
INTEGRAL MODELS OF SHIMURA VARIETIES OF ABELIAN TYPE

LECTURES BY MARK KISIN

These are notes expanded from three lectures by Mark Kisin at Clay Mathematical Institute.
We mainly focus on Shimura varieties of abelian type. The note-taker claims the responsibility
of all mistakes while disclaiming any originality.
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1. Introduction to Shimura varieties

1.1. Moduli space of elliptic curves. The starting point lies in the case of modular curves
with standard setups. Let X be the GL2(R)-conjugacy class whose representative is the map
h0 : C× → GL2(R) defined by h0(a + bi) =

󰀃
a −b
b a

󰀄
. Geometrically, one can check via taking the

orbit of the point i that X consists of points in the upper and lower half planes. If we write Af

for the finite adeles over Q, then, for any compact open subgroup K ⊂ GL2(Af ),

XK = GL2(Q)\X × GL2(Af )/K

is a modular curve. If we identify X with C − R as sets, then each point h ∈ X, representing a
map h : C× → GL2(R), is in correspondence with some τh ∈ C − R. This procedure defines a
lattice Z + Zτh ⊂ C ≃ R2 by τh, which is isomorphic to Z2. Then we obtain an elliptic curve
Eh = R2/(Z + Zτh). It turns out that the modular curve XK parametrizes elliptic curves with
extra level structures, and hence admits a moduli interpretation.

To describe the extra level structure in implication, we concern about elliptic curves. For any
elliptic curve E over C, define its global Tate module to be

󰁥T (E) := lim←−
n

E[n].

This is indeed a Z-module. Also, we write the rational global Tate module as
󰁥V (E) := 󰁥T (E) ⊗Z Q.
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As a remark, the name “global” is in the sense that the projective limit defining 󰁥T (E) is taken
through all integer torsions. Rather, we may consider the (rational) local Tate module at p as a
Zp-module in the following:

Tp(E) := lim←−
m

E[pm], Vp(E) := Tp(E) ⊗Zp
Qp.

To each (h, g) ∈ X × GL2(Af ) we attach Eh considered up to isogeny and

󰂃h,g : 󰁥V (Eh) ∼−→ A2
f

g−→ A2
f (mod K).

Note that (h, g) lies in a unique orbit up to the action of GL2(Q) in X × GL2(Af )/K, and the
pair (Eh, 󰂃h,g) depends only on the image of (h, g) in XK.

1.2. Moduli space of polarized abelian varieties.

1.2.1. Siegel modular variety. Let V be a vector space over Q equipped with an alternating
pairing ψ : V × V → Q, that is, a Q-bilinear map such that V ∼= V ∗ = HomQ(V,Q) and
ψ(v, v) = 0 for all v ∈ V . Take G = GSp(V, ψ) and let X = S± be the Siegel double space; the
points of X are parametrized by maps h : C× → GSp(VR, ψ) = GR}, satisfying that:

(i) There is a Hodge decomposition VC = V −1,0 ⊕ V 0,−1, for which V p,q is the C-vector
space consisting of all v ∈ VC such that z · v = z−pz−q for each z ∈ C.

(ii) The symmetric pairing

VR × VR −→ R, (x, y) 󰀁−→ ψ(x, h(i)y)

is definite.
The following fact would be useful:

⋄ If VZ ⊂ V is a Z-lattice and h ∈ S±, then V −1,0/VZ is a polarized abelian variety.
This leads to an interpretation of ShK(GSp, S±) as a moduli space for polarized abelian varieties
with level structure.

1.2.2. Shimura varieties and the canonical adelic interpretation. To understand §1.2.1, we take
a review on Shimura varieties. Let G be a connected reductive group over Q and X a conjugacy
class of maps of algebraic groups over R, whose elements are written as

h : S = ResC/R Gm −→ GR.

Here ResC/R denotes the Weil restriction. On real points, h appears to be

h : C× −→ G(R).

We assume that the pair (G, X) is a Shimura datum defined below.

Definition 1.1. The pair (G, X) is a Shimura datum if the following three axioms are satisfied.
(SV1) The action on C× on Lie GC by conjugation is via the characters

z 󰀁−→ zz−1, 1, z−1z.

That is, Lie GC carries a Hodge structure of weights {(−1, 1), (0, 0), (1, −1)}; or equiva-
lently, Lie GC admits the Hodge decomposition

Lie GC = (Lie GC)−1,1 ⊕ (Lie GC)0,0 ⊕ (Lie GC)1,−1

(see also the Hodge decomposition of condition (i) in §1.2.1).
(SV2) The image h(i) is a Cartan involution, meaning that twisting the real structure on G by

h(i) gives the compact form of GR. (Indeed, (SV1) implies h(−1) is central, and hence
h(i) acts by an involution.)

(SV3) The map h : S → GR is nontrivial in each factor of Gad
Q .

For us, the consequences of (SV1)–(SV3) in Definition 1.1 will be more important. To continue
on, let K ⊂ G(Af ) be a compact open subgroup. We obtain the following theorem.
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Theorem 1.2 (Baily–Borel, complex uniformization). When K is small enough in certain sense,
ShK(G, X) = G(Q)\X × G(Af )/K

has a natural structure of an algebraic variety over C.

