Exercise for lecture 1: Adelic interpretation of modular forms and
automorphic representations

Problem 1.1 (Dirichlet characters and Hecke characters). (1) Let N be an integer, and
let x : (Z/NZ)* — C* be a Dirichlet character. Show that

w: QAN — QAN /RS, =[] 2F — (2/Nz)* 25 ¢

is a Hecke character (whose restriction to RZ is trivial). Especially, explain well the
middle isomorphism.

(2) Let x and w be as above. The grossen character w induces a character of A* which
must take the form of [, w, over all places v, where each w, : Q) — C* is a character
of QF. If v = p is coprime to N, what does w, look like, especially what is w,(p)?
Can you also describe other w,?

(3) Conversely, given a grossen character w of Q*\A* that is trivial on RZ,. How to
determine the minimal N such that w comes from a Dirichlet character of level N?

(4) Let F be a number field and let x : CI(F') — C* be a character of the ideal class
group; show that x induces a Hecke character of F', that is, a character of F*\A}.

Problem 1.2 (Adelic interpretation of I'y-level structure). Let N be a positive integer. Let
X be a Dirichlet character of (Z/NZ)* and let w be defined as in Problem [H(1). Imitate
the argument in the lecture to show that, there is a natural embedding;:

Sk<F1<N)7X> € > Acusp(GL2<Q>;w| ’ |k_2>
fr———— F(1g0ct) = det(gc)*"j(goc, 1) f (9o - 1) x(0),
for every v € GLy(Q), g0 € GL2(R), u € fo(N). Here Sip(I'1(N); x) is the space of cusp

forms such that

f(ZIS) = x(d)(cz +d)f f(z),  forall (24) € To(N).

Problem 1.3 (Classical Hecke operators vs. adelic Hecke operators). Suppose that K C

GL3(Ay) is an open compact subgroup such that det(K) = Z*. Let T := KN GL2(Q). Let
v € GLy(Q) be an element.

(1) Show that there exists g; € GL2(Q) such that
Tgl' = [J gl and KgK =]]aK.

(Hint: first pretend that GLy(Q) is dense in GL3(Af) to prove the statement, and

then show that the condition det(K) = Z* plus the strong approximation theorem
can remedy the situation.)

(2) Assume that K = [o(N) and I' = T'y(N). Show that the Hecke algebra action T} on

the space of modular forms is compatible with the action of 1 (1 0 )K on the space
0¢-!

of automorphic forms. (Caveat: T; corresponds to the cosets I'o(N)(§ 9)To(N). The

inversion ¢ ~ ¢~! comes from: the adelic Hecke operator comes at the place at £, but

the Hecke operator for modular forms is at oco. The transportation is through the

diagonally embedded GLy(Q).)
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(3) Moreover, if K =[], K, for K, C GLy(Q,), we may rewrite

st = 10555 = IT (1T )

for elements g, € GL2(Q,).

Problem 1.4 (adelic Hecke operators computation). Let G = GL2(Q,) and K = GLy(Z,).

For v € Z, write T; := ]_K(pi O)K and S = 1,x. Show that the Hecke algebra H =
01
C[T1, S*!] and express each T; in terms of T} and S explicitly.

Problem 1.5 (More general Hecke algebra). Let F), be a local field, let G an algebraic group,
and set G, := G(F,). Let Ky and K3 be open compact subgroups of G,.
(1) Show that the space C.[K1\G,/K>] is an (H(Gy; K1), H(G,; K>))-bimodule.
(2) Let m, be a smooth representation of V. Show that there is an explicit map
Ce[Ki\Go/Ks] x nie gl

that is H(G,, K1)-equivariant, and is compatible with the H(G,, K3)-action on the
two factors on the left.



Exercise for lecture 2: Representations over nonarchimedean local
fields

Problem 2.1 (Steinberg representations). Let G = GL2(Q,) and B the upper triangular
matrices in G. Let | -|: Q) — C* be the character given by p-adic absolute values.

(1) Use Frobenius reciprocity to show that there is a natural map 1 — Ind% 1. Give
explicitly the vector in Indg 1 that is the image of 1.

(2) Accept that there is a natural map Ind% §p — 1, where dp is the modulus character.
Show that the extension

0— Stg = Ind§ o -1 —0

does not split. (Hint: Use Frobenius reciprocity to compute Homg(1,Ind% 65).)
(3) Can you write down an explicit map Ind% §5 — 1? (This has something to do with
integration.)

Problem 2.2 (Universal principal series). Write G = GLy(Q,), B the upper triangular
matrices in G, and K = GLy(Z,). Consider the trivial representation 1 of K, and its
compactly supported induction

c-Ind$1 = {f : G — C compactly supported; f(kg) = f(g), Yk € K, g € G}.

