
NOTES ON RATNER’S MEASURE CLASSIFICATION THEOREM

WENHAN DAI

We report on Ratner’s Measure Classification Theorem for dynamic systems. The two prin-
cipal references are [Mor05] together with [EK07]. The ultimate goal is to understand the
simplified proof for our main theorem in [Mor05, Chapter 5]. Before we reach this, an interlude
on two particular cases performs in detail with some preliminaries. Furthermore, an application
of Ratner’s theorem on the Oppenheim conjecture follows as the coda.
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1. Introduction

We begin with a relatively elementary phenomenon. Let f be the obvious covering map from
Euclidean plane R2 to the torus T2 = R2/Z2. It is well known that if L is any straight line in
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R2, then the closure of f(L) is a very nice submanifold of the torus. Furthermore, if the slope
of L is irrational, it is classical that f(L) is dense; otherwise, it should be compact.

More generally, we may replace the Euclidean space with any Lie group G and allows L to
be a subgroup satisfying some simple conditions. To make it precise, let G be a connected Lie
group, and let Γ be a lattice in G. Look at the action of a closed subgroup H of G on Γ\G. In
general, the orbits of H are chaotic (if H acts ergodically, then almost all of them are dense).
There have already been some examples where the closures of all orbits were homogeneous
spaces themselves. This is, for some well-known instances, the case in Kronecker’s theorem
about translations on a torus, or in Hedlund’s Minimality Theorem. One may wonder how
general this phenomenon is. In the 1980s, some conjectures were formulated in this respect.

In 1990, Marina Ratner proved her result about this observation in full generality, with any
Lie group G, which allows Γ to be any subgroup of G generated by unipotent elements. Ratner’s
theorems assert that, in general, the closure of an orbit will be a very nice topological set.

The following discussion is about the history of Ratner’s theorem that has been summarized
in [Mor05]. In the 1930s, G. Hedlund proved that if G = SL2(R) and Γ\G is compact, then
unipotent flows on Γ\G are ergodic and minimal, see [Hed08].

It was not until 1970 that H. Furstenberg proved these flows are uniquely ergodic, thus
establishing the Measure Classification Theorem for this case. At about the same time, W.
Parry proved an Orbit Closure Theorem, Measure Classification Theorem, and Equidistribution
Theorem for the case where G is nilpotent [Par71], and G. A. Margulis used the polynomial
speed of unipotent flows to prove the fact that unipotent orbits cannot go off to infinity [Mar71].

Inspired by these and other early results, M. S. Raghunathan conjectured a version of the
Orbit Closure Theorem and showed it would imply the Oppenheim Conjecture. He did not
publish this conjecture, but it appeared in a paper of S. G. Dani [Dan81] in 1981. In this paper,
Dani conjectured a version of the Measure Classification Theorem.

Dani also generalized Furstenberg’s Theorem to the case where Γ\ SL2(R) is not compact
[Dan78]. Publications of R. Bowen [Bow76], S. G. Dani, R. Ellis, and W. Perrizo [EP78], and
W. Veech [Vee77] proved further generalizations for the case where the unipotent subgroup U
is horospherical. Results for horosphericals also follow from a method in the thesis of G. A.
Margulis, see Lemma 5.2 of [Mar04].

M. Ratner began her work on the subject at about this time, proving her Rigidity Theorem,
Quotients Theorem, Joinings Theorem, and other fundamental results in the early 1980’s. In a
series of her four papers, M. Ratner has just obtained a very satisfactory answer by solving a
conjecture of M.S. Raghunathan [Rat82b] [Rat82a] [Rat83]. Using Ratner’s methods, D. Witte
generalized her rigidity theorem to all G in [Wit87].

S. G. Dani and J. Smillie proved the Equidistribution Theorem when G = SL2(R) in [DS84].
S. G. Dani [Dan86] showed that unipotent orbits spend only a negligible fraction of their life near
infinity. A. Starkov [Sta89] proved an orbit closure theorem for the case where G is solvable.

Using unipotent flows, G. A. Margulis’ developed methods that allowed him to prove in 1987
the Oppenheim Conjecture, Theorem 1.1 in the following, on values of quadratic forms.
Theorem 1.1 (Margulis, 1987). Let Q be an indefinite non-degenerate quadratic form on
Rn(n  3). It is assumed that Q is not a multiple of a rational form. Then, for any ε > 0, there
exists a vector v of Zn such that 0 < Q(v) < ε.

He and S. G. Dani then proved several results, including the first example of an orbit closure
theorem for actions of nonhorospherical unipotent subgroups of a semisimple Lie group [DM90]
– namely, for so-called generic one-parameter unipotent subgroups of SL3(R). G. A Margulis
has pointed out that the methods could yield proof of the general case of the Orbit Closure
Theorem.

Then M. Ratner proved her amazing theorems (largely independently of the work of others)
[Rat91], by expanding the ideas from her earlier study of horocycle flows.

To state it, let us agree that an element g of a Lie group G is unipotent if the adjoint
automorphism Adg of the Lie algebra g is unipotent, i.e. has only 1 as its eigenvalue. A
subgroup H of G is unipotent if all its elements are unipotent.
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Theorem 1.2 (Ratner, 1990). If G is a closed, connected subgroup of SLℓ(R) for some ℓ, Γ is
a discrete subgroup of G, ut is a unipotent one-parameter subgroup of G, and µ is an ergodic
ut-invariant probability measure on Γ\G, then µ is homogeneous. More precisely, there exist a
closed, connected subgroup S of G, and a point x in Γ\G, such that

(1) µ is S-invariant, and
(2) µ is supported on the orbit xS.

This is not the best possible statement; we will give other versions later. Not surprisingly,
this result has consequences for Diophantine approximations.

In the meantime, N. Shah [Sha91] showed that the Measure Classification Theorem implied
an Equidistribution Theorem for many cases when G = SL3(R).

Ratner’s Theorems were soon generalized to p-adic groups, by M. Ratner [Rat95] and, inde-
pendently, by G. A. Margulis and G. Tomanov [MT96]. N. Shah [Sha98] generalized the results
to subgroups generated by unipotent elements. For connected subgroups generated by unipotent
elements, this has been proved in Ratner’s original papers.

2. Basics of ergodic theory

This section simply gathers some necessary background results, mostly without proof. Firstly,
a result of the ergodic decomposition of measures (see Theorem 2.5) is given. After this, we state
the pointwise ergodicity (see Theorem 2.7) (cf. Birkhoff’s ergodic theorem) and a consequence
of it (see Corollary 2.9), which reveals that distinct ergodic measures are mutually singular.
Furthermore, the uniqueness theorem for ergodic measures has been discussed as well. A general
reference for ergodic theory is Petersen’s book [Pet83], but we only focus on Chapter 1.3 and
3.3 of [Mor05], and Chapter 2 of Einsiedler–Ward [Ein10].

2.1. Ergodic decomposition of measures. Let X be a topological space, and T : X → X a
map. We assume that there is a finite measure µ on X which is preserved by T . One usually
normalizes µ so that µ(X) = 1, in which case µ is called a probability measure.

Sometimes, instead of a transformation T one considers a flow ϕt, t ∈ R. For a fixed t, ϕt is
a map from X to X. We will only use definitions and theorems in this part for flows such as ϕt

later.

Definition 2.1. A measure-preserving flow ϕt on a probability space (X, µ) is ergodic if, for
each ϕt-invariant subset A of X, we have either µ(A) = 0 or µ(A) = 1.

Example 2.2. For G = SL2(R) and Γ = SL2(Z), the horocycle flow ηt and the geodesic flow
γt are ergodic on Γ\G with respect to the Haar measure on Γ\G.

Ergodic decomposition says that every measure-preserving flow can decompose into a union
of ergodic flows. We begin with an example.

Example 2.3. Let v = (α, 1, 0) ∈ R3 for some irrational α, ϕt be the corresponding flow on
T3 = R3/Z3, and µ be the Lebesgue measure on T3. Then ϕt is not ergodic, because sets of the
form T2 × A are invariant.

However, the flow decomposes into a union of ergodic flows: for each z ∈ T, let Tz = {z}×T2

and µz be the Lebesgue measure on the torus Tz. Then
• T3 is the disjoint union


z Tz,

• the restriction of ϕt to each subtorus Tz is ergodic (with respect to µz), and
• the measure µ is the integral of the measures µz by Fubini’s Theorem.

The following proposition shows that every measure µ can be decomposed into ergodic mea-
sures. Each ergodic measure µz is called an ergodic component of µ.

Proposition 2.4. If µ is any ϕt-invariant probability measure on X, then there exist a measure
v on a space Z, and a measurable family {µz}z∈Z of ergodic measures on X, such that

µ =


Z

µzdv,



4 RATNER’S MEASURE CLASSIFICATION THEOREM

that is, for every f ∈ L1(X, µ),


X

fdµ =


Z



X

fdµzdv(z).

The proof of Proposition 2.4 requires some functional analysis and is not entirely in line with
the main thrust of the argument, we do choose to omit it.

Recall that two probability measures µ1 and µ2 are called mutually singular, written as
µ1 ⊥ µ2, if there exists a set E such that µ1(E) = 1 and µ2(E) = 0.

Proposition 2.4 indeed yields a decomposition of the measure µ, but, unlike Example 2.3, it
does not provide a decomposition of the space X. However, any two ergodic measures must be
mutually singular, so a little more work yields the following geometric version of the ergodic
decomposition. This often allows one to reduce a general question to the case where the flow is
ergodic.

We also point out that ergodic measures always exist, whenever we obtain the existence of
invariant measures. The probability measures form a convex set, and the ergodic probability
measures are the extreme points of this set, which can be compared with the Krein–Milman
theorem.

Theorem 2.5 (Ergodic Decomposition). If µ is a ϕt-invariant probability measure on X, then
there exists a measurable family {µz}z∈Z of ergodic measures on X, a measure v on Z, and a
measurable function ψ : X → Z, such that

(1) µ =


Z
µzdv, and

(2) µz is supported on ψ−1(z), for almost every z ∈ Z.

The proof of ergodic decomposition, which is also omitted, morally relies on the following
very useful generalization of Fubini’s Theorem.

Proposition 2.6. Let X and Y be complete and separable metric spaces; µ and v be probability
measures on X and Y , respectively; and Ψ : X → Y be a measure-preserving Borel map. Then
there is a Borel map λ : Y → Prob(X), such that

(1) µ =


Y
λydν(y), and

(2) λy(ψ−1(y)) = 1, for all y ∈ Y .
Furthermore, λ is unique up to measure zero.

2.2. Pointwise ergodicity. In the proof of Ratner’s Theorem and many other situations, one
wants to know that the orbits of a flow are uniformly distributed. It is rarely the case that every
orbit is uniformly distributed, that is, what it means, to say the flow is uniquely ergodic; but
the Pointwise Ergodic Theorem 2.7 shows that if the flow is ergodic, a much weaker condition,
then almost every orbit is uniformly distributed.

Theorem 2.7 (Pointwise Ergodicity). Suppose µ is a probability measure on a locally compact
and separable metric space X, ϕt is an ergodic and measure-preserving flow on X, and f ∈
L1(X, µ). Then

1
T

 T

0
f(ϕt(x))dt →



X

fdµ,

for almost every x ∈ X.

The integral on the left-hand side is called the time average, and the integral on the right is
the space average. Thus the theorem says that for almost all base points x, the time average
along the orbit of x converges to the space average. Theorem 2.7 is amazing in its generality:
the only assumption is the ergodicity of the measure µ. We note that this is some sort of
irreducibility assumption.

Definition 2.8. A point x ∈ X is generic for µ if pointwise ergodicity holds for every uniformly
continuous, bounded function on X. In other words, a point is generic for µ if its orbit is
uniformly distributed in X.
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Corollary 2.9. If ϕt is ergodic, then almost every point of X is generic for µ.
The converse of the corollary above is true as well. The last corollary will be used in the

proof of Ratner’s measure classification for SL2(R)/ SL2(Z) (see Theorem 4.1).
Corollary 2.10. Let Tt : X → X be a flow preserving an ergodic probability measure µ, and let
f ∈ L1(µ). For any ε > 0 and δ > 0 there exists τ0 > 0 and a set E with µ(E) < ε such that
for any x /∈ E and any τ > τ0 we have


1
τ

 τ

0
f(φt(x))dt −



X

fdµ

 < δ.

