
On Beilinson–Bloch conjecture for unitary Shimura varieties via Li–Liu

CHOW GROUPS AND L-DERIVATIVES OF AUTOMORPHIC MOTIVES
FOR UNITARY GROUPS: A SURVEY

Abstract. These notes are based on a talk by Chao Li at Columbia in 2021, and a lecture
series by Yifeng Liu at Franco–Asian Summer School of Arithmetic Geometry at CIRM in
2022. We survey the background of the joint work by Chao Li and Yifeng Liu [LL21, LL22]
on Beilinson–Bloch conjecture for unitary Shimura varieties. The first lecture by Chao Li is
for an introduction. The last three lectures by Yifeng Liu aim to propose (1) an introduction
to the theory of height pairings on higher dimensional algebraic varieties, which will lead to
an interpretation of L-derivatives, (2) representation theory of unitary groups, and (3) the
main results and the idea of the proofs.
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1. Introduction

1.1. Historical background with main conjectures.

1.1.1. Birch–Swinnerton-Dyer conjecture. Let E : y2 = x3+Ax+B be an elliptic curve over Q.
In the sense of Birch–Swinnerton-Dyer conjecture, we define

• The algebraic rank of E is the rank of the finitely generated abelian group E(Q), that
is,

ralg(E) := rankE(Q).

• The analytic rank of E is the order of vanishing of the L-function associated to E at
the central point s = 1, that is,

ran(E) := ords=1L(E, s).

Conjecture 1.1 (Birch–Swinnerton-Dyer, 1960s).
(1) (Rank part).

ran(E) = ralg(E).

(2) (Leading coefficient). For r = ran(E),

L(r)(E, 1)

r!
=

Ω(E)R(E)


p cp(E) · |X(E)|
|E(Q)tor|2

,

where
◦ R(E) = det(〈Pi, Pj〉NT)r×r is the regulator for the Néron–Tate height pairing

〈·, ·〉NT : E(Q)× E(Q) −→ R,

◦ X(E) is the Tate–Shafarevich group,
◦ Ω(E) is the Néron period integral of Néron differentials ωE along E(R), and
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◦ cp(E), called the local Tamagawa number, equals [E(Qp) : E
0(Qp)] for an elliptic

curve E0 arose by some local torsion condition.

The following remark is by Tate in The Arithmetic of Elliptic Curves, 1974.
“This remarkable conjecture relates the behavior of a function L at a point where
it is not at present known to be defined to the order of a group X which is not
known to be finite!”

The BSD conjecture is still widely open in general, but much progress has been made in the
rank 0 or 1 case.

Theorem 1.2 (Gross–Zagier, Kolyvagin, 1980s).

ran(E) = 0 =⇒ ralg(E) = 0, ran(E) = 1 =⇒ ralg(E) = 1.

Remark 1.3. When r = ran(E) ∈ {0, 1}, many cases of the formula for L(r)(E, 1) are known.

The proof combines two inequalities:
(1) (Gross–Zagier formula, [GZ86])

ran(E) = 1 =⇒ ralg(E)  1.

(2) (Kolyvagin’s Euler system, [BD05])

ran(E) ∈ {0, 1} =⇒ ralg(E)  ran(E).

Both steps rely on Heegner points on modular curves.

1.1.2. Beilinson–Bloch conjecture. Let X be a smooth projective variety over a number field K.
Denote CHm(X) the Chow group of algebraic K-cycles of codimension m on X. Also denote
CHm(X)0 ⊂ CHm(X) the subgroup of geometrically cohomologically trivial cycles. Using this,
we obtain the Beilinson–Bloch height pairing

〈·, ·〉BB : CHm(X)0 × CHdimX+1−m(X)0 −→ R.

To give the statement of the conjecture, we also define L(H2m−1(X), s) to be the motivic L-
function for H2m−1(XK ,Qℓ).

Conjecture 1.4 (Beilinson–Block, 1980s).
(1) (Rank part).

ords=mL(H2m−1(X), s) = rankCHm(X)0.

(2) (Leading coefficient).

L(r)(H2m−1(X),m) ∼ det(〈Zi, Z
′
j〉BB)r×r.

Example 1.5. Let m = 1 and X = K over E/Q. Then Beilinson–Bloch conjecture 1.4 recovers
the BSD conjecture 1.1 as

CH1(E)0 ≃ E(Q), L(H1(E), s) = L(E, s), 〈·, ·〉BB = −〈·, ·〉NT.

Remark 1.6. In general, both sides in Conjecture 1.4(1) are only conditionally defined.
• L(H2m−1(X), s) is not known to be analytically continued to the central point s = m.
• CHm(X)0 is not known to be finitely generated.

Accordingly, Beilinson–Bloch conjecture is testable when X is a certain Shimura variety. Due
to the works by Langlands–Kottwitz and Langlands–Rapoport, one can express the motivic L-
functions of Shimura varieties X = ShG as a product of automorphic L-functions L(s,π) on G,
i.e.

L(H2m−1(ShG), s+m) =


π

L(s+ 1/2,π).

In the upcoming context we focus on the most interested case. For this, assume from now
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(i) 2m− 1 = dimX, so that we can consider the arithmetic middle degree;
(ii) π is tempered cuspidal.

In is known that the analytic properties of L(s,π) can be established, and hence we are
able to detect those of the motivic L-function. However, CHm(X)0 is not known to be finitely
generated even when X = ShG, but we can test if it is nontrivial.

The following is an unconditional prediction of Beilinson–Bloch conjecture, in the same spirit
of Gross–Zagier.

Conjecture 1.7 (Beilinson–Bloch for Shimura varieties).

ords=1/2L(s,π) = 1 =⇒ rankCHm(X)0π  1,

where CHm(X)0π is the π-isotypical component of CHm(X)0.

Remark 1.8. Conjecture 1.7 was only known for:
(1) X is a modular curve, by Gross–Zagier [GZ86];
(2) X is a Shimura curve, by S. Zhang [Zha01b, Zha01a], Kudla–Rapoport–Yang [KRY06],

Yuan–Zhang–Zhang [YZZ13], Liu [Liu16, Liu19];
(3) X = U(1, 1)×U(2, 1) is a Shimura threefold and π is endoscopic, by Xue [Xue19].

Theorem 1.9 (Li–Liu, the impressionist version). Conjecture 1.7 holds for Shimura varieties
associated with U(2m− 1, 1) while π satisfying certain local assumptions.

1.2. Beilinson–Bloch conjecture for U(2m − 1, 1)-Shimura varieties. Before setting up
the unitary Shimura variety with U(2m−1, 1), we first consider the Hermitian symmetric space
for U(n− 1, 1), that is,

Dn−1 := {z ∈ Cn−1 : |z| < 1} ∼=
U(n− 1, 1)

U(n− 1)×U(1)
.

Moreover, we have an action on Dn−1 by U(n − 1, 1). Notice that D1 can be regarded as a
hyperbolic plane (and is hence isomorphic to the upper half complex plane H).

1.2.1. The unitary Shimura variety X. Let E be a CM extension of a totally real number field
F over Q. Let V be a totally definite incoherent AE/AF -hermitian space of rank n; here V
is incoherent if it is not the base change of a global E/F -hermitian space, or equivalently,

v (Vv) = −1 with Vv := V⊗AF
Fv. On the other hand, any place w | ∞ of F gives a nearby

coherent E/F -hermitian space V such that

Vv
∼= Vv, v ∕= w,

whereas Vw has signature (n− 1, 1).
Set G = U(V) and fix an open compact subgroup K ⊂ G(A∞

F ) ∼= U(V )(A∞
F ). Then we can

take X to be the unitary Shimura variety of dimension n− 1 over its reflex field E such that for
any place w | ∞ inducing the complex embedding ιw : E ↩→ C,

X(C) = U(V )(F )\(Dn−1 ×U(V )(A∞
F )/K).

It turns out that X is a Shimura variety of abelian type. Its étale cohomology and L-function are
computed in the forthcoming work of Kisin–Shin–Zhu [KSZ21], under the help of the endoscopic
classification for unitary groups (Mok [Mok15], Kaletha–Minguez–Shin–White [KMSW14]). See
also Remark 4.2.

1.2.2. Automorphic representations π. Resume on the setup above. Let W = E2m be the
standard E/F -skew-hermitian space with matrix


0 1m

−1m 0


. Let U(W ) be the quasi-split unitary

group of rank n = 2m. Let π be the cuspidal automorphic representation of U(W )(AF ).

Assumptions 1.10. We assume the following about πv locally.
(1) E/F is split at all 2-adic places and F ∕= Q. Assume that E/Q is Galois or contains an

imaginary quadratic field (for simplicity).
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(2) For v | ∞, πv is the holomorphic discrete series with Harish-Chandra parameter {(n−
1)/2, (n− 3)/2, . . . , (−n+ 3)/2, (−n+ 1)/2}.

(3) For v ∤ ∞, πv is tempered.
(4) For v ∤ ∞ ramified in E, πv is spherical with respect to the stabilizer of O2m

Ev
.

(5) For v ∤ ∞ inert in E, πv is unramified or almost unramified. If πv is almost unramified,
then v is unramified over Q.

Remark 1.11 (Almost unramifiedness). Saying πv is almost unramified means that πv has a
nonzero Iwahori-fixed vector and its Satake parameter contains {qv, q−1

v } and 2m − 2 complex
numbers of norm 1. Equivalently, the theta lift of πv to the non-quasi-split unitary group of
same rank is spherical with respect to the stabilizer of an almost self-dual lattice.

1.2.3. Main result. The first main result of [LL21, LL22] is the verification of Beilinson–Bloch
conjecture. Let Sπ be the set of places v that are inert and such that πv’s are almost unramified.
Then under Assumptions 1.10, the global root number for the (complete) standard L-function
L(s,π) equals

(π) = (−1)|Sπ| · (−1)m·[F :Q]

by epsilon dichotomy (Harris–Kudla–Sweet [HKS96a], Gan–Ichino [GI16]). Under the condition
that ords=1/2L(s,π) = 1, we have:

• (π) = −1,
• V = Vπ is the totally definite incoherent space of rank n = 2m such that, for v ∤ ∞, we

have (Vv) = −1 exactly for v ∈ Sπ,
• X, the associated unitary Shimura variety, is of dimension n− 1 = 2m− 1 over E, and
• CHm(X)0π is the localization of CHm(X)0C at the maximal ideal mπ of the Hecke algebra

associated to π.

Theorem 1.12 ([LL21, LL22]). Let π be a cuspidal automorphic representation of U(W )(AF )

satisfying Assumptions 1.10. Then the implication

ords=1/2L(s,π) = 1 =⇒ rankCHm(X)0π  1

holds when the level K ⊂ G(A∞
F ) is sufficiently small.

Example 1.13 (Symmetric power L-function of elliptic curves). Let A/F be a modular elliptic
curve without complex multiplication such that

(i) A has bad reduction only at places v that split in E;
(ii) Sym2m−1 AE is automorphic (Newton–Thorne, Clozel–Thorne, etc.).

Then there exists π satisfying Assumptions 1.10 such that

L(s+ 1/2,π) = L(Sym2m−1 AE , s+m).

As Sπ = ∅ and (π) = (−1)m·[F :Q], Theorem 1.12 applies to π when m · [F : Q] is odd.

1.3. Arithmetic inner product formula and arithmetic theta lifting.

1.3.1. Generating series of Heegner points. Nontrivial cycles can be constructed via the method
of arithmetic theta lifting by Kudla and Liu [Liu11a, Liu11b]. Here comes a baby example of
Heegner points, which contributes to Gross–Zagier formula as well.

Consider the modular curve

X0(N) = Γ0(N)\H ∪ {cusps} = {E1 → E2 : cyclic N -isogeny}.

For certain imaginary quadratic field K = Q(
√
−d), we have a Heegner divisor

Z(d) := {E1 → E2 with endomorphisms by OK} ∈ CH1(X0(N)).

The theory of complex multiplication asserts that Z(d) is actually a divisor of X0(N) defined
over K.



BEILINSON–BLOCH CONJECTURE FOR UNITARY SHIMURA VARIETIES 5

Let E/Q be an elliptic curve of conductor N who has a modular parametrization

ϕE : X0(N) −→ E.

Using these, we define a Heegner point

PK ∈ ϕE(Z(d)− degZ(d) ·∞) ∈ E(K).

Then we are able to state the Gross–Zagier formula.

Theorem 1.14 (Gross–Zagier, [GZ86]). Up to simpler nonzero factors,

L′(EK , 1) ∼ 〈PK , PK〉NT.

Remark 1.15. (1) Choosing K suitably gives the implications

ran(E) = 1 =⇒ ralg(E)  1.

(2) BSD formula for EK reduces to a precise relation between PK and X(EK).

To introduce Arithmetic theta liftings, we first consider the following heuristic example.
Recall that K = Q(

√
−d). Take Pd = trK/Q PK ∈ E(Q). It may depend on the choice of d,

even when E(Q) ∼= Z.

Example 1.16. Let E = X+
0 (37) : y2 + y = x3 − x. Then

⋄ E(Q) ∼= Z with a generator P = (0, 0).
⋄ E corresponds to the modular form f ∈ S2(37) where

f = q − 2q2 − 3q3 + 2a4 − 2q5 + 6q6 − q7 + 6q9 + 4q10 − 5q11 − 6q12 − 2q13 + · · · .
⋄ Table of Heegner points Pd:

d 3 4 7 11 12 16 27 · · · 67 · · ·
Pd (0,−1) (0,−1) (0, 0) (0,−1) (0, 0) (1, 0) (−1,−1) · · · (6,−15) · · ·
cd −1 −1 1 −1 1 2 3 · · · −6 · · ·

where Pd = cd · P .
Now the miracle is that the coefficients cd appear as the Fourier coefficients of φ ∈ S+

3/2(4 · 37),
for

φ =


d1

cdq
d = −q3 − q4 + q7 − q11 + q12 + 2q16 + 3q27 + · · ·− 6q67 + · · · ,

which maps to f under the Shimura–Waldspurger–Kohnen correspondence

θ : S+
3/2(4 · 37) −→ S2(N), φ −→ f.

1.3.2. Arithmetic theta lifting. The observation arising from Example 1.16 dictates that the
generating series of Heegner points



d1

Pd · qd =


d1

cdP · qd = φ · P ∈ S+
3/2(4 · 37)⊗ E(Q)C

is a modular form valued in E(Q)C. More generally, we may define a generating series of Heegner
divisors on X0(N),

Z :=


d

Z(d)qd ∈ M3/2(4N)⊗ CH1(X0(N))C,

which may be viewed as an arithmetic theta series.

Definition 1.17. Use Z as the kernel to define arithmetic theta lifting

Θ(φ) := (Z,φ)Pet ∈ CH1(X0(N))0f,C = E(Q)C.

Indeed, Θ(φ) does not depend on any particular choice of d or K.

Theorem 1.18 (Gross–Kohnen–Zagier, [GKZ87]). Up to simpler nonzero factors,

L′(E, 1) ∼ 〈Θ(φ),Θ(φ)〉NT.
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Now let us focus on the case where X is a unitary Shimura variety as before.

Definition 1.19 (Special cycles on unitary Shimura variety). Suppose X = ShU(V ).
(1) For any y ∈ V with (y, y) > 0, its orthogonal complement Vy ⊂ V has rank n− 1. The

embedding U(Vy) ↩→ U(V ) defines a Shimura subvariety of codimension1, read as

ShU(Vy) −→ X = ShU(V ).

(2) For any x ∈ V (A∞
F ) with (x, x) ∈ F>0, there exists y ∈ V and g ∈ U(V )(A∞

F ) such that
y = gx. Define the special divisor

Z(x) −→ X

to be the g-translate of ShU(Vy).
(3) For any x = (x1, . . . , xm) ∈ V (A∞

F )m with T (x) = ((xi, xj)) ∈ Herm◦
m(F )+, define the

special cycle (of codimension m) as

Z(x) = Z(x1) ∩ · · · ∩ Z(xm) −→ X.

(4) More generally, for a Schwartz function ϕ ∈ S (V (A∞
F )m)K and T ∈ Herm◦

m(F )+, define
the weighted special cycle

Zϕ(T ) =


x∈K\V (A∞
F )m,

T (x)=T

ϕ(x)Z(x) ∈ CHm(X)C.