In fact, ShK(G, X) has a canonical model over a number field E = E(G, X); here E is called
the reflex field. In particular, the reflex field does not depend on K, by the work of Shimura,
Deligne, etc.. This is a partial reason to why Shimura varieties are central objects in arithmetic
geometry and number theory. In the present notes, we will again denote by ShK(G, X) this
canonical model as an algebraic variety over E(G, X).

Another essential fact is about the independence of conjugacy classes. More precisely, each
h naturally induces a complex map hC : S(C) → GC, and we define

µh : C× z 󰀁→z×1−−−−−−→ C× × C× = S(C) hC−−−→ GC.

However, whereas µh is defined through h explicitly, the conjugacy class of µh does not depend
on h. Further, E(G, X) is exactly the field of definition of this conjugacy class.

1.2.3. Abelian varieties with Hodge structure. Heuristically, Shimura varieties can be regarded
as moduli spaces of abelian motives. In particular, they carry variations of the Hodge structure.

Fix a Q-vector space V . For any Shimura datum (G, X), if G → GL(V ) is a representation
of G, we might get a morphism of E-varieties:

V = G(Q)\V × X × G(Af )/K −→ ShK(G, X).
Moreover, if s = (h, g) ∈ ShK(G, X), then

h : C× −→ G(R) VR

gives a bigrading of the fiber Vs. More explicitly,

Vs ⊗E C =
󰁐

p,q

V p,q

and for any v ∈ V p,q, the action of h(z) is given by
h(z)v = z−pz−qv.

The condition that C× acts on Lie GC via the characters
z 󰀁−→ zz−1, 1, z−1z

implies Griffiths transversality. Recall that the point s corresponds to an abelian variety in the
moduli space ShK(G, X). We want to figure out the extra structure carried by the complex
fiber Vs ⊗ C.

Consider a morphism G → G′ of reductive groups, inducing X → X ′, and hence a morphism
(G, X) → (G, X ′) of Shimura data. When G ↩→ G′, it further leads to

ShK(G, X) ↩−→ ShK′(G′, X ′)
for suitable K, K′. Resume on our prescribed constructions, if (G, X) ↩→ (GSp(V, ψ), S±) as
before, then

ShK(G, X) ↩−→ ShK′(GSp, S±)
and the LHS carries a family of abelian varieties, which are equipped with a collection of Hodge
cycles: Let

V ⊗ :=
󰁐

n,m

V ⊗n ⊗ V ∗⊗m.

Then G ⊂ GSp(V, ψ) is the stabilizer of a collection of tensors {sα} ⊂ V ⊗. Each sα is fixed by
G and hence by h(C×) for h ∈ X, namely,

sα ∈ V ⊗ ∩ (V ⊗
C )0,0.

So the family of abelian varieties on ShK(G, X) carries a collection of Hodge cycles coming from
the sα.
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Definition 1.3. A Shimura datum (G, X) is of Hodge type if the family of abelian varieties on
ShK(G, X) carries a collection of Hodge cycles. Further, if these extra structures can be taken
to be endomorphisms of the abelian variety, then (G, X) is called of PEL type.
Example 1.4. Let W be a Q-vector space with a quadratic form such that

SO(W )R = SO(n, 2).
There is a Shimura datum (SO(W ), X), satisfying that for each h ∈ X,

Cent(h) = SO(n) × SO(2) ⊂ SO(W )R.

One has an extension
1 −→ Gm −→ CSpin(W ) −→ SO(W ) −→ 1

and
(SO(W ), X) ↩−→ (CSpin(W ), X ′) ↩−→ (GSp(V ), S±)

with dim V = 2n+1. For varying n,
◦ When n = 19, the Shimura variety ShK(SO(W ), X) carries a family of K3 surfaces.
◦ When n is general, the motivic meaning is unclear.

Here, (SO(W ), X) is an example of a Shimura datum of abelian type, which is a “quotient” of
the one of Hodge type.
Definition 1.5. A Shimura datum (G, X) is called of abelian type if there exists a datum
(G′, X ′) of Hodge type and a morphism G′der → Gder inducing

(G′ad, X ′ad) −→ (Gad, Xad).
The Shimura data of abelian type include almost all (G, X) with G being a classical group.

We have certain approaches to relate a Shimura datum of abelian type to the moduli space of
abelian varieties with extra structure beyond Hodge structure.

1.3. Arithmetic properties of Shimura varieties. We are interested in ShK(G, X)(Fp),
the so-called special fiber carrying arithmetic information. Here are some applications and
motivations to investigate it.

(a) Compute the Hasse–Weil zeta function of ShK(G, X) in terms of automorphic L-functions
(Langlands).

(b) Arakelov intersection theory à la Gross–Zagier and Kudla: This relates the intersection
theory of arithmetic cycles on ShK(G, X) to special values of derivatives of L-functions.

(c) Honda–Tate theory: Every abelian variety over Fp is isogenous to the reduction of a
CM abelian variety. Can we control ShK(G, X)(Fp) in terms of CM points? (This turns
out to be an input into (a)).