(1) Show that Endg(c-Ind%1) = C.[K\G/K] as algebra. (Hint: first give a map from
the RHS to LHS by using its action on C—Indgl, and then use Frobenius reciprocity
to show that this is an isomorphism as vector spaces)

(2) Let x = x1 X x2 : B(Q,) = C* be a character, such that both x; are unramified and
xi(p) = @y € C*. Then n-Ind%y admits a K-invariant vector. Show that there is a
natural map

c-Ind%1 — n-Ind$y.
which factors through
c—Indgl/(Tl — pl/z(al + ), Ty — ayaz) - C—Indf(l,

where 1] = 1K( )K and T = 1,k.

p0
01

(3) When a;/ay ¢ {p,p'}, show that
C—Indf(l/(Tl — pl/Q(al + ), Ty — alozg) — n—Inng

is surjective. (It is in fact an isomorphism; can you prove that?)

When a;/as = p or p~!. Discuss the image of the corresponding map. (This uses
Problem £1.)

Problem 2.3 (Explicit computation for Satake isomorphism). For G = GLy(Q,) and K =
GL3(Z,), compute explicitly the image of 1K( p o)k under the Satake isomorphism
01

Sat : C.[K\G/K] — C,[T(Q,)/T(Z,)]"

where T denote the diagonal matrices and W = S, is the Weyl group, in which the nontrivial
element swaps the factors in 7T'.
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Can you generalize your computation to G = GL, and for the Hecke operators associated
to the cosets
GL,(Z,) Diag { p, . 0, 1,...,1} GL,(Z,)?

Problem 2.4 (p-stabilization). Write G = GL3(Q,), B the upper triangular matrices in G,

and K = GLy(Z,). Set
7 7
Iw, = P P
pLy Ly

Let x = x1 X x2 : B(Q,) — C* be a character, such that both x; are unramified and
Xi(p) = a; € C*. Consider 7 = n-Ind%x.

(1) Show that dim 7> = 2 and write out a set of basis vector explicitly.

(2) Show that the natural map

(k)2 (T
(z,y) —— x—(§1)y

is an isomorphism (except possibly for particular values of oy and a3). Compute the
corresponding matrices (with respect to the two bases).

(3) Consider the operator U, := 1, (301 € C.[Iw,\G/Iw,]. Then U, acts on 7"™7;
wpl 0 p)IWp
find the eigenvalues (in terms of a; and ).

(4) Consider the operator AL, := 1 (01} € C.[Iw,\G/Iw,]. Then AL, acts on 7"";
Wp\p0/)Wp
find out how AL, acts on the two eigenspaces of U, (at least when «; and ay avoid

some particular values).

(5) Explore the structure of C.[Iw,\G/Iw,|; what are the generators? This algebra acts
on 7% and gives the known structure theory related to the so-called p-stabilization
process.



Exercise for lecture 3: (g, K)-modules and Matsushima formula
Problem 3.1 (Casimir operator). Consider the three operators in sly:
F=(98), H=(s%). E=(84)
We explain a general way to construct Casimir operator (for semisimple Lie algebras).
(1) Consider the Killing form (which is symmetric bilinear) defined on sly:

<'7 > : 5[2 X 5[2 C
(X,Y) —— Tr(ady oady) € C.

Show that, with respect to the basis {F, H, E'}, the matrix for the symmetric bilinear Killing
form is

0 0 4
0 80
4 00

From this, we see that the dual basis are {}lE, %H, %F} in order.
(2) Prove abstractly that the Killing form is G-equivariant, i.e. (ad,(X),ad,(Y)) = (X,Y),
for X,Y € sl and g € sly. From this, deduce purely abstractly that

1 1
Ci=E-E +F F +H-H = (EF + FE + JH’)

commutes with sly in U(sly), namely C belongs to the center Z(U(slz)) of the universal
enveloping algebra U (sly). (Note that: this abstract construction works for every semisimple
Lie algebra g, producing a Casimir operator of degree 2 in the center Z(U(g)) of U(g). In
the case of sly, one can show that Z(U(sly)) = C[C] is the polynomial algebra generated by
this degree 2 Casimir operator. For general semisimple algebra g, the generators of Z(U(g))
may of higher degree.) Remark on notation: In different literature, the definition Casimir
operator may be differed by a scalar, but this is not important.

Problem 3.2 (Computation in classification of (g, K)-modules for sly). Let g = sly and

K = S0,. Set ‘ A
k= (&4). R=1(14). L=3(%7).
Then the Casimir operator is 2 = —}l/-i2 — 3k + LR. Consider the following construction of
a (g, K)-module: starting with v; on which 7(x)v; = ivy, define
V2k+1 = W(Rk)vh V1—2k = W(Lk)?h-

so that 7(k)v, = ilv, for £ odd. Suppose that the Casimir operator acts by 7. Determine
whether this constructs an irreducible (p, K')-module, and when it is not irreducible, find the
the subquotients.

