
Exercise for lecture 1: Adelic interpretation of modular forms and
automorphic representations

Problem 1.1 (Dirichlet characters and Hecke characters). (1) Let N be an integer, and
let χ : (Z/NZ)× → C× be a Dirichlet character. Show that

ω : Q×\A× → Q×\A×/R×
>0

∼=
∏
p

Z×
p � (Z/NZ)× χ−−→ C×

is a Hecke character (whose restriction to R×
>0 is trivial). Especially, explain well the

middle isomorphism.
(2) Let χ and ω be as above. The grossen character ω induces a character of A×, which

must take the form of
∏

v ωv over all places v, where each ωv : Q×
v → C× is a character

of Q×
v . If v = p is coprime to N , what does ωv look like, especially what is ωp(p)?

Can you also describe other ωv?
(3) Conversely, given a grossen character ω of Q×\A× that is trivial on R×

>0. How to
determine the minimal N such that ω comes from a Dirichlet character of level N?

(4) Let F be a number field and let χ : Cl(F ) → C× be a character of the ideal class
group; show that χ induces a Hecke character of F , that is, a character of F×\A×

F .
Problem 1.2 (Adelic interpretation of Γ1-level structure). Let N be a positive integer. Let
χ be a Dirichlet character of (Z/NZ)× and let ω be defined as in Problem 1.1(1). Imitate
the argument in the lecture to show that, there is a natural embedding:

Sk(Γ1(N);χ) Acusp(GL2(Q);ω| · |k−2)

f Ff (γg∞u) = det(g∞)k−1j(g∞, i)−kf(g∞ · i)χ(u),

for every γ ∈ GL2(Q), g∞ ∈ GL2(R), u ∈ Γ̂0(N). Here Sk(Γ1(N);χ) is the space of cusp
forms such that

f
(az + b

cz + d

)
= χ(d)(cz + d)kf(z), for all

(
a b
c d

)
∈ Γ0(N).

Problem 1.3 (Classical Hecke operators vs. adelic Hecke operators). Suppose that K ⊆
GL2(Af ) is an open compact subgroup such that det(K) = Ẑ×. Let Γ := K ∩GL2(Q). Let
γ ∈ GL2(Q) be an element.

(1) Show that there exists gi ∈ GL2(Q) such that

ΓgΓ =
∐
i

giΓ and KgK =
∐
i

giK.

(Hint: first pretend that GL2(Q) is dense in GL2(Af ) to prove the statement, and
then show that the condition det(K) = Ẑ× plus the strong approximation theorem
can remedy the situation.)

(2) Assume that K = Γ̂0(N) and Γ = Γ0(N). Show that the Hecke algebra action Tℓ on
the space of modular forms is compatible with the action of 1

K
(
1 0
0 ℓ−1

)
K

on the space

of automorphic forms. (Caveat: Tℓ corresponds to the cosets Γ0(N)
(
1 0
0 ℓ

)
Γ0(N). The

inversion ℓ ℓ−1 comes from: the adelic Hecke operator comes at the place at ℓ, but
the Hecke operator for modular forms is at ∞. The transportation is through the
diagonally embedded GL2(Q).)
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(3) Moreover, if K =
∏

p Kp for Kp ⊆ GL2(Qp), we may rewrite

KgK =
∏
p

(KpgpKp) =
∏
p

(∐
i

gi,pKp

)
for elements gi,p ∈ GL2(Qp).

Problem 1.4 (adelic Hecke operators computation). Let G = GL2(Qp) and K = GL2(Zp).
For i ∈ Z≥0, write Ti := 1

K
(
pi 0
0 1

)
K

and S = 1pK . Show that the Hecke algebra H ∼=

C[T1, S
±1] and express each Ti in terms of T1 and S explicitly.

Problem 1.5 (More general Hecke algebra). Let Fv be a local field, let G an algebraic group,
and set Gv := G(Fv). Let K1 and K2 be open compact subgroups of Gv.

(1) Show that the space Cc[K1\Gv/K2] is an
(
H(Gv;K1), H(Gv;K2)

)
-bimodule.

(2) Let πv be a smooth representation of V . Show that there is an explicit map
Cc

[
K1\Gv/K2

]
× πK2

v −→ πK1
v

that is H(Gv, K1)-equivariant, and is compatible with the H(Gv, K2)-action on the
two factors on the left.
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Exercise for lecture 2: Representations over nonarchimedean local
fields

Problem 2.1 (Steinberg representations). Let G = GL2(Qp) and B the upper triangular
matrices in G. Let | · | : Q×

p → C× be the character given by p-adic absolute values.
(1) Use Frobenius reciprocity to show that there is a natural map 1 → IndG

B 1. Give
explicitly the vector in IndG

B 1 that is the image of 1.
(2) Accept that there is a natural map IndG

B δB → 1, where δB is the modulus character.
Show that the extension

0 → StG → IndG
B δB → 1 → 0

does not split. (Hint: Use Frobenius reciprocity to compute HomG(1, Ind
G
B δB).)

(3) Can you write down an explicit map IndG
B δB → 1? (This has something to do with

integration.)