(d) Testing ideas about motives over Fp.

2. Integral models of abelian type

As before we assume G is a connected reductive group over Q. Suppose now G has a reductive
model GZp over Zp, called the integral model of G.

Let K = KpKp, where Kp = GZp
(Zp) is the hyperspecial subgroup; choose Kp ⊂ G(Ap

f ) as a
compact open subgroup.

2.1. Existence of integral models of abelian type.

Conjecture 2.1 (Langlands–Milne). If Kp is hyperspecial and λ | p is a prime of E = E(G, X),
then there is a smooth OEλ

-scheme SK(G, X) extending the E-scheme ShK(G, X), such that
the G(Ap

f )-action on
ShKp

(G, X) = lim←−
Kp

ShKpKp(G, X)

extends to
SKp(G, X) = lim←−

Kp

SKpKp(G, X),
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and SKp(G, X) satisfies the following extension property:
◦ If the ring R is regular and formally smooth over OEλ

, then

SKp(G, X)(R) ∼−→ SKp(G, X)(R[1/p]).

Hyperspecial Kp subgroups exist if and only if G is quasi-split at p and split over an unramified
extension. This implies Kp is maximal compact. Usually, one can only expect smooth models
in this case.

Example 2.2 (Siegel case). Take (G, X) = (GSp, S±), defined by (V, ψ) as above. Let VZ ⊂ V
be a Z-lattice, and Kp the stabilizer of

VZp = VZ ⊗Z Zp ⊂ V ⊗ Qp.

In this case, Kp is hyperspecial if and only if a scalar multiple of ψ induces a perfect Zp-valued
pairing on VZp

. (Note that the existence of such a perfect pairing is equivalent to the splitting
of G at p.) Then

Kp = GSp(VZp , ψ)(Zp),
the maximal compact subgroup of GQp . The choice of VZ makes ShK(GSp, S±) as a moduli
space for polarized abelian varieties, which leads to a model SK(GSp, S±) over O(λ).

The integral models SK(GSp, S±) are smooth over O(λ) if and only if the degree of the
polarization in the moduli problem is prime to p. This corresponds to the condition that ψ
induces a perfect pairing on VZp .

The extension property for SKp(GSp, S±) with hyperspecial Kp is motivated as follows. If R
is an OEλ

-algebra, and A an abelian scheme over R, set

󰁥V p(A) =
󰀣

lim←−
p∤n

A[n]
󰀤

⊗ Q.

This is a (pro-)étale group scheme. Attached to x ∈ SKp
(GSp, S±)(R) one has an abelian

scheme Ax/R and an isomorphism

󰂃x : 󰁥V p(Ax) ∼−→ V ⊗Q Ap
f .

(a) Let R be a mixed characteristic discrete valuation ring, and x ∈ SKp
(GSp, S±)(R[1/p]).

Let K be an algebraic closure of K = R[1/p]. The existence of 󰂃x implies Gal(K/K)
acts trivially on 󰁥V p(Ax), and in particular, so does the inertia subgroup. This implies
Ax has good reduction (Néron–Ogg–Shafarevich), so x extends to an R-point.

(b) If R is regular and formally smooth over OEλ
, one can use the same argument as in (a)

to draw the same conclusion.

Theorem 2.3 (Existence of integral models). If p > 2, Kp is hyperspecial, and (G, X) is of
abelian type, then ShKp(G, X) admits a smooth integral model

SKp(G, X) = lim←−
Kp

SKpKp(G, X)

as in Conjecture 2.1.

Kottwitz’s work contains many arguments about this result in PEL cases. In the case of
Hodge type, SKp

(G, X) is given by taking the normalization of the closure of

ShKp
(G, X) ↩−→ ShK′

p
(GSp, S±) ↩−→ SK′

p
(GSp, S±)

into a suitable moduli space of polarized abelian varieties. The idea of such a construction
goes back to Milne, Faltings, Vasiu, etc.. The difficulty is to show that the resulting scheme is
smooth. This uses deformation theory of p-adic divisible groups, which can be viewed as p-adic
analogues of Hodge structures of weight 1.
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2.2. Compactification of integral models of abelian type.

Theorem 2.4 (Madapusi Pera). Under the same assumptions as in Theorem 2.3, SKp(G, X),
which is of abelian type, has good toroidal and minimal compactifications.

Remark 2.5. When (G, X) is of PEL type, another version of Theorem 2.4 is due to Kai-Wen
Lan.

Theorem 2.6 (Kisin–Pappas). Good (but not smooth in general) models exist when p > 2, Kp

is parahoric, and GQp
splits over a tamely ramified extension of Qp.

2.3. The idea to prove Theorem 2.3. We sketch out the ideas in proving the main theorem
on existence of integral models when (G, X) is of Hodge type.