Also, discuss the special case of limit of discrete series.



Exercise for lecture 4: Moduli of elliptic curves and geometric
modular forms

Problem 4.1 (Quasi-isogeny of abelian varieties versus lattices). Let Ay be an abelian

variety over C with principal polarization A\ : Ag =N AY. Show that there is an equivalence
of categories:

Z-lattices A in V(Ay) which is }

together with a principal polarization A : A — AY -
& P pat b self-dual under the symplectic pairing

such that A = a¥ o \go «
Al T(A)
Now, suppose that Ag is defined over QQ, show that under the above correspondence, the

Z-lattice A of V(Ap) is stable under the Galg-action if and only if it comes from an abelian
variety over Q.

{Abelian varieties A with a quasi-isogeny o : A — Ao} N {

Problem 4.2 (I'y-level structure). We give a moduli interpretation of modular curve with
Lo(p)-level structure, when p is a prime number.
(1) Show that the following two functors are equivalent.

M, M": Schyz,, Sets

isomorphism classes of isogenies 3 : £ — E’
S———=>M(5) = - :
of degree p between two elliptic curves over S

isomorphism classes of (E,C) :

S+—— M'(S) = < E is an elliptic curve over S

C' is a subgroup of E[p] of degree p

They are represented by a stack” Yy(p) over Z,) (but not smooth over the fiber at p). This
will not give a scheme, as we will see in Problem B=4; however we can “pretend’ that it is a
scheme for most purpose. We will come to study its geometry later.

(2) Using either moduli problem, explain what the Hecke correspondence at p looks like.

Problem 4.3 (sheaf for modular forms using rationalized moduli problem). If one uses
moduli problem of elliptic curves up to isogeny, the sheaf w is not immediately defined. Let
us recall the moduli problem first (or rather its integral version): let p be a prime number,

and let K? be an open compact subgroup of GLQ(AE? )), we define

loc. noe.
M« Schjy | Sets

equiv. classes of (E',n); E’is an elliptic curve over S;
S+——— M (S) = < choosing a geom. point § on each conn. component of S
n: Aﬁcp)’@ = VO(E') is a (S, §)-stable KP-orbit of isoms.

1t is a stack but not a scheme because the moduli problem is supposed to be the quotient
Yo(p)/ {1, (_01 f)l)}, so every point has nontrivial automorphism. Or in the language of moduli problem,
[-1] : E — E is an automorphism of a pair (E, C) but it induces trivial map on M if this were represented
by a scheme.
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Here, V®)(E") is the rationalized Tate modules of E' away from p. We say (E',7') and
(E",n") are equivalent if there is a prime-to-p quasi-isogeny « : E' --» E” such that con/ =
n" (as KP-orbit). This M’ is represented by a smooth curve My over Z.

Task 1: Show that this defines the same moduli problem as the usual moduli problem for
K? GLy(Z,) (over Q).

Normally, we define the automorphic line bundle to be: take the universal elliptic curve
Ewiv s ) 7o (with the zero section s), and then define w := S*Q}Sumv sy But the problem
here is that we don’t have an isomorphism class of universal elliptic curves but only an
equivalent class of elliptic curves.

There are two possible solutions:

(1) Fix a Z®)-lattice A®) of Agcp "2 that is invariant under K?. And in the equivalence

class, choose the one where 1’ : A§p),@2 = \A/(p)(E') matches A®) with f(p)(E’). Then
define w using that E'.

(2) Just define w using any E’ in the equivalent class and show that for any two equivalent
(E',n) the corresponding sheaf has a canonical isomorphism.

Problem 4.4 (Quadratic twists of elliptic curves). We discuss the question of quadratic
twist of elliptic curves.

Classical definition: For an elliptic curve E : y? = 2% + ax + b over Q, a quadratic twist
is the elliptic curve Ep : Dy? = 2® + ax + b for some D € Q typically square-free. The two
curves I¥ and Ep are not isomorphic over Q but are isomorphic over @(\/5) A key feature is

that there is a j-invariant attached to D as follows: the modular function j : SLy(Z)\\$) — C
gives a bijection. (Here I used double slash to indicate “coarse moduli problem"; we may
temporarily ignore this now.) The statement above amounts to say j(E) = j(Ep).

Moreover, via the isomorphism j : SLy(Z)\$ = C, we can endow SLy(Z)\\$ a natural
Q-structure (namely, a rational point on it means a point with j-invariant in Q.) But we
still write SLy(Z)\\$ for it to mean the corresponding Q-scheme.

