Exercise for lecture 1: Adelic interpretation of modular forms and automorphic representations

Problem 1.1 (Dirichlet characters and Hecke characters). (1) Let N be an integer, and let $\chi : (\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ be a Dirichlet character. Show that

$$\omega: \mathbb{Q}^{\times} \backslash \mathbb{A}^{\times} \to \mathbb{Q}^{\times} \backslash \mathbb{A}^{\times} / \mathbb{R}_{>0}^{\times} \cong \prod_{p} \mathbb{Z}_{p}^{\times} \twoheadrightarrow (\mathbb{Z}/N\mathbb{Z})^{\times} \xrightarrow{\chi} \mathbb{C}^{\times}$$

is a Hecke character (whose restriction to $\mathbb{R}_{>0}^{\times}$ is trivial). Especially, explain well the middle isomorphism.

- (2) Let χ and ω be as above. The grossen character ω induces a character of \mathbb{A}^{\times} , which must take the form of $\prod_{v} \omega_{v}$ over all places v, where each $\omega_{v} : \mathbb{Q}_{v}^{\times} \to \mathbb{C}^{\times}$ is a character of \mathbb{Q}_{v}^{\times} . If v = p is coprime to N, what does ω_{v} look like, especially what is $\omega_{p}(p)$? Can you also describe other ω_{v} ?
- (3) Conversely, given a grossen character ω of $\mathbb{Q}^{\times} \setminus \mathbb{A}^{\times}$ that is trivial on $\mathbb{R}_{>0}^{\times}$. How to determine the minimal N such that ω comes from a Dirichlet character of level N?
- (4) Let F be a number field and let $\chi : \operatorname{Cl}(F) \to \mathbb{C}^{\times}$ be a character of the ideal class group; show that χ induces a Hecke character of F, that is, a character of $F^{\times} \setminus \mathbb{A}_{F}^{\times}$.

Problem 1.2 (Adelic interpretation of Γ_1 -level structure). Let N be a positive integer. Let χ be a Dirichlet character of $(\mathbb{Z}/N\mathbb{Z})^{\times}$ and let ω be defined as in Problem 1.1(1). Imitate the argument in the lecture to show that, there is a natural embedding:

$$S_k(\Gamma_1(N);\chi) \longleftrightarrow \mathcal{A}_{cusp}(\operatorname{GL}_2(\mathbb{Q});\omega|\cdot|^{k-2})$$
$$f \longmapsto F_f(\gamma g_\infty u) = \det(g_\infty)^{k-1} j(g_\infty,i)^{-k} f(g_\infty \cdot i)\chi(u),$$

for every $\gamma \in \mathrm{GL}_2(\mathbb{Q}), g_{\infty} \in \mathrm{GL}_2(\mathbb{R}), u \in \widehat{\Gamma}_0(N)$. Here $S_k(\Gamma_1(N); \chi)$ is the space of cusp forms such that

$$f\left(\frac{az+b}{cz+d}\right) = \chi(d)(cz+d)^k f(z), \quad \text{for all } \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) \in \Gamma_0(N).$$

Problem 1.3 (Classical Hecke operators vs. adelic Hecke operators). Suppose that $K \subseteq \operatorname{GL}_2(\mathbb{A}_f)$ is an open compact subgroup such that $\det(K) = \widehat{\mathbb{Z}}^{\times}$. Let $\Gamma := K \cap \operatorname{GL}_2(\mathbb{Q})$. Let $\gamma \in \operatorname{GL}_2(\mathbb{Q})$ be an element.

(1) Show that there exists $g_i \in GL_2(\mathbb{Q})$ such that

$$\Gamma g \Gamma = \prod_{i} g_{i} \Gamma$$
 and $K g K = \prod_{i} g_{i} K$.

(Hint: first pretend that $\operatorname{GL}_2(\mathbb{Q})$ is dense in $\operatorname{GL}_2(\mathbb{A}_f)$ to prove the statement, and then show that the condition $\det(K) = \widehat{\mathbb{Z}}^{\times}$ plus the strong approximation theorem can remedy the situation.)

(2) Assume that $K = \widehat{\Gamma}_0(N)$ and $\Gamma = \Gamma_0(N)$. Show that the Hecke algebra action T_ℓ on the space of modular forms is compatible with the action of $\mathbf{1}_{K\begin{pmatrix} 1 & 0\\ 0 & \ell^{-1} \end{pmatrix}} K$ on the space

of automorphic forms. (Caveat: T_{ℓ} corresponds to the cosets $\Gamma_0(N) \begin{pmatrix} 1 & 0 \\ 0 & \ell \end{pmatrix} \Gamma_0(N)$. The inversion $\ell \rightsquigarrow \ell^{-1}$ comes from: the adelic Hecke operator comes at the place at ℓ , but the Hecke operator for modular forms is at ∞ . The transportation is through the diagonally embedded $\operatorname{GL}_2(\mathbb{Q})$.)

(3) Moreover, if $K = \prod_p K_p$ for $K_p \subseteq \operatorname{GL}_2(\mathbb{Q}_p)$, we may rewrite

$$KgK = \prod_{p} (K_{p}g_{p}K_{p}) = \prod_{p} \left(\prod_{i} g_{i,p}K_{p} \right)$$

for elements $g_{i,p} \in \mathrm{GL}_2(\mathbb{Q}_p)$.

Problem 1.4 (adelic Hecke operators computation). Let $G = \operatorname{GL}_2(\mathbb{Q}_p)$ and $K = \operatorname{GL}_2(\mathbb{Z}_p)$. For $i \in \mathbb{Z}_{\geq 0}$, write $T_i := \mathbf{1}_{K\begin{pmatrix} p^i & 0 \\ 0 & 1 \end{pmatrix}K}$ and $S = \mathbf{1}_{pK}$. Show that the Hecke algebra $\mathcal{H} \cong \mathbb{C}[T_1, S^{\pm 1}]$ and express each T_i in terms of T_1 and S explicitly.

Problem 1.5 (More general Hecke algebra). Let F_v be a local field, let G an algebraic group, and set $G_v := G(F_v)$. Let K_1 and K_2 be open compact subgroups of G_v .

- (1) Show that the space $\mathbb{C}_c[K_1 \setminus G_v/K_2]$ is an $(\mathcal{H}(G_v; K_1), \mathcal{H}(G_v; K_2))$ -bimodule.
- (2) Let π_v be a smooth representation of V. Show that there is an explicit map

$$\mathbb{C}_c[K_1 \backslash G_v / K_2] \times \pi_v^{K_2} \longrightarrow \pi_v^{K_1}$$

that is $\mathcal{H}(G_v, K_1)$ -equivariant, and is compatible with the $\mathcal{H}(G_v, K_2)$ -action on the two factors on the left.

Exercise for lecture 2: Representations over nonarchimedean local fields

Problem 2.1 (Steinberg representations). Let $G = \operatorname{GL}_2(\mathbb{Q}_p)$ and B the upper triangular matrices in G. Let $|\cdot|: \mathbb{Q}_p^{\times} \to \mathbb{C}^{\times}$ be the character given by *p*-adic absolute values.

- (1) Use Frobenius reciprocity to show that there is a natural map $\mathbf{1} \to \operatorname{Ind}_B^G \mathbf{1}$. Give explicitly the vector in $\operatorname{Ind}_B^G \mathbf{1}$ that is the image of $\mathbf{1}$.
- (2) Accept that there is a natural map $\operatorname{Ind}_B^G \delta_B \to \mathbf{1}$, where δ_B is the modulus character. Show that the extension

$$0 \to \operatorname{St}_G \to \operatorname{Ind}_B^G \delta_B \to \mathbf{1} \to 0$$

does not split. (Hint: Use Frobenius reciprocity to compute $\operatorname{Hom}_G(\mathbf{1}, \operatorname{Ind}_B^G \delta_B)$.)

(3) Can you write down an explicit map $\operatorname{Ind}_B^G \delta_B \to \mathbf{1}$? (This has something to do with integration.)