Problem 2.2 (Universal principal series). Write G = GL2(Qp), B the upper triangular
matrices in G, and K = GL2(Zp). Consider the trivial representation 1 of K, and its
compactly supported induction

c-IndG
K1 = {f : G → C compactly supported; f(kg) = f(g), ∀k ∈ K, g ∈ G}.

(1) Show that EndG(c-IndG
K1)

∼= Cc[K\G/K] as algebra. (Hint: first give a map from
the RHS to LHS by using its action on c-IndG

K1, and then use Frobenius reciprocity
to show that this is an isomorphism as vector spaces)

(2) Let χ = χ1 ×χ2 : B(Qp) → C× be a character, such that both χi are unramified and
χi(p) = αi ∈ C×. Then n-IndG

Bχ admits a K-invariant vector. Show that there is a
natural map

c-IndG
K1 → n-IndG

Bχ.

which factors through

c-IndG
K1
/
(T1 − p1/2(α1 + α2), T2 − α1α2) · c-IndG

K1,

where T1 = 1
K
(
p 0
0 1

)
K

and T2 = 1pK .

(3) When α1/α2 /∈ {p, p−1}, show that

c-IndG
K1
/(

T1 − p1/2(α1 + α2), T2 − α1α2

)
→ n-IndG

Bχ

is surjective. (It is in fact an isomorphism; can you prove that?)
When α1/α2 = p or p−1. Discuss the image of the corresponding map. (This uses

Problem 2.1.)

Problem 2.3 (Explicit computation for Satake isomorphism). For G = GL2(Qp) and K =
GL2(Zp), compute explicitly the image of 1

K
(
pi 0
0 1

)
K

under the Satake isomorphism

Sat : Cc[K\G/K] → Cc[T (Qp)/T (Zp)]
W

where T denote the diagonal matrices and W ∼= S2 is the Weyl group, in which the nontrivial
element swaps the factors in T .
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Can you generalize your computation to G = GLn and for the Hecke operators associated
to the cosets

GLn(Zp)Diag
{
p, . . . , p︸ ︷︷ ︸

i

, 1, . . . , 1
}
GLn(Zp)?

Problem 2.4 (p-stabilization). Write G = GL2(Qp), B the upper triangular matrices in G,
and K = GL2(Zp). Set

Iwp =

(
Z×

p Zp

pZp Z×
p

)
.

Let χ = χ1 × χ2 : B(Qp) → C× be a character, such that both χi are unramified and
χi(p) = αi ∈ C×. Consider π = n-IndG

Bχ.
(1) Show that dim πIwp = 2 and write out a set of basis vector explicitly.
(2) Show that the natural map

(πK)⊕2 πIwp

(x, y) x−
(
p 0
0 1

)
y

is an isomorphism (except possibly for particular values of α1 and α2). Compute the
corresponding matrices (with respect to the two bases).

(3) Consider the operator Up := 1
Iwp

(
1 0
0 p

)
Iwp

∈ Cc[Iwp\G/Iwp]. Then Up acts on πIwp ;

find the eigenvalues (in terms of α1 and α2).
(4) Consider the operator ALp := 1

Iwp

(
0 1
p 0

)
Iwp

∈ Cc[Iwp\G/Iwp]. Then ALp acts on πIwp ;

find out how ALp acts on the two eigenspaces of Up (at least when α1 and α2 avoid
some particular values).

(5) Explore the structure of Cc[Iwp\G/Iwp]; what are the generators? This algebra acts
on πIwp and gives the known structure theory related to the so-called p-stabilization
process.
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Exercise for lecture 3: (g, K)-modules and Matsushima formula
Problem 3.1 (Casimir operator). Consider the three operators in sl2:

F =
(
0 0
1 0

)
, H =

(
1 0
0 −1

)
, E =

(
0 1
0 0

)
.

We explain a general way to construct Casimir operator (for semisimple Lie algebras).
(1) Consider the Killing form (which is symmetric bilinear) defined on sl2:

〈·, ·〉 : sl2 × sl2 // C
(X,Y ) � // Tr(adX ◦ adY ) ∈ C.

Show that, with respect to the basis {F,H,E}, the matrix for the symmetric bilinear Killing
form is 

0 0 4

0 8 0

4 0 0


From this, we see that the dual basis are {1

4
E, 1

8
H, 1

4
F} in order.

(2) Prove abstractly that the Killing form is G-equivariant, i.e. 〈adg(X), adg(Y )〉 = 〈X,Y 〉,
for X,Y ∈ sl2 and g ∈ sl2. From this, deduce purely abstractly that

C := E · E∗ + F · F ∗ +H ·H∗ =
1

4
(EF + FE +

1

2
H2)

commutes with sl2 in U(sl2), namely C belongs to the center Z(U(sl2)) of the universal
enveloping algebra U(sl2). (Note that: this abstract construction works for every semisimple
Lie algebra g, producing a Casimir operator of degree 2 in the center Z(U(g)) of U(g). In
the case of sl2, one can show that Z(U(sl2)) = C[C] is the polynomial algebra generated by
this degree 2 Casimir operator. For general semisimple algebra g, the generators of Z(U(g))
may of higher degree.) Remark on notation: In different literature, the definition Casimir
operator may be differed by a scalar, but this is not important.

Problem 3.2 (Computation in classification of (g, K)-modules for sl2). Let g = sl2 and
K = SO2. Set

κ =
(

0 1
−1 0

)
, R = 1

2

(
1 i
i −1

)
, L = 1

2

(
1 −i
−i −1

)
.

