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I. Introduction

• Let X be a smooth and projective curve over Q.

Theorem (Fermat): When the genus of X is 0, then

X(Q) = ∅ or |X(Q)| =∞

Theorem (Mordell): When the genus of X is 1, then

X(Q) = ∅ or X(Q) is a finitely generated abelian group

Theorem (Faltings-Vojta-Lawrence-Venkatesh): When the genus of X is
bigger than 1, then

|X(Q)| <∞.
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I. Introduction

• For higher dimensional smooth and projective variety X over Q, one also
expect that |X(Q)| is close related to the geometry of X = X ×Q Q̄ .

• Let ΩX be the sheaf of differentials of X and

ωX =

dim(X)∧
ΩX

be the canonical divisor of X

Definition.

1) X is Fano if ω−1
X

is ample (g = 0).

2) X is Calabi-Yau if ωX is trivial (g = 1).

3) X is of general type if ωX is ample (g > 1).
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I. Introduction

Conjecture (Colliot-Thelene). If X is Fano, then either X(Q) = ∅ or
X(Q) is Zariski dense in X.

Conjecture (Bombieri-Lang). If X is of general type, then X(Q) is not
Zariski dense in X.

• Case of Calabi-Yau varieties.

• For abelian varieties, there is a generalization of BSD conjecture.

• There are two classes of 2-dimensional Calabi-Yau varieties: abelian
surfaces and K3 surfaces which are simply connected.

• For a K3 surface X, it is conjectured that either X(Q) = ∅ or X(Q) is
Zariski dense in X.
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I. Introduction

Example. Euler generalized the Fermat equation and conjectured

X : xn1 + xn2 + · · ·+ xnn−1 = xnn

has no solution of positive integers for n > 2.

• X is a Calabi-Yau variety.

• Lander and Parkin (1966) found a counterexample

275 + 845 + 1105 + 1335 = 1445

by a direct computer searching.

• When n = 4, X is a K3 surface.
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I. Introduction

• Elkies (1988) provided a counterexample for n = 4

26824404 + 153656394 + 187967604 = 206156734

and X(Q) is Zariski dense in X.

Sketch of Elkies’ idea: There is a morphism ψ

Y :

{
(u2 + 2)( r−s2 )2 = −(3u2 − 8u+ 6)( r+s2 )2 − 2(u2 − 2)( r+s2 )− 2u

±(u2 + 2)t2 = 4(u2 − 2)( r+s2 )2 + 8u( r+s2 ) + (2− u2)

−→ Z : {r4 + s4 + t4 = 1}

based on the work of Demjanenko (1974 in Russian).
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I. Introduction

• One can partially compactify Y to Y c with the fibration Y c φ−→ P1 by
sending (r, s, t, u) 7→ [u, 1]. Moreover, the morphism ψ can be extended to

ψ : Y c → Z and ψ(Y c(Q)) = Z(Q).

• Each fiber of φ over P1(Q) is an intersection of two conics over Q. By
using the Hasse principle for conics with several testing, one can choose
φ−1([16,−5]) which is

153y2 = −779x2 − 206x+ 80, 153t2 = 412x2 − 320x− 103

where x = r+s
2 and y = r−s

2 .
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I. Introduction

• All rational points of first conic can parametrized by

x =
51k2 − 34k − 5221

14(17k2 + 779)
, y =

17k2 + 7558k − 779

42(17k2 + 779)

by Fermat’s method. Substituting this x into the second conic and using
the new coordinates ξ = (k + 2)/7 and η = 3(17k2 + 779)t/14, one has

η2 = −31790ξ4 + 36941ξ3 − 56158ξ2 + 28849ξ + 22030.

• By computer searching, one obtains

(ξ, η) = (− 31

467
,
30731278

4672
)
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I. Introduction

Definition. Let X be a smooth and geometrically integral variety over Q.
Then X is called a log K3 surface if X satisfies

1) X is simply connected.

2) There is a smooth compactification X ↪→ Xc over Q such that
D = Xc \X is a simple normal crossing divisor.