Galois cohmology explanation: Elliptic over C (or over Q) up to isomorphism are deter-
mined by the j-invariant.

(1) Prove that, given an elliptic curve E over QQ, any other elliptic curves that are isomor-
phic to E over Q but not over Q, called forms of E, are classified by H'(Q, Autg(Eg)).

(2) Find Autg(Eg) for all Eg. Show that unless j(£) = 0 or 1728, Autg(Lg) = {£1}.
Deduce that in this case, all forms of E' are quadratic twists.

Explanation using moduli stack: (Let use try if this explanation makes sense.) If we
consider the moduli problem of elliptic curves, call it M, it is represented by a stack. On an
open subset, it looks like /{41, } where U is an open subset of SLy(Z)\\$—SLy(Z){i, e>"/3}.
Here £1, acts trivially on U. But as a stack, it is natural to keep this quotient. In other
words, we have a natural morphism M — SLy(Z)\\$. Again, this can be defined over Q.

Giving a j-invariant (say over Q but not at 0 or 1728) amounts to a morphism x : Spec Q —
SLo(Z)\\$), we can take the fiber product:

[ SpecQ/{+£1}]

|

SpecQ i SLo(Z)\\$.
7
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Again, [SpecQ/{%1}] is the stack given by “quotienting" SpecQ by the trivial {£1}-
action. In the fancier language, this is the classifying space for {£1}. So a Spec Q-point of
[ Spec Q/{+1}] corresponds to a {+1}-torsor over SpecQ, that is a quadratic extension of
Q (including Q x Q).

Explicitly, for a quadratic extension Q(v/D), we have ¢p : Spec Q(v/D) — Spec Q, equi-
variant for the {£1}-action, where —1 acts by natural Galois action on Q(v/D) and trivially
on Q. Taking the quotient of tp by the {£1}-action gives ¢p : Spec Q — [Spec Q/{il}].



Exercise for lecture 5: Tate curves and Gauss—Manin connections

Problem 5.1 (g-expansion of U,-operator). Let N > 4 be an integer, and let p be a prime
number that divides NV, say p"||N for some r > 1. In this case, we usually write U, for the
Hecke operator at p.

Recall that the modular curve Y;(N) classifies, for a Q-scheme S, a pair (E,i) where E is
an elliptic curve over S, and i : yy s — E[N]| an embedding.

Let f be a Katz modular form of weight k. Then U,(f) is the Katz modular form, whose
evaluation on a test object (F,i,w) over a Q-algebra R (such that Spec R is connected) is

Up(f)(E,i,w)=p"" Y f(E/C.ic,we),
CCE[p]
C¢ZIm()

where the sum is taken over all subgroups of E[p] of order p that is different from the one
in (i), ic is the embedding py s AN E[N] — E/C (as C Z Im(i), this is an inclusion), and
we = 7" (w) with 7 the map defined by the factorization mult, : £ — E/C L E.

Give the g-expansion expression of U,(f) in terms of that of f.

Problem 5.2 (Coherent sheaf with intergrable connection is locally free). Let X be a smooth
variety over a field k of characteristic zero. Let M be a coherent sheaf on X with an integrable
connection V : M — M®0, Q. The goal is to prove that M is locally free as an O x-module.

To see this, it is enough to work locally in a formal neighborhood of a point x, and hence
we may practically replace X with Spec k[zy,...,x,], and then M, is a finite kx1, ..., z,]-
module.

(1) Show that M admitting an integrable connection implies that M, carries commuting
differential operators 0,,,...,0,,, .

(2) Given any e € M,, show that the following expression

Z (—z)® - (=)™ g 9 (e)

ai!---ap!

al,...,(lnGZZO

is a (or rather unique) horizontal section of M, (namely killed by all 0;), with the same
reduction as e modulo (z1,...,z,).

(3) Prove that M, is a finite free k[zy,...,z,]-module. (A maybe a direct way to prove
this is to show that taking horizontal lifts of elements in a basis of M, /(x1,...,x,) to M,
there is no relation among these lift.)

Remark: This explains why Hjj (X/S) is locally free as a coherent sheaf (because it carries
a Gauss-Manin connection).

Problem 5.3 (Gauss—Manin connection for elliptic curves). The goal of this problem is to
compute explicitly the Gauss—Manin connection on family of elliptic curves. Let S be an
affine scheme.