Then the Casimir operator is Ω = −1
4
κ2 − i

2
κ+ LR. Consider the following construction of

a (g, K)-module: starting with v1 on which π(κ)v1 = iv1, define
v2k+1 = π(Rk)v1, v1−2k = π(Lk)v1.

so that π(κ)vℓ = iℓvℓ for ℓ odd. Suppose that the Casimir operator acts by γ. Determine
whether this constructs an irreducible (p, K)-module, and when it is not irreducible, find the
the subquotients.

Also, discuss the special case of limit of discrete series.
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Exercise for lecture 4: Moduli of elliptic curves and geometric
modular forms

Problem 4.1 (Quasi-isogeny of abelian varieties versus lattices). Let A0 be an abelian
variety over C with principal polarization λ0 : A0

∼=−→ A∨
0 . Show that there is an equivalence

of categories:{
Abelian varieties A with a quasi-isogeny α : A → A0

together with a principal polarization λ : A → A∨

such that λ = α∨ ◦ λ0 ◦ α

}
∼= //

{
Ẑ-lattices Λ in V̂ (A0) which is

self-dual under the symplectic pairing

}
A � // T̂ (A)

Now, suppose that A0 is defined over Q, show that under the above correspondence, the
Ẑ-lattice Λ of V̂ (A0) is stable under the GalQ-action if and only if it comes from an abelian
variety over Q.
Problem 4.2 (Γ0-level structure). We give a moduli interpretation of modular curve with
Γ0(p)-level structure, when p is a prime number.

(1) Show that the following two functors are equivalent.

M,M′ : Sch/Z(p)
// Sets

S � // M(S) =

{
isomorphism classes of isogenies β : E → E ′

of degree p between two elliptic curves over S

}
.

S � // M′(S) =


isomorphism classes of (E,C) :

E is an elliptic curve over S

C is a subgroup of E[p] of degree p

 .

They are represented by a stack1 Y0(p) over Z(p) (but not smooth over the fiber at p). This
will not give a scheme, as we will see in Problem 4.4; however we can “pretend" that it is a
scheme for most purpose. We will come to study its geometry later.

(2) Using either moduli problem, explain what the Hecke correspondence at p looks like.
Problem 4.3 (sheaf for modular forms using rationalized moduli problem). If one uses
moduli problem of elliptic curves up to isogeny, the sheaf ω is not immediately defined. Let
us recall the moduli problem first (or rather its integral version): let p be a prime number,
and let Kp be an open compact subgroup of GL2(A(p)

f ), we define

M′
K : Schloc. noe.

/Z(p)

// Sets

S � // M′
K(S) =


equiv. classes of (E ′, η′); E ′ is an elliptic curve over S;

choosing a geom. point s̄ on each conn. component of S
η′ : A(p),⊕2

f

'−→ V̂ (p)(E ′) is a π1(S, s̄)-stable Kp-orbit of isoms.

 .

1It is a stack but not a scheme because the moduli problem is supposed to be the quotient
Y0(p)/

{
1,
(−1 0

0 −1

)}
, so every point has nontrivial automorphism. Or in the language of moduli problem,

[−1] : E → E is an automorphism of a pair (E,C) but it induces trivial map on M if this were represented
by a scheme.
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Here, V̂ (p)(E ′) is the rationalized Tate modules of E ′ away from p. We say (E ′, η′) and
(E ′′, η′′) are equivalent if there is a prime-to-p quasi-isogeny α : E ′ 99K E ′′ such that α ◦ η′ =
η′′ (as Kp-orbit). This M′

K is represented by a smooth curve M ′
K over Z(p).

Task 1: Show that this defines the same moduli problem as the usual moduli problem for
Kp GL2(Zp) (over Q).

Normally, we define the automorphic line bundle to be: take the universal elliptic curve
Euniv → M ′

K (with the zero section s), and then define ω := s∗Ω1
Euniv/M ′

K
. But the problem

here is that we don’t have an isomorphism class of universal elliptic curves but only an
equivalent class of elliptic curves.

There are two possible solutions:
(1) Fix a Ẑ(p)-lattice Λ(p) of A(p),⊕2

f that is invariant under Kp. And in the equivalence
class, choose the one where η′ : A(p),⊕2

f

'−→ V̂ (p)(E ′) matches Λ(p) with T̂ (p)(E ′). Then
define ω using that E ′.

(2) Just define ω using any E ′ in the equivalent class and show that for any two equivalent
(E ′, η′) the corresponding sheaf has a canonical isomorphism.

Problem 4.4 (Quadratic twists of elliptic curves). We discuss the question of quadratic
twist of elliptic curves.

Classical definition: For an elliptic curve E : y2 = x3 + ax + b over Q, a quadratic twist
is the elliptic curve ED : Dy2 = x3 + ax + b for some D ∈ Q typically square-free. The two
curves E and ED are not isomorphic over Q but are isomorphic over Q(

√
D). A key feature is

that there is a j-invariant attached to D as follows: the modular function j : SL2(Z)\\H
∼=−→ C

gives a bijection. (Here I used double slash to indicate “coarse moduli problem"; we may
temporarily ignore this now.) The statement above amounts to say j(E) = j(ED).

