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Abstract. These notes are based on an online mini-course taught at BICMR, Peking Uni-

versity, in August 2021. The goal is to provide an informal introduction to the Langlands–

Kottwitz program of applying trace formula methods to the understanding of cohomology

of Shimura varieties.
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1. Lecture 1
1.1. Hasse–Weil zeta functions. Let X be a smooth projective variety over Q. For almost
every (i.e. avoiding finitely many) prime p, there exists a “good integral model" Xp over Z(p),
i.e., a smooth projective scheme over Z(p) whose generic fiber is X. In fact, one can simply
take any finite-type model X of X over SpecZ and then define Xp to be X ◊SpecZ SpecZ(p)

for almost every p.
We can then define the local zeta function:

’p(X, s) := exp
3 Œ

ÿ

n=1

#Xp(Fpn)p
≠ns

n

4

By Lefschetz trace formula and proper smooth base change, we can rewrite this as

’p(X, s) :=
2 dim X

Ÿ

i=0

det
3

1 ≠ Frobp · T

-

-

-

-

Hi

ét

1

XQ,Q¸

2

4

(≠1)
i+1 -

-

-

-

T =p≠s

.
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Here ¸ is a prime di�erent from p, and Frobp is the geometric Frobenius element at p. Since
the Gal(Q/Q)-action on Hi

ét

1

XQ,Q¸

2

is unramified at p, the action of Frobp makes sense.
By the second expression, the zeta function does not depend on the choice of the integral

model Xp. Also, by the first expression, it does not depend on the choice of the prime ¸.
Finall, we define

’(X, s) =
Ÿ

almost all p

’p(X, s).

This of course depends on the finite set of primes that we have avoided, but we suppress
that from the notation. The infinite product converges absolutely when Ÿs ∫ 0.

Conjecture 1.2. The function ’(X, s) admits a meromorphic continuation to C.

For example, if X = SpecQ, then ’(X, s) (with the product taken over all primes) is
Riemann’s zeta function ’(s). It has meromorphic continuation by Riemann.

Theorem 1.3 (Eichler–Shimura). Take X = X0(N) to be the (compactified) modular curve.

Then

’(X, s) = ’(s)
¸ ˚˙ ˝

comes from H0

· ’(s ≠ 1)
¸ ˚˙ ˝

comes from H2

·
g

Ÿ

i=1

L(fi, s)≠1

¸ ˚˙ ˝

comes from H1

,

where f1, . . . , fg form a Hecke eigen-basis of S2(�0(N)), and L(fi, s) is the L-function of fi

built from the Hecke eigenvalues of fi.

Each of L(fi, s) admits a meromorphic continuation to C (by Hecke), so the same is true
for ’(X0(N)), s).

Remark 1.4. If we replace Hi

ét

1

XQ,Q¸

2

by Hi

ét

1

XQ, L
2

for L a suitable local system on X

(built from representations of G = GL2), then we see higher weight modular forms in the
analogue of ’(X, s).

1.5. Towards Hasse–Weil zeta function for more general Shimura varieties. Let
(G, X) be a Shimura datum, i.e.

• G is a reductive group over Q, e.g. GL2,
• X is a G(R)-conjugacy class of R-homomorphism S := ResC/R Gm æ GR

satisfying Deligne’s axioms. Let K µ G(Af ) be a compact open subgroup. Then we define
(the complex points of) the Shimura variety

ShK := ShK(G, X)(C) = G(Q)\X ◊ G(Af )/K =
m
·

i=1

Xi/�i,

where each Xi is a connected component of X, and �i is an arithmetic subgroup of G(Q)
which acts on Xi.

Assume that K is small enough. (“Neat” is the technical term.) As defined, one can show
that ShK(G, X) is a complex manifold. By a theorem of Bailey and Borel, ShK(G, X) is a
quasi-projective variety over C. By later theorems of Shimura, Deligne, Borovoi, and Milne,
ShK(G, X) admits a canonical model over a number field E ™ C; this field E is called the
reflex field of (G, X).
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Remark 1.6. In a lot of cases namely the PEL type case (P = polarization, E = endomor-
phism, L = level structure), the canonical model of ShK over E can be directly defined as
a moduli space of abelian varieties equipped with polarizations, endomorphism structures,
and level structures. This will also lead to integral models. For example, modular curves,
Siegel modular varieties, and some unitary Shimura varieties, belong to the PEL type case.

In fact, Shimura originally studied various types of moduli spaces of abelian varieties with
additional structures; later Deligne generalized the idea of Shimura to give a more group
theoretic approach to Shimura varieties, and introduced the concept of canonical models
over the reflex field.
Remark 1.7. More recently, Kisin (hyperspecial level at p > 2), Madapusi Pera–Kim (hy-
perspecial level at p = 2), Kisin–Pappas (some parahoric level at p) have constructed integral
models for Shimura varieties of abelian type, which are more general than PEL type but still
do not cover all Shimura varieties as defined by Deligne.
Expectation 1.8. The reduction modulo p, or rather the set of Fp-points, of a suitable inte-
gral model also has a group theoretic description similar to ShK(C) = G(Q)\X ◊ G(Af )/K.
This is the Langlands–Rapoport Conjecture.
Assumption 1.9. For simplicity, in this course we will often assume E = Q.

Conjecture 1.10. The Hasse–Weil ’-function of a Shimura vairiety can be expressed in

terms of automorphic L-functions.

1.11. Langlands’ idea to study the Hesse–Weil ’-function of Shimura varieties.
The local zeta function ’p(ShK , s) encodes {#SK(Fpn) | n}, where SK is a suitable integral
model of ShK over Z(p). If one wants to relate ’p(ShK , s) with automorphic representations of
G (roughly: subrepresentations of the right regular G(A)-representation on L

2(G(Q)\G(A))),
one typically uses the trace formula of Selberg and Arthur relating spectral information
on L

2(G(Q)\G(A)) with orbital integrals, i.e., integrals of some functions on G(A) over a
conjugacy class of G(A) (roughly speaking).

Langlands’ idea is to relate the set SK(Fpn) with the orbital integrals. At least
in the PEL case, this amounts to counting abelian varieties with additional structures over
a finite field in terms of orbital integrals.
Remark 1.12. When G/ZG contains a Q-split torus (e.g. G = GL2, G/ZG = PGL2 ∏ Gm),
ShK is not projective over E. In this case, we need to compactify the Shimura varieties in
order to have the “correct” definition of the Hasse–Weil zeta function.1

Similarly, on the automorphic side, G(Q)\G(A) is not compact for such G. In this case,
for a function f œ CŒ

c
(G(A)), the trace of f on L

2(G(Q)\G(A)) does not make sense. (One
needs a certain truncation process.) The trace formula becomes an identity between two
quantities whose definitions are really complicated.
Remark 1.13. For applications, we are not just satisfied with understanding how Gal(E/E)
acts on Hi

ét

1

Sh
K,E

,Q¸

2

. Actually, we want to also understand the commuting actions of

1
From the point of view of étale cohomology, there are at least three possible choices for defining the

Hasse–Weil zeta function. The usual cohomology of ShK , the compact support cohomology of ShK , and the

intersection cohomology of the canonical Baily–Borel compactification of ShK . It is the third one that best

fits Langlands’ idea of using the Arthur–Selberg trace formula.
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Gal(E/E) and the Hecke algebra H(G(Af )//K) on Hi

ét

1

Sh
K,E

,Q¸

2

. Here H(G(Af )//K) is
the convolution algebra consisting of K-bi-invariant compactly supported smooth functions
on G(Af ), and its action comes from the G(Af )-action on the tower limΩ≠K

ShK . For this, we
need to understand: for a fixed f œ H(G(Af )//K), the trace

Tr
1

f ◊ Froba

p

-

-

-Hi

ét

2

for all but finitely many p (depending on f).
For the fixed f and for almost all p, we have K = K

p
Kp with K

p µ G(Ap

f
) and Kp µ

G(Qp), and we have f = f
p
fp with f

p œ H(G(Ap

f
)//K

p) and fp = 1Kp
: G(Qp) æ {0, 1}. By

linearity, it is enough to consider the case when f
p = 1KpgKp for some g œ G(Ap

f
).

Then we have
ÿ

i

(≠1)iTr
1

f ◊ Froba

p

-

-

- Hi

ét

2

= # fixed points of the correspondence

S
(Kpflg≠1Kpg)·Kp,Fp

Frob
a
p //

g

✏✏

S
(Kpflg≠1Kpg)·Kp,Fp

✏✏
S

KpKp,Fp
S

KpKp,Fp

This is quite similar to computing the cardinality of SK(Fpn).
Remark 1.14. Instead of looking at Hi

ét
(Sh

K,Q,Q¸), we can also look at Hi

ét
(Sh

K,Q, L) for
a local system L associated with a representation of G. This generalization should be
straightforward, and we will not spend too much time on it.
1.15. Integral models. Let (G, X) be a Shimura datum, with reflex field E. Let K µ
G(Af ) be an open compact subgroup. Fix a prime p such that

• K = K
p
Kp with K

p µ G(Ap

f
) and Kp µ G(Qp)

• Kp is hyperspecial, i.e., there exists a connected reductive group scheme G over Zp

such that GQp

≥= GQp
and such that Kp = G(Zp) µ G(Qp). (Equivalently, Kp is the

stabilizer of a hyperspecial point in the Bruhat–Tits building.)
For fixed K, our assumptions on p are satisfied for almost all p.

For example, G = GL2, K =
Ó1

a b

c d

2

œ GL2(‚Z)
-

-

-

1

a b

c d

2

© 1 (mod N)
Ô

. The assumptions
on p are satisfied if p - N (by taking G = GL2 /Zp).

In the sequel, we will also tacitly assume that K
p is su�ciently small. (The technical

condition is called “neat”.) In practice the following condition is good enough: There exists
a faithful representation G æ GLn defined over Q such that the image of K

p inside GLn(Ap

f
)

is contained in
Ó1

a b

c d

2

œ GL2(‚Z(p))
-

-

-

1

a b

c d

2

© 1 (mod N)
Ô

for some N Ø 3 coprime to p.
Let v be a place of E above p. We denote by OE,(v) the localization of OE at the prime v.

