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Part 1. Analytic theory of abelian varieties

1. Motivation

Let C be a complex smooth projective curve of genus g. Define

Ω1 := sheaf of holomorphic 1-forms on C.

Then we have the following theorem.

Theorem 1.1 (Abel–Jacobi). Denote H0(C, Ω1)∗ the complex dual of H0(C, Ω1) as a C-vector
space. The map

H1(C,Z) H0(C, Ω1)∗

γ (ω →


γ
ω)

is injective and identifies H1(C,Z) with a lattice of H0(C, Ω1)∗.

Assuming the theorem, one may define a complex torus by taking the quotient.
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Definition 1.2 (Jacobian). The Jacobian variety associated to C is
Jac(C) := H0(C, Ω1)∗/H1(C,Z).

It turns out that Jac(C) has some extra geometric structure beyond the structure of complex
torus. When g = 1, it is well known that for a fixed lattice Λ ⊂ C, the complex torus C/Λ
admits the structure of an elliptic curve. Moreover, it is projective as an algebraic variety via
the morphism

C/Λ −→ P2
C

z −→ [℘Λ(z), ℘′
Λ(z), 1].

Here ℘Λ(·) denotes the Weierstrass ℘-function associated to Λ. To be more precise,

℘Λ(z) := 1
z2 +



w∈Λ\{0}


1

(z − w)2 − 1
w2


.

Through some more complicated computation, it can be verified that for each z ∈ C/Λ, its
image [℘Λ(z), ℘′

Λ(z), 1] lies on an elliptic curve, which is defined to be a smooth projective
algebraic curve of genus 1, on which there is a specified point O satisfying some group law1.

Proposition 1.3. For each z ∈ C/Λ,
℘′

Λ(z)2 = 4℘Λ(z)3 − g2℘Λ(z) − g3,

where the coefficients are read as
g2 = 60G4(Λ), g3 = 140G6(Λ),

given by Eisenstein series
G2k(Λ) :=



w∈Λ\{0}

w−2k.

In general, in case when g > 1, there is a significant difference: for an arbitrary lattice Λ ⊂ Cg,
the quotient Cg/Λ is not automatically projective. However, we are primarily to concern about
projective complex tori.

For this, we need to study (ample/very ample) line bundles on the complex tori. Also,
we pay attention to the construction of abelian varieties, which can be viewed as the correct
generalization of elliptic curves to higher dimensional sense, by using the language of algebraic
geometry.

2. Line bundles on a complex torus

Setups. Let X be a complex torus (equivalently, a compact connected complex Lie group) of
dimension g. Let V = Lie X be the corresponding Lie algebra.2 This naturally induces an
exponential map exp: V → X which is a surjective homomorphism of complex Lie groups. Take
U := Ker(exp) to be a lattice of V . (Recall: it means by saying U ⊂ V is a lattice that U is a
discrete subgroup with the maximal rank whose quotient is compact; namely, U is a free abelian
group of rank 2g in V .)

Proposition 2.1. (V, exp) is the universal covering of X. Moreover,
π1(X) = π1(X, e) ∼= U = Ker(exp).

Definition 2.2. The Picard group of an algebraic variety X over C is
Pic(X) := {isomorphism classes of holomorphic line bundles on X}

1Possibly with at least one rational point on it, i.e., E(Q) ∕= ∅ for an elliptic curve E.
2In [Mum85], X is supposedly a group variety equipped with two morphisms m : X × X → X and i : X → X

that correspond to the multiplication and the inversion as group operations. Also, by definition there is a (closed)
point e ∈ X playing the role of the group identity. Then an equivalent definition of V is to say V = TeX, the
tangent space of X at some point e ∈ X.
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In fact, this group can be computed explicitly via some sheaf cohomology

Pic(X) ∼= H1(X, O∗
X)

and this sheaf cohomology can be computed by some group cohomology. Here
OX := the sheaf of holomorphic functions on X,

O∗
X := the sheaf of invertible holomorphic functions on X.

Let X be a nice topological space and G be a discrete group (i.e., equipped without any
nontrivial topology) acting freely and discontinuously on X.3 Then

X G ⇝
X

X/G

π

Let F be a sheaf of abelian groups on Y = X/G. Our goal is to compare for p  0 that

Hp(G, Γ(X, π∗F )) and Hp(Y, F ).

2.1. Group cohomology. Let G be as above and M be a left G-module (i.e., M is an abelian
group with a left G-action). Define a cochain complex C• = (Cp, δp)p0 as follows.

(a) Cp := Map(Gp, M);
(b) δp : Cp → Cp+1 is defined by

(δpf)(σ0, . . . , σp) = σ0(f(σ1, . . . , σp)) +
p−1

i=0
(−1)i+1f(σ0, . . . , σiσi+1, . . . , σp)

+ (−1)p+1f(σ0, . . . , σp−1).

When p = 0, we have Gp = {e}, and C0 = M , C1 = Map(G, M). Hence

δ0 : M Map(G, M)
m (g → gm − m)

2.1.1. Definition of group cohomology. Let (Cp, δp) be as above. Then define

Zp(G, M) = Ker(δp), Bp(G, M) = im(δp−1).

There are two equivalent types of definitions for the group cohomology Hp(G, M).
(1) Define Hp(G, M) := Hp(C•) = Zp(G, M)/Bp(G, M) as the cohomology of the complex.
(2) Define Hp(G, M) to be the p-th right derived functor of the functor

ModG Ab
M MG = {m ∈ N | gm = m, ∀g ∈ G} = HomModG

(Z, M).

Example 2.3. (1) Consider the groups of 1-cocycles and 1-coboundaries:

Z1(G, M) = {f : G → M | f(gg′) = f(g) + gf(g′)  
1-cocycle condition

, ∀g, g′ ∈ G},

B1(G, M) = {f : G → M | ∃a ∈ M such that f(g) = ga − a, ∀g ∈ G}.

In particular, when G acts trivially on M , we obtain ga − a = 0 for all g ∈ G, a ∈ M .
Then B1(G, M) is trivial and hence

Z1(G, M) ∼= H1(G, M) ∼= Hom(G, M).

3By definition, the discontinuity means that for all x ∈ X there is some neighborhood Ux of x such that
Ux ∩ σ(Ux) = ∅ for all σ ∈ G\{e}.
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(2) One can compute the 2-cocycle condition by definition:

(∗) g(f(g′, g′′)) − f(gg′, g′′) + f(g, g′g′′) − f(g, g′) = 0.

Consequently, the group of 2-cocycles is given by

Z2(G, M) = {f : G × G → M | ∀g, g′, g′′ ∈ G, (∗) holds}.

2.1.2. Cup product of group cohomology. Take M, N, P ∈ ModG. Given a bilinear map

ϕ : M × N → P such that ϕ(gm, gn) = gϕ(m, n),

we can define a cup product as

∪ : Hp(G, M) × Hq(G, N) −→ Hp+q(G, P )
(f, g) −→ f ∪ g.

For all f ∈ Hp(G, M) and g ∈ Hq(G, N),

(f ∪ g)(σ1, . . . , σp+q) = f(σ1, . . . , σp) · (σ1, . . . , σp)g(σp+1, . . . , σp+q).

2.2. Čech cohomology. Let Y be a topological space and F be a sheaf of abelian groups on
Y . Let U = {Vi}i∈I be an open covering of Y . Define the Čech chain complex

C•(U , F ) = (Cp(U , F ), dp)p0

as follows.
(a) Denote Vi0···ip = Vi0 ∩ · · · ∩ Vip (or more generally, Vi0···ip = Vi0 ×Y · · · ×Y Vip). Then

Cp(U , F ) =


(i0,...,ip)∈Ip+1

F (Vi0···ip).

(b) Define δp : Cp(U , F ) → Cp+1(U , F ) as follows. For the coordinate of dpf corresponding
to (i0, . . . , ip+1) ∈ Ip+2,

(dpf)i0···ip+1 =
p+1

j=0
resj(fi0···̂ij ···ip+1

).

Here resj : F (Vi0···̂ij ···ip+1
) → F (Vi0···ip+1) is induced by inclusion Vi0···ip+1 ⊂ Vi0···̂ij ···ip+1

.
The Čech cohomology of F with respect to U is defined to be

Ȟp(U , F ) := Hp(C•(U , F ), d•).

Remark 2.4. Some comments about Čech cohomology.
(1) Čech cohomology can be computed in terms of alternating cochains. Say f ∈

Cp(U , F ) is alternating if
(i) fi0···ip = 0 when there are r ∕= s such that ir = is, and
(ii) fσ(i0)···σ(ip) = sgn(σ)fi0···ip for σ ∈ Sp+1.

If we use C ′p(U , F ) to denote the subgroup of Cp(U , F ) consisting of alternating
cochains, then

Ȟp(U , F ) ∼= Hp(C ′•(U , F ), d•).

(2) Čech cohomology Ȟp(U , F ) is not always isomorphic to sheaf cohomology Hp(Y, F ).
However, they are related by spectral sequences. See [Har13, III, Thm 4.5] for an
example.
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2.3. A comparison between sheaf cohomologies and group cohomologies. We state
the main result in [Mum85, Appendix of §2]. See also [Mil08, Chap.III, Example 2.6].

Theorem 2.5 (Comparison). For any sheaf F on Y , there is a natural group homomorphism

φp : Hp(G, Γ(X, π∗F )) → Hp(Y, F )

with the following properties:
(1) If

0 → F ′ → F → F ′′ → 0

is an exact sequence of sheaves on Y , and

0 → Γ(X, π∗F ′) → Γ(X, π∗F ) → Γ(X, π∗F ′′) → 0

is exact, then we get a homomorphism from the cohomology sequence of Hp(G, ·) to that
of Hp(Y, ·); i.e., the following diagram commutes:

...
...

Hp(G, Γ(X, π∗F ′)) Hp(Y, F ′)

Hp(G, Γ(X, π∗F )) Hp(Y, F )

Hp(G, Γ(X, π∗F ′′)) Hp(Y, F ′′)

Hp+1(G, Γ(X, π∗F ′)) Hp+1(Y, F ′)

...
...

(2) For any p  0, φp is compatible with the cup products.4
(3) If for all i  1,

Hi(X, π∗F ) = 0,

then
φp : Hp(G, Γ(X, π∗F )) → Hp(Y, F )

is an isomorphism.

Remark 2.6 (Important subtlety for beginners). In algebraic geometry, the functor

Ring Sch
A Spec(A)

is contravariant. On the other hand, in complex geometry, the functor
ManifoldC Ring

X Γ(X, OX)

4For some historical reason, Mumford meant to say by (2) that φp commutes with the cup product. However,
it is difficult to define the cup product of sheaf cohomologies. Fortunately, the case that will be at work may
assume F is a constant sheaf.
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is contravariant as well. As a consequence, if we have a left action of G on X, it induces a right
action of G on Γ(X, π∗F ).

Following the convention of Mumford, we define a left action of G on Γ(X, π∗F ) by composing
with the inverse. In the case of complex torus, U acts on H = Γ(V, OV ) (resp., H∗ = Γ(V, O∗

V ))
via the formula (uh)(z) = h(z − u) for u ∈ U , h ∈ H (resp., h ∈ H∗), and z ∈ V .

Now we come to the definition of the maps φp. Choose an open covering U = {Vi}i∈I of Y

such that:
(1) For all p  0,

Ȟp(U , F ) ∼= Hp(Y, F ).
(2) Along with π, we obtain

π−1(Vi) =


σ∈G

σ(Ui),

where Ui ⊂ X are open such that π|Ui : Ui → Vi are all isomorphisms. (Recall that the
action of G is discontinuous, hence we take the disjoint union.)

(3) For all i, j, there is at most one σij ∈ G such that Ui ∩ σijUj ∕= ∅.
Note that in (3), σij exists if and only if Vi ∩ Vj ∕= ∅. Also, σ−1

ij = σji. If Vi ∩ Vj ∩ Vk ∕= ∅,
then σik = σijσjk. Now we are ready to construct the map φp. For i ∈ I, define αi to be the
composite

Γ(X, π∗F ) Γ(Ui, π∗F ) Γ(Vi, F ).res

α

∼=

Define φp as the group homomorphism

φp : Cp(G, Γ(X, π∗F )) → Cp(U , F ),

for which
(φpf)i0···ip = res ◦ αi0(f(σi0i1 , σi1i2 , . . . , σip−1ip))

for all (i0, . . . , ip) ∈ Ip+1. Note that res is basically the restriction map

Γ(Vi0 , F ) → Γ(Vi0···ip , F ).

Exercise 2.7. Check that φp induces a morphism of cohomology groups.

2.4. Geometric description of holomorphic line bundles. We concern about the case of
complex torus X = V/U say. Here X is a connected compact complex Lie group, V = Lie X,
and U is a fixed lattice in V . There is a natural projection

π = exp: V → X = V/U.

Denote H∗ := Γ(V, π∗O∗
X) = Γ(V, O∗

V ). Theorem 2.5 (3) dictates that

Hp(U, Γ(V, π∗O∗
V )) Hp(V, O∗

V ).∼=
φp

At the level of line bundles (when p = 1), here comes another construction of the isomorphism

H1(X, O∗
X)

∼=−→ H1(U, H∗).

Theorem 2.8. For p  1, we have

Hp(Cg, O) ∼= Hp(V, OV ) = 0

by viewing Cg = Cdim X ≈ V as an algebraic variety over C. In particular,

Hp(Cg, O∗) ∼= Hp(V, O∗
V ) ∼= Pic(V ) = 0

for p  1.
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Let L be a (holomorphic) line bundle on X. By the theorem, π∗L ∈ Pic(V ) is trivial on V .
So we can choose and fix an isomorphism

χ : π∗L
∼=−→ C × V.

Conversely, to define a line bundle L on X, it suffices to define an action of U on C × V that
covers the translation action of U on V . Recall that H∗ is the group of nowhere vanishing
holomorphic functions on V . We define the action of U on H∗ by

(uf)(z) = f(z + u).
The U -action on C × V is of the following form:

u(α, z) = (eu(z) · α, z + u), α ∈ C, z ∈ V, u ∈ U, eu ∈ H∗.

Exercise 2.9. Check that the association
ϕ : U → H∗, e → eu

is indeed a 1-cocycle, i.e., an element in Z1(U, H∗).

If we modify the trivialization χ by a function f ∈ H∗, each of eu will be replaced by
e′

u(z) = eu(z)f(z + u)f(z)−1.

This is because
(α, z) (αf(z), z)

(eu(z)α, z + u) (eu(z)αf(z + u), z + u)

u u

in which the right vertical arrow denotes the action under the new trivialization. So we have a
well-defined map

H1(X, O∗
X) → H1(U, H∗),

which is compatible with the isomorphism established before. The upshot here is that if u → eu

is a 1-cocycle under the action (uf)(z) = f(z + u), then u → fu := e−u is also a 1-cocycle under
the action (uh)(z) = h(z − u).

Proposition 2.10. For any complex manifold Y , we have an exact sequence

0 Z OY O∗
Y 0.

exp(2πi(·))

Applying the proposition to X, it induces a long exact sequence of cohomology:
Pic(X)

· · · H1(X,Z) H1(X, OX) H1(X, O∗
X)

H2(X,Z) H2(X, OX) H2(X, O∗
X) · · ·

On the other hand, one shall notice that the following is an exact sequence

0 H0(V,Z) H0(V, π∗OX) H0(V, π∗O∗
X) 0.

Z H H∗

exp(2πi(·))

For the middle and the right terms above, use an open covering of V to see the equality to H

and H∗, respectively. This sequence terminates on the right side because
Hi(V,Z) = 0, ∀i > 0.

Then by Theorem 2.5 (3) again, we have isomorphisms

Hp(U,Z)
∼=−→ Hp(X,Z)
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for all p  0. Here on the left side, we make the abelian group U acts trivially on Z; on the
right side, we regard Z as a constant sheaf on X. Moreover, the following diagram commutes:

...
...

H1(U, H) H1(X, OX)

H1(U, H∗) H1(X, O∗
X) Pic(X) [L ]

∧2 HomZ(U,Z)

HomZ(∧2U,Z) H2(U,Z) H2(X,Z) c1(L )

...
...

exp(2πi(·))

δ

∼= ∼= ∋

∼=
∼= ∋

Here c1(L ) denotes the first Chern class of L .

Lemma 2.11. The map

A : Z2(U,Z) −→ Hom(∧2U,Z)
F −→ AF (u1, u2) := F (u1, u2) − F (u2, u1)

induces an isomorphism

A : H2(U,Z) −→ Hom(∧2U,Z)
∼=−→ ∧2 Hom(U,Z).

Moreover, we have the commutative diagram

H1(U,Z) × H1(U,Z) H2(U,Z) = Z ⊗Z Z

Hom(U,Z) × Hom(U,Z) ∧2 Hom(U,Z)

∼= A

∧

Remark 2.12. In fact we have isomorphism of graded rings

H∗(U,Z)
∼=−→ H∗(X,Z).

Given [L ] ∈ H1(X, O∗
X) that corresponds to the element [{eu}] in H1(U, H∗), let E ∈

Hom(∧2U,Z) be the alternating form obtained by

H1(U, H∗) δ−→ H2(U,Z)
∼=−→ Hom(∧2U,Z)

along the isomorphism given by Lemma 5.11.

Lemma 2.13. If we R-linearly extend E to a map E : V ×V → R, then this extended E satisfies
the identity

E(ix, iy) = E(x, y), ∀x, y ∈ V.

Proof. The proof requires some Hodge theory that is explained in the following two commutative
diagrams.

(1) Regarding C as a constant sheaf over X, we have by Theorem 2.5 that H1(U,C) ∼=
H1(X,C). Also, by the Hodge decomposition, H1(X,C) ∼= H1,0(X) ⊕ H0,1(X). There-
fore,
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H1(U,C) HomR(V,C) Ω ⊕ Ω

H1(X,C) H1,0(X) ⊕ H0,1(X).

∼=

∼=

∼=

Hodge Decomposition
∼=

(2) Again, the Hodge decomposition for H2(X,C) leads to a natural projection H2(X,C) →
H0,2(X).

H2(U,Z)

H1(X, O∗
X) H2(X,Z) H2(X, OX)

H2(X,C) H0,2(X)

∧2Ω ⊕ (Ω × Ω) ⊕ ∧2Ω ∧2Ω.

c1

Hodge

∼= ∼=

Then the image of E in H2(X,C) lies in the mixed part Ω × Ω, i.e., it is a Hodge class, and the
lemma follows. □

Upshot. In the proof of Lemma 2.13, the idea is to pretend E to be the first Chern class of
some line bundle representative. Then chase along the diagram to find out how it can be realized
as a Hodge class.

Lemma 2.14. Let V be a complex vector space. We have a bijective correspondence

{Hermitian forms H on V }


real skew-symmetric form E on V such that
E(iu, iv) = E(u, v) for all u, v ∈ V



H Im H

H(x, y) = E(x, y) + iE(x, y) E

Definition 2.15 (Néron-Severi group). Define the Néron-Severi group of X = V/U to be
NS(X) := {H Hermitian form on V | Im H|U×U ⊂ Z}.

Loosely, it consists of the Hermitian forms that take integral imaginary part on the lattice.
Seriously,

NS(X) := im(H1(X, O∗
X) c1−→ H2(X,Z)).

Also, NS(X) has a natural abelian group structure under addition.

Lemma 2.16. Fix H ∈ NS(X) and let E = Im H.
(1) There exists (but not necessarily unique) a map

α : U −→ C1 = {z ∈ C | |z| = 1}
such that

α(u1 + u2) = eiπE(u1,u2)α(u1)α(u2), ∀u1, u2 ∈ U.

(2) For such an α as in (1), define

eu(z) := α(u)eπH(z,u)+ 1
2 πH(u,u), u ∈ U, z ∈ V.

Then u → eu defines an element in H1(U, H∗) and its Chern class of the associated line
bundle is E ∈ H2(U,Z) ∼= H2(X,Z).

Now we define
P (X) := {(H, α) | H ∈ NS(X), α be as in (1)}.

Then P (X) has an abelian group structure as well: say
(H1, α1)(H2, α2) = (H1 + H2, α1α2).
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And therefore,
L (H1, α1) ⊗ L (H2, α2) = L (H1 + H2, α1α2).

We infer that there is an exact sequence of abelian groups
α (0, α)

0 HomGrp(U,C1) P (X) NS(X) 0

0 Pic0(X) H1(X, O∗
X) NS(X) 0

Pic(X)

λ (2)

where Pic0(X) := Ker(H1(X, O∗
X) c1−→ H2(X,Z)). And the middle vertical map above is given

by Lemma 2.16 (2).

Proposition 2.17. The map P (X) → Pic(X) induces an isomorphism

λ : HomGrp(U,C1)
∼=−→ Pic0(X).

Proof. First we prove that λ is injective. For α ∈ HomGrp(U,C1), if λ(α) = 1, the 1-cocycle

α ∈ HomGrp(U,C1) ⊂ HomGrp(U,C∗) = H1(U,C∗)

will become trivial in H1(U, H∗) ∼= H1(X, O∗
X), which renders that we can find g(z) ∈ H∗ such

that
g(z + u)

g(z) = α(u), ∀z ∈ X.