In other words, the average of f over the orbit of x converges to the average of f over X
uniformly outside of a set of small measure.
Proof. Let En be the set of x ∈ X such that for some τ > n,


1
τ

 τ

0
f(φt(x))dt −



X

fdµ

  δ

By Theorem 2.7, µ(


n En) = 0; thus for some n we have µ(En) < ε. Let τ0 = n and E = En. □
2.3. Uniquely ergodic systems. In some applications (in particular to number theory) we
need some analogue of Theorem 2.7 for all points x ∈ X, and not almost all. For example, we
want to know if Q(Zn) is dense for a specific quadratic form Q, and not for almost all forms.
Then the pointwise ergodicity is not helpful. However, there is one situation where we can show
that it is still valid for all x ∈ X.
Definition 2.11. An ergodic measure-preserving flow ϕt on a probability space (X, µ) is
uniquely ergodic if there exists a unique invariant probability measure µ for it.

Intuitively, the meaning of unique ergodicity is as follows: the properties that hold almost
everywhere for ergodic transformations will hold everywhere for uniquely ergodic ones. For
another example, suppose we have an ergodic flow ϕt and a measurable set A ⊂ X. For almost
every x ∈ X it makes sense to speak of the proportion of time the orbit of x under ϕt spends
in A, and this proportion will be µ(A), as long as we assume µ(∂A) = 0. If ϕt were uniquely
ergodic, this statement would be true for all x ∈ X.
Proposition 2.12. Suppose X is compact, ϕt is uniquely ergodic, and let µ be the invariant
probability measure. Suppose f : X → R is continuous. Then for all x ∈ X, the conclusion of
Theorem 2.7 holds.
Remark 2.13. The main point of the proof is the construction of an invariant measure (denoted
by δ∞ in most references) supported on the closure of the orbit of x. The same construction works
with flows, or more generally with actions of amenable groups. We have used the compactness
of X to argue that δ∞ is a probability measure: this might fail if X is not compact. This
phenomenon is called “loss of mass”.

Of course the problem with Proposition 2.12 is that most of the dynamical systems we are
interested in are not uniquely ergodic. For example any system which has a closed orbit which is
not the entire space is not uniquely ergodic. In fact, the classification of the invariant measures
is the most powerful statement one can make about a dynamical system, in the sense that it
allows one to understand every orbit and not just almost every orbit.

3. Flows and homogeneous spaces

This section serves as a preparation for those sections to appear. We discuss some examples of
homogeneous spaces and flows on them such as the space of lattices SLn(Z)\ SLn(R), and non-
ergodicity of geodesic flow for SLn(R)/ SO(n).1 It is also a well-known idea to regard upper-half
plane H as a homogeneous space. As a relatively basic but indispensable part for preliminaries,
it refers to Chapter II§4 and Chapter V§2 of Bekka–Mayer [BM00].

1Probably, we want to work with finite-volume quotients of this symmetric space.
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3.1. Some geometry on H. We will now discuss the geometry of the complex upper half-
plane, H. The material in the next several paragraphs is standard, and some of the details are
omitted; they can be found in Chapter 5.4 of [KH95].

To give H the structure of a Riemannian manifold, we must specify a metric, that is, the
inner product on the tangent bundle. For z ∈ H and u1 + iv1, u2 + iv2 ∈ TzH we define the
hyperbolic metric on H by

〈u1 + iv1, u2 + iv2〉z = Re (u1 + iv1)(u2 − iv2)
(Im z)2 = u1u2 + v1v2

(Im z)2 .

The verification that this is a metric is standard. First, a lemma that will let us establish what
the geodesics on the upper half-plane is in the following.

Lemma 3.1. Let M be a Riemannian manifold, and let Γ be a group of isometries of M that
is transitive on unit vectors: that is, for all v, v in the unit tangent bundle on M , there exists
φ

v,v ∈ Γ with φ
v,v(v) = v. Let C be a nonempty family of unit-speed curves satisfying the

following properties:
(1) C is closed under the action of Γ: that is, for all c ∈ C and φ ∈ Γ, the composition

φ ◦ c ∈ C;
(2) Γ is transitive on C: that is, for any c, c ∈ C, there exists φ

c,c ∈ Γ with φ
c,c ◦ c = c; and

(3) C consists of the axes of Γ; that is, for all c ∈ C, there exists φc ∈ Γ such that c is the
set of fixed points of φc.

Then C is the family of (all) unit-speed geodesics on M .

Proof. First, we show that C contains all the geodesics. Let v ∈ TpM be a unit tangent vector
to M at p. It determines a unique geodesic γv with γ̇v(0) = v. Now take some c ∈ C, and let
v = ċ(0). Consider the action of φv,v

: it maps c to a curve c that is tangent to γv at p. Now
we look at φc, the isometry that fixes c: it must map γv to a geodesic, but since it fixes c it
must also fix v, and consequently φc ◦ γv and γv are tangent to each other at p. Two tangent
geodesics must coincide, so γv is fixed by φc, and consequently γv = c ∈ C.

Finally, since C contains geodesics and Γ is transitive on it, every curve in C is the isometric
image of a geodesic, and thus itself a geodesic. □

As a simple application, we can now characterize the geodesics on the standard 2-sphere: let
C be the family of great circles parametrized with unit speed, and let Γ be the group generated
by rotations and reflections in great circles. Checking the conditions of the lemma is easy; we
conclude that C is exactly the group of unit-speed geodesics on the 2-sphere. We now consider
the isometries of H. The projective special linear group PSL2(R) = SL2(R)/{±I} acts on H by
fractional linear transformations:

z


a c
b d


= az + b

cz + d

For later discussion, it is more convenient to let this be a right action, and let later actions be
left ones. The group PSL2(R) is generated by translations z → z + b corresponding to

 1 0
b 1


;

inversions z → −1/z corresponding to
 0 1

−1 0

; and scaling z → a2z corresponding to


a 0
0 1


. All

three of these clearly map points in H to H. Also, for T ∈ PSL2(R), we have
Im T (z) = |T ′(z)| Im(z).

We only need to check this for the two generating transformations, since this formula respects
composition. For z → z + b and z → a2z this is clear, and for z → −1/z we have Im(−1/z) =
Im(z)/|z|2 as required. We can now check that the action of PGL2(R) on H is isometric:

〈T ′(z)(u1 + iv1), T ′(z)(u2 + iv2)〉T (z) = Re T ′(z)(u1 + iv1)T ′(z)(u2 + iv2)
(Im T (z))2

= Re (u1 + iv1)(u2 − iv2)
(Im z)2

= 〈u1 + iv1, u2 + iv2〉.
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Note that the action of PSL2(R) on the unit tangent bundle of H is transitive. Indeed, any z ∈ H
may be translated onto the positive imaginary axis iR+, and then scaled onto i. It remains to
check that PSL2(R) is transitive on Ti(H); the transformation

z → cos(θ/2)z + sin(θ/2)
− sin(θ/2)z + cos(θ/2) ,

corresponding to the matrix 
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)


,

sends v ∈ TiH to v(cos θ + i sin θ), i.e. rotates v by θ.
We are now in a position to classify the geodesics on H.

Theorem 3.2. The geodesics on H are vertical lines or semicircles with center on the real axis.

Proof. To prove this theorem, we enlarge the group of isometries of H by reflection in the iR
axis, z → −z̄. The resulting group is, of course, still transitive on the unit tangent bundle. To
show property (1) of Lemma 3.1, namely that our family of curves C is closed under the action
of our isometry group Γ, we note that this is clear for z → −z̄. For the Möbius transformations
we will show transitivity first, and then observe that any Möbius transformation acting on iR+
sends it to an element of C. Finally, transitivity together with the fact that iR+ is the set of
fixed points of z → −z̄ will show property (3) of Lemma 3.1.

We now show that any vertical line or semicircle with center on the real axis can be mapped
to iR+. For a vertical line through b ∈ R, the transformation z → z − b works. For a semicircle
through b, b + a2 ∈ R we translate left by b and scale by a−2 to get a semicircle through 0 and
1. Now consider the map z → z/(1 − z). Its inverse is z → z/(z + 1), which sends iR+ onto the
semicircle with endpoints 0 and 1, since


it

1 + it
− 1

2

 =

2it − (1 + it)

2(1 + it)

 = 1
2

Therefore, we mapped our semicircle onto iR+ as required. Finally, we must show that Möbius
transformations map iR+ into C. It suffices to check this for the generators of the group of
Möbius transformations: z → z + b sends iR+ to the vertical line through b ∈ R; z → az sends
iR+ to itself, reparametrizing it along the way; and z → −1/z sends iR+ to itself but with the
opposite parametrization.

Thus, we are in a position to apply Lemma 3.1 and conclude that the geodesics of H are the
vertical lines and semicircles with center on the real axis. □

Not only is PSL2(R) transitive on T 1H, but the action is free: that is, the transformation g
mapping v ∈ TpH to v′ ∈ T ′

pH is unique. Indeed, g must map the unique geodesic tangent to
v at p to the unique geodesic tangent to v′ at v. On the other hand, a Möbius transformation
is uniquely determined by where it maps any three points; therefore, g is unique. We may
therefore identify the unit tangent bundle of H with PSL2(R): we identify v ∈ TzH with the
(unique) transformation that sends the upwards unit vector at i to v. The upwards unit vector
at i is therefore identified with the identity matrix.

3.2. Geodesic and horocycle flows. We now consider the geodesic flow on the unit tangent
bundle of H, described as follows: for v ∈ TzH we define φt(v) = γ̇(t) ∈ Tγ(z)H, where γ is the
unique unit-speed geodesic with γ̇(0) = v. Under the identification of the unit tangent bundle
with PSL2(R), we have the following

Lemma 3.3. The geodesic flow on the unit tangent bundle of H corresponds to the flow on the
group PSL2(R) given by left translation g → htg with

ht =


et/2 0
0 e−t/e



for t ∈ R.
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Proof. Let v be the unit upward vector at i: then, by definition, φt(v) is the unit (in the H-
metric) upward vector at the point z on the geodesic iR+ a distance t away from i. Now, claim
that d(i, eti) = t, indeed,

d(i, eti) =
 et

1

dy

y
= t

The unit upward vector at eti has the form etv; therefore, φt(v) = etv ∈ Teti. On the other
hand, ht(i, v) = (eti, etv). Consequently, the actions agree on this unit tangent vector.

Now, let ζ ∈ TzH be arbitrary, and let gzζ ∈ PSL2(R) be such that ζ = vgzζ , where v is still
the unit upward vector at i. Since gzζ is an isometry on H, we have

φt(ζ) = φt(vgzζ) = φt(v)gzζ = htvgzζ = htζ

which is the desired result. □

Now, let v ∈ TpH and w ∈ TqH be two vectors in the unit tangent bundle of H. We would like
to define the distance between them. Consider the unique (unit-speed) geodesic γ with γ(0) = p
and passing through q, and the vector field along γ having the same angle with γ′ as the angle
between v and γ′(0). Define the angle between v and w to be the angle between the vector field
at q and w. We just described the process of parallel-translating v along γ to a tangent vector
at q. Now define

d(v, w) =


(∠(v, w))2 + d(p, q)2.

This is the standard definition of distance on the unit tangent bundle (see, for example, [KH95,
§A.4]), and in particular does define a distance function.

Now consider the unit upward vector at i and at x + i for some x ∈ R. Their orbits under
the geodesic flow will be t → iet and t → x + iet. The hyperbolic distance between these two
points is easily seen to be bounded by xe−t by considering the horizontal line segment joining
iet and x + iet; moreover, the angle between v and w is readily seen to be 2 tan−1(x/(2et)),
and in particular is also bounded by xe−t. Therefore, the distance between the tangent vectors
to these geodesics is bounded by

√
2xe−t: the orbits of the upward vertical unit vectors at all

points x ∈ R + i are positively asymptotic to that of i (and to each other).
Applying z → −1/z, we see that the orbits of the outward unit normals to the circle of

(Euclidean) radius 1/2 centered at i/2 are negatively asymptotic to that of i (and to each
other). This brings us to the concept of horocycles.

Definition 3.4. A horocycle on H is either a circle tangent to R at x or a horizontal line
R + ir = {t + ir : t ∈ R}. In the first case, we say that the horocycle is centered at x; in the
second case, we say that it is centered at ∞.

All horocycles are isometric to the line R+ i. Indeed, for horocycles H = R+ ri the isometry
T (z) = z/r suffices; for a horocycle centered at x ∈ R of Euclidean diameter r, take T1(z) =
z − x, T2(z) = z/r (applying T2 ◦ T1 gets us a horocycle centered at 0 of Euclidean diameter 1),
and T3(z) = −1/z. Then T = T3 ◦ T2 ◦ T1 maps our horocycle isometrically onto R + i.

The horocycle flow on the unit tangent bundle is described as follows: for v ∈ TzH there
exists a unique horocycle passing through z whose inward normal is v. (We define “inward” to
be “up” for the horocycle at ∞; with this definition, each horocycle rests at the +∞ end of the
geodesic tangent to v.) The action of ψs is to move z to a point s units away on the horocycle,
and parallel-transport the unit tangent vector to an inward normal at that point. Equivalently,
for v an upward normal to a point z ∈ R + i, we define ψs(v) to be the upward normal to the
point z + s ∈ R + i, noting that on the line R + i the hyperbolic metric coincides with the
Euclidean one.

