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ON LUSZTIG’S MIDDLE EXTENSION OF PERVERSE SHEAVES

WENHAN DAI

In the present context, a gentle and sketchy overview of Lusztig’s construction [Lus81]
for Springer correspondence via perverse sheaves is on display, in which I claim no origi-
nality. Readers are assumed to have an acquirement of the geometry of orbits as well as
constructible derived categories, perverse sheaves, and intersection homology theory. The
standard references are [GM80], [Sho88, Chap III], and [Yun16, Lec I]. As well as Yun’s lec-
ture series at Park City Math Institute in 2015, the course [dC15] by de Cataldo on perverse
sheaves is particularly recommended.

1. Overview

Group representation theory dictates that all unipotent conjugacy classes of GLn(k) are
in bijection with all irreducible characters of the symmetric group of degree n over k. It is
seen as the first phenomenon of the classical Springer correspondence. When k is a finite
field, the conception of Green polynomial arises from representations of GLn(k) and has to
do with partitions of n.

1.1. Recap: Springer Correspondence. Let k = Fq be an algebraically closed field of
characteristic p > 0 and G be a connected reductive algebraic group defined over k. Let
W denote the Weyl group of G. Given the Borel variety B in G, we would define for any
e ∈ G that

Be := {B ⊂ G Borel subgroup such that e ∈ B}.
as a subvariety of B. Fix another prime ℓ ∕= p and consider the ℓ-adic cohomology theory of
Be. It turns out that H

i(Be,Qℓ), the étale cohomology of Be with Qℓ-coefficients, carries the
Springer representation of W . Recall that all these cohomological groups admit a natural
action via the centralizer quotient AG(e) = CG(e)/C◦

G(e), which morally commutes with
the action of W itself. Therefore, we attain the following result (see also [Yun16, Thm
1.5.1]).

Proposition 1.1 (Decomposition of Top Cohomology). Let de = dimk Be for each fixed
e ∈ G. The top cohomology of Be has order 2de and admits an W ×AG(e)-action, i.e.,

H2de(Be,Qℓ) =
!

ρ∈Irr(AG(e))

V (e, ρ)⊗ ρ,

where ρ runs through all conjugacy classes of irreducible representations of AG(e), and
V (e, ρ) is the W -module corresponding to ρ.

On Proposition 1.1, we consider the case where e ∈ N , where N denotes the collection
of all representatives of nilpotent classes in G. In [Spr76, Thm 6.10], Springer has proved
that V (e, ρ) is either zero or an irreducible representation of W . Accordingly, the classical
Springer correspondence is induced by this construction.

Theorem 1.2 (Springer Correspondence). There exists a bijection

Irr(W ) ←→ {(e, ρ) ∈ N × Irr(AG(e)) : V (e, ρ) ∕= 0}.
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This original result is neat but doesn’t work over more general setups because Springer’s
proof relies on the positive-characteristic assumption. Fortunately, based on [GM80], Lusztig
gives a more general approach to reconstruct Theorem 1.2 via perverse sheaves [Lus81]. The
punchline lies in that this does work for any G as well as its Lie algebra g over an arbitrary
algebraically closed field.

1.2. Lusztig’s Construction. The main task is to describe the W -module V (e, ρ). Let’s
first consider the derived category D(X,Qℓ) for an algebraic variety X over k. It contains
all complexes of Qℓ-sheaves on X. Then we can associate the cohomology sheaves H∗(K)
to any object K• ∈ D(X,Qℓ), with the shifting operation given by Hm(K[n]) = Hm+n(K).
From this, one can define a full subcategory Db

c(X,Qℓ) consisting of bounded complexes
whose all cohomology sheaves are constructible.

Keeping the notations as before, we define the extended algebraic variety

"G := {(e,B) ∈ G× B | e ∈ B}

that classifies all conjugate Borel subgroups in G. Let π : "G → G be the natural projection.