(5) With extra care, we can also define Zϕ(T ) ∈ CHm(X)C for any T ∈ Hermm(F )0.

Definition 1.20. Define Kudla’s generating series of special cycles as

Zϕ(τ) =


T∈Hermm(E)0

Zϕ(T )q
T .

Conjecture 1.21 (Kudla’s modularity [Kud97a, Kud04]). The formal generating series Zϕ(τ)

converges absolutely and defines a modular form on U(W ) valued in CHm(X)C.

Remark 1.22. (1) The analogous modularity in Betti cohomology is known by Kudla–Millson
[KM90] in 1980s.

(2) Conjecture is known for m = 1. For general m, the modularity follows from the absolute
convergence [Liu11b].

(3) The analogous conjecture for orthogonal Shimura varieties over Q is known by Bruinier–
Westerholt-Raum [BWR15].

(4) Conjecture is known when E/F is a norm-Euclidean imaginary quadratic field, due to
Xia [Xia21].

Definition 1.23. Assuming Kudla’s modularity conjecture, for φ ∈ π, define arithmetic theta
lifting for Kudla’s generating series of weighted special cycles as

Θϕ(φ) = (Zϕ(τ),φ)Pet ∈ CHm(X)0π.

Theorem 1.24 ([LL21, LL22]). Let π be a cuspidal automorphic representation of U(W )(AF )

satisfying Assumptions 1.10. Assume (π) = −1. Assume Kudla’s modularity in Conjecture
1.21. Then for any φ ∈ π and ϕ ∈ S (V (A∞

F )m), up to simpler factors depending on φ and ϕ,

L′(1/2,π) ∼ 〈Θϕ(φ),Θϕ(φ)〉BB.

Remark 1.25. The simpler factors can be further made explicit. For example, if
◦ π is unramified or almost unramified at all finite places,
◦ φ ∈ π is a holomorphic newform such that (φ,φ)π = 1, and if
◦ ϕ is a characteristic function of self-dual or almost self-dual lattices at all finite places,
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then

L′(1/2,π)
2m

i=1 L(i, η
i
E/F )

C [F :Q]
m



v∈Sπ

qm−1
v (qv + 1)

(q2m−1
v + 1)(q2mv − 1)

= (−1)m〈Θϕ(φ),Θϕ(φ)〉BB,

where

Cm = 2m(m−1)πm2 Γ(1) · · ·Γ(m)

Γ(m+ 1) · · ·Γ(2m)
.

Moreover, as an addendum,

(1) The classical Riemann hypothesis predicts that

L′(1/2,π)  0;

(2) Beilinson’s Hodge index conjecture predicts that

(−1)m〈Θϕ(φ),Θϕ(φ)〉BB  0.

The combination of (1) and (2) is compatible with our formula.

Before introducing the proof strategy of Li–Liu, we list out a brief summary on arithmetic
theta lifting, as well as the generalization from BSD conjecture to Beilinson–Bloch conjecture.

BSD conjecture Beilinson–Bloch conjecture

Ambient varieties Modular curves X0(N) Unitary Shimura varieties X

Simple geometric objects Heegner points Z(d) Special cycles Zϕ(T )

Kudla’s generating series Z =


d Z(d)qd ∈ CH1(X0(N))C Zϕ =


T Zϕ(T )q
T ∈ CHm(X)C

Arithmetic theta liftings Θ(φ) ∈ E(Q)C Θϕ(φ) ∈ CHm(X)0π

Formulas
Gross–Zagier formula

L′(E, 1) ∼ 〈Θ(φ),Θ(φ)〉NT

Arithmetic inner product formula
L′(1/2,π) ∼ 〈Θϕ(φ),Θϕ(φ)〉BB

1.3.3. The proof strategy (I): Doubling method. The doubling method is introduced by Piatetski-
Shapiro–Rallis [PSR86, PSR87] and Yamana [Yam14], read as

L(s+ 1/2,π) ∼ (φ⊗ φ,Eis(s, g))U(W )2 ,

where Eis(s, g) is a Siegel Eisenstein series on U(W ⊕W ).
By definition Θϕ(φ) = (Zϕ,φ)Pet gives

〈Θϕ(φ),Θϕ(φ)〉BB = (φ⊗ φ, 〈Zϕ, Zϕ〉BB)U(W )2 .

To prove L′(1/2,π) ∼ 〈Θϕ(φ),Θϕ(φ)〉BB, it suffices to compare

Eis′(0, g)
?
= 〈Zϕ, Zϕ〉BB.

This can be viewed as an arithmetic Siegel–Weil formula. Here the Beilinson–Bloch height
pairing is a sum of local indexes

〈Zϕ, Zϕ〉BB =


v

〈Zϕ, Zϕ〉BB,v.

And the nonsingular Fourier coefficient for the qT -term decomposes as

Eis′T (0, g) =


v

Eis′T,v(0, g).
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1.3.4. The proof strategy (II): Local comparison on arithmetic Siegel–Weil formula. For nonsin-
gular local terms, it suffices to prove

Eis′T,v(0, g)
?
= 〈Zϕ, Zϕ〉BB,T,v.

In codimension 1 case with m = 1, the Gross–Zagier formula computes both sides explicitly.
However, such an explicit computation is infeasible for general m.

• When v ∤ ∞, we use:
(i) the work for relating 〈Zϕ, Zϕ〉BB,T,v to arithmetic intersection numbers;
(ii) recent proof of Kudla–Rapoport conjecture due to Li–Zhang [LZ22a].

• When v | ∞, we use:
(i) archimedean arithmetic Siegel–Weil formula, proved by Liu [Liu11a] and Garcia–

Sankaran [GS19] independently;
(ii) avoidance of holomorphic projections.

To finish the argument, we kill singular terms on both sides by proving the existence of special
ϕ ∈ S (V (A∞

F )m) with regular support at two split places with nonvanishing local zeta integrals.
Motivated by the comparison of nonsingular terms which deduced Theorem 1.24 for special ϕ,
we can extrapolate such a proof for arbitrary ϕ with multiplicity one of doubling method in
tempered case. Consequently, Theorem 1.12 is given by a same computation without Kudla’s
modularity, using the proof by contradiction.

Remark 1.26. We have some final remarks on Assumptions 1.10.

(1) When v ∤ ∞, the local index 〈·, ·〉BB,v is defined as an ℓ-adic linking number. It is defined
on a certain subspace CHm(X)〈ℓ〉 ⊂ CHm(X)0 (which are conjecturally equal) and its
independence on ℓ is not known in general.

(2) Find a Hecke operator t /∈ mπ such that t∗Z ∈ CHm(X)〈ℓ〉, so BB height is defined. Also
find another Hecke operator s /∈ mπ and BB height of s∗t∗Z can be therefore computed
in terms of the arithmetic intersection number of a nice extension Z on X . Here X is
a regular integral model of a related unitary Shimura variety of PEL type. This step
requires to prove certain vanishing of mπ-localized ℓ-adic cohomology of X .

(3) The Kudla–Rapoport conjecture states that

Eis′T,v(0, g) = the arithmetic intersection number above.

Assuming the conjecture, the ℓ-independence of 〈Zϕ, Zϕ

rangleBB,T,v will follow.
(4) Assumptions 1.10 are required in both construction of Hecke operators and the proof of

Kudla–Rapoport conjecture.
(5) The condition F ∕= Q of fields is needed to prove vanishing of mπ-localized cohomology of

integral models with Drinfeld level structures at split places (with input from Mantovan
[Man08], Caraiani–Scholze [CS17]).

2. The Gross–Zagier formula and height pairings

2.1. The Gross–Zagier formula. Consider

• a (modular) elliptic curve E/Q of conductor N , corresponding to a normalized new cusp
form fE =


n1 an(E)qn ∈ S2(Γ0(N)),

• an imaginary quadratic field K (with dK its discriminant) satisfying that every prime
factor of N splits in K.

Denote by X0(N) the compactified modular curve of level Γ0(N) over Q. Recall that away
from cusps, X0(N)(C) is the set of isomorphism classes of cyclic isogenies [E → E′] of complex
elliptic curves of degree N .
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Choose an ideal n of OK satisfying OK/n = Z/NZ. For a modular parametrization ϕ : X0(N) →
E, we define the Heegner point

Pϕ
K :=



a∈Cl(K)

ϕ([C/a → C/n−1a]) ∈ E(C).

By the theory of CM elliptic curves, one sees that the above sum is independent of n and the
choice of representatives of Cl(K); moreover, Pϕ

K belongs to E(K).

Theorem 2.1 (Gross–Zagier, [GZ86]).

L′(1, E/K) =
32π2fE2Pet
|O×

K |2

|dK |

hNT(P
ϕ
K)

degϕ
.

2.2. Néron–Tate height. Let K be a general number field and C/K a geometrically connected
smooth projective curve. We recall the definition of the Néron–Tate height on Div0(C) (which
is same as Z1(C)0).

Let JC be the Jacobian variety of C over K, so that there is a canonical homomorphism
α : Div(C)0 → JC(K) of abelian groups. (Twice of) the theta divisor on JC gives rise to a
height function h : JC(K) → R.

Definition 2.2. For every D ∈ Div(C)0, we define

hNT(D) := lim
n→∞

h(α(nD))

n2

in which the limit exists.

It turns out that
(a) hNT descends to a function on CH1(C)0 = Div(C)0/ ∼rat;
(b) hNT is a positive definite quadratic function on CH1(C)0.

In what follows, we denote by 〈·, ·〉NT : CH1(C)0×CH1(C)0 → R the associated quadratic form.
The quadratic form 〈·, ·〉NT admits a decomposition into local heights over all places of K,
which we review. For ? ∈ {∅, u} where u is a place of K, put C? := C ⊗K K? and denote by
(Div(C?)

0 ×Div(C?)
0)∗ the subgroup of Div(C?)

0 ×Div(C?)
0 consisting of pairs of degree zero

divisors with disjoint support.
For every place u of K, there is a unique function (called Néron symbol)

〈·, ·〉u : (Div(C?)
0 ×Div(C?)

0)∗ −→ R

that is bi-additive, symmetric, continuous, and satisfies

〈a, b〉 = −


mx log |f(x)|u
when a =


mxx and b = div(f).

We have the identity of real-valued functions on (Div(C?)
0 ×Div(C?)

0)∗:

〈·, ·〉NT = −


u

〈·, ·〉u.

Since the natural map

(Div(C?)
0 ×Div(C?)

0)∗ −→ CH1(C)0 × CH1(C)0

is surjective, this gives a decomposition formula for the Néron–Tate height pairing.

Definition 2.3. We review the definition of 〈·, ·〉u.
(1) Suppose that u < ∞. If Cu admits a smooth projective model Cu over OKu

, then

〈a, b〉u = log qu · (a, b)Cu ,

where (a, b)Cu denotes the intersection number of the Zariski closures of a and b in Cu
and qu denotes the residue cardinality of Ku.
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More generally, Cu always admits a regular projective model Cu and we shall take a

and b to be flat extensions of a and b, respectively. Here, an extension is flat if it has
zero intersection number with every component of the special fiber of Cu.

(2) Suppose that u | ∞. We have

〈a, b〉u =
[Ku : R]

2


mxGb(x)

if a =


mxx, where Gb is a Green function for b, that is, a smooth function on Cu(C)\|b|
such that ddcGb + δb = 0 as currents (also recall that dc = (4πi)−1(∂ − ∂)).

2.3. Beilinson’s height pairing. We introduce Beilinson’s generalization of the Néron–Tate
height to higher dimensional varieties. Suppose that X is a smooth scheme over a field K of
characteristic zero.

Notation 2.4. For every prime number ℓ,

(1) We denote by Zm(X)0 the kernel of the de Rham cycle class map

clX,dR : Zm(X) −→ H2m
dR (X/K)(m),

and by CHm(X)0 the image of Zm(X)0 in CHm(X).
(2) When K is a non-archimedean local field, we denote by Zm(X)〈ℓ〉 the kernels of the

(absolute) ℓ-adic cycle class map

clX,ℓ : Z
m(X) −→ H2m(X,Qℓ(m)).

By the comparison theorem between de Rham and ℓ-adic cohomology, we have

Zm(X)〈ℓ〉 ⊂ Zm(X)0.

In fact, the Monodromy–Weight conjecture for X implies that when ℓ is invertible on
OKu , we have Zm(X)〈ℓ〉 = Zm(X)0.

(3) When K is a number field, we define Zm(X)〈ℓ〉 via the following Cartesian diagram

Zm(X)〈ℓ〉


u∤∞ℓ Z
m(Xu)

〈ℓ〉

Zm(X)


u∤∞ℓ Z
m(Xu)

where the product is taken over all non-archimedean places u of K not above ℓ. We
denote by CHm(X)〈ℓ〉 the image of Zm(X)〈ℓ〉 in CHm(X).

Now let K be a number field and consider

• a smooth projective scheme X over K of pure dimension n− 1 (for some n  2),
• a prime number ℓ such that Xu has good reduction for every place u of K above ℓ, and
• a pair of nonnegative integers (d1, d2) satisfying d1 + d2 = n.

For ? ∈ {∅, u} where u is a place of K and #{〈ℓ〉, 0}, denote by

(Zd1(X?)
# × Zd2(X?)

#)∗ ⊂ Zd1(X?)
# × Zd2(X?)

#

consisting of pairs of cycles with disjoint support. We respectively define maps

〈·, ·〉u : (Zd1(Xu)
0 × Zd2(Xu)

0)∗ −→ R, when u | ∞;

〈·, ·〉u : (Zd1(Xu)
〈ℓ〉 × Zd2(Xu)

〈ℓ〉)∗ −→ R⊗Q Qℓ, when u ∤ ℓ∞;

〈·, ·〉u : (Zd1(Xu)
0 × Zd2(Xu)

0)∗ −→ R, when u | ℓ.

Take an element (c1, c2) in the source of any of these maps and denote by Zi the support of ci
so that Z1 ∩ Z2 = ∅.
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Case I: u | ∞. We define

〈c1, c2〉u :=
[Ku : R]

2



Xu(C)
δc1 ∧ gc2 ∈ R,

where δc1 denotes the Dirac current of c1 and gc2 is a regular harmonic Green current for c2,
that is, a smooth (d2 − 1, d2 − 1)-form on Xu(C)\Z2 such that ddcgc2 + δc2 = 0 as currents.

Case II: u ∤ ∞ℓ. Let αi ∈ H2di

Zi
(Xu,Qℓ(di)) be the refined cycle class of ci. As αi goes

to zero in H2di(Xu,Qℓ(di)) by definition, there exists γi ∈ H2di−1(Ui,Qℓ(di)) that goes to αi

under the coboundary map

H2di−1(Ui,Qℓ(di)) −→ H2di

Zi
(Xu,Qℓ(di)),

where Ui = Xu\Zi. Then
〈c1, c2〉u := log qu ⊗ 〈c1, c2〉′u,

where 〈c1, c2〉′u is the image of γ1 ∪ γ2 under the composite map

H2n−2(U1 ∩ U2,Qℓ(n)) −→ H2n−1(Xu,Qℓ(n))

−→ H1(SpecKu,Qℓ(1)) = Qℓ

in which the first arrow is the coboundary map in the Mayer–Vietoris exact sequence for the
covering Xu = U1 ∪ U2. Here, the identification H1(SpecKu,Qℓ(1)) = Qℓ is the composition

H1(SpecKu,Qℓ(1)) −→ H2
Specκu

(SpecOKu ,Qℓ(1))
∼−→ H0(Specκu,Qℓ) = Qℓ

where κu denotes the residue field of Ku; this is negative to the one given by the Kummer isomor-
phism for Galois cohomology. It is conjectured that 〈c1, c2〉′u belongs to Q and is independent
of ℓ.

Case III: u | ℓ. Choose a smooth projective model Xu of Xu over OKu . Then

〈c1, c2〉u := log qu · (C1, C2)Xu ,

where Ci denotes the Zariski closure of ci in Xu. Later, we will justify this definition and in
particular show that it is independent of the choice of the model.