From this description, we conclude that under the identification of the unit tangent bundle
of H with PSL2(R) the horocycle flow is given by the left action of

us =


1 s
0 1


, s ∈ R.
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3.3. Ergodicity of the flows. Consider flows on the upper half-plane to be actions on PSL2(R)/Γ.
The idea is given in the following.

Let Γ be a discrete subgroup of PSL2(R) with finite covolume, i.e. a lattice. Then Γ acts freely
and discontinuously on H, and therefore is the group of deck transformations for H regarded as
a covering space of H/Γ. The identification of the unit tangent space of H with PSL2(R) induces
an identification of the unit tangent space of H/Γ with PSL2(R)/Γ; in this identification, for
t ∈ R, the geodesic and horocycle flows respectively correspond to the action of

ht =


et/2 0
0 e−t/2


, ut =


1 t
0 1


.

We use the following notation: let

N+ =


1 x
0 1


: x ∈ R


, N− =


1 0
x 1


: x ∈ R


,

and
A =


a 0
0 a−1


: a > 0


.

Then N+, N−, and A together generate all of PSL2(R). Recall that A is the set of matrices in
the geodesic flow.

We will show that the geodesic flow on H/Γ is ergodic for every lattice Γ in H. To do this, we
will show that if a function f is invariant under the action of A, then it must be invariant under
the action of all of PSL2(R), and then if f is in L2, it must be constant. This will establish
ergodicity. We observe the lemma as follows.

Lemma 3.5. For g = ga ∈ A and h ∈ N+ if a < 1, or h ∈ N− if a > 1, we have
lim

n→∞
gnhg−n = e.

That is, conjugation by g contracts the relevant h.

Proof. By direct computation:


a 0
0 a−1

 
1 x
0 1

 
a 0
0 a−1

−1
=


1 a2x
0 1


,

so 
a 0
0 a−1

n 
1 x
0 1

 
a 0
0 a−1

−n

=


1 a2nx
0 1


.

Also, 
a 0
0 a−1

 
1 0
x 1

 
a 0
0 a−1

−1
=


1 0

a−2nx 1


.

This completes the proof. □

Now, we can use the following result due to Mautner.

Lemma 3.6 (Mautner lemma). Consider a unitary representation on PSL2(R)/Γ as above, and
suppose g, h ∈ SL2(R) satisfying limn→∞ gnhg−n = 1. Then all f ∈ L2(PSL2(R)/Γ) that are
invariant under the action of g are also invariant under the action of h.

Proof. We use the associated operators of these actions instead. Note that
Thf − f = ThTg−nf − Tg−nf = TgnThTg−nf − f.

We may let n → ∞ inside the norm, concluding that Thf − f = 0 and f is invariant under h.
Ergodicity of the geodesic flow on PSL2(R)/Γ. If Taf = f for every a ∈ A, then combining

Lemma 3.5 with the Mautner lemma we derive that Tgf = f for every g ∈ PSL2(R). For f ∈ L2

this means that f is essentially constant, and transformation by A is ergodic as required. We
can also show that the horocycle flow is ergodic: Ergodicity of the horocycle flow on PSL2(R)/Γ.
Let f ∈ L2(PSL2(R)/Γ) be invariant under N+. We will show that f must be invariant under
A as well, and then proceed as in the proof of the ergodicity of the horocycle flow.
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For each g ∈ SL2(R) define φ(g) = 〈Tgf, f〉. Since f is invariant under all of N+, the operator
φ is constant on every double coset N+gN+.

Now let λn → 0, λn ∕= 0 for every n, and take

gn =


0 λ−1
n

λn 0


, a =


α 0
0 α−1


∈ A

and then 
1 αλ−1

n

0 1


gn


1 α−1λ−1

n

0 1


=


α 0
λn α−1


.

That is, φ(a) = limn→∞ φ(gn). Since gn does not depend on a, we conclude that φ is constant
on A; therefore, 〈Taf, f〉 = 〈f, f〉, and by Cauchy–Schwarz it must be that a acts on f by
multiplication by some constant χ(a). However, it is easy to see that this constant must be 1:
that is, f is invariant under A.

We can now follow the same logic as for the geodesic flow. □
This proof relied essentially on the interaction between the geodesic and the horocycle flow:

the geodesic flow contracts one direction of the horocycle flow and expands the other direction.

3.4. The space of lattices. We aim to give an interpretation that why it is admissible to
regard SLn(R)/ SLn(Z) as a space of unimodular lattices. The first step is to give a definition
of unimodular lattices. The following definitions comes from [EK07, §2.1].

Definition 3.7. A subset L of Rn is called a lattice if it is a module of rank n whose basis is
a basis for Rn. Equivalently, L is a discrete subgroup of Rn that spans Rn as a subset of an
R-vector space.

Every lattice thus has a basis v1, . . . , vn of linearly independent vectors. We derive from this
two corollaries. First, GLn(R) acts on the space of lattices as follows: g acts on L by applying
g to each element of L, in particular applying g to the Z-basis of L. Second, every lattice L is
an image of the standard lattice Zn under some transformation in GLn(R) (the columns of g
are given by the basis vectors of L).

Definition 3.8. A lattice L in Rn is unimodular if the covolume of L, that is, the volume of
the compact set Rn/L, is 1.

Let Ln denote the space of unimodular lattices in Rn. G = SLn(R) acts on Ln, because
the covolume of gL is the covolume of L multiplied by the determinant of g. The action is
transitive: every unimodular lattice is the mage of Zn under some transformation in SLn(R).
The element of GLn(R) that effects the transformation must have determinant 1, since both
lattices are unimodular.

Any endomorphism of a lattice must send the basis vectors to some Z-linear combinations of
them; that is, a lattice endomorphism may be represented by a matrix with integer entries. The
endomorphism is invertible if the matrix is invertible. Since the matrix determinant is an integer,
this can happen only if the determinant is ±1. Conversely, the expansion by minors formula
shows that if M is a matrix with integer coefficients and det M = ±1, then M is invertible over
Z, and thus represents an automorphism of a lattice.

We conclude that the space of all unimodular lattices in Rn can be identified with SLn(R)/ SLn(Z).
This geometric observation will be useful for us in the discussion of Ratner’s theorems.

For ε > 0, let Ln(ε) ⊂ Ln denote the set of lattices whose shortest non-zero vector has length
at least ε.

Theorem 3.9 (Mahler compactness). For any ε > 0 the set Ln(ε) is compact.

The detailed proof of this deep result can be found in Chapter V§3 of [BM00]. While the
proof of the theorem is not entirely in line with the main thrust of the argument, we do rely
heavily on Mahler compactness in our treatment of lattices.

We will now consider n = 2. Given a pair of vectors v1, v2 such that

v1 v2


∈ G (that is,

det

v1 v2


= 1), we can find a unique rotation matrix k ∈ K = SO2(R) so that kv1 is pointing
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along the positive x-axis and kv2 is in the upper half-plane. The map

v1 v2


→ kv2 gives

an identification of K\G with the complex upper half-plane. G (and in particular Γ ⊂ G) acts
on K\G by multiplication on the right; this is a variant of the usual action by fractional linear
transformations. Subsection 3.1 and a few following ones have more details on the geometry of
this construction; we take the quotient K\G instead of G here because we are interested in H
rather than its unit tangent bundle. We recall a few things about the geodesic and horocycle
flows. Let

ut =


1 t
0 1


, at =


et 0
0 e−t


, vt =


t 0
t 1


.

and let U = {ut}t∈R, A = {at}t∈R, V = {vt}t∈R. The action of U on G = SL2(R) by left
multiplication is the horocycle flow, and the action of A on SL2(R) the geodesic flow. It is
worth repeating that that U, A, V are subsets of G = SL2(R), and therefore act on L2. The
basic commutation relations are

atusa−1
t = ue2ts atvsa−1

t = ve−2t ;
that is, conjugation by at for t > 0 contracts V and expands U . Projecting the orbits of the
geodesic flow to K\G gives vertical lines or semicircles orthogonal to the x-axis; projecting the
orbits of the horocycle flow gives horizontal lines or circles tangent to the x-axis.

Finally, we define flowboxes, which will be our basic open sets of interest.

Definition 3.10. Let W+ ⊂ U , W− ⊂ V, W0 ⊂ A be images of open intervals containing 0, i.e.
the identity matrix. A flowbox is a subset of G of the form W+W0W−g for some g ∈ G; it is an
open set containing g.

Recall that right multiplication by g is an isometry, so the flowbox is isometric to W+W0W−.

3.5. Non-divergence of unipotent flows. The last part of this section includes an elementary
non-divergence result given by Lemma 3.11 and 3.12 below. The emphasis lies in that this result
holds for SL2(R) only.

Lemma 3.11. There exists an absolute constant ε > 0 such that the following holds: let L ∈ L2
be a unimodular lattice, then L does not contain two linearly independent vectors each of length
less than ε.

Proof. Let v1 be the shortest vector in L, and let v2 be the shortest vector linearly independent
of v1. Then the covolume of L is  v1v2, which therefore must be at least 1. Thus, we may
choose ε = 1. □

Lemma 3.12. Let L ⊂ L2 be a unimodular lattice. If L does not contain a horizontal vector,
then there exists t  0 such that a−1

t L ⊂ L2(ε). Consequently, there exists a sequence of tn → ∞
such that a−1

tn
L ⊂ L2(ε).

Proof. Suppose L does not contain a horizontal vector, and L /∈ L2(ε). Then L contains a vector
v of norm less than ε, which is not horizontal. Note that a−1

t stretches the second coordinate
of v, so in particular there exists a smallest t0 > 0 such that a−1

t0 v = ε. Since for t ∈ [0, t0),
the lattice a−1

t L contains no vectors shorter than ε except a−1
t v and possibly multiples of it, we

derive that a−1
t0 L ∈ L2(ε). □

Remark 3.13. We note that Lemma 3.11 and thus Lemma 3.12 are specific to dimension 2.

4. Interlude I: The particular case of G = SL2(R)

Now we wanna discuss Ratner’s theorem in the case of homogeneous spaces under SL2(R).
We have recalled the geometry of the hyperbolic plane and defined geodesic and horocyclic
flows on the unit tangent bundle as well as the identification with PSL2(R) in Section 3. Our
interest especially lies in the ergodicity of the geodesic and the horocyclic flow on a finite volume
hyperbolic surface. By the way, we show the invariance of Haar measure under the flows before
that ergodicity.
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There are two main results of this section: one is the classification theorem of ergodic measures
which are invariant under horocyclic flow; the other is Ratner’s orbit closure theorem for G =
SL2(R). This section refers to Chapter II§1, II§3, IV of Bekka–Mayer’s book [BM00].

4.1. The classification of U-invariant measures. Note that for L ∈ L2, the U -orbit of L is
closed if and only if L contains a horizontal vector. (The horizontal vector is fixed by the action
of U). Any closed U -orbit supports a U -invariant probability measure. All such measures are
ergodic.

Let ν denote the Haar measure on L2 = G/Γ = SL2(R)/ SL2(Z). The measure ν is normalized
so that ν(L2) = 1. Recall that ν is ergodic for both the horocycle and the geodesic flows, and
this follows from the Moore ergodicity theorem. Our main goal is the following.

Theorem 4.1. Suppose µ is an ergodic U -invariant probability measure on L2. Then either µ
is supported on a closed orbit, or µ is the Haar measure ν.

Proof. Let L′
2 ⊂ L2 denote the set of lattices which contain a horizontal vector. Note that

the set L′
2 is U -invariant. Suppose µ is an ergodic U -invariant probability measure on L2. By

ergodicity of µ, either µ(L′
2) = 0 or µ(L′

2) = 1. If the latter holds, it is easy to show that µ is
supported on a closed orbit. Thus we assume µ(L′

2) = 0 and we must show that µ = ν.
Suppose not. Then there exists a compactly supported continuous function f : L2 → R and

ε > 0 such that

(1)



L2

fdµ −


L2

fdν

 > ε.

Since f is uniformly continuous, there exists a neighborhoods of the identity W ′
0 ⊂ A and

W ′
− ⊂ V such that such that for a ∈ W ′

0, v ∈ W ′
− and L′′ ∈ L2,

(2) |f(vaL′′) − f(L′′)| <
ε

3 .

