Congruence of automorphic forms and arithmetic of Shimura varieties

Yifeng Liu

Institute for Advanced Study in Mathematics Zhejiang University

Morningside Center of Mathematics

Yifeng Liu (Zhejiang University)

Congruence of automorphic forms and arithmetic of SF

Mar 14, 2023 1 / 16

< ロ > < 回 > < 回 > < 回 > < 回 >

イロト イヨト イヨト イヨト 二日

Consider a positive integer Σ , a cusp newform

$$\mathtt{f} = \mathtt{q} + \mathtt{a}_2 \mathtt{q}^2 + \mathtt{a}_3 \mathtt{q}^3 + \cdots \in \mathit{O}_L[[\mathtt{q}]]$$

of weight 2, level $\Gamma_0(\Sigma)$, and rationality field $L \subseteq \mathbb{C}$, together with an ℓ -adic prime λ of L.

イロン イボン イヨン イヨン 三日

Consider a positive integer Σ , a cusp newform

$$\mathtt{f} = \mathtt{q} + \mathtt{a}_2 \mathtt{q}^2 + \mathtt{a}_3 \mathtt{q}^3 + \cdots \in \mathit{O}_L[[\mathtt{q}]]$$

of weight 2, level $\Gamma_0(\Sigma)$, and rationality field $L \subseteq \mathbb{C}$, together with an ℓ -adic prime λ of L.

Take a prime number $p \nmid \Sigma \ell$ and denote by $\mathbb{T}^{\Sigma p}$ the unramified Hecke algebra away-from- Σp . Denote by $\mathfrak{m}_{\mathfrak{f}}$ the kernel of the composite map

$$\mathbb{T}^{\Sigma p} \xrightarrow{\phi_{\mathrm{f}}} O_L \to O_L / \lambda,$$

where ϕ_{f} is the Satake homomorphism determined by f.

イロト イポト イヨト イヨト

Consider a positive integer Σ , a cusp newform

$$\mathtt{f} = \mathtt{q} + \mathtt{a}_2 \mathtt{q}^2 + \mathtt{a}_3 \mathtt{q}^3 + \cdots \in \mathit{O}_L[[\mathtt{q}]]$$

of weight 2, level $\Gamma_0(\Sigma)$, and rationality field $L \subseteq \mathbb{C}$, together with an ℓ -adic prime λ of L.

Take a prime number $p \nmid \Sigma \ell$ and denote by $\mathbb{T}^{\Sigma \rho}$ the unramified Hecke algebra away-from- Σp . Denote by $\mathfrak{m}_{\mathfrak{f}}$ the kernel of the composite map

$$\mathbb{T}^{\Sigma p} \xrightarrow{\phi_{\mathrm{f}}} O_L \to O_L / \lambda,$$

where ϕ_{f} is the Satake homomorphism determined by f.

Let $X_0(\Sigma)$ be the modular curve of level $\Gamma_0(\Sigma)$ over \mathbb{Z}_p . Put $Y_0(\Sigma) := X_0(\Sigma) \otimes_{\mathbb{Z}_p} \mathbb{F}_p$ with $S_0(\Sigma)$ the set of supersingular locus in $Y_0(\Sigma)$, which is a finite union of Spec \mathbb{F}_{p^2} .

イロト 不得下 イヨト イヨト

Consider a positive integer Σ , a cusp newform

$$\mathtt{f} = \mathtt{q} + \mathtt{a}_2 \mathtt{q}^2 + \mathtt{a}_3 \mathtt{q}^3 + \cdots \in \mathit{O}_L[[\mathtt{q}]]$$

of weight 2, level $\Gamma_0(\Sigma)$, and rationality field $L \subseteq \mathbb{C}$, together with an ℓ -adic prime λ of L.

Take a prime number $p \nmid \Sigma \ell$ and denote by $\mathbb{T}^{\Sigma \rho}$ the unramified Hecke algebra away-from- Σp . Denote by $\mathfrak{m}_{\mathfrak{f}}$ the kernel of the composite map

$$\mathbb{T}^{\Sigma p} \xrightarrow{\phi_{\mathrm{f}}} O_L \to O_L / \lambda,$$

where ϕ_{f} is the Satake homomorphism determined by f.

Let $X_0(\Sigma)$ be the modular curve of level $\Gamma_0(\Sigma)$ over \mathbb{Z}_p . Put $Y_0(\Sigma) := X_0(\Sigma) \otimes_{\mathbb{Z}_p} \mathbb{F}_p$ with $S_0(\Sigma)$ the set of supersingular locus in $Y_0(\Sigma)$, which is a finite union of Spec \mathbb{F}_{p^2} . In particular, we have the absolute cycle class map

$$lpha \colon \mathbb{Z}_{\lambda}[S_0(\Sigma)] o \mathrm{H}^2(Y_0(\Sigma) \otimes \mathbb{F}_{p^2}, \mathbb{Z}_{\lambda}(1)),$$

where $\mathbb{Z}_{\lambda} \coloneqq O_{L_{\lambda}}$.

Consider a positive integer Σ , a cusp newform

$$\mathtt{f} = \mathtt{q} + \mathtt{a}_2 \mathtt{q}^2 + \mathtt{a}_3 \mathtt{q}^3 + \cdots \in \mathit{O}_L[[\mathtt{q}]]$$

of weight 2, level $\Gamma_0(\Sigma)$, and rationality field $L \subseteq \mathbb{C}$, together with an ℓ -adic prime λ of L.

Take a prime number $p \nmid \Sigma \ell$ and denote by $\mathbb{T}^{\Sigma \rho}$ the unramified Hecke algebra away-from- Σp . Denote by $\mathfrak{m}_{\mathfrak{f}}$ the kernel of the composite map

$$\mathbb{T}^{\Sigma p} \xrightarrow{\phi_{\mathrm{f}}} O_L \to O_L / \lambda,$$

where ϕ_{f} is the Satake homomorphism determined by f.

Let $X_0(\Sigma)$ be the modular curve of level $\Gamma_0(\Sigma)$ over \mathbb{Z}_p . Put $Y_0(\Sigma) := X_0(\Sigma) \otimes_{\mathbb{Z}_p} \mathbb{F}_p$ with $S_0(\Sigma)$ the set of supersingular locus in $Y_0(\Sigma)$, which is a finite union of Spec \mathbb{F}_{p^2} . In particular, we have the absolute cycle class map

$$lpha \colon \mathbb{Z}_{\lambda}[S_0(\Sigma)] o \mathrm{H}^2(Y_0(\Sigma) \otimes \mathbb{F}_{p^2}, \mathbb{Z}_{\lambda}(1)),$$

where $\mathbb{Z}_{\lambda} \coloneqq O_{L_{\lambda}}$.

Theorem (Ribet)

Suppose that f mod λ is non-Eisenstein. Then the localized map $\alpha_{\mathfrak{m}_{f}}$ is surjective.

Consider a positive integer Σ , a cusp newform

$$\mathtt{f} = \mathtt{q} + \mathtt{a}_2 \mathtt{q}^2 + \mathtt{a}_3 \mathtt{q}^3 + \cdots \in \mathit{O}_L[[\mathtt{q}]]$$

of weight 2, level $\Gamma_0(\Sigma)$, and rationality field $L \subseteq \mathbb{C}$, together with an ℓ -adic prime λ of L.

Take a prime number $p \nmid \Sigma \ell$ and denote by $\mathbb{T}^{\Sigma \rho}$ the unramified Hecke algebra away-from- Σp . Denote by $\mathfrak{m}_{\mathfrak{f}}$ the kernel of the composite map

$$\mathbb{T}^{\Sigma p} \xrightarrow{\phi_{\mathrm{f}}} O_L \to O_L / \lambda,$$

where ϕ_{f} is the Satake homomorphism determined by f.

Let $X_0(\Sigma)$ be the modular curve of level $\Gamma_0(\Sigma)$ over \mathbb{Z}_p . Put $Y_0(\Sigma) := X_0(\Sigma) \otimes_{\mathbb{Z}_p} \mathbb{F}_p$ with $S_0(\Sigma)$ the set of supersingular locus in $Y_0(\Sigma)$, which is a finite union of Spec \mathbb{F}_{p^2} . In particular, we have the absolute cycle class map

$$lpha \colon \mathbb{Z}_{\lambda}[S_0(\Sigma)] o \mathrm{H}^2(Y_0(\Sigma) \otimes \mathbb{F}_{p^2}, \mathbb{Z}_{\lambda}(1)),$$

where $\mathbb{Z}_{\lambda} \coloneqq O_{L_{\lambda}}$.

Theorem (Ribet)

Suppose that f mod λ is non-Eisenstein. Then the localized map $\alpha_{\mathfrak{m}_{f}}$ is surjective.

Here, that f mod λ is non-Eisenstein means that the Galois representation associated with f remains irreducible after modulo λ .

Consider a positive integer Σ , a cusp newform

$$\mathtt{f} = \mathtt{q} + \mathtt{a}_2 \mathtt{q}^2 + \mathtt{a}_3 \mathtt{q}^3 + \cdots \in \mathit{O}_L[[\mathtt{q}]]$$

of weight 2, level $\Gamma_0(\Sigma)$, and rationality field $L \subseteq \mathbb{C}$, together with an ℓ -adic prime λ of L.

Take a prime number $p \nmid \Sigma \ell$ and denote by $\mathbb{T}^{\Sigma \rho}$ the unramified Hecke algebra away-from- Σp . Denote by $\mathfrak{m}_{\mathfrak{f}}$ the kernel of the composite map

$$\mathbb{T}^{\Sigma p} \xrightarrow{\phi_{\mathrm{f}}} O_L \to O_L/\lambda,$$

where ϕ_{f} is the Satake homomorphism determined by f.

Let $X_0(\Sigma)$ be the modular curve of level $\Gamma_0(\Sigma)$ over \mathbb{Z}_p . Put $Y_0(\Sigma) := X_0(\Sigma) \otimes_{\mathbb{Z}_p} \mathbb{F}_p$ with $S_0(\Sigma)$ the set of supersingular locus in $Y_0(\Sigma)$, which is a finite union of Spec \mathbb{F}_{p^2} . In particular, we have the absolute cycle class map

$$lpha \colon \mathbb{Z}_{\lambda}[S_0(\Sigma)] o \mathrm{H}^2(Y_0(\Sigma) \otimes \mathbb{F}_{p^2}, \mathbb{Z}_{\lambda}(1)),$$

where $\mathbb{Z}_{\lambda} \coloneqq O_{L_{\lambda}}$.

Theorem (Ribet)

Suppose that f mod λ is non-Eisenstein. Then the localized map $\alpha_{\mathfrak{m}_{f}}$ is surjective.

Here, that f mod λ is non-Eisenstein means that the Galois representation associated with f remains irreducible after modulo λ . When this is the case, $\alpha_{\mathfrak{m}_{\mathrm{f}}}$ is same as the map

$$\alpha_{\mathfrak{m}_{\mathbf{f}}} \colon \mathbb{Z}_{\lambda}[S_{0}(\Sigma)]_{\mathfrak{m}_{\mathbf{f}}}^{\deg=0} \to \mathrm{H}^{1}(\mathbb{F}_{p^{2}}, \mathrm{H}^{1}(Y_{0}(\Sigma) \otimes \overline{\mathbb{F}}_{p}, \mathbb{Z}_{\lambda}(1))_{\mathfrak{m}_{\mathbf{f}}}).$$

イロト イロト イヨト イヨト

We say that a prime number $p \nmid \Sigma \ell$ is a **level raising prime** for f modulo λ if

$$a_p^2 \equiv (p+1)^2 \mod \lambda$$

holds.

イロン イロン イヨン イヨン

We say that a prime number $p \nmid \Sigma \ell$ is a **level raising prime** for f modulo λ if

$$a_p^2 \equiv (p+1)^2 \mod \lambda$$

holds. By the Eichler-Shimura relation, it is easy to see that

$$\mathrm{H}^{1}(\mathbb{F}_{p^{2}},\mathrm{H}^{1}(Y_{0}(\Sigma)\otimes\overline{\mathbb{F}}_{p},\mathbb{Z}_{\lambda}(1))_{\mathfrak{m}_{\mathrm{f}}})\neq0$$

if and only if p is a level raising prime.

イロン イロン イヨン イヨン

We say that a prime number $p \nmid \Sigma \ell$ is a **level raising prime** for f modulo λ if

$$a_p^2 \equiv (p+1)^2 \mod \lambda$$

holds. By the Eichler-Shimura relation, it is easy to see that

$$\mathrm{H}^{1}(\mathbb{F}_{p^{2}},\mathrm{H}^{1}(Y_{0}(\Sigma)\otimes\overline{\mathbb{F}}_{p},\mathbb{Z}_{\lambda}(1))_{\mathfrak{m}_{\mathrm{f}}})\neq0$$

if and only if p is a level raising prime. In the context of Ribet's theorem, we know that

$$\mathbb{Z}_{\lambda}[S_0(\Sigma)]^0_{\mathfrak{m}_{\mathrm{f}}} \neq 0$$

when p is a level raising prime.

イロト イロト イヨト イヨト

We say that a prime number $p \nmid \Sigma \ell$ is a **level raising prime** for f modulo λ if

$$a_p^2 \equiv (p+1)^2 \mod \lambda$$

holds. By the Eichler-Shimura relation, it is easy to see that

$$\mathrm{H}^{1}(\mathbb{F}_{p^{2}},\mathrm{H}^{1}(Y_{0}(\Sigma)\otimes\overline{\mathbb{F}}_{p},\mathbb{Z}_{\lambda}(1))_{\mathfrak{m}_{\mathrm{f}}})\neq0$$

if and only if p is a level raising prime. In the context of Ribet's theorem, we know that

$$\mathbb{Z}_{\lambda}[S_0(\Sigma)]^0_{\mathfrak{m}_{\mathrm{f}}} \neq 0$$

when p is a level raising prime.