Definition 2.5. We define Beilinson’s height pairing

〈·, ·〉B :=


u

〈·, ·〉u : (Zd1(X)〈ℓ〉 × Zd2(X)〈ℓ〉)∗ −→ R⊗Q Qℓ.

It is not hard to show that 〈·, ·〉B is symmetric and descends to a map from CHd1(X)〈ℓ〉 ×
CHd2(X)〈ℓ〉 (which we now assume). Moreover, for every correspondence t ∈ CHn−1(X ×X),
we have

〈t∗x, y〉B = 〈x, t∗y〉B.

Conjecture 2.6 (Beilinson, Bloch).
(1) We have

CHd(X)〈ℓ〉 = CHd(X)0,

and it has a finite rank.
(2) Beilinson’s height pairing map 〈·, ·〉B takes value in R, is independent of ℓ, and is non-

degenerate.
(3) For every ample class L and every integer 0  d  n/2, the form 〈·, Ln−2d·〉B is (−1)d-

definite on the primitive part of CHd(X)0.
(4) For every correspondence t ∈ CHn−1(X ×X)0, the form 〈t∗·, ·〉B vanishes.

In what follows, we will often use the complex sesquilinear (i.e. linear in the first variable
and conjugate linear in the second variable) extension of 〈·, ·〉B or 〈·, ·〉u.
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2.3.1. Non-archimedean local index. Now we study 〈·, ·〉′u for u ∤ ∞ℓ when Xu admits a regular
projective model Xu over OKu . To ease notation, we suppress u on this and the next two pages.
Denote by Y := X ⊗OK

κ the special fiber of X .

Notation 2.7. For two closed subschemes Z1 and Z2 of X of codimension d1 and d2, respec-
tively, such that Z1 ∩ Z2 ⊂ Y , we have the intersection number

(Z1,Z2)X := χ(Y,OZ1
⊗L

OX
OZ2

).

By sesquilinear extension, we have the intersection number (C1, C2)X ∈ C for every pair
(C1, C2) ∈ Zd1(X )C × Zd2(X )C satisfying |C1| ∩ |C2| ⊂ Y .

Definition 2.8. We say that an extension C ∈ Zd(X )C of c ∈ Zd(X)
〈ℓ〉
C is ℓ-flat if the cycle

class of C in H2d(X ,Qℓ(d))⊗Q C vanishes.

Proposition 2.9. Given (c1, c2) ∈ (Zd1(X)
〈ℓ〉
C ×Zd2(X)

〈ℓ〉
C )∗ and a pair (C1, C2) ∈ Zd1(X )

〈ℓ〉
C ×

Zd2(X )
〈ℓ〉
C of extensions of (c1, c2) in which at least one is ℓ-flat, we have

〈c1, c2〉′u = (C1, C2)X .

In particular, when X is smooth over OK , we can take Ci to be the Zariski closure of ci in X ,
hence 〈c1, c2〉′u belongs to C and is independent of ℓ. (This justifies the definition of the local
height on Page 10 when u | ℓ.)

2.3.2. Étale correspondences and flat extensions. Keep the previous setups. We propose a
method of finding flat extensions using étale correspondences, with the application to Shimura
varieties and Hecke correspondences in mind. For simplicity, we assume n = 2r even and
d1 = d2 = r.

Definition 2.10. (1) We say that a correspondence

t : X p←−− X ′ q−−→ X
of X is étale if both p and q are finite étale. A complex étale correspondence of X is a
complex linear combination of étale correspondence of X .

(2) We say that a complex étale correspondence t of X is ℓ-tempered if t∗ = p!◦q∗ annihilates
H2r(X ,Qℓ(r))⊗Q C.

Proposition 2.11. Let t be an ℓ-tempered complex étale correspondence of X . Then for every
pair (c1, c2) ∈ Zr(X)C × Zr(X)C satisfying Supp(t∗c1) ∩ Supp(t∗c2) = ∅, we have (t∗c1, t

∗c2) ∈
(Zr(X)

〈ℓ〉
C × (Zr(X)

〈ℓ〉
C )∗ and

〈t∗c1, t∗c2〉′u = (t∗C1, t∗C2)X ,

where C1 ∈ Zr(X )C is an arbitrary extension of ci in X for i = 1, 2. In particular, we have
〈t∗c1, t∗c2〉′u ∈ C.

3. Classical theta correspondence

3.1. Beilinson–Bloch conjecture. From now on, we take an even positive integer n = 2r.
Let K be a number field and X a projective smooth scheme over K of (odd) dimension n− 1.
We have the L-function

L(s,Hn−1(XK ,Qℓ(r)))

for the middle degree ℓ-adic cohomology of X for every rational prime ℓ, which is conjectured
to be meromorphic, independent of ℓ, and satisfy a functional equation with center s = 0.

The unrefined Beilinson–Bloch conjecture predicts (cf. Conjecture 1.4) that

rankCHr(X)0 = ords=0L(s,H
n−1(XK ,Qℓ(r)))

holds for every ℓ. Note that when X is an elliptic curve, this recovers the (unrefined) Birch–
Swinnerton-Dyer conjecture.
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We have an equivariant version of the Beilinson–Bloch conjecture as follows. Suppose that X
admits an action of an algebra T via étale correspondences. Then T acts on both CHr(X)0 and
Hn−1(XK ,Qℓ(r)). Let ρ be a nonzero finite-dimensional complex representation of T. Then for
every ℓ and every embedding Qℓ ↩→ C, we have the L-function

L(s,HomT(ρ, H
n−1(XK ,Qℓ(r))C)).

Then it is expected that

dimC HomT(ρ,CH
r(X)0C) = ords=0L(s,HomT(ρ, H

n−1(XK ,Qℓ(r))C))

holds, which can be regarded as the Beilinson–Bloch conjecture for the (conjectural Chow)
motive

HomT(ρ, h
n−1(X)(r)C),

where hn−1(X) is the (conjectural Chow) motive of X of degree n− 1.
Consequently, one can specify the equivariant Beilinson–Bloch conjecture to certain unitary

Shimura varieties. From now on, we fix a subfield E ⊂ C that is a CM number field with F ⊂ E

being its maximal totally real subfield.
We say that a hermitian space V over E of rank m is standard indefinite if it has signature

(m − 1, 1) at the default embedding F ⊂ R and signature (m, 0) at other real places. For a
standard indefinite hermitian space V over E of rank m, we have a system of Shimura varieties
{XK} indexed by neat open compact subgroups K ⊂ H(A∞

F ), where H := U(V ), which are
smooth, quasi-projective, of dimension m−1 over E, together with the complex uniformization:

XK(C) = H(F )\P(VC)
− ×H(A∞

F )/K,

where P(VC)
− ⊂ P(VC) is the complex open domain of negative definite lines.

Conjecture 3.1 (Beilinson–Bloch for unitary Shimura varieties). Let π be a tempered cuspidal
automorphic representation of G(AF ), where G := Gr denotes the quasi-split unitary group over
E/F of rank n = 2r. Let V be a standard indefinite hermitian space over E of rank n, with
H := U(V ). For every irreducible admissible representation π∞ of H(A∞

F ) satisfying
(a) π∞

v ≃ πv for all but finitely many non-archimedean places v of F for which Hv ≃ Gr,v,
and

(b) HomH(A∞
F )(π∞, lim−→K

Hn−1
dR (XK/C)) ∕= 0,

the conclusion

dimC HomH(A∞
F )(π∞, lim−→

K

CHr(XK)0C) = ords=1/2L(s,Ππ∞)

holds. Here, Ππ∞ is the cuspidal factor of BC(π) determined by π∞ via Arthur’s multiplicity
formula; in particular, Ππ∞ = BC(π) if BC(π) is already cuspidal (that is, π is stable).

3.2. Automorphic representations of unitary groups. Recall that n = 2r and we have
fixed the CM subfield E ⊂ C with F ⊂ E the maximal totally real subfield.

For a positive integer m, we equip Wm := E2m with the skew-hermitian form given by
the matrix


1m

−1m


. Put Gm := U(Wm), the unitary group of Wm, which is a quasi-split

reductive group over F . Note that the Cartan subgroup of Gm is (ResE/F GL1)
m. For every

non-archimedean place v of F , we denote by Km,v ⊂ Gm(Fv) the stabilizer of the lattice O2m
Ev

,
which is a special maximal subgroup.

In what follows, we consider a cuspidal automorphic representation π =


v πv of G(AF )

satisfying:
(R1) If v | ∞, then πv is a holomorphic discrete series of weights


1−n
2 , 3−n

2 , . . . , n−3
2 , n−1

2


.

(R2) If v ∤ ∞ and is nonsplit in E, then πv is Kr,v-spherical, that is, πKr,v
v ∕= {0}.

(R3) If v ∤ ∞, then πv is tempered (that is, πv is contained in a parabolic induction of a
unitary discrete series representation).
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In (R1), a holomorphic discrete series of weights

1−n
2 , 3−n

2 , . . . , n−3
2 , n−1

2


means that it is iso-

morphic to a constituent of the (normalized) principal series of (|·|1/2, |·|3/2, . . . , |·|(n−1)/2). This
is the minimal possible weights for a holomorphic discrete series with trivial central character. In
(R2), since πv is Kr,v-spherical, there exist unitary unramified characters χv,1, . . . ,χv,r : E

×
v →

C×, unique up to permutation and taking inverse, such that πv is isomorphic to the (normalized)
principal series of (χv,1, . . . ,χv,r).

Definition 3.2. We define the (complete) standard L-function L(s,π) :=


v L(s,πv) of π as
follows:

• When v | ∞,

L(s,πv) :=

r

i=1

L(s, arg2i−1) · L(s, arg1−2i),

where arg : C× → C× is the argument character.
• When v ∤ ∞ and is nonsplit in E,

L(s,πv) :=

r

i=1

L(s,χv,i) · L(s,χ−1
v,i ).

• When v splits in E,
L(s,πv) :=



u|v

L(s,πu),

where the product is taken over (two) places of E over v, and πu is πv but regarded as
a representation of GLn(Eu) ≃ G(Fv).

As usual, L(s,π) is absolutely convergent for Re s ≫ 0, has a meromorphic (holomorphic, in
fact) continuation to C and satisfies the functional equation

L(1− s,π) = (s,π)L(s,π),

in which
(1/2,π) = (−1)r·[F :Q].

In particular, the vanishing order of L(s,π) at the center s = 1/2 has the same parity as r[F : Q].
(i) When r[F : Q] is even, we will study the central value L(1/2,π) via the classical theory

of theta lifting.
(ii) When r[F : Q] is odd, we will study the central derivative L′(1/2,π) via the theory of

arithmetic theta lifting.

Notation 3.3. We introduce some notations for future use. For a positive integer m, denote
◦ Hermm ⊂ ResE/F Matm the subscheme of hermitian matrices, with the invertible part
Herm◦

m := Hermm ∩ ResE/F GLm,
◦ Hermm(F )+ and Herm◦

m(F )+ the subsets of Hermm(F ) of totally semi-positive and
positive definite elements, respectively.

3.3. Weil representation. We review the notion of Weil representation. Let ψ : F\AF → C×

be the standard automorphic additive character, namely, the one satisfying ψV (x) = e2πix for
every v | ∞.

Definition 3.4. For every positive integer m, every place v of F and every (nondegenerate)
hermitian space Vv over Ev of dimension n = 2r, we have the representation ωm,v of Gm(Fv)×
U(Vv)(Fv) on S (V m

v ) defined by the following formulae:
• For a ∈ GLm(Ev) and φ ∈ S (V m

v ), we have

ωm,v


a

at,−1


φ(x) = | det a |rEv

· φ(xa).

Here a → a is the Galois conjugation.
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• For b ∈ Hermm(Fv) (in which Hermm is the F -subscheme of ResE/F Matm given by
m×m hermitian matrices b, i.e., b

t
= b) and φ ∈ S (V m

v ), we have

ωm,v


1m b

1m


φ(x) = ψv(tr bT (x)) · φ(x),

where T (x) = (xi, xj)1i,jm ∈ Hermm(Fv) is the moment matrix of x.
• For φ ∈ S (V m

v ), we have

ωm,v


1m

−1m


φ(x) = γm

Vv
· φ̂(x),

where γVv ∈ {±1} is the Weil constant of Vv (see [KR14a, (10.3)]), and φ̂ is the Fourier
transform of φ using the self-dual Haar measure on V m

v with respect to ψ ◦ trE/F .
• For h ∈ U(Vv)(Fv) and φ ∈ S (V m

v ), we have

ωm,v(h)φ(x) = φ(h−1x).

3.4. Theta lifting: when (1/2,π) = 1. We go back to the automorphic representation π

of G(AF ) and assume first that r[F : Q] is even. In this case, we have a hermitian space V

over E of rank n, unique up to isomorphism, that is totally positive definite and split at every
non-archimedean place of F . Put H = U(V ), and in this case the adelic group H(AF ) for
V ⊗AE agrees with the A-points of H over F . We now construct theta functions using the Weil
representation ωm,v.

Definition 3.5. Associated to φ ∈ S (V r ⊗ AF ), define the theta function

θφ(g, h) :=


x∈V r

ωr(g, h)φ(x) =


x∈V r

ωr(g)φ(h
−1x).

Then θφ(g, h) is an automorphic form on G(AF ) ×H(AF ), whose invariance under G(F ) ×
H(F ) is the consequence of the Poisson summation formula. The construction of theta function
produces the automorphic theta distribution

θ : S (V r ⊗ AF ) A (G(AF ))⊗ A (H(AF ))

φ θφ(−,−),

a G(AF )×H(AF )-equivariant distribution valued in the space of automorphic forms.
Using θφ(g, h) as an integral kernel allows one to lift automorphic forms on G to automorphic

forms on H (and vice versa): for an automorphic form ϕ ∈ A (G(AF )), define the following.

Definition 3.6. For every ϕ ∈ π (it is known that π has a unique realization in the space of
cusp forms of G(AF )), we define the theta lift θφ(ϕ) to H(AF ) by the Petersson inner product
on [G] := G(F )\G(AF ), as

θφ(ϕ)(h) := 〈θφ(−, h),ϕ〉G,Pet =



[G]

θφ(g, h)ϕ(g)dg,

which is an automorphic form on H(AF ) (with the absolute convergence). Here dg is the
Tamagawa measure on G(AF ).

We remark that, if ϕ is cuspidal, then this integral is absolutely convergent and defines an
automorphic form θφ(ϕ) ∈ A (H(AF )). Let π be a cuspidal automorphic representation of
G(AF ), then we obtain an G(AF )×H(AF )-equivariant linear map

θ : S (V r ⊗ AF )⊗ π∨ A (H(AF ))

(φ,ϕ) θφ(ϕ),
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and define the global theta lift
ΘV (π) ⊂ A (H(AF ))

of π to be its image, and H(AF )-subrepresentation of A (H(AF )). The theory of global theta
correspondence provides a rather complete description of ΘV (π), and we refer to Gan’s article
in these proceedings for more details.

3.5. Siegel–Weil formula. Associated to φ ∈ S (V r ⊗ AF ), consider the theta integral

Iφ(g) :=



[H]

θφ(g, h)dh,

where dh is the Tamagawa measure on H(AF ). Let α be the dimension of a maximal isotropic
subspace of V . The theta integral is absolutely convergent for all φ if and only if the pair (V,W )

satisfies the following.

Weil’s convergence condition. We have α = 0 (i.e., V is anisotropic), or α > 0

and n− α > r.

In this case Iφ(g) is an automorphic form on G(AF ). It can be viewed as the theta lift of the
identity function on H(AF ), and also specializes to the weighted average of theta series within a
genus class for definite hermitian forms (cf. [Li21, Example 2.2.6]). The theta integral produces
a G(AF )-equivariant distribution

I : S (V r ⊗ AF ) A (G(AF ))

φ Iφ(−).

There is another way of producing automorphic distributions like the above via Eisenstein series.
For s ∈ C, let

Iχ(s) := Ind
G(AF )
P (AF )(χ| · |

s
E)

be the degenerate principal series representation of G(AF ), where Ind
G(AF )
P (AF ) denotes the (un-

normalized) smooth parabolic induction. Associated to φ ∈ S (V r ⊗ AF ), there is a standard
Siegel–Weil section Φφ(g, s) ∈ Iχ(s) defined by

Φφ(g, s) := ωm(g)φ(0) · | det a(g)|s−s0
E ,

where
s0 :=

n− r

2
.