Problem 2.2 (Universal principal series). Write $G = \operatorname{GL}_2(\mathbb{Q}_p)$, *B* the upper triangular matrices in *G*, and $K = \operatorname{GL}_2(\mathbb{Z}_p)$. Consider the trivial representation **1** of *K*, and its compactly supported induction

c-Ind_K^G
$$\mathbf{1} = \{ f : G \to \mathbb{C} \text{ compactly supported}; f(kg) = f(g), \forall k \in K, g \in G \}.$$

- (1) Show that $\operatorname{End}_G(\operatorname{c-Ind}_K^G \mathbf{1}) \cong \mathbb{C}_c[K \setminus G/K]$ as algebra. (Hint: first give a map from the RHS to LHS by using its action on $\operatorname{c-Ind}_K^G \mathbf{1}$, and then use Frobenius reciprocity to show that this is an isomorphism as vector spaces)
- (2) Let $\chi = \chi_1 \times \chi_2 : B(\mathbb{Q}_p) \to \mathbb{C}^{\times}$ be a character, such that both χ_i are unramified and $\chi_i(p) = \alpha_i \in \mathbb{C}^{\times}$. Then n-Ind^G_B χ admits a K-invariant vector. Show that there is a natural map

$$\operatorname{c-Ind}_{K}^{G} \mathbf{1} \to \operatorname{n-Ind}_{B}^{G} \chi.$$

which factors through

c-Ind_K^G
$$\mathbf{1}/(T_1 - p^{1/2}(\alpha_1 + \alpha_2), T_2 - \alpha_1\alpha_2) \cdot \text{c-Ind}_K^G \mathbf{1},$$

where $T_1 = \mathbf{1}_{K \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix} K}$ and $T_2 = \mathbf{1}_{pK}$.

(3) When $\alpha_1/\alpha_2 \notin \{p, p^{-1}\}$, show that

$$\operatorname{c-Ind}_{K}^{G} \mathbf{1} / \left(T_{1} - p^{1/2}(\alpha_{1} + \alpha_{2}), T_{2} - \alpha_{1}\alpha_{2} \right) \to \operatorname{n-Ind}_{B}^{G} \chi$$

is surjective. (It is in fact an isomorphism; can you prove that?)

When $\alpha_1/\alpha_2 = p$ or p^{-1} . Discuss the image of the corresponding map. (This uses Problem 2.1.)

Problem 2.3 (Explicit computation for Satake isomorphism). For $G = \operatorname{GL}_2(\mathbb{Q}_p)$ and $K = \operatorname{GL}_2(\mathbb{Z}_p)$, compute explicitly the image of $\mathbf{1}_{K\begin{pmatrix}p^i & 0\\ 0 & 1\end{pmatrix}K}$ under the Satake isomorphism

Sat :
$$\mathbb{C}_c[K \setminus G/K] \to \mathbb{C}_c[T(\mathbb{Q}_p)/T(\mathbb{Z}_p)]^W$$

where T denote the diagonal matrices and $W \cong S_2$ is the Weyl group, in which the nontrivial element swaps the factors in T.

Can you generalize your computation to $G = GL_n$ and for the Hecke operators associated to the cosets

$$\operatorname{GL}_n(\mathbb{Z}_p)\operatorname{Diag}\left\{\underbrace{p,\ldots,p}_i,1,\ldots,1\right\}\operatorname{GL}_n(\mathbb{Z}_p)?$$

Problem 2.4 (*p*-stabilization). Write $G = \operatorname{GL}_2(\mathbb{Q}_p)$, *B* the upper triangular matrices in *G*, and $K = \operatorname{GL}_2(\mathbb{Z}_p)$. Set

$$\operatorname{Iw}_p = \begin{pmatrix} \mathbb{Z}_p^{\times} & \mathbb{Z}_p \\ p \mathbb{Z}_p & \mathbb{Z}_p^{\times} \end{pmatrix}.$$

Let $\chi = \chi_1 \times \chi_2 : B(\mathbb{Q}_p) \to \mathbb{C}^{\times}$ be a character, such that both χ_i are unramified and $\chi_i(p) = \alpha_i \in \mathbb{C}^{\times}$. Consider $\pi = \text{n-Ind}_B^G \chi$.

- (1) Show that dim $\pi^{Iw_p} = 2$ and write out a set of basis vector explicitly.
- (2) Show that the natural map

$$(\pi^{K})^{\oplus 2} \longrightarrow \pi^{\operatorname{Iw}_{p}}$$
$$(x, y) \longmapsto x - \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix} y$$

is an isomorphism (except possibly for particular values of α_1 and α_2). Compute the corresponding matrices (with respect to the two bases).

- (3) Consider the operator $U_p := \mathbf{1}_{\mathrm{Iw}_p \begin{pmatrix} 1 & 0 \\ 0 & p \end{pmatrix} \mathrm{Iw}_p} \in \mathbb{C}_c[\mathrm{Iw}_p \setminus G/\mathrm{Iw}_p]$. Then U_p acts on π^{Iw_p} ; find the eigenvalues (in terms of α_1 and α_2).
- (4) Consider the operator $\operatorname{AL}_p := \mathbf{1}_{\operatorname{Iw}_p \begin{pmatrix} 0 & 1 \\ p & 0 \end{pmatrix} \operatorname{Iw}_p} \in \mathbb{C}_c[\operatorname{Iw}_p \setminus G/\operatorname{Iw}_p]$. Then AL_p acts on $\pi^{\operatorname{Iw}_p}$; find out how AL_p acts on the two eigenspaces of U_p (at least when α_1 and α_2 avoid some particular values).
- (5) Explore the structure of $\mathbb{C}_c[\mathrm{Iw}_p \setminus G/\mathrm{Iw}_p]$; what are the generators? This algebra acts on π^{Iw_p} and gives the known structure theory related to the so-called *p*-stabilization process.

Exercise for lecture 3: (\mathfrak{g}, K) -modules and Matsushima formula

Problem 3.1 (Casimir operator). Consider the three operators in \mathfrak{sl}_2 :

$$F = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

We explain a general way to construct Casimir operator (for semisimple Lie algebras).

(1) Consider the Killing form (which is symmetric bilinear) defined on \mathfrak{sl}_2 :

$$\langle \cdot, \cdot \rangle : \qquad \mathfrak{sl}_2 \times \mathfrak{sl}_2 \longrightarrow \mathbb{C}$$

 $(X, Y) \longmapsto \operatorname{Tr}(\operatorname{ad}_X \circ \operatorname{ad}_Y) \in \mathbb{C}.$

Show that, with respect to the basis $\{F, H, E\}$, the matrix for the symmetric bilinear Killing form is

$$\begin{pmatrix} 0 & 0 & 4 \\ 0 & 8 & 0 \\ 4 & 0 & 0 \end{pmatrix}$$

From this, we see that the dual basis are $\{\frac{1}{4}E, \frac{1}{8}H, \frac{1}{4}F\}$ in order.

(2) Prove abstractly that the Killing form is G-equivariant, i.e. $\langle \mathrm{ad}_g(X), \mathrm{ad}_g(Y) \rangle = \langle X, Y \rangle$, for $X, Y \in \mathfrak{sl}_2$ and $g \in \mathfrak{sl}_2$. From this, deduce purely abstractly that

$$C := E \cdot E^* + F \cdot F^* + H \cdot H^* = \frac{1}{4}(EF + FE + \frac{1}{2}H^2)$$

commutes with \mathfrak{sl}_2 in $U(\mathfrak{sl}_2)$, namely C belongs to the center $Z(U(\mathfrak{sl}_2))$ of the universal enveloping algebra $U(\mathfrak{sl}_2)$. (Note that: this abstract construction works for every semisimple Lie algebra \mathfrak{g} , producing a *Casimir* operator of degree 2 in the center $Z(U(\mathfrak{g}))$ of $U(\mathfrak{g})$. In the case of \mathfrak{sl}_2 , one can show that $Z(U(\mathfrak{sl}_2)) = \mathbb{C}[C]$ is the polynomial algebra generated by this degree 2 Casimir operator. For general semisimple algebra \mathfrak{g} , the generators of $Z(U(\mathfrak{g}))$ may of higher degree.) Remark on notation: In different literature, the definition Casimir operator may be differed by a scalar, but this is not important.