"G

G B

π

It’s not hard to verify that the direct image of the ℓ-adic constant sheaf Qℓ on "G along
with π lands in the derived category of constructible ℓ-adic sheaves on G. Also, there is a
full abelian subcategory Perv(G) ⊂ Db

c(X,Qℓ) consisting of the so-called perverse sheaves,
which will be discussed later. Here are three key facts by Lusztig:

• the morphism π : "G → G is semismall, which means that π is proper, and that, in
a natural sense, there would never be too many locus of G whose fibers have high
dimensions;

• through some algebro-geometric argument, the previous fact implies that π∗Qℓ ∈
Db

c(G,Qℓ) shifts to be a semisimple object in Perv(G), that is,

π∗Qℓ[dimk G] ∈ Perv(G);

moreover, it is a middle extension of its restriction to any open dense subset of G;
• also, the endomorphism algebra of π∗Qℓ can be realized as the group algebra of
Weyl group for G, i.e.,

Qℓ[W ] ≃ EndPerv(G)(π∗Qℓ).

1.3. Fiber Cohomology as the Weyl Representation. Note that the Springer fiber Be

is nothing but π−1(e) for each e ∈ B by definition. The last fact above deduces that W acts
on stalks of cohomology sheaves Hi(π∗Qℓ) ≃ Riπ∗Qℓ at the nilpotent elements. Therefore,
the action of W on Hi(Be,Qℓ) is induced from this. In other words, the étale cohomology
groups of Springer fibers can be seen as representations of the Weyl group.

On Lusztig’s construction, the classical Springer correspondence in Theorem 1.2 can be
established as follows (once again). Since π∗Qℓ is a semisimple perverse sheaf, it admits a
decomposition

π∗Qℓ =
!

χ∈Irr(W )

(π∗Qℓ)χ ⊗ χ

where the first factors are simple perverse sheaves up to shifts. Then for each χ ∈ Irr(W ),
(π∗Qℓ)χ is morally isomorphic to an intersection cohomology complex of the Zariski closure
of some unipotent class in G. This loosely defines a map sending χ to e ∈ N . The above is
the rough idea to recover Theorem 1.2.
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2. Perverse Sheaves

Recall that we have used Borel-Moore homology theory HBM
∗ (−) to construct the rep-

resentation of the Weyl group in the previous talks. We concern about the constructible
derived category of sheaves, denoted by D(−) := D(−,Qℓ).

2.1. Verdier Duality. This is a crash course on perverse sheaves. Now let X be an alge-
braic variety over k = Fq with q = pr. Fix another prime ℓ ∕= p.

• A local system on X is a locally constant Qℓ-sheaf L ∈ D(X), which is a twisted
form of the constant sheaf. Let L∨ denote its dual local system.

• A sheaf is said to be constructible if there is a stratification on X such that each
cohomology sheaf restricted to each stratum is a locally constant sheaf of finite rank.

Note that Qℓ can be regarded as a constant sheaf on X. This, together with the dualizing
complex ωX , are two basic and essential objects in the constructible derived category. The
relation between them is revealed by Poincaré duality.

Proposition 2.1 (Poincaré Duality). Suppose X is a smooth and oriented manifold of pure
dimension d. Then there is a canonical morphism

Qℓ[d]
∼=−→ ωX .

The relative version of Proposition 2.1 is given by two of the so-called six operations.
Recall that in general, given any morphism f : X → Y , we obtain

D(X) D(Y ).

f!,f∗

f !,f∗

Theorem 2.2 (Relative Poincaré Duality). Suppose f : X → Y is a smooth and oriented
morphism of relative dimension d. Then there is a canonical isomorphism

f∗[d] ∼= f !.

Note that the Poincaré duality can be understood as a shifting relationship between
operations. Moreover, there is a contravariant functor

DX : D(X) → D(X)op

such that D2
X = IdD(X) to realize this kind of symmetry. Here DX is called the Verdier

duality on X. In particular, when X is the space of a single point, DX is the usual duality
for graded vector spaces or flags.