Moreover, via the isomorphism j : SL2(Z)\\H
∼=−→ C, we can endow SL2(Z)\\H a natural

Q-structure (namely, a rational point on it means a point with j-invariant in Q.) But we
still write SL2(Z)\\H for it to mean the corresponding Q-scheme.

Galois cohmology explanation: Elliptic over C (or over Q) up to isomorphism are deter-
mined by the j-invariant.

(1) Prove that, given an elliptic curve E over Q, any other elliptic curves that are isomor-
phic to E over Q but not over Q, called forms of E, are classified by H1(Q,AutQ(EQ)).

(2) Find AutQ(EQ) for all EQ. Show that unless j(E) = 0 or 1728, AutQ(EQ) = {±1}.
Deduce that in this case, all forms of E are quadratic twists.

Explanation using moduli stack: (Let use try if this explanation makes sense.) If we
consider the moduli problem of elliptic curves, call it M, it is represented by a stack. On an
open subset, it looks like U/{±I2} where U is an open subset of SL2(Z)\\H−SL2(Z){i, e2πi/3}.
Here ±I2 acts trivially on U . But as a stack, it is natural to keep this quotient. In other
words, we have a natural morphism M → SL2(Z)\\H. Again, this can be defined over Q.

Giving a j-invariant (say over Q but not at 0 or 1728) amounts to a morphism x : SpecQ →
SL2(Z)\\H, we can take the fiber product:[

SpecQ/{±1}
]

//

��

M

��
SpecQ x // SL2(Z)\\H.
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Again,
[
SpecQ/{±1}

]
is the stack given by “quotienting" SpecQ by the trivial {±1}-

action. In the fancier language, this is the classifying space for {±1}. So a SpecQ-point of[
SpecQ/{±1}

]
corresponds to a {±1}-torsor over SpecQ, that is a quadratic extension of

Q (including Q×Q).
Explicitly, for a quadratic extension Q(

√
D), we have ιD : SpecQ(

√
D) → SpecQ, equi-

variant for the {±1}-action, where −1 acts by natural Galois action on Q(
√
D) and trivially

on Q. Taking the quotient of ιD by the {±1}-action gives ιD : SpecQ →
[
SpecQ/{±1}

]
.
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Exercise for lecture 5: Tate curves and Gauss–Manin connections
Problem 5.1 (q-expansion of Up-operator). Let N ≥ 4 be an integer, and let p be a prime
number that divides N , say pr‖N for some r ≥ 1. In this case, we usually write Up for the
Hecke operator at p.

Recall that the modular curve Y1(N) classifies, for a Q-scheme S, a pair (E, i) where E is
an elliptic curve over S, and i : µN,S → E[N ] an embedding.

Let f be a Katz modular form of weight k. Then Up(f) is the Katz modular form, whose
evaluation on a test object (E, i, ω) over a Q-algebra R (such that SpecR is connected) is

Up(f)(E, i, ω) = pk−1
∑

C⊂E[p]
C 6⊆Im(i)

f(E/C, iC , ωC),

where the sum is taken over all subgroups of E[p] of order p that is different from the one
in =(i), iC is the embedding µN,S

i−→ E[N ] → E/C (as C 6⊆ Im(i), this is an inclusion), and
ωC = π̌∗(ω) with π̌ the map defined by the factorization multp : E → E/C

π̌−→ E.
Give the q-expansion expression of Up(f) in terms of that of f .

Problem 5.2 (Coherent sheaf with intergrable connection is locally free). Let X be a smooth
variety over a field k of characteristic zero. Let M be a coherent sheaf on X with an integrable
connection ∇ : M → M⊗OX

Ω1
X . The goal is to prove that M is locally free as an OX-module.

To see this, it is enough to work locally in a formal neighborhood of a point x, and hence
we may practically replace X with Spec kJx1, . . . , xnK, and then Mx is a finite kJx1, . . . , xnK-
module.

(1) Show that M admitting an integrable connection implies that Mx carries commuting
differential operators ∂x1 , . . . , ∂xn .

(2) Given any e ∈ Mx, show that the following expression∑
a1,...,an∈Z≥0

(−x1)
a1 · · · (−xn)

an

a1! · · · an!
∂a1
x1
· · · ∂an

xn
(e)

is a (or rather unique) horizontal section of Mx (namely killed by all ∂i), with the same
reduction as e modulo (x1, . . . , xn).

(3) Prove that Mx is a finite free kJx1, . . . , xnK-module. (A maybe a direct way to prove
this is to show that taking horizontal lifts of elements in a basis of Mx/(x1, . . . , xn) to M ,
there is no relation among these lift.)

Remark: This explains why Hn
dR(X/S) is locally free as a coherent sheaf (because it carries

a Gauss–Manin connection).

Problem 5.3 (Gauss–Manin connection for elliptic curves). The goal of this problem is to
compute explicitly the Gauss–Manin connection on family of elliptic curves. Let S be an
affine scheme.

(1) We start with a general elliptic curve E/S, and let ∞ denote the zero section of the
elliptic curve. Set U := E\∞ and j : U → S the natural inclusion. Show that the following
natural morphisms[

OE → Ω1
E/R

]
−→

[
OE(∞) → Ω1

E/R(2∞)
]
−→

[
j∗OU → j∗Ω

1
U/R

]
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induce isomorphisms on H1(E,−), namely the 1st hypercohomology of the complex (not
necessarily on other degrees).