Constructing the integral model from the Siegel model. In this case, we have the embedding of
Shimura data

(G, X) ↩−→ (GSp(V, ψ), S±).
Then SK(G, X) is the normalization of the closure of the image of

θ : ShK ↩−→ ShK′(GSp, S±) ↩−→ SK′(GSp, S±),

where SK′(GSp, S±) is an integral model of ShK′(GSp, S±), called the Siegel integral model,
obtained from its interpretation as a moduli space of polarized abelian varieties. Here we write
K′ = K′

pK′p, where K′
p ⊂ GSp(VQp

) is the stabilizer of a lattice VZp
⊂ VQp

. In fact, there is a
“faithful representation”

GZp
↩−→ GL(VZp

)
due to the work of Prasad–Yu. Moreover, the limit process

SKp
(G, X) := lim←−

Kp

SKpKp(G, X)

is G(Ap
f )-equivariant, and SKp(G, X) satisfies the extension property as well as SK′

p
(GSp, S±)

does.

Smoothness of the integral model. To deduce Conjecture 2.1, we are going to show that SK(G, X)
is a smooth OEλ

-scheme. The following is the main idea:
⋄ Describe the local structure of SKp

(G, X) in terms of moduli of “p-adic Hodge struc-
tures”, or more precisely, p-divisible groups.

2.4. Hodge cycles. Let E(G, X) ⊂ K ⊂ C be a field, and fix a point

x ∈ ShK(G, X)(K) ↩−→ ShK′(GSp, S±)(K).

Then x gives rise to a polarized abelian variety A = Ax over K. Here the embedding represen-
tation G ↩→ GL(V ) is defined by a collection of tensors {sα} ∈ V ⊗. We have seen in §1.2.3 that
these give rise to Hodge cycles

sα,x ∈ H1(AC,Q)⊗ = H1(AC,Q)⊗,

and hence, using the comparison between étale and singular cohomology, to

sα,x,ℓ ∈ H1
et(AK ,Qℓ)⊗ ∼−→ H1(AC,Q)⊗ ⊗Q Qℓ

for any prime ℓ. In this cohomology comparison, the Qℓ-vector space H1
et(AK ,Qℓ) is naturally

equipped with an action of Gal(K/K).

Theorem 2.7 (Deligne, Hodge implies absolute Hodge). The ℓ-adic Hodge cycles

sα,x,ℓ ∈ H1
et(AK ,Qℓ)⊗

are fixed by Gal(K/K).
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This is motivated by the Hodge conjecture which predicts that the sα,x,ℓ are the classes of
algebraic cycles, so would at least be fixed by an open subgroup Gal(K/K). Now let VZ(p) =
VZp

∩V ⊂ VQp
, a Z(p)-lattice in V . Choose {sα} ⊂ V ⊗

Zp
such that GZp

⊂ GL(VZp
) is the stabilizer

of {sα}. For ℓ = p, the tensors

sα,x,p ∈ H1
et(AK ,Qp)⊗ Gal(K/K)

are Gal(K/K)-invariant.
Now suppose K is a finite extension of Eλ with the residue field k. Assume Ax has good

reduction, so that x reduces to a point x ∈ ShK(G, X)(k). Take

H1
et(Ax,K ,Zp) Gal(K/K) and H1

cris(Ax/W (k)) ϕ

where ϕ denotes the absolute Frobenius action. In the crystalline cohomology, W (k) is the
ring of Witt vectors on k. For this, in classical p-adic Hodge theory, one has Fontaine’s p-adic
comparison isomorphism

Φ : H1
et(Ax,K ,Zp) ⊗Zp Bcris

∼−→ H1
cris(Ax/W (k)) ⊗W (k) Bcris,

which is the analogue of the de Rham isomorphism. The coefficient ring Bcris is a K0 =
W (k)[1/p]-algebra with an action of Gal(K/K) and ϕ. Along Φ,

H1
et(Ax,K ,Zp)⊗ ∋ sα,x,p 󰀁−→ sα,x,0 ∈ H1

cris(Ax/W (k)) ⊗ Qp,

which is invariant by ϕ and lands in Fil0 Attached to Ax, we have a Néron model 󰁨Ax, which is
the “integral model” of Ax, i.e., the abelian scheme over OK extending Ax. Define

Gx := lim−→
n

󰁨Ax[pn].

This package (containing H1
et(Ax,K ,Zp), H1

cris(Ax/W (k)), and Gx) is the p-adic analogue of a
Hodge structure of weight 1. To equip our integral p-adic Hodge structure with a “G-structure”
and consider its deformations, one needs the following.
Lemma 2.8 (Key lemma). We have

{sα,x,0} ⊂ H1
cris(Ax/W (k))⊗,

and the group fixing the sα,x,0 is a reductive subgroup
GW (k) ⊂ GL(H1

cris(Ax/W (k))).
This lemma 2.8 lets us do two things:
(1) The sα extend to integral sections of the de Rham cohomology of the universal family

A −→ SK(G, X).
(2) One can define a deformation space of “p-divisible groups with G-structure”, and show

it is smooth (worked out by Faltings).
Then using (1), one can identify this deformation space with the completion of SK(G, X) at x.

2.5. p-adic Hodge theory. For the proof of Lemma 2.8 we need some techniques from p-adic
Hodge theory.
Definition 2.9. A crystalline Zp-representation is a finite free Zp-module L equipped with an
action of Gal(K/K), such that

dimK0(L ⊗ Bcris)Gal(K/K) = rankZp L.