Problem 3.2 (Computation in classification of (\mathfrak{g}, K) -modules for \mathfrak{sl}_2). Let $\mathfrak{g} = \mathfrak{sl}_2$ and $K = SO_2$. Set

$$\mathbf{r} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad R = \frac{1}{2} \begin{pmatrix} 1 & i \\ i & -1 \end{pmatrix}, \quad L = \frac{1}{2} \begin{pmatrix} 1 & -i \\ -i & -1 \end{pmatrix}.$$

Then the Casimir operator is $\Omega = -\frac{1}{4}\kappa^2 - \frac{i}{2}\kappa + LR$. Consider the following construction of a (\mathfrak{g}, K) -module: starting with v_1 on which $\pi(\kappa)v_1 = iv_1$, define

$$v_{2k+1} = \pi(R^k)v_1, \quad v_{1-2k} = \pi(L^k)v_1.$$

so that $\pi(\kappa)v_{\ell} = i\ell v_{\ell}$ for ℓ odd. Suppose that the Casimir operator acts by γ . Determine whether this constructs an irreducible (\mathfrak{p}, K) -module, and when it is not irreducible, find the the subquotients.

Also, discuss the special case of limit of discrete series.

К

Exercise for lecture 4: Moduli of elliptic curves and geometric modular forms

Problem 4.1 (Quasi-isogeny of abelian varieties versus lattices). Let A_0 be an abelian variety over \mathbb{C} with principal polarization $\lambda_0 : A_0 \xrightarrow{\cong} A_0^{\vee}$. Show that there is an equivalence of categories:

 $\begin{cases} \text{Abelian varieties } A \text{ with a quasi-isogeny } \alpha : A \to A_0 \\ \text{together with a principal polarization } \lambda : A \to A^{\vee} \\ \text{such that } \lambda = \alpha^{\vee} \circ \lambda_0 \circ \alpha \\ A \vdash & & & & \\ \hline \hline & & & \\ \hline & & \hline$

Now, suppose that A_0 is defined over \mathbb{Q} , show that under the above correspondence, the $\widehat{\mathbb{Z}}$ -lattice Λ of $\widehat{V}(A_0)$ is stable under the $\operatorname{Gal}_{\mathbb{Q}}$ -action if and only if it comes from an abelian variety over \mathbb{Q} .

Problem 4.2 (Γ_0 -level structure). We give a moduli interpretation of modular curve with $\Gamma_0(p)$ -level structure, when p is a prime number.

(1) Show that the following two functors are equivalent.

$$\mathcal{M}, \mathcal{M}': \operatorname{Sch}_{\mathbb{Z}_{(p)}} \longrightarrow \operatorname{Sets}$$

$$S \longmapsto \mathcal{M}(S) = \begin{cases} \operatorname{isomorphism \ classes \ of \ isogenies \ \beta} : E \to E' \\ \operatorname{of \ degree} \ p \ between \ two \ elliptic \ curves \ over \ S \end{cases}$$

$$S \longmapsto \mathcal{M}'(S) = \begin{cases} \operatorname{isomorphism \ classes \ of \ (E, C) : \\ E \ is \ an \ elliptic \ curve \ over \ S \\ C \ is \ a \ subgroup \ of \ E[p] \ of \ degree \ p \end{cases}$$

They are represented by a stack¹ $Y_0(p)$ over $\mathbb{Z}_{(p)}$ (but not smooth over the fiber at p). This will not give a scheme, as we will see in Problem 4.4; however we can "pretend" that it is a scheme for most purpose. We will come to study its geometry later.

(2) Using either moduli problem, explain what the Hecke correspondence at p looks like.

Problem 4.3 (sheaf for modular forms using rationalized moduli problem). If one uses moduli problem of elliptic curves up to isogeny, the sheaf ω is not immediately defined. Let us recall the moduli problem first (or rather its integral version): let p be a prime number, and let K^p be an open compact subgroup of $\operatorname{GL}_2(\mathbb{A}_f^{(p)})$, we define

$$\mathcal{M}'_{K} : \mathbf{Sch}^{\mathrm{loc. noe.}}_{/\mathbb{Z}_{(p)}} \longrightarrow \mathbf{Sets}$$

$$S \longmapsto \mathcal{M}'_{K}(S) = \begin{cases} equiv. \text{ classes of } (E', \eta'); & E' \text{ is an elliptic curve over } S; \\ \text{choosing a geom. point } \bar{s} \text{ on each conn. component of } S \\ \eta' : \mathbb{A}_{f}^{(p),\oplus 2} \xrightarrow{\simeq} \widehat{V}^{(p)}(E') \text{ is a } \pi_{1}(S, \bar{s})\text{-stable } K^{p}\text{-orbit of isoms.} \end{cases}$$

¹It is a stack but not a scheme because the moduli problem is supposed to be the quotient $Y_0(p)/\{1, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}\}$, so every point has nontrivial automorphism. Or in the language of moduli problem, $[-1]: E \to E$ is an automorphism of a pair (E, C) but it induces trivial map on \mathcal{M} if this were represented by a scheme.

Here, $\widehat{V}^{(p)}(E')$ is the rationalized Tate modules of E' away from p. We say (E', η') and (E'',η'') are equivalent if there is a *prime-to-p* quasi-isogeny $\alpha: E' \dashrightarrow E''$ such that $\alpha \circ \eta' =$ η'' (as K^p -orbit). This \mathcal{M}'_K is represented by a smooth curve M'_K over $\mathbb{Z}_{(p)}$.

Task 1: Show that this defines the same moduli problem as the usual moduli problem for $K^p \operatorname{GL}_2(\mathbb{Z}_p)$ (over \mathbb{Q}).

Normally, we define the automorphic line bundle to be: take the universal elliptic curve $E^{\text{univ}} \to M'_K$ (with the zero section s), and then define $\omega := s^* \Omega^1_{E^{\text{univ}}/M'_K}$. But the problem here is that we don't have an isomorphism class of universal elliptic curves but only an equivalent class of elliptic curves.

There are two possible solutions:

- (1) Fix a $\widehat{\mathbb{Z}}^{(p)}$ -lattice $\Lambda^{(p)}$ of $\mathbb{A}_{f}^{(p),\oplus 2}$ that is invariant under K^{p} . And in the equivalence class, choose the one where $\eta' : \mathbb{A}_{f}^{(p),\oplus 2} \xrightarrow{\simeq} \widehat{V}^{(p)}(E')$ matches $\Lambda^{(p)}$ with $\widehat{T}^{(p)}(E')$. Then define ω using that E'.
- (2) Just define ω using any E' in the equivalent class and show that for any two equivalent (E', η') the corresponding sheaf has a canonical isomorphism.

Problem 4.4 (Quadratic twists of elliptic curves). We discuss the question of quadratic twist of elliptic curves.

<u>Classical definition</u>: For an elliptic curve $E: y^2 = x^3 + ax + b$ over \mathbb{Q} , a quadratic twist is the elliptic curve $E_D: Dy^2 = x^3 + ax + b$ for some $D \in \mathbb{Q}$ typically square-free. The two curves E and E_D are not isomorphic over \mathbb{Q} but are isomorphic over $\mathbb{Q}(\sqrt{D})$. A key feature is that there is a *j*-invariant attached to D as follows: the modular function $j: \mathrm{SL}_2(\mathbb{Z}) \setminus \mathfrak{H} \xrightarrow{\cong} \mathbb{C}$ gives a bijection. (Here I used double slash to indicate "coarse moduli problem"; we may temporarily ignore this now.) The statement above amounts to say $j(E) = j(E_D)$.

Moreover, via the isomorphism $j : \mathrm{SL}_2(\mathbb{Z}) \setminus \mathfrak{H} \xrightarrow{\cong} \mathbb{C}$, we can endow $\mathrm{SL}_2(\mathbb{Z}) \setminus \mathfrak{H}$ a natural Q-structure (namely, a rational point on it means a point with *j*-invariant in \mathbb{Q} .) But we still write $\mathrm{SL}_2(\mathbb{Z}) \setminus \mathfrak{H}$ for it to mean the corresponding Q-scheme.

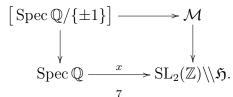
Galois cohmology explanation: Elliptic over \mathbb{C} (or over \mathbb{Q}) up to isomorphism are determined by the j-invariant.