(2) Prove that
H1
(
E,OE(∞) → Ω1

E/R(2∞)
) ∼= H0

(
E,Ω1

E/R(2∞)
)
.

and show that if we write y2 = x3+ax+ b for a, b ∈ Γ(S,OS), this cohomology has two basis
dx
y

and xdx
y

.
Using the last isomorphism of (1), show that dx

y
and xdx

y
give a basis of the cokernel of

H0(U,OU)
d−→ H0(U,Ω1

U/R).
(3) On the affine part U of E, show that there exists A(x), B(x) ∈ Γ(S,OS)[x] such that

A(x)(x3 + ax+ b) + B(x)(3x2 + a) = 1.

(Explicitly, if ∆ := 4a3 + 27b2, then A(x) = −18ax+27b
∆

and B(x) = 6ax2−9bx+4a2

∆
)

Using this, deduce that
dx

y
= A(x)ydx+ 2B(x)dy,

as differentials in Ω1
U/R (but not in Ω1

U/k when S = Spec k[t]) (It may simplify the notation
if we write P (x) = x3 + ax+ b.)

(4) Going through the definition of Gauss–Manin connection (and use its compatibility
with its restriction to U) to give a recipe to compute, for a family of elliptic curve y2 =
x3 + a(t)x + b(t) with a(t), b(t) ∈ k[t], the Gauss–Manin connection, in terms of A(x) and
B(x) above.

Remark: the computation will be very formidable to implement in practice; we are just
talking about a way to compute Gauss–Manin connection in principle.
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Exercise for lecture 6: Galois representations associated to
modular forms

Problem 6.1. Let f : X → S be a proper smooth morphism over smooth schemes over C.
Write out the proof of Griffith transversality in general, namely the Gauss–Manin connection
sends

∇ : Fili(Hn
dR(X/S)) → Fili−1(Hn

dR(X/S))⊗ Ω1
S/C.

Show that ∇ induces a OS-coherent map gri(Hn
dR(X/S)) → gri−1(Hn

dR(X/S))⊗ Ω1
S/C.

Problem 6.2 (Hasse invariants). We first recall the general setup of relative Frobenius
(focusing on elliptic curves): Let π : E → S be a morphism of Fp-varieties, then on each
of E and S there is a Frobenius morphism FrE and FrS, given by raising the coordinate
functions to p-th power

E

E(p) E

S S

π

FrE

FrE/S

FrS

π(p) π

FrS

Here the square is the Cartesian pullback. Show that there is a natural map FrE/S that
makes the diagram commute.

When E is an elliptic curve, the relative Frobenius FrE/S facts as

E E(p) E
FrE/S

×p

V

This S-morphism V is called a Verschiebung morphism. It induces a morphism

H1
dR(E/S)

V ∗
−→ H1

dR(E
(p)/S) ∼= H1

dR(E/S)OS ,FrSOS.

It is a general fact that the image of V ∗ is precisely ωE(p)/S
∼= ωE/S ⊗OS ,FrS OS.

Explain why ωE(p)/S
∼= ω⊗p

E/S. Applying this discussion to the universal case, gives a
morphism

V ∗ : ω → ωp.

Show that this defines a canonical section h ∈ H0(YK , ω
p−1), called the Hasse invariant. Its

zeros are precisely the supersingular points.

Problem 6.3 (q-expansion of Hasse invariants). (1) From the expression of Tate curve
Tateq ∼= C×

p /q
Z viewed as rigid analytic elliptic curve, deduce that

1 → µp → Tateq[p] → Z/pZ → 1.

(2) From this, deduce that, viewing Tate curve over Zp((q)), the natural map

Tateq
mult. by p−−−−−−→ Tateqp

lifts the Frobenius morphism modulo p.
(3) Show that the Hasse invariant h has q-expansion equal to 1.
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Problem 6.4 (Counting supersingular elliptic curves). Assume that the prime p ≥ 7 for
simplicity.2 Recall that supersingular elliptic curves over Fp are in one-to-one correspondence
with their j-invariants. Classically, determine the number of j-invariants uses an explicit
form of Hasse invariant, but this can be done in a much more abstractly.

The moduli stack of elliptic curve is X(SL2(Z)); its coarse moduli space is given by taking
j-invariants j : X(SL2(Z)) → P1.

We make the computation over a cover. Consider the modular curve X(Γ(5)).3 It is
a Galois cover of X(SL2(Z)) with Galois group SL2(F5)

4 (in the sense of function field
extension, as there are ramifications at cusps).5 When compositing with the j-invariant
map, X(Γ(5)) becomes a Galois cover of P1 with Galois group PSL2(F5) ' A5.

(1) The ramification degree of the cover X(Γ(5)) → P1 at τ = i is 2, at τ = e2πi/3 is 3, and
at τ = ∞ is 5. Check using Riemann-Hurwtiz formula that the genus of X(Γ(5)) is zero.