Recall that π : G → G/Γ ∼= L2 denotes the natural projection. Since L2(ε0) is compact the
injectivity radius on L2(ε0) is bounded from below, hence there exist W+ ⊂ U, W0 ⊂ A, W− ⊂ V
so that for any g ∈ G with π(g) ∈ L2, the restriction of π to the flowbox W−W0W+g is injective.
We may also assume that W− ⊂ W ′

− and W0 ⊂ W ′
0. Let δ = ν(W−W0W+) denote the Lebesque

measure of the flowbox.
By Corollary 2.10 applied to the Lebesque measure ν, there exists a set E ⊂ L2 with ν(E) < δ

and T1 > 0 such that for any interval I with |I|  T1 and any L′ /∈ E,

(3)


1
|I|



I

f(utL
′)dt −



L2

fdν

 <
ε

3 .

Now let L be a generic point for U (in the sense of the Birkhoff ergodic theorem). This implies
that there exists T2 > 0 such that for any interval I containing the origin of length greater then
T2,

(4)


1
|I|



I

f(utL)dt −


L2

fdµ

 <
ε

3 .

Since µ(L′
2) = 0, we may assume that L does not contain any horizontal vectors. Then by

repeatedly applying Lemma 3.12 we can construct arbitrarily large t > 0 such that

a−1
t L ∈ L2(ε).

Now suppose t such that (11) holds, and consider the set Q = atW−W0W+a−1
t L. Then Q can

be rewritten as

(5) Q = (atW−a−1
t )W0(atW+a−1

t )L,

so when t is large, Q is long in the U direction and short in A and V directions. The set Q is
an embedded copy of a flowbox in L2, and ν(Q) = δ.
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We now consider the foliation of Q by the orbits of U . For any L′ ∈ Q, let I(L′) denote the
connected component containing the origin of the set

{t ∈ R : utL
′ ∈ Q}.

Note that the length of I(L′) is independent of L′ (it is just the length of W+ multiplied by e2t).
By choosing t sufficiently large, we may assume that |I(L′)|  max(T1, T2). By commutation
relations atusa−1

t = ue2ts and atvsa−1
t = ve−2t , we know atW−a−1

t ⊂ W ′
−. Also, by construction,

W0 ⊂ W ′
0. Thus, by (2), we have for any L′ ∈ Q,

(6)


1

|I(L′)|



I(L′)
f(utL

′)dt − 1
|I(L)|



I(L)
f(utL)dt

 <
ε

3 ,

which says that Q is foliated by U -orbits, and the integral of f over each U -orbit is nearly the
same.

Since ν(E) < δ and ν(Q) = δ, there exists L′ ∈ Q ∩ Ec. Now (3) holds with I = I(L′),
and (4) holds with I = I(L). These estimates together with (5) contradict the initial inequality
(1). □

Remark 4.2. The above proof works with minor modifications if Γ is an arbitrary lattice in
SL2(R), and not just SL2(Z). Furthermore, if Γ is a uniform lattice in SL2(R) then the horocycle
flow on G/Γ is uniquely ergodic. This is a theorem of Furstenberg.

The proof of Theorem 4.1 does not generalize to classification of measures invariant under a
one-parameter unipotent subgroup on e.g. Ln, n  3. Completely different ideas are needed.

4.2. Comment: Horospherica subgroups and a theorem of Dani. The key property of
U in dimension 2 which is used in the proof of Theorem 4.1 is that U is horospherical, i.e.
that it is equal to the set contracted by a one-parameter diagonal subgroup. One-parameter
unipotent subgroups are horospherical only in SL2(R). An argument similar in spirit to the
proof of Theorem 4.1 can be used to classify the measures invariant under the action of a
horospherical subgroup. This is a theorem of Dani [Dan81] which was proved before Ratner’s
measure classification theorem. However, the details, and in particular the non-divergence
results needed are much more complicated. In fact, the horospherical case also allows for an
analytic approach.

4.3. Orbit closures. We are now ready to prove Ratner’s orbit closure theorem for G = SL2(R).
It is a general version of the phenomenon which we have stated at the very beginning of Section
1.

Lemma 4.3. For L ∈ L2, the U -orbit of L is closed if and only if L contains a horizontal
vector.

Proof. Note that the action of U preserves the y-components of vectors, and fixes horizontal
vectors. Therefore, if v ∈ L is a horizontal vector, then v is contained in utL for all t, and
therefore is contained in U(L). Now, let a matrix for L be


a c
0 d


containing the fundamental

horizontal vector (a, 0)T. Then all vectors in U(L) will have y-components that are multiples of
d, and in particular the horizontal vectors in U(L) will be the same as those in L. Consequently,
the matrix of any lattice L′ in U(L) can be written as


a c′

0 d′


. Note that the covolume of the

lattice is |ad|, and therefore d′ = ±d; without loss of generality, let d′ = d. We finally observe
that c′ = c + td for some t since d ∕= 0 (otherwise L is not a lattice); therefore, L′ = ut(L).

On the other hand, suppose L does not contain a horizontal vector; then it is generated by two
vectors whose y-coordinates are incommensurable. In particular, L contains vectors whose y-
coordinates are arbitrarily close to 0. Let vn ∈ L be primitive vectors satisfying 0 < (vn)y < 1

n .
Pick t such that un = utvn = (1, (vn)y)T ∈ ut(L); and find a second vector generating the
lattice ut(L). It can be chosen so that its x-coordinate is in [0, 1]; the y coordinate must be
approximately 1 because the covolume of the lattice is 1. Letting (v2)n be the sequence of
such second vectors, we note that all the (v2)n are contained in a compact set, and therefore
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have a converging sequence. Then the sequence of pairs (unk
, (v2)nk

) converges to some pair of
generators for a lattice with the first vector horizontal: that is, U(L) ∕= U(L) in this case.

Now, any closed U -orbit supports a U -invariant probability measure. Moreover, we have the
Haar measure ν on L2 = G/Γ, normalized so that ν(L2) = 1; this ν is ergodic for both the
horocycle and the geodesic flows. Ratner’s measure classification theorem asserts that these are
the only U -invariant ergodic probability measures on L2. □

Theorem 4.4 (Orbit Closures in Dimension 2). Let L ∈ L2 = SL2(R)/ SL2(Z). Then the
U -orbit of L is either closed or dense.

Proof. Suppose UL is not closed. By Lemma 4.3, this means that L /∈ L′
2. We wish to show

that UL passes though every open set O ⊂ SL2(R)/ SL2(Z).
Find an open subset O of a compact subset C of O (we like working with functions of compact

support, so all of O might be too large for us). Let f be a uniformly continuous, nonnegative
function supported on C and equal to 1 on O; then 0 < ν(O) 


L2

fdν  ν( O). That is,
we approximate the characteristic function of O by a uniformly continuous function of compact
support. Let ε < ν(O).

Since our U -orbit is not closed, it is the orbit of some lattice L /∈ L′
2. Let the sequence

tn → ∞, the flowbox Q, and the exceptional set E be as in the proof of measure classification
above. Since µ(Q) > µ(E), for a large enough tn we can put together (4) and (6) to find an
interval I such that 

1
|I|



I

f(utL)dt −


L2

fdν

 < ε.

However, this is only possible if f(utL) actually visits O ⊂ O; since O was arbitrary, we conclude
that the U -orbit of L is dense. □

5. Interlude II: The particular case of H = SL2(R)

We aim to discuss Ratner’s Theorem 1.2 in the case of SL2(R)-invariant measures on general
homogeneous spaces. This section contains some of the background needed in the proof: Lie
groups and Lie algebras, finite-dimensional representations of SL2(R), and Mautner phenomenon
for SL2(R), as well as explains and illustrates the proof for it.

The first three subsections in the following list the facts and notions needed for the proof of
Theorem 1.2, of which, except for the Mautner’s Phenomenon in Subsection 5.3, can be found in
any introduction to Lie groups respect to ergodic theory. We strongly recommend Einsiedler’s
article [Ein06] that also includes most of the background needed to be the essential material for
dealing with this case.

5.1. Lie groups and Lie algebras. At the identity element e ∈ G for a Lie group G, we
define the Lie algebra g to be the tangent space there. The exponential map exp: g → G and
the locally defined inverse, the logarithm map, give local isomorphisms g ∼= G. For any g ∈ G
the derivative of the conjugation map is the adjoint transformation Adg : g → g and satisfies

exp Adg(v) = g exp(v)g−1, ∀g ∈ G, v ∈ g.

For linear groups this could not be easier, the Lie algebra is a linear subspace of the space of
matrices, exp(·) and log(·) are defined as usual by power series, and the adjoint transformation
Adg is still conjugation by g.

Closed subgroups L < G are almost completely described by their respective Lie algebras l
inside g as follows. Let L◦ be the connected component of L that contains the identity e. Then
the Lie algebra l of L (and L◦) uniquely determines L◦, which is the subgroup generated by
exp(l). Moreover, any element ℓ ∈ L sufficiently close to e is actually in L◦ and equals ℓ = exp(v)
for some small v ∈ l.

Using an inner product on g we can define a left invariant Riemannian metric d(·, ·) on G.
We will be using the restriction of d(·, ·) to subgroup L < G and denote by BL

r the r-ball in L
around e ∈ L.
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If Γ < G is a discrete subgroup, then X = Γ\G has a natural topology and in fact a metric
defined by

d(Γg, Γh) := min
γ∈Γ

d(g, γh), ∀g, h ∈ G,

which uses left invariance of d(·, ·). With this metric and topology X can locally be described by
G as follows. For any x ∈ X there is an r > 0 such that the map ι : g → xg is an homeomorphism
between BG

r and a neighborhood of x. Moreover, if r is small enough, ι : BG
r → X is in fact an

isometric embedding. For a given x, a number r > 0 with these properties is called an injective
radius at x.

5.2. Finite-dimensional representation of SL2(R). The first property of SL2(R) we will
need is the following standard fact. Let V be a finite dimensional real vector space and suppose
SL2(R) acts on V . Then any SL2(R)-invariant subspace W < V has an SL2(R)-invariant
complement W ′ < V such that V = W ⊕ W ′. The above implies that all finite dimensional
representations of SL2(R) can be written as a direct sum of irreducible representations.

The second fact we need is the descrption of these irreducible representations. Let A = (1, 0)T

and B = (0, 1)T denote the standard basis of R2 so that the unipotent multiplication


1 t
0 1


A = A,


1 t
0 1


B = B + tA.

Any irreducible representation is obtained as a symmetric tensor product Symn(R2) of the
standard representation on R2 for some n. Symn(R2) has An, An−1B, . . . , Bn as a basis, and
every element we can view as a homogeneous polynomial p(A, B) of degree n. The action of
multiplication above can now be described by substitution, p(A, B) is mapped to p(A, B + tA).
More concretely, p(A, B) = c0An + c1An−1B + · · · + cnBn is mapped to

p(A, B + tA) = (c0 + · · · + cntn)An + (c1 + · · · + cnntn−1)An−1B + · · · + cnBn,

where the coefficients in front of the various powers of t are the original components of the vector
p(A, B) multiplied by binomial coefficients. Notice that all components of p(A, B) appear in the
image vector in the component corresponding to An. Moreover, for any component of p(A, B)
the highest power of t it gets multiplied by appears in the resulting component corresponding to
An. For that reason, when t grows (and say p(A, B) is not just a multiple of An) the image of
p(A, B) under the unipotent multiplication will always grow fastest in the direction of An when
t → ∞.

5.3. Mautner’s phenomenon for SL2(R). To be able to apply the ergodic theorem as stated
in Subsection 5.4 in the proof of Theorem 1.2, we will need to know that the SL2(R)-invariant
and ergodic probability measure is also ergodic under a one-parameter flow. The corresponding
fact is best formulated in terms of unitary representations and is due to Moore [Moo80] and is
known as the Mautner phenomenon. For completeness we prove the special case needed.
Proposition 5.1. Let H be a Hilbert space, and suppose φ : SL2(R) → U(H) is a continuous
representation on H. In other words, φ is a homomorphism into the group of unitary automor-
phisms U(H) of H such that for every v ∈ H the vector φ(g)(v) ∈ H depends continuously on
g ∈ SL2(R). Then any vector v ∈ H that is invariant under the upper unipotent matrix group

U =


1 ∗
0 1



is in fact invariant under SL2(R).
Since any measure preserving action on (X, µ) gives rise to a continuous unitary representation

on H = L2(X, µ) the above gives immediately what we need (see also Proposition 5.2 in [Rat90]
for another elementary treatment):
Corollary 5.2. Let µ be an H-invariant and ergodic probability measure on X = Γ\G with
Γ < G discrete, and H < G isomorphic to SL2(R). Then µ is also ergodic with respect to
the one-parameter unipotent subgroup U of H corresponding to the upper unipotent subgroup in
SL2(R).
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In fact, an invariant function f ∈ L2(X, µ) that is invariant under U must be invariant under
SL2(R) by Proposition 5.1. Since the latter group is assumed to be ergodic, the function must
be constant as required.

Proof of Proposition 5.1. Following Margulis’ idea, define the auxiliary function p(g) = (φ(g)v, v).
Notice first that the function p(·) characterizes invariance in the sense that p(g) = (v, v) implies
φ(g)v = v.