Since |α(u)| = 1 for all u ∈ U , we see |g(z + u)| = |g(z)|. As V/U = X is compact, g(z) should
be bounded on V . Then g(z) is a constant function, and then α ≡ 1. Therefore, λ is injective. It
suffices to prove that it is surjective as well. Let us consider the following commutative diagram

· · · H1(X,Z) H1(X, OX) H1(X, O∗
X) H2(X,Z)

H1(X,C) H1(X, O∗
X)

H1(U,C) H1(U, H∗)

exp(2πi(·)) c1

pHodge Decomp.

exp(2πi(·))

Theorem 2.5 by construction

exp(2πi(·))

By the Hodge decomposition, p : H1(X,C) → H1(X, OX) is surjective. This gives rise to

im(H1(X,C) → H1(X, O∗
X)) = im(H1(X, OX) → H1(X, O∗

X)) = Pic0(X).

It follows that any line bundle L corresponds to a 1-cocycle eu(z) = e2πif(u) for some f ∈
HomGrp(U,C). We extend R-linearly that

Im f : U → R ⇝ Im f : V → R.

Also define
l : V −→ C

v −→ Im(f(iv)) + i Im(f(v))
together with

e′
u(z) := eu(z) · e2πi(l(z)−l(u+z)) = e2πi(f(u)+l(z)−l(u+z)).

Notice that e′
u equals to eu in H1(U, H∗) and

f(u) + l(z) − l(u + z) = Re(f(u)) − Im(f(iu)) ∈ R

does not depend on z. Hence e′
u(z) ∈ H1(U,C1), which completes the proof. □
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3. Algebraizability of tori

Goal. We have previously mentioned that the complex torus C/Λ can be realized as a projective
algebraic curve. Or more generally, we are to realize the complex Lie group X = V/U as a
projective algebraic variety over C, via the existence of a positive definite Hermitian forms.

3.1. On projective morphisms. The prototypical reference of this is [Har13, II, §7].
(1) To give a projective morphism ϕ : X → Pn

k is equivalent to giving an invertible sheaf
L = ϕ∗(O(1)) and sections si = ϕ∗(xi) (i = 0, . . . , n) that generate L .

(2) Under the notations in (1), ϕ is a closed immersion if and only if for the subspace
V = Span{si} ⊂ Γ(X, L ) the following two conditions hold:

• elements of V separate points, i.e., for all P, Q ∈ X, there is s ∈ V such that
s ∈ mP LP , s /∈ mQLQ, or vice versa;

• elements of V separate tangent vectors, i.e., for each P ∈ X, the set {s ∈ V | sP ∈
mP LP } spans the k-vector space mP LP /m2

P LP .

Remark 3.1. (1) Sections of Γ(X, L ) cannot simultaneously vanish (resp., non-vanish) on
some subvariety of X.

(2) ϕ induces injective maps on tangent spaces at all closed points.

3.2. Global sections of a line bundle. Therefore, it is important to study the global sections
of a line bundle L ∈ Pic(X). We now explain why it is necessary to assume that H is positive
definite and non-degenerate.
(a) Suppose that L = L (H, α), where H is a Hermitian form on V such that E = Im H being

integral on U × U and α : U → C1 satisfying

α(u1 + u2) = eiπE(u1,u2)α(u1)α(u2).

It turns out that
Γ(X, L (H, α))

= {sections of C × V → V that are invariant under the action of U}
= {θ : V → C theta function | θ(z + u) = eu(z)θ(z), ∀z ∈ V, u ∈ U}.

(b) Suppose H is degenerate. Let

N := {x ∈ V | H(x, y) = 0, ∀y ∈ V } = {x ∈ V | E(x, y) = 0, ∀y ∈ V }.

Then N ⊂ V is a complex subspace and N ∩ U is a lattice in N as E|U×U ⊂ Z. For a theta
function θ ∈ Γ(X, L (H, α)) such that θ(z + u) = α(u)θ(z) for all u ∈ N ∩ U ,

θ(z + z′) = θ(z), ∀z ∈ V, z′ ∈ N.

Consider the complex subtorus X ′ = N/N ∩ U of X. Elements in Γ(X, L (H, α)) cannot
separate points in X ′. Therefore, L (H, α) can never ever be ample.

(c) When H is non-degenerate but not positive definite, one can show that Γ(X, L (H, α)) = 0
and hence L (H, α) cannot be ample.

Therefore, in the upcoming context, we always assume H is positive definite to make all
of the constructions to be reasonable.

Proposition 3.2. When H is positive definite, we have

dim H0(X, L (H, α)) =


det(E).

Sketch of Proof. By the construction, U is a lattice in V of rank 2g. We choose a sublattice U ′

of U or rank g such that E|U ′×U ′ ≡ 0, and if W = U ′ ⊗Z R then W ∩ U = U ′ (this is to ensure
that U is the maximal sublattice with respect to the previous condition).
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Define a map
β : U −→ U := HomZ(U,Z)

u −→ (u′ → E(u, u′)).
By some complex analysis calculation, one can prove that

dim H0(X, L (H, α)) = # Coker(U β−→ U → U ′).

Then the proposition follows from the following commutative diagram:

0 0 0

0 U ′ U U/U ′ 0

0 U/U ′ U U ′ 0

α β γ

and the fact that
# Coker β = (det E)2, # Coker α = # Coker β.

□

3.3. Dual complex tori.

Definition 3.3. The C-vector space of C-antilinear maps is defined to be

V := HomC(V,C).

We have a canonical R-linear isomorphism

HomC(V,C) HomR(V,R)

l Im l

l(v) = −k(iv) + ik(v) k.

∼=

This leads to a non-degenerate bilinear map
〈·, ·〉 : V × V −→ R

(l, v) −→ Im l(v).

Define
U = {l ∈ V | 〈l, U〉 ⊂ Z},

which is a lattice of V . The complex torus
X := V / U

is called the dual complex torus of X.

Proposition 3.4. We list out the following basic facts about X.
(1) The map

V −→ HomGrp(U,C1) = Pic0(X)

l −→ e2πi〈l,·〉

induces an isomorphism X ∼= Pic0(X).
(2) For every L = L (H, α) ∈ Pic(X), the map

V −→ V

v −→ H(v, ·)

induces a homomorphism of complex torus φL : X → X.
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(3) Moreover, as in (2),
φL is surjective as an isogeny ⇐⇒ H is non-degenerate.

And in this case,
deg(φL ) = det Im(H).

When H is positive definite, we see that
deg(φL ) = (dim H0(X, L ))2.

Theorem 3.5 (Lefschetz). Let X be a complex torus and L = L (H, α) be a line bundle on
X. Then the following are equivalent:

(1) H is positive definite;
(2) L is ample;
(3) L ⊗n is very ample for all n  3.

We will give an algebraic proof of the results above.

Corollary 3.6. If L = L (H, α) is ample and det E = 1, i.e., L gives a principal polarization
of X, then X admits a closed immersion into some projective space:

X ↩→ P3g−1, g = dimC X.

In the future, this corollary is the key to construct the moduli space of abelian varieties.
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Part 2. Algebraic theory via varieties

4. Definition of abelian varieties

Let k be an algebraically closed field.

Definition 4.1. An abelian variety X is a complete algebraic variety over k (that is, X is an
integral scheme proper and of finite type over k) with a group law induced by the morphisms

m : X × X → X, e : Spec(k) → X, i : X → X

such that m and i are both morphisms of varieties.

Remark 4.2. (1) As we will see later, an abelian variety is automatically projective. This is
not true for abelian schemes.

(2) In most of the cases, Mumford worked over an algebraically closed field. This makes the
discussion much simpler in some cases. In practice, one should be aware of whether this
assumption really affects the statement. For example, over a general field k, the correct
definition of an abelian variety should be the same as the above definition except that
one replaces “integral” with “geometric integral”.

Exercise 4.3. Let X be a variety over a field k. Show that
X is projective ⇐⇒ X ×Spec k Spec k is projective.

Now we give some basic properties of abelian varieties.

Lemma 4.4. (cf. [Har13, II, §8]) An abelian variety X is everywhere nonsingular (i.e., smooth)
when k is algebraically closed.

Proof. It suffices to check on closed points. Since k is algebraically closed, it is known that there
is an open dense subset U of X which is nonsingular. For x0 ∈ U and x ∈ X, the left translation
Txx−1

0
induces an isomorphism OX,x

∼= OX,x0 . Hence x is nonsingular. □

Next, we will prove that X is commutative as a group.

Lemma 4.5 (Rigidity). Let X be a complete variety. Let Y and Z be any varieties. Assume
f : X × Y → Z is a morphism such that there exists a closed point y0 of Y with

f(X × {y0}) = {z0},

a single closed point z0 of Z. Then there exists a morphism g : Y → Z such that f = g ◦ p2:
Y

X × Y Z

g

f

p2

where p2 : X × Y → Y is the second projection to Y .

Proof. Fix a closed point x0 of X and define a morphism g : Y → Z to be the composite

Y {x0} × Y X × Y Z.
∼= f

It suffices to prove that f and g ◦ p2 agree on a nonempty open subscheme of X × Y . We choose
an open affine neighborhood U of z0 in Z. Since f−1(U) is open in X × Y , its complement
W = X × Y \f−1(U) is closed in X × Y .

Since p2 is proper, p2(W ) is closed in Y . By assumption, W ∩ (X × {y0}) = ∅ and then
y0 /∈ p2(W ). We can find an open neighborhood V of y0 in Y such that V ∩ p2(W ) = ∅. Then
the restriction f |X×V factors through U ⊂ Z, and hence g|V factors through U ⊂ Z. For any
closed point y ∈ V , f |X×{y} is constant as X × {y} is proper and U is affine. It shows that for
any closed point x of X,

f(x, y) = f(x0, y) = (g ◦ p2)(x0, y).
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In other words, f |X×V and (g ◦ p2)|X×V agree on all closed points. Therefore, they agree on
X × V . This extends to

f = g ◦ g2 : X × Y → Z,

which completes the proof. □

Corollary 4.6. If X and Y are abelian varieties and f : X → Y is a morphism, then f(x) =
h(x) + a where h : X → Y is a homomorphism and a ∈ Y (k).

Proof. Up to translations, it suffices to show that if f(eX) = eY , then f is a homomorphism.
Consider the morphism φ : X × X → Y defined by

φ(x, y) = f(xy) − f(x) − f(y) := f(xy) + i(f(x)) + i(f(y)).

Since φ(X × {eX}) = φ({eX} × X) = {eY }, it follows from Lemma 4.5 that φ(x, x′) ≡ eY on
X × X. Hence f is always a homomorphism. □

Corollary 4.7. X is a commutative group.

Proof. Apply the previous corollary to show the morphism attached to the group variety

i : X → X, x → x−1

is a group morphism. □

Corollary 4.8. Let X be an abelian variety with base point eX . Then on the category of
complete varieties with base point, the functor

S −→ Hom(S, X)

is linear, i.e., for S, T in this category, the natural map

Hom(S, X) × Hom(T, X) −→ Hom(S × T, X), (f, g) −→ h

such that
h(s, t) = f(s) + g(t)

is a bijection.

Proof. If we use s0 to denote the base point then

h(s0, t) = g(t), h(s, t0) = f(s), ∀s ∈ S, t ∈ T.

Then the map is injective. Now given h ∈ Hom(S × T, X), define f : S → X and g : T → X by

f(s) = h(s, t0), g(t) = h(s0, t)

for some fixed s0 ∈ S and t0 ∈ T . Then the morphism

k : S × T → X, k(s, t) = h(s, t) − g(t) − f(s)

satisfies
k(S × {t0}) = k({s0} × T ) = {eX} =⇒ k(s, t) ≡ eX

by Lemma 4.5. □

Now let eX : Spec k → X be the identity element and Ω1
X = Ω1

X/k be the sheaf of relative
differentials of X over k. On Spec k, the coherent sheaf

ωX = e∗
XΩ1

X

corresponds to the Zariski tangent space Ωe of X at e (see [Har13, II, Prop 8.7]).

Proposition 4.9. There is a natural isomorphism Ω1
X

∼= π∗ωX of coherent OX-modules.



16 WENHAN DAI

Proof. We regard the product X × X as an X-scheme via the second projection p2. The
morphism

τ = (m, p2) : X × X → X × X, (x, y) → (x + y, y)
is an automorphism of X × X over X, and it induces an isomorphism

ψ : τ∗Ω1
X×X/X

∼=−→ Ω1
X×X/X .

Since the following diagram is Cartesian,

X × X X

X Spec k

p1

p2 π

π

we have Ω1
X×X/X

∼= p∗
1Ω1

X . Under this isomorphism, ψ becomes

ψ : m∗Ω1
X

∼=−→ p∗
1Ω1

X .

We pull this isomorphism back along the morphism

(eX ◦ π, idX) : X → X × X, x → (eX , X),

where π : X → Spec k is the natural section. It gives rise to the desired isomorpism

Ω1
X

∼=−→ π∗(e∗
XΩ1

X) = π∗ωX.

□

Remark 4.10. The above result holds for arbitrary group scheme π : G → S over S that is
separated and of finite type.

Proposition 4.11. For every n that is not divisible by char(k), the endomorphism

nX : X → X, x → nx

is surjective.

Proof. We impose T to denote the Zariski tangent space of X at eX .
Claim. The addition morphism m : X × X → X induces the tangent map at (eX , eX), say

d(m) : TX×X,(eX ,eX ) ∼= T ⊕ T → T, (t1, t2) → t1 + t2.

For this, note that the composite

X X × X X
(idX ,eX ) m

is the identity map. One infers that d(m)(t1, 0) = t1 for all t1 ∈ T ; and similarly, d(m)(0, t2) = t2
for all t2 ∈ T . The claim follows from the fact that d(m) is additive.Granting the claim, we are to prove the proposition. Take K := Ker(nX) that sits in the left
Cartesian diagram below. And consider the tangent maps on the right hand side below.

K Spec(k)

X X

eX

nX

TK,eX
0

T T
(·)×n

Since n is not divisible by char(k), we see that

TK,eX
= 0 =⇒ dim OK,eX

= 0 =⇒ dim K = 0.

Then the dimension formula implies that dim(im(nX)) = dim X. Hence nX is surjective. □
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Remark 4.12. We can actually show that nX is a finite flat étale morphism (recall that the
finiteness is implied by quasi-finiteness and properness). When char(k) | n, nX is still finite flat
but no longer étale.

Corollary 4.13. For all x ∈ X, OX,x is regular and hence a UFD. So we identity the Weil
divisor classes to the line bundle classes over X, say

Cl(X) ∼= Pic(X).

5. Cohomology and base change

The references for this section is [Har13, III, §12] and Conrad’s lecture notes [Con00, §9].

Setups. Let f : X → Y be a proper morphism of noetherian schemes and F be a coherent
sheaf of OX -modules. Assume that F is flat over Y , i.e., for any x ∈ X, Fx is flat as an
OY,f(x)-module. For any y ∈ Y , we denote

Xy := X ×Y Spec(k(y))

and Fy the inverse image of F via the morphism Xy → X.
Goal: For any i  0, we want to understand the fiber cohomology Hi(Xy, Fy) as a function of

y ∈ Y . And the idea is to find relations between the sheaf Rif∗F and the cohomology
groups Hi(Xy, Fy).

We assume the following result.

Theorem 5.1 (Proper base change). If f : X → Y is a proper morphism of locally noetherian
schemes and F a coherent sheaf of OX-modules on X, then the direct image sheaves Rpf∗F
are coherent sheaves of OY -modules for all p  0.

When f is projective, this follows from [Har13, III, Thm 8.8]. As for the general case, it
follows from EGA III, see [GD66, III, 3.2.1].

Theorem 5.2. Let f : X → Y be a proper morphism of noetherian schemes with Y = Spec A

affine, and F be a coherent sheaf of OX-module that is flat over Y . Then there exists a finite
complex K•, say

0 → K0 → K1 → · · · → Kn → 0
of finitely generated projective A-modules and equivalences of functors

Hp(X ×Y Spec(·), F ⊗A (·)) = Hp(K• ⊗A (·)), p  0

on the category of A-algebras. Hence for any B ∈ AlgA,

Hp(X ×Y Spec B, F ⊗A B) ∼= Hp(K• ⊗A B), p  0.

Problem 5.3. Here the sheaf F ⊗A B is the inverse image sheaf of F under the projection
X ×Y Spec B → X. How to give the association B → Hp(X ×Y Spec B, F ⊗A B) rise to be a
functor on the category of A-algebras? (To remedy this, one can use Čech cohomology, but how
to make it formal?)

Remark 5.4. (1) Since F is flat over Y = Spec A, for any affine open subset U ⊂ X, F (U)
is flat as an A-module.

(2) Since X is separated and noetherian, the coherent cohomology H∗(X, F ) can be com-
puted by Čech cohomology with respect to finite affine open coverings, for any quasi-
coherent sheaf F on X. The same is true for X ×Y Spec B.

(3) As for Hp(K• ⊗A B), it is generally not a finitely generated algebra over A, and the
cohomology does not commute with (·) ⊗A B in most cases.
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Proof of Theorem 5.2. Let U = {Ui}i=0,...,n be a finite affine open covering of X and (C•(U , F ), d•)
be the Čech cochain complex of alternating cochains with respect to the open covering U and
the sheaf F . In particular,

Cp(U , F ) =


0i0<···<ipn

F (Ui0···ip
)

is a free A-module for all p (being nonzero only when 0  p  n), and the Čech cohomology
groups H•(U , F ) are isomorphic to H•(X, F ).

Moreover, for any A-algebra B, {Ui ×Y Spec B}i=0,...,n is an affine open covering of X ×Y

Spec B, and C•(U , F ) ⊗A B is the Čech cochain complex for this open covering and the sheaf
F ⊗A B on X ×Y Spec B. Therefore,

Hp(X ×Y Spec B, F ⊗A B) ∼= Hp(C•(U , F ) ⊗A B), p  0,

and this isomorphism is functorial for B. □

Lemma 5.5. Let C• be a cochain complex of A-modules (but each Cp may not be finitely
generated over A) such that Hi(C•) are finitely generated A-modules for all i  0, and such
that C• is bounded on [0, n].5 Then there exists a complex K• of finitely generated A-modules,
bounded on [0, n] and such that Kp is free for all 1  p  n, and a homomorphism of cochain
complexes φ : K• → C• such that φ induces isomorphisms Hi(K•) → Hi(C•) for all i; namely,
φ is a quasi-isomorphism.

Moreover, if all the Cp’s are A-flat, then K0 will be A-flat as well.

Proof. We will use descending induction on m to construct the following diagram

Km Km+1 Km+2 · · ·

· · · Cm Cm+1 Cm+2 · · ·

dm
K

φm φm+1

dm+1
K

φm+2

dm
C

dm+1
C

with the following properties:
(1) dp+1

K ◦ dp
K = 0 for p  m + 1;

(2) φp+1 ◦ dp
K = dp

C ◦ φp for p  m + 1;
(3) φp induces an isomorphism of cohomology groups Hp(K•) → Hp(C•) for p  m + 2

and a surjective homomorphism Ker(dm+1
K ) → Hm+1(C•);

(4) Kp is a finite free A-module for p  m + 1.
We are going to construct Km, dm

K , φm with the above properties. One can find finite free
A-modules (K ′)m and (K ′′)m, and surjective maps of A-modules:

(K ′)m Ker(Ker(dm+1
K ) → Hm+1(C•)),

(K ′′)m Hm(C•).

Roughly speaking, the first surjection is to make φm+1 into an isomorphism between cohomology
groups; and the second surjection is to force φm to satisfy the desired property.

By construction, we have an inclusion i′
m : (K ′)m → (K ′′)m+1 that factors through Ker(dm+1

K ).
Define

Km := (K ′)m ⊕ (K ′′)m, dm
K = (i′

m, 0) : Km → Km+1.

Then property (1) and (4) hold for p = m, and φm+1 induces an isomorphism Hm+1(K•) →
Hm+1(C•). Since (K ′′)m is projective, we can lift the map (K ′′)m → Hm(C•) to a map

φ′′
m : (K ′′)m → Ker(dm

C ) → Cm.

5This is not a standard notation to say that Cp ∕= 0 implies 0  p  n. Indeed, using the truncation functor,
one may replace C• with τ0τnC•.
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On the other hand, the composite

(K ′)m Km+1 Cm+1

Ker(dm+1
K ) Ker(dm+1

C )

i′
m

i′
m

φm+1

φm+1

lies in Ker(dm+1
C ) and is 0 in Hm+1(C•). Then

(K ′)m Ker(dm+1
K ) Ker(dm+1

C )i′
m φm+1

factors through im(dm
C ). Since (K ′)m is projective, we can lift the map (K ′)m → im(dm

C ) to a
map φ′

m : (K ′)m → Cm by the universal property. Finally we define

φm = (φ′
m, φ′′

m) : Km −→ Cm.

It is straightforward to verify that φm+1 ◦ dm
K = dm

C ◦ φm and φm induces a surjective map

Ker(dm
K) = (K ′′)m −→ Hm(C•).

This finishes the construction for m. Now we have the following diagram

K0 K1 · · ·

0 C0 C1 · · ·

d0
K

φ0

d1
K

φ1

d0
C d1

C

that satisfies (1)-(4) above. We replace K0 by K0/(Ker(d0
K) ∩ Ker(φ0)) and d0

K , φ0 by their
induced maps. Then the new diagram satisfies all the properties (1)-(4) except that K0 is no
longer free.

We still need to prove that K0 is A-flat. Let C[−1]• be the complex shifted by −1 of the
cochain complex C•, i.e.,

C[−1]p := Cp−1, dp
C[−1] := −dp−1

C .