2.2. Characterizing the Intersection Complex. Whenever d = 2n is even in Proposi-
tion 2.1, the isomorphism can be rewrite as ωX [−n] ∼= Qℓ[n]. Namely, the shifted constant
sheaf Qℓ[n] is self-dual. More generally, one may replace Qℓ by a local system L on X, and
then

DX(L[n]) ∼= L∨[n].

Hence L[n] is self-dual. Yet this fails to be valid when X is not smooth in general. However,
the self-dual property of local systems can be recovered on a singular variety in the following
sense. There exists an object in D(X) such that it is self-dual via DX , and its restriction
on any smooth open dense subvariety of X is nothing but the shifted constant sheaf.

Theorem 2.3 (Goresky-MacPherson). Let X be a singular algebraic variety. Fix an open
smooth subvariety U ⊂ X of pure dimension d and a local system L on U . Then there exists
an object ICX(L)[d] ∈ D(X) together with an isomorphism

ICX(L)[d]|U ≃ L[d],
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such that

(1) Hk(ICX(L)[d]) = 0 for all k < −d,
(2) dimSuppHk(ICX(L)[d]) < −k for all k > −d, and
(3) dimSuppHk(DX(ICX(L)[d])) < −k for all k > −d.

Moreover, this ICX(L)[d] is uniquely characterized by all properties above up to a unique
isomorphism in D(X).

It is known that ICX(L)[d] ∈ D(X), the intersection complex of L on X, satisfies the
desired self-dual property, i.e.,

DXICX(L)[d] ∼= ICX(L∨)[d].

2.3. Definition of Perverse Sheaves. To define perverse sheaves, we restrict Verdier
duality to the full subcategory of constructible sheaves, say DX : Db

c(X) → Db
c(X)op.

Remember that we are going to realize ICX(L)[d] in Theorem 2.3 as a perverse sheaf.

Definition 2.4. A complex K ∈ Db
c(X) is a perverse sheaf if for each integer k ∈ Z,

(1) dimSuppHk(K) ! −k,
(2) dimSuppHk(DXK) ! −k.

Let Perv(X) denote the full subcategory of perverse sheaves in Db
c(X). It turns out to

be an abelian category whose objects have finite length. Moreover, every simple object is in
the form ICY (L)[dimY ], where Y ⊂ X is a closed subvariety, and L is an irreducible local
system on an open dense subset of Y .

Note that if Y is smooth, the local system L (which defines the constant sheaf Qℓ) can

be realized as some direct image of a constant sheaf over its finite étale covering "Y . This
observation is an essential condition to state the BBDG decomposition theorem.

2.4. BBDG Decomposition. Let X be a variety defined over finite fields of positive char-
acteristics. A constructible and bounded complex in Db

c(X) is semisimple if it is a direct
sum of shifts of simple perverse sheaves, or equivalently, shifts of irreducible intersection co-
homology complexes. The original version of the decomposition theorem is in the following.
The prototypical references for this are [BBDG18], [Sai89], and [dCM05].

Theorem 2.5 (Beilinson-Bernstein-Deligne-Gabber). Let f : X → Y be a proper morphism

and fix a local system L on X. If there is a finite étale covering π : "X → X such that π∗L
is a constant sheaf on "X and ICX(L)[dimX] is a simple perverse sheaf, then

(1) f∗(ICX(L)[dimX]) ∈ Db
c(Y ) is semisimple;

(2) f∗(ICX(L)[dimX]) is semisimple as a perverse sheaf whenever it lands in Perv(Y ).

Another statement is relatively neat for the decomposition theorem, deduced by de
Cataldo and Migliorini via algebraic Hodge theory.

Theorem 2.6. Let X be a smooth variety and f : X → Y be a proper map. If k is a field
of characteristic 0, then π∗kX [dimX] is semisimple, where kX denotes the constant sheaf
on X.