(1) We start with a general elliptic curve E/S, and let co denote the zero section of the
elliptic curve. Set U := FE\oo and j : U — S the natural inclusion. Show that the following
natural morphisms

[Or = Qpr] — [Op(00) = Qp/p(200)] — 7.0 = 4.Q4/z)
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induce isomorphisms on H'(F, —), namely the 1st hypercohomology of the complex (not
necessarily on other degrees).
(2) Prove that

H'(E,0p(c) — Q%E/R(Qoo)) ~ H(E, Q}E/R(Zoo)).

and show that if we write y? = 23 +ax +0b for a,b € ['(S, Og), this cohomology has two basis

4z and zdz,
y y

Using the last isomorphism of (1), show that %‘” and % give a basis of the cokernel of
HO(U, Op) -5 HOU, Q).
(3) On the affine part U of E, show that there exists A(z), B(z) € I'(S, Og)|x] such that
A(x)(z® + az 4+ b) + B(z)(32° +a) = 1.

(Explicitly, if A := 4a® + 270?, then A(x) = =892 4 B(y) = fea’=Pbarda?)
Using this, deduce that

dv _ A(z)ydz + 2B(x)dy,
)

as differentials in ;5 (but not in Qg , when S = Speck[t]) (It may simplify the notation
if we write P(z) = 2 + ax + b.)

(4) Going through the definition of Gauss-Manin connection (and use its compatibility
with its restriction to U) to give a recipe to compute, for a family of elliptic curve y* =
23+ a(t)r + b(t) with a(t),b(t) € k[t], the Gauss—Manin connection, in terms of A(x) and
B(x) above.

Remark: the computation will be very formidable to implement in practice; we are just
talking about a way to compute Gauss—Manin connection in principle.
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Exercise for lecture 6: Galois representations associated to
modular forms

Problem 6.1. Let f : X — S be a proper smooth morphism over smooth schemes over C.
Write out the proof of Griffith transversality in general, namely the Gauss—Manin connection
sends 4 '

V : Fil'(Hjp(X/S)) = Fil'™ (Hig(X/9)) © Qe
Show that V induces a Og-coherent map gr'(Hig (X/S)) — gr' ' (Hir (X/S)) ® Q)¢

Problem 6.2 (Hasse invariants). We first recall the general setup of relative Frobenius
(focusing on elliptic curves): Let 7 : £ — S be a morphism of F,-varieties, then on each
of E and S there is a Frobenius morphism Frp and Frg, given by raising the coordinate
functions to p-th power

Here the square is the Cartesian pullback. Show that there is a natural map Frg s that
makes the diagram commute.
When FE' is an elliptic curve, the relative Frobenius Frg/g facts as

Frp/s

E

xp
This S-morphism V' is called a Verschiebung morphism. It induces a morphism

v ~
Hir(E/S) — Hin(EP/S) = Hip(B/S)ogmsOs-

It is a general fact that the image of V* is precisely wpw s = wi/s ®og rrs Os-

Explain why wge) /g = W?/DS' Applying this discussion to the universal case, gives a
morphism

V'iw — WP,

Show that this defines a canonical section h € H°(Yx,wP™!), called the Hasse invariant. Tts
zeros are precisely the supersingular points.

Problem 6.3 (g-expansion of Hasse invariants). (1) From the expression of Tate curve
Tate, = C; /q* viewed as rigid analytic elliptic curve, deduce that

1 — p, — Tate,[p] = Z/pZ — 1.

(2) From this, deduce that, viewing Tate curve over Z,((¢)), the natural map

Tate, ot by By Tateg
lifts the Frobenius morphism modulo p.

(3) Show that the Hasse invariant h has g-expansion equal to 1.
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Problem 6.4 (Counting supersingular elliptic curves). Assume that the prime p > 7 for
simplicity.? Recall that supersingular elliptic curves over F, are in one-to-one correspondence
with their j-invariants. Classically, determine the number of j-invariants uses an explicit
form of Hasse invariant, but this can be done in a much more abstractly.

The moduli stack of elliptic curve is X (SLy(Z)); its coarse moduli space is given by taking
J-invariants j : X (SLy(Z)) — PL.

We make the computation over a cover. Consider the modular curve X (I'(5)).2 It is
a Galois cover of X(SLy(Z)) with Galois group SLy(F5)? (in the sense of function field
extension, as there are ramifications at cusps).® When compositing with the j-invariant
map, X (I'(5)) becomes a Galois cover of P! with Galois group PSLy(F5) ~ As.

(1) The ramification degree of the cover X (I'(5)) — P! at 7 =i is 2, at 7 = >/ is 3, and
at 7 = 0o is 5. Check using Riemann-Hurwtiz formula that the genus of X (I'(5)) is zero.