Consider the mapping cone of the morphism φ : K• → C•, which is defined as follows:

Cone(φ)p := Kp ⊕ Cp−1 = Kp ⊕ C[−1]p,

together with6

dp
Cone(φ) : Kp ⊕ Cp−1 Kp+1 ⊕ Cp

(x, y) (dp
K(x), φp(x) − dp−1

C (y)).

One can easily check that (Cone(φ)p, dp
Cone(φ))p is a cochain complex. Moreover, we have an

exact sequence of cochain complexes for each p, say

0 C[−1]p Kp ⊕ C[−1]p Kp 0
y (0, y)

(x, y) x

And we have a long exact sequence of cohomology groups

6There is an alternative (and decorated) way to write the differential map as

dp
Cone(φ) : Kp ⊕ C[−1]p → Kp+1 ⊕ C[−1]p+1,


x

y


→


dp

K 0
φp dp

C[−1]

 
x

y


.



20 WENHAN DAI

· · · Hp(C[−1]•) Hp(Cone(φ)•) Hp(K•) Hp+1(C[−1]•) · · ·

Hp−1(C•) Hp(C•)

δp

Again, it is easy to verify that under the isomorphism Hp+1(C[−1]•) ∼= Hp(C•), the corre-
sponding homomorphism δp is the one induced by the morphism φ∗

p, which is an isomorphism
as well. Hence

Hp(Cone(φ)•) = 0, ∀p.

So the cochain complex

Cone(φ)• : 0 → K0 = Cone(φ)0 → Cone(φ)1 → · · · → Cone(φ)n+1 = Cn → 0

is exact, in which Cone(φ)p is A-flat for all p  1. Also, Cone(φ)• breaks into n short exact
sequences

0 → Ker(dp
Cone(φ)) → Cone(φ)p → Ker(dp+1

Cone(φ)) → 0, p = 1, . . . , n.

Since Ker(dn+1
Cone(φ)) = Cn is A-flat, so also is Ker(dn

Cone(φ)). We use descending induction and
conclude that Ker(d0

Cone(φ)) = K0 is A-flat. This proves the lemma. □

We apply Lemma 5.5 to the Čech cochain complex C• = C•(U , F ) and obtain a cochain
complex K• and a cochain map φ : K• → C• such that

(1) K• is bounded on [0, n];
(2) K0 is finite and A-flat, and Kp are finite free A-modules for p  1;
(3) φ is a quasi-isomorphism, i.e., for all p, φp : Hp(K•) → Hp(C•) is an isomorphism.

Granting these conditions, we see Kp is projective as A-module for each p  0. It remains to
prove that for any A-algebra B,

φB : Hp(K• ⊗A B) −→ Hp(C• ⊗A B)

is an isomorphism for each p  0.
In fact, recall that the mapping cone Cone(φ)• of φ breaks into short exact sequences

0 → Ker(dp
Cone(φ)) → Cone(φ)p → Ker(dp+1

Cone(φ)) → 0, p = 1, . . . , n

and all the three terms are flat A-modules. Consequently, for each p = 1, . . . , n,

0 → Ker(dp
Cone(φ)) ⊗A B → Cone(φ)p ⊗A B → Ker(dp+1

Cone(φ)) ⊗A B → 0

is also exact due to the flatness. In particular, the cochain complex Cone(φ)• ⊗A B is exact as
well. On the other hand, Cone(φ)• ⊗A B is the mapping cone of φB = φ ⊗A B : K• ⊗A B →
C• ⊗A B. So we have a long exact sequence of cohomology groups

· · · Hp(Cone(φ)• ⊗A B) Hp(K• ⊗A B) Hp+1((C• ⊗A B)[−1]) · · ·

Hp(C• ⊗A B)

φB

Therefore, φB is an isomorphism for each p.
Now let f : X → Y be a proper morphism of noetherian schemes and F a coherent sheaf

of OX -module on X that is flat over Y . Recall that for y ∈ Y , we define the fiber Xy =
X × Y Spec(k(y)) and Fy the inverse image of F on Xy. (Caution: Y is not necessarily affine.)

Corollary 5.6. Under the above notations, we have
(1) For every p  0, the function

Y → Z, y → dimk(y) Hp(Xy, Fy)

is upper semicontinuous on Y . A function h : Y → Z is, by definition, upper semicon-
tinuous, if for all n ∈ Z the set {y ∈ Y | h(y)  n} is a closed subset of Y .
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(2) The function

Y → Z, y → χ(Fy) =
∞

p=0
(−1)p dimk(y) Hp(Xy, Fy)

is locally constant on Y .

Proof. The question is local on Y so one may assume that Y = Spec A is affine. We apply
the pervious Theorem 5.2 to the morphism f : X → Y and the sheaf F , and obtain a cochain
complex K• such that

Hp(Xy, Fy) ∼= Hp(K• ⊗A k(y)), ∀p  0, y ∈ Y.

Shrinking Y if necessary, we can assume that Kp is free for all p (the idea is to pretend Kp to
be the pth Čech complex). For p  0, we define

W p := Coker(dp−1
K : Kp−1 → Kp).

So we have an exact sequence

W p dp
K−→ Kp+1 −→ W p+1 −→ 0.

Applying the functor (·) ⊗A k(y), we get

0 → Hp(K• ⊗A k(y)) → W p ⊗A k(y) → Kp+1 ⊗A k(y) → W p+1 ⊗A k(y) → 0.

This is basically because the cokernel commutes with base changes, and so we have

W p ⊗A k(y) ∼= Coker(dp−1
K ⊗A k(y) : Kp−1 ⊗A k(y) → Kp ⊗A k(y)).

Therefore,

dimk(y) Hp(K• ⊗A k(y)) = dimk(y) W p ⊗A k(y) − dimk(y) Kp+1 ⊗A k(y)
+ dimk(y) W p+1 ⊗A k(y).

Since the function
y → dimk(y) Kp+1 ⊗A k(y)

is (locally) constant, it suffices to prove that the function

y → dimk(y) W p ⊗A k(y)

is upper semicontinuous.
Claim. For any finitely generated A-module M , the function

Y → Z, y → dimk(y) M ⊗A k(y)

is upper semicontinuous.
The proof of the claim is leave as an exercise. Granting the claim, (2) follows by taking alter-
nating sum of the dimension equation above. □

Corollary 5.7. Under the above notations, assume further that Y is reduced and connected.
Then for all p, the following are equivalent.

(1) The function
y → dimk(y) Hp(Xy, Fy)

is constant.
(2) Rpf∗F is a locally free sheaf on Y , and for all y ∈ Y , the natural map

Rpf∗F ⊗OY
k(y) → Hp(Xy, Fy)

is an isomorphism.
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If any one of (1)(2) hold, we also have that

Rp−1f∗F ⊗OY
k(y) ∼= Hp−1(Xy, Fy)

for all y ∈ Y .

We can assume that Y = Spec A is affine and let K• be the cochain complex in Theorem 5.2.
Then (2) =⇒ (1) is obvious. So it boils down to prove (1) =⇒ (2).

Lemma 5.8. Let Y be a reduced affine scheme and F be a coherent sheaf on Y . If

dimk(y) F ⊗OY
k(y) = r

for all y ∈ Y (as k(y)-vector spaces), then F is a locally free OY -module of rank r.

Proof. Let Y = Spec A and F = M . Fix y ∈ Y that correspond to p ∈ Spec A. We choose
x1, . . . , xr ∈ Mp such that the images of xi’s in M ⊗A k(p) := Ap/pAp form a basis of this k(p)-
vector space. By Nakayama’s lemma, the Ap-linear homomorphism φp : Ar

p → Mp determined
by x1, . . . , xr is surjective. Then there exists a ∈ A\p such that φp extends to a surjective
Aa-linear homomorphism Ar

a → Ma. Replacing A by Aa, we can assume that there exists a
surjective A-linear map

φ : Ar M.

For any q ∈ Spec A, φ ⊗A k(q) is a surjective k(q)-linear map of k(q)-vector spaces of dimension
r. Then φ ⊗A k(q) is an isomorphism. Let K = Ker(φ), and hence

Kq ⊂ (qAq)r, ∀q ∈ Spec A.

Since A is reduced, we have K = 0, and then φ is an isomorphism. So M is free. □

Lemma 5.9. Let Y be a reduced noetherian affine scheme, and φ : F → G be a morphism of
finite and locally free OY -modules. If

dimk(y) im(φ ⊗OY
k(y))

is locally constant, then we can find a decomposition of finite and locally free OY -modules

F = F1 ⊗ F2, G = G1 ⊗ G2

such that φ factors through G1, φ|F1 = 0, and φ : F2 → G1 is an isomorphism.

Proof. Write Y = Spec A and F = M , G = N for locally free A-modules M, N of finite rank;
φ : M → N is an A-linear map. For any p ∈ Spec A,

dimk(y) Coker(φ ⊗A k(y)) = dimk(y) N ⊗A k(y) − dimk(y) im(φ ⊗A k(y))

is locally constant. By Lemma 5.8, Coker φ is a locally free A-module of finite rank. Define

N1 := Ker(N → Coker φ) = im φ.

So we have an exact sequence

0 → N1 → N → Coker φ → 0.

We see that N1 is locally free of finite rank, and there is a decomposition

N = N1 ⊕ N2

such that N2 ∼= Coker φ under the natural map N → Coker φ. Also define M1 = Ker φ. We
have an exact sequence

0 → M1 → M
φ−→ N1 → 0.

This shows that M1 is locally free of finite rank. Moreover, notice that the exact sequence
splits at M . So there is a decomposition M = M1 ⊕ M2 such that φ|M2 : M2 → N1 is an
isomorphism. □
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Now we are ready to prove the corollary.

Proof of Corollary 5.7. Applying Theorem 5.2 to f : X → Y and F , we attain a cochain com-
plex K• such that for each p  0,

Hp(Xy, Fy) = Hp(K• ⊗A k(y)).
Therefore,

dimk(y) Hp(Xy, Fy)

= dimk(y) Ker(dp
K ⊗A k(y)) − dimk(y) im(dp−1

K ⊗A k(y))

= dimk(y) Kp ⊗A k(y) − dimk(y) im(dp
K ⊗A k(y)) − dimk(y) im(dp−1

K ⊗A k(y))
is constant. Hence

dimk(y) im(dp
K ⊗A k(y))

  
=φ1(y)

− dimk(y) im(dp−1
K ⊗A k(y))

  
=φ2(y)

is locally constant. Shrinking Y if necessary, we can assume that φ1(y) + φ2(y) = C (constant)
on Y . Since φ1(y) and φ2(y) are lower semicontinuous, there is a natural stratification on Y ,
read as

Y =
c

n=0
{y ∈ Y | φ1(y) = n, φ2(y) = c − n}

=
c

n=0
{y ∈ Y | φ1(y)  n, φ2(y)  c − n}.

Since Y is connected, φ1 and φ2 are constant on Y . Now we can apply Lemma 5.9 to dp
K : Kp →

Kp+1 and dp−1
K : Kp−1 → Ker(dp

K), to see there is a decomposition of locally free A-modules of
finite rank:

Zp−1 ⊕ (K ′)p−1 Bp ⊕ Hp ⊕ (K ′)p Bp+1 ⊕ (K ′)p+1

· · · Kp−1 Kp Kp+1 · · ·
dp−1

K
dp

K

such that
Zp−1 = Ker(dp−1

K ), dp−1
K : (K ′)p−1 ∼=−→ Bp = im(dp−1

K );

Bp ⊕ Hp = Ker(dp
K), dp

K : (K ′)p ∼=−→ Bp+1 = im(dp
K).

Therefore, for any A-algebra B,
Hp(K• ⊗A B) ∼= Hp ⊗A B ∼= Hp(K•) ⊗A B.

Since Rpf∗F corresponds to the A-module
Hp(X, F ) ∼= Hp(K•) ∼= Hp,

we have that Rpf∗F is a locally free A-module of finite rank, and
(Rpf∗F ) ⊗A B ∼= Hp ⊗A B ∼= Hp(K• ⊗A B) ∼= Hp(Xy, Fy).

This proves (2). Moreover, in this case,
(Rp−1f∗F ) ⊗A k(y) ∼= Hp−1(X, F ) ⊗A k(y)

∼= Ker(dp−1
K ) ⊗A k(y)/ im(dp−1

K ) ⊗A k(y)
∼= Zp−1 ⊗A k(y)/ im(dp−1

K ⊗A k(y))
∼= Hp−1(K• ⊗A k(y)).

Therefore,
(Rp−1f∗F ) ⊗A k(y) ∼= Hp−1(Xy, Fy)

for all y ∈ Y . □
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Corollary 5.10. Under the above notations (Y may not be reduced or connected), assume that
Hp(Xy, Fy) = 0 for some p and all y ∈ Y . Then the rational map

Rp−1f∗F ⊗OY
k(y)

∼=−→ Hp−1(Xy, Fy)

is an isomorphism for all y ∈ Y .

Proof. Let K• be the cochain complex by Theorem 5.2. Fix y ∈ Y such that

Hp(Xy, Fy) ∼= Hp(K• ⊗A k(y)) = 0.

Then the sequence

Kp−1 ⊗A k(y) Kp ⊗A k(y) Kp+1 ⊗A k(y)
dp−1

K
⊗Ak(y) dp

K
⊗Ak(y)

is exact. We can decompose the k(y)-vector space Kp ⊗A k(y) as W 1 ⊕ W 2 such that

W 1 = im(dp−1
K ⊗A k(y))

and dp
K ⊗A k(y)|W 2

is injective. Let {x1, . . . , xr} be a basis of W 1 and {y1, . . . , ys} be a basis
of W 2. For i = 1, . . . , s, denote

zi = dp
K ⊗A k(y)(yi) ∈ Kp+1 ⊗A k(y),

and extend {z1, . . . , zs} to a basis {z1, . . . , zn} of Kp+1 ⊗A k(y). We choose lifting xi ∈ im(dp−1
K )

of xi for i = 1, . . . , r, yi ∈ Kp of yj for j = 1, . . . , s, and zi ∈ Kp+1 of zl for l = 1, . . . , s. Shrinking
A by a localization Aa at a such that a(y) ∕= 0, one may assume that {x1, . . . , xr, y1, . . . , yr} is a
basis of Kp, and {z1, . . . , zn} is a basis of Kp+1. Let W1, W2 be the free modules generated by
x1, . . . , xr and y1, . . . , ys, respectively. Then Kp = W1 ⊕ W2, where W1 ⊂ im(dp−1

K ) and dp
K |W2

is injective. Hence W1 = im(dp−1
K ). As W1 is free, it is projective. So there is a decomposition

Kp−1 = W1 ⊕ Ker(dp−1
K ). Now we have two exact sequences

Kp−2 Ker(dp−1
K ) Hp−1(K•) ∼= Hp−1(X, F ) 0,

dp−2
K

and

Kp−2 ⊗A k(y) Ker(dp−1
K ⊗A k(y)) Hp−1(K• ⊗A k(y)) 0.

Ker(dp−1
K ) ⊗A k(y) Hp−1(Xy, Fy)

(by Kp−1 = W1 ⊕ Ker(dp−1
K ))

dp−2
K

⊗Ak(y)

Since the cokernel is stable under base changes, we have an isomorphism

Hp−1(X, F ) ⊗Ak(y) Hp−1(Xy, Fy).

Rp−1f∗F

∼=

This completes the proof. □

Corollary 5.11. If Rkf∗F = 0 for k  k0, then

Hk(Xy, Fy) = 0, ∀y ∈ Y, k  k0.

Corollary 5.12 (Flat base change). If B is a flat A-algebra, then

Hp(X ×Y Spec B, F ⊗A B) ∼= Hp(X, F ) ⊗A B.
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Corollary 5.13 (Seesaw’s theorem). Let X be a complete7 variety and T be any variety. Choose
a line bundle L ∈ Pic(X × T ). Then the set

T1 := {t ∈ T | L |X×{t} is trivial on X × {t}}

is closed in T , and L |X×T1
∼= p∗

2M for some M ∈ Pic(T1), where p2 : X × T1 → T1 is the
second projection.

Lemma 5.14. A line bundle (i.e., an invertible sheaf) M on a complete variety X is trivial if
and only if

dim H0(X, M ) > 0, dim H0(X, M −1) > 0.

Proof. Exercise. □

Proof of Seesaw’s Theorem. It follows from Lemma 5.14 that

T1 = {t ∈ T | L |X×{t} is trivial on X × {t}}

=


t ∈ T


dimk(t) H0((X × T ) ×T Spec(k(t)), L ⊗OT

k(t)) > 0, and
dimk(t) H0((X × T ) ×T Spec(k(t)), L −1 ⊗OT

k(t)) > 0


.

By the semicontinuity theorem (Corollary 5.6), T1 is closed in T . We regard T1 as a reduced
closed subscheme of T , and p2 : X × T1 → T1 is a proper morphism of noetherian schemes.
Denote for simplicity that L1 = L |X×T1 . By definition of T1, for any t ∈ T1,

dimk(t) H0((X × T1) ×T1 Spec(k(t)), L1 ⊗OT1
k(t)) > 0

By Corollary 5.7, M := p2,∗L1 is an invertible sheaf on T1 and the natural map

p2,∗L1 ⊗OT1
k(t) −→ H0(X × {t}, L1|X×{t})

is an isomorphism for any t ∈ T1.
We prove that the natural morphism p∗

2M → L1 is an isomorphism. In fact, for any t ∈ T1,
the sheaf p∗

2M |X×{t} is the inverse image of M under

X × {t} X × T2 T2.
p2

It is the trivial invertible sheaf on X×{t} and is the pullback of the k(t)-vector space p2,∗L1⊗OT1
k(t) under X × {t} → {t} = Spec(k(t)). On the other hand, L1|X×{t1} is also trivial and the
restriction of p∗

2M → L1 on X × {t} corresponds to the morphism

p2,∗L1 ⊗OT1
k(t) −→ H0(X × {t}, L1|X×{t})

of global sections. Therefore, the restriction of p∗
2M → L1 on X × {t} is an isomorphism for

each t ∈ T1. This is enough to show that p∗
2M → L1 is itself an isomorphism. □

Remark 5.15. We can assume that T is a (reduced) scheme of finite type over an algebraically
closed field k.

6. The theorem of the cube (I)

All varieties live on an algebraically closed field k.

7Can be replaced with properness.
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6.1. Statement and the primary ingredients.

Theorem 6.1 (The theorem of the cube). Let X, Y be complete normal varieties, and Z be
any normal variety. Take x0, y0, and z0 as base (closed) points on X, Y , and Z, respectively.
If L is any line bundle on X × Y × Z where restrictions to {x0} × Y × Z, X × {y0} × Z, and
X × Y × {z0} are all trivial, then L is trivial.

This section is primarily dedicated to the proof of this theorem. We begin with introducing
two lemmas.

Lemma 6.2 (Arcwise connectedness of complete varieties). Let X be a complete variety and
x0, x1 be two closed points of X. Then there exists an irreducible curve C on X containing x0
and x1.

Proof. Use induction on dimk X. May assume dim X > 1, and by Chow’s lemma8 X can be
taken as a projective variety. Now we can find a birational morphism f : X ′ → X with X ′

projective, satisfying dim f−1(xi)  1 for i = 0, 1. For example, we can take X ′ to be the
blow-up of X along the closed subscheme {x0, x1}.

Another way of construction is in [Mum85]. Choose a rational function h on X with indeter-
minacies at x1 and x2. Let X ′ be the graph9 of h. Then X ′ is projective and the first projection
X × P1 → X induces a birational morphism f : X ′ → X. If dim f−1(xi) = 0 for i = 0, 1, by
dimension theory, there are open neighborhoods Vi of xi in X such that

g = f |f−1(Vi) : f−1(Vi) −→ Vi

is quasi-finite. As g is proper, by Zariski Main Theorem, we infer that g is finite. Suppose Vi

is normal without loss of generality (otherwise one can replace X by its normalization), and g

is birational, we see g must be an isomorphism. Therefore, h is well-defined at xi, which is a
contradiction. Therefore,

dim f−1(xi)  1, i = 0, 1.

Now we choose a projective embedding X ′ ↩→ PN for some N . By Bertini’s theorem, there is
a hyperplane of PN , say H, that does not contain X ′, such that Y ′ := H ∩ X ′ is irreducible.
Again, since dim f−1(xi)  1, we see H ∩ f−1(xi) ∕= ∅.

Let Y = f(Y ′) ⊂ X be with the reduced irreducible closed subscheme structure that contains
x0, x1 and dim Y = dim X −1. By induction, we can find an irreducible curve C ⊂ Y containing
x0, x1. So we are done. □

Lemma 6.3. Let X be a smooth projective curve with a fixed line bundle L on it. For any
divisor D on X with

h0(D) := dim H0(X, LX(D)) > 0,

we have
h0(D − P ) = h0(D) − 1

for all but finitely many closed points P on X.

Proof. In fact, we have an exact sequence of sheaves on X:
0 → L (D − P ) → L (D) → k(P ) → 0.

This induces the left-exact cohomological sequence

0 → H0(X, LX(D − P )) → H0(X, LX(D)) ϕ−→ k(P ).

8The topological completeness is interpreted as the properness in an algebraic sense. And Chow’s lemma is
a machine to turn the conditions for projective varieties into those for simply proper varieties. More precisely, if
X itself is not projective but complete, then there is a projective variety X′ and a birational morphism X′ → X.
This is moreover surjective as a map.