Here we write g = nm(a)k under the Iwasawa decomposition G(AF ) = N(AF )M(AF )K for K :=

Kr the standard maximal open compact subgroup of G(AF ), and the quantity | det a(g)|E :=

| det a|E is well-defined. We obtain a distribution

Φ(s) : S (V r ⊗ AF ) Iχ(s)

φ Φφ(g, s),

and the special value s = s0 is the unique value such that Φ(s) is G(AF )-equivariant.

Definition 3.7. Define the (hermitian) Siegel Eisenstein series

Eφ(g, s) :=


γ∈P (F )\G(F )

Φφ(γg, s), g ∈ G(AF ).

The Siegel Eisenstein series Eφ(g, s) converges absolutely when Re s > n/2. It has a mero-
morphic continuation to s ∈ C and satisfies a functional equation centered at s = 0. If Eφ(g, s)

is homomorphic at s = s0, then its value at s = s0 produces a G(AF )-equivariant distribution

E(s0) : S (V r ⊗ AF ) A (G(AF ))

φ Eφ(−, s0).

The Siegel–Weil formula gives a precise identity between the two distributions I and E(s0).
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Theorem 3.8 (Siegel–Weil formula). Assume that the pair (V,W ) satisfies Weil’s convergence
condition. Then Eφ(g, s) is holomorphic at s0 and

κ · Iφ(g) = Eφ(g, s0),

where κ = 1/2 if n > r and κ = 1 otherwise.

This theorem was proved in Weil [Wei65, Theorem 5] (when n > 2r, in which case Eφ(g, s)

is also absolutely convergent at s = s0), Ichino [Ich07, Theorem 1.1] (when r < n  2r) and
Yamana [Yam11, Theorem 2.2] (when n  r). If the Weil’s convergence condition is not satisfied,
one can still naturally define Iφ(g) via regularization and it is a long effort starting with the
work of Kudla–Rallis [KR94] to generalize the Siegel–Weil formula outside the convergence range
and for all reductive dual pairs of classical groups. We refer to Gan–Qiu–Takeda [GQT14] for
the most general Siegel–Weil formula and a nice summary of the literature and history. The
Siegel–Weil formula is an indispensable tool in the arithmetic theory of quadratic forms and
hermitian forms.

3.6. Rallis inner product formula. Piatetski–Shapiro–Rallis [PSR86, PSR87] discovered an
integral representation (the doubling method) of the standard L-function for cuspidal automor-
phic representations π of G(AF ), via integrating against a Siegel Eisenstein series on a “doubling”
group. Combining with the doubling seesaw and the Siegel–Weil formula, one arrives at the Ral-
lis inner product formula, which relates the Petersson inner product of theta lifts (from G to H)
and a special value of the standard L-function of π.

Consider the skew-hermitian space W□ = W ⊕ (−W ) of dimension 4r over F . Define G□ :=

U(W□), a quasi-split unitary group of rank twice that of U(W ). Associated to the parabolic
subgroup P□ ⊂ G□ stabilizing the maximal isotropic subspace {(w,−w) : w ∈ W} ⊂ W□,
we have a Weil representation ω□

r of G□(AF ) on A (V 2r ⊗ AF ). There is an isomorphism of
G(AF )×G(AF ) representations

δ : ωr ⊠ (ω∨
r ⊗ χ)

∼−→ ω□
r |G(AF )×G(AF )

such that for any φ1,φ2 ∈ S (V r ⊗ AF ), we have

δ(φ1 ⊗ φ2)(0) = 〈φ1,φ2〉ωr
,

where 〈·, ·〉ωr
is the inner product on S (V r ⊗ AF ). On the other hand, for any φ1,φ2 ∈

S (V r ⊗ AF ), we have a Siegel Eisenstein series Eδ(φ1⊗φ2)
(g, s) on G□. For any φ1,φ2 ∈ π,

define the global doubling zeta integral

Z(s,ϕ1,ϕ2,φ1,φ2) :=



[G]×[G]

φ1(g1)φ2(g2) · Eφ1⊗φ2
((g1, g2), s)χ

−1(det g2)dg1dg2.

It converges absolutely when Re s ≫ 0 and extends to a meromorphic function on C. When
φi =


v φi,v and ϕi =


v ϕi,v are factorizable, the global doubling zeta integral factorizes into

a product of local doubling zeta integrals

Z(s,ϕ1,ϕ2,φ1,φ2) =


v

Zv(s;ϕ1,v,ϕ2,v;φ1,v,φ2,v),

where

Zv(s;ϕ1,v,ϕ2,v;φ1,v,φ2,v) :=



G(Fv)

〈gvϕ1,v,ϕ2,v〉πv
· Φφ1,v⊗φ2,v

((gv, 1), s)dgv

converges absolutely when Re s ≫ 0 and extends to a meromorphic function on C. When all
the data are unramified at a finite place v with 〈ϕ1,v,ϕ2,v〉 = 1, we have

Zv(s;ϕ1,v,ϕ2,v;φ1,v,φ2,v) =
L(s+ 1/2,πv × πv)

b2n,v(s)
,



18 BEILINSON–BLOCH CONJECTURE FOR UNITARY SHIMURA VARIETIES

where L(s+ 1/2,πv × πv) is the doubling L-factor (see Harris–Kudla–Sweet [HKS96b], Lapid–
Rallis [LR05], Yamana [Yam14]) and this agrees with standard (base change) L-factor L(s +

1/2,BC(πv)⊗ χ) in this unramified case, and

bk,v(s) :=

k

i=1

L(2s+ i, ηk−i
v )

is a product of Hecke L-factors. Define the normalized local doubling zeta integral

Z
v(s;ϕ1,v,ϕ2,v;φ1,v,φ2,v) :=


L(s+ 1/2,πv × πv)

b2n,v(s)

−1

· Zv(s;ϕ1,v,ϕ2,v;φ1,v,φ2,v),

then
Z
v(s;ϕ1,v,ϕ2,v;φ1,v,φ2,v) = 1 for almost all v.

At s = s0, the normalized local zeta integral evaluates to

Z
v(s0;ϕ1,v,ϕ2,v;φ1,v,φ2,v) =



G(Fv)

〈gvϕ1,v,ϕ2,v〉πv
· 〈gvφ1,v,φ2,v〉ωr,vdgv,

the integral of the product of matrix coefficients of πv and ωr,v. Thus it produces a G(Fv) ×
G(Fv)-equivariant distribution

Z
v(s0) : S (V 2r

v ) πv ⊠ (π∨
v ⊗ χv)

φ1,v ⊗ φ2,v Z
v(s0,−,−,φ1,v,φ2,v).

Taking product produces a G(AF )×G(AF )-equivariant distribution


v

Z
v(s0) : S (V 2r ⊗ AF ) −→ π ⊠ (π∨ ⊗ χ).

On the other hand, the Petersson inner product of theta lifts also defines a G(AF ) × G(AF )-
equivariant distribution

〈θ, θ〉 : S (V 2r ⊗ AF ) π ⊠ (π∨ ⊗ χ)

(φ1,φ2) 〈θφ1
(−), θφ2

(−)〉H .

The Rallis inner product gives a precise identity between the two distributions


v Z

v(s0) and

〈θ, θ〉 above.

Theorem 3.9 (Rallis inner product formula). Assume that the pair (V,W□) satisfies Weil’s
convergence condition. Let π be a cuspidal automorphic representation of G(AF ). Then for any
φi =


v φi,v ∈ S (V r ⊗ AF ) and ϕi =


v ϕi,v ∈ π with i = 1, 2,

κ · 〈θφ1
(ϕ1), θφ2

(ϕ2)〉H =
L(s0 + 1/2,π × χ)

b2n(s0)
·


v

Z
v(s0;ϕ1,v,ϕ2,v;φ1,v,φ2,v).

Here s0 = (n−2r)/2, κ = 1/2 if n > 2r and κ = 1 otherwise, are the constants in the Siegel–Weil
formula (Theorem 3.8) for the pair (V,W□).

This theorem was proved in J.-S. Li [Li92]. Rallis [Ral84] first discovered a version of this
theorem in some special cases for orthogonal/symplectic dual pairs, hence its name. When Weil’s
convergence condition is not satisfied, one can still use the regularized Siegel–Weil formula to
derive a regularized version of the Rallis inner product formula and again we refer to [GQT14]
for the most general statements.

Remark 3.10. In Theorem 3.9, the two functors

〈θφ1(ϕ1), θφ2(ϕ2)〉H ,


v

Z
v(−;ϕ1,v,ϕ2,v;φ1,v,φ2,v)
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define two elements in


v

HomG(Fv)×G(Fv)(S (V 2r
v )H(Fv),πv ⊠ π∨

v )

with G = Gr as mentioned before. It is known that the above space has dimension 1 of which
v Z


v is a basis. Thus, Rallis inner product formula is nothing but the proportion of the two

invariant functionals.

Proof sketch of Rallis inner product formula.

Step I. We regard Gr ×Gr as a subgroup of G2r via the embedding


a1 b1
c1 d1


,


a2 b2
c2 d2


−→





a1 b1
a2 −b2

c1 d1
−c2 d2



 .

Step II. Use the Siegel–Weil formula in Theorem 3.8, say

〈θφ1(g1,−), θφ2(g2,−)〉H = E(0, (g1, g2),φ1 ⊗ φ2).

Here, for every Φ ∈ S (V 2r ⊗ AF ), we have the Siegel–Eisenstein series

E(s, g,Φ) :=


γ∈P2r(F )\G2r(F )

ω2r(γg)Φ(0) ·H(γg)s

on G2r(AF ), where P2r ⊂ G2r denotes the upper-triangle Siegel parabolic subgroup and H

denotes the “height” function with respect to P2r.

Step III. Using cuspidality, we have
 

[Gr(F )\Gr(AF )]2
ϕ1(g1)ϕ2(g2)E(s, (g1, g2),φ1 ⊗ φ2)dg1dg2

=
L(s+ 1/2,π)

bn(s)



v

Z
v(s;ϕ1,v,ϕ2,v;φ1,v,φ2,v).

□

3.7. Theta dichotomy in the equal rank case. The Rallis inner product formula plays an
important role in Rallis’s program on the nonvanishing criterion for global theta lifts ([Ral87],
cf. [GQT14, §1.2]). We recall a special case when n = 2r, i.e., when the two spaces V,W have
equal rank. In this case, κ = 1 and as n is even we can simply choose the splitting character
χ to be the trivial character. The special point s0 = 0 in the Siegel–Weil formula for (V,W□)
corresponds to the center of the functional equation of the Eisenstein series, and the Rallis inner
product formula relates the Petersson inner product of theta lifts and central L-values L(1/2,π).
By the Rallis inner product formula, we know that

global theta lifting ΘV (π) ∕= 0 ⇐⇒ L(1/2,π) ∕= 0, and


v

Z
v(0) ∕= 0.

The local condition Z
v(0) ∕= 0 turns out to be equivalent to that the local theta lift ΘVv

(πv) ∕= 0

(cf. [HKS96b, Proposition 3.1]). Moreover, at any nonsplit place v, we further have the epsilon
dichotomy by Gan–Ichino [GI14, Theorem 11.1] (and Harris–Kudla–Sweet [HKS96b, Theorem
6.1]) pinning down exactly one of the two local hermitian spaces over Fv:

Z
v(0) ∕= 0 ⇐⇒ (Vv) = ωπv · (−1) · (1/2,πv,ψv),

where
◦ (Vv) = ηv((−1)n(n−1)/2 det(Vv)) ∈ {±1} is the local Hasse invariant,
◦ (1/2,πv,ψv) ∈ {±1} is the central value of the doubling epsilon factor, and
◦ ωπv is the central character of πv.
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For any cuspidal automorphic representation π of G(AF ), the theta dichotomy associates
to it a unique collection of local hermitian spaces {Vv = Vv(πv)}v such that ΘVv (πv) ∕= 0 for
all places v, or equivalently, a unique hermitian space V = Vπ of rank n over AF such that
ΘVv

(πv) ∕= 0 for all places v, where Vv := V ⊗A F0,v. Say that V is coherent if V ≃ V ⊗F AF

for some hermitian space V over F , and incoherent otherwise.
Define (V) :=


v (Vv) ∈ {±1}. Then the Hasse principle implies that V is coherent if and

only if (V) = +1. The epsilon dichotomy implies the equality of signs

(Vπ) = (1/2,π).

We have two cases:
• If (1/2,π) = +1, then Vπ is coherent. If Vπ ≃ V ⊗F AF , then

the global theta lift ΘV (π) ∕= 0 ⇐⇒ L(1/2,π) ∕= 0.

Moreover ΘV ′(π) = 0 for all hermitian spaces V ′ of rank n over F different from V due
to local reasons.

• If (1/2,π) = −1, then Vπ is incoherent. The global theta lift ΘV (π) = 0 for all
hermitian spaces V of rank n over F due to local reasons.

In the second case there is no global theta lifting associated to the incoherent space V =

Vπ and L(1/2,π) = 0 always. It is natural and interesting to study the central derivative
L′(1/2,π). The Birch and Swinnerton-Dyer conjecture and its generalization by Beilinson and
Bloch suggests that the condition L′(1/2,π) ∕= 0 should be related to the non-triviality of
algebraic cycles. When the incoherent space V is totally definite, next we will canonically
associate to it a unitary Shimura variety X over F and use the generating function of its special
cycles to define an arithmetic theta lift ΘV (π) ⊂ CHn(X). Here CHn(X) is the Chow group of
algebraic cycles of codimension n on X modulo rational equivalence. One of the goals of the
Kudla program on arithmetic theta lifting is to establish an analogous criterion (cf. Theorem
5.16, proved in [LL21, LL22])

(∗) the arithmetic theta lift ΘV (π) ∕= 0
?⇐⇒ L′(1/2,π) ∕= 0.

4. Geometric theta correspondence

4.1. Unitary Shimura varieties. From now we assume that E/F is a CM extension of a
totally real number field.

As in the previous section, V denotes a hermitian space over E of rank n and H = U(V ). We
fix an embedding σ : E ↩→ C and view E (resp. F ) as a subfield of C (resp. R). Say V is standard
indefinite if V has signature (n− 1, 1) at the real place of F induced by σ, and signature (n, 0)

at all other real places. When V is standard indefinite, there is a system of unitary Shimura
varieties X = {XK} indexed by neat open compact subgroup K ⊂ H(A∞

F ). Each XK is a
smooth quasi-projective scheme of dimension n − 1 over F ⊂ C, and is projective when V is
anisotropic (e.g. when F ∕= Q, by the signature condition). It has complex uniformization

XK(C) = U(V )(F )\(D×U(V )(A∞
F )/K),

where D is the hermitian symmetric domain associated to U(V∞) given by the space of negative
complex lines in V ⊗E C. We have isomorphisms

D ≃ {z ∈ Cn−1 : |z| < 1} ≃ U(n− 1, 1)

U(n− 1)×U(1)
.

In particular, XK can be written as a union of arithmetic quotients of complex balls.
As in the previous section, V denotes an incoherent hermitian space of rank n over AE .

Say V is totally definite if V has signature (n, 0) at all real places. If V is totally definite,
then for any embedding σ : E ↩→ C, we have a unique standard indefinite hermitian space V ,
depending on σ, such that Vv has signature (n− 1, 1) at the real place of F induced by σ, and
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Vv ≃ Vv at all other places of F . By the theory of conjugation of Shimura varieties, the Shimura
variety XK associated to varying V for varying choices of σ are all conjugate, and thus can be
intrinsically defined over E (without being viewed as a subfield of C). In other word, for any
totally definite incoherent hermitian space V over AE , we obtain a system of unitary Shimura
varieties X = {XK} canonically defined over E (cf. [Zha10], [Gro20]).

From the above discussion the following dichotomy picture emerges:

• when studying the geometric invariants of XK (over the algebraically closed field C), a
choice of the embedding σ : E ↩→ C is involved. The coherent space V (AF ) associated to
V should play a canonical role and special values of analytic quantities ought to appear.