(2) Now, assume all the computation we did in (1) works over F,, and write X (I'(5))
for the mod p fiber. Over X (I'(5)), the Kodaira-Spencer isomorphism gives an isomorphism
w®? Qly(r ) (log C), where C is the cusps, namely the (reduced subscheme of) the preimage

of oo € PL . Show that the degree of w on X(T'(5)) is 5, and compute the number of

supersingular points over X (I'(5)).
(3) Prove the following statements.
e The j-invariant 0 (1 = €?"/?) corresponds to a supersingular curve over F,, if and
only if p = 2 mod 3.
e The j-invariant 1728 (7 = i) corresponds to a supersingular curve over Fp, if and
only if p = 3 mod 4.

e The number of supersingular j-invariants that are not 0 or 1728 is | % ].

20One may use similar argument with I'(3) and T'(4) to get the result for prime p = 5.

3Here we lied a little. The genuine X (I'(5)) by definition is over Q(Cs), but as we consider everything over
C, we make base change X (I'(5)) ®g Q, this will split X (I'(5)) into 4 connected component. What we use
below is one of the component.

4This is not the same as Ss, as S5 has no center, but SLo(F5) sits in an exact sequence 0 — {£1} —
SLQ(]Fg)) — As — 1.

°This is easy to see on the moduli problem or over C.
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Exercise for lecture 7: Siegel modular varieties, Shimura varieties
of PEL type

Problem 7.1 (Siegel half space versus Hodge filtration). Complete the proof of description
of C-points of Siegel space. In particular, explain the following two points:

(1) Why is providing a Hodge filtration for abelian varieties equivalent to giving a com-
plex structure on A ® R?

(2) Deduce that, if J = (4 5) gives the complex structure on A ® R, then (4 5)(il,)
belongs to S’J;t.

Problem 7.2 (Siegel space as homogeneous). (1) Consider Sp,,(R) acting on ), given by
Zw— (AZ + B)(CZ + D)~'. Show that this action is well-defined. What is the centralizer?

(2) Similarly consider the GSp,,(R)-action on £>. What is the centralizer? Observe that
this action factors through PSp,,(R). Give an example of an element which turns £, into
.

gWhat we are getting at here is a small subtlety for Shimura varieties, which we will
encounter later. Let G be a reductive group over R; the locally Hermitian space X we
consider is technically G,q(R)/K.q, where G,q is the quotient of G by its center, and K,q is
the maximal compact subgroup of G,q. So G(R) naturally acts on X and the action factors
through G,q(R). But the image G(R) in G,qa(R) is typically only a connected component.
(3) Explain the case when G = Sp,,  using the exact sequence 1 — Z(G) = G — Gaq — 1.

Problem 7.3 (Fake moduli problem for Resp/g GL2). We explain the moduli problem for
G = Resp/q GLo, using a variant of the moduli problem for G’ := (Resy/g GLy)%"€m . Fix
a totally real field F'. Choose and fix a set of representative {cy,..., ¢;+} of the strict ideal
class group of F', i.e. the quotient of fractional ideals of F' by principal ideals generated by
totally positive elements.

(1) For each abelian variety A over some scheme S equipped with a faithful Og-action,
and for an ideal ¢ C Op, the following definition of abelian variety A ®¢, ¢ makes sense:
choose an element § € O such that 6O C ¢, so that dc~! is a genuine ideal of Op. Let

H:=Alsc!|={x € A|foreverya€dc ! a-x=04}

be the subgroup of A killed by elements in j¢~!. We define A®p,. ¢ := A/H. Show that this
A ®p,, ¢ is independent of the choice of 4, and carry a natural action of Op.

More canonically, we view A as a group functor on all S-schemes: for an S-scheme A(T) :=
Homg (T, A), then (A ®o,. ¢)(T) := Homg (T, A) ®o, ¢ is a group functor represented by an
abelian variety (as constructed above).

Let D denote the discriminant of F', and 0 the different ideal of F. For each ¢, M, is the
moduli space over Z[5], such that for every Z[55]-scheme S, M, (S) is the isomorphism
classes of triples (A, A, 4) such that

e A is an abelian scheme over S of dimension [F' : Q], equipped with an action of Op,
o \: A®p, ¢; = AV is an Op-equivariant polarization (c¢-polarization),® and

6Rigor0usly speaking, a ¢;-polarization is an isomorphism A : A ®p, ¢; ~ AY such that the natural

morphism ¢; = Homp, (4, A ® ¢;) 2 Homp,, (A, AY) induces an isomorphism between ¢; with “symmetric"
elements in Homp, (4, AV) and totally positive elements ¢;” in ¢; with polarizations in Homop,. (A, AY). Here

symmetric morphism o : A — AY means that the dual morphism A = AYY 2+ AV is the same as a.
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e i: 0. ®zun — A[N] is an embedding of group scheme over S. (Twisting by 05" will
not affect this definition, but it will benefit our later discussion of compactifications.)