9Let U be the maximal open subvariety of X on which h is well-defined. Then the graph of h is defined to
be the image of the morphism (i, h) : U → X × P1, where i : U ↩→ X is the open immersion.
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Pick a nonzero section f ∈ H0(X, LX(D)), the following set is finite:

#{P ∈ X(k) | fP ∈ mP LX(D)P } < ∞.

For those P landing outside this set, ϕ : H0(X, LX(D)) → k(P ) is surjective (so that the second
sequence is right-exact). Hence h0(D − P ) = h0(D) − 1. □

6.2. Proof of the theorem of cube.

Proof of Theorem 6.1. We begin with some reductions.
(1) First reduction: by symmetry, it suffices to show that for any closed point (x, z) ∈ X ×Z,

the invertible sheaf L |{x}×Y ×{z} is trivial.
In fact, notice that X × Z is Jacobson and hence closed points are dense in X × Z. By
Seesaw’s theorem (Corollary 11.1), L |{x}×Y ×{z} is trivial for any point (x, z) of X × Z

and hence there is a line bundle M on X × Z such that L ∼= π∗M along the projection
π : X × Y × Z → X × Z. Since L |X×{y0}×Z is trivial, we see M is trivial. This deduces
the triviality of L itself.

(2) Second reduction: it suffices to prove the theorem under the assumption that X is a
smooth projective curve and Y, Z are normal varieties.
By Step (1), we need to show that L |{x}×Y ×{z} is trivial for any closed point (x, y) ∈ X×Z.
By Lemma 6.2 we can find an irreducible curve C of X that contains x0 and x. Let
π : C ′ → C be the normalization of C. By assumption, C ′ is a smooth projective curve.
Pick a closed point x′ ∈ π−1(x). We also denote π : C ′ × Y × Z → C × Y × Z. So that

(π∗L )|{x′}×Y ×{z} ∼= L |{x}×Y ×{z}.

So we can assume that X is a smooth projective curve. Consider the normalizations of Y

and Z. By a similar argument as above, they are assumed to be normal.
(3) Third reduction: it boils down to find a nonempty open subset Z ′ of Z such that L |X×Y ×Z′

is trivial.
If so, L |X×Y ×{z} is trivial for any point z ∈ Z ′. Since Z ′ is dense in Z, we see that
L |X×Y ×{z} is trivial for all z ∈ Z by Seesaw’s theorem (Corollary 11.1). Therefore,
L |{x}×Y ×{z} is trivial for any closed point (x, z) ∈ X × Z.

Now we are ready to prove the theorem of cubes. Let Ω1
X be the sheaf of differentials of X/k,

and g := dim H0(X, Ω1
X) be the genus of X. We can find g closed points p1, . . . , pg such that

H0(X, Ω1
X ⊗ LX(−D)) = 0,

where D =
g

i=1 Pi. This follows from Lemma 6.3. For such a divisor D, we define

L ′ = L ⊗ p∗
1LX(D),

where p1 : X × Y × Z → X is the first projection. For any point y ∈ Y , we have

L ′|X×{y}×{z0} ∼= LX(D),

and
dim H1(X, LX(D)) = dim H0(X, Ω1

X ⊗ LX(−D)) = 0

by Serre duality. If one uses F to denote the closed subset

{(y, z) ∈ Y × Z | dim H1(X, L ′
(y,z))  1} ⊂ Y × Z,

where L ′
(y,z) = L ′|X×{y}×{z}, we see that F ∩ (Y × {z0}) = ∅. Since Y × Z → Z is proper, we

can find an open subset Z ′ of Z such that F ∩(Y ×Z ′) = ∅. By Step (3) above, it suffices to prove



28 WENHAN DAI

that L |X×Y ×Z′ is trivial. Replacing Z by Z ′, we can assume that for all points (y, z) ∈ Y × Z,
F ∩ (Y ×Z) = ∅, i.e., H1(X, L ′

(y,z)) = 0. Consequently, by Corollary 5.6 in the previous lecture,

dim H0(X, L ′
(y,z)) = χ(L ′

(y,z))
(5.6)= χ(L ′

(y0,z0)) = χ(LX(D))
= deg D + 1 − g = 1.

Consider the natural projection p23 : X ×Y ×Z → Y ×Z. By Corollary 5.7, we see that p23,∗L ′

is an invertible sheaf on Y × Z and

p23,∗L
′ ⊗ k(y, z) −→ H0(X, L ′

(y,z))

is an isomorphism for all points (y, z) of Y × Z.
Denote M = p23,∗L ′.10 We define an effective Cartier divisor D on X × Y × Z that corre-

sponds to the invertible sheaf L ′ ∈ Pic(X × Y × Z) as follows: for any open subset U of Y × Z

such that M |U is trivial, we choose a generating section σU ∈ Γ(U, M ). Since

Γ(U, M ) ∼= Γ(U, p23,∗L
′) ∼= Γ(X × U, L ′),

we obtain a nonzero section fU ∈ Γ(X × U, L ′). Let DU be the effective Weil divisor on X × U

associated to fU (i.e., the divisor of zeros of fU , see [Har13, II, §7]). Note that two different
generating sections of M |U in Γ(U, M ) are differed by an element in Γ(U, O∗

U ).
It follows that the collections {U, DU }U (where U runs through open subsets of Y × Z)

defines an effective Weil divisor D (by abuse of notation) that correspond to L ′ under the
natural isomorphism

CaCl(X) ∼= Pic(X)
(see [Har13, II, §6]).

A key property for D is in the following. For any closed point (y, z) ∈ Y × Z, D|X×{y}×{z}
is the effective Cartier divisor associated to a nonzero section of H0(X, L ′

(y,z)). The condition
dim H0(X, L ′

(y,z)) = 1 implies that the linear system for L ′
(y,z) consists of a single effective

divisor, i.e., there is a unique effective divisor E with L ′
(y,z) = LX(E). This fact is implicitly

but crucially used in the argument below.
Fix a closed point P of X such that P ∕= Pi for i = 1, . . . , g. Let S be the support of

D|{P }×Y ×Z which is a closed subset of {P} × Y × Z, and all the irreducible components of S

have codimension one in {P} × Y × Z.11

Since D|X×{y}×{z0} ∼= LX(D), we have

S ∩ {P} × Y × {z0} = ∅.

Hence the image of S under Y × Z → Z is a proper closed subset of Z. Thus,

S =


({P} × Y × Tj)

where Tj ⊂ Z are closed irreducible subvarieties of codimension 1. However, S ∩ ({P} × {y0} ×
Z) = ∅ for P ∕= Pi, i = 1, . . . , g. Denote D′ the Weil divisor on X × Y × Z associated to D. It
follows that

D′ =
g

i=1
ni{Pi} × Y × Z.

Restricting to X × {y0} × {z0}, we see each ni = 1. Then

L ′
(y,z)

∼= LX(D), ∀(y, z) ∈ Y × Z.

10A priori we have this, whereas the natural pushforward map p∗
23M → L ′ is NOT an isomorphism in general.

In fact, compared with the proof of Seesaw’s theorem (Corollary 11.1), we need to assume that L ′|X×{y}×{z}
is trivial for all points (y, z) ∈ Y × Z. But this is not the case in our discussion. As a consequence, L ′|X×U is
NOT trivial in general.

11In fact, this is Krull’s Hauptidealsatz in a general case.
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Consequently, L |X×{y}×{z} is trivial for all (y, z) ∈ Y × Z. Finally, we apply Step (1) to Y × Z

to see that L is trivial on X × Y × Z. This finishes the proof. □

6.3. Consequences of the main theorem.

Corollary 6.4. Let X, Y , and Z be the same as in Theorem 6.1. Then any line bundle on
X × Y × Z is isomorphic to

π∗
1L1 ⊗ π∗

2L2 ⊗ π∗
3L3,

where π1 : X × Y × Z → Y × Z, π2 : X × Y × Z → X × Z, π3 : X × Y × Z → X × Y are natural
projections; L1 ∈ Pic(Y × Z), L2 ∈ Pic(X × Z), and L3 ∈ Pic(X × Y ).

Proof. Using the same method as in the proof of Theorem 6.1. Define
σ1 : Y × Z → X × Y × Z, (y, z) → (x0, y, z),

and also σ2, σ3 in respective similar ways. And
πX : X × Y × Z → X, πY : X × Y × Z → Y, πZ : X × Y × Z → Z.

Again, define
σX : X → X × Y × Z, x → (x, y0, z0)

and also σY , σZ in respective similar ways. Define
L? = σ∗

?L , ? = 1, 2, 3, X, Y, Z,

and
M = L ⊗ π∗

1L −1
1 ⊗ π∗

2L −1
2 ⊗ π∗

3L −1
3 ⊗ π∗

XL −1
X ⊗ π∗

Y L −1
Y ⊗ π∗

ZL −1
Z

∈ Pic(X × Y × Z).
It is straightforward to verify that σ∗

i M is trivial for i = 1, 2, 3. By theorem of cube (Theorem
6.1), M is trivial and hence

L ∼= π∗
1L1 ⊗ π∗

2L2 ⊗ π∗
3L3 ⊗ π∗

XL −1
X ⊗ π∗

Y L −1
Y ⊗ π∗

ZL −1
Z ,

which is of the form in the corollary. □
Corollary 6.5. Let X be any variety and Y be an abelian variety. Let f, g, h : X → Y be
morphisms. Then for each L ∈ Pic(Y ), we have

(f + g + h)∗L ∼= (f + g)∗L ⊗ (f + h)∗L ⊗ (g + h)∗L ⊗ f∗L −1 ⊗ g∗L −1 ⊗ h∗L −1.

Proof. Let pi : Y × Y × Y → Y be the projection to the ith factor for i = 1, 2, 3. Also, denote
mij = pi + pj , and m = p1 + p2 + p3 : Y × Y × Y → Y . Define

M = m∗L ⊗ m∗
12L

−1 ⊗ m∗
23L

−1 ⊗ m∗
13L

−1 ⊗ p∗
1L ⊗ p∗

2L ⊗ p∗
3L

∈ Pic(Y × Y × Y ).
One can verify that M |{eY }×Y ×Y , M |Y ×{eY }×Y , and M |Y ×Y ×{eY } are all trivial. By Theorem
6.1, M itself is trivial. We pull M back along (f, g, h) : X → Y × Y × Y and get the desired
isomorphism. □
Corollary 6.6. If X is an abelian variety and n ∈ Z, then for all L ∈ Pic(X),

n∗
XL ∼= L

n2+n
2 ⊗ (−1)∗

XL
n2−n

2 .

Proof. In Corollary 6.5, take f = (n + 1)X , g = 1X , and h = (−1)X to deduce
(n + 1)∗

XL ⊗ n∗
XL −2 ⊗ (n − 1)∗

XL ∼= L ⊗ (−1)∗
XL ,

and hence
n∗

XL ⊗ (n − 1)∗
XL −1 ∼= L n ⊗ ((−1)∗

XL )n−1.

We can infer from it that
n∗

XL ∼= L
n2+n

2 ⊗ ((−1)∗
XL )

n2−n
2 .

□



30 WENHAN DAI

Corollary 6.7 (Theorem of square). For any L ∈ Pic(X) and closed points x, y ∈ X, where
X is an abelian variety, we have

T ∗
x+yL ⊗ L ∼= T ∗

x L ⊗ T ∗
y L .

Here Tx : X → X is the translation by x. In other words, the map
φL : X(k) → Pic(X), x → T ∗

x L ⊗ L −1

is a group homomorphism.

Proof. In Corollary 6.5, we take X = Y and

f : X → k
x−→ X, g : X → k

y−→ X, h = idX : X → X

to complete the proof. □

Remark 6.8. The map φL : X(k) → Pic(X) defined above has the following properties:
(1) φL1⊗L2 = φL1 +Pic(X) φL2 ;
(2) φT ∗

x L = φL .

Definition 6.9. Let X be an abelian variety as above. For L ∈ Pic(X), define
K(L ) := Ker(φL ) = {x ∈ X(k) | T ∗

x L ∼= L }.

Proposition 6.10. K(L ) is a Zariski closed subset of X (here we view X as an algebraic
variety over k).

Proof. Consider the line bundle M = m∗L ⊗ p∗
2L

−1 on X × X, where m is the addition map
and p2 is the second projection. By Seesaw’s theorem 11.1,

F := {x ∈ X | M |{x}×X is trivial}
is a closed subset of X. When x ∈ X(k), namely, x is a closed point, we have

M |{x}×X
∼= T ∗

x L ⊗ L −1,

then K(L ) is the set of closed points of F . Therefore, K(L ) is Zariski closed in the algebraic
variety X. □

6.4. Some further applications. The following theorem is the first explicit application of
theorem of cube and its corollaries.

Theorem 6.11. Let D be an effective divisor on an abelian variety X, and L ∼= LX(D) be the
associated invertible sheaf. Then the following are equivalent:

(1) The (complete) linear system |2D| has no base point and defines a finite morphism
X → PN with N = dim H0(X, L (2D)) − 1.

(2) L is ample on X.
(3) K(L ) is finite.
(4) The subgroup H = {x ∈ X(k) | T ∗

x (D) = D} of X(k) is finite. Here T ∗
x (D) = D is an

equality of divisors rather than divisor classes.

Proof. We first prove (1) ⇒ (2) ⇒ (3) ⇒ (4). After this, we setup a lemma in order to prove
(4) ⇒ (1).
(1) ⇒ (2) This follows from the fact that under a finite morphism of complete varieties, the

inverse image of an ample line bundle is again ample (cf. [Har13, III, Exer 5.7]).
(2) ⇒ (3) Suppose that K(L ) is a positive dimensional k-scheme12 and let Y be the connected

component of eX in K(L ). Then Y is an abelian variety of positive dimension. Since
Y ↩→ X is a closed immersion, LY := L |X is ample on Y . Since LY is stable under

12See [Har13, II, Prop 2.6] for the functor t : Vark → Schk from the category of varieties over k to schemes
over k.



ABELIAN VARIETIES 31

the translation Ty for any y ∈ Y (k), we have T ∗
y Ly

∼= Ly (now we view Ty as the
translation by y on Y rather than on X). Hence the line bundle

M = m∗LY ⊗ p∗
1L

−1
Y ⊗ p∗

2L
−1
Y

on Y × Y such that M |{y}×Y and M |Y ×{y} are trivial for all y ∈ Y (k). Here m is
addition and pi is the ith projection. By Seesaw’s theorem (Corollary 11.1), M is
trivial. We pull back M along the morphism (1Y , (−1)Y ) : Y → Y × Y and see that
LY ⊗ (−1)∗

Y LY is trivial on Y . Since LY is ample and (−1)Y is an automorphism
of Y , (−1)∗

Y LY is ample. Then LY ⊗ (−1)∗
Y LY is ample, i.e., OY itself is ample on

Y . But this is impossible when dim Y > 0. Then dim K(L ) = 0 and K(L ) is finite.
(3) ⇒ (4) This is obvious as H ⊂ K(L ).
(4) ⇒ (1) By the theorem of the square (Corollary 6.7), the (complete) linear system |2D|

contains the divisor T ∗
x (D) + T ∗

−x(D) for all x ∈ X(k). For any P ∈ X(k), we can
find x ∈ X(k) such that P ±x /∈ Supp(D) if and only if P /∈ Supp(T ∗

x (D)+T ∗
−x(D)). It

follows that |2D| is base-point-free and any basis of H0(X, LX(2D)) gives a morphism
φ : X → PN . Since φ is proper, it follows from Zariski Main Theorem that to prove
φ is finite, it suffices to prove that φ is quasi-finite. Suppose it is not the case for the
sake of contradiction. Then we can find an irreducible curve C on X such that φ(C)
is a single closed point of PN . It follows that for any (Weil) divisor D′ in |2D|, we
have either C ∩ D′ = ∅ or C ⊂ D′.13

We now introduce the following lemma.

Lemma 6.12. If C is an irreducible curve and E is a prime divisor on X such that C ∩ E = ∅,
then E is invariant under translations defined by x1 − x2 for all x1, x2 ∈ C(k).

Proof of Lemma. We use L to denote the invertible sheaf LX(E) associated to E. Since E∩C =
∅, L |C is trivial and hence deg(L |C) = 0. Let M be the pullback of L along the morphism
X × C ↩→ X × X

m−→ X. We infer that M |{x}×C
∼= (T ∗

x L )|C .
For any invertible sheaf N on X × C, since p1 : X × C → X is proper and flat, by Corollary

5.6 (2), we see that the function x → χ(N |{x}×C) is constant, i.e., χ(N |{x}×C) is independent
of x ∈ X(k). Replacing N by N n for all n ∈ Z>0, we get x −→ χ(N n|{x}×C) is independent
of x ∈ X(k) as a function in n. However, C is a curve and it is well-known that

n −→ χ(N n|{x}×C)

is a linear function on n with the linear coefficient deg(N |{x}×C). Therefore, the function

x → deg(N |{x}×C)

is constant. To summarize, we have deg(T ∗
x L )|C = 0 for all x ∈ X(k). Then E and Tx(C)

cannot intersect at only finitely many (but not empty) closed points. Thus, either E ∩Tx(C) = ∅
or Tx(C) ⊂ E. Fix y ∈ E(k) and x1, x2 ∈ C(k). Since y ∈ Ty−x2(C) ∩ E, we get Ty−x2(C) ⊂ E.
Therefore, y − x2 + x1 ∈ E. This proves the lemma. □

Resume on. Now we are to finish the proof of (4) ⇒ (1).
(4) ⇒ (1) Fix P ∈ C(k). By our previous discussion, there exists x ∈ X(k) such that P /∈

Supp(T ∗
x (D) + T ∗

−x(D)). Then C ∩ Supp(T ∗
x (D) + T ∗

−x(D)) = ∅. Let C ′ = Tx(C)
and then C ′ ∩ D = ∅. If D =


i niDi with ni > 0 and Di prime divisors, then

C ′ ∩ Di = ∅ follows. By the lemma, Di must be stable under translations by x1 − x2
for all x1, x2 ∈ C(k). This contradicts with the condition that H is finite. Hence φ is
finite.

This completes the proof of the theorem. □
13In fact, D′ corresponds to a nonzero section in Γ(X, LX(2D)) and hence D′ is the preimage of a hyperplane

under φ.
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Corollary 6.13. An abelian variety X is projective.

Proof. It suffice to find an effective Weil divisor D on X such that H = {x ∈ X(k) | T ∗
x (D) = D}

is finite. We first prove the following lemma.

Lemma 6.14. Let X be a noetherian, separable, normal, and integral scheme; let U ⊂ X be
a nonempty affine open subset and U ∕= X. Then every irreducible component of X\U is of
codimension 1 in X.

Proof of Lemma. By the noetherian condition, X\U has only finitely many irreducible compo-
nents. Let ξ be a generic point of X\U . We can find an affine open neighborhood V of ξ in X

such that ξ is the only generic point of X\U in V . It suffices to prove that dim OX,ξ = 1.
Suppose not, then V \(U ∩ V ) has codimension  2 in V . Recall the following result: if A is

an normal integral domain of dimension  1, then we have the following equality in Frac(A):

A =


p∈Spec(A),
ht(p)=1

Ap.

As a result, the restriction map Γ(V, OX) → Γ(V ∩ U, OX) is an isomorphism (here we use the
fact that U ∩ V is affine as X is separated). Therefore, that V ∩ U → V is an isomorphism and
V \V ∩ U = ∅ are both valid, which is a contradiction. Then dim OX,ξ = 1. □

Resume on. For the abelian variety X, we choose an affine open neighborhood U of eX and the
above lemma implies that the irreducible component D1, . . . , Dn of X\U are all of codimension
one. So D =

n
i=1 Di is a Weil divisor on X. Also,

H = {x ∈ X(k) | T ∗
x (D) = D}

is a closed subgroup of X(k).14 In particular, H is proper.
On the other hand, for each x ∈ H, U is stable under Tx. As ex ∈ U , we have x ∈ U and

then H ⊂ U . However, H itself is proper and U is affine. This forces H to be finite. □

Here comes the second application of the result.

Proposition 6.15. An abelian variety is a divisible group, and for each n  1, Xn = Ker(nX : X →
X) is finite over k.

Proof. By dimension theory, it suffices to prove that Xn is finite. We view Xn as a (reduced)
closed subscheme of X. Let L ∈ Pic(X) be an ample line bundle.15 Clearly (n∗

XL )|Xn is
trivial. On the other hand,

n∗
XL ∼= L

n(n+1)
2 ⊗ ((−1)∗

XL )
n(n−1)

2 .

Since (−1)∗
XL is also ample, the pullback n∗

XL is ample. In particular, so also is (n∗
XL )|Xn

and hence Xn is finite. □

It is known tat nX : X → X is a finite surjective homomorphism; in particular, nX is dom-
inated. Also, nX induces a field embedding n∗

X : k(X) → k(X). Denote deg(nX) the degree of
this field extension, which is called the degree of nX . One can similarly define the separable
degree and the inseparable degree.

By intersection theory, we have
(n∗

XD1, . . . , n∗
XDg) = deg(nX)(D1, . . . , Dg), g = dim X

14Alternatively, use the description

H = {x ∈ X(k) | T ∗
x (D) ⊂ D} =



d∈D(k)

(d − D).