(1) Prove that, given an elliptic curve E over \mathbb{Q} , any other elliptic curves that are isomorphic to E over \mathbb{Q} but not over \mathbb{Q} , called forms of E, are classified by $H^1(\mathbb{Q}, \operatorname{Aut}_{\overline{\mathbb{Q}}}(E_{\overline{\mathbb{Q}}}))$.

(2) Find $\operatorname{Aut}_{\overline{\mathbb{Q}}}(E_{\overline{\mathbb{Q}}})$ for all $E_{\overline{\mathbb{Q}}}$. Show that unless j(E) = 0 or 1728, $\operatorname{Aut}_{\overline{\mathbb{Q}}}(E_{\overline{\mathbb{Q}}}) = \{\pm 1\}$. Deduce that in this case, all forms of E are quadratic twists.

Explanation using moduli stack: (Let use try if this explanation makes sense.) If we consider the moduli problem of elliptic curves, call it \mathcal{M} , it is represented by a stack. On an open subset, it looks like $U/\{\pm I_2\}$ where U is an open subset of $SL_2(\mathbb{Z})\setminus \mathfrak{H}-SL_2(\mathbb{Z})\{i, e^{2\pi i/3}\}$. Here $\pm I_2$ acts trivially on U. But as a stack, it is natural to keep this quotient. In other words, we have a natural morphism $\mathcal{M} \to \mathrm{SL}_2(\mathbb{Z}) \setminus \mathfrak{H}$. Again, this can be defined over \mathbb{Q} .

Giving a *j*-invariant (say over \mathbb{Q} but not at 0 or 1728) amounts to a morphism $x : \operatorname{Spec} \mathbb{Q} \to \mathbb{Q}$ $\mathrm{SL}_2(\mathbb{Z}) \setminus \mathfrak{H}$, we can take the fiber product:



Again, $[\operatorname{Spec} \mathbb{Q}/\{\pm 1\}]$ is the stack given by "quotienting" $\operatorname{Spec} \mathbb{Q}$ by the trivial $\{\pm 1\}$ -action. In the fancier language, this is the classifying space for $\{\pm 1\}$. So a $\operatorname{Spec} \mathbb{Q}$ -point of $[\operatorname{Spec} \mathbb{Q}/\{\pm 1\}]$ corresponds to a $\{\pm 1\}$ -torsor over $\operatorname{Spec} \mathbb{Q}$, that is a quadratic extension of \mathbb{Q} (including $\mathbb{Q} \times \mathbb{Q}$).

Explicitly, for a quadratic extension $\mathbb{Q}(\sqrt{D})$, we have $\iota_D : \operatorname{Spec} \mathbb{Q}(\sqrt{D}) \to \operatorname{Spec} \mathbb{Q}$, equivariant for the $\{\pm 1\}$ -action, where -1 acts by natural Galois action on $\mathbb{Q}(\sqrt{D})$ and trivially on \mathbb{Q} . Taking the quotient of ι_D by the $\{\pm 1\}$ -action gives $\iota_D : \operatorname{Spec} \mathbb{Q} \to [\operatorname{Spec} \mathbb{Q}/\{\pm 1\}]$.

Exercise for lecture 5: Tate curves and Gauss–Manin connections

Problem 5.1 (*q*-expansion of U_p -operator). Let $N \ge 4$ be an integer, and let p be a prime number that divides N, say $p^r || N$ for some $r \ge 1$. In this case, we usually write U_p for the Hecke operator at p.

Recall that the modular curve $Y_1(N)$ classifies, for a Q-scheme S, a pair (E, i) where E is an elliptic curve over S, and $i: \mu_{N,S} \to E[N]$ an embedding.

Let f be a Katz modular form of weight k. Then $U_p(f)$ is the Katz modular form, whose evaluation on a test object (E, i, ω) over a Q-algebra R (such that Spec R is connected) is

$$U_p(f)(E, i, \omega) = p^{k-1} \sum_{\substack{C \subset E[p] \\ C \not\subseteq \operatorname{Im}(i)}} f(E/C, i_C, \omega_C),$$

where the sum is taken over all subgroups of E[p] of order p that is different from the one in $\Im(i)$, i_C is the embedding $\mu_{N,S} \xrightarrow{i} E[N] \to E/C$ (as $C \not\subseteq \text{Im}(i)$, this is an inclusion), and $\omega_C = \check{\pi}^*(\omega)$ with $\check{\pi}$ the map defined by the factorization $\text{mult}_p : E \to E/C \xrightarrow{\check{\pi}} E$.

Give the q-expansion expression of $U_p(f)$ in terms of that of f.

Problem 5.2 (Coherent sheaf with integrable connection is locally free). Let X be a smooth variety over a field k of characteristic zero. Let M be a coherent sheaf on X with an integrable connection $\nabla : M \to M \otimes_{\mathcal{O}_X} \Omega^1_X$. The goal is to prove that M is locally free as an \mathcal{O}_X -module.

To see this, it is enough to work locally in a formal neighborhood of a point x, and hence we may practically replace X with Spec $k[x_1, \ldots, x_n]$, and then M_x is a finite $k[x_1, \ldots, x_n]$ module.

(1) Show that M admitting an integrable connection implies that M_x carries commuting differential operators $\partial_{x_1}, \ldots, \partial_{x_n}$.

(2) Given any $e \in M_x$, show that the following expression

$$\sum_{a_1,\dots,a_n\in\mathbb{Z}_{\geq 0}}\frac{(-x_1)^{a_1}\cdots(-x_n)^{a_n}}{a_1!\cdots a_n!}\partial_{x_1}^{a_1}\cdots\partial_{x_n}^{a_n}(e)$$

is a (or rather unique) horizontal section of M_x (namely killed by all ∂_i), with the same reduction as e modulo (x_1, \ldots, x_n) .

(3) Prove that M_x is a finite free $k[x_1, \ldots, x_n]$ -module. (A maybe a direct way to prove this is to show that taking horizontal lifts of elements in a basis of $M_x/(x_1, \ldots, x_n)$ to M, there is no relation among these lift.)

<u>Remark</u>: This explains why $\mathcal{H}^n_{dR}(X/S)$ is locally free as a coherent sheaf (because it carries a Gauss–Manin connection).

Problem 5.3 (Gauss–Manin connection for elliptic curves). The goal of this problem is to compute explicitly the Gauss–Manin connection on family of elliptic curves. Let S be an affine scheme.

(1) We start with a general elliptic curve E/S, and let ∞ denote the zero section of the elliptic curve. Set $U := E \setminus \infty$ and $j : U \to S$ the natural inclusion. Show that the following natural morphisms

$$\begin{bmatrix} \mathcal{O}_E \to \Omega^1_{E/R} \end{bmatrix} \longrightarrow \begin{bmatrix} \mathcal{O}_E(\infty) \to \Omega^1_{E/R}(2\infty) \end{bmatrix} \longrightarrow \begin{bmatrix} j_* \mathcal{O}_U \to j_* \Omega^1_{U/R} \end{bmatrix}$$

induce isomorphisms on $\mathbb{H}^1(E, -)$, namely the 1st hypercohomology of the complex (not necessarily on other degrees).

(2) Prove that

$$H^1(E, \mathcal{O}_E(\infty) \to \Omega^1_{E/R}(2\infty)) \cong H^0(E, \Omega^1_{E/R}(2\infty)).$$

and show that if we write $y^2 = x^3 + ax + b$ for $a, b \in \Gamma(S, \mathcal{O}_S)$, this cohomology has two basis $\frac{dx}{y}$ and $\frac{xdx}{y}$.

Using the last isomorphism of (1), show that $\frac{dx}{y}$ and $\frac{xdx}{y}$ give a basis of the cokernel of $H^0(U, \mathcal{O}_U) \xrightarrow{d} H^0(U, \Omega^1_{U/R}).$

(3) On the affine part U of E, show that there exists
$$A(x), B(x) \in \Gamma(S, \mathcal{O}_S)[x]$$
 such that
 $A(x)(x^3 + ax + b) + B(x)(3x^2 + a) = 1.$

(Explicitly, if $\Delta := 4a^3 + 27b^2$, then $A(x) = \frac{-18ax + 27b}{\Delta}$ and $B(x) = \frac{6ax^2 - 9bx + 4a^2}{\Delta}$) Using this, deduce that

$$\frac{dx}{y} = A(x)ydx + 2B(x)dy,$$

as differentials in $\Omega^1_{U/R}$ (but not in $\Omega^1_{U/k}$ when $S = \operatorname{Spec} k[t]$) (It may simplify the notation if we write $P(x) = x^3 + ax + b$.)