Expectation 1.16. There exists a “canonical” smooth integral model SK over OE,(v) of the
E-scheme ShK .
Theorem 1.17 (Kisin [Kis10], Madapusi Pera–Kim [KMP16]). This is true if (G, X) is of

abelian type (which is more general than Hodge type).
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Also, it is expected that if ShK is proper, so should be SK . If ShK is not proper, we
expect the Bailey–Borel compactification of ShK extends to a similar compactification of
SK . These statements have been proved by Madapusi Pera [MP19] in the Hodge type case.

2. Lecture 2
2.1. Canonicity of integral models. We briefly explain what a “canonical” integral model
means. In particular, if ShK is not projective, the idea is that we want to “forbid" arbitrarily
deleting points from the special fiber.

Suppose given an element g œ G(Ap

f
), and open compact subgroups U

p
, K

p µ G(Ap

f
) such

that g
≠1

U
p
g ™ K

p. Then we obtain a morphism (defined over E and is finite étale)

[g] : ShUpKp
≠æ ShKpKp

which on C-points is given by

G(Q)\X ◊ G(Af )/U
p
Kp ≠æ G(Q)\X ◊ G(Af )/K

p
Kp

(x, y) ‘≠æ (x, yg).

We obtain a limit
limΩ≠
Kp

ShKpKp
=: ShKp

with transition maps [1]. (This limit exists in the category of schemes.)
Implicitly, the integral models for fixed Kp = G(Zp) and di�erent choices of K

p should
satisfy: every morphism [g] : ShUpKp

æ ShKpKp
as above extends uniquely to a finite étale

morphism SUpKp
æ SKpKp

. Then we can form the inverse limit of OE,(v)-schemes

SKp
:= limΩ≠

Kp

SKpKp

whose generic fiber is identified with ShKp
. Moreover, the G(Ap

f
)-action on ShKp

also extends
to SKp

.
Note: In order to characterize SKpKp

we just need to characterize SKp
together with a

G(Ap

f
)-action. This is because SKpKp

≥= SKpKp
/K

p. Moreover, the G(Ap

f
)-action on SKp

is determined by the action on ShKp
, since for each K

p the generic fiber ShKpKp
is Zariski

dense in SKpKp
.2

Now we need to characterize the OE,(v)-scheme SKp
.

Characterizing condition: For any OE,(v)-scheme T which is regular and formally
smooth over OE,(v), every E-morphism TE æ ShKp

extends uniquely to an OE,(v)-morphism
T æ SKp

.
(This looks a lot like the valuative criterion of properness.)

Example 2.2. To get a feel of what the inverse limit limΩ≠Kp
ShKpKp

looks like, maybe one
can try to understand the “set of connected components" of modular curves X(N); it is
SpecQ(’N). Taking inverse limit over N relatively prime to p, we obtain SpecQ(’N ; p - N).

2
This denseness follows from the separatedness of SKpKp over OE,(v), which is known in all cases where

SKpKp has been constructed. In general one should impose the denseness as one of the axioms.
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Remark 2.3. By the work of Lan–Stroh [LS18], in the abelian type case with no assumption
on ShK being projective, we have

Hi

ét,c

1

Sh
K,Q,Q¸

2 ≥= Hi

ét,c

1

S
K,Fp

,Q¸

2

.

Note that we may apply the Lefschetz trace formula to the RHS to get
ÿ

i

(≠1)iTr
1

Frqa

-

-

- Hi

ét,c

1

S
K,Fp

,Q¸

22

= #SK(Fqa)

when Fq is the residue field of v.

2.4. Conjectural formula for the number of points. Here and later, we always assume
that K = K

p
Kp with Kp hyperspecial and K

p su�ciently small (see above). We will state
the general formula for now, and later will focus on the special case when G = GL2.

We assume the following:
• Gder is simply connected.
• The maximal R-split torus in ZG is Q-split. (Sometimes, we say “ZG is cuspidal”;

this condition is automatic for Shimura varieties of Hodge type.)
(The above assumptions can be removed [KSZ], but it makes it a lot harder to state the
conjectures.) For example, G = GL2 or GSp

2g
satisfy these assumptions.

Conjecture 2.5 (Kottwitz, [Kot90]). Let Fq is the residue field of v. Let m be a positive

integer, and write q
m = p

n
. We have

#SK(Fqm) =
ÿ

(“0,“,”)

c1(“0, “, ”) · c2(“0, “, ”) · O“(1Kp) · TO”(fn)

Here (“0, “, ”) runs through a certain subset of G(Q) ◊ G(Ap

f
) ◊ G(Qpn) modulo certain

equivalence relation ≥:

(“0, “, ”) ≥ (“Õ
0
, “

Õ
, ”

Õ)

if the following three conditions are satisfied:
• “0 and “

Õ
0

are conjugate in G(Q),
• “ and “

Õ are conjugate in G(Ap

f
),

• ” and ”
Õ are ‡-conjugate in G(Qpn), i.e., ” = c”

Õ
‡(c)≠1 for some c œ G(Qpn). Here, ‡

is the arithmetic p-Frobenius on Qpn .
Now we explain the other terms in the formula:

• c1(“0, “, ”) is a volume term,
• c2(“0, “, ”) comes from the size of a certain Galois cohomology group,
• O“(1Kp) is the orbital integral of 1Kp : G(Ap

f
) æ {0, 1} on the conjugacy class of “

in G(Ap

f
),

• TO”(fn) is the integral of fn on the ‡-conjugacy class of ” inside G(Qpn); here fn :
G(Qpn) æ {0, 1} is the characteristic function of a certain G(Zpn)-double coset in
G(Qpn) determined by the Shimura datum (G, X).
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2.6. Conjecture in the special case of GL2. Take (G, X) = (GL2, H±). Take the open
compact subgroup K = K

p
Kp where Kp = GL2(Zp) and K

p is small enough. Here we in
particular require that there exists N Ø 3 such that p - N and

K
p µ

Ó1

a b

c d

2

œ GL2(‚Z(p))
-

-

-

1

a b

c d

2

© 1 (mod N)
Ô

.

In this case, the reflex field is Q, and the integral model SK = SKpKp
over Z(p) is

characterized by: for each Z(p)-scheme R,

SK(R) =
I

(E , ÷)
-

-

-

-

-

E is an elliptic curve over R,

÷ is a K
p-level structure

J

/isomorphisms

Here a K
p
-level structure means the following: For each connected component Ri of R and

each geometric point x̄ of Ri, we have a fi
ét

1
(Ri, x̄)-stable K

p-orbit of isomorphisms
1

‚Z(p)
2ü2 ƒ≠æ T

(p)(Ex̄),

and these should satisfy the natural compatibilities when we vary x̄.
Recall: For F a field, two semisimple elements of GLn(F ) are conjugate in GLn(F ) if and

only if they are conjugate in GLn(F ).

Theorem 2.7. We have

#SK(Fpn) =
ÿ

(“0,”)

c1(“0, ”) · O“0(1Kp) · TO”(fn).

Here
• “0 is an element of G(Q), up to conjugacy (which is the same as up to conjugacy by

GL2(Q)), and is R-elliptic, i.e. “0 œ T (R) for T a maximal torus in GR such that
T (R) is compact modulo ZG(R). In other words, either “0 is central, i.e. “0 =

1

⁄

⁄

2

with ⁄ œ Q◊, or the characteristic polynomial of “0 is irreducible over R.
• (The element “ œ G(Ap

f
) in the general conjecture is determined by “0 up to conju-

gacy, so it disappears here.)
• ” œ G(Qpn) such that the “naive norm" ”·‡(”)·‡2(”) · · · ‡

n≠1(”) œ G(Qpn) is conjugate
to “0. This ” is taken up to ‡-conjugacy in G(Qpn).

• Writing G“0 for the centralizer of “0 in G = GL2, we define the orbital integral

O“0(1Kp) =
⁄

G“0 (Ap

f
)\G(Ap

f
)

1Kp(x≠1
“0x)dx.

Here the measure dx is the quotient Haar measure on G“0(Ap

f
)\G(Ap

f
) given by the

Haar measure on G(Ap

f
) normalized such that vol(Kp) = 1, and an arbitrary Haar

measure on G“0(Ap

f
).

• Similarly, writing G(Qpn)”‡ for the ‡-centralizer of ”, namely
Ó

g œ G(Qpn)
-

-

-g”‡(g)≠1 =
”

Ô

, we define the twisted orbital integral

TO”(fn) =
⁄

G(Qpn )”‡\G(Qpn )

fn(x≠1
”‡(x))dx

Here the quotient measure is given by the Haar measure on G(Qpn) normalized such
that vol(GL2(Zpn)) = 1, and an arbitrary Haar measure on G(Qpn)”‡.
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Here fn : GL2(Qpn) æ {0, 1} is the characteristic function of

GL2(Zpn)
1

p

1

2

GL2(Zpn) ™ GL2(Qpn).

(Recall the Cartan decomposition

GL2(Qpn) =
·

a,bœZ,aØb

GL2(Zpn)
1

p
a

p
b

2

GL2(Zpn),

and
1

p

1

2

= µ(p) where µ : z ‘æ
1

z

1

2

is a Hodge cocharacter for the Shimura
datum.)

In fact, G(Qpn)”‡ is the Qp-points of a reductive group Jn,” over Qp defined as
follows. For R an Qp-algebra,

Jn,”(R) =
Ó

g œ G(Qpn ¢Qp
R)

-

-

- g”‡(g)≠1 = ”

Ô

.

Alternatively, we can define a new group Gn := ResQpn /Qp
G which is a reductive

group over Qp, and ◊ œ AutQp
(Gn) corresponding to ‡ œ Gal(Qpn/Qp). Then GL2 is

the centralizer of ◊ on Gn, yet Jn,” is the centralizer of Ad” ¶ ◊.
• We now define c1(“0, ”). Given (“0, ”) we can define a unique inner form I of G“0

such that
– IR is compact modulo ZG,
– IQ¸

≥= G“0 for ¸ ”= p,
– IQp

≥= Jn,”.
Note: in the above the isomorphisms should mean isomorphisms as inner forms.