3. The Springer Representation

In this section, we discuss the construction of Springer representations by following
[Lus81]. The ultimate goal is to construct an action of the Weyl group on each étale co-
homology group of the Springer fibers. Recall our statement: given a reductive algebraic
group G, we are to consider Hi(Be,Qℓ) for each e ∈ G.
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3.1. The Weyl Action on Regular Semisimple Locus. Recall the definition

"G := {(e,B) ∈ G× B | e ∈ B}.

The first natural projection π : "G → G is called Grothendieck-Springer map. The basic
properties of this morphism, such as properness, are essentially used in proving Theorem
3.1 by Lusztig. We then talk about the manifestation of fibers of π over some special locus
of G.

Consider the unipotent locus Guni ⊂ G. Through the second projection "G → B, the
inverse image π−1(Guni) is a vector bundle whose fibers are isomorphic to some open dense
subvariety of G. This immediately tells us π−1(Guni) is smooth. Morally, the unipotent
singularities of G are resolved by π|π−1(Guni), which is called Springer resolution of the
unipotent.

Also consider the regular semisimple locus Grs ⊂ G. Recall that an element x ∈ G
is called regular if dimCG(x) = rankG. And x ∈ G is regular semisimple if the con-
nected component of its centralizer C◦

G(x) can be realized as a maximal torus. Let T be a
representative of some maximal torus in G, and say

"Grs := {(e,T) ∈ G× T | e ∈ T ∩Grs}.
The action of W is naturally given by

W × "Grs −→ "Grs

(w, (e,T)) ,−→ (e, wT)

that induces the W -action on Grs. Again, the restriction of π on the regular semisimple
inverse image, say

πrs : "Grs ≃ π−1(Grs) → Grs,

is W -equivariant with respect to the trivial W -action on Grs. Therefore, W acts freely and

properly discontinuously on "Grs such that πrs is identified with the quotient. Therefore,

• πrs is a W -Galois (unramified) covering;
• as a local system on Grs, the direct image πrs

∗ Qℓ admits a W -action.

3.2. The Middle Extension. Back toG, we consider the intersection cohomology complex
functor from the category of local systems on Grs:

LocSys(Grs) −→ Perv(G)

L ,−→ ICG(L)

which turns out to be fully faithful. Hence the action of W on πrs
∗ Qℓ induces the W -action

on the perverse sheaf ICG(πrs
∗ Qℓ)[dimG] (up to the shift operation). This is the so-called

middle extension of perverse sheaf, while in 1981, Lusztig didn’t use the language of perverse
sheaves or intersection cohomology complexes. On the other hand, the following main result
of [Lus81] finishes the last step of the middle extension argument.

Theorem 3.1. Suppose we fix a local system L on G. Then in Perv(G),

ICG(L)[dimG] ≃ π∗Qℓ[dimG].

Proof. Following Theorem 2.3, the intersection complex ICX(L)[d] can be uniquely charac-
terized for X = G, U = Grs and d = dimk G. Here U is dense in X as required because
of G = Grs, the Zariski closure of regular semisimple locus. Note that the morphism

π : "G → G is proper because "G is closed in G × B by definition. So the desired isomor-
phism is easy to construct by applying the proper base change theorem to π along the
embedding Grs → G. Hence it suffices to verify those properties (1)-(3).
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(1) The cohomology sheaf can be interpreted as the derived functor. On the level of
stalks, for each e ∈ G,

(Riπ∗Qℓ)e ≃ Hi
e(π∗Qℓ) ≃ Hi(π−1(e),Qℓ).

Therefore, Hk
e (π∗Qℓ[d]) = Hd+k

e (π∗Qℓ) = 0 if d+ k < 0. This proves (1).
(2) Note again that π−1(e) ≃ Be for all Springer fibers over e ∈ G. Since the stalk

(Riπ∗Qℓ)e = 0 unless Hi(Be,Qℓ) ∕= 0, we consider the support where (Rkπ∗Qℓ)e ∕= 0
for k ! 2 dimBe. Consequently, for each e ∈ G,

SuppHk
e (π∗Qℓ) ⊂ {e ∈ G | k ! 2 dimBe}

in a set-theoretical sense. From a nontrival counting argument by Bala-Carter (see
[Car85, Sec 5.9-5.10]) that we choose to omit here, the right set has dimension n− i.
Hence the containment is equivalent to say dimSuppHk(π∗Qℓ[d]) < −k if k+d > 0.