Let *B* be the unique quaternion algebra over \mathbb{Q} ramified at $\{\infty, p\}$. Then it is well-known that there is a canonical Hecke equivariant isomorphism

$$S_0(\Sigma) \simeq B^{\times} \setminus \widehat{B}^{\times} / \widehat{R}_{\Sigma}^{\times}$$

of sets, where R_{Σ} is an order of *B* of relative discriminant Σ .

<ロ> (四) (四) (三) (三) (三)

We say that a prime number $p \nmid \Sigma \ell$ is a **level raising prime** for f modulo λ if

$$a_p^2 \equiv (p+1)^2 \mod \lambda$$

holds. By the Eichler-Shimura relation, it is easy to see that

$$\mathrm{H}^{1}(\mathbb{F}_{p^{2}},\mathrm{H}^{1}(Y_{0}(\Sigma)\otimes\overline{\mathbb{F}}_{p},\mathbb{Z}_{\lambda}(1))_{\mathfrak{m}_{\mathrm{f}}})\neq0$$

if and only if p is a level raising prime. In the context of Ribet's theorem, we know that

$$\mathbb{Z}_{\lambda}[S_0(\Sigma)]^0_{\mathfrak{m}_{\mathrm{f}}} \neq 0$$

when p is a level raising prime.

Let B be the unique quaternion algebra over \mathbb{Q} ramified at $\{\infty, p\}$. Then it is well-known that there is a canonical Hecke equivariant isomorphism

$$S_0(\Sigma) \simeq B^{\times} \setminus \widehat{B}^{\times} / \widehat{R}_{\Sigma}^{\times}$$

of sets, where R_{Σ} is an order of *B* of relative discriminant Σ . By the Jacquet–Langlands correspondence, we obtain a cusp newform

$$f' = q + a'_2 q^2 + a'_3 q^3 + \dots \in O_{L'}[[q]]$$

of weight 2, level $\Gamma_0(\Sigma p)$, and rationality field $L' \subseteq \mathbb{C}$, satisfying

- $a'_p = \pm 1;$
- for a certain prime λ' of L' such that $O_{L'}/\lambda' \subseteq O_L/\lambda$, $a'_{\nu} \mod \lambda' = a_{\nu} \mod \lambda$ holds for every prime number $\nu \nmid \Sigma p$.

◆ロシ ◆聞シ ◆恵シ ◆恵シ 三臣

Consider

• a CM number field $F \subseteq \mathbb{C}$, with $F^+ \subseteq F$ its maximal totally real subfield,

Consider

- a CM number field $F \subseteq \mathbb{C}$, with $F^+ \subseteq F$ its maximal totally real subfield,
- a positive integer N,

イロン イロン イヨン イヨン 三日

Consider

- a CM number field $F \subseteq \mathbb{C}$, with $F^+ \subseteq F$ its maximal totally real subfield,
- a positive integer N,
- a (nondegenerate) hermitian space V over F/F^+ that has signature (N-1,1) at the default real place and signature (N,0) at all others,

<ロ> <回> <回> <回> <三> <三</p>

Consider

- a CM number field $F \subseteq \mathbb{C}$, with $F^+ \subseteq F$ its maximal totally real subfield,
- a positive integer N,
- a (nondegenerate) hermitian space V over F/F^+ that has signature (N-1,1) at the default real place and signature (N,0) at all others,
- a prime p of F⁺ that is inert in F and such that G := Res_{F⁺/Q} U(V) is unramified at p (the underlying prime number of p).

<ロ> (四) (四) (三) (三) (三)

Consider

- a CM number field $F \subseteq \mathbb{C}$, with $F^+ \subseteq F$ its maximal totally real subfield,
- a positive integer N,
- a (nondegenerate) hermitian space V over F/F^+ that has signature (N-1,1) at the default real place and signature (N,0) at all others,
- a prime p of F⁺ that is inert in F and such that G := Res_{F⁺/Q} U(V) is unramified at p (the underlying prime number of p).

Fix an isomorphism $\mathbb{C} \simeq \overline{\mathbb{Q}}_p$ that induces the place \mathfrak{p} . Let q be the residue cardinality of $F_{\mathfrak{p}}^+$

so that $q = p^{[F_p^+:\mathbb{Q}_p]}$. Fix a hyperspecial maximal subgroup K_p of $G(\mathbb{Q}_p)$.

Consider

- a CM number field $F \subseteq \mathbb{C}$, with $F^+ \subseteq F$ its maximal totally real subfield,
- a positive integer N,
- a (nondegenerate) hermitian space V over F/F^+ that has signature (N-1,1) at the default real place and signature (N,0) at all others,
- a prime p of F⁺ that is inert in F and such that G := Res_{F⁺/Q} U(V) is unramified at p (the underlying prime number of p).

Fix an isomorphism $\mathbb{C} \simeq \overline{\mathbb{Q}}_p$ that induces the place \mathfrak{p} . Let q be the residue cardinality of $F_{\mathfrak{p}}^+$ so that $q = p^{[F_{\mathfrak{p}}^+:\mathbb{Q}_p]}$. Fix a hyperspecial maximal subgroup \mathcal{K}_p of $G(\mathbb{Q}_p)$.

To technically simplify this talk, we pretend that there exists a complex abelian variety with complex multiplication by O_F that can be defined over \mathbb{Z}_{σ^2} .

Consider

- a CM number field $F \subseteq \mathbb{C}$, with $F^+ \subseteq F$ its maximal totally real subfield,
- a positive integer N,
- a (nondegenerate) hermitian space V over F/F^+ that has signature (N-1,1) at the default real place and signature (N,0) at all others,
- a prime p of F⁺ that is inert in F and such that G := Res_{F⁺/Q} U(V) is unramified at p (the underlying prime number of p).

Fix an isomorphism $\mathbb{C} \simeq \overline{\mathbb{Q}}_p$ that induces the place \mathfrak{p} . Let q be the residue cardinality of $F_{\mathfrak{p}}^+$ so that $q = p^{[F_{\mathfrak{p}}^+:\mathbb{Q}_p]}$. Fix a hyperspecial maximal subgroup K_p of $G(\mathbb{Q}_p)$.

To technically simplify this talk, we pretend that there exists a complex abelian variety with complex multiplication by O_F that can be defined over \mathbb{Z}_{q^2} . In other words, we may fix a CM type Φ containing the default place $\tau \colon F \subseteq \mathbb{C}$ and a triple (A_0, i_0, λ_0) where

- A_0 is an abelian scheme over \mathbb{Z}_{q^2} of dimension $[F^+:\mathbb{Q}];$
- $i_0: O_F \rightarrow End(A_0)$ is a CM structure of CM type Φ ;
- λ₀: A₀ → A₀[∨] is a *p*-principal polarization under which i₀ turns the complex conjugation into the Rosati involution.

イロト イロト イヨト イヨト 二日

Consider

- a CM number field $F \subseteq \mathbb{C}$, with $F^+ \subseteq F$ its maximal totally real subfield,
- a positive integer N,
- a (nondegenerate) hermitian space V over F/F^+ that has signature (N-1,1) at the default real place and signature (N,0) at all others,
- a prime p of F⁺ that is inert in F and such that G := Res_{F⁺/Q} U(V) is unramified at p (the underlying prime number of p).

Fix an isomorphism $\mathbb{C} \simeq \overline{\mathbb{Q}}_p$ that induces the place \mathfrak{p} . Let q be the residue cardinality of $F_{\mathfrak{p}}^+$ so that $q = p^{[F_{\mathfrak{p}}^+:\mathbb{Q}_p]}$. Fix a hyperspecial maximal subgroup K_p of $G(\mathbb{Q}_p)$.

To technically simplify this talk, we pretend that there exists a complex abelian variety with complex multiplication by O_F that can be defined over \mathbb{Z}_{q^2} . In other words, we may fix a CM type Φ containing the default place $\tau \colon F \subseteq \mathbb{C}$ and a triple (A_0, i_0, λ_0) where

- A₀ is an abelian scheme over Z_{q²} of dimension [F⁺ : ℚ];
- $i_0: O_F \to End(A_0)$ is a CM structure of CM type Φ ;
- λ₀: A₀ → A₀[∨] is a *p*-principal polarization under which i₀ turns the complex conjugation into the Rosati involution.

Under such simplification, we may define the Shimura variety associated with G over \mathbb{Z}_{q^2} via a certain moduli interpretation, following Rapoport–Smithling–Zhang.

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > <

Consider

- a CM number field $F \subseteq \mathbb{C}$, with $F^+ \subseteq F$ its maximal totally real subfield,
- a positive integer N,
- a (nondegenerate) hermitian space V over F/F^+ that has signature (N-1,1) at the default real place and signature (N,0) at all others,
- a prime p of F⁺ that is inert in F and such that G := Res_{F⁺/Q} U(V) is unramified at p (the underlying prime number of p).

Fix an isomorphism $\mathbb{C} \simeq \overline{\mathbb{Q}}_p$ that induces the place \mathfrak{p} . Let q be the residue cardinality of $F_{\mathfrak{p}}^+$ so that $q = p^{[F_{\mathfrak{p}}^+:\mathbb{Q}_p]}$. Fix a hyperspecial maximal subgroup K_p of $G(\mathbb{Q}_p)$.

To technically simplify this talk, we pretend that there exists a complex abelian variety with complex multiplication by O_F that can be defined over \mathbb{Z}_{q^2} . In other words, we may fix a CM type Φ containing the default place $\tau : F \subseteq \mathbb{C}$ and a triple (A_0, i_0, λ_0) where

- A₀ is an abelian scheme over Z_{q²} of dimension [F⁺ : ℚ];
- $i_0: O_F \to End(A_0)$ is a CM structure of CM type Φ ;
- $\lambda_0: A_0 \to A_0^{\vee}$ is a *p*-principal polarization under which i_0 turns the complex conjugation into the Rosati involution.

Under such simplification, we may define the Shimura variety associated with G over \mathbb{Z}_{q^2} via a certain moduli interpretation, following Rapoport–Smithling–Zhang. Namely, for every neat open compact subgroup $K^{\rho} \subseteq G(\mathbb{A}^{\infty,\rho})$, we have a scheme $X(K^{\rho})$, quasi-projective and smooth over \mathbb{Z}_{q^2} of relative dimension N-1, such that

$$X(K^p)(\mathbb{C}) \simeq G(\mathbb{Q}) \setminus D_{\infty} \times G(\mathbb{A}^{\infty}) / K^p K_p,$$

where D_{∞} denotes the hermitian symmetric domain of negative complex lines in $V \otimes_{F,\tau} \mathbb{C}$.

<ロ> <四> <ヨ> <ヨ> 三日

For every locally Noetherian scheme T over \mathbb{Z}_{q^2} , $X(K^p)(T)$ is the set of equivalence classes of quadruples (A, i, λ, η^p) where

- A is an abelian scheme over T of dimension N[F⁺ : Q];
- i: O_F → End(A) is an action of O_F such that for every a ∈ O_F, the characteristic polynomial for the action of i(a) on the Lie algebra of A is given by

$$(X-a)^{N-1}(X-\overline{a})\prod_{\tau'\in\Phi\setminus\{\tau\}}(X-\tau'(a))^N;$$

- λ: A → A[∨] is a p-principal polarization under which i turns the complex conjugation into the Rosati involution;
- η^p is a K^p-level structure, that is, for a chosen geometric point t on every connected component of T, a π₁(T, t)-invariant K^p-orbit of isometries

$$\eta^{p} \colon V \otimes_{\mathbb{Q}} \mathbb{A}^{\infty,p} \xrightarrow{\sim} \mathsf{Hom}_{F \otimes_{\mathbb{Q}} \mathbb{A}^{\infty,p}}^{\lambda_{0},\lambda}(\mathrm{H}_{1}(A_{0t},\mathbb{A}^{\infty,p}),\mathrm{H}_{1}(A_{t},\mathbb{A}^{\infty,p}))$$

of hermitian spaces over $F \otimes_{\mathbb{Q}} \mathbb{A}^{\infty,p}/F^+ \otimes_{\mathbb{Q}} \mathbb{A}^{\infty,p}$.

For every locally Noetherian scheme T over \mathbb{Z}_{q^2} , $X(K^p)(T)$ is the set of equivalence classes of quadruples (A, i, λ, η^p) where

- A is an abelian scheme over T of dimension N[F⁺ : Q];
- i: O_F → End(A) is an action of O_F such that for every a ∈ O_F, the characteristic polynomial for the action of i(a) on the Lie algebra of A is given by

$$(X-a)^{N-1}(X-\overline{a})\prod_{\tau'\in\Phi\setminus\{\tau\}}(X-\tau'(a))^N;$$

- λ: A → A[∨] is a p-principal polarization under which i turns the complex conjugation into the Rosati involution;
- η^p is a K^p-level structure, that is, for a chosen geometric point t on every connected component of T, a π₁(T, t)-invariant K^p-orbit of isometries

$$\eta^{p} \colon V \otimes_{\mathbb{Q}} \mathbb{A}^{\infty,p} \xrightarrow{\sim} \mathsf{Hom}_{F \otimes_{\mathbb{Q}} \mathbb{A}^{\infty,p}}^{\lambda_{0},\lambda}(\mathrm{H}_{1}(\mathcal{A}_{0t},\mathbb{A}^{\infty,p}),\mathrm{H}_{1}(\mathcal{A}_{t},\mathbb{A}^{\infty,p}))$$

of hermitian spaces over $F \otimes_{\mathbb{Q}} \mathbb{A}^{\infty,p}/F^+ \otimes_{\mathbb{Q}} \mathbb{A}^{\infty,p}$. Put $Y(K^p) \coloneqq X(K^p) \otimes_{\mathbb{Z}_{q^2}} \mathbb{F}_{q^2}$.