(4) Going through the definition of Gauss–Manin connection (and use its compatibility with its restriction to U) to give a recipe to compute, for a family of elliptic curve $y^2 = x^3 + a(t)x + b(t)$ with $a(t), b(t) \in k[t]$, the Gauss–Manin connection, in terms of A(x) and B(x) above.

Remark: the computation will be very formidable to implement in practice; we are just talking about a way to compute Gauss–Manin connection in principle.

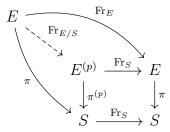
Exercise for lecture 6: Galois representations associated to modular forms

Problem 6.1. Let $f: X \to S$ be a proper smooth morphism over smooth schemes over \mathbb{C} . Write out the proof of Griffith transversality in general, namely the Gauss–Manin connection sends

$$\nabla : \operatorname{Fil}^{i}(\mathcal{H}^{n}_{\mathrm{dR}}(X/S)) \to \operatorname{Fil}^{i-1}(\mathcal{H}^{n}_{\mathrm{dR}}(X/S)) \otimes \Omega^{1}_{S/\mathbb{C}}$$

Show that ∇ induces a \mathcal{O}_S -coherent map $\operatorname{gr}^i(\mathcal{H}^n_{\operatorname{dR}}(X/S)) \to \operatorname{gr}^{i-1}(\mathcal{H}^n_{\operatorname{dR}}(X/S)) \otimes \Omega^1_{S/\mathbb{C}}$.

Problem 6.2 (Hasse invariants). We first recall the general setup of relative Frobenius (focusing on elliptic curves): Let $\pi : E \to S$ be a morphism of \mathbb{F}_p -varieties, then on each of E and S there is a Frobenius morphism Fr_E and Fr_S , given by raising the coordinate functions to p-th power



Here the square is the Cartesian pullback. Show that there is a natural map $Fr_{E/S}$ that makes the diagram commute.

When E is an elliptic curve, the relative Frobenius $Fr_{E/S}$ facts as

$$E \xrightarrow{\operatorname{Fr}_{E/S}} E^{(p)} \xrightarrow{V} E$$

This S-morphism V is called a Verschiebung morphism. It induces a morphism

$$\mathcal{H}^{1}_{\mathrm{dR}}(E/S) \xrightarrow{V^{*}} \mathcal{H}^{1}_{\mathrm{dR}}(E^{(p)}/S) \cong \mathcal{H}^{1}_{\mathrm{dR}}(E/S)_{\mathcal{O}_{S},\mathrm{Fr}_{S}}\mathcal{O}_{S}.$$

It is a general fact that the image of V^* is precisely $\omega_{E^{(p)}/S} \cong \omega_{E/S} \otimes_{\mathcal{O}_S, \operatorname{Fr}_S} \mathcal{O}_S$.

Explain why $\omega_{E^{(p)}/S} \cong \omega_{E/S}^{\otimes p}$. Applying this discussion to the universal case, gives a morphism

 $V^*: \omega \to \omega^p.$

Show that this defines a canonical section $h \in H^0(Y_K, \omega^{p-1})$, called the *Hasse invariant*. Its zeros are precisely the supersingular points.

Problem 6.3 (q-expansion of Hasse invariants). (1) From the expression of Tate curve $\text{Tate}_q \cong \mathbb{C}_p^{\times}/q^{\mathbb{Z}}$ viewed as rigid analytic elliptic curve, deduce that

$$1 \to \mu_p \to \operatorname{Tate}_q[p] \to \mathbb{Z}/p\mathbb{Z} \to 1.$$

(2) From this, deduce that, viewing Tate curve over $\mathbb{Z}_p((q))$, the natural map

$$\operatorname{Tate}_q \xrightarrow{\operatorname{mult. by} p} \operatorname{Tate}_{q^p}$$

lifts the Frobenius morphism modulo p.

(3) Show that the Hasse invariant h has q-expansion equal to 1.

Problem 6.4 (Counting supersingular elliptic curves). Assume that the prime $p \ge 7$ for simplicity.² Recall that supersingular elliptic curves over $\overline{\mathbb{F}}_p$ are in one-to-one correspondence with their *j*-invariants. Classically, determine the number of *j*-invariants uses an explicit form of Hasse invariant, but this can be done in a much more abstractly.

The moduli stack of elliptic curve is $X(SL_2(\mathbb{Z}))$; its coarse moduli space is given by taking *j*-invariants $j: X(SL_2(\mathbb{Z})) \to \mathbb{P}^1$.

We make the computation over a cover. Consider the modular curve $X(\Gamma(5))$.³ It is a Galois cover of $X(SL_2(\mathbb{Z}))$ with Galois group $SL_2(\mathbb{F}_5)^4$ (in the sense of function field extension, as there are ramifications at cusps).⁵ When compositing with the *j*-invariant map, $X(\Gamma(5))$ becomes a Galois cover of \mathbb{P}^1 with Galois group $PSL_2(\mathbb{F}_5) \simeq A_5$.

(1) The ramification degree of the cover $X(\Gamma(5)) \to \mathbb{P}^1$ at $\tau = i$ is 2, at $\tau = e^{2\pi i/3}$ is 3, and at $\tau = \infty$ is 5. Check using Riemann-Hurwiz formula that the genus of $X(\Gamma(5))$ is zero.

(2) Now, assume all the computation we did in (1) works over $\overline{\mathbb{F}}_p$, and write $\overline{X}(\Gamma(5))$ for the mod p fiber. Over $\overline{X}(\Gamma(5))$, the Kodaira–Spencer isomorphism gives an isomorphism $\omega^{\otimes 2} \cong \Omega^1_{\overline{X}(\Gamma(5))}(\log \overline{C})$, where \overline{C} is the cusps, namely the (reduced subscheme of) the preimage of $\infty \in \mathbb{P}^1_{\overline{\mathbb{F}}_p}$. Show that the degree of ω on $\overline{X}(\Gamma(5))$ is 5, and compute the number of supersingular points over $\overline{X}(\Gamma(5))$.

(3) Prove the following statements.

- The *j*-invariant 0 ($\tau = e^{2\pi i/3}$) corresponds to a supersingular curve over $\overline{\mathbb{F}}_p$, if and only if $p \equiv 2 \mod 3$.
- The *j*-invariant 1728 ($\tau = i$) corresponds to a supersingular curve over $\overline{\mathbb{F}}_p$, if and only if $p \equiv 3 \mod 4$.
- The number of supersingular *j*-invariants that are not 0 or 1728 is $\left|\frac{p}{12}\right|$.

²One may use similar argument with $\Gamma(3)$ and $\Gamma(4)$ to get the result for prime p = 5.

³Here we lied a little. The genuine $X(\Gamma(5))$ by definition is over $\mathbb{Q}(\zeta_5)$, but as we consider everything over \mathbb{C} , we make base change $X(\Gamma(5)) \otimes_{\mathbb{Q}} \overline{\mathbb{Q}}$, this will split $X(\Gamma(5))$ into 4 connected component. What we use below is one of the component.

⁴This is not the same as S_5 , as S_5 has no center, but $SL_2(\mathbb{F}_5)$ sits in an exact sequence $0 \to \{\pm 1\} \to SL_2(\mathbb{F}_5) \to A_5 \to 1$.

⁵This is easy to see on the moduli problem or over \mathbb{C} .

Exercise for lecture 7: Siegel modular varieties, Shimura varieties of PEL type

Problem 7.1 (Siegel half space versus Hodge filtration). Complete the proof of description of \mathbb{C} -points of Siegel space. In particular, explain the following two points:

- (1) Why is providing a Hodge filtration for abelian varieties equivalent to giving a complex structure on $\Lambda \otimes \mathbb{R}$?
- (2) Deduce that, if $J = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ gives the complex structure on $\Lambda \otimes \mathbb{R}$, then $\begin{pmatrix} A & B \\ C & D \end{pmatrix} (iI_g)$ belongs to \mathfrak{H}_a^{\pm} .