Here one always has 󰃑 above. Denote Repcris
Zp

the category of crystalline Zp-representations.
Example 2.10. By definition, we immediately see that

L = H1
et(Ax,K ,Zp)

is a crystalline Zp-representation. Actually, all the crystalline Zp-representations we work with
will arise from this L by tensor operations.
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Fix a uniformizer π ∈ K. Let E(u) ∈ W (k)[u] be the Eisenstein polynomial for π. Set
S = W (k)[[u]] equipped with a Frobenius ϕ acting as the usual Frobenius u 󰀁→ up on W (k).

Definition 2.11. Let Modϕ
/S denote the category of finite free S-modules M equipped with a

Frobenius semi-linear isomorphism

1 ⊗ ϕ : ϕ∗(M)[1/E(u)] ∼−→ M[1/E(u)].

We have the following “Black (magic) Box” theorem.

Theorem 2.12. There exists a fully faithful tensor functor

M : Repcris
Zp

Modϕ
/S

L M.

If we write M = M(L), then
(1) There is a canonical isomorphism

Dcris(L) := (L ⊗ Bcris)Gal(K/K) ∼−→ (M/uM)[1/p],

compatible with Frobenius.
(2) There is a canonical isomorphism

O󰁥Eur ⊗Zp
L

∼−→ O󰁥Eur ⊗S M,

where O󰁥Eur is a faithfully flat and formally étale 󰁥S(p)-algebra.
(3) If L = H1

et(Ax,K ,Zp), then

ϕ∗(M/uM) ∼−→ H1
cris(Ax/W (k)).

Remark 2.13. The functor M is still somewhat mysterious. It is constructed using p-adic Hodge
theory. (But see Scholze’s final talk.)

Proof of Key Lemma 2.8. We apply the above theory with

L = H1
et(Ax,K ,Zp).

Recall that GZp
⊂ GL(L) is the reductive group defined by {sα,x,p}. We may view the sα,x,p as

morphisms sα : 1 → L⊗ in Repcris
Zp

. Applying the functor M we obtain morphisms 󰁨sα : 1 → M⊗

in Modϕ
/S. Specializing the (󰁨sα) at u = 0 gives

sα,x,0 ∈ ϕ∗(M/uM)⊗ ∼−→ H1
cris(Ax)⊗,

which gives the first part of the lemma.
For the second part, we have to show GS ⊂ GL(M) defined by the (󰁨sα) is reductive. Let

M′ = L ⊗ S and
P ⊂ HomS(M′,M)

the subscheme of isomorphisms between M′ and M taking sα,x,p to 󰁨sα. The fibers of P are
either empty or a torsor under GZp . We know the sα,x,p define a reductive subgroup in GL(L)
by assumption, so it suffices to show that P is a GZp -torsor; but all such torsors are trivial
(Lang’s lemma). So we have to show that P is flat over S with non-empty fibers.

Claim. P = HomS,sα
(M′,M) ⊂ HomS(M′,M) is a GZp -torsor.

For R any S-algebra, we set PR = P ×Spec S Spec R.
Step I (PS(p) is a GZp -torsor). For this, using Theorem 2.12(2),

O󰁥Eur ⊗Zp
L

∼−→ O󰁥Eur ⊗S M,

and thus PO󰁥Eur
is a trivial GZp -torsor. Since O󰁥Eur is faithfully flat over 󰁨S(p) and S(p), we see

PS(p) is a GZp -torsor.
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Step II (PS[1/pu] is a GZp -torsor). Let U ⊂ SpecS[1/up] be the maximal open subset over
which P is flat with nonempty fibers. By Step I, U contains the generic point, so the complement
SpecS[1/p]\U is finite. Since the 󰁨sα are ϕ-invariant, and ϕ∗(M)[1/E(u)] ∼−→ M[1/E(u)], we
have

PS[1/E(u)]
∼−→ ϕ∗(PS[1/E(u)]).

For each y ∈ U ,
(i) If ϕn(y) ∕= (E(u)) for all n 󰃍 0, then ϕn(y) /∈ U by descent.
(ii) If (E(u)) ∕⊂ ϕ−n(y) for all n 󰃍 1, then ϕ−n(y) /∈ U .

Note that one of these conditions always holds, which contradicts finiteness.
Step III (PK0 is a GZp -torsor, where S → K0 = W (k)[1/p] via u 󰀁→ 0). Known that

Dcris(L[1/p]) = M/uM[1/p], we obtain the isomorphism

L ⊗ Bcris
∼−→ Bcris ⊗ M/uM.

Step IV (PK0[[u]] is a GZp
-torsor). There is a canonical ϕ-equivariant isomorphism

M ⊗S K0[[u]] ∼−→ K0[[u]] ⊗K0 (M/uM)[1/p].

On the other hand, we can consider PK0[[u]]
∼−→ PK0 ⊗K0 K0[[u]], implying that PK0[[u]] is a

GZp
-torsor by Step III.