For every locally Noetherian scheme T over \mathbb{Z}_{q^2} , $X(K^{\rho})(T)$ is the set of equivalence classes of quadruples $(A, i, \lambda, \eta^{\rho})$ where

- A is an abelian scheme over T of dimension N[F⁺ : Q];
- i: O_F → End(A) is an action of O_F such that for every a ∈ O_F, the characteristic polynomial for the action of i(a) on the Lie algebra of A is given by

$$(X-a)^{N-1}(X-\overline{a})\prod_{\tau'\in\Phi\setminus\{\tau\}}(X-\tau'(a))^N;$$

- λ: A → A[∨] is a p-principal polarization under which i turns the complex conjugation into the Rosati involution;
- η^p is a K^p-level structure, that is, for a chosen geometric point t on every connected component of T, a π₁(T, t)-invariant K^p-orbit of isometries

$$\eta^{p} \colon V \otimes_{\mathbb{Q}} \mathbb{A}^{\infty, p} \xrightarrow{\sim} \mathsf{Hom}_{F \otimes_{\mathbb{Q}} \mathbb{A}^{\infty, p}}^{\lambda_{0}, \lambda}(\mathrm{H}_{1}(A_{0t}, \mathbb{A}^{\infty, p}), \mathrm{H}_{1}(A_{t}, \mathbb{A}^{\infty, p}))$$

of hermitian spaces over $F \otimes_{\mathbb{Q}} \mathbb{A}^{\infty,p}/F^+ \otimes_{\mathbb{Q}} \mathbb{A}^{\infty,p}$.

Put $Y(K^p) \coloneqq X(K^p) \otimes_{\mathbb{Z}_{q^2}} \mathbb{F}_{q^2}$.

Denote by $Y(K^p)^{\rm b}$ the **basic locus** of $Y(K^p)$, that is, the closed locus where the O_{F_p} -divisible group $A[\mathfrak{p}^{\infty}]$ is supersingular.

◆ロシ ◆聞シ ◆恵シ ◆恵シ 三臣

To describe $Y(K^p)^{\rm b}$, we construct the so-called basic correspondence.

イロン イロン イヨン イヨン 三日

To describe $Y(K^{p})^{b}$, we construct the so-called basic correspondence. We fix a totally positive element $\varpi \in O_{F^+}$ that has valuation 1 at p and 0 at other *p*-adic places.

<ロ> <問> < 回> < 回> < 回> < 回> < 三</p>

To describe $Y(K^{\rho})^{\rm b}$, we construct the so-called basic correspondence. We fix a totally positive element $\varpi \in O_{F^+}$ that has valuation 1 at p and 0 at other *p*-adic places.

We define a moduli problem $S(K^p)$ over \mathbb{F}_{q^2} , such that for every locally Noetherian scheme T over \mathbb{F}_{q^2} , $S(K^p)(T)$ is the set of equivalence classes of quadruples $(A', i', \lambda', \eta^{p'})$ where

- A' is an abelian scheme over T of dimension N[F⁺ : ℚ];
- $i': O_F \to \text{End}(A')$ is an action of O_F "with the characteristic polynomial" $\prod_{\tau' \in \Phi} (X \tau'(a))^N;$
- λ': A' → A'[∨] is an "i'-compatible" polarization such that ker λ'[p[∞]] is trivial (resp. contained in A'[p] of rank q²) if N is odd (resp. even);
- $\eta^{p'} \colon V \otimes_{\mathbb{Q}} \mathbb{A}^{\infty, p} \xrightarrow{\sim} \mathsf{Hom}_{F \otimes_{\mathbb{Q}} \mathbb{A}^{\infty, p}}^{\varpi \lambda_0, \lambda'}(\mathrm{H}_1(\mathcal{A}_{0t}, \mathbb{A}^{\infty, p}), \mathrm{H}_1(\mathcal{A}'_t, \mathbb{A}^{\infty, p}))$ is a K^p -level structure.

To describe $Y(K^{p})^{b}$, we construct the so-called basic correspondence. We fix a totally positive element $\varpi \in O_{F^{+}}$ that has valuation 1 at p and 0 at other *p*-adic places.

We define a moduli problem $S(K^p)$ over \mathbb{F}_{q^2} , such that for every locally Noetherian scheme T over \mathbb{F}_{q^2} , $S(K^p)(T)$ is the set of equivalence classes of quadruples $(A', i', \lambda', \eta^{p'})$ where

- A' is an abelian scheme over T of dimension N[F⁺ : ℚ];
- $i': O_F \to \text{End}(A')$ is an action of O_F "with the characteristic polynomial" $\prod_{\tau' \in \Phi} (X \tau'(a))^N;$
- λ': A' → A'[∨] is an "i'-compatible" polarization such that ker λ'[p[∞]] is trivial (resp. contained in A'[𝔅] of rank q²) if N is odd (resp. even);
- $\eta^{p'} \colon V \otimes_{\mathbb{Q}} \mathbb{A}^{\infty, p} \xrightarrow{\sim} \mathsf{Hom}_{F \otimes_{\mathbb{Q}} \mathbb{A}^{\infty, p}}^{\varpi \lambda_0, \lambda'}(\mathrm{H}_1(\mathcal{A}_{0t}, \mathbb{A}^{\infty, p}), \mathrm{H}_1(\mathcal{A}'_t, \mathbb{A}^{\infty, p}))$ is a K^p -level structure.

It turns out that $S(K^p)$ is a projective smooth scheme over \mathbb{F}_{q^2} of dimension 0.

To describe $Y(K^{p})^{b}$, we construct the so-called basic correspondence. We fix a totally positive element $\varpi \in O_{F^+}$ that has valuation 1 at p and 0 at other *p*-adic places.

We define a moduli problem $S(K^p)$ over \mathbb{F}_{q^2} , such that for every locally Noetherian scheme T over \mathbb{F}_{q^2} , $S(K^p)(T)$ is the set of equivalence classes of quadruples $(A', i', \lambda', \eta^{p'})$ where

- A' is an abelian scheme over T of dimension N[F⁺ : ℚ];
- $i': O_F \to \text{End}(A')$ is an action of O_F "with the characteristic polynomial" $\prod_{\tau' \in \Phi} (X \tau'(a))^N;$
- λ': A' → A'[∨] is an "i'-compatible" polarization such that ker λ'[p[∞]] is trivial (resp. contained in A'[𝔅] of rank q²) if N is odd (resp. even);
- $\eta^{p'} \colon V \otimes_{\mathbb{Q}} \mathbb{A}^{\infty, p} \xrightarrow{\sim} \mathsf{Hom}_{F \otimes_{\mathbb{Q}} \mathbb{A}^{\infty, p}}^{\varpi \lambda_0, \lambda'}(\mathrm{H}_1(\mathcal{A}_{0t}, \mathbb{A}^{\infty, p}), \mathrm{H}_1(\mathcal{A}'_t, \mathbb{A}^{\infty, p}))$ is a K^p -level structure.

It turns out that $S(K^p)$ is a projective smooth scheme over \mathbb{F}_{q^2} of dimension 0. We then define a moduli problem $B(K^p)$ over \mathbb{F}_{q^2} that parameterizes data $(A, i, \lambda, \eta^p; A', i', \lambda', \eta^{p'}; \alpha)$ where

- (A, i, λ, η^p) is an object of Y(K^p);
- (A', i', λ', η^{p'}) is an object of S(K^p);
- $\alpha \colon A \to A'$ is an O_F -linear isogeny such that
 - ker $\alpha[p^{\infty}]$ is contained in $A[\mathfrak{p}]$;
 - $\varpi \cdot \lambda = \alpha^{\vee} \circ \lambda' \circ \alpha$; and
 - the K^p -orbit of maps $v \mapsto \alpha_* \circ \eta^p(v)$ for $v \in V \otimes_{\mathbb{Q}} \mathbb{A}^{\infty,p}$ coincides with $\eta^{p'}$.

イロン イボン イヨン イヨン 三日
By forgetting, we have an obvious correspondence

$$S(K^p) \xleftarrow{\pi} B(K^p) \xrightarrow{\iota} Y(K^p).$$

We have the following properties.

イロン イロン イヨン イヨン

By forgetting, we have an obvious correspondence

$$S(K^p) \xleftarrow{\pi} B(K^p) \xrightarrow{\iota} Y(K^p).$$

We have the following properties.

(1) The correspondence is equivariant with the obvious actions of Hecke operators away from p.

< ロ > < 回 > < 回 > < 回 > < 回 >

By forgetting, we have an obvious correspondence

$$S(K^p) \xleftarrow{\pi} B(K^p) \xrightarrow{\iota} Y(K^p).$$

We have the following properties.

- (1) The correspondence is equivariant with the obvious actions of Hecke operators away from p.
- (2) The morphism π is projective smooth with fibers being certain irreducible Deligne-Lusztig varieties of dimension $r := \lfloor \frac{N-1}{2} \rfloor$.

イロト イヨト イヨト イヨト

By forgetting, we have an obvious correspondence

$$S(K^p) \xleftarrow{\pi} B(K^p) \xrightarrow{\iota} Y(K^p).$$

We have the following properties.

- (1) The correspondence is equivariant with the obvious actions of Hecke operators away from p.
- (2) The morphism π is projective smooth with fibers being certain irreducible Deligne-Lusztig varieties of dimension $r := \lfloor \frac{N-1}{2} \rfloor$.
- (3) The morphism ι is locally a closed embedding, whose image is exactly $Y(K^p)^{\rm b}$.

イロト イポト イヨト イヨト

By forgetting, we have an obvious correspondence

$$S(K^p) \xleftarrow{\pi} B(K^p) \xrightarrow{\iota} Y(K^p).$$

We have the following properties.

- (1) The correspondence is equivariant with the obvious actions of Hecke operators away from p.
- (2) The morphism π is projective smooth with fibers being certain irreducible Deligne-Lusztig varieties of dimension r := \left[\frac{N-1}{2} \right].
- (3) The morphism ι is locally a closed embedding, whose image is exactly $Y(K^p)^{\rm b}$.
- (4) $S(K^p)$ is a finite copy of Spec \mathbb{F}_{q^2} naturally indexed by the following double coset: Let V' be the totally positive definite hermitian space over F/F^+ such that $V' \otimes_{F^+} \mathbb{A}_{F^+}^{\infty,p} \simeq V \otimes_{F^+} \mathbb{A}_{F^+}^{\infty,p}$ (and fix such an isometry). Then the index set is

$$G'(\mathbb{Q})\backslash G'(\mathbb{A}^{\infty})/K^{p}K'_{p}$$

where $G' \coloneqq \operatorname{Res}_{F^+/\mathbb{Q}} \operatorname{U}(V')$ and K'_p is a fixed maximal special subgroup of $G'(\mathbb{Q}_p)$.

イロト 不得 トイヨト イヨト 二日

By forgetting, we have an obvious correspondence

$$S(K^p) \xleftarrow{\pi} B(K^p) \xrightarrow{\iota} Y(K^p).$$

We have the following properties.

- (1) The correspondence is equivariant with the obvious actions of Hecke operators away from p.
- (2) The morphism π is projective smooth with fibers being certain irreducible Deligne-Lusztig varieties of dimension $r := \lfloor \frac{N-1}{2} \rfloor$.
- (3) The morphism ι is locally a closed embedding, whose image is exactly $Y(K^p)^{\rm b}$.
- (4) $S(K^p)$ is a finite copy of Spec \mathbb{F}_{q^2} naturally indexed by the following double coset: Let V' be the totally positive definite hermitian space over F/F^+ such that $V' \otimes_{F^+} \mathbb{A}_{F^+}^{\infty, p} \simeq V \otimes_{F^+} \mathbb{A}_{F^+}^{\infty, p}$ (and fix such an isometry). Then the index set is

$$G'(\mathbb{Q})\backslash G'(\mathbb{A}^{\infty})/K^{p}K'_{p}$$

where $G' \coloneqq \operatorname{Res}_{F^+/\mathbb{Q}} \operatorname{U}(V')$ and K'_p is a fixed maximal special subgroup of $G'(\mathbb{Q}_p)$.

In particular, the absolute cycle classes give a map

$$\iota_{!} \circ \pi^{*} \colon \mathrm{H}^{0}(\mathcal{S}(\mathcal{K}^{p}), \Lambda) \to \mathrm{H}^{2(N-1-r)}(\mathcal{Y}(\mathcal{K}^{p}), \Lambda(N-1-r))$$

for any suitable coefficient ring Λ .