Problem 7.2 (Siegel space as homogeneous). (1) Consider $\operatorname{Sp}_{2g}(\mathbb{R})$ acting on \mathfrak{H}_g given by $Z \mapsto (AZ + B)(CZ + D)^{-1}$. Show that this action is well-defined. What is the centralizer? (2) Similarly consider the $\operatorname{GSp}_{2g}(\mathbb{R})$ -action on \mathfrak{H}_g^{\pm} . What is the centralizer? Observe that

this action factors through $\mathrm{PSp}_{2g}(\mathbb{R})$. Give an example of an element which turns \mathfrak{H}_g into \mathfrak{H}_g^- .

What we are getting at here is a small subtlety for Shimura varieties, which we will encounter later. Let G be a reductive group over \mathbb{R} ; the locally Hermitian space X we consider is technically $G_{ad}(\mathbb{R})/K_{ad}$, where G_{ad} is the quotient of G by its center, and K_{ad} is the maximal compact subgroup of G_{ad} . So $G(\mathbb{R})$ naturally acts on X and the action factors through $G_{ad}(\mathbb{R})$. But the image $G(\mathbb{R})$ in $G_{ad}(\mathbb{R})$ is typically only a connected component. (3) Explain the case when $G = \operatorname{Sp}_{2g,\mathbb{R}}$ using the exact sequence $1 \to Z(G) \to G \to G_{ad} \to 1$.

Problem 7.3 (Fake moduli problem for $\operatorname{Res}_{F/\mathbb{Q}} \operatorname{GL}_2$). We explain the moduli problem for $G = \operatorname{Res}_{F/\mathbb{Q}} \operatorname{GL}_2$, using a variant of the moduli problem for $G' := (\operatorname{Res}_{F/\mathbb{Q}} \operatorname{GL}_2)^{\det \in \mathbb{G}_m}$. Fix a totally real field F. Choose and fix a set of representative $\{\mathfrak{c}_1, \ldots, \mathfrak{c}_{h^+}\}$ of the strict ideal class group of F, i.e. the quotient of fractional ideals of F by principal ideals generated by totally positive elements.

(1) For each abelian variety A over some scheme S equipped with a faithful \mathcal{O}_F -action, and for an ideal $\mathfrak{c} \subset \mathcal{O}_F$, the following definition of abelian variety $A \otimes_{\mathcal{O}_F} \mathfrak{c}$ makes sense: choose an element $\delta \in \mathcal{O}_F$ such that $\delta \mathcal{O}_F \subseteq \mathfrak{c}$, so that $\delta \mathfrak{c}^{-1}$ is a genuine ideal of \mathcal{O}_F . Let

$$H := A[\delta \mathbf{c}^{-1}] = \{ x \in A \mid \text{for every } a \in \delta \mathbf{c}^{-1}, \ a \cdot x = 0_A \}$$

be the subgroup of A killed by elements in $\delta \mathfrak{c}^{-1}$. We define $A \otimes_{\mathcal{O}_F} \mathfrak{c} := A/H$. Show that this $A \otimes_{\mathcal{O}_F} \mathfrak{c}$ is independent of the choice of δ , and carry a natural action of \mathcal{O}_F .

More canonically, we view A as a group functor on all S-schemes: for an S-scheme $A(T) := \text{Hom}_S(T, A)$, then $(A \otimes_{\mathcal{O}_F} \mathfrak{c})(T) := \text{Hom}_S(T, A) \otimes_{\mathcal{O}_F} \mathfrak{c}$ is a group functor represented by an abelian variety (as constructed above).

Let D denote the discriminant of F, and \mathfrak{d}_F the different ideal of F. For each i, $\mathcal{M}_{\mathfrak{c}_i}$ is the moduli space over $\mathbb{Z}[\frac{1}{DN}]$, such that for every $\mathbb{Z}[\frac{1}{DN}]$ -scheme S, $\mathcal{M}_{\mathfrak{c}_i}(S)$ is the isomorphism classes of triples (A, λ, i) such that

- A is an abelian scheme over S of dimension $[F : \mathbb{Q}]$, equipped with an action of \mathcal{O}_F ,
- $\lambda : A \otimes_{\mathcal{O}_F} \mathfrak{c}_i \xrightarrow{\simeq} A^{\vee}$ is an \mathcal{O}_F -equivariant polarization (\mathfrak{c}_i -polarization),⁶ and

⁶Rigorously speaking, a \mathfrak{c}_i -polarization is an isomorphism $\lambda : A \otimes_{\mathcal{O}_F} \mathfrak{c}_i \simeq A^{\vee}$ such that the natural morphism $\mathfrak{c}_i \to \operatorname{Hom}_{\mathcal{O}_F}(A, A \otimes \mathfrak{c}_i) \xrightarrow{\lambda} \operatorname{Hom}_{\mathcal{O}_F}(A, A^{\vee})$ induces an isomorphism between \mathfrak{c}_i with "symmetric" elements in $\operatorname{Hom}_{\mathcal{O}_F}(A, A^{\vee})$ and totally positive elements \mathfrak{c}_i^+ in \mathfrak{c}_i with polarizations in $\operatorname{Hom}_{\mathcal{O}_F}(A, A^{\vee})$. Here symmetric morphism $\alpha : A \to A^{\vee}$ means that the dual morphism $A \cong A^{\vee \vee} \xrightarrow{\alpha^{\vee}} A^{\vee}$ is the same as α .

• $i: \mathfrak{d}_F^{-1} \otimes_{\mathbb{Z}} \mu_N \to A[N]$ is an embedding of group scheme over S. (Twisting by \mathfrak{d}_F^{-1} will not affect this definition, but it will benefit our later discussion of compactifications.)

Define $\mathcal{M} := \coprod_i \mathcal{M}_{\mathfrak{c}_i}$; it is a smooth scheme over $\mathbb{Z}[\frac{1}{DN}]$ of dimension $[F : \mathbb{Q}]$.

(2) Prove that if \mathfrak{c} and \mathfrak{c}' are two ideals in the same strict ideal class. Show that there is an (not quite canonical) isomorphism $\mathcal{M}_{\mathfrak{c}} \simeq \mathcal{M}_{\mathfrak{c}'}$.

(3) Show that $\mathcal{O}_F^{\times,>0}$ (totally positive units) acts on each $\mathcal{M}_{\mathfrak{c}}$ by sending

$$(A, \lambda, i) \mapsto (A, u\lambda, i) \quad u \in \mathcal{O}_F^{\times, >0}.$$

Let $\mathcal{O}_{F,N}^{\times}$ denote the subgroup of \mathcal{O}_{F}^{\times} consisting of elements that are congruent to 1 modulo N. Show that the action of the subgroup $(\mathcal{O}_{FN}^{\times})^2$ is trivial on each $\mathcal{M}_{\mathfrak{c}}$.

The Shimura variety associated to $G = \operatorname{Res}_{F/\mathbb{Q}} \operatorname{GL}_2$ with $\Gamma_1(N)$ -level structure is isomorphic to

$$Y_1(N) := \mathcal{M} / \left(\mathcal{O}_F^{\times,>0} / \left(\mathcal{O}_{F,N}^{\times} \right)^2 \right)$$

A reference for more general level structure and for the complex points of this moduli problem is section 2.3 of Yichao Tian and Liang Xiao, p-adic cohomology and classicality of overconvergent Hilbert modular forms, in Astérisque 382 (2016), 73–162.

(4) The polarization $\lambda : A \otimes_{\mathcal{O}_F} \mathfrak{c}_i \xrightarrow{\simeq} A^{\vee}$ induces an \mathcal{O}_M -linear perfect pairing

$$H^1_{\mathrm{dR}}(A/\mathcal{M}) \times \left(H^1_{\mathrm{dR}}(A/\mathcal{M}) \otimes_{\mathcal{O}_F} \mathfrak{c}_i^{-1} \right) \to \mathcal{O}_{\mathcal{M}},$$

which in turn defines a natural $\mathcal{O}_M \otimes_{\mathbb{Z}} \mathcal{O}_F$ -linear isomorphism

$$\wedge^2_{\mathcal{O}_{\mathcal{M}}\otimes_{\mathbb{Z}}\mathcal{O}_F}H^1_{\mathrm{dR}}(A/\mathcal{M})\cong\mathcal{O}_{\mathcal{M}}\otimes_{\mathbb{Z}}\mathfrak{c}_i\mathfrak{d}_F^{-1}$$

Explain where the factor \mathfrak{d}_F comes from.