• when studying the arithmetic invariants of XK (over the number field E), no choice of
the embedding σ : E ↩→ C is involved and the incoherent space V should play a canonical
role and special derivatives of analytic quantities ought to appear.

Remark 4.1. By the Langlands philosophy, the motivic L-function associated to the étale coho-
mology of XK should be factorized into a product of automorphic L-functions for automorphic
representations π of H(AF ). When V is standard indefinite, the L-function appearing should
be the standard L-function of π. This suggests the terminology and its relevance for our goal
(∗). When V has more general signature combinations, for the corresponding Shimura varieties
one expects to see Langlands L-functions associated to more complicated representations of the
dual group of H = U(V ).

Remark 4.2. We remark that XK is a Shimura variety of abelian type (rather than of PEL or
Hodge type). Unlike Shimura varieties of PEL type associated to unitary similitude groups,
it lacks a good moduli description in terms of abelian varieties with additional structures and
thus it is technically more difficult to study. Nevertheless, its étale cohomology and L-function
will be computed in terms of automorphic forms in the forthcoming work of Kisin–Shin–Zhu
[KSZ21], under the help of the endoscopic classification for unitary groups due to Mok [Mok15]
and Kaletha–Minguez–Shin–White [KMSW14].

4.2. Special cycles and arithmetic theta functions.

4.2.1. Special cycles. Let V be a standard indefinite hermitian space over E of rank n = 2r,
with H = U(V ) as before. Let V be the associated totally definite incoherent space and denote
V∞ := V ⊗F A∞

F ≃ V⊗AF
A∞

F . Take a neat open compact subgroup K ⊂ H(A∞
F ).

We first recall the construction of Kudla’s special cycle Z(x)K for any x ∈ V m ⊗F A∞
F . For

any y ∈ V with (y, y) > 0, i.e., with totally positive norm, its orthogonal complement Vy ⊂ V

is a standard indefinite hermitian space with rank n− 1 over E. Let Hy := U(Vy), a subgroup
of H = U(V ) and Xy be the system of unitary Shimura varieties associated to Hy. We define
the special divisor Z(y)K to be the Shimura subvariety

Z(y)K := (Xy)K∩Hy(A∞) −→ XK .

More generally, we make the following definition.

Construction 4.3. For any m  dimXK and x = (x1, . . . , xn) ∈ V∞,m,

(1) When T (x) /∈ Hermm(F )+, we set Z(x)K = 0.
(2) When T (x) ∈ Herm◦

m(F )+ is positive definite, we may find elements y ∈ V m and
h ∈ H(A∞

F ) such that hx = y ∈ V m ⊗F A∞
F . Denote by Vy the orthogonal complement

of the subspace spanned by components of y in V , which is standard indefinite of rank
n−m. Put Hy := U(Vy), which is naturally a subgroup of H. Define the special divisor
Z(x)K to be the image cycle of the Hecke translate of a Shimura subvariety

Z(x)K := (Xy)hKh−1∩Hy(A∞
F ) −→ XhKh−1

·h−→ XK ,
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where Xy denotes the system of Shimura varieties for Vy. It is straightforward to check
that Z(x)K does not depend on the choice of y and h. Moreover, Z(x)K is a well-defined
element in Zm(XK).

(3) When T (x) ∈ Hermm(F )+ is only semi-positive definite in general, define the special
cycle of codimension n as

Z(x)K = Z(x1)K ∩ · · · ∩ Z(xn)K −→ XK ,

where ∩ denotes the fiber product over XK , whose image cycle defines an algebraic cycle
of codimension n on XK . However, the subtlety here lies in when (x,x) ∈ Herm◦

m(F )+

but is singular, the intersection is improper, i.e., it has the wrong codimension. To botch
this, let LK be the Hodge line bundle on XK , with complex uniformization

LK(C) = H(F )\(L×H(A∞
F )/K),

where L is the tautological line bundle on D ⊂ P(V ⊗E C). The Hodge line bundle
naturally appears when computing improper intersections: for example if x = x ∈ V m

with (x, x) > 0, then the excess intersection formula implies that

Z(x)K · Z(x)K = Z(x)K · c1(L∨
K) ∈ CH2(XK).

Here c1(L∨
K) ∈ CH1(XK)Q is the first Chern class of the dual line bundle of LK . This

motivates us to define

Z(x)K := Z(Vx)K · c1(L∨
K)m−dimF Vx ∈ CHm(XK)Q

which is an element in the Chow group of correct codimension.
Therefore, we get an element of CHm(XK)Q as the special cycle in Kudla’s sense (but

it is not always well-defined in Zm(XK)Q).

Definition 4.4. For every K-invariant Schwartz function φ∞ ∈ S (V m⊗FA∞
F )K = S (V∞,m)K

and T ∈ Hermm(F ), define the weighted special cycle

ZT (φ
∞)K :=



x∈K\V∞,m,
T (x)=T

φ∞(x)Z(x)K ∈ CHm(XK)C.

As the above summation is finite, ZT (φ
∞)K is a well-defined element in CHm(XK)C. For T ∈

Herm◦
m(F )+, the weighted special cycle ZT (φ

∞)K is even a well-defined element in Zm(XK)C.

4.2.2. Kudla’s generating series. Define Kudla’s generating function of special cycles (a.k.a.
arithmetic theta function, which is to be interpreted) of codimension n

Zτ (φ
∞)K :=



T∈Hermm(F )+

ZT (φ
∞)K · qT ,

as a formal generating function valued in CHm(XK)C, where

τ ∈ Hn = {x+ iy : x ∈ Hermm(F∞), y ∈ Herm◦
m(F∞)+}

lies in the the hermitian half space and

qT :=


v|∞

e2πi trTτv .

It formally resembles the Fourier expansion of a holomorphic hermitian modular form on Hn.
In fact its modularity is the content of Kudla’s modularity conjecture (see Conjecture 5.1).

More adelically, define

Zφ(g)K :=


T∈Hermm(F )+

ZT (ω
∞(g∞)φ∞)K · ω∞(g∞)φ∞(T ), g ∈ G(AF )
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as a formal sum valued in CHm(XK)C. Here φ∞ ∈ S (Vm
∞) is the standard Gaussian function

φ∞(x) :=


v

e−2πi tr(x,x)

and ω∞(g∞)φ∞(T ) makes sense as ω∞(g∞)φ∞ factors through the moment map x → (x,x). It
is the adelization of the definition of Zτ (φ

∞)K and agrees with the formal Fourier expansion of

Zφ(g)K =


x∈K\V∞,m

ω(g)(φ∞ ⊗ φ∞)(x) · Z(x)K ,

where for x ∈ V∞,m we interpret φ∞(x) as φ∞((x,x)) if (x,x) ∈ Hermm(F )+ and 0 otherwise.
Moreover, Zφ(g)K is compatible under pullback by natural projection morphisms when varying
K ⊂ H(A∞

F ) and thus defines a formal sum

Zφ(g) := (Zφ(g)K)K

valued in CHm(X)C := lim−→K⊂H(A∞
F )

(XK)C.
Notice the analogy between the classical theta function

θφ(g, h) :=


x∈V m

ωm(g, h)φ(x) =


x∈V m

ωr(g)φ(h
−1x)

and Kudla’s generating function Zφ(g)K , except two crucial modifications:
(i) the automorphic forms space A (H(AF )) (one of the variable) is replaced by CHm(X)

for the system of Shimura varieties X associated to H;
(ii) the holomorphy of Zφ(g) forces us to fix φ∞ to be the Gaussian function, and φ∞ lives

on the totally definite incoherent space V rather than the standard indefinite space V

(which matches the dichotomy philosophy as discussed in §4.1.
In this way one should view Kudla’s generating function as an arithmetic theta function.

4.3. Geometric modularity. We can extract geometric invariants of an element Z ∈ CHm(XK)

by taking its Betti cohomology class [Z] ∈ H2m(XK(C),Z) of the complex manifold XK(C).
In particular, we obtain from the arithmetic theta function Zφ(g)K a geometric theta function
[Zφ(g)K ] valued in H2m(XK(C),C). Its Fourier coefficients encodes the information about the
geometric intersection numbers of special cycles. The classical theorem of Kudla–Millson shows
that this geometric theta function is indeed modular. In other words, there are many hidden
symmetry and relations between these geometric invariants of special cycles. More precisely,
denote by Ak,χ(n) the holomorphic hermitian modular forms on Hn of parallel weight k and
character χ, and Ak,χ(G(AF )) ⊂ A (G(AF )) the adelization of Ak,χ(n).

Theorem 4.5 (Geometric modularity). The formal generating function [Zφ(g)K ] converges
absolutely and defines an element in Am/2,χ(G(AF ))⊗H2m(XK(C),C).

This theorem is proved in Kudla–Millson [KM90]. In fact [KM90] proves a much more
general theorem, applicable to the generating function of special cohomology classes for locally
symmetric spaces associated to any U(p, q) or O(p, q). The proof replies on the Kudla–Millson
Schwartz forms [KM86, KM87]

φKM,v0
∈ S (V m

v0 )⊗ Ωm,m(D)

where v0 is the real place of F induced by the fixed embedding σ : E ↩→ C, and Ωa,b(D) is the
space of smooth differential forms on D of type (a, b). The Schwartz form φKM,v0

is Hv0
(R)-

invariant and closed at any x ∈ V m
v0

. Define

φ∞ = φKM,v0 ⊗


v|∞, v ∕=v0

φv ∈ S (V m
∞ )⊗ Ωn,n(D),

where φv ∈ S (V m
v ) is the Gaussian function. Define

φV := φ⊗ φ∞ ∈ S (V (AF )
n)⊗ Ωm,m(D)
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and the Kudla–Millson theta function

θKM,φ(g, h) :=


x∈V m

ω(g)φV (h−1x), g ∈ G(AF ), h ∈ H(A∞
F ),

which gives a closed (m,m)-form on XK(C) at any g ∈ G(AF ). By the Poisson summation
formula one can prove that θKM,φ(g, h) defines a (nonholomorphic) automorphic form valued
in closed (m,m)-forms on XK(C). [KM90] further proves that it represents the (holomorphic)
geometric theta series [Zφ(g)K ] in H2m(XK(C),C) (in particular, the nonholomorphic terms in
θKM,φ(g, h) are exact forms) and obtains the theorem.

Remark 4.6. The remarkable discovery that generating function involving intersection numbers
of algebraic cycles are modular originates from the work of Hirzebruch–Zagier [HZ76] on Hilbert
modular surfaces, and is one of the inspirations for Kudla’s work (cf. the introduction of
[KM90, Kud97a]).

4.4. Geometric theta lifting. Analogous to §3.4, using [Zφ(g)] as an integral kernel allows
one to lift automorphic forms on G to cohomology classes on XK(C).

Definition 4.7. For ϕ ∈ Ar/2,χ(G(AF )), define the geometric theta lift or Kudla–Millson lift
θKM
φ (ϕ) to be the Petersson inner product

θKM
φ (ϕ)K := 〈[Zφ(g)K ,ϕ〉G =



[G]

[Zφ(g)]ϕ(g)dg ∈ H2m(XK(C),C).

When varying the neat open compact subgroup K ⊂ H(A∞
F ), it defines a class

θKM
φ (ϕ) := (θKM

φ (ϕ)K)K ∈ H2m(X(C),C) := lim−→
K⊂H(A∞

F )

H2m(XK(C),C).

Let π be a cuspidal automorphic representation of G(AF ). Assume that π∩Ar/2,χ(G(AF )) ∕= 0,
which forces that π∞ is a holomorphic discrete series of a particular weight (cf. [Liu11a, p.852]).
Then we obtain an G(A∞

F )×H(A∞
F )-equivariant linear map

θKM : S (V∞,m)⊗ π∨ H2m(X(C),C)
(φ,ϕ) θKM

φ (ϕ).

Definition 4.8. Define the geometric theta lift

ΘKM
V (π) ⊂ H2m(X(C),C)

of π to be the image of the G(A∞
F ) ×H(A∞

F )-equivariant linear map θKM above (here θKM
φ (ϕ)

is understood to be 0 if ϕ /∈ Ar/2,χ(G(AF ))).

4.5. Geometric Siegel–Weil formula. To relate the geometric theta series to Eisenstein se-
ries, we need to extract numerical invariants from cohomology classes. To that end, assume that
V is anisotropic, thus XK is projective and we have a degree map deg : H2 dimXK (XK ,C) → C.
For any n  dimXK = m, define the geometric volume

vol : H2n(XK(C),C) C
[Z] deg([Z] ∪ [c1(L∨

K)]dimXK−n).

In particular when n = dimXK we obtain the geometric volume vol([XK ]) of the Shimura
variety XK . Define the normalized geometric volume

vol : H2n(XK(C),C) C

[Z]
vol([Z])

vol([XK ])/2
.
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The Haar measure on H(A∞
F ) such that K has volume (vol([XK ])/2)−1 can be viewed as an

analogue of the Tamagawa measure on H(AF ) (cf. [LL21, Footnote 11]), hence the normaliza-
tion. Then vol([Zφ(g)K ]) is independent of the choice of K and can be viewed as a geometric
analogue of the theta integral

Iφ(g) :=



[H]

θφ(g, h)dh,

and produces a G(AF )-equivariant distribution analogous to

I : S (V (AF )
n) A (G(AF ))

φ Iφ(−).

Such a distribution turns out to be

vol : S (V∞,n) A (G(AF ))

φ vol[Zφ(−)].

On the other hand, for any φ ∈ S (V∞,n)K , the Schwartz form φV = φ⊗ φ∞ defined before
gives an element φV ∈ S (V (AF )

n)⊗ Ω0,0(D) such that

φV ∧ ΩdimX−n = φV · ΩdimX ,

where Ω ∈ Ω1,1(D) is the first Chern form of L∨. Evaluation of φV at the base point of D gives
a Schwartz function in S (V (AF )

n), which we still denote by φV by abuse of notation. Hence
we obtain a coherent Siegel Eisenstein series EφV (g, s) on G(AF ).

Theorem 4.9 (Geometric Siegel–Weil formula). Assume V is anisotropic. Assume that n 
dimXK = m− 1. Then for any φ ∈ S (V∞,n), the following identity holds

κ · vol([Zφ(g)]) = EφV (g, s0).

Here s0 = (m − n)/2, κ = 1/2 are the constants in the Siegel–Weil formula (Theorem 3.8) for
the pair (V,W ).

This is [Kud04, (4,4)] (see also [Kud03, Theorem 4.23]) for orthogonal Shimura varieties.
We refer to [Dun22, §2.2] for an exposition of the proof for the unitary Shimura variety XK .
The geometric Siegel–Weil formula holds more generally for non-projective XK under Weil’s
convergence condition, although the geometric volume lacks a cohomological interpretation as
above (see [Kud04, Theorem 4.1]).

4.6. Geometric inner product formula. To finish the geometric story, we introduce a geo-
metric analogue of the Petersson inner product on [H]. Further assume that 2n  dimXK .

Definition 4.10. Define the (normalized) geometric inner product

〈·, ·〉XK(C) : H
2n(XK(C),C)×H2n(XK(C),C) C

([Z1], [Z2]) vol([Z1] ∪ [Z2]).

It is again compatible with varying K and thus gives rise to an inner product 〈·, ·〉X(C) on
H2n(X(C),C). Combining the geometric Siegel–Weil formula and the Rallis inner product
formula, we obtain the following.

Theorem 4.11 (Geometric inner product formula). Assume that V is anisotropic. Assume
that 2n  dimXK = m − 1. Let π be a cuspidal automorphic representation of G(AF ) such
that π ∩ Am/2,χ(G(AF )) ∕= 0. Then for any φi =


v φi,v ∈ S (V∞,n) and ϕi =


v ϕi,v ∈

π ∩ Sm/2,χ(G(AF )) with i = 1, 2,

κ · 〈θKM
φ1

(ϕ1), θ
KM
φ2

(ϕ2)〉X(C) =
L(s0 + 1/2,π × χ)

b2n(s0)
·


v

Z
v(s0;ϕ1,v,ϕ2,v; φV

1,v,
φV
2,v).
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Here s0 = (m− 2n)/2, κ = 1/2 are the constants in the Siegel–Weil formula (Theorem 3.8) for
the pair (V,W□).