<ロ> <四> <ヨ> <ヨ> 三日

By the Hoschchild-Serre sequence, we have a short exact sequence

$$\begin{split} 0 &\to \mathrm{H}^{1}(\mathbb{F}_{q^{2}}, \mathrm{H}^{2(N-1-r)-1}(Y(K^{p})_{\overline{\mathbb{F}}_{p}}, \Lambda(N-1-r))) \\ &\to \mathrm{H}^{2(N-1-r)}(Y(K^{p}), \Lambda(N-1-r)) \to \mathrm{H}^{0}(\mathbb{F}_{q^{2}}, \mathrm{H}^{2(N-1-r)}(Y(K^{p})_{\overline{\mathbb{F}}_{p}}, \Lambda(N-1-r))) \to 0. \end{split}$$

イロン イボン イヨン イヨン 三日

By the Hoschchild-Serre sequence, we have a short exact sequence

$$\begin{split} 0 &\to \mathrm{H}^{1}(\mathbb{F}_{q^{2}}, \mathrm{H}^{2(N-1-r)-1}(Y(K^{p})_{\overline{\mathbb{F}}_{p}}, \Lambda(N-1-r))) \\ &\to \mathrm{H}^{2(N-1-r)}(Y(K^{p}), \Lambda(N-1-r)) \to \mathrm{H}^{0}(\mathbb{F}_{q^{2}}, \mathrm{H}^{2(N-1-r)}(Y(K^{p})_{\overline{\mathbb{F}}_{p}}, \Lambda(N-1-r))) \to 0. \end{split}$$

If we denote by $\mathrm{H}^0(S(K^p), \Lambda)^{\diamondsuit}$ the kernel of the composite map

$$\gamma_{N} \colon \mathrm{H}^{0}(\mathcal{S}(\mathcal{K}^{p}), \Lambda) \to \mathrm{H}^{2(N-1-r)}(\mathcal{Y}(\mathcal{K}^{p}), \Lambda(N-1-r)) \to \mathrm{H}^{2(N-1-r)}(\mathcal{Y}(\mathcal{K}^{p})_{\overline{\mathbb{F}}_{p}}, \Lambda(N-1-r)),$$

then we obtain the induced map

$$\alpha_{N} \colon \mathrm{H}^{0}(\mathcal{S}(\mathcal{K}^{p}), \Lambda)^{\diamondsuit} \to \mathrm{H}^{1}(\mathbb{F}_{q^{2}}, \mathrm{H}^{2(N-1-r)-1}(\mathcal{Y}(\mathcal{K}^{p})_{\overline{\mathbb{F}}_{p}}, \Lambda(N-1-r))).$$

イロン イボン イヨン イヨン 三日

By the Hoschchild-Serre sequence, we have a short exact sequence

$$\begin{split} 0 &\to \mathrm{H}^{1}(\mathbb{F}_{q^{2}}, \mathrm{H}^{2(N-1-r)-1}(Y(K^{p})_{\overline{\mathbb{F}}_{p}}, \Lambda(N-1-r))) \\ &\to \mathrm{H}^{2(N-1-r)}(Y(K^{p}), \Lambda(N-1-r)) \to \mathrm{H}^{0}(\mathbb{F}_{q^{2}}, \mathrm{H}^{2(N-1-r)}(Y(K^{p})_{\overline{\mathbb{F}}_{p}}, \Lambda(N-1-r))) \to 0. \end{split}$$

If we denote by $\mathrm{H}^0(\mathcal{S}(K^p), \Lambda)^{\diamondsuit}$ the kernel of the composite map

$$\gamma_{N} \colon \mathrm{H}^{0}(\mathcal{S}(\mathcal{K}^{p}), \Lambda) \to \mathrm{H}^{2(N-1-r)}(\mathcal{Y}(\mathcal{K}^{p}), \Lambda(N-1-r)) \to \mathrm{H}^{2(N-1-r)}(\mathcal{Y}(\mathcal{K}^{p})_{\overline{\mathbb{F}}_{p}}, \Lambda(N-1-r)),$$

then we obtain the induced map

$$\alpha_{N} \colon \mathrm{H}^{0}(\mathcal{S}(\mathcal{K}^{p}), \Lambda)^{\diamondsuit} \to \mathrm{H}^{1}(\mathbb{F}_{q^{2}}, \mathrm{H}^{2(N-1-r)-1}(\mathcal{Y}(\mathcal{K}^{p})_{\overline{\mathbb{F}}_{p}}, \Lambda(N-1-r))).$$

In many cases, we are interested in the middle-degree (geometric) cohomology. More precisely,

イロン イヨン イヨン イヨン 三日

By the Hoschchild-Serre sequence, we have a short exact sequence

$$\begin{split} 0 &\to \mathrm{H}^{1}(\mathbb{F}_{q^{2}}, \mathrm{H}^{2(N-1-r)-1}(Y(K^{p})_{\overline{\mathbb{F}}_{p}}, \Lambda(N-1-r))) \\ &\to \mathrm{H}^{2(N-1-r)}(Y(K^{p}), \Lambda(N-1-r)) \to \mathrm{H}^{0}(\mathbb{F}_{q^{2}}, \mathrm{H}^{2(N-1-r)}(Y(K^{p})_{\overline{\mathbb{F}}_{p}}, \Lambda(N-1-r))) \to 0. \end{split}$$

If we denote by $\mathrm{H}^{0}(S(K^{p}), \Lambda)^{\diamondsuit}$ the kernel of the composite map

$$\gamma_{N} \colon \mathrm{H}^{0}(\mathcal{S}(\mathcal{K}^{p}), \Lambda) \to \mathrm{H}^{2(N-1-r)}(\mathcal{Y}(\mathcal{K}^{p}), \Lambda(N-1-r)) \to \mathrm{H}^{2(N-1-r)}(\mathcal{Y}(\mathcal{K}^{p})_{\overline{\mathbb{F}}_{p}}, \Lambda(N-1-r)),$$

then we obtain the induced map

$$\alpha_{N} \colon \mathrm{H}^{0}(\mathcal{S}(\mathcal{K}^{p}), \Lambda)^{\diamondsuit} \to \mathrm{H}^{1}(\mathbb{F}_{q^{2}}, \mathrm{H}^{2(N-1-r)-1}(\mathcal{Y}(\mathcal{K}^{p})_{\overline{\mathbb{F}}_{p}}, \Lambda(N-1-r))).$$

In many cases, we are interested in the middle-degree (geometric) cohomology. More precisely,

when N = 2r + 1, we are interested in the map γ_N: H⁰(S(K^p), Λ) → H^{2r}(Y(K^p)_{F_p}, Λ(r)), namely, Tate cycles given by basic locus (which has been extensively studied by Xiao–Zhu);

<ロ> <問> < 回> < 回> < 回> < 回> < 三</p>

By the Hoschchild-Serre sequence, we have a short exact sequence

$$\begin{split} 0 &\to \mathrm{H}^{1}(\mathbb{F}_{q^{2}}, \mathrm{H}^{2(N-1-r)-1}(Y(K^{p})_{\overline{\mathbb{F}}_{p}}, \Lambda(N-1-r))) \\ &\to \mathrm{H}^{2(N-1-r)}(Y(K^{p}), \Lambda(N-1-r)) \to \mathrm{H}^{0}(\mathbb{F}_{q^{2}}, \mathrm{H}^{2(N-1-r)}(Y(K^{p})_{\overline{\mathbb{F}}_{p}}, \Lambda(N-1-r))) \to 0. \end{split}$$

If we denote by $\mathrm{H}^0(\mathcal{S}(K^p), \Lambda)^{\diamondsuit}$ the kernel of the composite map

$$\gamma_{N} \colon \mathrm{H}^{0}(\mathcal{S}(\mathcal{K}^{p}), \Lambda) \to \mathrm{H}^{2(N-1-r)}(\mathcal{Y}(\mathcal{K}^{p}), \Lambda(N-1-r)) \to \mathrm{H}^{2(N-1-r)}(\mathcal{Y}(\mathcal{K}^{p})_{\overline{\mathbb{F}}_{p}}, \Lambda(N-1-r)),$$

then we obtain the induced map

$$\alpha_{N} \colon \mathrm{H}^{0}(\mathcal{S}(\mathcal{K}^{p}), \Lambda)^{\diamondsuit} \to \mathrm{H}^{1}(\mathbb{F}_{q^{2}}, \mathrm{H}^{2(N-1-r)-1}(\mathcal{Y}(\mathcal{K}^{p})_{\overline{\mathbb{F}}_{p}}, \Lambda(N-1-r))).$$

In many cases, we are interested in the middle-degree (geometric) cohomology. More precisely,

- when N = 2r + 1, we are interested in the map γ_N: H⁰(S(K^p), Λ) → H^{2r}(Y(K^p)_{F_p}, Λ(r)), namely, Tate cycles given by basic locus (which has been extensively studied by Xiao–Zhu);
- when N = 2r, we are interested in the map

$$\alpha_{N} \colon \mathrm{H}^{0}(\mathcal{S}(\mathcal{K}^{p}), \Lambda)^{\diamondsuit} \to \mathrm{H}^{1}(\mathbb{F}_{q^{2}}, \mathrm{H}^{2r-1}(Y(\mathcal{K}^{p})_{\overline{\mathbb{F}}_{p}}, \Lambda(r))).$$

The question of the surjective of α_N after certain localization will be our analogue of Ribet's level raising theorem for the unitary Shimura variety $X(K^p)$.

Ihara's lemma for modular curve

イロン イボン イヨン イヨン 三日

Ihara's lemma for modular curve

We recall Ihara's lemma for modular curve and its relation with Ribet's theorem.

イロト イヨト イヨト イヨト

Ihara's lemma for modular curve

We recall Ihara's lemma for modular curve and its relation with Ribet's theorem. Consider the modular curve $X_0(\Sigma p)$ over \mathbb{Z}_p , which admits a natural involution *i* and a natural finite morphism $f: X_0(\Sigma p) \to X_0(\Sigma)$ of degree p + 1.

<ロ> <問> < 回> < 回> < 回> < 回> < 三</p>

Consider the modular curve $X_0(\Sigma p)$ over \mathbb{Z}_p , which admits a natural involution *i* and a natural finite morphism $f: X_0(\Sigma p) \to X_0(\Sigma)$ of degree p + 1.

Let f, L and λ be as in the beginning of the talk. Ihara's lemma says that if f $\mod\lambda$ is non-Eisenstein, then the map

$$(f_*, f_* \circ i_*) \colon \mathrm{H}^1(X_0(\Sigma \rho)_{\overline{\mathbb{Q}}_p}, \mathbb{Z}_\lambda) \to \mathrm{H}^1(X_0(\Sigma)_{\overline{\mathbb{Q}}_p}, \mathbb{Z}_\lambda)^{\oplus 2}$$

is surjective after localizing at \mathfrak{m}_{f} .

Consider the modular curve $X_0(\Sigma p)$ over \mathbb{Z}_p , which admits a natural involution *i* and a natural finite morphism $f: X_0(\Sigma p) \to X_0(\Sigma)$ of degree p + 1.

Let f, L and λ be as in the beginning of the talk. Ihara's lemma says that if f $\mod\lambda$ is non-Eisenstein, then the map

$$(f_*, f_* \circ i_*) \colon \mathrm{H}^1(X_0(\Sigma \rho)_{\overline{\mathbb{Q}}_p}, \mathbb{Z}_{\lambda}) \to \mathrm{H}^1(X_0(\Sigma)_{\overline{\mathbb{Q}}_p}, \mathbb{Z}_{\lambda})^{\oplus 2}$$

is surjective after localizing at \mathfrak{m}_{f} . Ribet deduced his theorem from this lemma.

<ロ> <問> < 回> < 回> < 回> < 回> < 三</p>

Consider the modular curve $X_0(\Sigma p)$ over \mathbb{Z}_p , which admits a natural involution *i* and a natural finite morphism $f: X_0(\Sigma p) \to X_0(\Sigma)$ of degree p + 1.

Let f, L and λ be as in the beginning of the talk. Ihara's lemma says that if f mod λ is non-Eisenstein, then the map

$$(f_*, f_* \circ i_*) \colon \mathrm{H}^1(X_0(\Sigma \rho)_{\overline{\mathbb{Q}}_p}, \mathbb{Z}_{\lambda}) \to \mathrm{H}^1(X_0(\Sigma)_{\overline{\mathbb{Q}}_p}, \mathbb{Z}_{\lambda})^{\oplus 2}$$

is surjective after localizing at \mathfrak{m}_{f} . Ribet deduced his theorem from this lemma.

Now we give an alternative interpretation of Ihara's lemma under the further assumption $\ell \nmid (p+1)$, which will be instructive later.

ヘロン 人間 とく ヨン く ヨン 二 ヨ

Consider the modular curve $X_0(\Sigma p)$ over \mathbb{Z}_p , which admits a natural involution *i* and a natural finite morphism $f: X_0(\Sigma p) \to X_0(\Sigma)$ of degree p + 1.

Let f, L and λ be as in the beginning of the talk. Ihara's lemma says that if f $\mod\lambda$ is non-Eisenstein, then the map

$$(f_*, f_* \circ i_*) \colon \mathrm{H}^1(X_0(\Sigma \rho)_{\overline{\mathbb{Q}}_p}, \mathbb{Z}_{\lambda}) \to \mathrm{H}^1(X_0(\Sigma)_{\overline{\mathbb{Q}}_p}, \mathbb{Z}_{\lambda})^{\oplus 2}$$

is surjective after localizing at \mathfrak{m}_{f} . Ribet deduced his theorem from this lemma.

Now we give an alternative interpretation of Ihara's lemma under the further assumption $\ell \nmid (p+1)$, which will be instructive later.

Put $\mathcal{K} := \mathsf{GL}_2(\mathbb{Z}_p)$ and let $\mathcal{P} \subseteq \mathcal{K}$ be the standard upper-triangular lwahori subgroup. Then the $\mathbb{Z}_{\lambda}[\mathcal{K}]$ -module $\operatorname{Ind}_{\mathcal{K}}^{\mathcal{K}} \mathbb{Z}_{\lambda}$ admits a unique decomposition $\mathbb{Z}_{\lambda} \oplus \Omega_{\lambda}$ in which Ω_{λ} is a free \mathbb{Z}_{λ} -module of rank p.

イロト 不得 トイヨト イヨト 二日

Consider the modular curve $X_0(\Sigma p)$ over \mathbb{Z}_p , which admits a natural involution *i* and a natural finite morphism $f: X_0(\Sigma p) \to X_0(\Sigma)$ of degree p + 1.

Let f, L and λ be as in the beginning of the talk. Ihara's lemma says that if f $\mod\lambda$ is non-Eisenstein, then the map

$$(f_*, f_* \circ i_*) \colon \mathrm{H}^1(X_0(\Sigma \rho)_{\overline{\mathbb{Q}}_p}, \mathbb{Z}_{\lambda}) \to \mathrm{H}^1(X_0(\Sigma)_{\overline{\mathbb{Q}}_p}, \mathbb{Z}_{\lambda})^{\oplus 2}$$

is surjective after localizing at \mathfrak{m}_{f} . Ribet deduced his theorem from this lemma.

Now we give an alternative interpretation of Ihara's lemma under the further assumption $\ell \nmid (p+1)$, which will be instructive later.

