Tihang Zhu, Aug 11 <u>\$1 Integral models</u> (G.X) Shimura datum, E(=Q) reflex field. KEG(AF) open compart subap. Prime p st. i) K=KPKp, KPCG(AP), KpCG(Op) (ii) typ is hyperspecial, i.e. I conn. red. gp. Sch & Zp with go = Gop s.t. Trp= & (Zp) < G(Qp). Expectation = a "canonical" smooth integral model SK/Zp of Shr. Theorem (Vakin, Kirin, Madaguni Pera-Kim) This is true if (G,X) is of abelian type. more general than Hodge type. "<u>Canonical</u>": If Shr is not projective the idea is we want to forbid arbitrary deleting points from special fiber. Yg ∈ G (AF), cpt open U^P, K^P ⊂ G (AF), st. g^T U^Pg ⊆ K^P. ~~ (Ig]: Shurro --> Shrpro which on C-pts is given by

√ (F97): Shurns → Sh_KPro which on C-pts is given by def'd / E. (G(Q) X×G(Af)/U^PKp → G(Q)) X×G(Af)/K^PKp (x, y) → (x, yg) finite étale transition maps : [1] with Im Sh_KPKp = Sh_Kp E-scheme.

Need to characterize the Zcp-scheme Srp.
Characterizing condition

$$\forall Zcp-scheme T which is regular Q formally smooth/Zp).
every Q-map To \longrightarrow Sky
extends (uniquely) to T \longrightarrow Srp.
 \ast This uniquely characterizes Skp.
Rink For us, we need
(Madapeni Pesa) In the Hodge-type case,
if Shr is projective, so is Sr.
(Lon-Stroh) In the abelian-type case,
no assumption on Shr being proj., we have
 $H_{et,c}^{i}(Shr, \overline{a}, Q) = H_{c}^{i}(Sr, \overline{a}p)$.$$

Apply Lafschetz trace formula on
$$H^{2}(Strip)$$

 $\Rightarrow \sum (-H^{2}Tr(Fr) H^{2}(Strip)) = \#S(Fp).$
(Also proved for intersection cohomologies),

S2 Conjecture for #Sk(Fp)
With K=Khp, Kg hyperspecial.
Conjecture (Nottruit)
Assume (i) Gdar is simply connected
(ii) Ze its maxil IR-opht subtomus is Q-solit. (Ze is curpidal)
Then $\#St(Fp) = \sum_{G \in S} C(Yo, S) S(C(Y, Y, S) Oy(Lgo), TO_{S}(Fn).$
Here $\#St(Fp) = \sum_{G \in S} C(Yo, S) S(C(Y, Y, S) Oy(Lgo), TO_{S}(Fn).$
Here (Yo, S, S) runs through a certain subset of
 $C(Q) \times G(Ap) \times G(Qp)$ deg n unran. extra of eq
 $Heddo \sim :$
 $(A, Y, S) \sim (K', S', S')$
if $Yo S Y'_{0}$ are conjugate in $G(Ap)$
 $\cdot S & S'$ are G -conjugate in $G(Ap)$
 $ie. = ce G(Qp)$ of $S = cS' orco^{-1}$.
where $Oy(Lgo)$ is the integral of $L_{F}: G(Ap) \longrightarrow 10.15$
 $on the conj. class of S in $G(Qp)$
 $f_{n}: G(Qp) \longrightarrow 10.15$ is the doreateristic furcin of$

§3 Case $(GL_2, \partial p^{\pm}) = (G, X)$ is cpt open subap of Glz(Af). $K = K^{P} K_{P}$, $K_{p} = Gl_{2}(\mathbb{Z}_{p})$. How to arrange this? $\forall K, \exists N \gg 0$ s.t. $K \supset \widehat{f(N)} = \begin{cases} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in Gb(\widehat{z}) \mid \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv 1 \mod N \end{cases}$. then UptN, K > K Ch2(Zp) replace to by KP. GL2(Zp). okay ". * SK = SKPKp : YZep) - scheme R. Sr(R) = f(E, 7) E elliptic curve /R. 7 KP-level str. } ie on each conn. comp Ri of R, pick F. 7 is a Ty(Ri,F)-stable elt, KP-orbit of isoms $(\hat{\mathbb{Z}}^{\mathbb{P}})^{\otimes 2} \longrightarrow \mathbb{T}^{\mathbb{P}}(\mathcal{E}_{\mathbb{F}}).$ Recall F is a field. Two servi-simple etts of Gln(F) are conjugate in $GL_n(F)$ iff they are conjugate in $GL_n(F)$. Formula # $\xi_{\kappa}(\mathbb{F}_{p}) = \sum_{(r,s)} G(r_{s}, s) \cdot O_{r_{s}}(1_{\kappa}) \cdot TO_{s}(f_{s})$ * So is an elt of G(Q) (up to conjugary)

Finally: Haar mean on
$$G(Ale)$$
 is normalized s.f. $vol(kB)=1$.
Haar mean on $G(Ben)$ is normalized s.f. $vol(Gle(Zp))=1$.
fn: $Gl_2(Opn) \longrightarrow fo. 1$ characteristic function of
 $Gl_2(Zpn) \left(\begin{array}{c} P \\ 1 \end{array} \right) Gl_2(Zpn) \subset Gl_2(Opn)$

Clanify to's:
1) supersingular case (only appears if n is even.)

$$T_0 = \begin{pmatrix} p^{1/2} \\ p^{n/2} \end{pmatrix}$$
, $G_{T_0} = G = GL$.
 $G_{T_0} = G = GL$, $I = D^{\times}$, $D =$ quaternion alg. / \mathbb{Q} ran'd at p & oo,
2) ordinary case: Xo is non-central.
 $F := \mathbb{Q}(\text{eigenvaluer of } X_0) = \mathbb{Q}(X_0)$
is imaginary quadratic field (Xo is \mathbb{R} -elliptic).
 $G_{T_0} \cong \mathbb{R}^{n} F_{\mathbb{Q}} G_{\text{m}} = "F^{\times}" \longrightarrow GL_2$, $I = G_{T_0}$.
 $F = \mathbb{Q} \oplus \mathbb{Q}$.
Exercise 1 Show that only finitely many Yo's show up.
 $Exercise 2 \# S_{K}(\mathbb{F}_{S})$, $K = T(\widehat{T}) = {\binom{\alpha}{c}} = CL_2(\widehat{Z}) | \binom{\alpha}{c}} = 1 \mod 4 \frac{1}{2}$.