(2) Now, assume all the computation we did in (1) works over Fp, and write X(Γ(5))
for the mod p fiber. Over X(Γ(5)), the Kodaira–Spencer isomorphism gives an isomorphism
ω⊗2 ∼= Ω1

X(Γ(5))
(logC), where C is the cusps, namely the (reduced subscheme of) the preimage

of ∞ ∈ P1
Fp

. Show that the degree of ω on X(Γ(5)) is 5, and compute the number of
supersingular points over X(Γ(5)).

(3) Prove the following statements.
• The j-invariant 0 (τ = e2πi/3) corresponds to a supersingular curve over Fp, if and

only if p ≡ 2 mod 3.
• The j-invariant 1728 (τ = i) corresponds to a supersingular curve over Fp, if and

only if p ≡ 3 mod 4.
• The number of supersingular j-invariants that are not 0 or 1728 is b p

12
c.

2One may use similar argument with Γ(3) and Γ(4) to get the result for prime p = 5.
3Here we lied a little. The genuine X(Γ(5)) by definition is over Q(ζ5), but as we consider everything over

C, we make base change X(Γ(5)) ⊗Q Q, this will split X(Γ(5)) into 4 connected component. What we use
below is one of the component.

4This is not the same as S5, as S5 has no center, but SL2(F5) sits in an exact sequence 0 → {±1} →
SL2(F5) → A5 → 1.

5This is easy to see on the moduli problem or over C.
12



Exercise for lecture 7: Siegel modular varieties, Shimura varieties
of PEL type

Problem 7.1 (Siegel half space versus Hodge filtration). Complete the proof of description
of C-points of Siegel space. In particular, explain the following two points:

(1) Why is providing a Hodge filtration for abelian varieties equivalent to giving a com-
plex structure on Λ⊗ R?

(2) Deduce that, if J =
(
A B
C D

)
gives the complex structure on Λ ⊗ R, then

(
A B
C D

)
(iIg)

belongs to H±
g .

Problem 7.2 (Siegel space as homogeneous). (1) Consider Sp2g(R) acting on Hg given by
Z 7→ (AZ +B)(CZ +D)−1. Show that this action is well-defined. What is the centralizer?

(2) Similarly consider the GSp2g(R)-action on H±
g . What is the centralizer? Observe that

this action factors through PSp2g(R). Give an example of an element which turns Hg into
H−

g .
What we are getting at here is a small subtlety for Shimura varieties, which we will

encounter later. Let G be a reductive group over R; the locally Hermitian space X we
consider is technically Gad(R)/Kad, where Gad is the quotient of G by its center, and Kad is
the maximal compact subgroup of Gad. So G(R) naturally acts on X and the action factors
through Gad(R). But the image G(R) in Gad(R) is typically only a connected component.
(3) Explain the case when G = Sp2g,R using the exact sequence 1 → Z(G) → G → Gad → 1.

Problem 7.3 (Fake moduli problem for ResF/Q GL2). We explain the moduli problem for
G = ResF/Q GL2, using a variant of the moduli problem for G′ := (ResF/Q GL2)

det∈Gm . Fix
a totally real field F . Choose and fix a set of representative {c1, . . . , ch+} of the strict ideal
class group of F , i.e. the quotient of fractional ideals of F by principal ideals generated by
totally positive elements.

(1) For each abelian variety A over some scheme S equipped with a faithful OF -action,
and for an ideal c ⊂ OF , the following definition of abelian variety A ⊗OF

c makes sense:
choose an element δ ∈ OF such that δOF ⊆ c, so that δc−1 is a genuine ideal of OF . Let

H := A[δc−1] = {x ∈ A | for every a ∈ δc−1, a · x = 0A}
be the subgroup of A killed by elements in δc−1. We define A⊗OF

c := A/H. Show that this
A⊗OF

c is independent of the choice of δ, and carry a natural action of OF .
More canonically, we view A as a group functor on all S-schemes: for an S-scheme A(T ) :=

HomS(T,A), then (A⊗OF
c)(T ) := HomS(T,A)⊗OF

c is a group functor represented by an
abelian variety (as constructed above).

Let D denote the discriminant of F , and dF the different ideal of F . For each i, Mci is the
moduli space over Z[ 1

DN
], such that for every Z[ 1

DN
]-scheme S, Mci(S) is the isomorphism

classes of triples (A, λ, i) such that
• A is an abelian scheme over S of dimension [F : Q], equipped with an action of OF ,
• λ : A⊗OF

ci
'−→ A∨ is an OF -equivariant polarization (ci-polarization),6 and

6Rigorously speaking, a ci-polarization is an isomorphism λ : A ⊗OF
ci ' A∨ such that the natural

morphism ci → HomOF
(A,A⊗ ci)

λ−→ HomOF
(A,A∨) induces an isomorphism between ci with “symmetric"

elements in HomOF
(A,A∨) and totally positive elements c+i in ci with polarizations in HomOF

(A,A∨). Here
symmetric morphism α : A → A∨ means that the dual morphism A ∼= A∨∨ α∨

−−→ A∨ is the same as α.
13



• i : d−1
F ⊗ZµN → A[N ] is an embedding of group scheme over S. (Twisting by d−1

F will
not affect this definition, but it will benefit our later discussion of compactifications.)