By continuity of the representation p(·) is also continuous. Moreover, by our assumption on
v the map p(·) is bi-U -invariant since

p(ugu′) = (φ(u)φ(g)φ(u′)v, v) = (φ(g)v, φ(u−1)v) = p(g).
Let ε, r, s ∈ R and calculate


1 r
0 1

 
1 0
ε 1

 
1 s
0 1


=


1 + rε r + s + rsε

ε 1 + sε


.

Now fix some t ∈ R, let ε be close to zero but nonzero, choose r = (et −1)/ε and s = −r/(1+rε).
Then the above matrix simplifies to


et 0
ε e−t


. In particular, this shows that

p


1 0
ε 1


= p


et 0
ε e−t



is both close to p(e) and to p


et 0
0 e−t


. Therefore, the latter equals (v, v) which implies that v is

invariant under


et 0
0 e−t


as mentioned before.

The above implies now that p(·) is bi-invariant under the diagonal subgroup. Using this and
the above argument once more, it follows that v is also invariant under

 1 0
s 1


for all s ∈ R. □

5.4. Outline of the 4-steps proof for H = SL2(R). In this subsection we prove Theorem 1.2
for H = SL2(R) using the prerequisites that we have discussed. Let us mention again that the
general outline of the proof is very similar to the strategy Ratner used to prove her theorems.
In this outline of the proof, many details are omitted for their is no space in the report to write
them down.

From now on let µ be an H-invariant and ergodic probability measure on X = Γ\G. Our
goal is in the following.

Theorem 5.3 (Ratner, H = SL2(R)). Let G be a Lie group, Γ < G a discrete subgroup, and
H < G a subgroup isomorphic to SL2(R). Then any H-invariant and ergodic probability measure
µ on X = Γ\G is homogeneous, i.e. there exists a closed connected subgroup L < G containing
H such that µ is L-invariant and some x0 ∈ X such that the L-orbit x0L is closed and supports
µ. In other words µ is an L-invariant volume measure on x0L.

Step 1. It is easy to check that
StabG(µ) = {g ∈ G : right multiplication with g on X preserves µ}

is a closed subgroup of G. Let L = StabG(µ)◦ be the connected component. Then as discussed
any element of StabG(µ) sufficiently close to e belongs to L. Also since SL2 R) is connected we
have H < L.

We will show that µ is concentrated on a single orbit of L, i.e. that there is some L-orbit
L.x0 of measure one µ(L.x0) = 1. Then by L-invariance of µ and uniqueness of Haar measure,
µ would have to be the L-invariant volume form on this orbit L.x0. However, since µ is assumed
to be a probability measure this also implies that the orbit L. x0 is closed as seen in the next
lemma.

Lemma 5.4. If µ is concentrated on a single L-orbit L.x0 and is L invariant, then L.x0 is
closed and µ is supported on L.x0.

The main argument will be to show that if µ is not concentrated on a single orbit of L, then
there are other elements of StabG(µ) close to e. This shows that we should have started with
a bigger subgroup L′. If we repeat the argument with this bigger L′, we will either achieve
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our goal or make L′ even bigger. We start by giving a local condition for a measure µ to be
concentrated on a single orbit.

Lemma 5.5. Suppose x0 ∈ X has the property that µ(BL
δ · x0) > 0 for some δ > 0, then µ is

concentrated on L.x. So either the conclusion of Theorem 5.3 holds for L and x0, or for every
x0 we have µ(BL

δ · x0) = 0.

We will be achieving the assumption to the last lemma by studying large sets X ′ ⊂ X
of points with good properties. Let x0 ∈ X ′ be such that all balls around x0 have positive
measure. Suppose X ′ has the property that points x′ close to x0 that also belong to X ′ give
rise to additional invariance of µ unless x and x′ are locally on the same L-orbit (i.e. x′ = ℓ.x
for some ℓ ∈ L close to e). Then either L can be made bigger or BL

δ .x ∩ X ′ ⊂ BL
δ .x0 for some

δ > 0 and therefore the latter has positive measure. However, to carry that argument through
requires a lot more work. We start by a less ambitious statement where two close by points in
a special position from each other give rise to invariance of µ. Recall that

U =


1 ∗
0 1



Proposition 5.6. There is a set X ′ ⊂ X of µ-measure one such that if x, x′ ∈ X ′ and x′ = c.x
with

c ∈ CG(U) = {g ∈ G : gu = ug for all u ∈ U},

then c preserves µ.

The set X ′ in the above proposition we define to be the set of µ generic points (for the one
paramenter subgroup defined by U). A point x ∈ X is µ-generic if

1
T

 T

0
f(ut.x)dt →


fdµ, T → ∞

for all compactly supported, continuous functions f : X → R. Recall that by the Mautner
phenomenon µ is U -ergodic. Now the ergodic theorem implies that the set X ′ of all µ-generic
points has measure one. (Here one first applies the ergodic theorem for a countable dense set of
compactly supported, continuous functions and then extends the statement to all such functions
by approximation.)

Step 2. In Proposition 5.6 we derived invariance of µ but only if we have two points x, x′ ∈ X ′

that are in a very special relationship to each other. On the other hand if µ is not supported on
the single L-orbit, then we know that we can find many y, y′ ∈ X ′ that are close together but
are not on the same L-leaf locally by Lemma 5.5. Without too much work we will see that we
can assume

y′ = exp(v).y, v ∈ l′

where l′ is an SL2(R)-invariant complement in g of the Lie algebra l of L, see Lemma 5.8.
What we are going to describe is a version of the so-called H-principle as introduced by Ratner
[Rat82a] [Rat83] and generalized in [Mor05].

By applying the same unipotent matrix u ∈ U to y and y′ we get
u.y′ = (u exp(v)u−1).(u.y) = exp(Adu(v)).(u.y)

In other words, the divergence of the orbits through y and y′ can be described by conjugation in
G− or even by the adjoint representation on g. Since H is assume to be isomorphic to SL2(R)
we will be able to use the theory on representations as in Section 5.2. In particular, recall that
the fastest divergence is happening along a direction which is stabilized by U . Since all points
on the orbit of a µ-generic point are also µ-generic, one could hope to flow along U until the two
points x = u.y, x′ = u.x′ differ significantly but not yet to much. Then y′ = u.x′ = h.(u.x) = h.y
with h almost in CG(U). To fix the almost in this statement we will consider points that are
even closer to each other, flow along U for a longer time, and get a sequence of pairs of µ generic
points that differ more and more by some element of CG(U). In the limit we hope to get to
points that differ precisely by some element of CG(U) which is not in L.
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The main problem is that limits of µ-generic points need not be µ generic (even for actions of
unipotent groups). Therefore, we need to introduce quite early in the argument a compact subset
K ⊂ X ′ of almost full measure that consists entirely of µ-generic points. When constructing
u.x′, u.x we will make sure that they belong to K – this way we will be able to go to the limit
and get µ-generic points that differ by some element of CG(U).

We are now ready to proceed more rigorously.
Step 3. Let X ′ be the sets of µ-generic points as above, and let K ⊂ X ′ be compact with

µ(K) > 0.9. By the ergodic theorem
1
T

 T

0
1K(ut.y)dt → µ(K)

for µ-a.e. y ∈ X. In particular, we must have for a.e. y ∈ X

1
T

 T

0
1K(ut.y)dt > 0.8, T ≫ 0.

Here T may depend on y but by choosing T0 large enough we may assume that the set

X1 =


y ∈ X : 1
T

 T

0
1K(ut.y)dt > 0.8 for all T  T0



has measure µ(X1) > 0.99. By definition points in X1 visit K often enough so that we will be
able to find for any y, y′ ∈ X1 many common values of t with ut.y, ut.y

′ ∈ K.
The last preparation we need will allow us to find y, y′ ∈ X1 that differ by some exp(v) with

v ∈ l′. For this we define

X2 =


z ∈ X : 1
mL(BL

1 )



BL
1

1X1(ℓ.z)d(mL(ℓ)) > 0.9


where mL is a Haar measure on L. Any other smooth measure would do here as well.
Lemma 5.7. µ(X2) > 0.9.

Let as before l ⊂ g be the Lie algebra of L < G and let l′ ⊂ g be an SL2(R)-invariant
complement of l in g. Then the map φ : l′ × l → G defined by φ(v, w) = exp(v) exp(w) is C∞

and its derivative at (0, 0) is the embedding of l′ × l into g. Therefore, φ is locally invertible so
that every g ∈ G close to e is a unique product g = exp(v)ℓ for some ℓ ∈ L close to e and some
small v ∈ l′. We define πL(g) = ℓ. For simplicity of notation we assume that this map is defined
on an open set containing BL

1 (if necessary we rescale the metric).
Lemma 5.8. For any ε > 0 there exists δ > 0 such that for g ∈ BG

δ , and z, z′ = g.z ∈ X2 there
are ℓ2 ∈ BL

1 and ℓ1 ∈ BL
ε (ℓ2) with ℓ1.z, ℓ2.z′ ∈ X1 and ℓ2gℓ−1

1 = exp(v) for some v ∈ Bl′

ε (0).

Step 4. Let x0 ∈ X2 ∩ supp µ|X2 so that µ((BG
δ .x0) ∩ X2) > 0 for all δ > 0. Now one of the

following two statements must hold:
(1) there exists some δ > 0 such that BG

δ .x0 ∩ X2 ⊂ BL
δ .x0, or

(2) for all δ > 0 we have BG
δ .x0 ∩ X2 ∕⊂ BL

δ .x0.
We claim that actually only (1) above is possible if L is really the connected component of

StabG(µ). Assuming this has been shown, then we have µ(BL
δ .x0) > 0 which was the assumption

to Lemma 5.5. Therefore, µ(L.x0) = 1 and by Lemma 5.4, L.x0 ⊂ X is closed – Theorem 5.3
follows. So what we really have to show is that (2) implies that µ is invariant under a one
parameter subgroup that does not belong to L.
Lemma 5.9. Assuming (2) there are for every ε > 0 two points y, y′ ∈ X1 with d(y, y′) < ε

and y′ = exp(v).y for some nonzero v ∈ Bl′

ε (0).
Using y, y′ ∈ X1 and v ∈ l′ for all ε > 0 as in the above lemma we will show that µ is invariant

under a one-parameter subgroup that does not belong to L. For this it is enough to show the
following:
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Claim. For any η > 0 there exists a nonzero w ∈ Bl′

η (0) such that µ is invariant
under exp(w).

To see that this is the remaining assertion, notice that we then also have invariance of µ
under the subgroup exp(Zw). While this subgroup could still be discrete, when η → 0 we find
by compactness of the unit ball in l′ a limiting one parameter subgroup exp(Rw) that leaves µ
invariant.

We start proving the claim. Let η > 0 be fixed, and let ε > 0, y, y′ ∈ X1, and v ∈ Bl′

ε (0)
as above. We will think of ε as much smaller than η since we will below let ε shrink to zero
while not changing η. Let Symn(R2) be an irreducible representation as in Section 5.2, and let
p = p(A, B) ∈ Symn(R2). Recall that ut =

 1 t
0 1


applied to p(A, B) gives p(A, B + tA). We

define
Tp = η

max(|c1|, . . . , |cn|1/n)
and set Tp = ∞ if the expression on the right is not defined. The significance of Tp is that for
t = Tp at least one term in the sum (c0 + c1t + · · · + cntn) is of absolute value one while all
others are less than that – recall that this sum is the coefficient of A in p(A, B + tA). To extend
this definition to l′ which is not necessarily irreducible we split l′ into irreducible representations
l′ =

k
j=1 Vj and define for v = (pj)j=1,...,k:

Tv = min
j

Tpj .

Lemma 5.10. There exists constants n > 0 and C > 0 that only depend on l′ such that for
v ∈ Bl′

ε (0) and t ∈ [0, Tv] we have

Adut(v) = w + O(ε1/n)

where w ∈ Bl′

Cη(0) is fixed under the subgroup U = uR. Here we write O(ε1/n) to indicate a
vector in l′ of norm less than Cε1/n.

If v is already fixed by U then Tv = ∞ (and other way around) and the above statement is
rather trivial since w = v. Moreover, by definition of X1 we have

1
T

 T

0
1K(utxi)dt > 0.8

for i = 1, 2. From this it follows that there is some t ∈ [0, T0] with ut.x1, ut · x2 ∈ K. Since
K ⊂ X ′ Lemma 5.6 proves (assuming ε < η) the claim in that case and we may from now on
assume that v is not fixed under the action of U and so Tv < ∞.

Lemma 5.11. There exists a constant c > 0 that only depends on l′ such that the decomposition
Adut(v) = w + O(ε1/n) as above satisfies w > cη for t ∈ Ev where Ev ⊂ [0, Tv] has Lebesgue
measure at least 0.9Tv.