We define c1(“0, ”) to be the volume of I(Q)\I(Af ), with respect to the counting
measure on I(Q) and the Haar measure on I(Af ) ≥= G“0(Ap

f
) ◊ Jn,”(Qp) fixed before

(in the definition of O“ and TO”). Here I(Q)\I(Af ) is a nice space: From the fact
that IR is compact modulo ZG and ZG is cuspidal, we know that I(Q) µ I(Af ) is
discrete and the quotient has finite volume.

2.8. Constraints on “0. If “0 shows up, then det“0 = p
n. This is because there exists

” œ G(Qpn) such that “0 ≥ ”‡(”) · · · ‡
n≠1(”). So

det“0 = NmQpn /Qp
(det”).

If TO”(fn) ”= 0, we must have c œ G(Qpn) such that c”‡(c)≠1 œ GL2(Zpn)
1

p

1

2

GL2(Zpn).
Thus detc · det” · ‡(detc)≠1 has p-adic valuation 1. This further implies that det” has p-adic
valuation 1, and thus det“0 œ Q◊ has p-adic valuation n.

Similarly, if O“0(1Kp) ”= 0, then “0 is conjugate to some elements in K
p ™ GL2(‚Z(p)).

So det“0 has ¸-adic valuation 0 for every ¸ ”= p. Yet det“0 > 0 because the characteristic
polynomial is irreducible over R.

Putting everything together, we obtain det“0 = p
n.

Exercise 2.9. Show that only finitely many “0’s (up to conjugacy) show up in the formula.

Moreover, we point out that the ‡-conjugacy class of ” is determined by “0 and the relation
”‡(”) · · · ‡

n≠1(”) ≥ “0. (This is a statement special for GL2. We will prove this next time.)
Therefore the inner form I of G“0 , whose definition depends on “0 and ”, is determined by
“0.
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2.10. Classification of “0’s.
(1) Central case: (only appears if n is even) “0 =

1

p
n/2

p
n/2

2

or
1

≠p
n/2

≠p
n/2

2

.
In this case, G“0 = G = GL2, I = D

◊, where D is the quaternion algebra ramified
at p and Œ.

(2) Non-central case: In this case, set F := Q(eigenvalues of “0) = Q(“0), which is an
imaginary quadratic field (because “0 is R-elliptic). Then,

G“0
≥= ResF/Q Gm = “F

◊” Òæ GL2

where one defines the embedding by viewing F as Q ü Q and considering the left
multiplication action of F

◊ on F . Since G“0 is a torus and I is an inner form of it,
we have I = G“0 .

Exercise 2.11. Compute #SK(F5) with K = ‰�(4) =
Ó1

a b

c d

2

œ GL2(‚Z)
-

-

-

1

a b

c d

2

© 1
(mod 4)

Ô

.

3. Lecture 3
Lemma 3.1. Let “0 œ GL2(Qp) be a semisimple element, and ” œ GL2(Qpn) be such that

” · ‡(”) · · · ‡
n≠1(”) ≥ “0. Then the ‡-conjugacy class of ” is uniquely determined by “0.

Proof. We use the following two facts.
Fact 1: Suppose G is a reductive group over Qp with Gder simply connected. Let “0 œ

G(Qp) be a semisimple element, and suppose ” œ G(Qpn) is such that ”‡(”) · · · ‡
n≠1(”) is

conjugate to “0 in G(Qp). Then Jn,” is an inner form of G“0 .
Fact 2: Keep the setting in Fact 1. The set

Ó

”
Õ œ G(Qpn)

-

-

- ”
Õ
‡(”Õ) · · · ‡

n≠1(”Õ) ≥ “0

ÔO

‡-conj.

(where ≥ means G(Qp)-conjugate) is in bijection with

Ker
1

H1(Qp, Jn,”) æ H1(Qp, ResQpn /Qp
G)

2

.

(Recall that Jn,” µ ResQpn /Qp
G.) Indeed, if ” and ”

Õ both satisfy the similar condition, then
there exists g œ ResQpn /Qp

G(Qp) such that g”◊(g)≠1 = ”
Õ, where ◊ is the Qp-automorphism

of ResQpn /Qp
G corresponding to ‡ œ Gal(Qpn/Qp). Then we obtain a cocycle Gal(Qp/Qp) æ

Jn,”(Qp) sending · ‘æ g
≠1

·(g). This determines an element in the above kernel.
In our special case G = GL2, we claim that H1(Qp, Jn,”) = 0. This uses the following
Fact 3: Suppose F is a non-archimedean field of characteristic zero, and J, J

Õ are reductive
groups over F that are inner forms of each other. Then there is a canonical isomorphism
H1(F, J) ≥= H1(F, J

Õ). (This is a deep result, based on Kneser’s theorem that H1(F, J) = 0
for any semisimple simply connected group J over F .)

Now using Fact 3, we see that

H1(Qp, Jn,”) ≥= H1(Qp, G“0)

But for “0 œ G(Qp) = GL2(Qp) semisimple, there are only three possibilities of G“0 :
• if “0 is central, G“0 = G,

9



• if “0 is non-central and the characteristic polynomial is irreducible over Qp, G“0 =
ResF/Qp

Gm, where F is the quadratic extension of Qp generated by the eigenvalues
of “0,

• if the characteristic polynomial of “0 has two distinct roots over Qp, then G“0 =
Gm ◊ Gm.

Then H1(Qp, Jn,”) = H1(Qp, G“0) = 0 by Hilbert 90 and Shapiro’s lemma. ⇤

3.2. General way of computing (twisted) orbital integrals. (We will only discuss the
twisted case, since one can recover the untwisted case by setting n = 1.) Let G be a reductive
group over Qp and n œ N. Let ” œ G(Qpn). We assume the following:

• Jn,” is a reductive group,
• the ‡-conjugacy class of ” in G(Qpn) is a closed subset,

These conditions are always satisfied in the point counting formula, but let us indicate some
su�cient conditions which imply these assumptions. For n = 1, it su�ces to require that ”

is semi-simple. For n Ø 2, it su�ces to require that the automorphism Ad” ¶◊ of ResQpn /Qp
G

is semi-simple.
Now fix Haar measures dg on G(Qpn) and dj on Jn,”(Qp), and fix a function f œ CŒ

c
(G(Qpn)).

Then we define the twisted orbital integral

TO”(f) :=
⁄

Jn,”(Qp)\G(Qpn )

f(x≠1
”‡(x))dx,

where dx is the quotient measure dg/dj. Fix a su�ciently small compact open ‡-invariant

subgroup K µ G(Qpn) such that f is K-bi-invariant. (This always exists.) Then

TO”(f) =
ÿ

xœJn,”(Qp)\G(Qpn )/K

f(x≠1
”‡(x)) · voldg(K)

voldj(xKx≠1 fl Jn,”(Qp))

Here, one can prove that the sum is taken over a finite set3, and that the evaluation
f(x≠1

”‡(x)) makes sense (as f is K-bi-invariant and left multiplying by elements in Jn,”(Qp)
onto x does not change the value of x

≠1
”‡(x)). The volumes are computed with respect to

the indicated Haar measures.
The hard part when applying this formula is usually to make explicit the indexing set

Jn,”(Qp)\G(Qpn)/K of the summation.

3.3. Proof of Theorem 2.7. Set q = p
n. First, recall that SK(Fq) is the set of isomorphism

classes of pairs (E, ÷), where E is an elliptic curve over Fq, and ÷ is a Gal(Fq/Fq)-stable K
p-

orbit of isomorphisms
‚Z(p) ü ‚Z(p) ƒ≠æ T

(p)(EFq
).

(Here K
p acts on ‚Z(p) ü ‚Z(p) via K

p µ GL2(Z(p)), and Gal(Fq/Fq) acts on T
(p)(EFq

).)
The basic idea is that starting with E over Fq, we can already cook up the pair (“0, ”) in

the following way. Given E, for any prime ¸ ”= p, the ¸-adic Tate module T¸(E) := T¸(EFq
)

3
Essentially, we are looking at the intersection

‡-conjugacy class of x fl supp(f)

modulo the action of K. Now the ‡-conjugacy class of x in G(Qpn) is closed (by our assumption) and

supp(f) is compact, so their intersection is compact. Yet K is open so the quotient is finite.

10



is acted on by the q-Frobenius endomorphism fi œ End(E). If we choose a basis of T¸(E),
then fi is given by some matrix “¸ œ GL2(Q¸).

Fact: the characteristic polynomial of “¸ has coe�cients in Z and is independent of ¸. In
more fancy form, consider Q[fi] ™ End(E) ¢Z Q. Then Q[fi] is a field, and we denote by
min(fi;Q) the minimal polynomial of fi over Q. Then the characteristic polynomial of “¸ is
min(fi;Q) or min(fi;Q)2 (for any ¸ ”= p).

We define an element “0 œ G(Q) whose minimal polynomial is min(fi;Q); such “0 is unique
up to conjugacy, and moreover “0 ≥ “¸ for every ¸ ”= p.

Observation: This “0 is R-elliptic, i.e., it is either central or has characteristic polynomial
irreducible over R. This is because the characteristic polynomial of “0 is T

2 ≠ Tr(“0)T +
det(“0), and the R-elliptic condition is equivalent to this polynomial having non-positive
discriminant, i.e., Tr(“0)2 Æ 4det(“0). By general facts about elliptic curves over Fq, we
know that

Tr(“0) = q + 1 ≠ #F (Fq), det(“0) = q.

Thus the last inequality is precisely Hasse’s bound: |q + 1 ≠ #E(Fq)| Æ 2Ô
q.