Example 4.12. In the special case 2n = m − 1, each θKM
φi

(ϕi) is the cohomology class of
a middle dimensional cycle on X(C) and the geometric inner product relates their geometric
intersection number to the near central value L(1,π × χ) at s0 = 1/2.

Kudla–Millson’s theory of geometric theta correspondence [KM90], as extended by Funke–
Millson to nontrivial coefficients [FM06] and compactifications of non-compact XK (e.g. [FM14]),
have many applications to the cohomology of Shimura varieties and more general locally symmet-
ric spaces. For example, Bergeron–Millson–Mœglin [BMM16] proved the Hodge conjecture and
the Tate conjecture for the arithmetic ball quotients XK , in cohomological degree  (m− 1)/3

or  2(m− 1)/3, and geometric theta lifting is a key ingredient in the proof to generate many
Hodge/Tate classes using special cycles in these degrees far away from the middle degree. Anal-
ogous to the classical theory, the geometric inner product formula and its variants (e.g. [BF10,
Theorem 1.1]) are useful to prove nonvanishing results on geometric theta lifting.

5. Arithmetic theta correspondence

The modularity of classical and geometric theta functions motivates Kudla’s arithmetic mod-
ularity conjecture [Kud04, Problem 1].

Conjecture 5.1 (Arithmetic modularity). The formal generating function Zφ(g)K converges
absolutely and defines an element in Am/2,χ(G(AF ))⊗ CHn(XK)C.

The formulation in the unitary case can be found in Liu [Liu11a], who also proved the case
n = 1 and reduce the n > 1 case to the converges. Recently Xia [Xia21] proved the desired
convergence when F = Q(

√
−d) for d = 1, 2, 3, 7, 11, and thus established Conjecture 5.1 in

these cases.

Remark 5.2. Kudla’s arithmetic modularity conjecture was originally formulated for orthogonal
Shimura varieties over Q ([Kud97a], [Kud04, Problem 1]). In this case, Borcherds [Bor99] proved
the conjecture for the divisor case n = 1 (the special case of Heegner points on modular curves
dates back to the classical work of Gross–Kohnen–Zagier [GKZ87]). Zhang [Zha09] proved the
modularity for general n assuming the absolute convergence of the series. Bruinier–Westerholt-
Raum [BWR15] proved the desired convergence and hence established Kudla’s modularity con-
jecture for orthogonal Shimura varieties over Q.

For orthogonal Shimura varieties over totally real fields, Yuan–Zhang–Zhang [YZZ13] proved
the modularity for n = 1 (see also Bruinier [Bru12] for a different proof) and reduce the n > 1

case to the convergence. More recently, Bruinier–Zemel [BZ22] has extended the modularity to
toroidal compactifications of orthogonal Shimura varieties when n = 1.

Assume Conjecture 5.1. Recall the construction of theta function produces the automorphic
theta distribution

θ : S (V r ⊗ AF ) A (G(AF ))⊗ A (H(AF ))

φ θφ(−,−),

a G(AF )×H(AF )-equivariant distribution valued in the space of automorphic forms. Analogous
to this, we obtain an arithmetic theta distribution

Z : S (Vr ⊗ A∞
F ) A (G(AF ))⊗ CHn(X)C

φ Zφ(−).

It is a G(A∞
F )×H(A∞

F )-equivariant distribution, where H(A∞
F ) acts on CHn(X)C via the Hecke

correspondences. Analogous to §4.4, using Zφ(g) as an integral kernel allows one to lift auto-
morphic forms on G to algebraic cycles on XK(C).
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Definition 5.3. For ϕ ∈ Am/2,χ(G(AF )), define the arithmetic theta lift Θφ(ϕ) to be the
Petersson inner product

Θφ(ϕ)K := 〈Zφ(g)K ,ϕ〉G =



[G]

Zφ(g)ϕ(g)dg ∈ CHn(XK)C.

When varying K ⊂ H(A∞
F ), it defines a class

Θφ(ϕ) := (Θφ(ϕ)K)K ∈ CHn(X)C.

Let π be a cuspidal automorphic representation of G(AF ) and assume that π∩Am/2,χ(G(AF )) ∕=
0. Then we obtain an G(A∞

F )×H(A∞
F )-equivariant linear map

Θ : S (V∞,n)⊗ π∨ CHn(X)C

φ⊗ ϕ Θφ(ϕ).

Definition 5.4. Define the arithmetic theta lift

ΘV(π) ⊂ CHn(X)C

of π to be the image of the G(A∞
F ) × H(A∞

F )-equivariant linear map Θ above. (Again, here
Θφ(ϕ) is understood to be 0 if φ ∕= Am/2,χ(G(AF )).)

In particular, Θ can be viewed as element

Θ ∈ HomH(A∞
F )((S (V∞,n)⊗ (π∞)∨)G(A∞

F ),CH
n(X)C).

Notice that (S (V∞,n) ⊗ (π∞)∨)G(A∞
F ) is nothing but exactly the classical theta lift Θ(π∞) :=

v∤∞ ΘVv (πv) of π∞, thus we may view the arithmetic theta lift as an element of the Θ(π∞)-
isotypic part of CHn(X)C,

Θ ∈ HomH(A∞
F )(Θ(π∞),CHn(X)C).

5.1. Special cycles on integral models. Kudla [Kud04, Problem 4] also proposed the mod-
ularity problem in the arithmetic Chow group CHn(XK) of a suitable (compactified) regular
integral model XK (of a variant) of XK (see [GS91, GKK07] and also [Sou92]). The problem
seeks to define canonically an explicit arithmetic generating function Ẑφ(τ) valued in CHn(X )C
which lifts Zφ(τ) under the restriction map

CHn(X ) −→ CHn(X),

and such that Ẑφ(τ) is modular.
To define the integral model and special cycles on it, it is more convenient to work with a

related unitary Shimura variety with an explicit moduli interpretation after [KR14b, BHK+20a,
RSZ20]. Define a torus ZQ = {z ∈ ResE/Q Gm : NmE/F (z) ∈ Gm}. Fix a CM type Φ ⊂
Hom(E,Q) of E. Then associated to H := ZQ × ResF/Q H there is a natural Shimura datum
( H, {h H}) of PEL type [LZ22b, §11.1]. Assume that KZQ ⊂ ZQ(A∞

F ) is the unique maximal
open compact subgroup. Then the associated Shimura variety ShK = ShK

ZQ×K( H, {h H}) is
of dimension n − 1 and has a canonical model over its reflex field L. Moreover, ShK can be
identified as the product of the base change (XK)L and a 0-dimensional Shimura variety of PEL
type [LL21, Lemma 5.2].

Assume that K =


v∤∞ Kv ⊂ H(A∞
F ) and Kv ⊂ H(Fv) is given by

• the stabilizer of a self-dual or almost self-dual lattice Λv ⊂ Vv if v is inert in E,
• the stabilizer of a self-dual lattice Λv ⊂ Vv if v is ramified in E,
• a principal congruence subgroup of Hv(Fv) ≃ GLn(Fv) if v is split in F .

Let Vram be the set of finite places v of F such that v is unramified in E (resp. v is inert
in E and Λv is almost self-dual). Further assume that all places of F above Vram ∪ Vasd are
unramified over E. Then we obtain a global regular integral model XK of ShK over OE after
Rapoport–Smithling–Zhang [RSZ20] (see [LZ22b, §14.1–14.2]) for the construction and more
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precise technical assumptions), which is semistable at all places of F above Vram ∪ Vasd and
smooth everywhere else. When KG is the stabilizer of a global self-dual lattice, the regular
integral model XK recovers that in [BHK+20a] if F = Q. Let φ ∈ S (V∞,n)K be a factorizable
Schwartz function such that φv = 1(Λv)n at all v nonsplit in E. Let T ∈ Hermn(F ) be non-
singular. Associated to (T,φ) we have an arithmetic special cycle Z(T,φ)K over XK [LZ22b,
§14.3].

5.2. Modularity in arithmetic Chow groups. The integral model XK and Z(T,φ)K are
constructed as the moduli spaces of certain abelian varieties with additional structures. To
describe them more precisely, in this subsection we consider the special case F = Q (so L = E

is an imaginary quadratic field), n = 1, and there is a global self-dual lattice Λ such that
Λv = Λ⊗OF

OF,v and φv = 1Λv at all finite places v. In this special case, the special cycles are
indexed by T ∈ Hermn(OF )

+ = Z0. Assume that E/F is unramified at 2 for simplicity.

Definition 5.5. Define an integral XK of ShK over OE as follows. For an OE-scheme S, we
consider XK(S) to be the groupoid of tuples (A0, ι0,λ0, A, ι,λ,FA), where

(1) A0 (resp. A) is an abelian scheme over S.
(2) ι0 (resp. ι) is an action of OE on A0 (resp. A).
(3) λ0 (resp. λ) is a polarization of A0 (resp. A).
(4) FA ⊂ LieS A is an OE-stable OS-module local direct summand.

We require that
(1) OE acts on the OS-module LieS A0 via the structure morphism OE ↩→ OS . This is the

Kottwitz condition of signature (1, 0):

det(ι0(a) | LieS A0) = T − a ∈ OS [T ]

for all a ∈ OE .
(2) FA satisfies the Krämer condition: OE acts on FA via the structure morphism and

acts on the line bundle LieS(A/FA) via the conjugate of the structure morphism. This
implies (and in characteristic 0 is equivalent to) the Kottwitz condition of signature
(m− 1, 1):

det(ι(a) | LieS A) = (T − a)m−1(T − a) ∈ OS [T ]

for all a ∈ OE .
(3) The Rosati involution on EndS A0 (resp. EndS A) induces the conjugation on OE via

ι0 (resp. ι).
(4) At every geometric point s of S, there is an isomorphism of hermitian OF,ℓ-modules

HomOE
(TℓA0,s, TℓAs) ≃ HomOE

(Λ0,Λ)⊗ Zℓ

for any prime ℓ different from the residue characteristic of s. Here Λ0 is a fixed self-dual
hermitian lattice of rank 1 over OE . Notice that HomOE

(Λ0,Λ) has a natural hermitian
module structure given by (x, y) := y∨ ◦ x ∈ EndOE

(Λ0) ⊂ E and similarly for the
left-hand side.

Then the functor S → XK(S) is represented by a Deligne–Mumford stack XK regular over
SpecOE . The extra data (A0, ι0,λ0) of a CM elliptic curve allows us to consider a motivic
version of the lattice Λ. For (A0, ι0,λ0, A, ι,λ,FA) ∈ XK(S), define the special homomorphisms
to be

Λ(A0, A) := HomOE
(A0, A),

equipped with a natural hermitian form (x, y) ∈ OE given by

(A0
x−→ A

λ−→ A∨ y∨

−→ A∨
0

λ−1
0−→ A0) ∈ EndOE

(A0) = ι0(OE) ≃ OE .

When T > 0, define the special divisor Z(T,φ)K by requiring an additional special homo-
morphism of norm T . More precisely, the functor S → {(A0, ι0,λ0, A, ι,λ,FA, x)}, where
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(1) (A0, ι0,λ0, A, ι,λ,FA) ∈ XK(S),
(2) x ∈ Λ(A0, A) such that T (x) = (x, x) = T ,

is represented by a Deligne–Mumford stack Z(T,φ)K , which is finite and unramified over XK . It
extends to a compactified special divisor Z∗(T,φ)K on the canonical toroidal compactification
X ∗

K by taking the Zariski closure. [BHK+20a] further defines a total special divisor Ztot(T,φ)K
by adding an explicit boundary divisor to Z∗(T,φ)K [BHK+20a, (1.1.3)]. Using regularized theta
lifts of harmonic Maass forms, Z∗(T,φ)K is equipped with an automorphic Green function with
log-log singularities along the boundary [BHK+20a, §7.2], hence it defines an element in

Ztot(T,φ)K ∈ CH1(X ∗
K).

When T = 0, define

Ztot(0,φ)K = L∨
K + (Exc,− log | disc(F )|) ∈ CH1(X ∗

K)

where L∨
K is the metrized dual Hodge line bundle over X ∗

K , Exc is an effective vertical divisor
supported above Vram equipped with the constant Green function − log | disc(F )|. Define the
generating function in arithmetic Chow groups

Ztot(τ,φ)K :=


T0

Ztot(T,φ)K · qT ,

as a formal generating function valued in CH1(X ∗
K), where τ ∈ H1 lies in the usual upper half

plane.

Theorem 5.6 (Modularity in arithmetic Chow groups: the divisor case). The formal gener-
ating function Ztot(τ,φ)K converges absolutely and defines an elliptic modular form valued in
CH1(X ∗

K) of weight m, level | discF | and character ηm.

This is proved in Bruinier–Howard–Kudla–Rapoport–Yang [BHK+20a, Theorem B]. Anal-
ogous to §5.1, Theorem 5.6 allows us to construct arithmetic theta lifts valued in CH1(X ∗

K).
As applications, [BHK+20b, Theorem A,B] proves formulas relating the arithmetic intersec-
tion of these arithmetic theta lifts and small/big CM points to the central derivative of certain
convolution L-functions of two elliptic modular forms, generalizing the Gross–Zagier formula
[GZ86].

Remark 5.7. One can also use Kudla’s Green function [BHK+20a, (7.4.1)] in place of the au-
tomorphic Green function to define an arithmetic divisor Ztot(y, T,φ)K ∈ CH1(X ∗

K) depending
on a parameter y = Im(τ) ∈ R>0 (here T is also allowed to be < 0, in which case the divisor is
supported at the archimedean fiber). Then the generating function



T∈Z

Ztot(y, T,φ)K · qT

becomes a nonholomorphic modular form [BHK+20a, Theorem 7.4.1]. This is a consequence
of Theorem 5.6 and the modularity of the difference of the two generating function due to
Ehlen–Sankaran [ES18].

Remark 5.8. The proof of Theorem 5.6 uses the arithmetic theory of Borcherds products, which
requires the assumption F = Q. For F ∕= Q, a version of Theorem 5.6 is proved in Qiu [Qiu22]
by a different method and formulation. A version of Theorem 5.6 is proved in Howard–Madapusi
Pera [HP20] for (open) orthogonal Shimura varieties over Q.

Remark 5.9. The generating functions of arithmetic divisors have also found many applications
outside the Kudla program. To name some recent arithmetic applications:

(1) Theorem 5.6 is used in Zhang’s proof of the arithmetic fundamental lemma over Qp in
[Zha21]. Variants over general totally real fields also play a key role for the arithmetic
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fundamental lemma over p-adic fields in Mihatsch–Zhang [MZ] and the arithmetic trans-
fer conjecture in Z. Zhang [Zha], in the framework of the arithmetic Gan–Gross–Prasad
conjectures for unitary groups. We refer to Zhang’s article in these proceedings for more
details.

(2) The arithmetic modularity in [HP20] is used in Shankar–Shankar–Tang–Tayou [SSTT19]
on the Picard rank jumps of K3 surfaces over number fields.

(3) The proof of the averaged Colmez conjecture in Andreatta–Goren–Howard–Madapusi
Pera [AGHP18] relies on relating arithmetic intersection of special divisors on orthogonal
Shimura varieties and big CM points to central derivatives of certain L-functions.

Remark 5.10. The modularity problem in arithmetic Chow groups [Kud04, Problem 4] remains
open in higher codimension n > 1. When n > 1, even when T > 0 the special cycle Z(T,φ)

in general has the wrong codimension due to improper intersection in positive characteristics,
and the consideration of derived intersection is necessary to obtain the correct class Z(T,φ) in
arithmetic Chow groups. It is also subtle to find the correction terms at places of bad reduction
and at boundary (both issues already appear when n = 1) and to find the correct construction
of Green currents to ensure modularity. The forthcoming works of Howard–Madapusi Pera and
Madapusi Pera address some of these issues when n > 1.

5.3. Arithmetic Siegel–Weil formula. If the arithmetic theta function Z(τ,φ) ∈ CHn(XK)

can be constructed, then we may apply the arithmetic volume

vol : CHn(XK) C
Z deg( Z · (c1( L∨

K))dimXK−n)

and try to relate vol( Z(τ,φ)) to the special derivatives of Siegel Eisenstein series. However, as
discussed in Remark 5.10 the definition of Z(τ,φ) is rather subtle when n > 1. Moreover, the spe-
cial derivatives are nonholomorphic function (also including terms indexed by T /∈ Hermn(F )+,
cf. Remark 5.7).