(5) Let L denote the Galois closure of $F(\sqrt{u}; u \in \mathcal{O}_F^{\times,>0})$ inside \mathbb{C} , and let \mathcal{O}_L denote the ring of integers of L. We base change \mathcal{M} to \mathcal{O}_L to define line bundles ω_{τ} and $\epsilon_{\tau} := \wedge^{2}_{\mathcal{O}_{\mathcal{M}}}(\mathcal{H}^{1}_{\mathrm{dR}}(A)_{\tau})$, for embeddings $\tau : F \to L$. Recall that for a paritious weight $\kappa = ((k_{\tau})_{\tau \in \Sigma}, w) \in \mathbb{Z}^{\Sigma} \times \mathbb{Z}$, we can define a line bundle

$$\omega^{\kappa} := \bigotimes_{\tau \in \Sigma} \left(\omega_{\tau}^{k_{\tau}} \otimes_{\mathcal{O}_{\mathcal{M}}} \epsilon_{\tau}^{(w-k_{\tau})/2} \right).$$

In a natural way, we let $\mathcal{O}_F^{\times,>0}$ to act on ω_{τ} and ϵ_{τ} by, $u \in \mathcal{O}_F^{\times}$

- sending a section s of ω_{τ} to $u^{-1/2} \cdot \langle u \rangle^*(s)$, and
- sending a section s of ϵ_{τ} to $u^{-1} \cdot \langle u \rangle^*(s)$,

where $\langle u \rangle$ is the action of $\mathcal{O}_F^{\times,>0}$ on $\mathcal{M}_{\mathfrak{c}}$ mentioned above. Show that the induced action of $\mathcal{O}_F^{\times,>0}$ on ω^{κ} is compatible with the action on \mathcal{M} and hence we may descent ω^{κ} to $Y_1(N)$ (but not each individual ω_{τ} and ϵ_{τ}).

Exercise for lecture 8: General theory of Shimura varieties

Problem 8.1 (*h* versus μ). Let *T* be a torus over \mathbb{R} . Show that there is a one-to-one correspondence between

$$\{\text{homomorphisms } h: \mathbb{S} \to T\} \longleftrightarrow \{\text{homomorphisms } \mu: \mathbb{G}_{m,\mathbb{C}} \to T_{\mathbb{C}}\}$$
$$h \longmapsto \mu_{h}$$
$$\mathbb{C} \longrightarrow \overset{z \mapsto (z,1)}{\longrightarrow} \mathbb{C} \longrightarrow \mathbb{C} \longrightarrow \overset{h_{\mathbb{C}}}{\longrightarrow} \mathbb{C}$$

where $\mu_h : \mathbb{G}_{m,\mathbb{C}} \xrightarrow{z \mapsto (z,1)} \mathbb{S}_{\mathbb{C}} \cong \mathbb{G}_{m,\mathbb{C}} \times \mathbb{G}_{m,\mathbb{C}} \xrightarrow{h_{\mathbb{C}}} T_{\mathbb{C}}.$

Problem 8.2 (Shimura set associated to CM types). Let E be a CM field with F its maximal totally real subfield. Recall that a CM type is a set of embeddings $\Phi \subset \operatorname{Hom}_{\mathbb{Q}}(E, \mathbb{C})$ such that $\operatorname{Hom}_{\mathbb{Q}}(E, \mathbb{C}) = \Phi \sqcup \Phi^c$, where $\Phi^c := \{c \circ \phi; \phi \in \Phi\}$ and c denotes the complex conjugation. Consider the torus $T := \operatorname{Res}_{E/\mathbb{Q}} \mathbb{G}_m$. It comes equipped with a cocharacter

$$\mu_{\Phi}: \mathbb{G}_{m,\mathbb{C}} \longrightarrow T_{\mathbb{C}} \cong \prod_{\phi \in \Phi} \mathbb{G}_{m,E} \times_{E,\phi} \mathbb{C}$$
$$z \longmapsto z \text{ at each } \phi \in \Phi.$$

The group T admits a subgroup $T^{\mathbb{Q}}$ whose R-points for a Q-algebra R is

$$T^{\mathbb{Q}}(R) = \left\{ x \in T(R) = (R \otimes_{\mathbb{Q}} E)^{\times}; \ \mathrm{Nm}_{E/F}(x) \in R^{\times} \right\}.$$

(1) Observe that μ_{Φ} has image in $T^{\mathbb{Q}}$.

(2) By the previous problem, μ_{Φ} corresponds to $h_{\Phi} : \mathbb{S} \to T_{\mathbb{R}}$ (or even $h_{\Phi}^{\mathbb{Q}} : \mathbb{S} \to T_{\mathbb{R}}^{\mathbb{Q}}$)

(3) Show that the reflex field E_{Φ} of $(T, \{h_{\Phi}\})$ or $(T^{\mathbb{Q}}, \{h_{\Phi}^{\mathbb{Q}}\})$ can be described as follows: let \mathbb{Q}^{alg} denote the algebraic closure of \mathbb{Q} in \mathbb{C} . Let H denote the subgroup of $\text{Gal}(\mathbb{Q}^{\text{alg}}/\mathbb{Q})$ that stabilizers the CM type Φ , that is for any $h \in H$, $\{h \circ \phi; \phi \in \Phi\} = \Phi$. Then E_{Φ} is the subfield of \mathbb{Q}^{alg} fixed by H.

(4) Take a special case: $E = E_0 F$ for E_0 an imaginary quadratic field and F a totally real field. Fix one embedding $\tau : E_0 \to \mathbb{C}$. Show that this induces a CM type $\Phi_{\tau} := \{\phi \in \operatorname{Hom}_{\mathbb{Q}}(E,\mathbb{C}); \phi|_{E_0} = \tau\}$. Show that the reflex field of this Φ_{τ} is just E_0 . What's the corresponding Shimura reciprocity map?

Problem 8.3 (Computation of the reflex field of a special type of Shimura curve). This type of Shimura curve appears in the study of generalizations of Heegner points to the totally real case.

Let F be a totally real field, and let B be a quaternion algebra over F such that there is a unique $\tau_0 : F \to \mathbb{R}$:

$$B \otimes_{F,\tau} \mathbb{R} \cong \begin{cases} \mathrm{M}_2(\mathbb{R}) & \tau = \tau_0 \\ \mathbb{H} & \tau \neq \tau_0 \end{cases}$$

Let $G = \operatorname{Res}_{F/\mathbb{Q}} B^{\times}$. Then we can define a Shimura datum for G, by taking h to be the $G(\mathbb{R})$ -conjugacy class of

$$h: \mathbb{S}(\mathbb{R}) = \mathbb{C}^{\times} \longrightarrow G(\mathbb{R}) = \operatorname{GL}_{2}(\mathbb{R}) \times \prod_{\tau \neq \tau_{0}} \mathbb{H}^{\times}$$
$$z = x + iy \longmapsto \left(\begin{pmatrix} x & -y \\ y & x \end{pmatrix}, 1, \dots, 1 \right).$$

Show that the reflex field of this Shimura datum is F embedded in \mathbb{C} via τ_0 , precisely the one that we used above.

(The upshot is that the Shimura curve is then defined over F embedded in \mathbb{C} via τ_0 . Somehow, one should intrinsically think of this Shimura curve defined over F canonically, and associated to B intrinsically. Namely, if we change how F embeds into \mathbb{C} , it will affect accordingly how the Shimura curve over F is embedded in \mathbb{C} .)

Problem 8.4 (Geometric connected components of Shimura varieties). Let (G, X) denote a Shimura datum and let G_{ab} denote the maximal abelian quotient of G and $\nu : G \to G_{ab}$ the natural map. Then each $h : \mathbb{S} \to G_{\mathbb{R}}$ in X induces the same homomorphism $h_{ab} : \mathbb{S} \to G_{\mathbb{R}} \to G_{ab,\mathbb{R}}$. So we have a natural morphism of Shimura data

$$(G, X) \to (G_{\mathrm{ab}}, \{h_{\mathrm{ab}}\}).$$

If $K \subseteq G(\mathbb{A}_f)$ is an open compact subgroup then $\nu(K)$ is an open compact subgroup of $G_{ab}(\mathbb{A}_f)$.