3) [D] + ωXc = 0 in Pic(Xc).

• A log K3 surface is a generalization of K3 surface.

Conjecture (Vojta). If X be a log K3 surface over Q and X be an
integral model of X over Z, then there is a number field F such that
X(OF ) is Zariski dense in X where OF is the ring of integers of F .
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II. Brauer-Manin obstruction

• Let X be a variety over Q and Br(X) = H2
et(X,Gm) and

Br1(X) = ker(Br(X)→ Br(X)).

• Let AQ be the adeles and Af
Q be the finite adeles of Q. Write

X(AQ)Br(X) = {(xp) ∈ X(AQ) :
∑
p≤∞

invp(ξ(xp)) = 0; ∀ ξ ∈ Br(X)}

where
invp : Br(Qp) −→ Q/Z

is the invariant map from the local class field theory for p ≤ ∞.

• The class field theory implies

X(Q) ⊆ X(AQ)Br(X) ⊆ X(AQ).
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II. Brauer-Manin obstruction

Definition. We say X satisfies strong approximation with the
Brauer-Manin obstruction if

X(Q) is dense in prf (X(AQ)Br(X))

where
prf : X(AQ)→ X(Af

Q)

is the projection map.

Conjecture (Skorobogatov). If X is a K3 surface, then X satisfies strong
approximation with the Brauer-Manin obstruction.

Proposition. Skorobogatov’s conjecture implies that either X(Q) = ∅ or
X(Q) is Zariski dense in X.
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III. Markoff surfaces

• Let
Um : x2 + y2 + z2 − xyz = m

where m is a fixed integer. Then Um = Um ×Z Q is called a Markoff
surface over Q.

• When m 6= 0 and 4, then Um is smooth.

• A smooth compactification Xm of Um is

t(x2 + y2 + z2)− xyz = mt3

a cubic surfaces in P3 for m 6= 0 and 4.
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III. Markoff surfaces

• Let Xm
π−→ P2 be a blowing down the following six lines in Xm

l1 : x = 2t, y − z = (
√
m− 4)t

l2 : y = 2t, z − x = (
√
m− 4)t

l3 : z = 2t, x− y = (
√
m− 4)t

l4 : x = (
√
m)t, y = 1

2(
√
m+

√
m− 4)z

l5 : y = (
√
m)t, z = 1

2(
√
m+

√
m− 4)x

l6 : z = (
√
m)t, x = 1

2(
√
m+

√
m− 4)y

and L is the inverse image of a line in P2. Then Pic(Xm) ∼= Z7 is
generated by L, l1, · · · , l6 such that

〈L,L〉 = 1, 〈L, li〉 = 0 and 〈li, li〉 = −1

for 1 ≤ i ≤ 6 and 〈li, lj〉 = 0 for i 6= j.
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III. Markoff surfaces

• The canonical divisor ωXm
of Xm satisfies

ωXm
= −3L+

6∑
i=1

li in Pic(Xm).

• The divisor Dm = Xm \ Um consists of three lines

L1 : {t = x = 0}, L2 : {t = y = 0}, L3 : {t = z = 0}

and

L1 = L− l1 − l4, L2 = L− l2 − l5, L3 = L− l3 − l6 in Pic(Xm)

• Um is simply connected.

Conclusion. Um is a log K3 surface.
July 9, 2023 14 / 34
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L1 = L− l1 − l4, L2 = L− l2 − l5, L3 = L− l3 − l6 in Pic(Xm)

• Um is simply connected.

Conclusion. Um is a log K3 surface.
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III. Markoff surfaces

• Basic question: For which m, Um(Z) 6= ∅ ?

Proposition. ∏
p

Um(Zp) = ∅

if and only if m ≡ 3 mod 4 or m ≡ ±3 mod 9.

Proposition. Um admits an automorphism group Γ generated by

(a) The Vieta involution: (x, y, z) 7→ (yz − x, y, z);

(b) The sign change: (x, y, z) 7→ (−x,−y, z);

(c) The permutations of x, y, z.