Define M :=
∐

i Mci ; it is a smooth scheme over Z[ 1
DN

] of dimension [F : Q].
(2) Prove that if c and c′ are two ideals in the same strict ideal class. Show that there is

an (not quite canonical) isomorphism Mc ' Mc′ .
(3) Show that O×,>0

F (totally positive units) acts on each Mc by sending
(A, λ, i) 7→ (A, uλ, i) u ∈ O×,>0

F .

Let O×
F,N denote the subgroup of O×

F consisting of elements that are congruent to 1 modulo
N . Show that the action of the subgroup (O×

F,N)
2 is trivial on each Mc.

The Shimura variety associated to G = ResF/Q GL2 with Γ1(N)-level structure is isomor-
phic to

Y1(N) := M
/(

O×,>0
F

/(
O×

F,N

)2)
A reference for more general level structure and for the complex points of this moduli prob-
lem is section 2.3 of Yichao Tian and Liang Xiao, p-adic cohomology and classicality of
overconvergent Hilbert modular forms, in Astérisque 382 (2016), 73–162.

(4) The polarization λ : A⊗OF
ci

'−→ A∨ induces an OM -linear perfect pairing
H1

dR(A/M)×
(
H1

dR(A/M)⊗OF
c−1
i

)
→ OM,

which in turn defines a natural OM ⊗Z OF -linear isomorphism
∧2

OM⊗ZOF
H1

dR(A/M) ∼= OM ⊗Z cid
−1
F

Explain where the factor dF comes from.
(5) Let L denote the Galois closure of F (

√
u; u ∈ O×,>0

F ) inside C, and let OL de-
note the ring of integers of L. We base change M to OL to define line bundles ωτ and
ϵτ := ∧2

OM
(H1

dR(A)τ ), for embeddings τ : F → L. Recall that for a paritious weight
κ = ((kτ )τ∈Σ, w) ∈ ZΣ × Z, we can define a line bundle

ωκ :=
⊗
τ∈Σ

(
ωkτ
τ ⊗OM ϵ(w−kτ )/2

τ

)
.

In a natural way, we let O×,>0
F to act on ωτ and ϵτ by, u ∈ O×

F

• sending a section s of ωτ to u−1/2 · 〈u〉∗(s), and
• sending a section s of ϵτ to u−1 · 〈u〉∗(s),

where 〈u〉 is the action of O×,>0
F on Mc mentioned above.

Show that the induced action of O×,>0
F on ωκ is compatible with the action on M and

hence we may descent ωκ to Y1(N) (but not each individual ωτ and ϵτ ).

14



Exercise for lecture 8: General theory of Shimura varieties
Problem 8.1 (h versus µ). Let T be a torus over R. Show that there is a one-to-one
correspondence between{

homomorphisms h : S → T
}

oo //
{

homomorphisms µ : Gm,C → TC
}

h � // µh

where µh : Gm,C
z 7→(z,1)−−−−→ SC ∼= Gm,C ×Gm,C

hC−→ TC.

Problem 8.2 (Shimura set associated to CM types). Let E be a CM field with F its maximal
totally real subfield. Recall that a CM type is a set of embeddings Φ ⊂ HomQ(E,C) such that
HomQ(E,C) = Φ t Φc, where Φc := {c ◦ ϕ; ϕ ∈ Φ} and c denotes the complex conjugation.
Consider the torus T := ResE/Q Gm. It comes equipped with a cocharacter

µΦ : Gm,C // TC ∼=
∏

ϕ∈Φ Gm,E ×E,ϕ C
z � // z at each ϕ ∈ Φ.

The group T admits a subgroup TQ whose R-points for a Q-algebra R is
TQ(R) =

{
x ∈ T (R) = (R⊗Q E)×; NmE/F (x) ∈ R×}.

(1) Observe that µΦ has image in TQ.
(2) By the previous problem, µΦ corresponds to hΦ : S → TR (or even hQ

Φ : S → TQ
R )

(3) Show that the reflex field EΦ of (T, {hΦ}) or (TQ, {hQ
Φ}) can be described as follows:

let Qalg denote the algebraic closure of Q in C. Let H denote the subgroup of Gal(Qalg/Q)
that stabilizers the CM type Φ, that is for any h ∈ H, {h ◦ ϕ; ϕ ∈ Φ} = Φ. Then EΦ is the
subfield of Qalg fixed by H.

(4) Take a special case: E = E0F for E0 an imaginary quadratic field and F a totally
real field. Fix one embedding τ : E0 → C. Show that this induces a CM type Φτ :=
{ϕ ∈ HomQ(E,C); ϕ|E0 = τ}. Show that the reflex field of this Φτ is just E0. What’s the
corresponding Shimura reciprocity map?

Problem 8.3 (Computation of the reflex field of a special type of Shimura curve). This type
of Shimura curve appears in the study of generalizations of Heegner points to the totally
real case.

Let F be a totally real field, and let B be a quaternion algebra over F such that there is
a unique τ0 : F → R:

B ⊗F,τ R ∼=

{
M2(R) τ = τ0

H τ 6= τ0

Let G = ResF/Q B×. Then we can define a Shimura datum for G, by taking h to be the
G(R)-conjugacy class of

h : S(R) = C× // G(R) = GL2(R)×
∏

τ 6=τ0
H×

z = x+ iy � //
((

x −y
y x

)
, 1, . . . , 1

)
.