Define M :=[], M,,; it is a smooth scheme over Z[5] of dimension [F : QJ.
(2) Prove that if ¢ and ¢ are two ideals in the same strict ideal class. Show that there is
an (not quite canonical) isomorphism M, ~ M,.

(3) Show that (’);’>0 (totally positive units) acts on each M, by sending
(AN 0) = (A u) i) uwe 070
Let Oy denote the subgroup of Of consisting of elements that are congruent to 1 modulo
N. Show that the action of the subgroup (Of, ~)? is trivial on each M..

The Shimura variety associated to G' = Resp g GLg with I'y(V)-level structure is isomor-
phic to

K(N) =M/ (057 (058)7)

A reference for more general level structure and for the complex points of this moduli prob-
lem is section 2.3 of Yichao Tian and Liang Xiao, p-adic cohomology and classicality of
overconvergent Hilbert modular forms, in Astérisque 382 (2016), 73-162.

(4) The polarization \ : A ®o, ¢; — A" induces an Oy-linear perfect pairing
Hig(A/M) x (Hig(A/M) @0, ') = Oum,
which in turn defines a natural O); ®7z Op-linear isomorphism
Nopesop Hir(A/ M) = Op @7 03!

Explain where the factor 0 comes from.

(5) Let L denote the Galois closure of F(y/u; u € Op~°) inside C, and let Oy de-
note the ring of integers of L. We base change M to Op to define line bundles w, and
& = Ao, (Hir(A);), for embeddings 7 : F — L. Recall that for a paritious weight
k= ((k;)res,w) € Z* x Z, we can define a line bundle

W 1= Q) (wh @o,, 2.

TED

In a natural way, we let O;’>O to act on w, and €, by, u € O

e sending a section s of w, to u='/2 - (u)*(s), and
e sending a section s of ¢, to u™! - (u)*(s),
where (u) is the action of Oy”° on M, mentioned above.
Show that the induced action of O;’>0 on w" is compatible with the action on M and
hence we may descent w® to Y1(N) (but not each individual w, and ¢, ).
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Exercise for lecture 8: General theory of Shimura varieties

Problem 8.1 (h versus p). Let T be a torus over R. Show that there is a one-to-one
correspondence between

{homomorphisms h:S— T} ~ {homomorphisms w:Gpe — T(C}

h Hh

where Mp : Gm@ M) S(C = Gm,(C X Gm’(c h;c> T(C.

Problem 8.2 (Shimura set associated to CM types). Let E be a CM field with F its maximal
totally real subfield. Recall that a CM type is a set of embeddings ® C Homg(E, C) such that
Homg(E,C) = & LI ¢, where ®° := {co ¢; ¢ € ¢} and ¢ denotes the complex conjugation.
Consider the torus 1" := Resg g Gy,. It comes equipped with a cocharacter

o - G —Te = [[ee Gme X546 C

2 ——— 2z at each ¢ € ®.

The group T admits a subgroup T whose R-points for a Q-algebra R is
T%R) = {z € T(R) = (R®q E)*; Nmp/p(z) € R*}.

(1) Observe that yg has image in T<.

(2) By the previous problem, g corresponds to he : S — Tk (or even h(% 'S — T[g)

(3) Show that the reflex field Eg of (T, {he}) or (T, {h2}) can be described as follows:
let Q%8 denote the algebraic closure of Q in C. Let H denote the subgroup of Gal(Q2/Q)
that stabilizers the CM type ®, that is for any h € H, {ho ¢; ¢ € &} = &. Then FEy is the
subfield of Q¢ fixed by H.

(4) Take a special case: E = EyF for Ey an imaginary quadratic field and F' a totally
real field. Fix one embedding 7 : Ey — C. Show that this induces a CM type ¢, =
{¢ € Homg(E,C); ¢|g, = 7}. Show that the reflex field of this @, is just E,. What’s the
corresponding Shimura reciprocity map?

Problem 8.3 (Computation of the reflex field of a special type of Shimura curve). This type
of Shimura curve appears in the study of generalizations of Heegner points to the totally
real case.

Let F' be a totally real field, and let B be a quaternion algebra over F' such that there is
a unique 7y : FF — R:
My(R) 7=m9
H T # T

Let G = Resg/g B*. Then we can define a Shimura datum for G, by taking h to be the
G(R)-conjugacy class of

h:S(R) = C* —> G(R) = GLy(R) x [, H

B®F,7Rg{

z:x+iy|—><(x*y),1,...,1>.