To construct ”, we need to consider the Dieudonné module M0 = M0(E) of E[pŒ]. Recall
that this is a free Zq-module of rank 2 together with a ‡-linear map F : M0 æ M0 (i.e.
F (a · x) = ‡(a)F (x) for a œ Zq and x œ M0), and a ‡

≠1-linear map V : M0 æ M0 such that
FV = V F = p. If we choose a basis of M0, then F becomes the map

A

x

y

B

‘≠æ
Q

a

a b

c d

R

b

A

‡(x)
‡(y)

B

for some fixed ” =
1

a b

c d

2

œ GL2(Qq). The element ” is independent of the choice of basis
up to ‡-conjugacy. Note that V can be reconstructed from F as long as F satisfies the
condition M0 ∏ F (M0) ∏ pM0. In our case, since M0 comes from an elliptic curve, we have
M0 ∏ F (M0) ∏ pM0 and dimFq

F (M0)/pM0 = 1. We say that M0 is a Dieudonné module of

height 2 and dimension 1. Correspondingly, ” œ GL2(Zq)
1

p

1

2

GL2(Zq).4

Moreover, ” · ‡(”) · · · ‡
n≠1(”) ≥ “0 holds (by some general theory of elliptic curves).

Summary: We have constructed a map from the set of elliptic curves E over Fq to the set
of pairs (“0, ”) up to conjugacy and ‡-conjugacy, respectively. Thus, we may then write

#SK(Fq) =
ÿ

(“0,”)

N(“0, ”), with N(“0, ”) = #
Ó

(E, ÷)
-

-

- E gives rise to (“0, ”)
Ô

.

Now we have two things to prove:
(1) Suppose N(“0, ”) ”= 0. We need to prove N(“0, ”) = c1(“0, ”) · O“0(1Kp) · TO”(fn).
(2) If (“0, ”) is such that O“0(1Kp) · TO”(fn) ”= 0, then “0 comes form some elliptic curve

E over Fq.

4
In general, a Dieudonné module M over Zq is a finite free Zq-module equipped with a ‡-linear operator

F and a ‡≠1
-linear operator V such that FV = V F = p on M . The existence of V is equivalent to

pM µ FM µ M . We define the height of M to be rankZq M , and define the dimension of M to be

dimFq (FM/pM). If we take a Zq-basis of M , then F is given by ” ¶ ‡ for some ” œ GLn(Qq). We have

” œ GLn(Zq)diag(p, · · · , p, 1, · · · , 1) GLn(Zq), where the number of 1’s is equal to the dimension of M in the

above sense.
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The rest of this lecture is devoted to proving (1). We take some elliptic curve E0

over Fq, which gives rise to invariants (“0, ”). We need the following:

Theorem 3.4 (Honda–Tate). If E/Fq gives rise to the same invariant (“0, ”) (up to con-

jugacy and ‡-conjugacy) then E is quasi-isogenous to E0. The converse is also true. In

particular,

N(“0, ”) = #
Ó

(E, ÷)
-

-

- E is quasi-isogenous to E0

Ô

.

To use this theorem, we define

Y :=
Ó

(E, ÷, ÿ)
-

-

- ÿ is a quasi isogeny E æ E0

Ô

.

Define the algebraic group IE0 over Q: for every Q-algebra R,

IE0(R) =
3

EndFq
(E0) ¢Z R

4◊
.

Then IE0 is a reductive group over Q. For example, IE0(Q) is the set of self-quasi-isogenies
of E0.

Then we deduce
N(“0, ”) =

-

-

-IE0(Q)\Y

-

-

-.

We now define some “local variants” of Y . We define Y
p to be the set of Gal(Fq/Fq)-

stable K
p-orbits of embeddings (‚Z(p))ü2

Òæ T
(p)(E0) ¢Z Q. Note that the right hand side of

the embedding is non-canonically isomorphic to (Ap

f
)ü2 and is equipped with an action of

Gal(Fq/Fq). The group K
p only acts on the left hand side. We do not require the images of

the embeddings to be T
(p)(E0). Observe that Y

p is the same as the set of fi-stable K
p-orbits

of such embeddings, which is further the same as, after choosing a basis of T
(p)(E0), the set

of (“¸) ”̧=p-stable K
p-orbits of embeddings (‚Z(p))ü2

Òæ (Ap

f
)ü2. (Here (“¸)¸”=p œ GL2(Ap

f
) is the

matrix of fi.) Since a K
p-orbit of embeddings (‚Z(p))ü2

Òæ (Ap

f
)ü2 is given by g œ GL2(Ap

f
)

up to right multiplication by K
p, we see that Y

p is further identified with the set
Ó

g œ GL2(Ap

f
)/K

p

-

-

- g
≠1(“¸)¸ ”=pg œ K

p
Ô

We also define

Yp =

Y

]

[

Zq-lattices � µ M0(E0)[ 1

p
]

-

-

-

-

-

-

p� µ F� µ � and dimFq
F�/p� = 1.

Z

^

\

Here F : M0(E0)[ 1

p
] æ M0(E0)[ 1

p
] is induced by the F on M0(E0). In other words, we require

that (�, F ) is a Dieudonné module of type height 2 and dimension 1 in its own right. After
choosing a basis of M0(E0) (as how we get the element ”), this set Yp is the same as

Ó

Zq-lattices � µ Qü2

q

-

-

- p� µ ” · ‡(�) µ � and dimFq
(” · ‡(�)/p�) = 1

Ô

which is the then the same as (by setting � = g · Zü2

q
)

Ó

g œ GL2(Qq)/ GL2(Zq)
-

-

- g
≠1

”‡(g) œ G(Zq)
1

p

1

2

G(Zq)
Ô

.

There is a natural map
Y ≠æ Y

p ◊ Yp
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sending a tuple (E, ÷, ÿ) to the following element in Y
p ◊ Yp: the composition

(‚Z(p))ü2 ÷≠≠æ T
(p)(E)Q ÿ≠æ T

(p)(E0)Q
defines an element in Y

p. Similarly, we have an F -equivariant map
ÿ : M0(E)[ 1

p
] ≠æ M0(E0)[ 1

p
],

and ÿ(M0(E)) µ M0(E0)[ 1

p
] is a lattice � belonging to Yp (which follows from the fact that

M0(E) is itself a Dieudonné module of height 2 and dimension 1).

Theorem 3.5 (Tate’s isogeny theorem). The natural map Y æ Y
p ◊Yp constructed above is

a bijection. Moreover the natural action of IE0(Q) on Y corresponds to the action of IE0(Q)
on Y

p ◊ Yp given by the composite map

IE0(Q) Òæ IE0(Af ) ≥= I(Af ) = G“0(Ap

f
) ◊ Jn,”(Qp)

followed by the natural G“0(Ap

f
) ◊ Jn,”(Qp)-action on Y

p ◊ Yp. (Here I is the Q-group

associated with (“0, ”) as usual, and actually we have IAf

≥= (IE0)Af
.)

Then N(“0, ”) = #IE0(Q)\Y
p◊Yp, where IE0(Q) acts as indicated above. Using the group-

theoretic descriptions of Y
p and Yp, one can prove as an exercise that the last quantity is

equal to
vol(IE0(Q)\I(Af )) · O“0(1Kp) · TO(fn).

In addition, one can prove that
vol(IE0(Q)\I(Af )) = vol(I(Q)\I(Af )) = c1(“0, ”).

Note that I(Q) Òæ I(Af ) and IE0(Q) Òæ I(Af ) only agree up to I(Af )-conjugacy, but this
does not matter for computing volumes.

4. Lecture 4
4.1. Continuation of the proof of Theorem 2.7. Our target formula is

#SK(Fpn) =
ÿ

(“0,”)

c1(“0, ”) · O“0(1Kp) · TO”(fn).

Last time: If “0 comes from some elliptic curve E0 over Fq = Fpn , then

#
Ó

(E, ÷) œ SK(Fq)
-

-

- E is associated with “0

Ô

= c1(“0, ”) · O“0(1Kp) · TO”(fn).

Today, we prove statement (2) from the last lecture. Namely, if a pair (“0, ”) (with
“0 R-elliptic, and “0 ≥ ”‡(”) · · · ‡

n≠1(”)) is such that
O“0(1Kp) · TO”(fn) ”= 0

then “0 indeed comes from some elliptic curve E over Fq = Fpn . In the following, we fix an
eigenvalue fi œ Q of “0.

Step I: We show that fi is a Weil q-number (i.e., an algebraic integer fi such that for every
complex embedding Q(fi) Òæ C, the absolute value of fi is Ô

q.)
If “0 is central, then fi = Ô

q œ Q, and clearly it is a Weil q-number. In the non-central case,
write fī for the unique Galois conjugate of fi. Recall that det“0 = q (if O“0(1Kp)TO”(fn) ”= 0).
This implies that fifī = q. Thus we only need to show that fi is an algebraic integer. It then
su�ces to show that the trace of “0 lies in Z. (We already know that it is in Q).
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Over Qpn , “0 is conjugate to ”‡(”) · · · ‡
n≠1(”) and ” is ‡-conjugate to some element in

GL2(Zq)
1

p

1

2

GL2(Zq). WLOG, ” œ GL2(Zq)
1

p

1

2

GL2(Zq) and thus ”‡(”) · · · ‡
n≠1(”) œ

M2(Zq). In particular, Tr(“0) œ Zq fl Q, i.e. the p-adic valuation of Tr(“0) is non-negative.
Similarly, “0 is conjugate to some element in K

p as O“0(1Kp) ”= 0, so Tr(“0) is equal to the
trace of some element in K

p ™ GL2(‚Z(p)), i.e. the ¸-adic valuation of Tr(“0) is non-negative
for any ¸ ”= p.

Combining the two paragraphs above, we deduce that Tr(“0) œ Z. So fi is an algebraic
integer.

Step II: We need to employ the existence part of Honda–Tate theory as follows. (The
uniqueness part was stated in Theorem 3.4)

Theorem 4.2 (Honda–Tate). If fi is a Weil q-number, then fi comes from some simple

abelian variety A over Fq in the following sense: Q(fi) can be embedded into EndFq
(A) ¢ Q

in such a way that fi corresponds to the q-Frobenius endomorphism. (Moreover, A is uniquely

determined by fi up to isogeny over Fq.)

Now our fi comes from some simple abelian variety A over Fq, and we need to show that
dim A = 1. (Then it will follow that “0 comes from the elliptic curve A in the way we
described.) In general, given a Weil q-number fi, the dimension of the corresponding simple
abelian variety A can be computed from the properties of fi. More precisely, if Q(fi) = Q,
then dim A = 1 and A is a supersingular elliptic curve. If Q(fi) = Q(Ôp), then dim A = 2.
(For us this case does not appear since “0 is R-elliptic.) In all the other cases, dim A is
determined by the valuation of fi at places of Q(fi) above p together with the residue degrees
of these places.

