then each orbit of I' contains a unique integral solution
(o, Yo, z0) such that

1
3§-’L"0§90§20§§960y0

and the number of I'-orbits is finite.

When m > 0, then each orbit of I' contains an integral solutions
(70,0, 20) such that

3<xo<yo< -z or x=01,2
Moreover, if m is not form of
(i) u>+0% (20 = 0); (i) u? —wv+024+1 (zg = 1); (iii) u®+4 (zg = 2),

then the integral solution is unique and the number of I'-orbits is finite.



[1l. Markoff surfaces

Theorem (Ghosh-Sarnak).
H{meZ: 0<m<K, [[4m(Zy)#0 but $,(Z) =0}
P

> VK (logK) ™2

as K — oo.
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[1l. Markoff surfaces

Theorem (Ghosh-Sarnak).

tHimeZ: 0<m<K, Hﬂm ) #0 but Un(Z) =0}

1

> VK (logK) ™2

as K — oo.

tH{meZ: —K <m <0, HLLm ) #0 but $,(Z)

Il
=
——

1

> VK (logK) ™2

as K — oo.
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IV. Computation of Brauer groups

Theorem (Colliot-Thelene, Wei and X.; Loughran and Mitankin).
Let m # 0,4 and d =m — 4.
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IV. Computation of Brauer groups

Theorem (Colliot-Thelene, Wei and X.; Loughran and Mitankin).
Let m # 0,4 and d =m — 4.

If [Q(y/m,V/d) : Q] = 4, then
Br(X,,)/Br(Q) = Bry(X,,)/Br(Q) 2 Z/2

with a generator
x

(G -1d) = (P-4 = (7 -4} over t£0.

If d ¢ (Q*)2 and m € (Q*)?, then
Br(X,,)/Br(Q) = Bri(X;,)/Br(Q) = (Z/2)°
with two generators

(G —4d), (Vm = DG +2).d)} over t#0.

If d € (Q%)2 or d-m € (Q)2, then Bry(X,,) = Br(X,,) = Br(Q).



IV. Computation of Brauer groups

Sketch of proof. Since X, is rational, one obtains Bry(X,,) = Br(X,,).
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IV. Computation of Brauer groups

Sketch of proof. Since X, is rational, one obtains Bry(X,,) = Br(X,,).
By HP(Q, HY(X 1, Gy)) = HPT(X,,,G,,), one has

Bri(X,,)/Br(Q) = H*(Q, Pic(X,,))

0 de (Q%)? or d-m e (Q¥)?

7/2 m,d and md ¢ (Q*)?
(Xm)) =
(z/2)?  me (Q¥)?butd¢ (Q¥)?
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IV. Computation of Brauer groups

Theorem (Colliot-Thelene, Wei and X.; Loughran and Mitankin).
Let m # 0,4 and d =m — 4.

If [Q(v/m, Vd) : Q] = 4 then
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Let m # 0,4 and d =m — 4.

If [Q(y/m, Vd) : Q] = 4 then
Br1(Unm)/Br(Q) = (Z/2)°
with the generators {(z — 2,d), (y —2,d), (z —2,d)}.
If d ¢ Q%2 and dm € Q*? then
Bry (Up)/Br(Q) = (/2)*
with the generators {(z — 2,d), (y — 2,d)}.
If d ¢ Q%2 and m € Q*2, then
Bry(Upn)/Br(Q) = (Z/2)*
with the generators {(z — 2,d), (y — 2,d), (z — 2,d), (z —/m,d)}.

If d € Q*2, then Bry(U,,) = Br(Q).



IV. Computation of Brauer groups

Sketch of proof. By the exact sequence of Gal(Q/Q)-modules

0— Q" = Q[Un]* — Divg 77, (Xm) 2 Pic(X,,) — Pic(Uy,) — 0
and Divy g, (Xm) = ®]_1ZL;, one can show ¢ is injective. Indeed, if
aly+bLo+cls=a(L—1; —1lg)+b(L—1ly—15)+c(L—13—1g) =0,
then a = b= c = 0. This implies that Q* = Q[U,)* and the sub-lattice
Divg, \z7,,(Xm) = &}, ZL;

is primitive in Pic(X,,). Therefore Pic(U,,) is torsion free.
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IV. Computation of Brauer groups

By HP(Q, H1(U, Gy)) = HPY4(Uy,, Gyy), one has
Bri(Un)/Br(Q) = H(Q, Pic(Uyn))

which is finite.
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IV. Computation of Brauer groups

By HP(Q,HY(U,,,Gy,)) = HP 4 (U,,,G,,), one has

Br;(Unm)/Br(Q) = H'(Q,Pic(Un))

which is finite.