Recall that case (1) from the beginning of this section implies Theorem 5.3 and that we are
assuming case (2). Moreover, recall that this implies for all ε > 0 the existence of y, y′ ∈ X1
with y′ = exp(v).y for some nonzero v ∈ Bl′

ε (0) by Lemma 5.9. By definition of X1 the sets
ET = {t ∈ [0, T ] : ut.y ∈ K},

E′
T = {t ∈ [0, T ] : ut.y

′ ∈ K}
have Lebesgue measure bigger than 0.8T whenever T  T0. From the definition it is easy to see
that Tv  T0 once ε and therefore v are sufficiently small, so we can set to T = Tv. Moreover,
let Ev be as in Lemma 5.11. Then the union of the complements of these three sets in [0, Tv]
has Lebesgue measure less than 0.5Tv. Therefore, there exists some t ∈ ETv ∩ E′

Tv
∩ Ev. We

set x = ut.y and x′ = ut · y′, both belonging to K by definition of ETv
and E′

Tv
. Moreover,

x′ = exp(w + O(ε1/n)).X, where w ∈ l′ is stabilized by U and satisfies cη  w  Cη by
Lemma 5.10 and 5.11. We let ε → 0 and choose converging subsequences for x, x′, and w. This
shows the existence of x, x′ = exp(w) ·x ∈ K and w ∈ l′ with cη  w  Cη which is stabilized
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by U . This is in effect our earlier claim which as we have shown implies that µ is invariant
under a one-parameter subgroup not belong into L. This concludes the proof of Theorem 5.3.

6. Ratner’s “tours de force” in full generality

This section discusses some of the ideas and problems of the proof of Ratner’s Theorem in the
general case. The phrase “tour de force” in French translates to be “masterpiece” in English.
There will be no space in this report to give the technical details of the proof, so we only
concentrate on the outline of the proof, comparing everything to the case of SL2(R)-invariant
measures, and focus on the important ideas such as non-divergence of unipotent flows.

Chapter 5 of Morris’ book [Mor05] is the main reference. We point out there are also useful
remarks in Ghys’ paper from Séminaire Bourbaki, see [Ghy92].

6.1. Ratner’s 9-steps proof. This part cites from [Mor05], and we give out a fairly complete
outline of proof, modulo some propositions and lemmas in need that are postponed to Subsection
6.2. Let us first state Theorem 1.2 again.

Theorem 6.1 (Ratner, 1990). If G is a closed, connected subgroup of SLℓ(R) for some ℓ, Γ is
a discrete subgroup of G, ut is a unipotent one-parameter subgroup of G, and µ is an ergodic
ut-invariant probability measure on Γ\G, then µ is homogeneous. More precisely, there exist a
closed, connected subgroup S of G, and a point x in Γ\G, such that

(1) µ is S-invariant, and
(2) µ is supported on the orbit xS.

Remark 6.2. If we write x = Γg, for some g ∈ G, and let ΓS = (g−1Γg)∩S, then the conclusions
imply that

• under the natural identification of the orbit xS with the homogeneous space ΓS\S, the
measure µ is the Haar measure on ΓS\S,

• ΓS is a lattice in S, and
• xS is closed.

Remark 6.3. Note that G is not assumed to be semisimple. Although the semisimple case is
the most interesting, we allow ourselves more freedom, principally because the proof relies – at
one point, in the proof of Theorem 6.21 – on induction on dim G, and this induction is based
on knowing the result for all connected subgroups, not only the semisimple ones.

Step 1. Let S = StabG(µ). We wish to show that µ is supported on a single S-orbit. Let g
be the Lie algebra of G and s be the Lie algebra of S. The expanding and contracting subspaces
of as (for s > 0) provide decompositions

g = g− + g0 + g+, s = s− + s0 + s+,

and we have corresponding subgroups G−, G0, G+, S−, S0, and S+ (see Notation 6.9). For
convenience, let U = S+. Note that U is unipotent, and we may assume {ut} ⊂ U , so µ is
ergodic for U .

Step 2. We are interested in transverse divergence of nearby orbits. We ignore relative
motion along the U -orbits, and project to G ⊖ U . The shearing property of unipotent flows
implies, for a.e. x, y ∈ Γ\G, that if x ≈ y, then the transverse divergence of the U -orbits
through x and y is fastest along some direction in S (see Proposition 6.4). Therefore, the
direction belongs to G−G0 (see Corollary 6.10).

Step 3. We define a certain subgroup
S− = {g ∈ G− | ∀u ∈ U, u−1gu ∈ G−G0U}

of G− (cf. Definition 6.11). Note that S− ⊂ S−. The motivation for this definition is that if
y ∈ x S−, then all of the transverse divergence belongs to G−G0− there is no G+-component to
any of the transverse divergence. For clarity, we emphasize that this restriction applies to all
transverse divergence, not only the fastest transverse divergence.
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Step 4. Combining Step 2 with the dilation provided by the translation a−s shows, for a.e.
x, y ∈ Γ\G, that if y ∈ xG−, then y ∈ x S− (see Corollary 6.15).

Step 5. A Lie algebra calculation shows that if y ≈ x, and y = xg, with g ∈ (G− ⊖ S−)G0G+,
then the transverse divergence of the U -orbits through x and y is fastest along some direction
in G+ (see Lemma 6.16).

Step 6. Because the conclusions of Step 2 and Step 5 are contradictory, we see, for a.e.
x, y ∈ Γ\G, that if x ≈ y, then y /∈ x(G− ⊖ S−)G0G+ (cf. Corollary 6.17). Actually, a technical
problem causes us obtain this result only for x and y in a set of measure 1 − ε.

Step 7. The relation between stretching and entropy provides bounds on the entropy of as,
in terms of the the Jacobian of as on U and (using Step 4) the Jacobian of a−s on S−:

J(as, U)  hµ(as)  J(a−s, S−)

On the other hand, structure of sl2(R)-modules implies that J(as, U)  J(a−s, S−). Thus,
we conclude that hµ(as) = J(a−s, S−). This implies that S− ⊂ StabG(µ), so we must have
S− = S− (see Proposition 6.19).

Step 8. By combining the conclusions of Step 6 and Step 7, we show that µ(xS−G0G+) > 0,
for some x ∈ Γ\G (see Proposition 6.20).

Step 9. By combining Step 8 with the (harmless) assumption that µ is not supported on an
orbit of any closed, proper subgroup of G, we show that S− = G−(so S− is horospherical), and
then there are a number of ways to show that S = G (see Theorem 6.21).

6.2. Key results of use.

Proposition 6.4. If U is any connected, ergodic, unipotent subgroup of S, then there is a conull
subset Ω of Γ\G, such that, for all x, y ∈ Ω, with x ≈ y, the U -orbits through x and y diverge
fastest along some direction that belongs to S.

This immediately implies the following interesting special case of Ratner’s Theorem.

Corollary 6.5. If U = StabG(µ) is unipotent (and connected), then µ is supported on a single
U -orbit.

Although Proposition 6.4 is true, it seems to be very difficult to prove from scratch, so we
will be content with proving the following weaker version that does not yield a conull subset,
and imposes a restriction on the relation between x and y.

Proposition 6.6. For any connected, ergodic, unipotent subgroup U of S, and any ε > 0, there
is a subset Ωε of Γ\G, such that µ(Ωε) > 1 − ε, and for all x, y ∈ Ωε, with x ≈ y, and such that
certain technical assumption, see Addendum 6.8, is satisfied, the fastest transverse divergence
of the U -orbits through x and y is along some direction that belongs to S.

Proof. Let us assume that no NG(U)-orbit has positive measure, for otherwise it is easy to
complete the proof. Then, for a.e. x ∈ Γ\G, there is a point y ≈ x, such that y /∈ xNG(U), and
y is a generic point for µ.

Because y /∈ xNG(U), we know that the orbit yU is not parallel to xU , so they diverge from
each other. We know that the direction of fastest transverse divergence belongs to NG(U), so
there exist u, u′ ∈ U , and c ∈ NG(U) ⊖ U , such that yu′ ≈ (xu)c, and c ≍ 1 (i.e. c is finite,
but not infinitesimal).

Because c /∈ U = StabG(µ), we know that c∗µ ∕= µ. Because c ∈ NG(U), this implies c∗µ ⊥ µ,
so there is a compact subset K with µ(K) > 1 − ε and K ∩ Kc = ∅.

We would like to complete the proof by saying that there are values of u for which both of
the two points xu and yu′ are arbitrarily close to K, which contradicts the fact that d(K, Kc) >
0. However, there are two technical problems:

(1) The set K must be chosen before we know the value of c.
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(2) The Pointwise Ergodic Theorem 2.7 implies (for a.e. x) that xu is arbitrarily close
to K a huge proportion of the time. But this theorem does not apply directly to yu′,
because u′ is a nontrivial function of u. To overcome this difficulty, we add an additional
technical hypothesis on the element g with y = xg. With this assumption, the result can
be proved, by showing that the Jacobian of the change of variables u → u′ is bounded
above and below on some set of reasonable size, and applying the uniform approximate
version of the Pointwise Ergodic Theorem (see Theorem 2.7). The uniform estimate is
what requires us to restrict to a set of measure 1 − ε, rather than a conull set.

□

Remark 6.7. The fact that Ωε is not quite conull is not a serious problem, although it does make
one part of the proof more complicated (cf. Proposition 6.20).

We will apply Proposition 6.4 only twice, in the proofs of Cororollary 6.15 and 6.17. In each
case, it is not difficult to verify that the technical assumption is satisfied.

Addendum 6.8. The so-called technical assumption that appeared in Proposition 6.6 can be
stated in the following explicit form if g is infinitesimal: there are an (infinite) integer n, and a
finite element u0 of U , such that

• a−nu0ang ∈ G−G0G+,
• a−nu0angU is not infinitesimally close to eU in G/U , and
• anga−n is finite (or infinitesimal).

In non-infinitesimal terms, the assumption on {gk} is: there are a sequence nk → ∞, and a
bounded sequence {uk} in U , such that

• a−nk ukank gk ∈ G−G0G+,
• no subsequence of a−nk ukank gkU converges to eU in G/U , and
• ank gka−nk is bounded.

Notation 6.9. The notations used in Step 1 are in the following.
• For a (small) element g of G, we use g to denote the corresponding element log g of the

Lie algebra g.
• Recall that S = StabG(µ)◦.
• By renormalizing, let us assume that [u, a] = 2u (where a = a1 and u = u1).
• Let {vr} be the (unique) one-parameter unipotent subgroup of L, such that [v, a] = −2v

and [v, u] = a.
• Let


λ∈Z gλ be the decomposition of g into weight spaces of a: that is,

gλ = {g ∈ g | [g, a] = λg}.

• Let g+ =


λ>0 gλ, g− =


λ<0 gλ, s+ = s ∩ g+, s− = s ∩ g−, and s0 = s ∩ g0. Then

g = g− + g0 + g+, s = s− + s0 + s+.

These are direct sums of vector spaces, although they are not direct sums of Lie algebras.
• Let G+, G−, G0, S+, S−, S0 be the connected subgroups of G corresponding to the Lie

subalgebras g+, g−, g0, s+, s−, s0, respectively.
• Let U = S+ (and let u be the Lie algebra of U).

Because S−S0U = S−S0S+ contains a neighborhood of e in S, Proposition 6.6 states that
the direction of fastest transverse divergence belongs to S−S0. The following corollary is a
priori weaker (because G− and G0 are presumably larger than S− and S0), but it is the only
consequence that we will need in our later arguments.

Corollary 6.10. For any ε > 0, there is a subset Ωε of Γ\G, such that µ(Ωε) > 1 − ε, and
for all x, y ∈ Ωε, with x ≈ y, and such that a certain technical assumption in Addendum 6.8 is
satisfied, the fastest transverse divergence of the U -orbits through x and y is along some direction
that belongs to G−G0.
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Definition 6.11. Let
S = {g ∈ G | u−1gu ∈ G−G0U , for all u ∈ U}

and
S− = S ∩ G−.

It is more or less obvious that S ⊂ S. Although this is much less obvious, it should also be
noted that S is a closed subgroup of G.

Remark 6.12. Here is an alternate approach to the definition of S, or, at least, its identity
component.

(1) Let
s = {g ∈ g | g(ad u)k ∈ g− + g0 + u, ∀k  0, ∀u ∈ u}.

Then s is a Lie subalgebra of g, so we may let S◦ be the corresponding connected Lie
subgroup of G. (We will see in (3) below that this agrees with Definition 6.11)

(2) From the point of view in (1), it is not difficult to see that S◦ is the unique maximal
connected subgroup of G, such that S◦ ∩ G+ = U , and S◦ is normalized by at. This
makes it obvious that S ⊂ S◦. It is also easy to verify directly that s ⊂ s.