Put $\mathcal{K} := \mathsf{GL}_2(\mathbb{Z}_p)$ and let $\mathcal{P} \subseteq \mathcal{K}$ be the standard upper-triangular lwahori subgroup. Then the $\mathbb{Z}_{\lambda}[\mathcal{K}]$ -module $\operatorname{Ind}_{\mathcal{P}}^{\mathcal{K}} \mathbb{Z}_{\lambda}$ admits a unique decomposition $\mathbb{Z}_{\lambda} \oplus \Omega_{\lambda}$ in which Ω_{λ} is a free \mathbb{Z}_{λ} -module of rank p. Then the surjectivity of $(f_*, f_* \circ i_*)$ localized at $\mathfrak{m}_{\mathtt{f}}$ is equivalent to the surjectivity of the composite map

$$\begin{split} \beta \colon \mathrm{H}^{1}(X_{0}(\Sigma)_{\overline{\mathbb{Q}}_{p}},\Omega_{\lambda}) &\hookrightarrow \mathrm{H}^{1}(X_{0}(\Sigma)_{\overline{\mathbb{Q}}_{p}},\mathsf{Ind}_{\mathcal{P}}^{\mathcal{K}}\mathbb{Z}_{\lambda}) \\ &= \mathrm{H}^{1}(X_{0}(\Sigma p)_{\overline{\mathbb{Q}}_{p}},\mathbb{Z}_{\lambda}) \xrightarrow{f_{*} \circ i_{*}} \mathrm{H}^{1}(X_{0}(\Sigma)_{\overline{\mathbb{Q}}_{p}},\mathbb{Z}_{\lambda}) \end{split}$$

localized at \mathfrak{m}_{f} .

イロト 不得 トイヨト イヨト 二日

イロン イロン イヨン イヨン

Now we assume that N = 2r is **even** and that $\Lambda = \mathbb{Z}_{\lambda}$ for a finite extension $\mathbb{Q}_{\lambda}/\mathbb{Q}_{\ell}$.

イロン イボン イヨン イヨン 三日

Now we assume that N = 2r is **even** and that $\Lambda = \mathbb{Z}_{\lambda}$ for a finite extension $\mathbb{Q}_{\lambda}/\mathbb{Q}_{\ell}$. Let \mathcal{K} be the p-component of K_{p} , which is a hyperspecial maximal subgroup of $U(V)(F_{p}^{+})$. Fix a hermitian Siegel parahoric subgroup $\mathcal{P} \subseteq \mathcal{K}$. Let \mathcal{Q} be the double coset in $\mathcal{P} \setminus \mathcal{K}/\mathcal{P}$ that parameterizes a pair of Lagrangian subspaces with intersection of codimension 1.

イロト イヨト イヨト イヨト

Now we assume that N = 2r is **even** and that $\Lambda = \mathbb{Z}_{\lambda}$ for a finite extension $\mathbb{Q}_{\lambda}/\mathbb{Q}_{\ell}$. Let \mathcal{K} be the p-component of K_{p} , which is a hyperspecial maximal subgroup of $U(V)(F_{\mathfrak{p}}^{+})$. Fix a hermitian Siegel parahoric subgroup $\mathcal{P} \subseteq \mathcal{K}$. Let \mathcal{Q} be the double coset in $\mathcal{P} \setminus \mathcal{K}/\mathcal{P}$ that parameterizes a pair of Lagrangian subspaces with intersection of codimension 1.

Proposition

Suppose that $\ell \nmid q \prod_{i=1}^{N} (1-(-q)^i)$. We have a canonical decomposition

$$\mathbb{Z}_{\lambda}[\mathcal{P}ackslash\mathcal{K}] = igoplus_{i=0}^{\prime} \Omega^{j}_{N,\lambda}$$

of $\mathbb{Z}_{\lambda}[\mathcal{P}\setminus\mathcal{K}/\mathcal{P}]$ -modules in which $\Omega'_{N,\lambda}$ is the eigenspace of \mathcal{Q} with eigenvalue $\frac{-(-q)^{N+1-j}-(-q)^j-q+1}{q^2-1}$ (the differences of these eigenvalues are all invertible in \mathbb{Z}_{ℓ}).

イロト イロト イヨト イヨト 二日

Now we assume that N = 2r is **even** and that $\Lambda = \mathbb{Z}_{\lambda}$ for a finite extension $\mathbb{Q}_{\lambda}/\mathbb{Q}_{\ell}$. Let \mathcal{K} be the p-component of K_{p} , which is a hyperspecial maximal subgroup of $U(V)(F_{\mathfrak{p}}^{+})$. Fix a hermitian Siegel parahoric subgroup $\mathcal{P} \subseteq \mathcal{K}$. Let \mathcal{Q} be the double coset in $\mathcal{P} \setminus \mathcal{K}/\mathcal{P}$ that parameterizes a pair of Lagrangian subspaces with intersection of codimension 1.

Proposition

Suppose that $\ell \nmid q \prod_{i=1}^{N} (1-(-q)^i)$. We have a canonical decomposition

$$\mathbb{Z}_{\lambda}[\mathcal{P}ackslash\mathcal{K}] = igoplus_{i=0}^{\prime} \Omega^{j}_{\mathcal{N},\lambda}$$

of $\mathbb{Z}_{\lambda}[\mathcal{P}\setminus\mathcal{K}/\mathcal{P}]$ -modules in which $\Omega'_{N,\lambda}$ is the eigenspace of \mathcal{Q} with eigenvalue $\frac{-(-q)^{N+1-j}-(-q)^j-q+1}{q^2-1}$ (the differences of these eigenvalues are all invertible in \mathbb{Z}_{ℓ}).

By the above proposition, one can see easily that $\Omega_{N,\lambda}^{j}$ is stable under the right translation of \mathcal{K} ; and in particular, $\Omega_{N,\lambda}^{0} = \mathbb{Z}_{\lambda}$.

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > <

Now we assume that N = 2r is **even** and that $\Lambda = \mathbb{Z}_{\lambda}$ for a finite extension $\mathbb{Q}_{\lambda}/\mathbb{Q}_{\ell}$. Let \mathcal{K} be the p-component of K_{p} , which is a hyperspecial maximal subgroup of $U(V)(F_{\mathfrak{p}}^{+})$. Fix a hermitian Siegel parahoric subgroup $\mathcal{P} \subseteq \mathcal{K}$. Let \mathcal{Q} be the double coset in $\mathcal{P} \setminus \mathcal{K}/\mathcal{P}$ that parameterizes a pair of Lagrangian subspaces with intersection of codimension 1.

Proposition

Suppose that $\ell \nmid q \prod_{i=1}^{N} (1 - (-q)^i)$. We have a canonical decomposition

$$\mathbb{Z}_{\lambda}[\mathcal{P}ackslash\mathcal{K}] = igoplus_{i=0}^{\prime} \Omega^{j}_{\mathcal{N},\lambda}$$

of $\mathbb{Z}_{\lambda}[\mathcal{P}\setminus\mathcal{K}/\mathcal{P}]$ -modules in which $\Omega'_{N,\lambda}$ is the eigenspace of \mathcal{Q} with eigenvalue $\frac{-(-q)^{N+1-j}-(-q)^j-q+1}{q^2-1}$ (the differences of these eigenvalues are all invertible in \mathbb{Z}_{ℓ}).

By the above proposition, one can see easily that $\Omega^{j}_{N,\lambda}$ is stable under the right translation of \mathcal{K} ; and in particular, $\Omega^{0}_{N,\lambda} = \mathbb{Z}_{\lambda}$.

It is the direct summand $\Omega_{N,\lambda}^1$ that will play the role of the "Steinberg component" Ω_{λ} in the modular curve case, if one wants to formulate the correct Ihara-type lemma for level raising for the unitary Shimura variety $X(K^{\rho})$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Now we assume that N = 2r is **even** and that $\Lambda = \mathbb{Z}_{\lambda}$ for a finite extension $\mathbb{Q}_{\lambda}/\mathbb{Q}_{\ell}$. Let \mathcal{K} be the p-component of K_{p} , which is a hyperspecial maximal subgroup of $U(V)(F_{\mathfrak{p}}^{+})$. Fix a hermitian Siegel parahoric subgroup $\mathcal{P} \subseteq \mathcal{K}$. Let \mathcal{Q} be the double coset in $\mathcal{P} \setminus \mathcal{K}/\mathcal{P}$ that parameterizes a pair of Lagrangian subspaces with intersection of codimension 1.

Proposition

Suppose that $\ell \nmid q \prod_{i=1}^{N} (1 - (-q)^i)$. We have a canonical decomposition

$$\mathbb{Z}_{\lambda}[\mathcal{P}ackslash\mathcal{K}] = igoplus_{i=0}^{\prime} \Omega^{j}_{\mathcal{N},\lambda}$$

of $\mathbb{Z}_{\lambda}[\mathcal{P}\setminus\mathcal{K}/\mathcal{P}]$ -modules in which $\Omega'_{N,\lambda}$ is the eigenspace of \mathcal{Q} with eigenvalue $\frac{-(-q)^{N+1-j}-(-q)^j-q+1}{q^2-1}$ (the differences of these eigenvalues are all invertible in \mathbb{Z}_{ℓ}).

By the above proposition, one can see easily that $\Omega'_{N,\lambda}$ is stable under the right translation of \mathcal{K} ; and in particular, $\Omega^0_{N,\lambda} = \mathbb{Z}_{\lambda}$.

It is the direct summand $\Omega_{N,\lambda}^1$ that will play the role of the "Steinberg component" Ω_{λ} in the modular curve case, if one wants to formulate the correct Ihara-type lemma for level raising for the unitary Shimura variety $X(K^{\rho})$.

It is a good exercise to show that $\Omega^1_{\mathcal{N},\lambda}$ is a free \mathbb{Z}_{λ} -module of rank $q \frac{q^{\mathcal{N}-1}+1}{q+1}$.

イロン イロン イヨン イヨン

Let $\widetilde{X}(K^p)$ be the moduli problem over \mathbb{Q}_{q^2} parameterizing pairs of objects $(A_1, i_1, \lambda_1, \eta_1^p)$ and $(A_2, i_2, \lambda_2, \eta_2^p)$ of $X(K^p)$ together with a compatible isogeny $\psi \colon A_1 \to A_2$ such that ker $\psi[p^{\infty}]$ is a Lagrangian subgroup of $A_1[\mathfrak{p}]$.

<ロ> (四) (四) (三) (三)

Let $\widetilde{X}(K^p)$ be the moduli problem over \mathbb{Q}_{q^2} parameterizing pairs of objects $(A_1, i_1, \lambda_1, \eta_1^p)$ and $(A_2, i_2, \lambda_2, \eta_2^p)$ of $X(K^p)$ together with a compatible isogeny $\psi: A_1 \to A_2$ such that ker $\psi[p^{\infty}]$ is a Lagrangian subgroup of $A_1[p]$. Then we have an involution *i* of $\widetilde{X}(K^p)$ switching $(A_1, i_1, \lambda_1, \eta_1^p)$ and $(A_2, i_2, \lambda_2, \eta_2^p)$; and a morphism $f: \widetilde{X}(K^p) \to X(K^p)_{\mathbb{Q}_{q^2}}$ that remembers $(A_1, i_1, \lambda_1, \eta_1^p)$, which is finite étale.

Let $\widetilde{X}(K^p)$ be the moduli problem over \mathbb{Q}_{q^2} parameterizing pairs of objects $(A_1, i_1, \lambda_1, \eta_1^p)$ and $(A_2, i_2, \lambda_2, \eta_2^p)$ of $X(K^p)$ together with a compatible isogeny $\psi \colon A_1 \to A_2$ such that ker $\psi[p^{\infty}]$ is a Lagrangian subgroup of $A_1[\mathfrak{p}]$. Then we have an involution *i* of $\widetilde{X}(K^p)$ switching $(A_1, i_1, \lambda_1, \eta_1^p)$ and $(A_2, i_2, \lambda_2, \eta_2^p)$; and a morphism $f \colon \widetilde{X}(K^p) \to X(K^p)_{\mathbb{Q}_{q^2}}$ that remembers $(A_1, i_1, \lambda_1, \eta_1^p)$, which is finite étale.

From now on, we assume $\ell \nmid q \prod_{i=1}^{N} (1 - (-q)^i)$.

イロト 不得 トイヨト イヨト 二日

Let $\widetilde{X}(K^p)$ be the moduli problem over \mathbb{Q}_{q^2} parameterizing pairs of objects $(A_1, i_1, \lambda_1, \eta_1^p)$ and $(A_2, i_2, \lambda_2, \eta_2^p)$ of $X(K^p)$ together with a compatible isogeny $\psi: A_1 \to A_2$ such that ker $\psi[p^{\infty}]$ is a Lagrangian subgroup of $A_1[p]$. Then we have an involution *i* of $\widetilde{X}(K^p)$ switching $(A_1, i_1, \lambda_1, \eta_1^p)$ and $(A_2, i_2, \lambda_2, \eta_2^p)$; and a morphism $f: \widetilde{X}(K^p) \to X(K^p)_{\mathbb{Q}_{q^2}}$ that remembers $(A_1, i_1, \lambda_1, \eta_1^p)$, which is finite étale.