In this subsection we assume that m = n, so s0 = 0 and κ = 1 in the Siegel–Weil formula for
the pair (V,W ). In this special case, the arithmetic volume is simply the arithmetic degree and
we can define the nonsingular terms in the generating function in a more explicit way. Even for
T > 0 terms, the relation to Siegel Eisenstein series is more complicated due to contribution at
places of bad reduction, a phenomenon first discovered by Kudla–Rapoport [KR00] via explicit
computation in the context of Shimura curves uniformized by the Drinfeld p-adic half plane.

For nonzero t1, . . . , tn ∈ E and φ1, . . . ,φn ∈ S (V∞
F )K such that φv = 1Λv

at all v nonsplit
in E, we have a natural decomposition [KR14b, (11.2)]

Z(t1,φ1)K ∩ · · · ∩ Z(tn,φn)K =


T∈Hermn(F )

Z(T,φ)K ,

here ∩ denotes taking fiber product over XK , the indexes T have diagonal entries t1, . . . , tn, and
φ =

n
i=1 φi.

Definition 5.11. For v ∤ ∞ and ν a place of L (which is the reflex field of ShK) over v, define
the local arithmetic intersection number

IntT,ν(φ) := χ(Z(T,φ)K ,OZ(t1,φ1)K ⊗L · · ·⊗L OZ(tn,φn)K ) · log qν ,

where
• qν denotes the size of the residue field kν of Lν ,
• OZ(ti,φi)K denotes the structure sheaf of the special divisor (Z(ti,φi)K)OKν

,
• ⊗L denotes the derived tensor product of coherent sheaves on (XK)OKν

, and
• χ denotes the Euler–Poincaré characteristic (an alternating sum of lengths of OKν -

modules).
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Notice that the derived tensor product OZ(t1,φ1)K ⊗L · · ·⊗L OZ(tn,φn)K has the structure of
a complex of OZ(t1,φ1)K∩···∩Z(tn,φn)K -modules, hence has a natural decomposition by support
according to the decomposition above. Define

IntT,v(φ) :=
1

[K : F ]
·


ν|v

IntT,ν(φ).

Using the star product of Kudla’s Green functions, we can also define its local arithmetic in-
tersection number IntT,v(y,φ) at infinite places [LZ22b, §15.3], which depends on a parameter
y ∈ Herm◦

n(F∞)+. Combining all the local arithmetic numbers together, define the global arith-
metic intersection number, or the (normalized) arithmetic degree of the special cycle Z(T,φ)K

degT (y,φ) :=
1

vol([ShK ])/2






v∤∞

IntT,v(φ) +


v|∞

IntT,v(y,φ)



 .

We form the generating function of arithmetic degrees

deg(τ,φ) :=


T∈Hermn(F ),
detT ∕=0

degT (y,φ)qT .

On the other hand, associated to

φV := φ⊗ φ∞ ∈ S (Vn),

where φ∞ is the Gaussian function, we obtain a classical incoherent Eisenstein series E(τ, s,φV).
The central value E(τ, 0,φV) = 0 by the incoherence. We thus consider its central derivative

Eis′(τ,φ) :=
d

ds


s=0

E(τ, s,φV).

To match the arithmetic degree, we need to modify Eis′(τ,φ) by central values of coherent
Eisenstein series at places of bad reduction. For v ∈ Vram∪Vasd, let vV be the coherent hermitian
space over A∞

F nearby V at v, namely (vV)w ≃ Vw exactly for all places w ∕= v. For any vertex
lattice Λt,v ⊂ (vV)v of type t, the Schwartz function φv ⊗ 1(Λt,v)n ⊗ φ∞ ∈ S ((vV)n) gives a
classical coherent Eisenstein series E(τ, s,φv ⊗ 1(Λt,v)n ⊗ φ∞). Define the (normalized) central
values

vEist(τ,φ) :=
vol(KG,v)

vol(KΛt,v )
· E(τ, 0,φv ⊗ 1(Λt,v)n ⊗ φ∞).

Define the modified central derivative

∂Eis(τ,φ) := Eis′(τ,φ) + (−1)n


v∈Vram∪Vasd

vEis(τ,φ).

Here vEis(τ,φ) is an explicit Q-linear combination of vEist(τ,φ) for certain t’s as defined in
[HLSY22]. It has a decomposition into Fourier coefficients

∂Eis(τ,φ) =


T∈Hermn(F )

∂EisT (τ,φ).

Now we can state the arithmetic Siegel–Weil formula, which is an identity between the arith-
metic degrees and the modified central derivative of the incoherent Eisenstein series.

Theorem 5.12 (Arithmetic Siegel–Weil formula: nonsingular terms). Assume that E/F is
split at all places above 2. Let φ ∈ S (V∞,n)K be a factorizable Schwartz function such that
φv = 1(Λv)n at all v nonsplit in E. Let T ∈ Hermn(F ) be nonsingular. Then

degT (y,φ) · qT = (−1)n · ∂EisT (τ,φ).

In particular, deg(τ,φ) is a nonholomorphic hermitian modular form on Hn.
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The proof of this theorem boils down to a local arithmetic Siegel–Weil formula computing
IntT,v(φ) at each place v nonsplit in E:

(1) At v | ∞, this is the archimedean arithmetic Siegel–Weil formula proved by Liu [Liu11a]
and Garcia–Sankaran [GS19] independently.

(2) At v ∤ ∞ inert in E such that Λv is self-dual, this is the content of the Kudla–Rapoport
conjecture [KR14b, Conjecture 11.10], proved by Li–Zhang [LZ22b]. We refer to [Li21,
§5] for an exposition. An analogous theorem is also proved for orthogonal Shimura
varieties over Q at a place of good reduction [LZ22c].

(3) At v ∤ ∞ inert in E such that Λv is almost self-dual, this is a variant of the Kudla–
Rapoport conjecture formulated and proved by Li–Zhang [LZ22b].

(4) At v ∤ ∞ ramified in E such that Λv is self-dual, this is the Kudla–Rapoport conjecture
for Krämer models formulated by He–Shi–Yang [HSY21] and proved by He–Li–Shi–Yang
[HLSY22].

Remark 5.13. The precise formulation of the singular part of the arithmetic Siegel–Weil [Kud04,
Problem 6] remains an open problem. As a special case, the constant term of the arithmetic
Siegel–Weil formula should roughly relate the arithmetic volume of XK to logarithmic derivatives
of Dirichlet L-functions. Such an explicit arithmetic volume formula was proved by Bruinier–
Howard [BH21], though a precise comparison with the constant term of ∂Eis(τ,φ) is yet to be
formulated and established.

Remark 5.14. In contrast to the classical and geometric Siegel–Weil formula, here the choice of K
is fixed at all nonsplit places v in order to construct a regular integral model XK , which prevents
us from formulating a full adelic version of the arithmetic Siegel–Weil formula. Nevertheless,
the flexibility at split places (due to the regular integral models with Drinfeld level structure)
allow us to choose φ to be nonsingular at split places to kill all singular terms on both sides.
This extra flexibility is crucial for applications such as the arithmetic inner product formula,
via making use of the multiplicity one result of the doubling method and bypassing the need of
proving the singular part of the arithmetic Siegel–Weil formula.

5.4. Arithmetic inner product formula. In this subsection we come back to the equal rank
situation consider in §3.7 and assume that m = 2n, so we can take χ to be the trivial character,
and s0 = 0, κ = 1 in the Siegel–Weil formula for the pair (V,W□). Assume (π) = −1 so
V = Vπ is incoherent. In this case we may use the Beilinson–Bloch height pairing to define an
arithmetic inner product between arithmetic theta lifts.

Let CHn(XK)0 ⊂ CHn(XK) be the subgroup of cohomologically trivial cycles. Since dimXK =

2n− 1 we have a (conditional) symmetric bilinear height pairing

〈·, ·〉BB : CHn(XK)0 × CHn(XK)0 −→ R,

constructed by Beilinson [Bei87] and Bloch [Blo84]. It generalizes the Néron–Tate height pairing
when n = 1. When n > 1, the Beilinson–Bloch height pairing is only defined assuming certain
conjectures on algebraic cycles on XK (see [Bei87, Conjectures 2.2.1 and 2.2.3]). This important
technical issue is addressed in [LL21, LL22] so that the left-hand side of the arithmetic inner
product formula in Theorem 5.16 can be defined unconditionally, but we will intentionally ignore
it for the purpose of this article. Then we naturally obtain an inner product on CHn(XK)0C and
define the (normalized) arithmetic inner product

〈·, ·〉XK
: CHn(XK)0C × CHn(XK)0C C

(Z1, Z2)
〈Z1, Z2〉BB

vol([XK ])/2
,

which also gives a well-defined inner product 〈·, ·〉X on CHn(X)0C.

Assumptions 5.15. We impose the following (mild) local assumptions on E/F and π.
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(1) E/F is split at all 2-adic places and F ∕= Q. If v ∤ ∞ is ramified in E, then v is
unramified over Q. Assume that E/Q is Galois or contains an imaginary quadratic field
(for simplicity).

(2) For v | ∞, πv is the holomorphic discrete series with Harish-Chandra parameter {(m−
1)/2, (m− 3)/2, . . . , (−m+ 3)/2, (−m+ 1)/2}.

(3) For v ∤ ∞, πv is tempered.
(4) For v ∤ ∞ ramified in E, πv is spherical with respect to the stabilizer of O2n

Ev
.

(5) For v ∤ ∞ inert in E, πv is unramified or almost unramified [Liu21b] with respect to the
stabilizer of O2n

Fv
. If πv is almost unramified, then v is unramified over Q.

Under Assumptions 5.15, the arithmetic theta lift Θφ(ϕ) is in fact cohomologically trivial and
thus ΘV(π) ⊂ CHn(X)0C (see [LL21, Proposition 6.10]) and we can apply the arithmetic inner
product.

Theorem 5.16 (Arithmetic inner product formula, proved by Li–Liu). Let π be a cuspidal
automorphic representation of G(AF ) satisfying Assumptions 5.15. Assume that (π) = −1.
Assume that Kudla’s arithmetic modularity Conjecture 5.1 holds. Then for any φi =


v φi,v ∈

S (V∞,n) and ϕi =


v ϕi,v ∈ π ∩ An(G(AF )) with i = 1, 2,

〈Θφ1
(ϕ1),Θφ2

(ϕ2)〉X =
L′(1/2,π)

b2n(0)
·


v

Z
v(0;ϕ1,v,ϕ2,v;φ

V
1,v,φ

V
2,v).

In particular,
L′(1/2,π) ∕= 0 =⇒ ΘV(π) ∕= 0,

and the converse also holds if 〈·, ·〉X is nondegenerate.

This is proved by Li–Liu in [LL21, LL22]. The conjectural arithmetic inner product formula
was formulated (in the orthogonal case) by Kudla [Kud97b] using the Gillet–Soulé height and in
more generality by Liu [Liu11a] using the Beilinson–Bloch height. This theorem verifies (under
local assumptions) the conjecture formulated by Liu (who also completely proved the case n = 1

in [Liu11b]).

Remark 5.17. The formula can further be made explicit by computing the local doubling zeta
integrals. For example, if

◦ π is unramified or almost unramified at all finite places,
◦ ϕ ∈ π is a holomorphic newform such that (ϕ,ϕ)π = 1, and
◦ φv is the characteristic function of (almost) self-dual lattices at all finite places v,

then we have

〈Θφ(ϕ),Θφ(ϕ)〉X = (−1)n · L
′(1/2,π)

b2n(0)
· C [F :Q]

n ·


v∈Sπ

qn−1
v (qv + 1)

(q2n−1
v + 1)(q2nv − 1)

,

where Cn = 2−2nπn2 Γ(1)···Γ(n)
Γ(n+1)···Γ(2n) is an archimedean doubling zeta integral computed by Eischen–

Liu [EL20] and Sπ = {v inert : πv almost unramified}.
Notice that the Grand Riemann Hypothesis predicts that L′(1/2,π)  0, while Beilinson’s

Hodge index conjecture [Bei87, Conjecture 3.5] predicts that (−1)n〈Θφ(ϕ),Θφ(ϕ)〉X  0. It is
a good reality check that these two (big) conjectures are compatible with the formula above.

The arithmetic inner product formula can be viewed as a higher dimensional generalization
of the Gross–agier formula [GZ86] and has applications to the Beilinson–Bloch conjecture for
higher dimensional Shimura varieties. Without assuming Kudla’s modularity conjecture, we
cannot define Θφ(ϕ) but we may still obtain unconditional nonvanishing results [LL21, LL22]
on Chow groups as predicted by the Beilinson–Bloch conjecture (using a proof by contradiction
argument). See the argument below Theorem 5.27 for more details.
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Theorem 5.18 (Application to the Beilinson–Bloch conjecture). Let π be a cuspidal automor-
phic representation of G(AF ) satisfying Assumptions 5.15. Let CHn(X)0mπ

be the localization
of CHn(X)0C at the maximal ideal mπ of the spherical Hecke algebra of H(A∞

F ) (away from all
ramification) associated to π. Then the implication

ords=1/2L(s,π) = 1 =⇒ rankCHn(X)0mπ
 1

holds when the level subgroup K ⊂ H(A∞
F ) is sufficiently small.

Remark 5.19. Disegni–Liu [DL22] proved a p-adic version of the arithmetic inner product for-
mula, relating the central derivative of the cyclotomic p-adic L-function Lp(π) to the p-adic
height pairing [Nek93] of arithmetic theta lifts. As an application, they prove implications of
the form

central order of vanishing of Lp(π) is 1

=⇒ Bloch–Kato Selmer group H1
f (E, ρπ(n)) has rank  1,

where ρπ is the Galois representation associated to π. This verifies part of the p-adic Bloch–Kato
conjecture.

Remark 5.20. Xue [Xue19] used the arithmetic inner product formula in the case n = 1 and
the Gan–Gross–Prasad conjecture for U(2) × U(2) to prove endoscopic cases of the arithmetic
Gan–Gross–Prasad conjecture for U(2) × U(3). In general, one also expects a similar relation
between the arithmetic inner product formula for U(m) and endoscopic cases of arithmetic
Gan–Gross–Prasad conjecture for U(m)×U(m+ 1).

Remark 5.21. Throughout we have assumed the skew-hermitian space W has even dimension
2n. When the skew-hermitian space W has odd dimension, Liu [Liu21a] has defined mixed
arithmetic theta lifting and used it to formulate a conjectural arithmetic inner product formula.

5.5. Arithmetic theta lifting: when (1/2,π) = −1. Now we state another quantitative
version of Theorem 5.16, based on the argument in Remark 5.17, by giving a height formula for
arithmetic theta liftings.

5.5.1. Setups and assumptions. As before, we state n = 2r together with the CM extension
E/F in C of the totally real field F over Q. We equip Wr := En with the skew-hermitian form
given by the matrix


1r

−1r


. Put Gr := U(Wr), the unitary group of Wr, which is a quasi-split

reductive group over F . For every non-archimedean place v of F , we denote by Kr,v ⊂ Gr(Fv)

the stabilizer of the lattice On
Ev

, which is a special maximal subgroup. Denote Ar(Gm(AF )) the
space of automorphic forms on Gm(AF ) of “parallel weight r” (for which we fix a choice of χ).
We have the Siegel–Fourier expansion

ϕ ∼


T∈Hermm(F )

ϕT · qT ,

where

ϕT :=



Hermm(F )\Hermm(AF )

ϕ


1m b

1m


· ψ(tr bT )−1db.

Then Kudla’s modularity Conjecture 5.1 can be precisely read as follows.

Conjecture 5.22 (Kudla’s modularity hypothesis). For φ∞ ∈ S (V∞,m)K = S (V m⊗F A∞
F )K ,

there exists a (necessarily unique) holomorphic element

Z(φ∞)K ∈ Ar(Gm(AF ))⊗ CHm(XK)

such that for every g∞ ∈ Gm(A∞
F ), the Siegel–Fourier expansion of g∞Z(φ∞)K coincides with



T∈Hermm(F )

ZT (ω
∞
r (g∞)φ∞)K · qT .
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This conjecture is formally known (that is, ignore the issue of convergence), and is only
rigorously known when m = 1.