(3) It is not difficult to see that the identity component of the subgroup defined in Definition
6.11 is also the subgroup characterized in (2), so this alternate approach agrees with the
original definition of S.

Example 6.13. Remark 6.12 makes it easy to calculate S◦.
(1) We have S = G if and only if U = G+.
(2) If

G = SL3(R), a =




1 0 0
0 0 0
0 0 −1



 , u =




0 0 0
0 0 0
∗ 0 0



 ,

then

g+ =




0 0 0
∗ 0 0
∗ ∗ 0



 , s =




∗ 0 ∗
0 ∗ 0
∗ 0 ∗



 .

(3) If

G = SL3(R), a =




1 0 0
0 0 0
0 0 −1



 , u =




0 0 0
∗ 0 0
∗ 0 0



 ,

then

g+ =




0 0 0
∗ 0 0
∗ ∗ 0



 , s =




∗ 0 ∗
∗ ∗ ∗
∗ 0 ∗



 .

(4) If

G = SL3(R), a =




2 0 0
0 0 0
0 0 −2



 , u = R




0 0 0
1 0 0
0 1 0



 ,

then

g+ =




0 0 0
∗ 0 0
∗ ∗ 0



 , s = R




0 1 0
0 0 1
0 0 0



 +




∗ 0 0
0 ∗ 0
0 0 ∗



 + u.

(5) If

G = SL2(R) × SL2(R), a =


1 0
0 −1


,


1 0
0 −1


,

and
u = R


0 0
1 0


,


0 0
1 0


,
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then

g+ =


0 0
∗ 0


×


0 0
∗ 0


, s = R(


0 1
0 0


,


0 1
0 0


) + Ra + u.

Our ultimate goal is to find a conull subset Ω of Γ\G, such that if x, y ∈ Ω, then y ∈ xS.
In this section, we establish two consequences of Corollary 6.10 that represent major progress
toward this goal (see Corollary 6.15 and 6.17). These results deal with S, rather than S, but
that turns out not to be a very serious problem, because S ∩G+ = S ∩G+ (see Remark 6.12(2))
and S ∩ G− = S ∩ G− (see Proposition 6.19).

Notation 6.14. Let
• g+ ⊖ u be an as-invariant complement to u in g+,
• g− ⊖ s− be an as-invariant complement to s− in g−,
• G+ ⊖ U = exp(g− ⊖ u), and
• G− ⊖ S− = exp(g− ⊖ s−).

Note that the natural maps (G+ ⊖ U) × U → G+ and (G− ⊖ S−) × S− → G− defined by
(g, h) → gh are diffeomorphisms.

Corollary 6.15. There is a conull subset Ω of Γ\G, such that if x, y ∈ Ω, and y ∈ xG−, then
y ∈ x S−.

Proof. Choose Ω0 as in the conclusion of Corollary 6.10 From the Pointwise Ergodic Theorem
2.7, we know that

Ω = {x ∈ Γ\G | {t ∈ R+ | xat ∈ Ω0} is bounded}
is conull.

We have y = xg, for some g ∈ G−. Because a−tgat → e as t → ∞, we may assume, by
replacing x and y with xat and yat for some infinitely large t, that g is infinitesimal (and that
x, y ∈ Ω0).

Suppose g /∈ S−(this will lead to a contradiction). From the definition of S−, this means there
is some u ∈ U , such that u−1gu /∈ G−G0U : write u−1gu = hcu′ with h ∈ G−G0, c ∈ G+ ⊖ U ,
and u′ ∈ U . We may assume h is infinitesimal (because we could choose u to be finite, or even
infinitesimal, if desired). Translating again by an (infinitely large) element of {at}, with t  0,
we may assume c is infinitely large. Because h is infinitesimal, this clearly implies that the
orbits through x and y diverge fastest along a direction in G+, not a direction in G−G0. This
contradicts Corollary 6.10. □

An easy calculation (involving only algebra, not dynamics) establishes the following.

Lemma 6.16. If y = xg with g ∈ (G− ⊖ S−)G0G+, and g ≈ e, then the transverse divergence
of the U -orbits through x and y is fastest along some direction in G+.

Proof. Choose s > 0 (infinitely large), such that g = asga−s is finite, but not infinitesimal, and
write g = g−g0g+, with g− ∈ G−, g0 ∈ G0, and g+ ∈ G+ Note that g0 and g+ are infinitesimal,
but g− is not. Because g− ∈ G− ⊖ S−, we know that g is not infinitely close to S−, so there is
some finite u ∈ U , such that u−1g is not infinitesimally close to G−G0U .

Let u = a−suas, and consider u−1gu = a−s(u−1gu)as. Because u−1gu is finite (since u and
g are finite), we know that each of (u−1gu)− and (u−1gu)0 is finite. Therefore (u−1gu)− and
(u−1gu)0 are finite, because conjugation by as does not expand G− or G0.

On the other hand, we know that (u−1gu)+ is infinitely far from U , because the distance
between u−1gu and U is not infinitesimal, and conjugation by as expands G+ by an infinite
factor.

Therefore, the fastest divergence is clearly along a direction in G+. □

The conclusion of the above lemma contradicts the conclusion of Corollary 6.10 (2) (and the
technical assumption in Addendum 6.8 is automatically satisfied in this situation), so we have
the following conclusion.
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Corollary 6.17. For any ε > 0, there is a subset Ωε of Γ\G, such that µ(Ωε) > 1 − ε, and for
all x, y ∈ Ωε, with x ≈ y, we have y /∈ x(G− ⊖ S−)G0G+.

This can be restated in the following non-infinitesimal terms.
Corollary 6.18. For any ε > 0, there is a subset Ωε of Γ\G, and some δ > 0, such that
µ(Ωε) > 1 − ε, and for all x, y ∈ Ωε, with d(x, y) < δ, we have y /∈ x(G− ⊖ S−)G0G+.

Proposition 6.19. We have S− = S−.
Proof. We already know that S− ⊃ S−. Thus, because S− ⊂ G−, it suffices to show that
S− ⊂ S. That is, it suffices to show that µ is S− invariant.

We have
hµ(a−1)  log J(a, U).

From Corollary 6.15, we have
hµ(a)  log J(a−1, S−).

Combining these two inequalities with the fact that hµ(a) = hµ(a−1), we have

log J(a, U)  hµ(a−1) = hµ(a)  log J(a−1, S−).
Thus, if we show that

log J(a−1, S−)  log J(a, U),
then we must have equality throughout, and the desired conclusion will follow.

Because u belongs to the Lie algebra l of L (see Notation 6.9), the structure of sl2(R)-modules
implies, for each λ ∈ Z+, that the restriction (adg u)λ|g−λ

is a bijection from the weight space
g−λ onto the weight space gλ. If g ∈ s− ∩ g−λ, then (1) of Remark 6.12 implies

g(adg u)λ ∈ (g− + g0 + u) ∩ gλ = u ∩ gλ,

so we conclude that (adg u)λ|s−∩g−λ
is an embedding of s− ∩ g−λ into u ∩ gλ. So

dim(s− ∩ g−λ)  dim(u ∩ gλ).
The eigenvalue of AdG a = exp(adg a) on gλ is eλ, and the eigenvalue of AdGa−1 on g−λ is also
eλ. Hence,

log J(a−1, S−) = log det(AdG a−1)|s−

= log


λ∈Z+

(eλ) dim(s− ∩ g−λ)

=


λ∈Z+

(dim(s− ∩ g−λ)) · log eλ




λ∈Z+

(dim u ∩ gλ) · log eλ

= log J(a, U)
as desired. □

We wish to show, for some x ∈ Γ\G, that µ(xS) > 0. In other words, that µ(xS−S0S+) > 0.
The following weaker result is a crucial step in this direction.
Proposition 6.20. For some x ∈ Γ\G, we have µ(xS−G0G+) > 0.
Proof. Assume that the desired conclusion fails. This will lead to a contradiction. Let Ωε be as
in Corollary 6.17, with ε sufficiently small.

Because the conclusion of the proposition is assumed to fail, there exist x, y ∈ Ωε, with
x ≈ y and y = xg, such that g /∈ S−G0G+. Thus, we may write g = vwh with v ∈ S−, w ∈
(G− ⊖ S−)\{e}, and h ∈ G0G+.

For simplicity, let us pretend that Ωε is S−-invariant. This is not so far from the truth,
because µ is S−-invariant and µ(Ωε) is very close to 1, so the actual proof is only a little more
complicated. Then we may replace x with xv, so that g = wh ∈ (G− ⊖ S−)G0G+. This
contradicts the definition of Ωε. □
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We can now complete the proof using some of the theory of algebraic groups.

Theorem 6.21. µ is supported on a single S-orbit.

Proof. There is no harm in assuming that G is almost Zariski closed. By induction on dim G,
we may assume that there does not exist a subgroup H of G, such that H is almost Zariski
closed, U ⊂ H, and some H-orbit has full measure.

Then a short argument implies, for all x ∈ Γ\G, that if V is any subset of G, such that
µ(xV ) > 0, then G ⊂ V , the Zariski closure of V . This hypothesis will allow us to show that
S = G.

Claim. We obtain S− = G−.

Proposition 6.20 states that µ(xS−G0G+) > 0, so, from our hypothesis above, G ⊂ S−G0G+.
This implies that S−G0G+ must contain an open subset of G. Therefore

dim S−  dim G − dim(G0G+) = dim G−.

Because S− ⊂ G−, and G− is connected, this implies that S− = G−, as desired.
The subgroup G− is a horospherical subgroup of G, so we have shown that µ is invariant

under a horospherical subgroup of G. The fact below is used to complete the proof.

Fact. If N is a unimodular, normal subgroup of G, N is contained in StabG(µ),
and N is ergodic on Γ\G, then µ is homogeneous.

There are now at least three ways to complete the argument.
(a) We showed that µ is G−-invariant. By going through the same argument, but with vr

in the place of ut, we could show that µ is G+-invariant. So S contains 〈L, G+, G−〉,
which is easily seen to be a (unimodular) normal subgroup of G. Then the fact applies.

(b) By using considerations of entropy, one can show that G+ ⊂ S, and then the fact applies,
once again.

(c) If we assume that Γ\G is compact (and in some other cases), then a completely separate
proof of the theorem is known for measures that are invariant under a horospherical
subgroup. Such special cases were known several years before the general theorem.

More rigorous details are omitted here. □

7. Application to Oppenheim conjecture

In this section, we present a schematic proof of the Oppenheim conjecture using Ratner’s
theorems. Our main concern is the connection between the number theory of the Oppenheim
conjecture and the theory of dynamical systems in Ratner’s theorems. The connection comes
via the group SO(Q) ⊂ SLn(R), the group of transformations that leaves the quadratic form Q

invariant. The theory of dynamical systems will let us show that SO(Q) must be “nice”, and
we’ll see that this leaves only two options for it — corresponding to Q rational or Q(Zn) dense
in R. The references are the original paper by Dani–Margulis [DM89] together with [Ghy92,
§4.2].

7.1. Oppenheim conjecture. Let

Q(x1, . . . , xn) =


1ijn

aijxixj

be a quadratic form in n variables. We always assume that Q is indefinite so that (so that there
exists p with 1  p < n so that after a linear change of variables, Q can be expresses as:

Q∗
p(y1, . . . , yn) =

p

i=1
y2

i −
n

i=p+1
y2

i

We should think of the coefficients aij of Q as real numbers (not necessarily rational or integer).
One can still ask what will happen if one substitutes integers for the xi. It is easy to see that
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if Q is a multiple of a form with rational coefficients, then the set of values Q(Zn) is a discrete
subset of R. Much deeper is the following conjecture.

Conjecture 7.1 (Oppenheim, 1929). Suppose Q is not proportional to a rational form and
n  5. Then Q(Zn) is dense in the real line.

This conjecture was extended by Davenport to n  3.

Theorem 7.2 (Margulis, 1986). The Oppenheim Conjecture is true as long as n  3. Thus, if
n  3 and Q is not proportional to a rational form, then Q(Zn) is dense in R.

This theorem is a triumph of ergodic theory. Before Margulis, the Oppenheim Conjecture
was attacked by analytic number theory methods. In particular it was known for n  21, and
for diagonal forms with n  5.

Remark 7.3 (The necessity of the conditions). If Q is definite, the image of Zn is confined to
R0, and in fact is a lattice. The requirement of n  3 variables is also necessary. Indeed, let
α be a real algebraic number of degree 2; then it is well-known that |α − p/q|  C/q2 for some
constant C and all rationals p/q. Consequently, the quadratic form Q(x, y) = y2 − α2x2 has the
property that

|Q(x, y)| = |x2(y/x − α)(y/x + α)|  C|α|
and 0 is an isolated point in the image of Q. Finally, if Q is degenerate, then after a suitable
change of coordinates it is isomorphic to an (n − 1)-form; and since the requirement of n  3
variables is necessary, so is nondegeneracy.