For us, Q(fi) is either Q (when “0 is central), or an imaginary quadratic field (when “0 is
non-central). Thus we have three possibilities:

(1) Q(fi) = Q. We win, as A is a supersingular elliptic curve.
(2) Q(fi) is imaginary quadratic, and p is non-split in Q(fi). For such fi it is known that

A is a supersingular elliptic curve, so we also win.
(3) Q(fi) is imaginary quadratic, and p splits in Q(fi). In this case, let v1, v2 be the two

distinct places of Q(fi) above p. Then v1(fi) and v2(fi) are two non-negative integers
whose sum is n (since NQ(fi)/Q(fi) = p

n). The dimension of A is the order of v1(fi)

n
in

Q/Z. In particular, dim A = 1 if and only if {v1(fi), v2(fi)} = {n, 0}. (When this is
the case, A is an ordinary elliptic curve.)

Thus we only need to do some work in case (3). In the following, we assume that Q(fi) is
imaginary quadratic (i.e., “0 is non-central), and assume that p splits in Q(fi). Our goal is
to show that the two places v1, v2 of Q(fi) above p satisfy {v1(fi), v2(fi)} = {n, 0}. We write
fī for the complex conjugate of fi, viewed as in Q(fi). Thus fi and fī are the two distinct
eigenvalues of “0.

Definition 4.3. Let F be a complete discretely valued field with a fixed uniformizer fi,
and let “ be a semisimple element in GLN(F ). We say that “ has a polar decomposition if
“ = ‹(fi) · k, where

• ‹ is a cocharacter of GLN over F commuting with “,
• k œ GLN(F ) such that all eigenvalues of k in F have valuation 0.
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Exercise 4.4. Every semisimple “ œ GLN(F ) admits a unique polar decomposition “ =
‹(fi)k. We call ‹(fi) the radial part of “ (with respect to the choice of uniformizer fi). Hint:
first loosen the definition of a polar decomposition by allowing ‹ and k to be defined over F .
Prove existence and uniqueness in that setting. Then deduce from uniqueness that ‹ and k

must be defined over F . (Use that ‹(fi) œ GLN(F ) if and only if ‹ is defined over F .)
Fact 4.5 (nontrivial). Suppose “ œ GLN(Qp) is semisimple and there exists some ” œ
GLN(Qpn) such that “ is conjugate to ” · ‡(”) · · · ‡

n≠1(”). Then there exists an integer t Ø 1
such that the radial part of “

t with respect to the uniformizer p is GLN( ‰Qur
p

)-conjugate to
‹

nt

”
(p), where ‹” is the Newton cocharacter of ”.

In our case, TO”(fn) ”= 0 implies that ” is ‡-conjugated to element in GL2(Zq)
1

p

1

2

GL2(Zq).
Fact: in this case, ‹” has only two choices up to conjugacy:

either ‹” : z ‘æ
1

z

1

2

or ‹” : z ‘æ
1

z
1/2

z
1/2

2

(In the second case, ‹” is a fractional cocharacter, i.e., a formal fractional power of an actual
cocharacter.) This fact is a special case of Mazur’s inequality. Concretely, the condition on
” implies that the isocrystal over ‰Qur

p
corresponding to ” comes from a p-divisible group of

height 2 and dimension 1. By the Dieudonné–Manin classification, the slopes must be either
(1, 0) or (1

2
,

1

2
).

By Fact 4.5, there exists t such that the radial part of “
t

0
is conjugate to either

1

p
nt

1

2

or
1

p
nt/2

p
nt/2

2

. The two places v1, v2 determine two embeddings ÿ1, ÿ2 : Q(fi) Òæ Qp. We
set ⁄i = ÿi(fi) for i = 1, 2. Thus over Qp, the characteristic polynomial of “0 factorizes as
(X ≠ ⁄1)(X ≠ ⁄2). Since “0 is not central, ⁄1 ”= ⁄2.

Now “0 is Qp-conjugate to
1

⁄1
⁄2

2

, and the latter has a polar decomposition
1

p
‹p(⁄1)

p
‹p(⁄2)

21

k1
k2

2

.

This implies that the radial part of “0 is conjugate to
1

p
vp(⁄1)t

p
vp(⁄2)t

2

; but it is also conjugate
to

1

p
nt

1

2

or
1

p
nt/2

p
nt/2

2

. In the first case, {vp(⁄1), vp(⁄2)} = {n, 0}, and we win. In the
second case, we deduce that vp(⁄1) = vp(⁄2) = n

2
. We show a contradiction. First, we

show that some power of “0 is central. We claim that fi/fī œ Q(fi) has all non-archimedean
valuations zero: at a place v of Q(fi) coprime to p, say v|¸, “0 is conjugate to some element
in GL2(Z¸), and so v(fi) = v(fī) = 0; for the places v1, v2 above p, we have v1(fi/fī) =
vp(⁄1) ≠ vp(⁄2) = 0, and v2(fi/fī) = vp(⁄2) ≠ vp(⁄1) = 0. Also, for all complex embeddings
Q(fi) æ C, the absolute value of fi/fī is 1 (since det“0 = fifī = q, as always). This implies
that fi/fī is a root of unity. Since fi and fī are the two distinct eigenvalues of “0, we conclude
that some power of “0 is central. Recall that “0 itself is non-central. This will contradict
with the following lemma, and our proof of the point counting formula is complete once the
lemma is proved.
Lemma 4.6. Suppose a pair (“0, ”) with “0 R-elliptic and “0 ≥ ”‡(”) · · · ‡

n≠1(”) is such that

O“0(1Kp) · TO”(fn) ”= 0 , and suppose some power of “0 is central. Then “0 is central.

Proof. Suppose for the sake of contradiction that “
k

0
is central, and “0 is non-central. Since

det(“0) = q, we have “
k

0
=

1

q
k/2

q
k/2

2

. The two eigenvalues of “0 are each a k-th root of q
k/2
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and multiply to be q, so they must be of the form ’
Ô

q and ’
≠1

Ô
q, for some k-th root of

unity ’. The two eigenvalues must be distinct, so ’
2 ”= 1.

Yet “0 is conjugate to some element in K
p. Recall that K

p µ
Ó1

a b

c d

2

œ GL2(‚Z(p))
-

-

-

1

a b

c d

2

©
1 (mod N)

Ô

for some fixed N Ø 3 and p - N . So we can find some prime power ¸
i|N with

¸ ”= p. This implies that “0 œ G(Q¸) is conjugate to
1

a b

c d

2

œ GL2(Z¸) which is congruent to
1 modulo ¸

i. Hence ’
Ô

q © ’
≠1

Ô
q © 1 mod ¸

i inside Z¸. Since both ’ and Ô
q are units in

Z¸, we have ’
2 © 1 mod ¸

i, i.e. v¸(’2 ≠ 1) Ø i. This contradicts with the following exercise
applied to µ = ’

2. ⇤
Exercise 4.7. Let ¸

i be a prime power which is Ø 3. Suppose µ is a root of unity in Q and
v¸(µ ≠ 1) Ø i. Then µ = 1.

Remark 4.8. Abstractly, in the proof of Lemma 4.6 we used the following property called
“neat”: K

p being “neat” implies that for any “0 œ G(Q) fl K
p, the eigenvalues of “0 generate

a torsion-free subgroup of Q◊. In particular, the eigenvalues cannot di�er from each other
by a non-trivial root of unity.

Remark 4.9. Suppose an elliptic curve E over Fq gives rise to some “0 œ GL2(Q). Then
E is supersingular if and only if some power of “0 is central. More precisely, “

k

0
is central if

and only if EndF
qk

(EF
qk

) ¢ Q is a quaternion algebra over Q. Thus Lemma 4.6 implies that
case (2) beneath Theorem 4.2, i.e., the case where E is supersingular and “0 is non-central,
never shows up in our point counting! In other words, the classification of “0 appearing in
the point counting formula into the non-central case and the central case is the same as the
classification into the ordinary case (i.e., “0 comes from some ordinary elliptic curve) and
the supersingular case (i.e., “0 comes from some supersingular elliptic curve).

Note that abstractly case (2) does exist. For example, take q = p = 3, and fi =
Ô

≠3,
“0 =

1 Ô
≠3

≠
Ô

≠3

2

. Then fi corresponds to a supersingular elliptic curve E over F3 with
EndF3(E) ¢ Q = Q(

Ô
≠3) and EndF9(EF9) ¢ Q = D3,Œ. Our proof shows that such an

elliptic curve over F3 does not show up in SK(F3), which means it does not admit a K
p-level

structure over F3 for K
p neat. (This particular elliptic curve will contribute to SK(F9).)

5. Lecture 5
5.1. Back to the general formula. Let (G, X) be a Shimura datum. Assume

• Gder is simply connected, and
• ZG is cuspidal, i.e, a maximal R-split subtorus is Q-split.

Take the level structure to be K = K
p
Kp, with K

p small enough and Kp hyperspecial. Thus
there exists a connected reductive group scheme G over Zp whose generic fiber is GQp

such
that Kp = G(Zp). (In fact Kp and G determine each other.) Fix a prime v of the reflex field
E over p.

We assume that the conjectural canonical integral model SK over OE,(v) exists. Take
some p

n such that the residue field of v is contained in Fpn . Then the conjectural counting
point formula (see [Kot90]) is

#SK(Fpn) =
ÿ

(“0,“,”)

c1(“0, “, ”)c2(“0) · O“(1Kp) · TO”(fn).
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Here
• (“0, “, ”) runs through G(Q) ◊ G(Ap

f
) ◊ G(Qpn), satisfying

– “0 is R-elliptic (which in particular implies that “0 is semisimple), i.e., there
exists a maximal torus T µ GR over R such that “0 œ T (R) and (T/ZG)(R) is
compact,

– “ is stably conjugate to “0, i.e, “ is conjugate to “0 over G(Ap

f
), where Ap

f
:=

Ap

f
¢Q Q. (In particular, if we write “ = (“¸)¸ ”=p with “¸ œ G(Q¸), then “¸ is

conjugate to “0 over G(Q¸)).5
– ” œ G(Qpn) and ”‡(”) · · · ‡

n≠1(”) is G(Qp)-conjugate to “0, i.e., the stable con-
jugacy class of “0 is the degree n norm of ”.