15Indeed, one may be able to prove that nX : X → X is flat (cf. [Har13, III, Exer 10.9]).
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for arbitrary Cartier divisors D1, . . . , Dg on X. We take D to be an ample symmetric divisor on
X, i.e., (−1)∗

XD = D.16 Consequently, n∗
XD ∼ n2D as a linear equivalence. So deg(nX) = n2g.

When p | n we have seen before that the induced map on tangent spaces by nX , say
dnX : TX,eX

→ TX,eX
is 0. Recall that ωX = e∗

XΩ1
X can be identical with the cotangent space

of X at eX and π∗ωX
∼= Ω1

X , where π : X → k is the structure map. So the canonical map
n∗

X : Ω1
X → Ω1

X is the zero map, and so also is n∗
XΩ1

k(X)/k → Ω1
k(X)/k under the field extension

k → k(X) n∗
X−→ k(X). In particular, the composition of n∗

X with the canonical derivation d is
zero:

k(X) k(X) Ω1
k(X)/k.

n∗
X

0

d

Therefore,
n∗

X(k(X) ⊂ Ker(d) = k(X)p ⊂ k(X),
for which the proof of the fact Ker(d) = k(X)p is leave as an exercise.
Fact. k(X)/k(X)p is a purely inseparable extension of degree pg. (We use the fact that k is
algebraically closed and trdegk k(X) = g.)17

Proposition 6.16. Keep the notations as above. We obtain the following.
(1) deg(nX) = n2g.
(2) nX is separable if and only if p ∤ n. In fact, nX is separable if and only if it is étale as

a morphism.
(3) If p ∤ n, then Xn(k) ∼= (Z/nZ)2g.
(4) There exists 0  i  g such that for each m  1, Xpm(k) ∼= (Z/pmZ)i.

7. Dividing varieties by finite groups

Definition 7.1 (Étale morphism). Let f : X → Y be a morphism of algebraic varieties over an
algebraically closed field k. Then f is called étale if

(1) f is flat;
(2) f is unramified, i.e., for each closed point x ∈ X, let y = f(x) ∈ Y and mx (resp. my) be

the maximal ideal of OX,x (resp. OY,y), then f∗(my)OX,x = mx for f∗ : OY,y → OX,x.
(In general, we also need to assume that k(y) → k(x) is separable.

Or equivalently (cf. [Har13, III, Exercise 10.4]),
(2’) for any x ∈ X, let y = f(x) ∈ Y and let OX,x (resp. OY,y) be the completion of OX,x

(resp. OY,y). Then f∗ insudes an isomorphism f∗ : OY,y → OX,x.

7.1. The quotient along an étale morphism.

Theorem 7.2. Let X be an algebraic variety and G be a finite group of automorphisms of X.
Suppose that for any x ∈ X, the orbit Gx of x is contained in an affine open subset of X. Then
there is a pair (Y, π) where Y is a variety and π : X → Y is a morphism with the following
conditions.

(1) As a topological space, (Y, π) is the quotient of X under the G-action.
(2) Denote π∗(OX)G the subsheaf of G-invariants of π∗OX for the action of G on π∗OX

deduced from (1), the natural homomorphism OY → π∗(OX)G is an isomorphism.

16This is possible because one may choose an ample divisor D′ on X and then let D = D′ + (−1)X∗D′.
17On separating the transcendental basis: let K/k be a finitely generated field extension and k is perfect;

then there exists a transcendental basis x1, . . . , xm of K/k such that K/k(x1, . . . , xm) is an algebraic separable
extension.



34 WENHAN DAI

Moreover, the pair is uniquely determined (up to isomorphisms) by (1) and (2). The morphism
π is finite, surjective, and separable. If X is affine then so also is Y . If further G acts freely on
X, i.e., gx ∕= x for all x ∈ X for any g ∈ G\{e}, π shall be étale.

Remark 7.3. (1) We essentially use the language of varieties instead of schemes in this
lecture.

(2) G acts on X from the left and acts on OX (the sheaf of regular functions on X) via the
formula

(g(f))(x) = f(g−1x), ∀f ∈ OX(U), x ∈ U, g ∈ G,

where U ⊂ X is an open subset. This is also viewed as a left action.
(3) When X is quasi-projective, any finitely many points of X is contained in an affine open

subset of X, and hence the assumption in the theorem is satisfied. To be more explicit,
by definition, we have

X
j

↩→ X
f

↩→ PN ,

where j is an open immersion and f is a closed immersion. We know that, by the prime
avoidance, if I is an ideal and p1, . . . , pr are prime ideals such that I ∕⊂ pi for each
i, then I ∕⊂


pi. Thus there is a homogeneous element f ∈ k[x0, . . . , xN ] such that

X\X ⊂ V+(f) and xi /∈ V+(f) for all i; D+(f) ∩ X = D+(f) ∩ X is affine and does not
contain the points x1, . . . , xr.

Proof of Theorem 7.2. Note that (1) determines the topology on Y and (2) determines the
structure sheaf on Y , so the uniqueness follows. We are to show that if one takes Y = X/G

as a topological space18 then the pair (Y, (π∗OX)G) is an algebraic variety. First we reduce to
the affine case. For any closed point x of X and an affine open neighborhood U of x in X, the
intersection


g∈U gU is an affine open neighborhood of x, and is G-stable. So we can find an

affine open G-stable subset U containing x. This renders that pi−1(π(U)) = U where π : X → Y

is the quotient map and π(U) is open in Y .
So it is harmless to assume that X = Spec A affine. Since A is a finitely generated k-algebra,

we let {x1, . . . , xn} be a set of generators of A over k. Let v = |G| with G = {g1, . . . , gv}. For
each f ∈ A and 1  k  v we use σk(f) to denote the elementary symmetric function of degree
k in {g1(f), . . . , gv(f)}. Let B′ be the k-subalgebra of A generated by {σk(xi) | i = 1, . . . , n k =
1, . . . , v} and B = AG. Then we have B′ ⊂ B ⊂ A. For each 1  i  n, the xi satisfies the
monic equation over B′, say

xv − σ1(xi)xv−1 + · · · + (−1)vσv(xi) = 0.

Hence xi is integral over B′ and then A is integral over B′. Again, since A is a finitely generated
k-algebra, it is finite over B′. As B′ is noetherian, B is finite over B′ and so also is A over B.
In particular, B is a finitely generated k-algebra.

Let Y = Spec B and let π : X → Y be the morphism corresponding to the inclusion B ↩→ A.
Then Y is an algebraic variety and π is finite surjective. Let K (resp. L) be the quotient field
of B (resp. A). The G-action on A extends to L in the obvious way. Clearly, we have K ⊂ LG.
On the other hand, if a/b ∈ LG, one can verify that

a ·


g∈G\{e}

g(b) ∈ B,


g∈G

g(b) ∈ B.

Thus a/b ∈ K, and then actually K = LG; so L/K is a Galois extension. This shows that π is
separable.

Since π is finite, π∗OX is a coherent sheaf on Y . Note that the G-invariant part is

(π∗OX)G = Ker(π∗OX
(g1,...,gv)−→

v

i=1
π∗OX),

18Strictly, it should be written as Y = G\X.
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which is coherent on Y . Since the natural morphism OY → (π∗OX)G induces an isomorphism
of global sections, and Y is itself affine, we see

OY
∼= (π∗OX)G.

Now we check both the set-theoretical and the topological properties. Let x1, x2 be two closed
points of X such that Gx1 ∩ Gx2 = ∅. By the Chinese remainder theorem, there is f ∈ A such
that f(gx1) = 1 and f(gx2) = 0 for each g ∈ G. Let

φ =


g∈G

g(f) ∈ AG = B,

and φ(π(x1)) = 1, φ(π(x2)) = 0. Then π(x1) ∕= π(x2). Thus, the equality Y = X\G holds
set-theoretically. Again, note that π : X → Y is continuous and finite, and hence a closed map;
we see that Y ≈ X/G as topological spaces.

We still need to check that when G acts on X freely, the morphism π is étale. Fix a closed
point x ∈ X and let y = π(x). Let m ∈ Spec A (resp. n ∈ Spec B) be the maximal ideal that
corresponds to the point x (resp. y). Let A and B be the n-adic completions of A and B,
respectively. Then

B = OY,y, A ∼= B ⊗B A

as A is finite over B. Also note that elements in the form gm for g ∈ G are exactly all the prime
ideals of A lying over n ∈ Spec B. (In fact, these gm’s are all distinct as the G-action is free.)
Using the Chinese remainder theorem, we have

B ⊗B A ∼= A
∼=−→



g∈G

OX,gx.

Since n is stable under G, the G-action on A induces a G-action on A. Under the isomorphism
B ⊗B A ∼= A, this action is given by g(b̂⊗a) = b̂⊗g(a). The fact that B = AG can be expressed
as the following exact sequence of B-modules:

0 B A


g∈G A

a (ga − a)g∈G.

Since B is flat over B, we have the exactness of

0 B B ⊗B A


g∈G
B ⊗B A.

Therefore, B = AG. On the other hand, for any g ∈ G, the action of g on A induces an
isomorphism

OX,x

∼=−→ OX,gx.

So we can identify the products of them over g ∈ G:


g∈G

OX,x

∼=−→


g∈G

OX,gx.

Again, the freeness condition is essential to infer that





g∈G

OX,x




G

= OX,x;

note that the right hand side is viewed as the diagonal elements in the product. Thus, we finally
attain the isomorphism

OY,y = B
∼=−→ OX,x.

□
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Notation 7.4. We call the pair (Y, π) the quotient of X by G and it is denoted by X/G (again,
this is strictly G\X).

7.2. Coherent sheaves under group actions. Now the goal is to study and understand how
(coherent) sheaves behave under the group actions.

Let G, X and (Y, π) be as before and F be a coherent sheaf on Y . Fix a g ∈ G. From the
following commutative diagram

X X

Y

g

π
π

we obtain an OX -linear isomorphism19

φg : g∗(π∗F )
∼=−→ π∗F .

The isomorphism {φg | g ∈ G} satisfy the cocycle condition20

φgh = φh ◦ h∗(φg) : (gh)∗(π∗F ) → π∗F .

Definition 7.5. Let g be a coherent sheaf on X. Then g is called a coherent G-sheaf on
X if for each g ∈ G, we have an isomorphism of OX -modules φg : g∗g → g satisfying the above
cocycle conditions.

Remark 7.6. To understand this sheaf, let us see what happens in the affine case. Let X =
Spec A, Y = Spec B, and F a sheaf of OY -module that corresponds to a B-module M . Then

π∗F = (M ⊗B A)∼.

For g ∈ G, we use g∗ : A → A to denote the action of g on Γ(X, OX). Then we have a map

g∗ : M ⊗B A → M ⊗B A, m ⊗ a → m ⊗ g∗(a).

Unfortunately, this is NOT A-linear. More precisely, we have

g∗((m ⊗ a)b) = g∗(m ⊗ a) · g∗(b).

Then g∗ induces an A-linear isomorphism
φg : (M ⊗B A) ⊗A,g∗ A M ⊗B A

(m ⊗ a) ⊗ b g ∗ (m ⊗ a) · b.

Note that the left hand side gives the A-module structure.

Definition 7.7. For a finitely generated A-module N , we say that N is a (G, A)-module if we
have an additive map ψg : N → N and ψg(an) = g∗(a)ψg(n) for all g ∈ G, a ∈ A, and n ∈ N .

The condition in the definition makes ψg to be B-linear. And it satisfies the cocycle condition
of φg, read as ψhg = ψh ◦ ψg.

Proposition 7.8. Let G acts freely on X and Y = X/G. Then the functor F → π∗F is
an equivalence between the category of coherent OY -modules and that of coherent G-sheaves on
X, whose inverse in given by g → π∗g

G. The locally free sheaves correspond to the locally free
sheaves of the same rank.

Proof. We can reduce to the affine case. Let X = Spec A and Y = Spec B. We need to show
that the functors

19This can be equivalently translated to φg : (g−1)∗(π∗F ) → π∗F if one prefers to consider the left action.
In practice, to make it into a left action, g should be replaced by g−1. Possibly it is better to understand this
notation via vector bundles.

20Similarly, if we use the left action, this becomes φgh = φh ◦ (g−1)∗(φh) : ((gh)−1)∗(π∗F ) → π∗F .
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ModB Mod(G,A)

M M ⊗B A

NG N

are truly inverses of each other. In other words, we are to prove that, for each B-module M ,

S(M) : M → (M ⊗B A)G, m → m ⊗ I,

and for each (G, A)-module N ,

T (N) : NG ⊗B A → N, n ⊗ a → an

are isomorphisms. Since the composite

M ⊗B A (M ⊗B A)G ⊗B A M ⊗B A
S(M)⊗BA T (M⊗BA)

is the identity map and B → A is faithfully flat, T (M ⊗B A) is an isomorphism and hence S(M)
is an isomorphism. So it suffices to show that T (N) is an isomorphism for all (G, A)-module N .
Regard T (N) : NG⊗B A → N as a homomorphism of B-modules. Then T (N) is an isomorphism
if and only if for all maximal ideal n of B, the localization T (N)n : (NG ⊗B A)⊗B

Bn → N ⊗B
B

is an isomorphism.
In the following discussion we write B = Bn, A = A ⊗B

B, N = N ⊗B
B for simplicity. As

we have seen before, 

g∈G

OX,gx
∼= A ∼=



g∈G

B

and the G-action on A is simply a permutation of the product factors.
Since N is a (G, A)-module, N = N ⊗A (A⊗B

B) is a (G, A)-module. Under the isomorphism
A ∼=


g∈G

B, we see that N ∼=


g∈G
N1 for some B-module N1 and G acts on N via the

permutation of factors. As
NG = Ker(N ψg−1−→



g∈G

N),

and B → B is flat, we have NG ⊗B
B ∼= (N ⊗B

B)G. Under the above notations, the morphism
T (N) becomes

(N ⊗B A)G ⊗B
B (N ⊗B

B)G ⊗B A NG ⊗B A

N N

T (N)

∼= ∼=

=

Here the right vertical map is clearly an isomorphism, hence T (N) is an isomorphism. This
completes the proof. □

In the following discussion, we assume that X is complete and G acts freely on X. Denote
G := HomGrp(G, k∗).

Proposition 7.9. For all α ∈ G, define

Lα = {a ∈ π∗OX | g(a) = α(g) · a, ∀g ∈ G}.

Then Lα is an invertible sheaf on Y and the multiplication in π∗OX induces an isomorphism21

Lα ⊗ Lβ
∼−→ Lα+β .

21We use Mumford’s notation. However, it is better to replace Lα+β by Lαβ .
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The association α → Lα defines an isomorphism
G ∼−→ Ker(Pic Y → Pic X).

Proof. It follows from the previous Proposition 7.8 that

Ker(Pic Y
π∗

−→ Pic X) ←→ {coherent G − sheaf structure on OX}.

Given a G-action on the coherent sheaf OX ,22 for any g ∈ G and Γ(X, OX) ∼= k say,

g : Γ(X, OX) → Γ(X, OX)

is determined by g(1) ∈ k∗. We define α(g) := g(1)−1. Then α : G → k∗ is a group homomor-
phism. Conversely, given α ∈ G → k∗, we define an action of G on OX via g(f) = α−1(g)·f ◦g−1.
Then g(af) = g(a) · g(f) for all g ∈ G, f ∈ OX (OX as a coherent sheaf), and a ∈ OX (OX as
the structure sheaf) such that g(a) = a ◦ g−1. This makes OX a coherent G-sheaf.

In this way we establish an isomorphism

Ker(Pic Y
π∗

−→ Pic X) ∼−→ G.

Fix α ∈ G, we use σ to denote the G-action on OX corresponding to α. This comes from

σ(g)(f) = α−1(g) · g(f)

where g(f) = f ◦ g−1 is the action of G on the structure sheaf OX . Then

Lα = (π∗OX)σ = {a ∈ π∗OX | g(a) = α(g) · a}.

For two α, β ∈ G, we have a natural map Lα ⊗ Lβ → Lα+β . For U ⊂ Y an open subset
such that Lα|U is trivial. We can find a generating section f ∈ Γ(U, Lα) ⊂ Γ(π−1(U), OX),
which vanishes nowhere on π−1(U). Therefore, f−1 is a well-defined nowhere-vanishing section
on Γ(π−1(U), OX), and for any g ∈ Γ(U, Lα+β), f−1g ∈ Γ(U, Lβ). Thus, the map is an
isomorphism: Lα ⊗ Lβ

∼= Lα+β . □

Remark 7.10. If G is commutative and char(k) ∤ |G|, we have the decomposition

π∗OX
∼=



α∈G
Lα.

Theorem 7.11. Let X be an abelian variety. Then there is a one-to-one correspondence between
the following two sets of objects:

(1) finite subgroups K ⊂ X;23

(2) separable isogenies, i.e., finite separable (surjective) homomorphisms f : X → Y , where
two isogenies f1 : X → Y1 and f2 : X → Y2 are considered equal if there is an isomor-
phism h : Y1 → Y2 such that f2 = h2 ◦ f1.

Explicitly, these maps are given by K → (π : X → X/K) and (f : X → Y ) → K = Ker(f).

Sketchy Proof. Given a finite subgroup K ⊂ X(k), K acts on X via translation, and this is a
free action. Let (X/K, π) be the quotient. The multiplication map m : X × X → X induces a
morphism m′ as

X × X X

X/K × X/K X/K

(X × X)/(K × K)

m

π×π π

m′

22Caution: in case this coincides with the G-action on the structure sheaf OX but in general they differ from
each other.

23Strictly, finite subgroups K ⊂ X(k).
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Moreover, m′ makes X/K an abelian variety and π : X → X/K is a separable isogeny. Con-
versely, given a separable isogeny f : X → Y with K = Ker(f), the condition that f is separable
implies #K(k) = deg(f). Let g : X → X/K be the natural morphism. Then f factors through
g, i.e.,

X

X/K Y

fg

h

where h is bijective on points. Note that when f is separable, so also is h. So that

deg(h) · deg(g) = deg(f).

However, on the other hand, deg(g) = deg(f) = #K(k). This forces deg(h) to be 1, namely, h

is birational. Finally, via the Zariski Main Theorem, h is an isomorphism (cf. [Har13, III, Cor
11.4]). □

Corollary 7.12. A separable isogeny f : X → Y is an étale morphism.

Corollary 7.13. Let f : X → Y be an isogeny of order prime to p = char(k). Then the kernel
of f and the kernel of f∗ : Pic(Y ) → Pic(X) are dual as finite abelian groups.

For this, by the previous Theorem 7.11, f : X → Y can be identified with f : X → X/K with
#K prime to char(k). Then one can apply Proposition 7.9 to the morphism f : X → X/K.

8. The dual abelian variety in characteristic 0

Goal. This section is to construct dual abelian variety over k with char(k) = 0. Being out of
tune, the characteristic assumption will be used at the end of our discussion.

Recall that in the theorem of the square (Corollary 6.7) we have defined the map

φL : X(k) → Pic(X), x → T ∗
x L ⊗ L −1.

Definition 8.1. The principal Picard group is defined as the subgroup

Pic0(X) := {L ∈ Pic(X) | φL ≡ 0}.

in Pic(X).

One can check that the map φL takes values in Pic0(X). Moreover, we get an exact sequence
of abelian groups

finitely generated free Z-module

0 Pic0(X) Pic(X) Hom(X(k), Pic0(X))

L φL .

In a natural sense one may want to endow Pic0(X) with a structure of abelian varieties; after
this, it will be shown that Pic0(X) is isomorphic to another abelian variety that is called the
dual of X and denoted by X.

8.1. General observations on Pic0(X).
(1) By definition, L ∈ Pic0(X) if and only if T ∗

x L ∼= L for all x ∈ X(k). This is also
equivalent to say on X × X that

m∗L ∼= p∗
1L ⊗ p∗

2L .

Here m : X × X → X is the group operation.
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Proof. By Seesaw (Corollary 11.1), the sheaf

M := m∗L ⊗ p∗
1L

−1 ⊗ p∗
2L

−1

is trivial on X × X. Equivalently, for all x ∈ X(k), M |X×{x} ∼= T ∗
x L ⊗ L −1 is trivial and

M |{eX }×X is trivial (the latter is always true). Therefore, it is to say L ∈ Pic0(X). □
(2) If L ∈ Pic0(X), then for all schemes S and all morphisms f, g : S → X, we have

(f + g)∗L ∼= f∗L ⊗ g∗L .

Proof. Pull back the isomorphism m∗L ∼= p∗
1L ⊗ p∗

2L along the morphism (f, g) : S →
X × X. □

(3) If L ∈ Pic0(X) then n∗
XL ∼= L ⊗n.

Proof. Use (2) and the induction on n. □
(4) For any L ∈ Pic(X), we have

n∗
XL ∼= L n2

⊗ L1

with L1 ∈ Pic0(X).
Proof. Recall that

n∗
XL ∼= L

n2+n
2 ⊗ ((−1)∗

XL )
n2−n

2 ∼= L n2
⊗ (L ⊗ (−1)∗

XL −1)− n2−n
2 .