• Γ acts on Um(Z) naturally.
.
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III. Markoff surfaces

Theorem (Markoff, Hurwitz, Mordell, ..., Ghosh-Sarnak)

When m < 0, then each orbit of Γ contains a unique integral solution
(x0, y0, z0) such that

3 ≤ x0 ≤ y0 ≤ z0 ≤
1

2
x0y0

and the number of Γ-orbits is finite.

When m > 0, then each orbit of Γ contains an integral solutions
(x0, y0, z0) such that

3 ≤ x0 ≤ y0 ≤ −z0 or x0 = 0, 1, 2.

Moreover, if m is not form of

(i) u2+v2 (x0 = 0); (ii) u2−uv+v2+1 (x0 = 1); (iii) u2+4 (x0 = 2),

then the integral solution is unique and the number of Γ-orbits is finite.
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III. Markoff surfaces

Theorem (Ghosh-Sarnak).

]{m ∈ Z : 0 < m ≤ K,
∏
p

Um(Zp) 6= ∅ but Um(Z) = ∅}

�
√
K(logK)−

1
2

as K →∞.

]{m ∈ Z : −K ≤ m < 0,
∏
p

Um(Zp) 6= ∅ but Um(Z) = ∅}

�
√
K(logK)−

1
2

as K →∞.
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IV. Computation of Brauer groups

Theorem (Colliot-Thelene, Wei and X.; Loughran and Mitankin).
Let m 6= 0, 4 and d = m− 4.

If [Q(
√
m,
√
d) : Q] = 4, then

Br(Xm)/Br(Q) = Br1(Xm)/Br(Q) ∼= Z/2

with a generator

{((x
t

)2 − 4, d) = ((
y

t
)2 − 4, d) = ((

z

t
)2 − 4, d)} over t 6= 0.

If d 6∈ (Q×)2 and m ∈ (Q×)2, then

Br(Xm)/Br(Q) = Br1(Xm)/Br(Q) ∼= (Z/2)2

with two generators

{((x
t

)2 − 4, d), ((
√
m− x

t
)(
x

t
+ 2), d)} over t 6= 0.

If d ∈ (Q×)2 or d ·m ∈ (Q×)2, then Br1(Xm) = Br(Xm) = Br(Q).
July 9, 2023 18 / 34
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IV. Computation of Brauer groups

Sketch of proof. Since Xm is rational, one obtains Br1(Xm) = Br(Xm).

By Hp(Q, Hq(Xm,Gm))⇒ Hp+q(Xm,Gm), one has

Br1(Xm)/Br(Q) ∼= H1(Q,Pic(Xm))

H1(Q,Pic(Xm)) ∼=


Z/2 m, d and md 6∈ (Q×)2

0 d ∈ (Q×)2 or d ·m ∈ (Q×)2

(Z/2)2 m ∈ (Q×)2 but d 6∈ (Q×)2
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Theorem (Colliot-Thelene, Wei and X.; Loughran and Mitankin).
Let m 6= 0, 4 and d = m− 4.

If [Q(
√
m,
√
d) : Q] = 4 then

Br1(Um)/Br(Q) ∼= (Z/2)3

with the generators {(x− 2, d), (y − 2, d), (z − 2, d)}.

If d /∈ Q×2 and dm ∈ Q×2 then

Br1(Um)/Br(Q) ∼= (Z/2)2

with the generators {(x− 2, d), (y − 2, d)}.

If d /∈ Q×2 and m ∈ Q×2, then

Br1(Um)/Br(Q) ∼= (Z/2)4

with the generators {(x− 2, d), (y − 2, d), (z − 2, d), (x−
√
m, d)}.