• Given (“0, “, ”) as above (plus some later hypothesis), one defines a certain Galois
cohomological invariant –(“0, “, ”) (Kottwitz invariant) lying in some finite abelian
group, where the abelian group depends only on “0. In the formula, the summation
is over those (“0, “, ”) with –(“0, “, ”) = 0 up to an equivalence relation: (“0, “, ”) ≥
(“Õ

0
, “

Õ
, ”

Õ) if
– “0 is conjugate to “

Õ
0

by G(Q),
– “ is conjugate to “ by G(Ap

f
), and

– ” is ‡-conjugate to ”
Õ in G(Qpn).

Here one key point is that if (“0, “, ”) ≥ (“Õ
0
, “

Õ
, ”

Õ), then the abelian group containing
–(“0, “, ”) and that containing –(“Õ

0
, “

Õ
, ”

Õ) are canonically identified, and we have
–(“0, “, ”) = –(“Õ

0
, “

Õ
, ”

Õ).
Now, we continue to discuss the summand c1(“0, “, ”)c2(“0) · O“(1Kp) · TO”(fn).

• c1(“0, “, ”): given (“0, “, ”), write “ = (“¸) ”̧=p with “¸ œ G(Q¸). Then G“¸
is an inner

form of G“0,Q¸
, and similarly Jn,” is an inner form of G“0,Qp

. We want a global inner
form I of G“0 over Q such that IR/ZG,R is compact as a real group, IQ¸

≥= G“¸
as

inner forms of G“0,Q¸
, and IQp

≥= Jn,” as inner forms of G“0,Qp
. Then we define

c1(“0, “, ”) = vol
1

I(Q)\I(Af )
2

.

Note: for a general (“0, “, ”), there is no reason why such a global inner form I

should exist, but if –(“0, “, ”) = 0, then I exists! Actually, one can think of the
condition that –(“0, “, ”) = 0 as some subtle strengthening of the existence of I.

• c2(“0) := # Ker
1

X(G“0) æ H1(Q, G)
2

, where

X(G“0) :=
‹

v

Ker(H1(Q, G“0) æ H1(Qv, G“0)).

• O“(1Kp) is the orbital integral
⁄

G(Ap

f
)“\G(Ap

f
)

1Kp(x≠1
“x)dx.

• TO”(fn) is the twisted orbital integral
⁄

Jn,”(Qp)\G(Qpn )

fn(x≠1
”‡(x))dx.

5
In the GL2-case, we did not have “ because “0 determines the conjugacy class of “ and we may just take

“ = “0.
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Here fn : G(Qpn) æ {0, 1} is defined as follows: for any h œ X, h is a G(R)-conjugacy
class of homomorphisms ResC/R Gm æ GR. It gives rise to

hC : (ResC/R Gm)C ≥= Gm ◊ Gm ≠æ GC,

where the first Gm corresponds to id : C æ C and the second Gm corresponds to the
complex conjugation C æ C. Then we define

µh : Gm,C ≠æ GC

z ‘≠æ hC(z, 1).

This is the Hodge cocharacter associated to h. The G(C)-conjugacy class of µh is
defined over E (by the definition of E). In particular, if F is a field extension of E,
we get a conjugacy class of cocharacters of G such that the whole conjugacy class is
defined over F .

If G is quasi-split over F , this determines a G(F )-conjugacy class of F -rational
cocharacters Gm,F æ GF . Now G is quasi-split over Qpn (since it is already quasi-
split over Qp by the existence of G), and we have Qpn ∏ Ev ∏ E. (In fact, one can
show that Ev must be unramified over Qp if G exists. Hence our assumption that Fpn

contains the residue field of Ev implies that Qpn contains Ev.) This then gives rise
to a G(Qpn)-conjugacy class of cocharacters of GQpn . This conjugacy class contains a
canonical G(Zpn)-conjugacy class, whose members are characterized by the condition
that they extend to cocharacters of GZpn (i.e., Zpn-group scheme homomorphisms
Gm æ GZpn ).

Then fn is the characteristic function of G(Zpn)µ(p)G(Zpn), where µ is a member
of the above-mentioned G(Zpn)-conjugacy class. It turns out that fn is independent
of the choice of µ.

For example, when G = GL2, we can take µ to be z ‘æ
1

1

1

2

, and then fn is the
characteristic function of GL2(Zq)

1

p

1

2

GL2(Zq).

Remark 5.2. If TO”(fn) ”= 0, then the image of ” under the Kottwitz homomorphism

Ÿ : G( ‰Qur
p

) ≠æ fi1(G)
Gal(Qp/Qp)

,

has to be equal to a fixed element in fi1(G)
Gal(Qp/Qp)

, namely the natural image of µ for any
Hodge cocharacter µ for X. We need this condition on ” in order to define the Kottwitz
invariant –(“0, “, ”).

Remark 5.3. Why should we expect that for (“0, “, ”) contributing to the formula, the
global I exists?

In the PEL case, we start with an abelian variety A over Fpn equipped with a PEL
structure, then we can construct the triple (“0, “, ”) as follows:

• “ corresponds to the p
n-Frobenius endomorphism fi œ End(A) acting on T

(p)(A)
(which is equipped with PE structure),

• similarly, ” corresponds to the Frobenius action on the Dieudonné module M0(A),
• The global I is isomorphic to the Q-group given by sending any Q-algebra R to

3

1

EndFpn (A, PE str.)
2

¢Z R

4◊
.
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The point is that: if we start with some random (“0, “, ”), there is no reason for such I

to exists. But if we start with some (“0, “, ”) that comes from abelian varieties with PE
structure (which is related to the condition that –(“0, “, ”) = 0), then such I naturally
exists.

Remark 5.4. Recall that #SK(Fq) = q

i(≠1)iTr
1

Frobq

-

-

- Hi

ét

1

S
K,Fq

,Q¸

22

. More generally,
we can also consider:

ÿ

i

(≠1)iTr
1

Frobq ◊ f
p

-

-

- Hi

ét

1

S
K,Fq

,Q¸

22

for some f
p œ H(G(Ap

f
)//K

p). For this, there is a similar conjectural formula, with O“(1Kp)
replaced by O“(fp).

5.5. Known cases of the counting point conjecture.
• Kottwitz (1992, [Kot92]) proved the conjecture for PEL type Shimura varieties of

type A and C.
• Between 1990’s and now, there are some sporadic cases beyond PEL type, but closely

related to PEL type.
• (Kisin–Shin–Z [KSZ]) All abelian type cases, and removed the assumptions that Gder

is simply connected and ZG is cuspidal.
In the next lecture, we will discuss briefly the proof of this conjecture.

5.6. Informal introduction to trace formulas. Recall that the idea of Langlands is
that one can “compare” the formula for #SK(Fpn) with trace formulas from representation
theory. We give a brief introduction to the latter, following [Art05, §1].

Basic idea of trace formulas. Assume that we have some “nice” topological group H (Haus-
dor�, locally compact, unimodular), and we have a discrete subgroup � µ H. A basic
mathematical object to study is L

2(�\H) as an H-representation. Here H acts by right
translation R, i.e., for h œ H, we define

R(h) : L
2(�\H) ≠æ L

2(�\H)

Ï ‘≠æ
1

x ‘æ Ï(xh)
2

.

Fundamental question: How does R “decompose” into irreducible unitary representations
of H?

For example, for H = R and � = Z, unitary irreducible representations of H are
parametrized by y œ iR:

fiy : H ≠æ GL1(C)
x ‘≠æ e

yx
.

Then we have an isometry:

L
2(Z\R) ≥≠æ L

2(Z)
Ï ‘≠æ Ï̂,

where Ï̂ : Z æ C records the Fourier coe�cients of Ï:

Ï̂(n) =
⁄

Z\R
Ï(x)e≠2fiinx

dx.
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The right-translation representation R of H on L
2(Z\R) corresponds to the following repre-

sentation of H on L
2(Z). For x œ H = R and Â œ L

2(Z), we have
(x · Â)(n) = e

2fiinx
Â(x)

This means that we have
L

2(Z) ≥≠æ ‰

n

nœZC
Â ‘≠æ (Â(n))n.

Here the n-th copy of C is fi2fiin as an H-representation. From this, we deduce

L
2(Z\R) ≥= ‰

n

yœ2fiiZfiy

as H-representations. Thus we say L
2(Z\R) decomposes discretely.

In contrast, for H = R and � = {0}, the theory of Fourier transform gives a “direct
integral decomposition”:

L
2(�\H) ≥=

⁄

yœiR
fiydy

In this case, we say that L
2(�\H) is a continuous spectrum.

The key distinction between the two cases is whether �\H is compact!
From now on, assume that �\H is compact. In this case, just like for Z\R, we have a

discrete decomposition
L

2(�\H) ≥= ‰

n

fi
mfi · fi,

where the direct sum runs over all irreducible unitary representations fi of H, and mfi is a
finite multiplicity.

Fix a Haar measure dh on H (which is bi-invariant since H is unimodular). The trace
formula studies the associated action of Cc(H) (a ring under convolution) on L

2(�\H). For
f œ Cc(H), we define

R(f) : L
2(�\H) ≠æ L

2(�\H)

Ï ‘≠æ
Ë

R(f)(Ï)
È

(x) :=
⁄

H

Ï(xh)f(h)dh.

In fancy language,
R(f) :=

⁄

H

R(h)f(h)dh.

The trace formula computes the trace of a function in Cc(H) acting on L
2(�\H). More

precisely, for f œ Cc(H), the operator R(f) on L
2(�\H) is of trace class, and we have

Tr
1

R(f) | L
2(�\H)

2

=
ÿ

fi

mfiTr(f | fi).