Step V (P is a GZp -torsor). So far we have proved that P is a torsor over
SpecS(p), SpecS[1/pu], Spec K0[[u]].

This covers U = SpecS − {closed points}. So P |U is a GZp -torsor. Consider

(GL(VZp
)/GZp

)(U) −→ H1(GZp
, U) −→ H1(GL(VZp

), U) = 0.

As GZp is reductive, GL(VZp)/GZp is affine, and a U -point of GL(VZp)/GZp extends to SpecS.
Hence any GZp

-torsor over U extends to SpecS, and is thus trivial. Therefore, P |U is trivial
and there is a M|U

∼−→ M′|U taking 󰁨sα to sα. Since any vector bundle over U has a canonical
extension to S, this implies that P is the trivial GZp

-torsor. □

3. Mod p special fibers of integral models

Suppose (G, X) is a Shimura datum of abelian type. Fix a hyperspecial subgroup Kp =
GZp(Zp) ⊂ G(Qp) and choose a compact open subgroup Kp ⊂ G(Ap

f ). Then for K = KpKp ⊂
G(Af ), the Shimura variety ShK(G, X) over E = E(G, X) arises with the complex uniformiza-
tion

ShK(G, X)(C) = G(Q)\X × G(Af )/K.

By Theorem 2.3 we have the G(Ap
f )-equivariant integral model

SKp(G, X) = lim←−
Kp

SKpKp(G, X)

of ShKp(G, X). This gives rise to a notion of when two points in SKp(G, X)(Fp) are isogenous.
Fixing a prime λ | p in E, we want to do the following.

Goal. We want to describe SKp(G, X)(Fp) as a set equipped with the action of
G(Ap

f ) and the Frobenius Φ of κ(λ).

To motivate the conjecture and results, suppose
(G, X) ↩−→ (GSp, S±)

is of Hodge type, so that SKp
(G, X) carries a family of abelian varieties equipped with certain

Hodge cycles.
If x ∈ SKp(G, X)(Fq) for some q = pr, then attach to Ax we have

sα,x,ℓ ∈ H1
et(Ax,Fp

,Qℓ)⊗, ℓ ∕= p,
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and
sα,x,0 ∈ H1

cris(Ax/W (Fq))⊗.

Here the sα,x,ℓ comes from the definition and the sα,x,0 is given by part of Key Lemma 2.8. For
ℓ ∕= p, the group H1

et(Ax,Fp
,Qℓ) is equipped with an action of Frobq; Frobq fixes the cycles sα,x,ℓ

and hence gives rise to an element γℓ ∈ G(Qℓ). The crystalline cohomology

H1
cris(Ax/W (Fq)) V ∗

Zp
⊗ W (Fq)

sα,x,0 sα

∼

is equipped with a semi-linear action of the absolute Frobenius which fixes the tensors sα,x,0
and hence gives rise to an element δ ∈ G(W (Fq)[1/p]).

Denote by σ the absolute Frobenius on G(W (Fq))[1/p]. Then δ is defined up to σ-conjugacy
by elements of G(W (Fq)), say

δ 󰀁−→ g−1δσ(g),
and satisfies

δ ∈ G(W (Fq)) · µσ(p−1) · G(W (Fq)).
One knows that the characteristic polynomial of γℓ acting on H1

et(Ax,Fp
,Qℓ) does not depend

on ℓ, and there is a similar compatibility with
γp = δσ(δ) · · · σr−1(δ).

That is, the γ’s are conjugate in GL(V ). One might further aks whether they are conjugate in
G; this turns out to be true, but it is not immediately obvious.

3.1. Isogeny classes and special locus. Let x, x′ ∈ SKp(G, X)(Fp).

Definition 3.1. We say Ax, Ax′ are isogeneous if there exists an isomorphism in the isogeny
category

Ax Ax′

sα,x′,ℓ sα,x,ℓ

∼

for both ℓ ∕= 0 and ℓ = 0.

More generally, if R is a Q-algebra, one can consider
Isogsα

(Ax, A′
x)(R) := {ι ∈ HomQ(Ax, Ax′)× : ι respects the sα}.

Then Isogsα
(Ax, Ax′) is a Q-scheme for any sα; glue up all these to have the Q-scheme

Isog(Ax, Ax′). When x = x′ we get a Q-group
Ix := Isog(Ax, Ax).

The Tate conjecture suggests (which will proved later) that
Ix ⊗Q Qℓ

∼−→ Gγℓ

for each ℓ (and ℓ = p in particular). However, this looks like a little bit of a miracle.

Definition 3.2 (Special locus). A point of (h, g) ∈ ShKp(G, X)(C) is called special if h : C× →
G(R) factors through T (R), where T ⊂ G is a subtorus defined over Q.

h : C× G(R)

T (R)

Note that the special points on ShKp
(G, X)(C) correspond to CM abelian varieties. The

following is the structure theorem of special fibers, dictating that the isogeny class of each mod
p point contains the reduction of a special point.

Theorem 3.3 (Kisin, Madapusi Pera, Shin). Suppose GQp is quasi-split. Then any x ∈
SK(G, X)(Fp) is isogenous to the reduction of a special point.
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Remark 3.4. When (G, X) is of PEL type, another version of Theorem 3.3 is due to Kottwitz
and Zink.