So it suffices to show that L ⊗ (−1)∗
XL −1 ∈ Pic0(X). For any x ∈ X(k),

T ∗
x (L ⊗ (−1)∗

XL −1) ⊗ (L ⊗ (−1)∗
XL −1)−1

∼= T ∗
x L ⊗ (−1)∗

XT ∗
−xL −1 ⊗ L −1 ⊗ (−1)∗

XL

∼= T ∗
x L ⊗ L −1 ⊗ (−1)∗

X(T ∗
x L −1 ⊗ L )

∼= T ∗
x L ⊗ L −1 ⊗ (T ∗

x L −1 ⊗ L )−1 by (3)
∼= T ∗

x L ⊗ T ∗
−xL ⊗ L −2.

Hence it is trivial by the theorem of the square (Corollary 6.7). □
(5) If L ∈ Pic(X) has finite order, then L ∈ Pic0(X).

Proof. Let n be the order of L , then by definition we have φL n(x) ≡ 0 for each x ∈ X(k).
But also

φL n(x) = φL (x) + · · · + φL (x)  
n terms

= φL (nx),

and X(k) is a divisible group. This forces φL (x) ≡ 0 and L ∈ Pic0(X). □
(6) For any variety S over k and any line bundle L on X × S, if we denote Ls := L |X×{s}

for s ∈ S(k), then for all s0, s1 ∈ S(k),

Ls1 ⊗ L −1
s0

∈ Pic0(X).

Proof. Since S is irreducible, the question is local on S. So we can assume that L |{eX }×S

is trivial. Fix s0 ∈ S(k). Replacing L by L ⊗ p∗
1L

−1
s0

, we can assume that Ls0 is trivial.
We need to show that Ls1 ∈ Pic0(X) for each s1 ∈ S(k). By (1), it further boils down to
show that

m∗Ls1 ⊗ p∗
1L

−1
s1

⊗ p∗
2L

−1
s1

is trivial on X × X. We view this as a family of line bundles on X × X × S. More precisely,
define

M := m∗L ⊗ p∗
13L

−1 ⊗ p∗
23L

−1,

where p13, p23 are the natural projections and

m : X × X × S → X × S, (x, y, s) → (x +X y, s).
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Then for each s ∈ S(k),

M |X×X×{s} ∼= m∗Ls ⊗ p∗
1L

−1
s ⊗ p∗

2L
−1
s .

In particular, M |X×X×{s0} is trivial.
On the other hand, since L |{eX }×S is trivial, we have M |{eX }×X×S and M |X×{eX }×S

both being trivial. By the theorem of the cube (Theorem 6.1), M is trivial. Thus,
M |X×X×{s1} ∼= m∗Ls1 ⊗ p∗

1L
−1
s1

⊗ p∗
2L

−1
s1

is trivial and Ls1 ∈ Pic0(X). □
(7) If L ∈ Pic0(X) and L is not trivial, then Hi(X, L ) = 0 for all i  0.24

Proof. Suppose H0(X, L ) ∕= 0, then we can find an effective Weil devisor D such that
L ∼= OX(D). As L ∈ Pic0(X), by (3) it turns out that (−1)∗

XL ∼= L −1. Since (−1)∗
XL ∼=

OX((−1)∗
XD), we get

OX
∼= L ⊗ L −1 ∼= OX(D + (−1)∗

XD).

On the other hand, recall that

Hi(X, OX) =


k, i = 0;
0, otherwise.

Thus, the condition H0(X, OX) = k implies D + (−1)∗
XD = 0. (This is an equality

of divisors rather than divisor classes.) Since D is effective, we have D = 0 and then
L = OX(D) = OX . This contradicts to the assumption that L is not trivial. Then
H0(X, L ) = 0.

Assume the claim is not true and there exists k > 0 such that Hk(X, L ) ∕= 0. We may
choose k to be the smallest index. Then the morphisms

X X × X X

x (x, eX)

s1

idX

m

which induces morphisms of cohomology groups:

Hk(X, L ) Hk(X, ×X, m∗L ) Hk(X, L )s∗
1 m∗

id

Since L ∈ Pic0(X), by (1), m∗L ∼= p∗
1L ⊗p∗

2L . Applying the Künneth formula to X ×X,
we obtain

Hk(X × X, m∗L ) ∼= Hk(X × X, p∗
1L ⊗ p∗

2L ) ∼=


i+j=k

Hi(X, L ) ⊗ Hj(X, L ).

Since Hi(X, L ) = 0 for all 0  i < k, Hk(X × X, m∗L ) = 0 and therefore Hk(X, L ) = 0.
This leads to a contradiction. □

8.2. The key theorem.

Theorem 8.2. Let L be an ample line bundle on X, and M ∈ Pic0(X). Then there exists
x ∈ X(k) such that

M ∼= T ∗
x L ⊗ L −1.

In other words, the map
φL : X(k) −→ Pic0(X)

is surjective.

24We will see later that
dimk Hi(X, OX) =

g

i


, g = dimk X.
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Proof. We consider the following line bundle on X × X:

K = m∗L ⊗ p∗
1L

−1 ⊗ p∗
2(L −1 ⊗ M −1).

It enjoys the property that

K|{x}×X
∼= T ∗

x L ⊗ L −1 ⊗ M −1, K|X×{x} ∼= T ∗
x L ⊗ L −1.

For the two projections p1, p2 : X × X → X, we have the Leray spectral sequences

(1) Ep,q
2 := Hp(X, Rqp1,∗K) ⇒ Hp+q(X × X, K),

and

(2) Ep,q
2 := Hp(X, Rqp2,∗K) ⇒ Hp+q(X × X, K).

May assume that the statement in the theorem does not hold, i.e., T ∗
x L ⊗ L −1 ∕∼= M for all

x ∈ X(k). Then K|{x}×X is a nonzero element in Pic0(X). By (7), considering an arbitrary
fiber {x} × X of p1,

Hq({x} × X, K|{x}×X) = 0, q  0.

By Corollary 5.7 (2), Rqp1,∗K = 0 while restricting to X\K(L ). Therefore Hn(X × X, K) = 0
by spectral sequence (1) for all n  0.

On the other hand, K|X×{x} ∼= T ∗
x L ⊗ L −1 is a nonzero element in Pic0(X) if and only if

x /∈ K(L ), which is a finite closed subgroup of X(k). For x ∈ X(k)\K(L ), by (7) again, we
have

Hq(X × {x}, K|X×{x}) = 0, q  0.

Similarly, Rqp2,∗K = 0 while restricting to X\K(L ). Hence

Supp(Rqp2,∗K) ⊂ K(L ).

For a coherent sheaf F on X with Supp(F ) ⊂ K(L ), we have

Hp(X, F ) = 0, p  1.25

By the spectral sequence (2), we have for all n that

H0(X, Rnp2,∗K) =


x∈K(L )

(Rnp2,∗K)x
∼= Hn(X × X, K).

But Hn(X × X, K) = 0 for all n and hence (Rnp2,∗K)x = 0. This shows that Rnp2,∗K vanishes
for all n. By Corollary 5.11 before, it turns out that

Hn(X × {x}, KX×{x}) = 0, n  0.

In particular, we take n = 0 and x = eX to get

H0(X, OX) = 0.

But this is a contradiction. □

25There are several ways to see this. For example, if we use U to denote the open subvariety X\K(L ), then
F |U = 0 and so for all p  0, Hp

K(L )(X, F ) ∼= H0(X, F ). Then use excision to reduce to the case for X affine.
Then Hp

K(L )(X, F ) ∼= H0(X, F ) = 0 for all p  1.
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8.3. Characterizing the dual abelian variety. The key theorem implies that as an abstract
group, Pic0(X) is isomorphic to X(k)/K(L ), and we can endow Pic0(X) with an abelian variety
structure, and is called the dual abelian variety of X, denoted by X. But this definition depends
on the choice of L . How to characterize X? The following answer can be interpreted as the
definition of the dual abelian variety in characteristic 0.

Theorem 8.3. The dual abelian variety X of X is an abelian variety X with an isomorphism
of groups X(k) ∼= Pic0(X) satisfying the following conditions.

(1) There is a line bundle P on X × X called the Poincaré bundle, such that for any
α ∈ X(k), the line bundle P |X×{α} represents the line bundle in Pic0(X) given by α

under the above isomorphism X(k) ∼= Pic0(X); moreover, P |{eX }×X is trivial.26

(2) For every normal variety S and a line bundle K on X × S, suppose that
(i) Ks := K|X×{s} ∈ Pic0(X) for one s ∈ S – and hence for all by (6);
(ii) K|{eX }×S is trivial.
Then the map of sets f : S → X satisfying Ks

∼= Pf(s) is a morphism of varieties and
K ∼= (idX × f)∗P .

Proof. The above two properties imply that ( X, P ), if it exists, is unique up to canonical
isomorphism. Fix an ample line bundle on X. We define X to be the quotient X/K(L )
and let π : X → X be the natural morphism. We apply property (2) to the line bundle
K = m∗L ⊗ p∗

1L
−1 ⊗ p∗

2L
−1 on X × X, we see that the Poincaré bundle P on X × X satisfies

the property that (idX ×π)∗P ∼= K on X ×X. Hence it suffices to define an {eX}×K(L )-action
on K hat is compatible with its action on X × X. For simplicity, we use T0,a to denote the
translation

T0,a : X × X → X × X, (x, y) → (x, y + a).
By a direct computation we obtain

T ∗
0,aK ∼= T ∗

0,am∗L ⊗ T ∗
0,ap∗

1L
−1 ⊗ T ∗

0,ap∗
2L

−1

∼= m∗T ∗
a L ⊗ p∗

1L
−1 ⊗ p∗

2T ∗
a L −1

∼= m∗L ⊗ p∗
1L

−1 ⊗ p∗
2L

−1 = K.

This induces an isomorphism φa : T ∗
0,aK

∼−→ K, once the isomorphism T ∗
a L ∼= L is fixed. But

we still need to choose φa’s carefully to make the qualities φa+b = φa ◦ T ∗
0,a(φb) hold for all

a, b ∈ K(L ).
Since X is complete, if L1, L2 are two line bundles on X × X and φ, ψ : L1 → L2 are two

isomorphisms, then φ and ψ are differed by a scalar in k×. To remedy this, we must kill the
ambiguity of this scalar. Consider the restriction K|{eX }×X . If we denote L −1(0) for e∗

X(L −1)
on Spec k, then K|{eX }×X

∼= p∗
1(L −1(0)).

Fix such an isomorphism, we get a canonical isomorphism
ψa : T ∗

a (K|{eX }×X) → K|{eX }×X .

We require that φa|{eX }×X = ψa for all a ∈ K(L ). Then we get a well-defined {eX}×X-action
on K and hence obtain a line bundle P on X × X with (idX × π)∗P ∼= K.

Let us verify the pair (X × X, P ) satisfies (1) and (2). For α ∈ X, α = π(x) for some
x ∈ X(k). Then

Pα = P |X×{α} ∼= π∗(P )|X×{x} ∼= T ∗
x L ⊗ L −1 = φL (x) ∈ Pic0(X).

Since K|{eX }×X
∼= p∗

1(L −1(0)), by our construction above, P |{eX }×X is trivial. This proves (1).
As for (2), we consider the line bundle E = p∗

12(K) ⊗ p∗
13(P −1) on X × S × X. Thus,

E|X×{s,α} ∼= K|X×{s} × P −1|X×{α}.

26Note that by Seesaw’s theorem, these properties characterize P .
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By Seesaw, the set
Γ = {(s, α) | E|X×{α,s} is trivial}

is Zariski closed in S × X. We see Γ(k) is the set-theoretic graph of the map f : S(k) → X(k)
such that Ks

∼= Pf(s). Then the first projection Γ → S is bijective on the closed points.
Now we use the assumption that char(k) = 0, which infers that Γ → S is birational. Since

Γ → X × S → S

is proper, quasi-finite, and birational, and S is normal, we see Γ → S is an isomorphism. Γ
induces a morphism of algebraic varieties f : S → X and by Seesaw again, (idX × f)∗(P ) ∼= K

as desired. □

Remark 8.4. (1) For any L ∈ Pic(X) the map φL : X(k) → X(k) is a morphism of vari-
eties. To see this, apply property (2) in Theorem 8.3 to the line bundle

K = m∗L ⊗ p∗
1L

−1 ⊗ p∗
2L

−1

on X × X.
(2) Let f : X → Y be a homomorphism of abelian varieties. The map f∗ : Pic(Y ) → Pic(X)

maps Pic0(Y ) to Pic0(X) (check this), and induces a map
f(k) : Y (k) → X(k).

I claim that this is a morphism. In fact, if we use Q to denote the Poincaré bundle on
Y × Y and let Q′ = (f × idY )∗Q ∈ Pic(X × Y ), then

Q′|
X×{y}

∼= f∗(Q|
Y ×{y}) ∈ Pic0(X)

for all y ∈ Y (k), and Q′|{eX }×Y
∼= Q|{eY }×Y is trivial. Then there is a morphism

f : Y → X such that Q′ ∼= (idX × f)∗P , where P is the Poincaré bundle on X × X. The
morphism of f on k-points is just the f(k) defined above.

(3) If f : X → Y is an isogeny, so is f : Y → X; and there exists a canonical duality of
abelian groups between Ker(f) and Ker( f). In fact, by Proposition 7.9 and Corollary
7.13, we have a canonical duality between Ker(f) and Ker(f∗ : Pic0(Y ) → Pic0(X)).
Since Ker(f∗ : Pic(Y ) → Pic(X)) is finite, any L in Ker(f∗) is of finite order. Thus,
L ∈ Pic0(Y ) and Ker(f∗) = (Ker( f))(k). By the dimension argument, we see f is also
an isogeny.
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Part 3. Algebraic theory via schemes

9. Basic theory of group schemes

9.1. Categorical perspective of schemes. Fix an algebraically closed field k. We use Schk

to denote the category of schemes of finite type over k. For two objects X, S in Schk, we define
an S-valued point of X to be a morphism S → X in Schk. Denote

X(S) := Homk(S, X).

The association S → X(S) defines a contravariant functor X : Schop
k → Sets from the opposite

category of Schk. When X varies, we get a functor Schk → Fun(Schop
k , Sets), which is fully

faithful. Granting this, we can view Schk as a full subcategory of Fun(Schop
k , Sets). Similarly, if

we use Algk to denote the category of finitely generated k-algebras, then any X ∈ Schk defines
a covariant functor

X : Algk → Sets, X(R) := X(Spec R) = Homk(Spec R, X).

The functor
Schk → Fun(Algk, Sets), X → X

is fully faithful and we can view Schk as a full subcategory of Fun(Algk, Sets).

Definition 9.1 (Group scheme). A group scheme is a scheme G of finite type over k together
with

• a multiplication morphism m : G × G → G,
• an identity point e : Spec k → G, and
• an inverse morphism i : G → G,

such that the following axioms hold.
(1) (Associativity) The diagram is commutative:

G × G × G G × G

G × G G

m×1G

1G×m m

m

(2) (Axiom of the identity section) The diagram is commutative:

G × Spec k G × G

G G

G × Spec k G × G

∼=

idG×e

m

∼=

idG

e×idG

m

(3) The diagram is commutative:
G × G

G Spec k G

G × G

m(idG,i)

(i,idG)

e

m

Remark 9.2. (1) We use G to denote the functor Schop
k → Sets associated to G. Then G is

a group scheme if and only if G factors through the forgetful functor Grp → Sets, i.e.,
G is the composite

G : Schop
k → Grp → Sets.
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(2) For a closed point x ∈ G(k), we can define the right translation Rx to be the composite

G ∼= G × Spec k
(idG,x)−→ G × G

m−→ G

and we define the left translation Lx similarly. In general, for a k-scheme S ∈ Schk and
an S-point x ∈ G(S), we define the right translation Rx to be the S-morphism

G × S G × S.
(m◦(idG×x),p2)

One can check that Rxy = Ry ◦ Rx and define Lx in a similar way.

9.2. Lie algebras. Let X ∈ Schk and ΩX = Ω1
X/k be the sheaf of relative differentials in X/k.

Definition 9.3. (1) A vector field D on X is a k-linear map D : OX → OX such that for
any open subset U of X,

(D(U) : OX(U) → OX(U)) ∈ Derk(OX(U), OX(U)).

In other words, D : OX → OX is the composite

OX
d−→ ΩX

f−→ OX

where d is the canonical derivation and f is an OX -linear map.
(2) A tangent vector d of X at a closed point x ∈ X (cf. [Har13, II, Exer 2.8]) is a

k-derivation d : OX,x → k ∈ Derk(OX,x, k), for which

Derk(OX,x, k) ∼= HomOX,x
(Ω1

OX,x/k, k)
∼= HomOX,x

(ΩX,x, k)
∼= Homk(ΩX,x ⊗OX,x

k, k)
∼= Homk(mx/m2

x, k),

where mx ⊂ OX,x is the maximal ideal. The last isomorphism is from [Har13, II, Prop
8.7]. Therefore, to give a tangent vector at x, say d : OX,x → k, is equivalent to giving
a k-linear map t : mx/m2

x → k.
(3) For a vector field D : OX → OX we define its value at x ∈ X to be the tangent vector

OX,x
Dx−→ OX,x → k.

For two schemes X, Y ∈ Schk, we have a canonical isomorphism ΩX×Y
∼= p∗

1ΩX ⊕p∗
2ΩY where

p1 : X × Y → X and p2 : X × Y → Y are natural projections. Let

D : OX
d−→ ΩX

f−→ OX

be a vector field on X, we define a vector field D ⊗ 1 on X × Y that corresponds to the
OX×Y -linear map

ΩX×Y p∗
1ΩX ⊕ p∗

2ΩY OX×Y
∼ (p∗

1(f),0)

Definition 9.4. Let G be a group scheme over k. A vector field D on G is called left invariant
if the following diagram commutes:

OG OG

OG×G OG×G

D

m∗ m∗

1⊗D

Proposition 9.5. For any tangent vector t at eG to G, there is a unique left invariant vector
field on G whose value at eG is exactly t.

Proof. First we give another expression of tangent vectors and vector fields. Let Λ = k[ε]/(ε)2.
Let A be a k-algebra and B be an A-algebra. Then we have a bijection between sets, say
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D ϕ(a) = a · 1B + D(a)ε

Derk(A, B)





ϕ : A → B ⊗k Λ



ϕ is a k-algebra homomorphism
such that ϕ : A → B is the structure map

read as ϕ : A
ϕ−→ B ⊗k Λ mod ε−→ B







ϕ′ : A ⊗k Λ → B ⊗k Λ


ϕ′ is a Λ-algebra homomorphism such that

ϕ′ ⊗k Λ : A → B is the structure map


.

Under the above bijections:
(i) a tangent vector t to X at x ∈ X corresponds to a morphism t̃ : Spec Λ → X such that

the composite Spec k → Spec Λ t̃−→ X is basically the point x ∈ X.
(ii) a vector field D on X corresponds to a morphism over Spec Λ:

X × Spec Λ X × Spec Λ

Spec Λ

D

such that D ×Spec Λ Spec k : X → X is idX .
(iii) for a vector field D on X, and tx the value of D at x ∈ X, the morphism t̃x corresponds

to the morphism

Spec Λ Spec k × Spec Λ X × Spec Λ X × Spec Λ X
∼= (x,idX ) D p1

Under the above expressions, we see that a vector field D on G is left invariant if and only if
the following diagram is commutative:

G × G × Spec Λ G × G × Spec Λ

G × Spec Λ G × Spec Λ

idG×D

m×idΛ m×idΛ

D

Here all arrows are morphisms over Spec Λ. We use D1 to denote the composite

D1 : G × Spec Λ D−→ G × Spec Λ p1−→ G.

Then D is left invariant if and only if for any S ∈ Schk, x, y ∈ G(S), and l ∈ Spec Λ(S),
D1(xy, l) = x D(y, l). (Caveat: one should be very careful about the order.) Alternatively, this
is equivalent to say

D1(x, l) = x D1(eG(S), l),

where eG(S) ∈ G(S) is the identity element; note that (eG(S), l) is the value of D at eG.
Now given a tangent vector t of G at eG, we define a vector field D on X that corresponds

to the following with t̃ : Spec Λ → G,

D : G × Spec Λ G × G × Spec Λ G × Spec Λ.
(idG,t̃,idΛ) (m,idΛ)

In other words, D1 satisfies D1(x, l) = x D1(eG(S), l) for each S ∈ Schk, x ∈ G(S), and l ∈
(Spec Λ)(S). It renders that D is left invariant and has value t at eG. Hence the uniqueness
follows obviously. □



48 WENHAN DAI

Let D1, D2 be two vector fields on X. Their Poisson bracket

[D1, D2] = D1D2 − D2D1

is also a vector field on X. When char(k) = p > 0, Dp
1 is a vector field on X. When X = G is

a group scheme, the above two operators preserve left invariant vector fields.

Definition 9.6. The Lie algebra of a group scheme G is the k-vector space of left invariant
vector fields, together with the operation of Poisson bracket (and the pth power operation if
char(k) = p > 0).

Proposition 9.7. If G is a commutative group scheme, then its Lie algebra g is abelian, i.e.,
[D1, D2] = 0 for all D1, D2 ∈ g.