July 9, 2023 22 / 34

m,d and md & (Q*)?

d ¢ (Q¥)* and md € (Q*)
d ¢ Q) and m € (Q*)?

d € (Q*)?
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IV. Computation of Brauer groups

Theorem (Colliot-Thelene, Wei and X.).
Let m # 0,4; d=m — 4 and K = Q(\/d, vm) .
If —1 and Y9 are in (K*)2, then Br(Uy,)/Bry(Un) = Z/2.
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IV. Computation of Brauer groups

Theorem (Colliot-Thelene, Wei and X.).

Let m # 0,4; d=m — 4 and K = Q(\/d, vm) .

If —1 and Y9 are in (K*)2, then Br(Uy,)/Bry(Un) = Z/2.
Otherwise Br(U,,) = Bri(Up,).

Sketch of proof. Recall 7 : X,, — P2 is a contraction of {l,---,ls} to
P? and o B
Xm =UmnU{L1, Lo, L3}.

This implies that 7 induces an isomorphism

Un \{l1,--+ l6} = P*\ {m(L1),7(La), 7(L3)} = G Xz G,

over Q.
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IV. Computation of Brauer groups

Let V = Um \ {ll, . ,lﬁ} =~ Gy X@Gm Then
6
0 — Br(Un) = Br(V) =5 @ H., (D, Q/Z)
i=1

where
D; = I; \ {the intersection point of I; with Ly, Lo, L3} = Al

over Q. Since Helt(A}@, Q/Z) = 0, one concludes that

Br(U,,) = Br(V) = Br(G,, Xg Gm) = Q/Z.
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IV. Computation of Brauer groups

Example. If /—1 & Q(v/d), then Br(U,,) = Bry(U,,).
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IV. Computation of Brauer groups

Example. If /—1 & Q(v/d), then Br(U,,) = Bry(U,,).

Proof. Suppose that —1 and M are in (K*)2. Since v—1 ¢ Q(Vd),
one has K # Q(v/d) and \/m ¢ Q(v/d). Then

Normygqqyay(Loz ™) — (VA Vi)
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IV. Computation of Brauer groups

Example. If /—1 & Q(v/d), then Br(U,,) = Bry(U,,).

Proof. Suppose that —1 and M are in (K*)2. Since v—1 ¢ Q(Vd),
one has K # Q(v/d) and \/m ¢ Q(v/d). Then

Normygqqyay(Loz ™) — (VA Vi)

On the other hand, ﬂ;\/m € (K*)2. This implies that /=1 € Q(v/d). A
contradiction is derived.
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V. Integral Brauer-Manin obstruction

Example. If m = 4 + rv? where r € Z is one of 2, -2, —3,12, —12 and all
prime factors of v are congruent to

+1 mod 8 when r = 2
+1 mod 12 and v?> =25 mod 32 when r =12
1 or 3 mod38 whenr=—2and m <0
1 mod 3 when r = -3 and m <0
1 mod 3 when r = —12,

then

([T ten(Zp)) B @) = 0

p<oo

In particular, 4, (Z) = 0.
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V. Integral Brauer-Manin obstruction

Example. If m = 4 + 20v? where all prime factors of v are congruent to

+1 mod 5, then
H uﬂl Br1 Unm) — @

p<oo

In particular, 4, (Z) = 0.
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V. Integral Brauer-Manin obstruction

Example. If m = 4 + 20v? where all prime factors of v are congruent to

+1 mod 5, then
H uﬂl Br1 Unm) — @

p<oo

In particular, 4, (Z) = 0.

Theorem (Loughran and Mitankin). Let d = m — 4. If

(TT 9n(Z0)) 0 but (] tha(Z,)P O =0

p<oo p<oo
then d belongs to a finite subgroup of Q*/(Q*)? generated by

{£1,2,3,5}.
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V. Integral Brauer-Manin obstruction

Theorem (Loughran and Mitankin).

H{meZ: |m| <K, Hﬂm ) # 0 but Hﬂm )BrUm) = g}

p<oo p<oo

= \/I?(logK)_%

as K — oo.
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V. Integral Brauer-Manin obstruction

Theorem (Loughran and Mitankin).