This is called the spectral expansion of the trace formula.
There is also the geometric expansion:

Tr
1

R(f) | L
2(�\H)

2

=
ÿ

“œ�

vol(�“\H“) · O“(f)

where O“(f) is the orbital integral
⁄

H“\H

f(x≠1
“x)dx
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as usual.
Of course, the geometric expansion is equal to the spectral expansion. This equality is

called Selberg’s trace formula for a compact quotient.

Exercise 5.7. In the case Z\R, the equality between the geometric expansion and the
spectral expansion amounts to the Poisson summation formula.

Remark 5.8. In the case when �\H is non-compact, we have the following problems.
• Tr(R(f) | L

2(�\H)) does not make sense.
• The geometric expansion and the spectral expansion as above do not make sense.

Now we want to apply this idea to �\H = G(Q)\G(A) for some reductive group G over
Q. The bad news is that G(Q)\G(A) is often non-compact, even if we replace G by G

ad.
For example, G = GL2 or SL2 or PGL2, the quotient G(Q)\G(A) is not compact.

5.9. Arthur’s invariant trace formula. Arthur, in a long series of papers, developed the
invariant trace formula. For details we refer the reader to [Art05]. As a result of this theory
we have a conjugation-invariant distribution

I : CŒ
c

(G(A)) ≠æ C
f ‘≠æ I(f)

which is equal to f ‘æ Tr
1

R(f) | L
2(G(Q)\G(A))

2

when �\H is compact but more compli-
cated in general. The point is that even when �\H is non-compact, I is well defined, but of
course it cannot be f ‘æ Tr

1

R(f) | L
2(G(Q)\G(A))

2

since the latter does not make sense.
For simplicity, assume that Gder is simply connected. Then I has a geometric expansion:

I(·) =
ÿ

“œG(Q)/conj

elliptic

vol(G“(Q)\G“(A)) · O“(·) + some much more complicated terms

The volume vol(G“(Q)\G“(A)) is often called the Tamagawa number ·(G“) of G“, when
using the Tamagawa measure on G“(A). We denote the sum

ÿ

“œG(Q)/conj

elliptic

vol(G“(Q)\G“(A)) · O“(·)

by Iell(·), called the elliptic part of the invariant trace formula.
There is also a spectral expansion of I. First we have a direct sum decomposition

L
2(G(Q)\G(A)) = L

2

disc
ü L

2

cont
,

where L
2

disc
= „

m

fim
disc

fi
· fi, summing over unitary irreducible representations of G(A), and

L
2

cont
is a continuous spectrum. Then

I(·) =
ÿ

fi

m
disc

fi
· Tr(· | fi) + some much more complicated terms.
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6. Lecture 6
6.1. Stabilization. The invariant trace formula has a problem: The distribution I(·), or
the simpler contributions O“(·) and Tr(· | fi) in the geometric and spectral expansions, are
not stable. There is a precise definition of a stable distribution on G(A) which reflects the
rough idea of invariance under conjugation by G(A ¢Q Q) (however note that we do not
actually have a well-defined conjugation action of G(A¢QQ) on G(A)). The so-called theory

of endoscopy was envisioned by Langlands in order to resolve this instability.
What we want: a stable distribution S : CŒ

c
(G(A)) æ C together with a geometric expan-

sion and a spectral expansion into simpler stable distributions, i.e.,

S =
ÿ

stable distributions of a geometric nature
=

ÿ

stable distributions of a spectral nature.

As an illustration of some of the basic ideas, we sketch how to “stabilize” the distribution

Iell(·) =
ÿ

“0œG(Q)/conj

“0 elliptic

·(G“0) · O“0(·).

For a more detailed introduction see [Har11]. As before, G is a reductive group over Q with
simply connected derived subgroup.

Step 1: rewrite the sum as

Iell(·) =
ÿ

“0œG(Q)/stable conj

“0 elliptic

·(G“0) ·
ÿ

“œG(A)/conj

“ stable conj to “0
inv(“0,“)=0

O“(·).

Here inv(“0, “) œ K(“0), where K(“0) is a finite abelian group coming from Galois cohomology.
The point is that inv(“0, “) = 0 if and only if “ is G(A)-conjugate to some “

Õ
0

œ G(Q) which
is stably conjugate to “0. Also the Tamagawa number ·(G“0) depends only on the stable
conjugacy class of “0, namely, ·(I) = ·(I Õ) if I is an inner form of I

Õ, which is proved by
Kottwitz.

Remark: The above formula is very similar to the point counting formula recalled below:

ÿ

(“0,“,”)

“0œG(Q)R-ell/stable conj

”,“ adelic, up to conj or ‡-conj

–(“0,“,”)=0

c1c2O“(·)TO”(·).

Note the similar roles played by inv(“0, “) and –(“0, “, ”).
22



Step 2: Apply Fourier inversion to the finite abelian group K(“0). Write K(“0)D for the
Pontryagin dual of K(“0). We have

Iell(·) =
ÿ

“0œG(Q)/stable conj

“œG(A)/conj

“0
st≥“

inv(“,“0)=0

·(G“0)O“(·)

=
ÿ

“0œG(Q)/stable conj

“œG(A)/conj

“0
st≥“

no condition on inv(“,“0)

·(G“0)
|K(“0)|

ÿ

ŸœK(“0)D

ÈŸ, inv(“0, “)ÍO“(·)

=
ÿ

“0œG(Q)/stable conj

·(G“0)
|K(“0)|

ÿ

ŸœK(“0)D

OŸ

“0(·).

where
OŸ

“0(·) :=
ÿ

“œG(A)/conj

“
st≥“0

ÈŸ, inv(“0, “)ÍO“(·)

is called the Ÿ-orbital integral along “0.
For example, if Ÿ = 1, this is just

OŸ=1

“0 =
ÿ

“œG(A)/conj

“
st≥“0

O“(·) =: SO“0(·),

called the stable orbital integral. This is a stable distribution on G(A)!
Idea: For a nontrivial Ÿ, OŸ

“0(·) should “come from” a stable distribution on a di�erent
group. More precisely, from (“0, Ÿ), we can construct a new reductive group HŸ over Q called
an endoscopic group (which is also equipped with additional data relating the Langlands dual
groups of HŸ and G) and construct an element “Ÿ œ HŸ(Q) up to stable conjugacy. We then
want to relate OŸ

“0(·) with SO“Ÿ
(·), where the latter is a stable distribution on HŸ(A). This

is done in the next step.
Step 3: (Hard!) For any f œ CŒ

c
(G(A)), we want to find f

HŸ œ CŒ
c

(HŸ(A)) called the
Langlands–Shelstad transfer of f such that

OŸ

“0(f) = SO“Ÿ
(fHŸ)

up to a transfer factor whose definition is very delicate. Here f
HŸ should depend only on

HŸ (as an endoscopic group) and f but NOT on “Ÿ and “0.
This involves extremely hard work by Langlands–Shelstad, Waldspurger, Hales, Laumon,

and Ngo among others (including the Fundamental Lemma proved by Ngo).
Step 4: Put everything together.

Theorem 6.2 (Kottwitz 1980s, assuming Step 3). We have

Iell(f) =
ÿ

H endoscopy
groups of G

i(G, H)STH

ell,ú(fH)

where
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• f
H

is the Langlands–Shelstad transfer of f ,

• STH

ell,ú(·) is the “elliptic and (G, H)-regular part of the stable trace formula for H”,

given by
ÿ

“HœH(Q)/stable conj
“H is ellptic and (G, H)-regular

·(H)SO“H
(·).

This is a stable distribution on H(A).

Remark 6.3. Arthur later stabilized all terms in the geometric and spectral expansions of
I(·). This implies that

I(f) =
ÿ

H

i(G, H) · SH(fH)

Here SH is a stable distribution on H(A), which has a geometric expansion and a spectral
expansion into simpler stable distributions.

Let us come back to the point counting formula
ÿ

(≠1)iTr
1

f
p ◊ Frobpn

-

-

-Hi

ét,c
(ShK)

2

=
ÿ

(“0,“,”)

–(“0,“,”)=0

c1c2O“(fp)TO”(fn).

Kottwitz stabilized this formula in a similar way as the stabilization of Iell discussed above.

Theorem 6.4 (Kottwitz). The right hand side of the point counting formula is equal to

ÿ

H endscopy
groups of G

i(G, H)STH

ell,ú(fH

Sh
).

Here f
H

Sh
= f

H

Œf
H

p
f

H,p,Œ
, where f

H,p,Œ œ CŒ
c

(H(Ap

f
)) is the Langlands–Shelstad transfer

of f
p œ CŒ

c
(G(Ap

f
)), while f

H

Œ œ CŒ(H(R)) (a linear combination of pseudo-coe�cients of

discrete series) and f
H

p
œ CŒ

c
(H(Qp)) (a twisted transfer of fn) are explicitly constructed.

(The functions f
H

Œ and f
H

p
are not given by Langlands–Shelstad transfer; the dependence of

the formula on n is in the function f
H

p
.)

Expectation 6.5. If ShK(G, X) is projective, then for any H we should have

STH

ell,ú(fH

Sh
)) = SH(fH

Sh
).

In particular, in the projective case
ÿ

(≠1)iTr
1

f
p ◊ Frobpn

-

-

-Hi

ét,c
(ShK)

2

=
ÿ

H

i(G, H)SH(fH

Sh
).

In general, it is expected that

(6.5.1)
ÿ

(≠1)iTr
1

f
p ◊ Frobpn

-

-

-IHi

ét
(ShK)

2

=
ÿ

H

i(G, H)SH(fH

Sh
),

where IHi

ét
(ShK) is the intersection cohomology of the Bailey–Borel compactification ShK .

In other words, the “di�erence” between IHi

ét
(ShK) and Hi

ét,c
(ShK) should be accounted for

precisely by the di�erence between SH(fH

Sh
) and STH

ell,ú(fH

Sh
).
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Remark 6.6. In general, from (6.5.1), we expect to be able to relate the LHS of (6.5.1)
to automorphic L-functions. To achieve this we need more ingredients, including Arthur’s
multiplicity conjectures. The point is that we need to “destabilize” and relate SH back to
automorphic representations of G. In general these ingredients are still highly conjectural.
For a detailed explanation of the whole process see [Kot90].