(3) By the construction, the projection "G → B ≃ G/B has a locally trivial fibration

and each of whose fiber is isomorphic to B. It follows that "G is smooth. Thus, Qℓ

is a self-dual constant sheaf on the smooth variety "G, i.e.,

DG(Qℓ[d]) ≃ Qℓ[d].

Again, since π is proper, the functor DG commutes with π∗, which implies that

DG(π∗Qℓ[d]) ≃ π∗DG(Qℓ[d]) ≃ π∗Qℓ[d].

This means that (3) is implied by (2).

Finally, we see ICG(L)[d] can only be isomorphic to π∗Qℓ[d]. □

In the proof above, we have used the result by Bala-Carter in (2). Thanks to Goresky-
MacPherson [GM80], a relatively advanced language to describe this is the “semismallness”.

Definitions 3.2. Let X and Y be irreducible varieties of the same dimension n and assume
further that X is smooth. Let f : X → Y be a proper morphism.

• f is called semismall if for all k > 0,

dim{y ∈ Y | 2 dim f−1(y) # k} ! n− k.

• f is called small if for all k > 0,

dim{y ∈ Y | 2 dim f−1(y) # k} < n− k.

Proposition 3.3. Suppose f : X → Y is a proper morphism of algebraic varieties and that
X is smooth of dimension d. Fix a local system L on X.

(1) If f is semismall, then f∗L[d] ∈ Perv(Y ). Moreover,

f∗L[d] ≃
!

i∈I

ICYi(Li),

where all Yi with i ∈ I form a stratification on Y , and each Li is the irreducible
local system on the smooth locus of Yi.

(2) If f is small, then f∗L[d] enjoys all three properties in Theorem 2.3. Furthermore,

f∗L[d] ≃ ICY ((f |U )∗L[d]),

where U ⊂ X is an open dense subset such that f |U is a covering map.
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3.3. The Springer Action. On the middle extension argument, we see

(I) there is a Weyl action on ICG(L), since ICG(−) is a fully faithful functor;
(II) accordingly, there is a Weyl action on π∗Qℓ by Theorem 3.1 up to shift;
(III) thus, for each e ∈ G, there is a Weyl action on cohomology sheaves Hk

e (π∗Qℓ);
(IV) finally, there is a Weyl action on Hk(Be,Qℓ) ≃ Hk

e (π∗Qℓ).

In particular, when e = 1, cohomology groups of the fiber Be = B would carry the
so-called Springer action, which is the action of W on Hi(B,Qℓ).

Lusztig’s construction via the middle extension works for all characteristics. This also
works for the Lie algebra case when considering Bu for a nilpotent element u ∈ g. However,
the reader may see another action arising from the class of maximal torus. To be precise,
let T, and B be a maximal torus and a Borel subgroup of G, respectively. Then it’s easy
to translate the Weyl action through the isomorphism

Hk(G/T,Qℓ) ≃ Hk(G/B,Qℓ)

because G/T is a vector bundle over G/B whose fiber is isomorphic to an open dense
subset of G. Historically, this construction gives the classical Weyl action. In [BM81],
Borho-MacPherson claim that the Springer action of W on Hi(B,Qℓ) coincides with the
classical Weyl action. The immediate corollary of Borho-MacPherson is that

H∗(B,Qℓ) ≃ Qℓ[W ]

as W -modules. For a detailed argument on this, see [Sho88, Sec 5] or [Spa85].

Caution 3.4. For the case where char k = 0, there is still an isomorphism H∗(B) ≃ H∗( "G).
However, this cannot be deduced from a very similar argument as before. It is because the

projection "G → B is not a vector bundle. The correct track to attain the action of W is
through the following nontrivial result by Spaltenstein: if C is some conjugacy class of G
containing a strongly regular element t ∈ T, then

Hi(B) → Hi(π−1(C))

is a W -equivariant direct-image morphism for arbitary characteristic.