H{meZ: |m| <K, Hﬂm ) # 0 but Hﬂm )BrUm) = g}

p<oo p<oo

= \/I?(logK)_%

as K — oo.

Theorem (Loughran and Mitankin).

HmeZ: m| <K, (] 4nu(2p))> ) #0 but 16,(2) = 0}

p<oo

> VK (logK )™
as K — oc.
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VI. Brauer-Manin obstruction + reduction

Proposition (Ghosh-Sarnak).
If m =4+ 202 where [ > 13 is a prime with [ = +4 mod 9, then

[T ¢n(Zp) #0 but  $6,(Z) = 0.

p<oo
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VI. Brauer-Manin obstruction + reduction

Proposition (Ghosh-Sarnak).
If m =4+ 202 where [ > 13 is a prime with [ = +4 mod 9, then

[T t0n(Z,) 0 but t1,(2) = 0.

p<oo

Proposition (Colliot-Thelene, Wei and X.).

Let m = 4 + 2[2w? where w is an odd integer and [ is a prime with [ = £3
mod 8.

If lw =44 mod 9, then

(J] n(Zp)) B0 £ 0.

p<oo
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VI. Brauer-Manin obstruction + reduction

Proposition (Colliot-Thelene, Wei and X.).

If m = 4 + rl? such that one of the following conditions holds
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VI. Brauer-Manin obstruction + reduction

Proposition (Colliot-Thelene, Wei and X.).
If m = 4 + rl? such that one of the following conditions holds
i)r=2and ! >13is a prime with [ = +4 mod 9,

i) r =12 and [ > 37 is a prime, 12 =25 mod 32 and 1+ 312 is not a sum
of two squares (e.g. | = 37,43,...),
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i)r=2and ! >13is a prime with [ = +4 mod 9,

i) r =12 and [ > 37 is a prime, 12 =25 mod 32 and 1+ 312 is not a sum
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VI. Brauer-Manin obstruction + reduction

Proposition (Colliot-Thelene, Wei and X.).
If m = 4 + rl? such that one of the following conditions holds
i)r=2and ! >13is a prime with [ = +4 mod 9,

i) r =12 and [ > 37 is a prime, 12 =25 mod 32 and 1+ 312 is not a sum
of two squares (e.g. | = 37,43,...),

iii) r=—2and [ > 13 is a prime,
iv) r = —3 and [ > 17 is a prime,
v) r=—12 and [ > 37 is a prime,

then
U (Z) = 0.
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VI. Brauer-Manin obstruction + reduction

Sketch of proof for case i).
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VI. Brauer-Manin obstruction + reduction

Sketch of proof for case i).

Suppose i, (Z) # 0. By the reduction theory, there is
(20, Y0, 20) € U (Z) such that

3<zg<yo< —29 or x9=0,1,2 (which can be excluded)

This implies that zo < (4 + 212)5. Then zo < [ — 2.
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VI. Brauer-Manin obstruction + reduction

Sketch of proof for case i).
Suppose i, (Z) # 0. By the reduction theory, there is
(20, Y0, 20) € U (Z) such that

3<zg<yo< —29 or x9=0,1,2 (which can be excluded)

This implies that zo < (4 + 212)5. Then zo < [ — 2.

One concludes (I,73 —4) = 1 and the Hilbert symbol (23 —4,2), = 1.
Therefore

1 p#2

-1 p=2

('T(2) —4, 2)17 = {

This contradicts to the Hilbert (quadratic) reciprocity law.
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VI. Brauer-Manin obstruction + reduction

By applying this idea, we can also improve the result of Loughran and
Mitankin as follows

Theorem (Colliot-Thelene, Wei and X.).

HmeZ: m| < K, (] 4n(2))> ) #0 but 16,(2) = 0}

p<oo

> \/I?(logK)fé

as K — oo.
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VII. Failure of strong approximation

Theorem (Colliot-Thelene, Wei and X.).

For any finite set S of primes, the image of the natural map

Un(2) = [T S (Zy)

pgS

is not dense.
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VII. Failure of strong approximation

Theorem (Colliot-Thelene, Wei and X.).
For any finite set S of primes, the image of the natural map
Z) — H U (Zp)
pES

is not dense.

Corollary. $,,(Z) is not dense in pr/ ((T], <. thn(Zy))BTm)).
On the other hand, ,,(Z) is Zariski dense in $L,, if

m > 4 is not a square
m is a square with a prime p/m and p=1 mod 4
m <0
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Thank you for your attention !
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