From now on, we assume $\ell \nmid q \prod_{i=1}^{N} (1 - (-q)^i)$. By the previous proposition, we have the composite map

$$\begin{split} \beta_{N} \colon \mathrm{H}^{N-1}(X(\mathcal{K}^{p})_{\overline{\mathbb{Q}}_{p}},\Omega^{1}_{N,\lambda}) &\hookrightarrow \mathrm{H}^{N-1}(X(\mathcal{K}^{p})_{\overline{\mathbb{Q}}_{p}},\mathsf{Ind}_{\mathcal{P}}^{\mathcal{K}}\mathbb{Z}_{\lambda}) \\ &= \mathrm{H}^{N-1}(\widetilde{X}(\mathcal{K}^{p})_{\overline{\mathbb{Q}}_{p}},\mathbb{Z}_{\lambda}) \xrightarrow{f_{*} \circ i_{*}} \mathrm{H}^{N-1}(X(\mathcal{K}^{p})_{\overline{\mathbb{Q}}_{p}},\mathbb{Z}_{\lambda}). \end{split}$$

イロト 不得 トイヨト イヨト 二日

Let $\widetilde{X}(K^p)$ be the moduli problem over \mathbb{Q}_{q^2} parameterizing pairs of objects $(A_1, i_1, \lambda_1, \eta_1^p)$ and $(A_2, i_2, \lambda_2, \eta_2^p)$ of $X(K^p)$ together with a compatible isogeny $\psi \colon A_1 \to A_2$ such that ker $\psi[p^{\infty}]$ is a Lagrangian subgroup of $A_1[\mathfrak{p}]$. Then we have an involution *i* of $\widetilde{X}(K^p)$ switching $(A_1, i_1, \lambda_1, \eta_1^p)$ and $(A_2, i_2, \lambda_2, \eta_2^p)$; and a morphism $f \colon \widetilde{X}(K^p) \to X(K^p)_{\mathbb{Q}_{q^2}}$ that remembers $(A_1, i_1, \lambda_1, \eta_1^p)$, which is finite étale.

From now on, we assume $\ell \nmid q \prod_{i=1}^{N} (1 - (-q)^i)$. By the previous proposition, we have the composite map

$$\begin{split} \beta_{N} \colon \mathrm{H}^{N-1}(X(\mathcal{K}^{p})_{\overline{\mathbb{Q}}_{p}},\Omega^{1}_{N,\lambda}) &\hookrightarrow \mathrm{H}^{N-1}(X(\mathcal{K}^{p})_{\overline{\mathbb{Q}}_{p}},\mathsf{Ind}_{\mathcal{P}}^{\mathcal{K}}\mathbb{Z}_{\lambda}) \\ &= \mathrm{H}^{N-1}(\widetilde{X}(\mathcal{K}^{p})_{\overline{\mathbb{Q}}_{p}},\mathbb{Z}_{\lambda}) \xrightarrow{f_{*} \circ i_{*}} \mathrm{H}^{N-1}(X(\mathcal{K}^{p})_{\overline{\mathbb{Q}}_{p}},\mathbb{Z}_{\lambda}). \end{split}$$

Denote by $\mathbb{T}_N^{\mathbb{P}}$ the abstract spherical unitary Hecke algebra over F/F^+ of rank N away from ?. Fix a finite set Σ of prime numbers not containing p, away from which K^p is hyperspecial. Then $\mathbb{T}_N^{\Sigma \cup \{p\}}$ acts on $X(K^p)$ via Hecke correspondences which are finite étale. Put $\mathbb{T}_{N,\lambda}^2 := \mathbb{T}_N^2 \otimes \mathbb{Z}_{\lambda}$.

イロン イロン イヨン イヨン 三日

Let $\widetilde{X}(K^p)$ be the moduli problem over \mathbb{Q}_{q^2} parameterizing pairs of objects $(A_1, i_1, \lambda_1, \eta_1^p)$ and $(A_2, i_2, \lambda_2, \eta_2^p)$ of $X(K^p)$ together with a compatible isogeny $\psi : A_1 \to A_2$ such that ker $\psi[p^{\infty}]$ is a Lagrangian subgroup of $A_1[\mathfrak{p}]$. Then we have an involution *i* of $\widetilde{X}(K^p)$ switching $(A_1, i_1, \lambda_1, \eta_1^p)$ and $(A_2, i_2, \lambda_2, \eta_2^p)$; and a morphism $f : \widetilde{X}(K^p) \to X(K^p)_{\mathbb{Q}_{q^2}}$ that remembers $(A_1, i_1, \lambda_1, \eta_1^p)$, which is finite étale.

From now on, we assume $\ell \nmid q \prod_{i=1}^{N} (1 - (-q)^i)$. By the previous proposition, we have the composite map

$$\begin{split} \beta_{N} \colon \mathrm{H}^{N-1}(X(\mathcal{K}^{p})_{\overline{\mathbb{Q}}_{p}},\Omega^{1}_{N,\lambda}) &\hookrightarrow \mathrm{H}^{N-1}(X(\mathcal{K}^{p})_{\overline{\mathbb{Q}}_{p}},\mathsf{Ind}_{\mathcal{P}}^{\mathcal{K}}\mathbb{Z}_{\lambda}) \\ &= \mathrm{H}^{N-1}(\widetilde{X}(\mathcal{K}^{p})_{\overline{\mathbb{Q}}_{p}},\mathbb{Z}_{\lambda}) \xrightarrow{f_{*} \circ i_{*}} \mathrm{H}^{N-1}(X(\mathcal{K}^{p})_{\overline{\mathbb{Q}}_{p}},\mathbb{Z}_{\lambda}). \end{split}$$

Denote by $\mathbb{T}_N^{\mathbb{C}}$ the abstract spherical unitary Hecke algebra over F/F^+ of rank N away from ?. Fix a finite set Σ of prime numbers not containing p, away from which K^p is hyperspecial. Then $\mathbb{T}_N^{\Sigma \cup \{p\}}$ acts on $X(K^p)$ via Hecke correspondences which are finite étale. Put $\mathbb{T}_{N,\lambda}^2 := \mathbb{T}_N^2 \otimes \mathbb{Z}_{\lambda}$.

Conjecture

Let \mathfrak{m} be a maximal ideal of $\mathbb{T}_{N,\lambda}^{\Sigma}$ that is "non-Eisenstein" such that the Satake parameters mod \mathfrak{m} at \mathfrak{p} contain q at most once. Then the map β_N is surjective after localizing at $\mathfrak{m} \cap \mathbb{T}_{N,\lambda}^{\Sigma \cup \{p\}}$.

イロト イポト イヨト イヨト

Relation with level raising

イロン イロン イヨン イヨン

Theorem (L.–Tian–Xiao)

Suppose that p is odd and q = p. Then for every maximal ideal \mathfrak{m} of $\mathbb{T}_{N,\lambda}^{\Sigma \cup \{p\}}$, the surjectivity of $(\beta_N)_{\mathfrak{m}}$ implies the surjectivity of $(\alpha_N)_{\mathfrak{m}}$.

< ロ > < 回 > < 回 > < 回 > < 回 >
Suppose that p is odd and q = p. Then for every maximal ideal \mathfrak{m} of $\mathbb{T}_{N,\lambda}^{\Sigma \cup \{p\}}$, the surjectivity of $(\beta_N)_{\mathfrak{m}}$ implies the surjectivity of $(\alpha_N)_{\mathfrak{m}}$.

The assumption that p is odd and q = p is purely for technical reasons; one should be able to remove them.

< ロ > < 回 > < 回 > < 回 > < 回 >

Suppose that p is odd and q = p. Then for every maximal ideal \mathfrak{m} of $\mathbb{T}_{N,\lambda}^{\Sigma \cup \{p\}}$, the surjectivity of $(\beta_N)_{\mathfrak{m}}$ implies the surjectivity of $(\alpha_N)_{\mathfrak{m}}$.

The assumption that p is odd and q = p is purely for technical reasons; one should be able to remove them.

Theorem (LTXZZ+LTX)

Consider a prime \mathfrak{p}^{\dagger} of F^+ inert in F and a maximal ideal \mathfrak{m}^{\dagger} of $\mathbb{T}_{N,\lambda}^{\Sigma \setminus \{p^{\dagger}\}}$ satisfying

< ロ > < 回 > < 回 > < 回 > < 回 >

Suppose that p is odd and q = p. Then for every maximal ideal \mathfrak{m} of $\mathbb{T}_{N,\lambda}^{\Sigma \cup \{p\}}$, the surjectivity of $(\beta_N)_{\mathfrak{m}}$ implies the surjectivity of $(\alpha_N)_{\mathfrak{m}}$.

The assumption that p is odd and q = p is purely for technical reasons; one should be able to remove them.

Theorem (LTXZZ+LTX)

Consider a prime \mathfrak{p}^{\dagger} of F^+ inert in F and a maximal ideal \mathfrak{m}^{\dagger} of $\mathbb{T}_{N,\lambda}^{\Sigma\setminus\{p^{\dagger}\}}$ satisfying

• $F^+_{\mathfrak{p}^{\dagger}} = \mathbb{Q}_{p^{\dagger}}$ for an odd prime number p^{\dagger} unramified in F;

イロト イヨト イヨト イヨト

Suppose that p is odd and q = p. Then for every maximal ideal \mathfrak{m} of $\mathbb{T}_{N,\lambda}^{\Sigma \cup \{p\}}$, the surjectivity of $(\beta_N)_{\mathfrak{m}}$ implies the surjectivity of $(\alpha_N)_{\mathfrak{m}}$.

The assumption that p is odd and q = p is purely for technical reasons; one should be able to remove them.

Theorem (LTXZZ+LTX)

Consider a prime \mathfrak{p}^{\dagger} of F^+ inert in F and a maximal ideal \mathfrak{m}^{\dagger} of $\mathbb{T}_{N,\lambda}^{\Sigma\setminus\{p^{\dagger}\}}$ satisfying

- $F_{n^{\dagger}}^{+} = \mathbb{Q}_{p^{\dagger}}$ for an odd prime number p^{\dagger} unramified in F;
- V is not split at \mathfrak{p}^{\dagger} ($\Rightarrow p^{\dagger} \in \Sigma$) but splits at other p^{\dagger} -adic places of F^+ ;

Suppose that p is odd and q = p. Then for every maximal ideal \mathfrak{m} of $\mathbb{T}_{N,\lambda}^{\Sigma \cup \{p\}}$, the surjectivity of $(\beta_N)_{\mathfrak{m}}$ implies the surjectivity of $(\alpha_N)_{\mathfrak{m}}$.

The assumption that p is odd and q = p is purely for technical reasons; one should be able to remove them.

Theorem (LTXZZ+LTX)

Consider a prime \mathfrak{p}^{\dagger} of F^+ inert in F and a maximal ideal \mathfrak{m}^{\dagger} of $\mathbb{T}_{N,\lambda}^{\Sigma\setminus\{p^{\dagger}\}}$ satisfying

- $F_{\mathfrak{p}^{\dagger}}^{+} = \mathbb{Q}_{p^{\dagger}}$ for an odd prime number p^{\dagger} unramified in F;
- V is not split at \mathfrak{p}^{\dagger} ($\Rightarrow p^{\dagger} \in \Sigma$) but splits at other p^{\dagger} -adic places of F^+ ;
- m[†] is "non-Eisenstein";

Suppose that p is odd and q = p. Then for every maximal ideal \mathfrak{m} of $\mathbb{T}_{N,\lambda}^{\Sigma \cup \{p\}}$, the surjectivity of $(\beta_N)_{\mathfrak{m}}$ implies the surjectivity of $(\alpha_N)_{\mathfrak{m}}$.

The assumption that p is odd and q = p is purely for technical reasons; one should be able to remove them.

Theorem (LTXZZ+LTX)

Consider a prime \mathfrak{p}^{\dagger} of F^+ inert in F and a maximal ideal \mathfrak{m}^{\dagger} of $\mathbb{T}_{N,\lambda}^{\Sigma\setminus\{p^{\dagger}\}}$ satisfying

- $F_{\mathfrak{p}^{\dagger}}^{+} = \mathbb{Q}_{p^{\dagger}}$ for an odd prime number p^{\dagger} unramified in F;
- V is not split at p^{\dagger} ($\Rightarrow p^{\dagger} \in \Sigma$) but splits at other p^{\dagger} -adic places of F^+ ;
- m[†] is "non-Eisenstein";
- the Satake parameters $\mod \mathfrak{m}^{\dagger}$ at \mathfrak{p} contain p at most once and do not contain -1;

Suppose that p is odd and q = p. Then for every maximal ideal \mathfrak{m} of $\mathbb{T}_{N,\lambda}^{\Sigma \cup \{p\}}$, the surjectivity of $(\beta_N)_{\mathfrak{m}}$ implies the surjectivity of $(\alpha_N)_{\mathfrak{m}}$.

The assumption that p is odd and q = p is purely for technical reasons; one should be able to remove them.

Theorem (LTXZZ+LTX)

Consider a prime \mathfrak{p}^{\dagger} of F^+ inert in F and a maximal ideal \mathfrak{m}^{\dagger} of $\mathbb{T}_{N,\lambda}^{\Sigma\setminus\{p^{\dagger}\}}$ satisfying

- $F_{p^{\dagger}}^{+} = \mathbb{Q}_{p^{\dagger}}$ for an odd prime number p^{\dagger} unramified in F;
- V is not split at \mathfrak{p}^{\dagger} ($\Rightarrow p^{\dagger} \in \Sigma$) but splits at other p^{\dagger} -adic places of F^+ ;
- m[†] is "non-Eisenstein";
- the Satake parameters $\mod \mathfrak{m}^{\dagger}$ at \mathfrak{p} contain p at most once and do not contain -1;
- the Satake parameters mod \mathfrak{m}^{\dagger} at \mathfrak{p}^{\dagger} contain p^{\dagger} exactly once and do not contain -1;

Suppose that p is odd and q = p. Then for every maximal ideal \mathfrak{m} of $\mathbb{T}_{N,\lambda}^{\Sigma \cup \{p\}}$, the surjectivity of $(\beta_N)_{\mathfrak{m}}$ implies the surjectivity of $(\alpha_N)_{\mathfrak{m}}$.

The assumption that p is odd and q = p is purely for technical reasons; one should be able to remove them.