For some classical groups, everything can be made to work, see for instance [Mor10] or
[Zhu18].

6.7. Proof of point counting formula. Let (G, X) be a Shimura datum of Hodge type,
i.e., there exists an embedding of Shimura data ÿ : (G, X) Òæ (GSp(V ),H±). We only
explain the proof of the point counting formula in this case, without touching upon the
general abelian type case. The references (including the general abelian type case) are the
series of the papers [Kis10, Kis17, KSZ].

Stage 1: Constructing the anonical integral models.
Fix K = K

p
Kp µ G(Af ) with Kp hyperspecial and K

p small. Up to shrinking K
p and

replacing ÿ by a di�erent choice, we may assume that we have a closed embedding

ShK(G, X) Òæ ShU(GSp(V )) ◊Q E

where U = U
p
Up µ GSp(V )(Af ) with Up hyperspecial in GSp(V )(Qp) and Up = GSp(VZp

)
for a self-dual Zp-lattice VZp

in VQp
. Here, ShU(GSp) admits an integral model SU(GSp)

over Z(p), which is a moduli space of polarized abelian schemes. Thus we have

ShK(G) Òæ ShU(GSp) ◊ E Òæ SU(GSp) ◊Z(p) OE,(v).

Definition 6.8. The canonical integral model SK(G) is the normalization of the Zariski
closure of ShK(G) in SU(GSp) ◊Z(p) OE,(v).

The hard part is to prove SK = SK(G) is smooth over OE,(v). There are several steps
here:

Step 1: First realize the embedding G æ GSp(V ) as the stabilizer of certain tensors (s–)–

on V . We can arrange that each s– extends to a Zp-linear tensor on VZp
. Moreover, letting

G be the reductive model over Zp of GQp
such that Kp = G(Zp), we may arrange that

G Òæ GSp(VZp
) is the scheme-theoretic stabilizer of (s–)–.

Step 2: Given a finite extension F of Qp with residue field Ÿ, if x œ SK(OF ), then via
the map SK æ SU ◊ OE,(p), we obtain an abelian scheme Ax on OF , giving rise to a p-adic
representation of Gal(F/F ) on Tp(A

x,F
). The Zp-module Tp(A

x,F
) can be identified with

VZp
, and the tensors s–’s give rise to tensors on Tp(A

x,F
) which are Gal(F/F )-invariant. By

p-adic comparison, s– “transports” to a tensor s–,0 on the rationalized Dieudonné module
M0(Ax,Ÿ)[ 1

p
] of the special fiber Ax,Ÿ.

By some integral p-adic Hodge theory (in particular Breuil–Kisin modules of crystalline
lattices and their relationship with p-divisible groups), one can prove that s–,0 is in fact a
tensor on M0(Ax,Ÿ), i.e., without inverting p.

Step 3: Write down a deformation space of the p-divisible group Ax,Ÿ[pŒ] equipped with
the integral tensors s–,0. This space has been defined amd studied by Faltings and is formally
smooth over W (Ÿ).

Step 4: Relate the space in Step 3 with the local structure of SK , proving that SK is
smooth.
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Stage 2: Classify “isogeny classes”. We work with

SKp
(Fp) := limΩ≠

Kp

SKpKp
(Fp).

If we understand this set together with the G(Ap

f
)-action and the Frobenius action, then we

can infer the point counting formula.

Definition 6.9. Two points x, x
Õ œ SKp(Fp) are called isogenous if there exists a quasi-

isogeny f : Ax æ AxÕ such that
• f takes each s–,0 on M0(Ax)[ 1

p
] to s–,0 on M0(AxÕ)[ 1

p
], and

• f preserves similar tensors on ¸-adic Tate modules (¸ ”= p).

Kisin [Kis17] classified isogeny classes in a group theoretic manner, which is similar to
Honda–Tate theory. This uses the language of Galois gerbs, due to Langlands–Rapoport
[LR87].

One key ingredient of the classification is a generalization of Tate’s special lifting theorem
that every abelian variety over Fp is isogenous to the reduction of a CM abelian variety. The
generalization is stated as follows.

Theorem 6.10 (Kisin, [Kis17]). Every isogeny class in SK(Fp) contains a point which is

the reduction of a special point, i.e. a point on ShK coming from Sh(T, h), where (T, h) Òæ
(G, X) with T a torus.

Stage 3: Parametrize points in a fixed isogeny class.
Fix x0 œ SKp

(Fp). We want to parametrize the isogeny class of x0. This x0 gives rise to
Ax0 equipped with tensors on T

(p)(Ax0) ¢Z Q and tensors on M0(Ax0)[ 1

p
] (with Frobenius

action).
Consider

X
p =

Ó

isoms VAp

f

≥≠æ T
p(Ax0) ¢Z Q preserving tensors}

and

Xp =
I

lattices � µ M0(Ax0)[ 1

p
]
-

-

-

-

-

(�, F ) is a Dieudonné module of dimension = dim Ax0

+compatibility with s–,0’s

J

.

Remark: Here Xp is an a�ne Deligne–Lusztig set, and it has a purely group-theoretic de-
scription.

We have a bijection
the isogeny class of x0 Ωæ Ix(Q)\(Xp ◊ Xp).

where Ix(Q) is the group of self-quasi-isogenies of Ax preserving ¸-adic and crystalline tensors.
This Ix is a reductive group over Q, just like IE0 in the GL2-case.

Stage 4: After rewriting X
p and Xp in a more group theoretic way, we obtain a reductive

group I over Q, such that I(Af ) naturally acts on X
p ◊ Xp. (To make the analogy with the

GL2 case, I is like the Q-group attached to (“0, ”), or more precisely the stable limit of the
Q-group attached to (“n

0
, ”) as n becomes more and more divisible.)

Also, Ix(Q) naturally acts on X
p ◊ Xp, and this action factors through an embedding

ÿ : Ix(Q) Òæ I(Af ).
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Problem: ÿ(Ix(Q)) ”= I(Q) in general. Rather, they are only conjugate by I
ad(Af ). If

I
ad(Af )-conjugacy is the same as I(Af )-conjugacy (for example in the GL2 case), we are

happy.
Upshot: In reality, we encounter Ix(Q)\X

p ◊ Xp. Ideally, we would like to work with
I(Q)\X

p ◊ Xp, because this is described purely group-theoretically. But these two sets are
not known to be the same!

The discrepancy is measured by ·x œ I
ad(Af ) such that

ÿ(Ix(Q)) = Int(·x)(I(Q)).

We need extra new ideas to “control" the ·x’s for di�erent isogeny classes, and to show that
with the suitable control, they do not really a�ect the desired point counting formula. This
is done in [KSZ].

6.11. What about more general level structure? We only give an incomplete list of
mathematicians, without giving precise references. The reader is encouraged to explore their
work.

Drinfeld level structure Harris–Taylor, Shin , Scholze.
Parahoric level structure Pappas–Zhu, Kisin–Pappas, Rong Zhou, van Hoften.

6.12. Appendix. The idea of comparing trace formulas. We briefly discuss how the
point counting formula for the Shimura variety can be compared with Arthur–Selberg trace
formulas in an ideal situation (a situation without any technical problems). 6

We assume that G(Q)\G(A) is compact (or equivalently, that G is anisotropic mod center
over Q; in this case the Shimura variety is projective), that stable conjugacy is the same
as conjugacy for the group G, and that the automorphic multiplicity of any automorphic
representation of G is one. An example is when G is the multiplicative group of an indefinite
quaternion algebra over Q.

In a vague way, our ultimate goal is to describe the cohomology Hú
ét

(ShK(G)Q,Q¸) (viewed
as a virtual representation) or the limit limΩ≠K

Hú
ét

(Sh(G)
K,Q,Q¸). We would like to have a

decomposition

Hi

ét
(ShK(G)Q,Q¸) =

n

fi

fi
K

f
¢ flfi

that is equivariant with respect to the Hecke action and the Galois action. Here the Hecke
algebra H(G(Af )//K) only acts on the first factor fi

K

f
and the Galois group only acts on

the second factor flfi, and conjecturally, flfi is the Galois representation associated to fi (and
“modified according to the representation of L

G associated with X”). Our goal is to un-
derstand flfi in terms of Satake parameters of the automorphic representation fi. Langlands’
idea is explained in the following way: for f

p œ H(G(Ap

f
)//K

p) and some appropriate Hecke
operator T

(n)

p
œ H(G(Qp)//G(Zp)),

6
We thank Liang Xiao for providing a draft for the following material. All errors or inaccuracies are the

responsibility of Y.Z.
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ÿ

fi

Tr(fp | fi
K

f
)Tr(Frobpn | flfi)

ÿ

fi

Tr(fp | fi
K

f
)Tr(T (n)

p
| fi

G(Zp)

p
)

Tr
1

f
p ◊ Frobpn | Hú

ét
(ShK(G)Q,Q¸)

2

Tr
1

f
p ◊ T

(n)

p
| L

2(G(Q)\G(A)
2

ÿ

(“0,“,”)

c1c2O“(fp)TO”(fn)
ÿ

“

·(G“)O“(fp
T

(n)

p
)

spectral. exp. spectral. exp.

Point counting geom. exp.

We hope to relate the trace of Frobpn-action on flfi with the trace of the Hecke operator
action, namely the two terms on the top row. The point counting formula translates the left
column into some sum on the bottom row, and the Arthur–Selberg trace formula translates
the right column into some similar sum on the bottom row. As both sides on the bottom
row are indexed by similar objects, it makes sense to expect that one can compare the
corresponding terms. We then would be able to deduce the equality on the top row.

In addition, we may choose the away-from-p Hecke operators f
p so that they kill all but

only one fi in the process (assuming there is no issues of L-packets). Then this process truly
provides a description of flfi, in terms of Satake parameters.

(A general principle of trace formula is: one trace formula by itself relating the spectral
side and geometric side does not seem to provide much insight. It becomes extremely pow-
erful when we compare two trace formulas. Often times, there is a way to prove that their
geometric expansions are equal by matching the orbits. This way, we prove an equality
between the two spectral expansions, which often proves surprisingly strong statements.)
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