Theorem 7.2 is true if we replace Zn by the set of primitive vectors (a vector p = (p1, . . . , pn)
is primitive if gcd(p1, . . . , pn) = 1). The general case of Oppenheim’s conjecture can be reduced
to the case of n = 3 variables. The argument is somewhat tedious, but straightforward.

7.2. Margulis’ original approach. We begin with some definition.

Definition 7.4. If Q is a quadratic form in n variables, the special orthogonal group of Q is
SO(Q) = {h ∈ SLn(R) | Q(vh) = Q(v), ∀v ∈ Rn}.

We will let SO(Q)◦ be the connected component of the identity in SO(Q).

Since every indefinite quadratic form has signature (2, 1) or (1, 2), and the two cases differ
from each other only by an overall sign, we will let Q0 denote the standard quadratic form of
signature (2, 1): that is, Q0(x1, x2, x3) = x2

1 + x2
2 − x2

3. Then our arbitrary quadratic form Q is
conjugate to ±Q0. We will let H = SO(Q0)◦ stand for the connected component of the identity
in the special orthogonal group of Q0.

Remark 7.5. We do not lose much generality by working with H rather than the entire special
orthogonal group. SO(Q0) has only two connected components: thus, H has index 2 in SO(Q0).
This is a classical result.

This proof is closer to the original approach used by Margulis in his 1987 proof of the Op-
penheim Conjecture, and relies on deep statements about the behavior of unipotent flows. The
estimates derived by Margulis are weaker than Ratner’s general estimates (especially the more
quantitative ones); some of the spirit of the original argument is given in this section, although
we avoid presenting the proof in full generality.

We will exploit the fact that SO(Q) is large, and a priori SO(Q)Zn is much larger than Zn.
Ratner’s theorem will let us quantify this: either SO(Q)Z3 is dense in R3 or (after a few more
arguments) Q must be rational. The precise statement of Ratner’s theorem (cf. Theorem 4.4)
is in the following.

Theorem 7.6 (Ratner’s orbit closures theorem). Let G be a connected Lie group, and let Γ be
a lattice in G. Let H be a connected Lie subgroup of G generated by unipotent one-parameter
groups. Then for any x ∈ G/Γ there exists a closed connected subgroup P ⊂ G containing H
such that Hx = Px and Px admits a P -invariant probability measure.
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The dichotomy in the statement of the Oppenheim conjecture results from the fact that the
H in question is a maximal connected subgroup of G, and therefore there are only two possible
choices for P ; namely, Hx is either dense or closed, corresponding to the cases of Q(Zn) dense
in R and Q proportional to an integer form respectively.

Let gQ ∈ SL3(R) and λ ∈ R× be such that Q = λQ0 ◦ gQ. In that case,
SO(Q)◦ = gQHg−1

Q .

Now, H = SO(Q0)◦ ∼= SL2(R) is generated by unipotent elements, and SL3(Z) is a lattice in
SL3(R), so we can apply Ratner’s Orbit Closure Theorem to obtain the following.

There exists a closed, connected subgroup P ⊂ SL3(R) such that H ⊂ P , HgQ = PgQ, and
there is an P -invariant probability measure on PgQ.

There are only two possibilities for a closed, connected subgroup of SL3(R) containing H =
SO(Q0): namely, S = H or S = SL3(R). We consider these two cases separately.

Case I. Assume S = SL3(R). In that case, SL3(Z)gH is dense in SL3(R). So
Q(Z3) = Q0(Z3gQ) (by definition of gQ)

= Q0(Z3 SL3(Z)gQ) (Z3 = Z3 SL3(Z))
= Q0(Z3 SL3(Z)gQH) (H = SO(Q0)◦)

is dense in Q(Z3G) since Q is continuous. On the other hand,
Q(Z3G) = Q0(R3 − {0}) = R

since vG = R3 − {0} for nonzero v. That is, since Q is indefinite, it must map R3 onto R, and
we concluded that SO(Q)Z3 is dense in R3 – so its image is dense in R.

Case II. Assume S = H = SO(Q0). This is the degenerate case, where Q is a scalar
multiple of a form with integer coefficients. We present two proofs of this: the first one relying
on Margulis’ lemma 7.7 in analysis, and the second on the theory of algebraic groups. The
algebraic approach is more concise, but uses fairly deep results from the theory of algebraic
groups; the analytic approach is closer to the argument used by Margulis in his original 1987
proof of the Oppenheim conjecture.

If S = H then gQH is closed, and therefore so is the H-orbit orbit of gQ SL3(Z) in G/Γ =
SL3(R)/ SL3(Z). Let x = gQ SO3(Z) ∈ G/Γ and x0 = SO3(Z) ∈ G/Γ. Then SO(Q)x0 = g−1

Q Hx

is also closed. Let ∆ = SO3(Z) ∩ SO(Q).
Our strategy will be to show that there exist real symmetric 3 × 3 matrices S satisfying

γtSγ = S for all γ ∈ ∆, and that all such matrices correspond to quadratic forms that are
proportional to Q. Since this system of equations for S is defined over the integers, if it has
some solution, it will have a rational solution – yielding a rational quadratic form proportional
to Q.

In terms of quadratic forms, γtSγ = S means ∆ ⊂ SO(Q′) for a quadratic form Q′. Existence
of such a Q′, therefore, is trivial: ∆ ⊂ SO(Q). The difficult part will be to show that if
∆ ⊂ SO(Q′) then Q and Q′ are proportional.

Now, SO(Q)◦ is similar to SO(Q) (as follows from Remark 7.5, it is an index-2 subgroup),
but H = SO(2, 1)◦ is isomorphic to SL2(R), hence it is generated by unipotent one-parameter
subgroups. We will show that ∆ ⊂ SO(Q′) implies that all unipotent 1-parameter subgroups of
SO(Q) are contained in SO(Q′), and hence SO(Q)◦ ⊂ SO(Q′).

Fix a point p ∈ R3, and consider fp : SO(Q) → R, g → Q′(g−1p). If ∆ ⊂ SO(Q′), then fp

factors through ∆ to a continuous function
fp : SO(Q)/∆ → R

Now, let {u(t)}t∈R ⊂ SO(Q) be a unipotent one-parameter subgroup. The function q : R →
R, t → fp(u(t)) is polynomial in t, since the entries of u(t) are polynomial in t.

We now invoke Margulis’ lemma without proof to produce K ⊂ G/Γ compact such that the
set {t  0: u(t)x0 ∈ K} is unbounded: that is, a compact set to which the u(t)-orbit of x0
returns infinitely often.
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Lemma 7.7 (Margulis’ lemma). Let n  2. Let {ut}t∈R be a unipotent one-parameter subgroup
of SLn(R), and let x ∈ SLn(R)/ SLn(Z). Then there exists a compact set K ⊂ SLn(R)/ SLn(Z)
such that {t  0 | utx ∈ K} is unbounded: that is, utx does not tend to infinity as t → ∞.

Since SO(Q)x0 is closed, the map φ : SO(Q)/∆ → SO(Q)x0 via g∆ → gx0 is a homeomor-
phism, and K ′ = φ−1(K) is compact. Therefore, fp(K ′) is a compact subset of R. On the
other hand, K was chosen so that {t ∈ R : q(t) ∈ fp(K ′)} is unbounded, implying that q is the
constant polynomial.

That is, fp(u(t)) is constant, and Q′(u(t)p) = Q′(p) for all t ∈ R. Since p was arbitrary,
this holds at every p ∈ R3, implying that {u(t)}t∈R ⊂ SO(Q′). We can therefore conclude
that if ∆ ⊂ SO(Q′) then SO(Q)◦ ⊂ SO(Q′). Now, let σ and σ′ be the symmetric matrices
corresponding to Q and Q′ respectively. We have for all h ∈ SO(Q)◦,

hσ′σ−1h−1 = (hσ′ht)((h−1)tσ−1h−1) = σ′σ−1.

Now, H = SO(Q0)◦ is centralized only by scalars, and the same holds for SO(Q)◦ since it is
conjugate to H. Therefore, σσ−1 is a scalar, i.e. the two matrices are proportional. This
concludes the proof that Q is proportional to a rational matrix.

7.3. Simplified algebraic approach. There’s another proof in an algebraic way for Case II.
The supplementary lemmas follow the outline of the argument.
Outline. If S = H, then the orbit gQH = gQS has a finite H-invariant measure. Therefore,
ΓgQ

= Γ ∩ (gQHg−1
Q ) = SL3(Z) ∩ (gQHg−1

Q ) is a lattice in gQHg−1
Q = SO(Q)◦. Since H =

SO(2, 1)◦ ∼= SL2(R) is generated by unipotents, Borel density theorem (Theorem 7.9) implies
that SO(Q)◦ is contained in the Zariski closure of ΓgQ

; and since ΓgQ
⊂ Γ = SL3(Z), we

conclude that SO(Q)◦ is defined over Q (Lemma 7.11). Consequently, up to a scalar multiple,
Q has integer coefficients (Lemma 7.12).

Definition 7.8. A subset H ⊂ SLl(R) is Zariski closed if there exists a subset S ⊂ R[x1,1, . . . , xl,l]
such that H = {g ∈ SLl(R) | Q(g) = 0, ∀Q ∈ S}, where we understand Q(g) to denote the value
obtained by substituting the matrix entries gi,j into the variables xi,j . That is, H is Zariski
closed if the matrix entries are characterized by polynomials.

For H ⊂ SLl(R), let H denote the Zariski closure of H, that is, the unique smallest Zariski
closed set containing H.

Theorem 7.9 (Borel density theorem). Let G ⊂ SLl(R) be a closed subgroup, and let Γ be a
lattice in G. Then the Zariski closure Γ of Γ contains every unipotent element of G.

Before we prove this, we introduce another lemma.

Lemma 7.10. Let g ∈ SLm(R) be unipotent, and let µ be a g-invariant probability measure on
PRm−1 = (Rm)×/R×. Then µ is supported on the set of fixed points of g.

Proof. Let T = g − I (then T is nilpotent), and let v ∈ (Rm)×. Let r be such that vT r ∕= 0 but
vT r+1 = 0. Then gT rv = T rv, so [T rv] is a fixed point of g.

On the other hand, it is easy to see gn[v] → [T rv] as n → ∞. By Poincaré recurrence, for
µ-every [v] ∈ PRm−1 there exists a sequence nk → ∞ such that gnk [v] → [v]. Since we know
that gn[v] converges to a fixed point of g as n → ∞, we conclude that µ-every point is a fixed
point, i.e. µ is supported on the set of fixed points of g. □

Proof of Borel density theorem. By Chevalley’s theorem (which will not be proved here), there
exists a polynomial homomorphism ρ : SL(l,R) → SL(m,R) for some m, and a vector [v] ∈
PRm−1, such that

Γ = {g ∈ SL(l,R) | [v]ρ(g) = [v]}
Therefore, ρ induces a well-defined map on G/Γ → PRm−1:

ρ̄(gΓ) = ρ(g)[v]
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Let g ∈ G be unipotent, and let µ0 be a G-invariant probability measure on G/Γ. This is
pushed to a ρ(G)-invariant measure on PRm−1 defined by µ(A) = µ0(ρ̄−1(A)); and since ρ(g) is
unipotent, by the preceding lemma, µ is supported on the set of fixed points of ρ(g). However,
it is not hard to show that [v] lies in the support of µ; and therefore ρ(g) must fix [v], from
which g ∈ Γ. □

Lemma 7.11. Let C be a subset of SLl(Q); then C is defined over Q.

Proof. Suppose C is defined by S ⊂ P d, where P d is the set of all polynomials of degree  d.
Now, the subspace {Q ⊂ P d : Q(C) = 0} is defined by linear equations with rational coefficients;
and therefore it is spanned by some rational vectors, which therefore determine the set S. □
Lemma 7.12. For a nondegenerate quadratic form Q, SO(Q) is defined over Q if and only if
Q is proportional to a form with rational coefficients.

Proof. If Q is a rational form, then SO(Q) is quite apparently defined over Q; note that SO(Q)
does not depend on the scaling of Q.

Conversely, given SO(Q) defined over Q, our Q is uniquely determined up to scalar multipli-
cation. Consider an automorphism φ of R/Q, and notice that SO(φQ) = φ SO(Q) = SO(Q);
that is, φ must send Q to a scalar multiple of itself. Now scale Q so that it has one rational
coordinate; that coordinate will be fixed by φ, and therefore the scalar multiple must in fact be
1. That is, the scaled Q is invariant under all the automorphisms of R/Q, and consequently Q
is proportional to a form with rational coefficients. □
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