3.2. The Langlands–Rapoport conjecture. The idea is to describe the set of isogeny classes,
and then the points in each isogeny class. One has the following result, conjectured by Kottwitz
and Langlands–Rapoport in greater generality.

Heuristically, in the following the φ parameterize “G-isogeny classes”, while the S(φ) param-
eterize the points in a given isogeny class. We will indicate the definition of the φ and then
explain the definition of S(φ). The definition of the φ involves the fundamental groupoid P
of the category of motives over Fp. Then PQ is a pro-torus. The φ run over representations
φ : P → G satisfying certain conditions.

It is easier to explain some invariants which can be attached to each φ. The idea is that one
can attach to each isogeny class the conjugacy class of Frobenius, as for abelian varieties above.

Construction 3.5. Fix an integer r ≫ 0. Then what attached to φ is a triple
(γ0, (γℓ)ℓ ∕=p, δ),

where
• γ0 ∈ G(Q) is semi-simple, defined up to conjugacy in G(Q) (namely, up to stable

conjugacy).
• γℓ ∈ G(Qℓ) for each ℓ ∕= p is a semi-simple conjugacy class, stably conjugate to γ0 ∈

G(Qℓ).
• δ ∈ G(Fr W (Fpr )) is an element defined up to Frobenius conjugacy δ 󰀁→ g−1δσ(g) (where

σ is the absolute Frobenius) such that Nδ = δσ(δ) · · · σr−1(δ) is stably conjugate to γ0.
The data is required to satisfy certain conditions (corresponding to those on the φ). Notice that
the compatibility between the γℓ for abelian varieties is built in here. Using these, we can define
S(φ).

Definition 3.6.
S(φ) := lim←−

Kp

Iφ(Q)\Xp(φ) × Xp(φ)/Kp.

The expression on the right is purely group theoretic, in the sense that it does not involve
any algebraic geometry. As a set, each coproduct component S(φ) := Iφ(Q)\Xp(φ) × Xp(φ) is
intended to correspond to the points in a fixed isogeny class in the left side. Here

• Xp(φ) is the set of p-power isogenies, which can be identified with a subset of G(Qur
p )/GZp(Zur

p ).
• Xp(φ) ∼−→ G(Ap

f ) is the G(Ap
f )-torsor of prime-to-p isogenies.

• Iφ(Q) is an algebraic group over Q; when SKp(G, X) is a moduli space for abelian
varieties, Iφ corresponds to automorphisms of the abelian varieties (up to isogeny) with
extra structure; modulo the center, Iφ is a compact form (in the sense of modulo ZG) of
the centralizer Gγ0 , where γ0 ∈ G(Q) corresponds to the conjugacy class of Frobenius.

Moreover, we can make Xp(φ) more explicit. Recall that S(φ) is meant to parametrize points
in a fixed isogeny class. Let OL = W (Fp) and L = Fr OL. Then we have

Xp(φ) = {g ∈ G(L)/G(OL) : g−1δσ(g) ∈ G(OL)µσ(p−1)G(OL)},

where µ : Gm → G is a cocharacter attached to h ∈ X. The defining condition above corresponds
to a group theoretic version of the usual condition on the shape of Frobenius on the Dieudonné
module of a p-divisible group.

Theorem 3.7. Suppose p > 2, Kp is hyperspecial, and (G, X) is of abelian type. There is a
bijection

SKp(G, X)(Fp) ∼−→
󰁤

φ

Iφ(Q)\Xp(φ) × Xp(φ) =
󰁤

φ

S(φ),

compatible with the Frobenius action and the G(Ap
f )-action. The isomorphism is up to conju-

gating the action of Iφ(Q) by an element of Iad
φ (Af ).
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Remark 3.8. The coproduct
󰁣

φ S(φ) can be an infinite disjoint union, not the stratification in
the sense of algebraic geometry.

3.3. p-isogenies. Consider the Shimura datum (G, X) of Hodge type. We want to recognize
the difficulties compared to the PEL type (at least in understanding Theorem 3.7).

(1) Suppose x ∈ SKp
(G, X)(Fp) so that we obtain the associated abelian variety Ax. Note

that if g ∈ Xp(δ) then gx is followed by Agx. However, it is not clear that whether
gx ∈ SKp(G, X)(Fp) or not, because this is defined as a closure and has no easy moduli
description. So it is not clear if there is a map

Xp SKp(G, X)

g Agx.

(2) Given x ∈ SKp
(G, X)(Fp), we may fetch the tuple (δ, (γℓ)ℓ ∕=p). However, the existence

of γ0 in Construction 3.5 is not clear: it is not known that the γℓ’s are stably conjugate.
(3) Even once one has a (conjectural) map

Xp × G(Ap
f ) SKp(G, X)

g Agx,

it is not clear that the stabilizer of a point is a compact form of Gγ0 modulo ZG.
So we need to know that the group

Ix = Aut(Ax, (sα))
defined earlier is big enough. In the PEL case one can deduce this from Tate’s theorem.