We also consider a cuspidal automorphic representation π =


v πv of Gr(AF ) satisfying
(R1) If v | ∞, then πv is a holomorphic discrete series of weights {(n−1)/2, (n−3)/2, . . . , (3−

n)/2, (1− n)/2}.
(R2) If v ∤ ∞ and is nonsplit in E, then πv is Kr,v-spherical, that is, πKr,v

v ∕= {0}.
(R3) If v ∤ ∞, then πv is tempered, i.e., πv is contained in a parabolic induction of a unitary

discrete series representation.
We have studied in §3.4 the case where r[F : Q] is even (and hence the root number (1/2,π) =

1) via the classical theta lifting. To step in the case where the root number (1/2,π) = −1,
we assume now r[F : Q] is odd and apply the theory of arithmetic theta liftings. Under this
assumption, there is a standard indefinite hermitian space V over E of rank n, unique up to
isomorphism, that is totally positive definite and split at every non-archimedean place of F .
Put H := U(V ). Recall that V is standard indefinite if it has signature (n− 1, 1) at the default
embedding F ↩→ R and signature (n, 0) at other real places. For a standard indefinite hermitian
space V over E of rank n, we have a system of Shimura varieties {XK} indexed by neat open
compact subgroups K ⊂ H(A∞

F ), which are smooth, quasi-projective, of dimension n − 1 over
E, together with the complex uniformization:

XK(C) = H(F )\P(VC)
− ×H(A∞

F )/K,

where P(VC)
− ⊂ P(VC) is the complex open domain of negative definite lines.

5.5.2. Evidence toward Beilinson–Bloch conjecture. Denote by Σspl the set of places of F that
are split in E, and Σπ ⊂ Σspl the (finite) subset at which π is ramified.

Since V is split at every non-archimedean place of F , we may fix an OE-lattice Λ of V

satisfying
{x ∈ V | TrE/Q(x,Λ)V ∈ Z} = Λ.

Denote by K0 ⊂ H(A∞
F ) the stabilizer of Λ.

For every finite set Σ of non-archimedean places of F containing Σπ, we have the Satake
homomorphism

χΣ
π := TΣ ⊗ C −→ C

which is the eigen-character of the action of TΣ on πKΣ
r . Put mΣ

π := kerχΣ
π .

We propose the following assumption that limits our later theorems.

Assumption 5.23. The field E properly contains an imaginary quadratic subfield E0 in which
2 splits and satisfying (dE0 , dF ) = 1.

Theorem 5.24 ([LL21, LL22]). Assume Assumption 5.23. If ords=1/2L(s,π) = 1, then for
every finite set Σ of non-archimedean places of F containing Σπ and satisfying |Σ ∩ Σspl|  2,
we have

lim−→
K=KΣKΣ

0

(CHr(XK)0C)mΣ
π
∕= {0}.

Remark 5.25. If we apply the Beilinson–Bloch conjecture for unitary Shimura varieties to our
particular V and π̃∞ = HomGr(A∞

F )(ω
∞
r ⊗ π∞, 1), then

dim lim−→
K=KΣKΣ

0

CHr(XK)0C[(π̃
∞)K ] = 1.

Indeed, the theory of local theta lifting tells us that when

ords=1/2L(s,π) = ords=1/2L(s,BC(π)) = 1,

Ππ̃∞ is exactly the isobaric factor of BC(π) such that ords=1/2L(s,Ππ̃∞) = 1.
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Thus, Theorem 5.24 aligns with and provide evidence toward the Beilinson–Bloch conjecture
(cf. Conjecture 1.4) for higher dimensional unitary Shimura varieties. In fact, the theorem
provided by Li–Liu is even stronger. First, we only need a weaker version of Assumption 5.23;
in particular, E does not have to contain an imaginary quadratic field. Second, we allow a finite
set Σ′ of primes of F in E at which π can be almost unramified, which means “slightly ramified”;
in response, we have (1/2,π) = (−1)r[F :Q]+|Σ′|.

Example 5.26. We give examples of π satisfying (R1)–(R3) under Assumption 5.23 and the
additional assumption that F/Q is solvable.

Let A be an elliptic curve over Q without complex multiplication such that every prime factor
of its conductor dA splits in E0. By the modularity of A and the very recent breakthrough on the
automorphy of symmetric powers of holomorphic modular forms obtained by Newton–Thorne
[NT21], there exists a unique cuspidal automorphic representation Π(Symn−1 A) of GLn(AQ)

satisfying
◦ the base change of Π(Symn−1 A)∞ to GLn(C) is the principal series of

(arg1−n, arg3−n, . . . , argn−3, argn−1);

◦ for every prime p ∤ dA, Π(Symn−1 A)p is unramified with the Satake polynomial
n−1

j=0

(T − αj
p,1α

n−1−j
p,2 ) ∈ Q[T ],

where αp,1 and αp,2 are the two roots of the polynomial T 2 − ap(A)T + p.
Let Π(Symn−1 AE) be the (solvable) base change of Π(Symn−1 A) to E, which is a cuspidal
automorphic representation of GLn(AE). The representation Π(Symn−1 AE) satisfies

Π(Symn−1 AE)
∨ ≃ Π(Symn−1 AE) ≃ Π(Symn−1 AE)

c

and that L(s,Π(Symn−1 AE),As+) is regular at s = 1.
By the endoscopic classification for quasi-split unitary groups, there exists a cuspidal au-

tomorphic representation π(Symn−1 AE) of Gr(AF ) satisfying (R1)–(R3) and that for every
v ∤ ∞dA, the base change of π(Symn−1 AE)v to GLn(Ev) is isomorphic to Π(Symn−1 AE)v.

Now we are ready to state the arithmetic theta lifting. We first point out that the construc-
tion of arithmetic theta lifting relies on Kudla’s modularity conjecture (see Conjecture 5.1 and
Conjecture 5.22), which is unknown when r > 1. Thus, our height formula will be conditional
(on the construction of the object). From now on, we assume Assumption 5.23 and the mod-
ularity hypothesis 5.22 for V with m = r, that is, for every φ∞ ∈ S (V∞,m)K , there exists a
(necessarily unique) holomorphic element Z(φ∞)K ∈ Ar(Gr) ⊗ CHr(XK) such that for every
g∞ ∈ Gr(A∞

F ), the Siegel–Fourier expansion of g∞Z(φ∞)K coincides with


T∈Hermr(F )

ZT (ω
∞
r (g∞)φ∞)K · qT .

Recalling Definition 5.3 and 5.4, for every φ∞ ∈ S (V∞,r)K and ϕ ∈ π that has parallel weight
r (the lowest weight), we define the arithmetic theta lift to be

Θφ∞(ϕ)K :=



Gr(F )\Gr(AF )

ϕ(g)Z(φ∞)K(g)dg ∈ CHr(XK)C.

In fact, we show that Θφ∞(ϕ)K belongs to CHr(XK)
〈ℓ〉
C for every sufficiently large prime ℓ.

Theorem 5.27 (Generalized arithmetic inner product formula, proved by Li–Liu). For φ∞
i =

v φ
∞
i,v ∈ S (V∞,r)K and ϕi =


v ϕi,v ∈ π with i = 1, 2 that have parallel weight r, we have

vol(L) · 〈Θφ∞
1
(ϕ1)K ,Θφ∞

2
(ϕ2)K〉XK

=
L′(1/2,π)

bn(0)
· C [F :Q]

r ·


v∤∞

Z
v(ϕ

∞
1,v,ϕ

∞
2,v;φ

∞
1,v,φ

∞
2,v).
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Here,
• vol(K) is the normalized volume of K such that the degree of the Hodge line bundle on
XK equals 2vol(L)−1;

• in the decomposition dg =


v dgv of the Haar measure on Gr(AF ), we take dgv to be
the “standard” measure when v | ∞;

• in the decomposition 〈·, ·〉π =


v〈·, ·〉πv of the inner product, we assume 〈ϕ1,v,ϕ2,v〉 = 1

when v | ∞;
• Cr ∈ (−1)rR>0 is an explicit constant depending only on r (which was computed by

Eischen–Liu [EL20]).

Corollary 5.28. The arithmetic inner product

〈Θφ∞
1
(ϕ1)K ,Θφ∞

2
(ϕ2)K〉XK

belongs to C and is independent of the choice of ℓ.

Remark 5.29. If we take φ∞
1 = φ∞

2 and ϕ1 = ϕ2 in the theorem, the signs on both sides are
compatible under the Beilinson–Bloch conjecture and the generalized Riemann Hypothesis (see
Remark 5.17).

5.5.3. Height pairing between special cycles. Fix a sufficiently large prime ℓ. We compare the
height pairing between ZT1(φ

∞
1 )K and ZT2(φ

∞
2 )K and the derivative



T=

T1 ∗
∗ T2


∈Herm2r(F )

E ′(0,φ∞
1 ⊗ φ

∞
2 )T ,

where E ′(0,φ∞
1 ⊗φ

∞
2 ) denotes the Siegel–Eisenstein series E(s, g,Φ0

∞⊗(φ∞
1 ⊗φ

∞
2 )) on G2r(AF ),

in which Φ0
∞ is the standard hermitian Gaussian function on (En ⊗Q R)2r.

Such study was originally proposed in the Kudla program. However, the height pairing we
adopt is Beilinson’s height (whose definition does not require a global integral model), instead
of the Gillet–Soulé arithmetic intersection pairing in the Kudla program.

Even before the start of our comparison, there are three major difficulties:

(D1) For i = 1, 2, ZTi(φ
∞
i )K has no reason to belong to CHr(XK)

〈ℓ〉
C .

(D2) When Ti /∈ Herm◦
r(F ), ZTi

(φ∞
i )K is only well-defined as a Chow cycle, which is very

obscure in terms of height pairing.
(D3) When Ti ∈ Herm◦

r(F ) for i = 1, 2 so that ZT1(φ
∞
1 )K and ZT2(φ

∞
2 )K are both well-

defined in Zr(XK)C, they may share support, which prohibits us to apply the decom-
position formula directly.

By the multiplicity one property of local theta lifting, it suffices to consider K of the form
K = (


v∈Σ Kv)×KΣ

0 for some finite set Σπ ⊂ Σ ⊂ Σspl of cardinality at least 2.
To solve (D1), we use Hecke operators. We show that there exists an element t ∈ T\m (de-

pending on K) such that t∗ZTi
(φ∞

i )K belongs to Zr(XK)
〈ℓ〉
C for i = 1, 2, every Ti ∈ Herm◦

r(F )+,
and every φ∞

i ∈ S (V∞,r)K . Considering t∗ZTi(φ
∞
i )K will not lose information toward the

arithmetic inner product formula since


ϕi · t∗Z(φ∞
i )K =


ϕi · Z(tφ∞

i )K = χ(t)


ϕi · Z(φ∞

i )K .

To solve (D2) and (D3), we use the same trick. For v ∤ ∞, we say that (φ∞
1,v,φ

∞
2,v) is a regular

pair if the support of φ∞
1,v ⊗ φ

∞
2,v is contained in the subset {x ∈ V 2r

v | T (x) ∈ Herm◦
2r(Fv)}.

Lemma 5.30. (1) Suppose that (φ∞
1,v,φ

∞
2,v) is a regular pair for some v ∈ Σ, then

• ZTi(φ
∞
i )K = 0 if Ti /∈ Herm◦

r(F )+ for i = 1, 2;
• ZT1(φ

∞
1 )K and ZT2(φ

∞
2 )K have disjoint support for each pair (T1, T2) ∈ Herm◦

r(F )+×
Herm◦

r(F )+.
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(2) For every v ∈ Σ, there exists a regular pair (φ∞
1,v,φ

∞
2,v) such that the functional

(ϕ1,v,ϕ2,v) ∈ π∨
v × πv −→ Z

v(ϕ1,v,ϕ2,v;φ
∞
1,v,φ

∞
2,v)

is nontrivial.

5.5.4. Derivative of Eisenstein series. The above discussion provides us with a decomposition

〈t∗ZT1(φ
∞
1 )K , t∗ZT2(φ

∞
2 )K〉XK

=


u

〈t∗ZT1(φ
∞
1 )K , t∗ZT2(φ

∞
2 )K〉u

over all places u of E for every pair (T1, T2) ∈ Herm◦
r(F )+×Herm◦

r(F )+ and every pair (φ∞
1 ,φ∞

2 )

that is regular at some place in Σ.
Now we provide a similar decomposition for Eisenstein series E ′(0, tφ∞

1 ⊗ tφ
∞
2 ). We say that

an element T ∈ Herm2r(F ) is nearby to V if it satisfies:

(1) T belongs to Herm◦
2r(F );

(2) if we denote by VT the hermitian space over E defined by T , then there exists a unique
place vT of F such that VT and V are isomorphic exactly away from {F ⊂ R}△ {vT } =

({F ⊂ R} ∪ {vT })− ({F ⊂ R} ∩ {vT }).

Lemma 5.31. Suppose that (φ∞
1 ,φ∞

2 ) is regular at at least two places in Σ. Then

E ′(0, tφ∞
1 ⊗ tφ

∞
2 ) =



v



T∈Herm2r(F )
nearby to V,

vT=v

W ′
T (0,Φv)WT (0,Φ

∨).

Here, Φ := Φ0
∞ ⊗ (tφ∞

1 ⊗ tφ
∞
2 ) ∈ S (V2r) and WT denotes the T -th Siegel–Whittaker function.

5.5.5. Comparison of local terms. We will maintain the setups before.

Proposition 5.32. For every place u of E of degree 1 over F , there exists an element su ∈ T\m,
such that

〈s∗ut∗ZT1(φ
∞
1 )K , s∗ut

∗ZT2(φ
∞
2 )K〉u = 0

for every pair (T1, T2) ∈ Herm◦
r(F )+ × Herm◦

r(F )+ and every pair (φ∞
1 ,φ∞

2 ) that is regular at
at least two places in Σ. Moreover, one can take su = 1 if u is not above Σ.

Proposition 5.33. For every non-archimedean place u of E of degree 2 over F , we have

vol(L) · 〈t∗ZT1(φ
∞
1 )K , t∗ZT2(φ

∞
2 )K〉u =



T=

T1 ∗
∗ T2


∈Herm2r(F )

nearby to V

W ′
T (0,Φv)WT (0,Φ

∨)

for every pair (T1, T2) ∈ Herm◦
r(F )+ × Herm◦

r(F )+ and every pair (φ∞
1 ,φ∞

2 ) that is regular at
at least two places in Σ.

We also have a comparison theorem in [LL22] for terms indexed by u | ∞, whose form is rather
technical, which we omit here. We now explain the idea for Proposition 5.32 of comparison.
Take a place u of E of degree 1 over F , with v ∈ Σspl the underlying place.

For every integer m  0, let Km,v ⊂ K0,v be the unique subgroup such that K0,v/Km,v ≃
GLn(OF /v

m). Without loss of generality, we may assume Kv = Km,v for some m  0.

• When m = 0, we denote by XK the canonical (projective) smooth model of XK,u over
OEu

.
• When m > 0, we denote by XK the normalization of the above smooth model in XK,u.

Proposition 5.34. For every m  0, we have

H2r(XK ,Qℓ(r))m = 0.
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Let ZTi(φ
∞
i )K be the Zariski closure of ZTi(φ

∞
i )K in XK . Then t∗ZTi(φ

∞
i )K may not be

ℓ-flat in general. However, the above proposition enables us to apply a further Hecke operator
su ∈ T\m such that s∗ut

∗ZTi(φ
∞
i )K is ℓ-flat. Now under the condition that (φ∞

1 ,φ∞
2 ) is regular

at at least two places in Σ. It is easy to show that s∗ut
∗ZT1

(φ∞
1 )K and s∗ut

∗ZT2
(φ∞

2 )K have
disjoint supports even in XK , which implies the proposition.

The second proposition of comparison will boil down to a similar comparison for the intersec-
tion number of special cycles on a certain Raporport–Zink space, known as the Kudla–Rapoport
(type) conjecture, whose content and proof require another short course.
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