Show that the reflex field of this Shimura datum is F embedded in C via τ0, precisely the
one that we used above.

15



(The upshot is that the Shimura curve is then defined over F embedded in C via τ0.
Somehow, one should intrinsically think of this Shimura curve defined over F canonically,
and associated to B intrinsically. Namely, if we change how F embeds into C, it will affect
accordingly how the Shimura curve over F is embedded in C.)

Problem 8.4 (Geometric connected components of Shimura varieties). Let (G,X) denote
a Shimura datum and let Gab denote the maximal abelian quotient of G and ν : G → Gab

the natural map. Then each h : S → GR in X induces the same homomorphism hab : S →
GR → Gab,R. So we have a natural morphism of Shimura data

(G,X) → (Gab, {hab}).
If K ⊆ G(Af ) is an open compact subgroup then ν(K) is an open compact subgroup of
Gab(Af ).

(This problem is taken from Milne’s Introduction to Shimura varieties, [Mi05, Theorem
5.17].) Assume that the derived subgroup Gder is simply-connected. Then we will
prove below that the natural map ShK(G,X) → Shν(K)(Gab, {hab}) “almost" induces an
isomorphism on the set of geometric connected components. More precisely, let Z denote
the center of G and set

Gab(R)† := Im(Z(R) → Gab(R)) and Gab(Q)† := Gab(Q) ∩Gab(R)†.

Then the natural map
(8.4.1) ShK(G,X) → Gab(Q)†\Gab(Af )/ν(K)

induces a bijection on the geometric connected components.
(1) First look at what this statement entails in some examples: consider G = GL2,Q,

that is the case of modular curves. In this case, the maximal abelian quotient is given by
ν = det : GL2,Q → Gab = Gm,Q. So Gab(R)† = R>0 and Gab(Q)† = Q×,>0. If we take
Γ1(N)-level structure, it corresponds to Γ̂1(N) =

{(
a b
c d

)
∈ GL2(Ẑ); c ≡ 1, d ≡ 0 (mod N)

}
.

The determinant is the entire Ẑ×. So
πgeom
0 (ShΓ̂1(N)(GL2,Q)) = Q×,>0\A×

f /Ẑ
× = {1}.

In this case, the modular curve is always connected.
On the other hand, when the level structure is Γ(N), corresponding to Γ̂(N) :=

{(
a b
c d

)
∈

GL2(Ẑ);
(
a b
c d

)
≡
(
1 0
0 1

)
(mod N)

}
, whose determinant is (1 +N Ẑ)×. In this case

πgeom
0 (ShΓ̂(N)(GL2,Q)) = Q×,>0\A×

f /(1 +N Ẑ)× = (Z/NZ)×.

We can further discuss the Galois action of Gal(Qalg/Q) on the set of geometric connected
component (which comes from the Shimura reciprocity map for Gab and µ : Gm,C → GL2,C

ν−→
Gm,C sending z → z)

Gal(Qalg/Q) → Gal(Qab/Q)
Art−−→ Q×\A×/R×

>0 = Q×
>0\A×

f .

From this, we see that the Galois action of Gal(Qalg/Q) on (Z/NZ)× is factors through
Gal(Q(ζN)/Q). There is another way to explain this: ShΓ̂(N)(GL2,Q) is an irreducible curve
over Q(ζN), but when we view it naturally over Q instead, and make base change, we see
that ShΓ̂(N)(GL2,Q)×Q C has (Z/NZ)×-geometric connected components.
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(2) Now we indicate the proof of (8.4.1). For this, we need to accept a few blackbox
theorems from [PR94, Theorem 6.4, 6.6]: (these are very useful statements)

• (vanishing of nonarchimedean cohomology for simply-connected groups) If G is simply-
connected semisimple group over Qℓ, then H1(Qℓ, G) = {1}.

• (Hasse principle for simply-connected group and adjoint group) For an algebraic
group G over Q, we define

X1
f (Q, G) := Ker

(
H1(Q, G) →

∏
ℓ6=∞

H1(Qℓ, G)
)
.

Then if G is simply-connected and semisimple, then
X1

f (Q, G) → H1(R, G)

is an isomorphism. (If G is semisimple and adjoint, this is injective.)
• If G is a simply-connected real reductive group (or a compact real reductive group),

then G(R) is connected.
• (Strong approximation for simply-connected groups) If G is a simply-connected group

over a number field F ; suppose that v is a place of F such that G(Fv) is non-compact
at each F -simple factor of G, then G(F ) is dense in G(A(v)

F ).
Applying these statements, we prove the following in turns.

• Let X+ denote the connected component of X, then the stabilizer of X+ under the
G(R) action is G(R)+ := preimage of the connected component of Gad(R) in G(R).
Set G(Q)+ := G(Q) ∩G(R)+. Then

ShK(G,X) = G(Q)+\X+ ×G(Af )/K.

• If Gder is simply-connected, then G(R)+ = Gder(R) · Z(R).
• If Gder is simply-connected, then G(Af ) → Tab(Af ) is surjective and sends open

compact subgroups to open compact subgroups.
Concludes eventually that (8.4.1) induces an isomorphism between geometric connected com-
ponents.

Remark: the geometric connected component of more general Shimura varieties is some-
what subtle, see the discussion in Deligne’s article in Corvallis.
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