Proof. We first make the following observation. Let X ∈ Schk, D1, D2 be vector fields on X,
and D3 = [D1, D2]. Let Di : X × Spec Λ → X × Spec Λ be the morphism corresponding to Di

for i = 1, 2, 3. I claim that x3 = x1x2x−1
1 x−1

2 . The question is local on X so we can assume
that X = Spec A is affine. The automorphism χi of X × Spec Λ′ over Spec Λ′ corresponds to
the Λ′-algebra automorphism

fi : A[ε, ε′]/(ε2, ε′2) −→ A[ε, ε′]/(ε2, ε′2)

that is defined as follows:
f1 : a1 + a2ε + a3ε′ + a4εε′ −→ a1 + (D1(a1) + a2)ε + a3ε′ + (D1(a3) + a4)εε′,

f2 : a1 + a2ε + a3ε′ + a4εε′ −→ a1 + a2ε + (D2(a1) + a3)ε′ + (D2(a2) + a4)εε′,

f3 : a1 + a2ε + a3ε′ + a4εε′ −→ a1 + a2ε + a3ε′ + (D3(a1) + a4)εε′;

also, f−1
i is given by replacing Di by −Di in the above formulas. Hence

f−1
3 = f−1

2 ◦ f−1
1 ◦ f2 ◦ f1 : A ⊗k Λ′ → A ⊗k Λ′,

⇝ χ−1
3 = χ1 ◦ χ2 ◦ χ−1

1 ◦ χ−1
2 : X × Spec Λ′ → X × Spec Λ′.

Now let D1, D2 be two left invariant vector fields on a commutative group scheme G that
corresponds to the tangent vector ti : Spec Λ → G with i = 1, 2. Define D3 = [D1, D2] and t̃3
that corresponds to D3. For i = 1, 2, 3, define Ti ∈ G(Λ′) to be the composite

Ti : Spec Λ′ σi−→ Spec Λ f̃i−→ G.

Thus, χi : G × Spec Λ′ → G × Spec Λ′ be the right translation by Ti ∈ G(Λ′). Then

χ−1
3 = χ1 ◦ χ2 ◦ χ−1

1 ◦ χ−1
2 ,

but χ1 ◦ χ2 ◦ χ−1
1 ◦ χ−1

2 is the right translation by T −1
2 · T −1

1 · T2 · T2 ∈ G(Λ′), which is eG(Λ′)
as G is commutative. It follows that χ−1

3 (and hence χ3) is the identity morphism so that
D3 = [D1, D2] = 0. □

Theorem 9.8. Any group scheme over a field k of characteristic 0 is automatically smooth
(and in particular reduced).

Proof. We can assume that k is algebraically closed and it suffices to prove the group scheme
G is smooth at e ∈ G, the identity point. For simplicity, denote O = OG,e, m ⊂ O the maximal
ideal, and O the m-adic completion of O. Denote n = dimk m/m2. The multiplication map
m : G × G → G induces a continuous homomorphism

m∗ : O −→ O ⊗k
O.

Here ⊗ is the complete tensor product; that is, the (1 ⊗ m+ m⊗ 1)-adic completion of O ⊗k
O.

Since the two composites
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G G × G G
(e,idG)

(idG,e)
m

are both identity, the composites

O m∗

−→ O ⊗k
O −→ O ⊗kk ∼= O,

O m∗

−→ O ⊗k
O −→ k ⊗k

O ∼= O

are both identity as well. Thus, for any a ∈ m,

m∗(a) ∈ 1 ⊗ a + a ⊗ 1 + m⊗k m.

Claim. For any k-linear map f : m/m2 → k, there is a k-derivation D : O → O such that
f = D|m mod m.

Since we have a decomposition of k-vector spaces, O = k ⊕ m. A k-linear map f : O → k

could be found such that F |k = 0 and F |m is the composite m → m/m2 f−→ k. We define D to
be the composite

O O ⊗k
O O ⊗kk O.m∗ 1⊗F ∼=

Clearly D is k-linear and D(k) ≡ 0 as F (k) ≡ 0. For a ∈ m,

D(a) = (1 ⊗ F )(1 ⊗ a + a ⊗ 1 + b) = F (a) + (1 ⊗ F )(b)

for some b ∈ m⊗k m. Consequently, D(a) mod m = F (a) = f(a mod m2). This proves the claim
that f = D|m mod m.

We still need to verify that D is a derivation, i.e., for all a, b ∈ m, we have D(ab) = aD(b) +
bD(a). By a direct computation,

m∗(ab) =(a ⊗ 1)m∗(b) + (b ⊗ 1)m∗(a)
+ (1 ⊗ ab − ab ⊗ 1 + S(1 ⊗ a) + R(1 ⊗ b) + RS).

If we write m∗(a) = 1 ⊗ a + a ⊗ 1 + R, m∗(b) = 1 ⊗ b + b ⊗ 1 + S. In particular, R, S ∈ m⊗k m
and

T = 1 ⊗ ab − ab ⊗ 1 + S(1 ⊗ a) + R(1 ⊗ b) + RS ∈ O ⊗ 1 + O ⊗ m2.

We infer that
D(ab) = (1 ⊗ F )(m∗(ab))

= a(1 ⊗ F )(m∗(b)) + b(1 ⊗ F )(m∗(a)) + (1 ⊗ F )(T )  
=0

= aD(b) + bD(a).

Here (1 ⊗ F )(T ) = 0 because of T ∈ O ⊗ 1 + O ⊗ m2. Choose x1, . . . , xn ∈ m such that
{x1, . . . , xn} forms a k-basis of m/m2 and {fi : m/m2 → k | i = 1, . . . , n} be the dual basis. Let
Di : O → O be the k-derivation such that Di|m mod m = fi for each i. In particular, we have
Di(xj) mod m = δij for all 1  i, j  n.

Define a k-algebra homomorphism

α : k[[t1, . . . , tn]] → O, ti → xi, i = 1, . . . , n.

Since {x1, . . . , xn} generates m by Nakayama’s lemma, α is surjective. Define another k-algebra
homomorphism

β : O → k[[t1, . . . , tn]], f →


α∈Zn
0


Dαf

α!


· tα.
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Here the operator (·) means modulo m (so that the coefficients are elements in k) the power
series is defined through

α! = α1! · · · αn!, Dαf = Dα1
1 · · · Dαn

n f, tα = tα1
1 · · · tαn

n .

By Leibniz’s formula, one can check that β is a continuous homomorphism. Moreover,

β(xi) ≡ ti mod (t1, . . . , tn)2, i = 1, . . . , n.

Hence β is surjective. The composite β ◦ α : k[[t1, . . . , tn]] → k[[t1, . . . , tn]] is onto and satisfies
β ◦ α ≡ id mod (t1, . . . , tn)2. Therefore, β ◦ α is an isomorphism.27 So α is injective and hence
an isomorphism as well. This shows

O ∼= k[[t1, . . . , tn]],

which implies that O is regular, and so also is O itself. This proves G is smooth at e. □

10. Quotients by finite group schemes

10.1. The group scheme action on scheme.

Definition 10.1 (Left action of schemes). A left action of a group scheme G on a scheme
X is a morphism µ : G × X → X such that

(1) the composite

X Spec k × X G × X X
∼= eG×1X µ

is the identity morphism;
(2) the diagram

G × G × X G × X

G × X X

m×1X

1G×µ µ

µ

is commutative;

Remark 10.2. Indeed, we have the following equivalent characterization of a G-action on X.
(1) For any affine28 scheme S we have a (left) G(S)-action on X(S), which is functorial in

S.
(2) More explicitly, for any x ∈ G(S), we have an automorphism over S; say the diagram

X × S X × S

S

Tx

p2 p2

commutes and is such that
(i) Tx ◦ Ty = Txy for all x, y ∈ G(S);
(ii) for any morphism f : S → S′ in Schk and x ∈ G(S′), x ◦ f ∈ G(S).
We have another commutative diagram

X × S X × S

X × S′ X × S′

Tx◦f

1X ×f 1X ×f

Tx

27For this implication, see [Eis13, §7].
28Note that the problem is local.



ABELIAN VARIETIES 51

For x ∈ G(S), the morphism Tx : X ×S → X ×S is given by (T ′
x, p2) where T ′

x : X ×S →
X is the composite

X × S ∼= S × X
f×1X−→ G × X

µ−→ X.

Conversely, the morphism µ can be recovered from the above datum. Take S = G and
x = idG ∈ G(G). Then µ is the composite

G × X
∼=−→ X × G

Tx−→ X × G
p1−→ X.

Definition 10.3. A morphism f : X → Y is called G-invariant if the following diagram is
commutative29

G × X X

X Y

µ

p2 f

f

More explicitly, for each S ∈ Schk, g ∈ G(S), x ∈ X(S), we have f(µ(g, x)) = f(x).
The action of G on X is free if the morphism (µ, p2) : G×X → X ×X is a closed immersion.

Definition 10.4. Let F be a coherent sheaf on X. A lift of the action µ to F is an
isomorphism

λ : p∗
2F

∼−→ µ∗F

of sheaves on G × X such that the following diagram of sheaves on G × G × X is commutative:

p∗
3F ξ∗F

η∗F

(p2,p3)∗(λ)

(m×1X )∗(λ) (1G×µ)∗(λ)

Here p1, p2, p3 are natural projections from G × G × X and

ξ : G × G × X G × X X

η : G × G × X G × X X

G × X

(p2,p3) µ

m×1X

1G×µ µ

µ

10.2. Classification of quotients.

Theorem 10.5 (Quotients by finite group schemes, somehow tedious).
(A) Let G be a finite group scheme acting on a scheme X such that the orbit of any point in

contained in an affine open subset of X. Then there is a pair (Y, π) where Y is a scheme
and π : X → Y a morphism, satisfying the following conditions:
(1) as a topological space, (Y, π) is the quotient of X for the action of the underlying finite

group;
(2) the morphism π : X → Y is G-invariant, and if π∗(OX)G denotes the subsheaf of

π∗OX of G-invariant functions, the natural homomorphism OY → π∗(OX)G is an
isomorphism. The pair (Y, π) is uniquely determined up to isomorphism by these
conditions. The morphism π is finite and surjective; Y will be denoted X/G, and it
has the functorial property that for any G-invariant morphism f : X → Z, there is a
unique morphism g : Y → Z such that f = g ◦ π.

X Y

Z

π

f

∃!
g

29When Y = A1 = Spec k[T ], one can talk about the G-invariant sections.
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(B) Suppose further that the action of G is free and G = Spec R, n = dimk R. Then π is a flat
morphism of degree n, i.e., π∗OX is a locally free OY -module of rank n, and the subscheme
of X × X defined by the closed immersion

(µ, p2) : G × X → X × X

is equal to the subscheme X ×Y X ⊂ X × X. Finally, if F is a coherent OY -module,
π∗F has a natural defined G-action lifting that on X, and F → π∗F is an equivalence
between the category of coherent OY -modules (resp. locally free OY -modules of finite rank)
and the category of coherent OX-modules with G-action (resp. locally free OX-modules of
finite rank with G-action).

Remark 10.6. (1) The assumption that the orbit of any point in contained in an affine open
subset of X can be expressed as follows: for any closed point x ∈ X(k), the morphism

G ∼= G × Spec k
1G×x−→ G × X

µ−→ X

factors through an open affine subset of X, i.e., we obtain G → U ⊂ X. This holds for
X quasi-projective over k.

(2) Gred = Spec(Rred) is a closed subgroup scheme of G, and the action of G on X induces
an action

µred : Gred × X → X

of Gred on X. As a scheme over k,

Gred ∼=


g∈G(k)

Spec k,

and we are in the situation of varieties. Theorem 10.5 (A)(1) says that as a topological
space, (Y, π) only depends on the action µred of Gred on X.

(3) Under the assumption of (B), we have an isomorphism
(µ, p2) : G × X

∼−→ X ×Y X,

and π : X → Y is faithfully flat. Let F be a coherent sheaf on X. Under the above
isomorphism, a lift of the action µ to F becomes an isomorphism λ : p∗

2F
∼−→ p∗

1F
(sheaves on X ×Y X) such that the diagram

p∗
3F p∗

2F

p∗
1F

p∗
23(λ)

p∗
13(λ) p∗

12(λ)

commutes.30

10.3. Proof of Theorem (A).

Proof. We can reduce to the case for X = Spec A affine. Recall that G = Spec R and n = dimk R.
Consider the k-algebra homomorphisms in the following correspondences:

Algebraic Homomorphisms Geometric Morphisms
ε : R → k e : Spec k → G

m∗ : R → R ⊗k R m : G × G → G

µ∗ : A → R ⊗k A µ : G × X → X

For any k-algebra S, R⊗kS is a free S-module of rank n. We have a norm map NmS : R⊗kS → S,
i.e., for any x ∈ R ⊗k S the multiplication by x defines an S-linear map lx : R ⊗k S → R ⊗k S,
and NmS(x) = det lx. Also,

NmS(ax) = an NmS(x), ∀a ∈ S, x ∈ R ⊗k S,

30This is the standard descent theory. See [MA67, Chap VII].
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and NmS is multiplicative.
Also define B = {a ∈ A | µ∗(a) = 1 ⊗ a} ⊂ A to be the k-subalgebra of A consisting of

G-invariant sections; that is, for a ∈ A, the morphism X → A1 corresponding to k[T ] → A,
T → G is G-invariant if and only if a ∈ B. Define the composite

N : A
µ∗

−→ R ⊗k A
NmA−→ A.

Note that N is multiplicative and k-homogeneous of degree n.
Claim. N(A) ⊂ B, i.e., µ∗(N(a)) = 1 ⊗ N(a) for each a ∈ A.

Proof of Claim. We define two k-algebra homomorphisms (with their geometric correspondences)
as follows:

φ : A → R ⊗k A, a → 1 ⊗ a

corresponding to
p2 : G × X → X, (g, x) → x;

and
ψ : R ⊗k R ⊗k A → R ⊗k R ⊗k A, x ⊗ y ⊗ a → (m∗(x) ⊗ 1) · (1 ⊗ y ⊗ a)

corresponding to

Spec ψ : G × G × X → G × G × X, (g, h, x) → (gh, h, x).

Firstly, we make a remark. If f : S1 → S2 is a k-algebra homomorphism, then the diagram
commutes, namely, f ◦ NmS1 = NmS2 ◦(1R ⊗ f).

R ⊗k S1 S1

R ⊗k S2 S2

NmS1

1R⊗f f

NmS2

So, by the above remark, we obtain that

µ∗ ◦ N = µ∗ ◦ NmA ◦µ∗ = NmR⊗kA ◦(1R ⊗ µ∗) ◦ µ∗.

Moreover,

NmR⊗kA ◦(1R ⊗ µ∗) ◦ µ∗ = NmR⊗kA ◦(m∗ ⊗ 1A) ◦ µ∗ = NmR⊗kA ◦ψ ◦ (1R ⊗ φ) ◦ µ∗

because of the two diagrams are commutative:

G × G × X G × X

G × X X

1G×µ

m×1X µ

µ

G × G × X G × G × X G × X

G × X X

1G×µ

m×1X

idG×p2

µ

µ

Let us regard R ⊗k (R ⊗k A) as an R ⊗k A-algebra via the last two factors, i.e., via the k-algebra
homomorphism

R ⊗k A → R ⊗k R ⊗k A, r ⊗ a → 1 ⊗ r ⊗ a.

Then ψ : R ⊗k R ⊗k A → R ⊗k R ⊗k A is an R ⊗k A-algebra automorphism; equivalently, we
need to verify that

G × G × X G × G × X

G × X

Spec ψ

p23 p23
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is an automorphism. Thus,
NmR⊗kA ◦ψ = NmR⊗kA .

And therefore,

µ∗ ◦ N = NmR⊗kA ◦(1R ⊗ φ) ◦ µ∗ = φ ◦ NmA ◦µ∗ = 1 ⊗ N.

This proves our claim. □

We extend the G-action on X to X×A1 such that G acts trivially on A1 with µ×idA1 : G×X×
A1 → X ×A1. Correspondingly, µ∗ : A → R⊗k A can be extended to a k-algebra homomorphism
A[T ] → R ⊗k A[T ]. So we can extend the map N : A → A to N : A[T ] → A[T ]. For a ∈ A, we
set χa(T ) = N(T − a) and we can extend χa to a k-algebra homomorphism k[T ] → A[T ] (and
hence determines a morphism X × A1 → A1).

It is straightforward to verify that χa(T ) ∈ A[T ] is the characteristic polynomial of the
A-linear map

lµ∗(a) : R ⊗k A → R ⊗k A

that is induced by the multiplication by µ∗(a), and χa(T ) is G-invariant, i.e., the morphism
X × A1 → A1 determined by χa(T ) is G-invariant. So

χa(T ) = T n + s1T n−1 + · · · + sn ∈ A[T ]

is monic of degree n, and si ∈ B for all i; namely, χa(T ) ∈ B[T ].
Fix a ∈ A. The map ε : R → k corresponding to the section e : Spec k → G extends to an

A-linear map ε ⊗ 1A : R ⊗k A → A such that the composite A
µ∗

−→ R ⊗k A
ε⊗1A−→ A is nothing but

idA. Thus the A-linear map lµ∗(a)−a : R ⊗k A → R ⊗k A induces the zero map on the quotient
ε ⊗ 1A : R ⊗k A → A. It follows that

χa(a) = det(la−µ∗(a)) = 0,

namely, a is integral over B. Hence A is integral over B. Since A is a finitely generated
k-algebra, there exists a finitely generated k-subalgebra B′ ⊂ B such that A is integral and
finite over B′. Then B is finite over B′. Hence B is a finitely generated k-algebra. If we use
π : X → Y = Spec B to denote the morphism corresponding to the inclusion B ↩→ A, then π is
definitely finite and surjective.

Now we prove that π separates orbits, i.e. for two closed points x1, x2 ∈ X(k), if Gred(k) = G′

and G′ · x1 ∩ G′ · x2 = ∅, then π(x1) ∕= π(x2). Define

Nred : A
µ∗

red−→ Rred ⊗k A
Nm−→ A.

By the argument in the previous lectures for Chapter II, we can find a ∈ A such that a(g′x1) = 1,
a(g′x2) = 0 for all g′ ∈ G′. Granting this, we obtain

Nred(a)(x1) = 1, Nred(a)(x2) = 0.

From the commutative diagrams (with α ∈ R ⊗k A arbitrarily fixed):

A R ⊗k A R ⊗k A

Rred ⊗k A Rred ⊗k A

µ∗

µ∗
red

lα

lα

We can verify that N(a)(x1) ∕= 0, N(a)(x2) = 0. Their implications are that lα(x1) is an
isomorphism (hence is surjective), and lα(x2) is not surjective, respectively. One can actually
show

Nred(T − a)(x1) = (T − 1)n, Nred(T − a)(x2) = T n.

On the other hand, since N(a) ∈ B, it forces π(x1) ∕= π(x2).
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By definition, π∗(OX)G is the kernel of the OY -linear map

π∗OX → π∗OX ⊗k R, f → µ∗(f) − f ⊗ 1.

Then π∗(OX)G is coherent on Y , and OY
∼= π∗(OX)G. Finally, the universal property of (Y, π)

naturally follows from the construction. This finishes the proof of (A). □

10.4. Proof of Theorem (B).

Proof. Given a coherent sheaf F on Y , we have a canonical isomorphism

λ : p∗
2(π∗F ) → µ∗(π∗F )

as the two composites

G × X X Y

µ

p2

π

are equal. One can verify that this defined a lift of µ to π∗F , i.e., can check the diagram is
commutative:

p∗
3π∗F ξ∗π∗F

η∗π∗F

Conversely, let G be a coherent sheaf on X and we have a lift of µ to G . In case when Y = Spec B

and X = Spec A are affine, G = N for some A-module N . We define π∗(G )G to be the coherent
OY -module corresponding to the B-module

NG = {n ∈ N | λ(1 ⊗ n  
p∗

2(n)

) = µ∗(n) = n ⊗A,µ∗ 1 ∈ N ⊗A,µ∗ (R ⊗k A)}.

We run this construction for all open affine G-stable subsets of X, and can define π∗(G )G in
general.

Now we assume that the action of G on X is free. The requirement is to prove:
(1) π is flat; alternatively, B → A is flat;
(2) G × X

∼−→ X ×Y X is an isomorphism;
(3) the functors

ModOY
−→ Mod(G,OX ), F −→ π∗F

and
Mod(G,OX ) −→ ModOY

, G −→ π∗(G )G

are inverses to each other. For this, it suffices to show T (G ) : π∗π∗(G )G → G is an
isomorphism for each (G, OX)-module G .

Now we assume X = Spec A is affine. As the G-action is free, (µ, p2) : G×X → X ×X is a closed
immersion. Since it factors through X ×Y X, we get a surjective k-algebra homomorphism

ϕ : A ⊗B A −→ R ⊗k A, a1 ⊗ a2 −→ µ∗(a1)(1 ⊗ a2).

Then it boils down to prove that
(1’) A is flat over B = AG, and ϕ is injective;
(2’) for each coherent (G, A)-module M , the natural map MG ⊗B A → M is an isomorphism;
(3’) if M is a projective A-module, MG is projective as a B-module.
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We first explain that (1′)(2′) imply (3′). It suffices to show that MG is flat as a B-module, or
equivalently, the functor

(·) ⊗B MG : ModB −→ ModB

is exact. Since B → A is faithfully flat by (1’), this is to prove that the functor

((·) ⊗B MG) ⊗B A : ModB −→ ModA

is exact. For any B-module N , we have
(N ⊗B MG) ⊗B A ∼= (N ⊗B A) ⊗A (A ⊗B MG)

∼= (N ⊗B A) ⊗A M by granting (2’)
∼= N ⊗B M.