If d ∈ Q×2, then Br1(Um) = Br(Q).
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IV. Computation of Brauer groups

Sketch of proof. By the exact sequence of Gal(Q/Q)-modules

0→ Q× → Q[Um]× → DivXm\Um
(Xm)

φ−→ Pic(Xm)→ Pic(Um)→ 0

and DivXm\Um
(Xm) = ⊕3

i=1ZLi, one can show φ is injective. Indeed, if

aL1 + bL2 + cL3 = a(L− l1 − l4) + b(L− l2 − l5) + c(L− l3 − l6) = 0,

then a = b = c = 0. This implies that Q× = Q[Um]× and the sub-lattice

DivXm\Um
(Xm) = ⊕3

i=1ZLi

is primitive in Pic(Xm). Therefore Pic(Um) is torsion free.
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IV. Computation of Brauer groups

By Hp(Q, Hq(Um,Gm))⇒ Hp+q(Um,Gm), one has

Br1(Um)/Br(Q) ∼= H1(Q,Pic(Um))

which is finite.

H1(Q,Pic(Um)) ∼=


(Z/2)3 m, d and md 6∈ (Q×)2

(Z/2)2 d 6∈ (Q×)2 and md ∈ (Q×)2

(Z/2)4 d 6∈ (Q×)2 and m ∈ (Q×)2

0 d ∈ (Q×)2
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IV. Computation of Brauer groups

Theorem (Colliot-Thelene, Wei and X.).

Let m 6= 0, 4; d = m− 4 and K = Q(
√
d,
√
m) .

If −1 and
√
d−
√
m

2 are in (K×)2, then Br(Um)/Br1(Um) ∼= Z/2.

Otherwise Br(Um) = Br1(Um).

Sketch of proof. Recall π : Xm → P2 is a contraction of {l1, · · · , l6} to
P2 and

Xm = Um ∪ {L1, L2, L3}.

This implies that π induces an isomorphism

Um \ {l1, · · · , l6} ∼= P2 \ {π(L1), π(L2), π(L3)} ∼= Gm ×Q Gm

over Q.
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IV. Computation of Brauer groups

Let V = Um \ {l1, · · · , l6} ∼= Gm ×Q Gm. Then

0→ Br(Um)→ Br(V )
res−−→

6⊕
i=1

H1
et(Di,Q/Z)

where

Di = li \ {the intersection point of li with L1, L2, L3} ∼= A1

over Q. Since H1
et(A1

Q,Q/Z) = 0, one concludes that

Br(Um) ∼= Br(V ) ∼= Br(Gm ×Q Gm) ∼= Q/Z.
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IV. Computation of Brauer groups

Example. If
√
−1 6∈ Q(

√
d), then Br(Um) = Br1(Um).

Proof. Suppose that −1 and
√
d−
√
m

2 are in (K×)2. Since
√
−1 6∈ Q(

√
d),

one has K 6= Q(
√
d) and

√
m 6∈ Q(

√
d). Then

NormK/Q(
√
d)(

√
d−
√
m

2
) = (

√
d−
√
m

2
)(

√
d+
√
m

2
) = −1

On the other hand,
√
d−
√
m

2 ∈ (K×)2. This implies that
√
−1 ∈ Q(

√
d). A

contradiction is derived.
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√
d−
√
m

2 are in (K×)2. Since
√
−1 6∈ Q(

√
d),

one has K 6= Q(
√
d) and

√
m 6∈ Q(

√
d). Then

NormK/Q(
√
d)(

√
d−
√
m

2
) = (

√
d−
√
m

2
)(

√
d+
√
m

2
) = −1

On the other hand,
√
d−
√
m

2 ∈ (K×)2. This implies that
√
−1 ∈ Q(

√
d). A

contradiction is derived.
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V. Integral Brauer-Manin obstruction

Example. If m = 4 + rv2 where r ∈ Z is one of 2,−2,−3, 12,−12 and all
prime factors of v are congruent to

±1 mod 8 when r = 2

±1 mod 12 and v2 ≡ 25 mod 32 when r = 12

1 or 3 mod 8 when r = −2 and m < 0

1 mod 3 when r = −3 and m < 0

1 mod 3 when r = −12,

then
(
∏
p≤∞

Um(Zp))Br1(Um) = ∅

In particular, Um(Z) = ∅.
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V. Integral Brauer-Manin obstruction

Example. If m = 4 + 20v2 where all prime factors of v are congruent to
±1 mod 5, then

(
∏
p≤∞

Um(Zp))Br1(Um) = ∅

In particular, Um(Z) = ∅.