Yy T

Show that the reflex field of this Shimura datum is F' embedded in C via 7y, precisely the

one that we used above.
15



(The upshot is that the Shimura curve is then defined over F' embedded in C via 7.
Somehow, one should intrinsically think of this Shimura curve defined over F' canonically,
and associated to B intrinsically. Namely, if we change how F' embeds into C, it will affect
accordingly how the Shimura curve over F' is embedded in C.)

Problem 8.4 (Geometric connected components of Shimura varieties). Let (G, X) denote
a Shimura datum and let GG, denote the maximal abelian quotient of G and v : G — Gy,
the natural map. Then each h : S — Gg in X induces the same homomorphism h,, : S —
Gr — Gapr. So we have a natural morphism of Shimura data

(G,X) — (Gaba {hab})'
If K C G(Ay) is an open compact subgroup then v(K) is an open compact subgroup of
Gan(Ay).
(This problem is taken from Milne’s Introduction to Shimura varieties, [Mi0d, Theorem
5.17].) Assume that the derived subgroup G is simply-connected. Then we will
prove below that the natural map Shg(G,X) — Shy,k)(Gab, {hab}) “almost” induces an

isomorphism on the set of geometric connected components. More precisely, let Z denote
the center of G and set

G (R) := Im(Z(R) = Gu(R)) and Gup(Q)F := Gup(Q) N Gap(R).
Then the natural map
(8.4.1) Shy (G, X) = Gap(Q)\Gan(Af) /v(K)

induces a bijection on the geometric connected components.

(1) First look at what this statement entails in some examples: consider G = Gl g,
that is the case of modular curves. In this case, the maximal abelian quotient is given by
v =det : GLog — Gap = G- So Gap(R)T = R7? and G,,(Q)F = Q%0 If we take
I'; (N)-level structure, it corresponds to I't(N) = {(¢4) € GL3(Z); c=1,d =0 (mod N)}.
The determinant is the entire Z*. So

o " (Shy, (v) (GLag)) = Q*7\AF /2" = {1}.
In this case, the modular curve is always connected.

On the other hand, when the level structure is I'(V), corresponding to ['(N) := {(a8) €
GLs(Z); (%) =(§9) (mod N)}, whose determinant is (1 + NZ)*. In this case

W(g]eom(Shf(N)(GLZ,Q)) _ QX,>0\A}</(1 + NZ)X — (Z/NZ)X

We can further discuss the Galois action of Gal(Q8/Q) on the set of geometric connected
component (which comes from the Shimura reciprocity map for Gop, and i : G,,,.c — GLac SN
G c sending z — z)

Art

Gal(Q™/Q) — Gal(Q™/Q) — Q*\A* /R, = Q%,\A;.

From this, we see that the Galois action of Gal(Q¥2/Q) on (Z/NZ)* is factors through
Gal(Q(¢nv)/Q). There is another way to explain this: Shg N)(GLQQ) is an irreducible curve
over Q(¢x), but when we view it naturally over Q instead, and make base change, we see

that Shg vy (GL2g) xq € has (Z/NZ)*-geometric connected components.
16



(2) Now we indicate the proof of (BZ). For this, we need to accept a few blackbox
theorems from [PR94, Theorem 6.4, 6.6]: (these are very useful statements)
e (vanishing of nonarchimedean cohomology for simply-connected groups) If G is simply-
connected semisimple group over Qy, then H'(Q,, G) = {1}.
e (Hasse principle for simply-connected group and adjoint group) For an algebraic
group G over Q, we define

I}H(Q, G) := Ker (H'(Q,G) - [[ H'(Q., G)).
l#00
Then if GG is simply-connected and semisimple, then
HI}(Q, G) — H' (R,G)

is an isomorphism. (If G is semisimple and adjoint, this is injective.)

e If G is a simply-connected real reductive group (or a compact real reductive group),
then G(R) is connected.

e (Strong approximation for simply-connected groups) If G is a simply-connected group
over a number field F'; suppose that v is a place of F' such that G(F}) is non-compact
at each F-simple factor of G, then G(F’) is dense in G(Agf)).

Applying these statements, we prove the following in turns.

e Let X denote the connected component of X, then the stabilizer of X+ under the

G(R) action is G(R), := preimage of the connected component of G,q(R) in G(R).
Set G(Q)y = G(Q)NG(R),. Then

Shi(G, X) = G(Q)\X* x G(Ay)/K.

o If G is simply-connected, then G(R), = G4 (R) - Z(R).
o If G4 is simply-connected, then G(A;) — Tu,(Af) is surjective and sends open
compact subgroups to open compact subgroups.
Concludes eventually that (8271) induces an isomorphism between geometric connected com-
ponents.
Remark: the geometric connected component of more general Shimura varieties is some-
what subtle, see the discussion in Deligne’s article in Corvallis.
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