And since M is A-flat with A being B-flat, the functor is morally exact. Therefore, we are left
to prove (1’)(2’).
(1’) Replacing B by Bm where m ⊂ B is the maximal ideal and A by A⊗B Bm, we may assume,

without loss of generality, that B is local and A is semi-local. Regard A ⊗B A and R ⊗k A

as A-algebras via the second factor. The map

ϕ : A ⊗B A −→ R ⊗k A, a1 ⊗ a2 −→ µ∗(a1)(1 ⊗ a2)

is a homomorphism of A-algebras. Since ϕ is onto, R ⊗k A is generated by µ∗(a) with
a ∈ A as an A-algebra. Since A is semi-local one can find {a1, . . . , an} in A such that
{µ∗(ai) | 1  i  n} form a basis of R ⊗k A as an A-module.31

Claim. For a, λ1, . . . , λn ∈ A, we have

(∗) µ∗(a) =
n

i=1
(1 ⊗ λi) · µ∗(ai) ⇐⇒ a =

n

i=1
λi · ai with λ1, . . . , λn ∈ B.

For (⇐), apply µ∗ to a =
n

i=1 λi · ai and use the fact that µ∗(λi) = 1 ⊗ λi as λi ∈ B. For
(⇒), since (1R ⊗ µ∗)(µ∗a) = (m∗ ⊗ 1A)(µ∗a) in R ⊗k R ⊗k A, we have

n

i=1
(1 ⊗ µ∗(λi))(1R ⊗ µ∗)(µ∗(ai))

=
n

i=1
(1 ⊗ 1 ⊗ λi)(m∗ ⊗ 1A)(µ∗(ai))

=
n

i=1
(1 ⊗ 1 ⊗ λi)(1R ⊗ µ∗)(µ∗(ai)).

Since {µ(ai) | 1  i  n} is a basis of R ⊗k A as an A-module, (1R ⊗ µ∗)(µ∗(ai)) is a
basis of R ⊗k R ⊗k A as an R ⊗k A-module via the last two factors. (Here we have used
(R ⊗k A) ⊗A,µ∗ (R ⊗k A) ∼= R ⊗k R ⊗k A.) Thus, in R ⊗k R ⊗k A,

1 ⊗ µ∗(λi) = 1 ⊗ 1 ⊗ λi.

31Here are more details about this step of argument. Since R ⊗k A is a free A-module of rank n, it suffices to
show that {µ∗(ai) | 1  i  n} generates R ⊗k A as an A-module for some suitable {ai}1in. By Nakayama’s
lemma, it reduces to the case where A =

m

i=1 k. We are to prove the following: if M is a free A-module of rank
n, and a k-subspace Σ ⊂ M is a set of generators of M , then there exist x1, . . . , xn ∈ Σ such that {x1, . . . , xn}
is a basis of M as an A-module. To see this, one can use induction on n = rankA M . When n = 1, it suffices
to find an element x ∈ Σ such that if x = (x1, . . . , xm) then xi ∕= 0 for all i = 1, . . . , m. We can prove this by
induction on m and use the fact that k = k is algebraically closed. And hence k is infinite. In general, suppose
the statement holds for n and M is a free A-module of rank n + 1. Then one may find x1 ∈ M if we write
x1 = (x1

1, . . . , xm
1 ) under the decomposition A =

m

i=1 k. Thus xi
1 ∕= 0 for each i = 1, . . . , m, i.e., Ax1 ⊂ M is a

free A-submodule of rank 1. Since A is isomorphic to m-copies of k, any (finitely generated) A-module is locally
free and hence projective. Therefore, there exists M1 ⊂ M that is free of rank n such that M = Ax1 ⊕ M1.
Apply the inductive hypothesis to M1 and get the desired {x1, . . . , xn+1}.
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So all λi’s land in B. Apply ε ⊗ 1 to µ∗(a) =
n

i=1(1 ⊗ λi)(µ∗(ai), we have a =
n

i=1 λi ·
ai. So we have proved (∗). However, (∗) implies that A is a free B-module with basis
{a1, . . . , an}. This shows A is flat over B. Moreover, the A-linear map ϕ : A⊗B A → R⊗k A

is a map between free A-modules of rank n and takes a basis {ai ⊗ 1} to a basis {µ∗(ai)}.
So ϕ is an isomorphism.

(2’) Morally, this follows from the general descent theory. We only list out a sketch. View
M ⊗B A and A ⊗B M as A ⊗B A-modules in the obvious way. Then a G-action on M is
an isomorphism of A ⊗B A-modules τ : A ⊗B M → M ⊗B A such that

A ⊗ A ⊗ M

A ⊗ M ⊗ A

M ⊗ A ⊗ A

1A⊗τ

(p1◦τ)⊗1A⊗(p2◦τ)

τ⊗1A

Note that the right vertical map is given by τ on the first and the third factors together
with 1A on the second factor.

Define
N = {m ∈ M | τ(1 ⊗ m) = m ⊗ 1}.

We need to show that N ⊗B A → M is an isomorphism. Notice that
N = Ker(φ : M → M ⊗B A), m → m ⊗ 1 − τ(1 ⊗ m)

and B → A is flat, we have

N ⊗B A =




i

mi ⊗ ai ∈ M ⊗B A




i

mi ⊗ 1 ⊗ ai =


i

τ(1 ⊗ mi) ⊗ ai


.

Applying the commutative diagram above to 1 ⊗ 1 ⊗ m ∈ A ⊗ A ⊗ M , we have
τ(1 ⊗ M) ⊂ N ⊗B A

as subsets in M ⊗B A. We view M ⊗B A as an A-module via the second factor, then
τ(1 ⊗ M) and N ⊗B A are A-submodules of M ⊗B A; and N ⊗B A is generated by those
n ⊗ 1 with n ∈ N . Since n ⊗ 1 = τ(1 ⊗ n) ∈ τ(1 ⊗ M , we have M ⊗B A = τ(1 ⊗ M). On
the other hand, as B → A is faithfully flat, the map M → A ⊗B M is injective and we
have an isomorphism

M 1 ⊗ M τ(1 ⊗ M)
m 1 ⊗ m

∼

τ

so we get a canonical isomorphism N ⊗B A ∼= M .
We have accomplished the proof of (B). □

11. Interlude: On Seesaw’s theorem

This is a preliminary part of the upcoming lecture which recalls and generalizes the classical
Seesaw’s theorem we have mentioned in Chapter II.

Theorem 11.1 (Seesaw). Let X be a complete variety, T any variety, and M a line bundle on
X × T . Then the set

T1 = {t ∈ T | M |X×{t} is trivial on X × {t}}
is closed in T , and if p2 : X × T1 → T1 is the second projection, then M |X×T1

∼= p∗
2N for some

line bundle N on T1. Also, T1 has the reduced closed subscheme structure.
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Proposition 11.2 (Generalized Seesaw). Let X be a complete variety, Y a scheme, and M
a line bundle on X × Y . Then there exists a unique and closed subscheme Y1 ↩→ Y with the
following properties.

(1) If M1 = M |X×Y1 , there is a line bundle N1 on Y1 and an isomorphism p∗
2N1 ∼= M1 on

X × Y1; or alternatively, if i1 : Y1 ↩→ Y denotes the first natural closed immersion, we
obtain p∗

2N1 ∼= (1X × i1)∗M .
(2) If f : Z → Y is a morphism such that there exists a line bundle K on Z and an

isomorphism p∗
2K

∼= (1X × f)∗M on X × Z, then f factors as

f : Z → Y1 ↩→ Y.

Remark 11.3. For any closed point y1 ∈ Y1(k), we have

M |X×{y1} ∼= M1|X×{y1} ∼= (p∗
2N1)|X×{y1}

being trivial. So the closed subvarieties given by the above two Seesaw’s are homeomorphic as
topological spaces. But the closed subscheme Y1 in the second proposition may have nonreduced
closed subscheme structure so that the universal property (2) holds.

We refer the closed subscheme Y1 of Y in Proposition 11.2 as the maximal closed subscheme
of Y over which M is trivial. (Caveat: the notation is a little misleading as M |X×Y1 is NOT a
trivial line bundle in general. Sorry for this!)

12. The dual abelian variety in any characteristic

In Chapter II, we defined a reduced closed subscheme K(L ) of X, for every line bundle L
on an abelian variety X, i.e.,

K(L ) = {x ∈ X(k) | T ∗
x L ∼= L }.

We want to make K(L ) as a (nonreduced) closed subgroup scheme of X.

Definition 12.1. Consider the line bundle M = m∗L ⊗p∗
1L

−1 ⊗p∗
2L

−1 on X ×X. We define
K(L ) to be the maximal closed subscheme of X such that M |X×K(L ) is trivial.

Remark 12.2. We apply the generalized Seesaw theorem (Proposition 11.2) to M ∈ Pic(X ×X)
and get a line bundle N1 on K(L ) and an isomorphism p∗

2N1 ∼= M |X×K(L ). But N1 ∼=
(p∗

2N1)|{eX }×K(L ) ∼= M |{eX }×K(L ) is trivial as M |{eX }×K(L ) is trivial. So that M |X×K(L ) is
trivial as well.

In the upcoming context we are to verify that K(L ) is a closed subgroup scheme of X. Recall
we have defined the “translation by f” morphism, say Tf , as an automorphism over S as follows:

X × S =: XS XS

S

Tf

Also, p1 ◦ Tf : XS → X is the composite

X × S
1X ×f−−−−→ X × X

m−→ X.

Here X is a commutative group scheme, so there is no difference between left and right trans-
lations.

Lemma 12.3. Set LS = p∗
1L ∈ Pic(XS). Then f ∈ K(L )(S) if and only if T ∗

f LS
∼=

LS ⊗ p∗
2N for some N ∈ Pic(S).
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Proof. By direct computation, we have

T ∗
f LS = T ∗

f p∗
1L

∼= (1X × f)∗(m∗L ),

and hence T ∗
f LS |{eX }×S

∼= f∗L ; the restriction LS |{eX }×S is trivial. So if T ∗
f LS

∼= LS ⊗ p∗
2N

for some N ∈ Pic(S), by restricting to {eX} × S, we have N ∼= f∗L . Hence
T ∗

f LS
∼= LS ⊗ p∗

2N

⇐⇒ (1X × f)∗m∗L ∼= p∗
1L ⊗ p∗

2f∗L

⇐⇒ (1X × f)∗m∗L ⊗ p∗
1L

−1 ⊗ p∗
2(f∗L )−1 ∼= (1X × f)∗M is trivial on X × S

⇐⇒ f factors through K(L ).

This is equivalent to say f ∈ K(L )(S). □

It follows from Lemma 12.3 that K(L )(S) is a subgroup of X(S).
Hence K(L ) is a subgroup scheme of X. Now we are ready to construct the dual abelian

variety over any characteristic. Fix an ample line bundle L on X. Then K(L ) is a closed
finite subgroup scheme of X. Define X = X/K(L ) where K(L ) acts on X via translation and
π : X → X is the natural morphism. One can verify that X is also an abelian variety and π is
an isogeny of abelian varieties, i.e., a finite surjective homomorphism. Consequently,

X(k) X(k)/K(L )(k) Pic0(X).∼ ∼
φL

There is another isomorphism of abelian groups X(k) ∼= Pic0(X). As before, we want to
define the Poincaré bundle P ∈ Pic(X × X) such that (1X × π)∗(P ) = M , via the isogeny
1X × π : X × X → X × X with its kernel K = 1 × K(L ). So it suffices to define a lift of the
action of K on X × X to M . More precisely, we need to find an isomorphism

λ : p∗
2M → µ∗M

where p2 : K × (X ×X) → X ×X is the natural projection. (Also recall that µ : K × (X ×X) →
X × X is the translation morphism.

In general, for a scheme S and an S-valued point (e, x) : S → K = 1 × K(L ) of K (so
x ∈ K(L )(S)), let

T(e,x) : XS ×S XS −→ XS ×S XS

be the translation by (e, x) ∈ K(S) ⊂ (X × X)(S) and Tx : XS → XS be the translation by
x ∈ X(S). Let MS be the inverse image of M under the projection XS ×S XS

∼= S × X × X →
X ×X and LS the image of L under XS = X ×S → X. Then we have T ∗

(e,x)MS
∼= m∗

ST ∗
x LS ⊗

p∗
1,SL −1

S . Since x ∈ K(L )(S) we have an isomorphism

T ∗
x LS

∼= LS ⊗ p∗
SN , for some N ∈ Pic(S).

Here pS : XS = X × S → S is the natural projection. Fix such an isomorphism and we obtain
an isomorphism on XS ×S XS :

λS : MS
∼−→ T ∗

(e,x)MS .

In particular we take S = 1 × K(L ) = K and (e, x) ∈ K(S) to be the identity morphism. We
get an isomorphism

λ : p∗
2M −→ µ∗M

as before. Here λ cannot be chosen arbitrarily as it must satisfy some extra condition. In
general, we want to have a “canonical” isomorphism λS : MS → T ∗

(e,x)MS on XS ×S XS for all
S. Fortunately, this can be done by restricting to eS ×S S ↩→ XS ×S XS . (Check this; as an
exercise).

As a consequence, we obtain a Poincaré bundle P on X × X such that P |{eX }× X is trivial
and for all α ∈ X(k), P |X×{α} corresponds to the element in Pic0(X) under the isomorphism
X(k) ∼= Pic0(X), i.e., ( X, P ) satisfies the first property of Theorem 8.3, in Chapter II, that



60 WENHAN DAI

characterizes X. But some modification towards the second property is required. It generalizes
as follows.

Theorem 12.4. Let S be any scheme. Let L ∈ Pic(X × S) be such that L |{eX }×S is trivial
and L |X×{s} ∈ Pic0(X) for each closed point s ∈ S(k). Then there exists a unique morphism
φ : S → X such that L ∼= (1X × φ)∗P .

Proof. As before, we consider the line bundle M = p∗
13P ⊗ p∗

12L
−1 on X × S × X and let ΓS

be the maximal closed subscheme of S × X over which M is trivial.32 The goal is to show

f : ΓS ↩→ S × X p1−→ S

is an isomorphism. We know f is a homeomorphism on the underlying topological spaces. It
suffices to show that for any closed subscheme S0 of S such that |S0| is a single point of S. Then
the morphism

f ×S S0 : ΓS ×S S0 −→ S0

is an isomorphism. In fact, if this is valid, then f is bijective on closed points, and hence f is
quasi-finite. Since f is proper, we have f being finite by the Zariski Main Theorem.

The statement follows from the fact. let (A,m) be a local ring and B a finite A-algebra. If
A/mn → B/mnB is an isomorphism for any m, then A → B is an isomorphism. So we may
assume S = Spec B where B is a finite local k-algebra and S = {s} a single point. Moreover,
we can assume that L |X×{s} is trivial. Consider the line bundle M = p∗

13P ⊗ p∗
12L

−1 on
X ×S × X. Since M |{eX }×{s}× X

∼= P |{eX }× X is trivial (and hence belongs to Pic0( X), we have
M |{x}×{s}× X ∈ Pic0( X) for all x ∈ X(k). On the other hand,

π∗(M |{x}×{s}× X) ∼= (T ∗
x La) ⊗ L −1

a ,

where La is the ample line bundle on X we have chosen before to construct X. So there are
only finitely many x ∈ X(k) such that M |{x}×{s}× X is trivial.

Since Hi( X, LX) = 0 for all i  0 and 0 ∕= LX ∈ Pic0( X), the support of Rip12,∗M on
X × S is the disjoint union of finitely many closed points. So

Hn(X × S, Rip12,∗M ) = 0, n  1.

By the Leray spectral sequence

Hi(X × S, Rjp12,∗M ) =⇒ Hi+j(X × S × X, M )

we have the canonical isomorphisms

Hn(X × S × X, M ) ∼= H0(X × S, Rnp12,∗M ).

Now apply the projection formula (cf. [Har13, III, Exer 8.3]),

Rnp12,∗M = Rnp12,∗(p∗
13P ⊗ p∗

12L
−1)

∼= Rnp12,∗p∗
13P ⊗ L −1

∼= Rnp12,∗p∗
13P.

The last step above uses the fact that Rnp12,∗p∗
13P has support on finitely many closed points.

Therefore, in summary,

Hn(X × S × X, M ) ∼= Hn(X × S × X, p∗
13P ) ∼= Hn(X × X, P ) ⊗k B.

by flat base change theorem

32Here recall the fact at work that M |
{eX }×S×X is trivial.
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In particular, Hn(X × S × X, M ) are free B-modules for all n  0. Similarly, we consider the
projection p23 : X × S × X → S × X. As L |X×{s} is trivial by our assumption, we get

M |X×{s}×{α} ∼= P |X×{α} ⊗ L −1|X×{s} ∼= P |X×{α},

which further implies that M |X×{s}×{α} ∈ Pic0(X) for all α ∈ X(k) and it is trivial if and only
if α = e X . We infer that Rip23,∗M is supported at the point (s, e X) of S × X. Then

Hn(X × S × X, M ) ∼= H0(S × X, Rnp23,∗M ) = (Rnp23,∗M )(s,eX ),

the stalk of the sheaf at the closed point (s, e X). For simplicity, we use O to denote the stalk
OX,eX

of X at e X . Then the stalk A of S × X at (s, e X) is given by B ⊗k O. Consider the
following Cartesian diagram

MA M

X × Spec A X × S × X

Spec A S × X

p p23

and we have Rip23,∗M |(s,eX ) ∼= Rip∗MA. Since p : X ×Spec A → Spec A is proper and flat, and
MA is a line bundle on X × Spec A, by the main theorem (Theorem 5.2) in Cohomology and
base change, there is a finite complex

K• = (0 → K0 → K1 → · · · → Kg → 0)

of finitely generated free A-modules such that

Hi(K•) ∼= Rip23,∗M |(s,eX ) ∼= Rip∗MA = Hi(X × Spec A, MA),

where g = dim X = dim O. This is crucial in the computation of cohomology groups of P and
OX .33

Lemma 12.5. Let O be a regular local ring of dim g, and

0 → K0 → · · · → Kg → 0

be a complex of finitely generated free O-modules. If Hi(K•) are artinian O-modules, we have
Hi(K•) = 0 for each 0  i < g.

Resume on. By this lemma, we see that Rip23,∗M = 0 for each 0  i < g, and we get an exact
sequence of A-modules:

0 → K0 → · · · → Kg → N → 0
such that N = (Rgp23,∗M )(s,eX ) ∼= Hg(X × S × X, M ) which is a free B-module.

Now we apply HomA(·, A) to the complex K•, and get another complex
K• = (0 → Kg → · · · → K0 → 0)

and by the lemma above, we get an exact sequence

0 → Kg → · · · → K0 → K → 0

of A-modules. Since
H0(K• ⊗A k) ∼= H0(X × {s} × {e X}, M |X×{s}×{eX })

∼= k = Ker(K0 ⊗A k → K1 ⊗A k),

33Exercise: we only know K• should be bounded by the theorem. Why is it bounded on [0, g]?



62 WENHAN DAI

we see K ⊗A k = Ker( K1 ⊗A k → K0 ⊗A k) is 1-dimensional over k. Thus, for some ideal I, there
is an isomorphism of A-modules K ∼= A/I. Then one can show the closed subscheme ΓS of S× X
is the closed subscheme of Spec A defined by the ideal I and the map B → B ⊗k O = A → A/I

is an isomorphism. In other words, the composite ΓS ↩→ S × X p1−→ S is an isomorphism. So
we get a morphism

φ : S
∼−→ ΓS

p2−→ X
which is the unique morphism we need. □

The importance of the proof is that it helps us to compute the cohomology groups of P and
OX .

Corollary 12.6. As for the cohomology groups of P , we have

Hi(X × X, P ) =


0, i ∕= g = dim X;
k, i = g = dim X.

Proof. In the previous proof, we take S = Spec k and L is trivial. So that

Hn(X × X, P ) ∼= Hn(K•), n  0.

In this case ΓS = Spec k and φ : S → X is given by e X . Thus, K ∼= k and we have an exact
sequence of A-modules:

0 → Kg → Kg−1 → · · · → K0 → k → 0,

i.e., K• is a free resolution of k. Since O = OX,eX
is a regular local ring of dimension g, the

O-module k has a standard resolution by free O-modules that is called the Koszul complex L•
and is defined as follows.

Let (x1, . . . , xg) be a system of generators of O. Take

Lk := free O-modules with basis {ei1···ik
| 1  i1 < i2 < · · · < ik  g},

and the differentials

dk : Lk −→ Lk−1, ei1···ik
−→

k

l=1
(−1)lχil

e
i1···il···ig

.

Then we have a resolution

0 → Lg → Lg−1 → · · · → L0 → k → 0

of k. Hence L• is homotopic to K• as chain complexes. Therefore,

Hi(X × X, P ) ∼= Hi(K•) ∼= Hg−i(L•) =


0, i ∕= g;
k, i = g.

For more details, see [Mat80, §18]. □

Corollary 12.7. Let g = dim X. Then

dimk Hp(X, OX) =


g

p


.

Proof. Using the same notation as in the proof of Corollary 12.6 above. We have

Hp(X, OX) ∼= Hp(K• ⊗A k) ∼= Hp(L• ⊗A k) = Lg−p.

Hence
dimk Hp(X, OX) =


g

g − p


=


g

p


.

□



ABELIAN VARIETIES 63

Corollary 12.8. There is a canonical isomorphism between the tangent space at e X on X and
H1(X, OX). That is,

Lie X ∼= H1(X, OX).
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