4. Some Prototypical Applications

The theory of perverse sheaves and the construction for the Springer resolution have some
applications, especially in Lusztig’s earlier work on green functions and generalized springer
correspondences.

4.1. Green Functions. Keep the notations as before. Now we concern about Lusztig’s
original conjectures in [Lus81, Sec 3].

• SinceG is a reductive algebraic group defined over Fq, the finite field of characteristic
p > 0, the Frobenius morphism F : G → G exists.

• For some sake in Kazhdan’s argument, assume p, q ≫ 0.
• Let T ⊂ B ⊂ G be the maximal torus and the Borel subgroup in G. We further
assume that they are fixed by F .

• Choose the local system on G to be πrs
∗ Qℓ, and hence we obtain the intersection

complex ICG(πrs
∗ Qℓ).

• The previous statement dictates that ICG(πrs
∗ Qℓ)[dimG] is F -stable, and we fix an

isomorphism

φ : F ∗ICG(πrs
∗ Qℓ)[dimG] → ICG(πrs

∗ Qℓ)[dimG].

• Let GF denote the (finite) F -stable reductive group. For each w ∈ W , there is a
corresponding F -stable maximal torus in G, denoted by Tw.
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Definition 4.1. The Green function associated with e ∈ (Guni)F is defined as

QTw,G(e) :=
#

i!0

(−1)iTr(Fw,Hi(Be,Qℓ)).

Remark 4.2. The original definition of the Green functions differs from Definition 4.1. It
comes from the trace of an alternating some of certain ℓ-adic cohomologies on which GF

acts. It is then proved by Springer-Kazhdan [Kaz77] that the Green function enjoys an
expression above for elements in the unipotent F -stable locus.

Definition 4.3. For the fixed isomorphism φ, we define the characteristic function of
ICG(πrs

∗ Qℓ)[dimG] as follows. For each e ∈ GF ,

χφ(e) :=
#

i!1

(−1)iTr(φ,Hi
e(ICG(πrs

∗ Qℓ)[dimG])).

4.2. Character Formula. On Theorem 3.1, the formula of green functions in Definition
4.1 can be rewritten as

QTw,G(e) =
#

i!0

(−1)iTr(Fw,Hi
e(ICG(πrs

∗ Qℓ))).

On the other hand, as we have introduced in Section 1.3 before, we have a decomposition

ICG(πrs
∗ Qℓ)[dimG] ≃

!

ρ∈Irr(W )

V (ρ)⊗ ρ,

where

V (ρ) = HomW (ρ, ICG(πrs
∗ Qℓ)[dimG]) = ICG(HomW (ρ,πrs

∗ Qℓ))[dimG]

is the perverse sheaf associated with ρ. Now for each e ∈ (GF )uni, this decomposition
implies

Qρ,G(e) =
#

i!1

(−1)iTr(F,Hi
e(V (ρ))) = χρ,F (e).

On the other hand, if we further assume that G = GLn(Fq), the Weyl group admits the
trivial Frobenius action by F . Hence for each χ,

Qρ,G(e) =
1

|W |
#

w∈W

Tr(w,χ)QTw,G.

4.3. Generalized Springer Resolution for GLn. Recall the Springer resolution in Sec-

tion 3.1 is the morphism π : "G → G. A natural approach to generalize this is by replacing

B in the definition of "G by a parabolic subgroup P (whose unipotent radical is denoted by
U = U(P). For each P, we obtain the generalized Springer resolution

πP : "G(P) → G,

where "G(P) := {(e,P) ∈ G ×G/P | e ∈ P}. A unipotent orbit in G is called Richardson
if its intersection with U is dense in U. Note that there is a unique Richardson orbit,
say OP, associated to P, whose closure is exactly the image of πP. It turns out that πP

is not always birational unless CG(e) ⊂ P for all e ∈ OP. In fact, it is a morphism of
degree [CG(e) : CP(e)] = [AG(e) : AP(e)]. Hence we obtain the following result, which is
particularly useful when G = GLn(k).