Theorem (Loughran and Mitankin). Let d = m− 4. If

(
∏
p≤∞

Um(Zp)) 6= ∅ but (
∏
p≤∞

Um(Zp))Br1(Um) = ∅

then d belongs to a finite subgroup of Q×/(Q×)2 generated by

{±1, 2, 3, 5}.
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V. Integral Brauer-Manin obstruction

Theorem (Loughran and Mitankin).

]{m ∈ Z : |m| ≤ K,
∏
p≤∞

Um(Zp) 6= ∅ but (
∏
p≤∞

Um(Zp))Br(Um) = ∅}

�
√
K(logK)−

1
2

as K →∞.

Theorem (Loughran and Mitankin).

]{m ∈ Z : |m| ≤ K, (
∏
p≤∞

Um(Zp))Br(Um) 6= ∅ but Um(Z) = ∅}

�
√
K(logK)−1

as K →∞.
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VI. Brauer-Manin obstruction + reduction

Proposition (Ghosh-Sarnak).

If m = 4 + 2l2 where l ≥ 13 is a prime with l ≡ ±4 mod 9, then∏
p≤∞

Um(Zp) 6= ∅ but Um(Z) = ∅.

Proposition (Colliot-Thelene, Wei and X.).

Let m = 4 + 2l2w2 where w is an odd integer and l is a prime with l ≡ ±3
mod 8.

If lw ≡ ±4 mod 9, then

(
∏
p≤∞

Um(Zp))Br(Um) 6= ∅.
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VI. Brauer-Manin obstruction + reduction

Proposition (Colliot-Thelene, Wei and X.).

If m = 4 + rl2 such that one of the following conditions holds

i) r = 2 and l ≥ 13 is a prime with l ≡ ±4 mod 9,

ii) r = 12 and l ≥ 37 is a prime, l2 ≡ 25 mod 32 and 1 + 3l2 is not a sum
of two squares (e.g. l = 37, 43, ...),

iii) r = −2 and l ≥ 13 is a prime,

iv) r = −3 and l ≥ 17 is a prime,

v) r = −12 and l ≥ 37 is a prime,

then
Um(Z) = ∅.
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VI. Brauer-Manin obstruction + reduction

Sketch of proof for case i).

Suppose Um(Z) 6= ∅. By the reduction theory, there is
(x0, y0, z0) ∈ Um(Z) such that

3 ≤ x0 ≤ y0 ≤ −z0 or x0 = 0, 1, 2 (which can be excluded)

This implies that x0 ≤ (4 + 2l2)
1
3 . Then x0 < l − 2.

One concludes (l, x20 − 4) = 1 and the Hilbert symbol (x20 − 4, 2)l = 1.
Therefore

(x20 − 4, 2)p =

{
1 p 6= 2

−1 p = 2

This contradicts to the Hilbert (quadratic) reciprocity law.
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VI. Brauer-Manin obstruction + reduction

By applying this idea, we can also improve the result of Loughran and
Mitankin as follows

Theorem (Colliot-Thelene, Wei and X.).

]{m ∈ Z : |m| ≤ K, (
∏
p≤∞

Um(Zp))Br(Um) 6= ∅ but Um(Z) = ∅}

�
√
K(logK)−

1
2

as K →∞.
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VII. Failure of strong approximation

Theorem (Colliot-Thelene, Wei and X.).

For any finite set S of primes, the image of the natural map

Um(Z)→
∏
p6∈S

Um(Zp)

is not dense.

Corollary. Um(Z) is not dense in prf ((
∏
p≤∞ Um(Zp))Br(Um)).

On the other hand, Um(Z) is Zariski dense in Um if
m > 4 is not a square

m is a square with a prime p|m and p ≡ 1 mod 4

m < 0
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Thank you for your attention !
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