The following are some resolutions of (1)–(3).
Step I (The existence of Xp = Xp(φ) → SKp(G, X)).
We are to solve (1). Let x ∈ SKp(G, X)(Fp) and choose x̃ ∈ SKp(G, X)(Qp) lifting x. Then

G(Qp) SKp
(G, X)(Qp)

x̃ gx̃.

Reduction of isogenies mod p gives a map
G(Qp) Xp

g g0.

For g ∈ G(Qp), define the map Xp → SKp
(G, X)(Fp) at g0 by sending g0 to the reduction of

gx̃.
On the other hand, elements of Xp(φ) are not usually of the form g0. But Xp(φ) has a

“geometric structure” and that x̃ can be chose so that the composite map
G(Qp) −→ Xp(φ) −→ π0(Xp(φ))

is surjective. (This uses the joint work by Mark Kisin, Miaofen Chen, and Emma Viehmann,
describing π0(Xp(φ)) explicitly.) So

Xp −→ SKp(G, X)
is well-defined at some point in every connected component. (The map is well-defined on a
connected component once it is defined at a point. This is a deformation-theoretic argument.)

Step II (Tate’s theorem redux).
To solve (3) that Ix is big enough, one uses a geometric argument. For ℓ ∕= p define a group

Iℓ over Qℓ by
Iℓ := AutFrobq (H1

et(Ax,Fp
,Qℓ), sα,x,ℓ).

Recall that
I = Ix = AutQ(Ax, sα,x,?), ? ∈ {ℓ, 0}

where ℓ ∕= p.
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Theorem 3.9 (Tate). For ℓ ∕= p we have

I ⊗Q Qℓ
∼−→ Iℓ.

Proof. Fix a compact open Kℓ ⊂ G(Qℓ). Then we have the following:

I(Q)\Iℓ(Qℓ)/(I(Qℓ) ∩ Kℓ) I(Q)\G(Qℓ)/Kℓ

SK(G, X)(Fq) SK(G, X)(Fp).

⊂

⊂

The finiteness of the target of the left vertical map implies that

|I(Q)\Iℓ(Qℓ)/(I(Qℓ) ∩ Kℓ)| < ∞,

which is the first ingredient used by Tate. It follows that

I(Qℓ)\Iℓ(Qℓ) is compact.

Now we choose ℓ so that Iℓ is a split group (use the compatible system — this choice of ℓ is also
made by Tate). The theorem follows from the following.

Fact (Bruhat–Tits). Let I ′ be a connected algebraic group over Qℓ whose
reductive quotient is split. If I ⊂ I ′ is a closed subgroup such that I(Qℓ)\I ′(Qℓ)
is compact, then I contains a Borel subgroup of I ′.

For q = pr with r ≫ 0, Iℓ is connected. By the fact (with I ′ = Iℓ) we see IQℓ
\Iℓ is projective.

As I is reductive, IQℓ
\Iℓ is also affine and connected, hence a point. □

From the proof above we easily get the result for all q and the theorem is proved for a set of
primes ℓ of positive density. Also,

rank I = rank Gγℓ
= rank G.

Using this, one can show the following.

Theorem 3.10. Every isogeny class in SK(G, X)(Fp) contains a point which admits a special
lifting.

Note that Theorem 3.10 implies the existence of γ0 stably conjugate to all γℓ. This solves
problem (2). Finally, this implies that dim Iℓ does not depend on ℓ, which gives for all ℓ that

I ⊗Q Qℓ
∼−→ Iℓ.

3.4. From Hodge type to abelian type. The process going from the Hodge case to the
abelian case involves the action of Gad(Q)+ on the tower

Sh(G, X) = lim←−
K

ShK(G, X) = lim←−
K

G(Q)\X × G(Af )/K.

Deligne showed that it is defined over E(G, X). For hyperspecial level Kp = GZp(Zp), one shows
that the action of Gad

Zp
(Zp) extends to SKp(G, X) by giving a moduli-theoretic description.

3.5. Twisting abelian varieties. Let A/S be an abelian scheme with an action of an affine
group scheme Z in the isogeny category. Let P be a Z-torsor, with affine ring OP. For an
S-scheme T we set

AP(T ) := (A(T ) ⊗Z OP)Z .

This turns out to be a sheaf represented by an abelian scheme, up to isogeny. There are two
ways to view this construction.

• If one thinks of A as some motivic fundamental group GMot corresponding to a repre-
sentation V , then Z acts on V and commutes with GMot, and AP corresponds to the
GMot-representation (V ⊗Q OP)Z .
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• This construction is related to the familiar one twisting a CM-elliptic curve by an ideal
in he ring of integers of its CM field. However, this last construction is trivial, up to
isogeny — it gives an isogenous elliptic curve.

We now describe the action of Gad(Q)+ when (G, X) is of Hodge type. Let x ∈ ShK(G, X)
and Ax the corresponding abelian variety. Then Ax is equipped with an action of ZG. If
γ ∈ Gad(Q)+ then the fiber of G → Gad over γ is a ZG-torsor Pγ . On underlying abelian
varieties, the action is given by Aγ(x) = APγ
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