Theorem (LTXZZ+LTX)

Consider a prime \mathfrak{p}^{\dagger} of F^+ inert in F and a maximal ideal \mathfrak{m}^{\dagger} of $\mathbb{T}_{N,\lambda}^{\Sigma\setminus\{p^{\dagger}\}}$ satisfying

- $F_{\mathfrak{p}^{\dagger}}^{+} = \mathbb{Q}_{p^{\dagger}}$ for an odd prime number p^{\dagger} unramified in F;
- V is not split at p^{\dagger} ($\Rightarrow p^{\dagger} \in \Sigma$) but splits at other p^{\dagger} -adic places of F^+ ;
- m[†] is "non-Eisenstein";
- the Satake parameters $\mod \mathfrak{m}^{\dagger}$ at \mathfrak{p} contain p at most once and do not contain -1;
- the Satake parameters mod \mathfrak{m}^{\dagger} at \mathfrak{p}^{\dagger} contain p^{\dagger} exactly once and do not contain -1;
- some other technical conditions ...

Suppose that p is odd and q = p. Then for every maximal ideal \mathfrak{m} of $\mathbb{T}_{N,\lambda}^{\Sigma \cup \{p\}}$, the surjectivity of $(\beta_N)_{\mathfrak{m}}$ implies the surjectivity of $(\alpha_N)_{\mathfrak{m}}$.

The assumption that p is odd and q = p is purely for technical reasons; one should be able to remove them.

Theorem (LTXZZ+LTX)

Consider a prime \mathfrak{p}^{\dagger} of F^+ inert in F and a maximal ideal \mathfrak{m}^{\dagger} of $\mathbb{T}_{N,\lambda}^{\Sigma\setminus\{p^{\dagger}\}}$ satisfying

- $F_{\mathfrak{p}^{\dagger}}^{+} = \mathbb{Q}_{p^{\dagger}}$ for an odd prime number p^{\dagger} unramified in F;
- V is not split at p^{\dagger} ($\Rightarrow p^{\dagger} \in \Sigma$) but splits at other p^{\dagger} -adic places of F^+ ;
- m[†] is "non-Eisenstein";
- the Satake parameters $\mod \mathfrak{m}^{\dagger}$ at \mathfrak{p} contain p at most once and do not contain -1;
- the Satake parameters mod \mathfrak{m}^{\dagger} at \mathfrak{p}^{\dagger} contain p^{\dagger} exactly once and do not contain -1;
- some other technical conditions ...

Put $\mathfrak{m} := \mathfrak{m}^{\dagger} \cap \mathbb{T}_{N,\lambda}^{\Sigma \cup \{p\}}$. Then $(\beta_N)_{\mathfrak{m}}$ is surjective; hence $(\alpha_N)_{\mathfrak{m}}$ is surjective as well.

<ロ> <四> <ヨ> <ヨ> 三日

The heuristic reason why $\Omega^1_{N,\lambda}$ is the factor that is responsible for the surjectivity of the map α_N is the following proposition, previously proved in [LTXZZ].

イロン イロン イヨン イヨン

The heuristic reason why $\Omega^1_{N,\lambda}$ is the factor that is responsible for the surjectivity of the map α_N is the following proposition, previously proved in [LTXZZ].

Recall that N = 2r is even and \mathcal{K} is a hyperspecial maximal subgroup of $U(V)(\mathcal{F}_{\mathfrak{p}}^+)$ with $\mathcal{P} \subseteq \mathcal{K}$ a Siegel parahoric subgroup. Similarly, write \mathcal{K}' for a special maximal subgroup of $U(V')(\mathcal{F}_{\mathfrak{p}}^+)$.

イロト イヨト イヨト イヨト

The heuristic reason why $\Omega^1_{N,\lambda}$ is the factor that is responsible for the surjectivity of the map α_N is the following proposition, previously proved in [LTXZZ].

Recall that N = 2r is even and \mathcal{K} is a hyperspecial maximal subgroup of $U(V)(\mathcal{F}_{\mathfrak{p}}^+)$ with $\mathcal{P} \subseteq \mathcal{K}$ a Siegel parahoric subgroup. Similarly, write \mathcal{K}' for a special maximal subgroup of $U(V')(\mathcal{F}_{\mathfrak{p}}^+)$.

Write $\Omega_{N,\mathbb{C}}^{j}$ for the corresponding factor of $\mathbb{C}[\mathcal{P} \setminus \mathcal{K}]$ with complex coefficients for $0 \leq j \leq r$.

The heuristic reason why $\Omega^1_{N,\lambda}$ is the factor that is responsible for the surjectivity of the map α_N is the following proposition, previously proved in [LTXZZ].

Recall that N = 2r is even and \mathcal{K} is a hyperspecial maximal subgroup of $U(V)(\mathcal{F}_{\mathfrak{p}}^+)$ with $\mathcal{P} \subseteq \mathcal{K}$ a Siegel parahoric subgroup. Similarly, write \mathcal{K}' for a special maximal subgroup of $U(V')(\mathcal{F}_{\mathfrak{p}}^+)$.

Write $\Omega_{N,\mathbb{C}}^{j}$ for the corresponding factor of $\mathbb{C}[\mathcal{P} \setminus \mathcal{K}]$ with complex coefficients for $0 \leq j \leq r$.

Proposition

Define

• S to be the set of isomorphism classes of (complex) irreducible admissible representations π of $U(V)(F_{\mathfrak{p}}^+)$ such that $\pi|_{\mathcal{K}}$ contains $\Omega^1_{N,\mathbb{C}}$ (hence π is semistable) and that the Satake parameters of π contain q;

The heuristic reason why $\Omega^1_{N,\lambda}$ is the factor that is responsible for the surjectivity of the map α_N is the following proposition, previously proved in [LTXZZ].

Recall that N = 2r is even and \mathcal{K} is a hyperspecial maximal subgroup of $U(V)(\mathcal{F}_{\mathfrak{p}}^+)$ with $\mathcal{P} \subseteq \mathcal{K}$ a Siegel parahoric subgroup. Similarly, write \mathcal{K}' for a special maximal subgroup of $U(V')(\mathcal{F}_{\mathfrak{p}}^+)$.

Write $\Omega_{N,\mathbb{C}}^{j}$ for the corresponding factor of $\mathbb{C}[\mathcal{P} \setminus \mathcal{K}]$ with complex coefficients for $0 \leq j \leq r$.

Proposition

Define

- S to be the set of isomorphism classes of (complex) irreducible admissible representations π of U(V)(F⁺_p) such that π|_K contains Ω¹_{N,C} (hence π is semistable) and that the Satake parameters of π contain q;
- S' to be the set of isomorphism classes of (complex) irreducible admissible representations π' of $U(V')(F_p^+)$ such that $\pi'|_{\mathcal{K}'}$ contains the trivial representation.

イロト イロト イヨト イヨト 二日

The heuristic reason why $\Omega^1_{N,\lambda}$ is the factor that is responsible for the surjectivity of the map α_N is the following proposition, previously proved in [LTXZZ].

Recall that N = 2r is even and \mathcal{K} is a hyperspecial maximal subgroup of $U(V)(\mathcal{F}_{\mathfrak{p}}^+)$ with $\mathcal{P} \subseteq \mathcal{K}$ a Siegel parahoric subgroup. Similarly, write \mathcal{K}' for a special maximal subgroup of $U(V')(\mathcal{F}_{\mathfrak{p}}^+)$.

Write $\Omega_{N,\mathbb{C}}^{j}$ for the corresponding factor of $\mathbb{C}[\mathcal{P} \setminus \mathcal{K}]$ with complex coefficients for $0 \leq j \leq r$.

Proposition

Define

- S to be the set of isomorphism classes of (complex) irreducible admissible representations π of $U(V)(F_p^+)$ such that $\pi|_{\mathcal{K}}$ contains $\Omega^1_{N,\mathbb{C}}$ (hence π is semistable) and that the Satake parameters of π contain q;
- S' to be the set of isomorphism classes of (complex) irreducible admissible representations π' of $U(V')(F_p^+)$ such that $\pi'|_{\mathcal{K}'}$ contains the trivial representation.

Then there is a unique bijection between S and S' such that π and π' correspond if and only if $BC(\pi) \simeq BC(\pi')$.

イロト イロト イヨト イヨト 二日

<ロ> <四> <ヨ> <ヨ> 三日

The surjectivity of $(\alpha_N)_{\mathfrak{m}}$ can provide a (second) explicit reciprocity law for the diagonal cycle on the Shimura variety associated with $U_n \times U_{n+1}$, which is the arithmetic avatar of the Rankin–Selberg integral.

< ロ > < 回 > < 回 > < 回 > < 回 >

The surjectivity of $(\alpha_N)_{\mathfrak{m}}$ can provide a (second) explicit reciprocity law for the diagonal cycle on the Shimura variety associated with $U_n \times U_{n+1}$, which is the arithmetic avatar of the Rankin–Selberg integral.

Consider a hermitian space V_n over F/F^+ as before but of rank n. Put $V_{n+1} := V_n \oplus F$.e with e of length 1. We have corresponding unitary groups G_n and G_{n+1} , with a natural embedding $G_n \hookrightarrow G_{n+1}$ as the stabilizer of e.

イロト 不得 トイヨト イヨト 二日

The surjectivity of $(\alpha_N)_{\mathfrak{m}}$ can provide a (second) explicit reciprocity law for the diagonal cycle on the Shimura variety associated with $U_n \times U_{n+1}$, which is the arithmetic avatar of the Rankin–Selberg integral.

Consider a hermitian space V_n over F/F^+ as before but of rank n. Put $V_{n+1} := V_n \oplus F.e$ with e of length 1. We have corresponding unitary groups G_n and G_{n+1} , with a natural embedding $G_n \hookrightarrow G_{n+1}$ as the stabilizer of e. Fix a pair of open compact subgroups (K_n^p, K_{n+1}^p) satisfying $K_n^p \subseteq K_{n+1}^p \cap G_n(\mathbb{A}^{\infty,p})$. Then we have a natural morphism

$$\sigma_X\colon X(K^p_n)\to X(K^p_{n+1})$$

over \mathbb{Z}_{q^2} , which is finite.

イロト 不得 トイヨト イヨト 二日

The surjectivity of $(\alpha_N)_{\mathfrak{m}}$ can provide a (second) explicit reciprocity law for the diagonal cycle on the Shimura variety associated with $U_n \times U_{n+1}$, which is the arithmetic avatar of the Rankin–Selberg integral.

Consider a hermitian space V_n over F/F^+ as before but of rank n. Put $V_{n+1} := V_n \oplus F.e$ with e of length 1. We have corresponding unitary groups G_n and G_{n+1} , with a natural embedding $G_n \hookrightarrow G_{n+1}$ as the stabilizer of e. Fix a pair of open compact subgroups (K_n^p, K_{n+1}^p) satisfying $K_n^p \subseteq K_{n+1}^p \cap G_n(\mathbb{A}^{\infty,p})$. Then we have a natural morphism

$$\sigma_X\colon X(K^p_n)\to X(K^p_{n+1})$$

over \mathbb{Z}_{q^2} , which is finite. Denote by $\Delta X(K_n^p)$ the graph of σ_X , and by

$$\mathbb{1}_{\Delta X(K_n^p)} \in \mathrm{H}^{2n}(X(K_n^p)_{\mathbb{Q}_{q^2}} \times X(K_{n+1}^p)_{\mathbb{Q}_{q^2}}, \mathbb{Z}_{\lambda}(n))$$

the absolute cycle class of $\Delta X(K_n^p)_{\mathbb{Q}_{n^2}}$.

The surjectivity of $(\alpha_N)_{\mathfrak{m}}$ can provide a (second) explicit reciprocity law for the diagonal cycle on the Shimura variety associated with $U_n \times U_{n+1}$, which is the arithmetic avatar of the Rankin–Selberg integral.

Consider a hermitian space V_n over F/F^+ as before but of rank n. Put $V_{n+1} := V_n \oplus F.e$ with e of length 1. We have corresponding unitary groups G_n and G_{n+1} , with a natural embedding $G_n \hookrightarrow G_{n+1}$ as the stabilizer of e. Fix a pair of open compact subgroups (K_n^p, K_{n+1}^p) satisfying $K_n^p \subseteq K_{n+1}^p \cap G_n(\mathbb{A}^{\infty,p})$. Then we have a natural morphism

$$\sigma_X\colon X(K^p_n)\to X(K^p_{n+1})$$

over \mathbb{Z}_{q^2} , which is finite. Denote by $\Delta X(K_n^p)$ the graph of σ_X , and by

$$\mathbb{1}_{\Delta X(K_n^p)} \in \mathrm{H}^{2n}(X(K_n^p)_{\mathbb{Q}_{q^2}} \times X(K_{n+1}^p)_{\mathbb{Q}_{q^2}}, \mathbb{Z}_{\lambda}(n))$$

the absolute cycle class of $\Delta X(K_n^p)_{\mathbb{Q}_{q^2}}$.

Assume *n* odd from now on for simplicity. Then there is a natural map

$$\sigma_S \colon S(K_n^p) \to S(K_{n+1}^p)$$

of Shimura sets as well, compatible with σ_X under basic correspondences. (When *n* is even, one has to replace σ_S by a finite correspondence.)

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

The surjectivity of $(\alpha_N)_{\mathfrak{m}}$ can provide a (second) explicit reciprocity law for the diagonal cycle on the Shimura variety associated with $U_n \times U_{n+1}$, which is the arithmetic avatar of the Rankin–Selberg integral.