Proposition 4.4. [BM81] The generalized Springer resolution πP is birational if AG(e) is
trivial for all e ∈ OP. Furthermore, it induces a semismall resolution of OP.
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4.4. Computing Intersection Complex Stalks. As for the considerable case where G =
GLn(k) and k = Fq, an algorithm to compute stalks for intersection complexes has been
developed by [Lus81] and [BM81] (also see [JMW08] for a concise introduction). In this
case, all nilpotent orbits are Richardson and all AG(e) are trivial. Some setups are given as
follows.

• Let λ = (λ1, . . . ,λs) be a partition of integers of n, that is, λ1 + · · ·+ λs = n.
• Let ei denote the i-th element in the standard basis of Cn, that is, the vector whose
i-th coordinate is 1 and others are 0.

• Define Li(λ) as the vector subspace of Cn spanned by e1, . . . , eλ1+...+λi .
• Accordingly, there is a flag associated to λ, given by

0 = Lλ
0 ⊂ Lλ

1 ⊂ · · · ⊂ Lλ
s = Cn.

• There is a parabolic subgroup, denoted by P(λ) ⊂ GLn(k), that stabilizes the flag
Lλ
• . All these flags as above form a flag variety F(λ) = G/P(λ).

• Let Oλ ⊂ GLn(k) be the nilpotent orbit consisting of those nilpotent matrices whose
Jordan normal forms have blocks of respective sizes λ1, . . . ,λs.

Proposition 4.5 (Dimension Bound). Keep the notations as before. Let λ′ = (λ′
1, . . . ,λ

′
s)

be the partition conjugate of λ. Given e ∈ G, we have e ∈ Oλ if and only if for each
1 ! i ! s,

dim(ker ei) #
i#

k=1

λ′
k.

Here the equality holds if and only if e ∈ Oλ.

Theorem 4.6. For the morphism πP(λ′) : "G(P(λ′)) → G, we obtain the following results.

(1) πP(λ′) is an isomorphism over Oλ;

(2) Oλ is exactly the image of πP(λ′);
(3) πP(λ′) is a resolution of singularities.

Proof. Note that there is a natural isomorphism

T∗(G/P(λ)) ≃ {(e, Lλ
•) ∈ G× Fλ | e(Lλ

i+1) ⊂ Lλ
i for all i # 0}.

For each e ∈ imπP(λ′) ⊂ G, there is a flag of the form Lλ′

• such that for all i # 0, e(Lλ
i+1) ⊂

Lλ
i . By induction, this implies that Lλ

i ⊂ ker ei. A dimension calculation shows that

dim(ker ei) #
$i

k=1 λ
′
k. Thus by Proposition 4.5, e lies in Oλ. This shows that imπP(λ′) ⊂

Oλ. Similarly, by assuming e ∈ Oλ, we have Oλ ⊂ imπP(λ′). Recall that all such first

projections are proper (see the proof of Theorem 3.1), so imπP(λ′) = Oλ. In particular, the
morphism πP(λ′) is an isomorphism over Oλ. Again, by the properness, it is a resolution of
singularities. □

We now consider to apply the BBDG decomposition (see Theorem 2.5) to the proper
morphism πP(λ′). After fixing a (usually constant) local system L on Oλ, we see

πP(λ′),∗Qℓ[dimOλ]

is semisimple whose simple direct summands are intersection complexes with respect to the
stratification on Oλ (see the previous talks, which we will not cover again). By Theorem 2.3
(1), the stalks of the direct image are given by the cohomology of the fibers. One finds the
stalks of ICOλ

(L) by removing the stalks of the other summands. In the case ofG = GLn(k),
the approach for computing the IC-stalks with Qℓ coefficients (which is in terms of Green
polynomials) has been known since [Lus81].
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