(This problem is taken from Milne's Introduction to Shimura varieties, [Mi05, Theorem 5.17].) Assume that the derived subgroup G^{der} is simply-connected. Then we will prove below that the natural map $\operatorname{Sh}_K(G, X) \to \operatorname{Sh}_{\nu(K)}(G_{ab}, \{h_{ab}\})$ "almost" induces an isomorphism on the set of geometric connected components. More precisely, let Z denote the center of G and set

 $G_{\rm ab}(\mathbb{R})^{\dagger} := \operatorname{Im}(Z(\mathbb{R}) \to G_{\rm ab}(\mathbb{R})) \quad \text{and} \quad G_{\rm ab}(\mathbb{Q})^{\dagger} := G_{\rm ab}(\mathbb{Q}) \cap G_{\rm ab}(\mathbb{R})^{\dagger}.$

Then the natural map

(8.4.1)
$$\operatorname{Sh}_{K}(G, X) \to G_{\operatorname{ab}}(\mathbb{Q})^{\dagger} \backslash G_{\operatorname{ab}}(\mathbb{A}_{f}) / \nu(K)$$

induces a bijection on the geometric connected components.

(1) First look at what this statement entails in some examples: consider $G = \operatorname{GL}_{2,\mathbb{Q}}$, that is the case of modular curves. In this case, the maximal abelian quotient is given by $\nu = \det : \operatorname{GL}_{2,\mathbb{Q}} \to G_{ab} = \mathbb{G}_{m,\mathbb{Q}}$. So $G_{ab}(\mathbb{R})^{\dagger} = \mathbb{R}^{>0}$ and $G_{ab}(\mathbb{Q})^{\dagger} = \mathbb{Q}^{\times,>0}$. If we take $\Gamma_1(N)$ -level structure, it corresponds to $\widehat{\Gamma}_1(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2(\widehat{\mathbb{Z}}); \ c \equiv 1, d \equiv 0 \pmod{N} \right\}$. The determinant is the entire $\widehat{\mathbb{Z}}^{\times}$. So

$$\pi_0^{\text{geom}}(\operatorname{Sh}_{\widehat{\Gamma}_1(N)}(\operatorname{GL}_{2,\mathbb{Q}})) = \mathbb{Q}^{\times,>0} \setminus \mathbb{A}_f^{\times} / \widehat{\mathbb{Z}}^{\times} = \{1\}$$

In this case, the modular curve is always connected.

On the other hand, when the level structure is $\Gamma(N)$, corresponding to $\widehat{\Gamma}(N) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2(\widehat{\mathbb{Z}}); \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{N} \right\}$, whose determinant is $(1 + N\widehat{\mathbb{Z}})^{\times}$. In this case

$$\pi_0^{\text{geom}}(\operatorname{Sh}_{\widehat{\Gamma}(N)}(\operatorname{GL}_{2,\mathbb{Q}})) = \mathbb{Q}^{\times,>0} \setminus \mathbb{A}_f^{\times} / (1 + N\widehat{\mathbb{Z}})^{\times} = (\mathbb{Z}/N\mathbb{Z})^{\times}.$$

We can further discuss the Galois action of $\operatorname{Gal}(\mathbb{Q}^{\operatorname{alg}}/\mathbb{Q})$ on the set of geometric connected component (which comes from the Shimura reciprocity map for G_{ab} and $\mu : \mathbb{G}_{m,\mathbb{C}} \to \operatorname{GL}_{2,\mathbb{C}} \xrightarrow{\nu} \mathbb{G}_{m,\mathbb{C}}$ sending $z \to z$)

$$\operatorname{Gal}(\mathbb{Q}^{\operatorname{alg}}/\mathbb{Q}) \to \operatorname{Gal}(\mathbb{Q}^{\operatorname{ab}}/\mathbb{Q}) \xrightarrow{\operatorname{Art}} \mathbb{Q}^{\times} \backslash \mathbb{A}^{\times}/\mathbb{R}_{>0}^{\times} = \mathbb{Q}_{>0}^{\times} \backslash \mathbb{A}_{f}^{\times}.$$

From this, we see that the Galois action of $\operatorname{Gal}(\mathbb{Q}^{\operatorname{alg}}/\mathbb{Q})$ on $(\mathbb{Z}/N\mathbb{Z})^{\times}$ is factors through $\operatorname{Gal}(\mathbb{Q}(\zeta_N)/\mathbb{Q})$. There is another way to explain this: $\operatorname{Sh}_{\widehat{\Gamma}(N)}(\operatorname{GL}_{2,\mathbb{Q}})$ is an irreducible curve over $\mathbb{Q}(\zeta_N)$, but when we view it naturally over \mathbb{Q} instead, and make base change, we see that $\operatorname{Sh}_{\widehat{\Gamma}(N)}(\operatorname{GL}_{2,\mathbb{Q}}) \times_{\mathbb{Q}} \mathbb{C}$ has $(\mathbb{Z}/N\mathbb{Z})^{\times}$ -geometric connected components.

(2) Now we indicate the proof of (8.4.1). For this, we need to accept a few blackbox theorems from [PR94, Theorem 6.4, 6.6]: (these are very useful statements)

- (vanishing of nonarchimedean cohomology for simply-connected groups) If G is simplyconnected semisimple group over \mathbb{Q}_{ℓ} , then $H^1(\mathbb{Q}_{\ell}, G) = \{1\}$.
- (Hasse principle for simply-connected group and adjoint group) For an algebraic group G over \mathbb{Q} , we define

$$\operatorname{III}_{f}^{1}(\mathbb{Q},G) := \operatorname{Ker}\left(H^{1}(\mathbb{Q},G) \to \prod_{\ell \neq \infty} H^{1}(\mathbb{Q}_{\ell},G)\right).$$

Then if G is simply-connected and semisimple, then

$$\mathrm{III}_{f}^{1}(\mathbb{Q},G) \to H^{1}(\mathbb{R},G)$$

is an isomorphism. (If G is semisimple and adjoint, this is injective.)

- If G is a simply-connected real reductive group (or a compact real reductive group), then $G(\mathbb{R})$ is connected.
- (Strong approximation for simply-connected groups) If G is a simply-connected group over a number field F; suppose that v is a place of F such that $G(F_v)$ is non-compact at each F-simple factor of G, then G(F) is dense in $G(\mathbb{A}_F^{(v)})$.

Applying these statements, we prove the following in turns.

• Let X^+ denote the connected component of X, then the stabilizer of X^+ under the $G(\mathbb{R})$ action is $G(\mathbb{R})_+ :=$ preimage of the connected component of $G_{\mathrm{ad}}(\mathbb{R})$ in $G(\mathbb{R})$. Set $G(\mathbb{Q})_+ := G(\mathbb{Q}) \cap G(\mathbb{R})_+$. Then

$$\operatorname{Sh}_K(G, X) = G(\mathbb{Q})_+ \backslash X^+ \times G(\mathbb{A}_f) / K.$$

- If G^{der} is simply-connected, then $G(\mathbb{R})_+ = G^{\text{der}}(\mathbb{R}) \cdot Z(\mathbb{R})$.
- If G^{der} is simply-connected, then $G(\mathbb{A}_f) \to T_{ab}(\mathbb{A}_f)$ is surjective and sends open compact subgroups to open compact subgroups.

Concludes eventually that (8.4.1) induces an isomorphism between geometric connected components.

Remark: the geometric connected component of more general Shimura varieties is somewhat subtle, see the discussion in Deligne's article in Corvallis.

References

[Mi05] J. Milne, Introduction to Shimura varieties, Harmonic Analysis, the Trace Formula and Shimura Varieties, Clay Mathematics Proceedings, Volume 4 (2005), 265-378.

[PR94] V. Platonov and A. Rapinchuk, Algebraic groups and number theory, Pure and Applied Mathematics, Vol. 139, Academic Press Inc. Boston, MA, 1994, xii+614 pp.

Lost energy to provide more exercises for Lecture 9–10.