Consider a hermitian space V_n over F/F^+ as before but of rank n. Put $V_{n+1} := V_n \oplus F.e$ with e of length 1. We have corresponding unitary groups G_n and G_{n+1} , with a natural embedding $G_n \hookrightarrow G_{n+1}$ as the stabilizer of e. Fix a pair of open compact subgroups (K_n^p, K_{n+1}^p) satisfying $K_n^p \subseteq K_{n+1}^p \cap G_n(\mathbb{A}^{\infty,p})$. Then we have a natural morphism

$$\sigma_X\colon X(K^p_n)\to X(K^p_{n+1})$$

over \mathbb{Z}_{q^2} , which is finite. Denote by $\Delta X(K_n^p)$ the graph of σ_X , and by

$$\mathbb{1}_{\Delta X(K_n^p)} \in \mathrm{H}^{2n}(X(K_n^p)_{\mathbb{Q}_{q^2}} \times X(K_{n+1}^p)_{\mathbb{Q}_{q^2}}, \mathbb{Z}_{\lambda}(n))$$

the absolute cycle class of $\Delta X(K_n^p)_{\mathbb{Q}_{q^2}}$.

Assume *n* odd from now on for simplicity. Then there is a natural map

$$\sigma_S\colon S(K^p_n)\to S(K^p_{n+1})$$

of Shimura sets as well, compatible with σ_X under basic correspondences. (When *n* is even, one has to replace σ_S by a finite correspondence.) Denote by $\Delta S(K_n^p)$ the graph of σ_S , and by

$$\mathbb{1}_{\Delta S(K_n^p)} \in \mathbb{Z}_{\lambda}[S(K_n^p) \times S(K_{n+1}^p)]$$

the characteristic function of $\Delta S(K_n^p)$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

<ロ> <四> <ヨ> <ヨ> 三日

Consider maximal ideals \mathfrak{m}_n and \mathfrak{m}_{n+1} of $\mathbb{T}_{n,\lambda}^{\Sigma}$ and $\mathbb{T}_{n+1,\lambda}^{\Sigma}$, and ideals \mathfrak{n}_n and \mathfrak{n}_{n+1} of $\mathbb{T}_{n,\lambda}^{\Sigma \cup \{\rho\}}$ and $\mathbb{T}_{n+1,\lambda}^{\Sigma \cup \{\rho\}}$ containing some positive powers of $\mathfrak{m}_n \cap \mathbb{T}_{n,\lambda}^{\Sigma \cup \{\rho\}}$ and $\mathfrak{m}_{n+1} \cap \mathbb{T}_{n+1,\lambda}^{\Sigma \cup \{\rho\}}$, respectively.

イロン イロン イヨン イヨン 二日

Consider maximal ideals \mathfrak{m}_n and \mathfrak{m}_{n+1} of $\mathbb{T}_{n,\lambda}^{\Sigma}$ and $\mathbb{T}_{n+1,\lambda}^{\Sigma}$, and ideals \mathfrak{n}_n and \mathfrak{n}_{n+1} of $\mathbb{T}_{n,\lambda}^{\Sigma \cup \{p\}}$ and $\mathbb{T}_{n+1,\lambda}^{\Sigma \cup \{p\}}$ containing some positive powers of $\mathfrak{m}_n \cap \mathbb{T}_{n,\lambda}^{\Sigma \cup \{p\}}$ and $\mathfrak{m}_{n+1} \cap \mathbb{T}_{n+1,\lambda}^{\Sigma \cup \{p\}}$, respectively.

Theorem (Second explicit reciprocity law)

Suppose that

• p is odd and q = p;

Consider maximal ideals \mathfrak{m}_n and \mathfrak{m}_{n+1} of $\mathbb{T}_{n,\lambda}^{\Sigma}$ and $\mathbb{T}_{n+1,\lambda}^{\Sigma}$, and ideals \mathfrak{n}_n and \mathfrak{n}_{n+1} of $\mathbb{T}_{n,\lambda}^{\Sigma \cup \{\rho\}}$ and $\mathbb{T}_{n+1,\lambda}^{\Sigma \cup \{\rho\}}$ containing some positive powers of $\mathfrak{m}_n \cap \mathbb{T}_{n,\lambda}^{\Sigma \cup \{\rho\}}$ and $\mathfrak{m}_{n+1} \cap \mathbb{T}_{n+1,\lambda}^{\Sigma \cup \{\rho\}}$, respectively.

Theorem (Second explicit reciprocity law)

- p is odd and q = p;
- $\ell \nmid p(p^2 1);$

Consider maximal ideals \mathfrak{m}_n and \mathfrak{m}_{n+1} of $\mathbb{T}_{n,\lambda}^{\Sigma}$ and $\mathbb{T}_{n+1,\lambda}^{\Sigma}$, and ideals \mathfrak{n}_n and \mathfrak{n}_{n+1} of $\mathbb{T}_{n,\lambda}^{\Sigma \cup \{\rho\}}$ and $\mathbb{T}_{n+1,\lambda}^{\Sigma \cup \{\rho\}}$ containing some positive powers of $\mathfrak{m}_n \cap \mathbb{T}_{n,\lambda}^{\Sigma \cup \{\rho\}}$ and $\mathfrak{m}_{n+1} \cap \mathbb{T}_{n+1,\lambda}^{\Sigma \cup \{\rho\}}$, respectively.

Theorem (Second explicit reciprocity law)

- p is odd and q = p;
- $\ell \nmid p(p^2 1);$
- both \mathfrak{m}_n and \mathfrak{m}_{n+1} are "non-Eisenstein";

Consider maximal ideals \mathfrak{m}_n and \mathfrak{m}_{n+1} of $\mathbb{T}_{n,\lambda}^{\Sigma}$ and $\mathbb{T}_{n+1,\lambda}^{\Sigma}$, and ideals \mathfrak{n}_n and \mathfrak{n}_{n+1} of $\mathbb{T}_{n,\lambda}^{\Sigma \cup \{\rho\}}$ and $\mathbb{T}_{n+1,\lambda}^{\Sigma \cup \{\rho\}}$ containing some positive powers of $\mathfrak{m}_n \cap \mathbb{T}_{n,\lambda}^{\Sigma \cup \{\rho\}}$ and $\mathfrak{m}_{n+1} \cap \mathbb{T}_{n+1,\lambda}^{\Sigma \cup \{\rho\}}$, respectively.

Theorem (Second explicit reciprocity law)

- p is odd and q = p;
- $\ell \nmid p(p^2 1);$
- both \mathfrak{m}_n and \mathfrak{m}_{n+1} are "non-Eisenstein";
- the Satake parameters $mod \mathfrak{m}_n$ at \mathfrak{p} contain 1 exactly once;

Consider maximal ideals \mathfrak{m}_n and \mathfrak{m}_{n+1} of $\mathbb{T}_{n,\lambda}^{\Sigma}$ and $\mathbb{T}_{n+1,\lambda}^{\Sigma}$, and ideals \mathfrak{n}_n and \mathfrak{n}_{n+1} of $\mathbb{T}_{n,\lambda}^{\Sigma \cup \{\rho\}}$ and $\mathbb{T}_{n+1,\lambda}^{\Sigma \cup \{\rho\}}$ containing some positive powers of $\mathfrak{m}_n \cap \mathbb{T}_{n,\lambda}^{\Sigma \cup \{\rho\}}$ and $\mathfrak{m}_{n+1} \cap \mathbb{T}_{n+1,\lambda}^{\Sigma \cup \{\rho\}}$, respectively.

Theorem (Second explicit reciprocity law)

- p is odd and q = p;
- $\ell \nmid p(p^2 1);$
- both \mathfrak{m}_n and \mathfrak{m}_{n+1} are "non-Eisenstein";
- the Satake parameters $mod m_n at p$ contain 1 exactly once;
- the Satake parameters $\mod \mathfrak{m}_{n+1}$ at \mathfrak{p} contain p exactly once;

Consider maximal ideals \mathfrak{m}_n and \mathfrak{m}_{n+1} of $\mathbb{T}_{n,\lambda}^{\Sigma}$ and $\mathbb{T}_{n+1,\lambda}^{\Sigma}$, and ideals \mathfrak{n}_n and \mathfrak{n}_{n+1} of $\mathbb{T}_{n,\lambda}^{\Sigma \cup \{\rho\}}$ and $\mathbb{T}_{n+1,\lambda}^{\Sigma \cup \{\rho\}}$ containing some positive powers of $\mathfrak{m}_n \cap \mathbb{T}_{n,\lambda}^{\Sigma \cup \{\rho\}}$ and $\mathfrak{m}_{n+1} \cap \mathbb{T}_{n+1,\lambda}^{\Sigma \cup \{\rho\}}$, respectively.

Theorem (Second explicit reciprocity law)

- p is odd and q = p;
- $\ell \nmid p(p^2 1);$
- both \mathfrak{m}_n and \mathfrak{m}_{n+1} are "non-Eisenstein";
- the Satake parameters mod m_n at p contain 1 exactly once;
- the Satake parameters $\mod \mathfrak{m}_{n+1}$ at \mathfrak{p} contain p exactly once;
- the Satake parameters $\mod \mathfrak{m}_n \boxtimes \mathfrak{m}_{n+1}$ at \mathfrak{p} contain p exactly once.

Consider maximal ideals \mathfrak{m}_n and \mathfrak{m}_{n+1} of $\mathbb{T}_{n,\lambda}^{\Sigma}$ and $\mathbb{T}_{n+1,\lambda}^{\Sigma}$, and ideals \mathfrak{n}_n and \mathfrak{n}_{n+1} of $\mathbb{T}_{n,\lambda}^{\Sigma \cup \{p\}}$ and $\mathbb{T}_{n+1,\lambda}^{\Sigma \cup \{p\}}$ containing some positive powers of $\mathfrak{m}_n \cap \mathbb{T}_{n,\lambda}^{\Sigma \cup \{p\}}$ and $\mathfrak{m}_{n+1} \cap \mathbb{T}_{n+1,\lambda}^{\Sigma \cup \{p\}}$, respectively.

Theorem (Second explicit reciprocity law)

Suppose that

- p is odd and q = p;
- $\ell \nmid p(p^2 1);$
- both \mathfrak{m}_n and \mathfrak{m}_{n+1} are "non-Eisenstein";
- the Satake parameters $mod \mathfrak{m}_n$ at \mathfrak{p} contain 1 exactly once;
- the Satake parameters $\mod \mathfrak{m}_{n+1}$ at \mathfrak{p} contain p exactly once;
- the Satake parameters $\mod \mathfrak{m}_n \boxtimes \mathfrak{m}_{n+1}$ at \mathfrak{p} contain p exactly once.

Then

$$\begin{split} \exp_{\lambda}\left(\mathbb{1}_{\Delta X(K_{n}^{p})}, \mathrm{H}^{2n}(X(K_{n}^{p})_{\mathbb{Q}_{q^{2}}} \times X(K_{n+1}^{p})_{\mathbb{Q}_{q^{2}}}, \mathbb{Z}_{\lambda}(n))/(\mathfrak{n}_{n}, \mathfrak{n}_{n+1})\right) \\ & \leq \exp_{\lambda}\left(\mathbb{1}_{\Delta S(K_{n}^{p})}, \mathbb{Z}_{\lambda}[S(K_{n}^{p}) \times S(K_{n+1}^{p})]/(\mathfrak{n}_{n}, \mathfrak{n}_{n+1})\right) \end{split}$$

holds. Here, for a torsion \mathbb{Z}_{λ} -module M and $m \in M$, $\exp_{\lambda}(m, M)$ denotes the smallest nonnegative integer e such that $\lambda^{e}m = 0$.

Consider maximal ideals \mathfrak{m}_n and \mathfrak{m}_{n+1} of $\mathbb{T}_{n,\lambda}^{\Sigma}$ and $\mathbb{T}_{n+1,\lambda}^{\Sigma}$, and ideals \mathfrak{n}_n and \mathfrak{n}_{n+1} of $\mathbb{T}_{n,\lambda}^{\Sigma \cup \{p\}}$ and $\mathbb{T}_{n+1,\lambda}^{\Sigma \cup \{p\}}$ containing some positive powers of $\mathfrak{m}_n \cap \mathbb{T}_{n,\lambda}^{\Sigma \cup \{p\}}$ and $\mathfrak{m}_{n+1} \cap \mathbb{T}_{n+1,\lambda}^{\Sigma \cup \{p\}}$, respectively.

Theorem (Second explicit reciprocity law)

Suppose that

- p is odd and q = p;
- $\ell \nmid p(p^2 1);$
- both \mathfrak{m}_n and \mathfrak{m}_{n+1} are "non-Eisenstein";
- the Satake parameters $mod \mathfrak{m}_n$ at \mathfrak{p} contain 1 exactly once;
- the Satake parameters $\mod \mathfrak{m}_{n+1}$ at \mathfrak{p} contain p exactly once;
- the Satake parameters $\mod \mathfrak{m}_n \boxtimes \mathfrak{m}_{n+1}$ at \mathfrak{p} contain p exactly once.

Then

$$\begin{split} \exp_{\lambda}\left(\mathbb{1}_{\Delta X(K_{n}^{\rho})}, \mathrm{H}^{2n}(X(K_{n}^{\rho})_{\mathbb{Q}_{q^{2}}} \times X(K_{n+1}^{\rho})_{\mathbb{Q}_{q^{2}}}, \mathbb{Z}_{\lambda}(n))/(\mathfrak{n}_{n}, \mathfrak{n}_{n+1})\right) \\ & \leq \exp_{\lambda}\left(\mathbb{1}_{\Delta S(K_{n}^{\rho})}, \mathbb{Z}_{\lambda}[S(K_{n}^{\rho}) \times S(K_{n+1}^{\rho})]/(\mathfrak{n}_{n}, \mathfrak{n}_{n+1})\right) \end{split}$$

holds. Here, for a torsion \mathbb{Z}_{λ} -module M and $m \in M$, $\exp_{\lambda}(m, M)$ denotes the smallest nonnegative integer e such that $\lambda^{e}m = 0$.

Furthermore, if $\alpha_{n+1}/\mathfrak{n}_{n+1}$ is an isomorphism, then the above inequality is an equality.

Thanks!

・ロン ・四 と ・ ヨン ・ ヨン … ヨ