INTEGRAL MODELS OF SHIMURA VARIETIES OF HODGE TYPE

LECTURES BY XU SHEN NOTES BY WENHAN DAI

In this series of lectures, we apply the results on Breuil–Kisin classification of *p*-divisible groups to construct smooth integral canonical models for Shimura varieties of Hodge type, following [Kis10]. As a preliminary, we will first review the results of Deligne [De82], Blasius [Bla94] and Wintenberger about Hodge cycles on abelian varieties. Then we will cover the main results of [Kis10, §2].

CONTENTS

1.	Hodge cycles on abelian varieties	1
2.	Reductive groups and crystalline representations	5
3.	Deformation theory	8
4.	Integral canonical models for Shimura varieties of Hodge type	10
References		15

1. Hodge cycles on Abelian varieties

Fix a field k together with a complex embedding $\sigma \colon k \hookrightarrow \mathbb{C}$. Consider a projective smooth variety X over k. There would be natural classical cohomology theories on this setup:

• de Rham cohomology.

$$H^i_{\mathrm{dR}}(X) \coloneqq H^i(X, \Omega^{\bullet}_{X/k}),$$

as a filtered k-vector space of finite dimension, equipped with a descending Hodge filtration, denoted by $F^{\bullet}H^i_{dR}(X)$.

• ℓ -adic cohomology. For any prime ℓ ,

$$H^i_\ell(X) \coloneqq H^i_{\mathrm{et}}(X_{\overline{k}}, \overline{\mathbb{Q}}_\ell),$$

as a \mathbb{Q}_{ℓ} -vector space, equipped with a continuous Galois action of $G_k = \operatorname{Gal}(\overline{k}/k)$.

• Betti cohomology. For any embedding $\sigma \colon k \hookrightarrow \mathbb{C}$, consider the complex variety $\sigma X \coloneqq X \otimes_{k,\sigma} \mathbb{C}$ and define

$$H^{i}_{\sigma}(X) \coloneqq H^{i}_{B}((\sigma X)^{\mathrm{an}}, \mathbb{Q}),$$

which is a \mathbb{Q} -vector space, equipped with a Hodge structure; namely, admits a Hodge decomposition

$$H^i_{\sigma}(X)\otimes \mathbb{C} = \bigoplus_{p+q=i} H^{p,q}_{\sigma}$$

These classical cohomology theories are connected via the comparison theorems.

Proposition 1.1. (1) We have isomorphisms of \mathbb{C} -vector spaces

$$H^{i}_{\sigma}(X) \otimes \mathbb{C} \xrightarrow{I_{\infty}} H^{i}_{\mathrm{dR}}(\sigma X) \xleftarrow{\sigma}{\sim} H^{i}_{\mathrm{dR}}(X) \otimes_{k,\sigma} \mathbb{C},$$

Date: June 1, 2023.

These are the course notes of Xu Shen's lecture series at Beijing International Center of Mathematical Research during the 2023 Spring semester. The note-taker claims no originality of the present contexts. However, all minor gaps and typos are due to the carelessness of the note-taker rather than the lecturer.

where the right isomorphism is induced by σ and hence depends on the choice of σ . (2) We have isomorphisms of \mathbb{Q}_{ℓ} -vector spaces

$$H^i_{\sigma}(X) \otimes \mathbb{Q}_{\ell} \xrightarrow{I_{\ell}} H^i_{\text{et}}(\sigma X, \mathbb{Q}_{\ell}) \xleftarrow{\sigma} H^i_{\ell}(X).$$

Again, the right isomorphism is induced by σ .

(3) All isomorphisms in (1) and (2) above are compatible with additional structures on cohomological theories.

We then consider their behaviors under *Tate twists*. For an integer $m \ge 0$, we have for de Rham cohomology that

$$H^i_{\mathrm{dR}}(X)(m) = H^i_{\mathrm{dR}}(X), \quad F^{p-m}H^i_{\mathrm{dR}}(X)(m) = F^pH^i_{\mathrm{dR}}(X).$$

For ℓ -adic cohomology, if we write $\mathbb{Z}_{\ell}(1) = \varprojlim_{n} \mu_{\ell^{n}}$, then

$$H^i_\ell(X)(m) = H^i_\ell(X) \otimes \mathbb{Z}_\ell(1)^{\otimes m}$$

As for the Betti cohomology,

$$H^{i}_{\sigma}(X)(m) = (2\pi i)^{m} H^{i}_{\sigma}(X), \quad (H^{i}_{\sigma}(X)(m))^{p-m,q-m} = H^{p,q}_{\sigma}(X).$$

In fact, as a conclusion, all of these cohomology theories $H_?^i(X)$ with $? \in \{ dR, \ell, \sigma \}$ satisfy the axioms of a Weil cohomology with Tate twists.

We are also interested in cycle class maps:

$$\mathrm{cl}^i_{\sigma}:\mathrm{CH}^i(X)\otimes\mathbb{Q}\longrightarrow H^{2i}_{\sigma}(X)(i).$$

The image of the cycle class map of degree i (i.e. with cycles of codimension i) satisfies

$$\operatorname{Im} \operatorname{cl}_{\sigma}^{i} \subseteq (H_{\sigma}^{2i}(X)(i))^{0,0} \cap H_{\sigma}^{2i}(X)(i).$$

Here the left-hand side is the collection of algebraic cycles, and the right-hand side exactly collects Hodge cycles. We have the following:

 \diamond (Hodge conjecture) For $k = \mathbb{C}$, the cycle class map is surjective, or equivalently,

$$\operatorname{Im} \operatorname{cl}_{\sigma}^{i} = (H_{\sigma}^{2i}(X)(i))^{0,0} \cap H_{\sigma}^{2i}(X)(i).$$

Definition 1.2. Write \mathbb{A} for the adelic ring. Let X be a projective smooth k-variety.

(1) Assume $k = \overline{k}$. Define the pair

$$t = (t_{\mathrm{dR}}, t_{\mathrm{et}}) \in H^{2p}_{\mathbb{A}}(X)(p) \coloneqq H^{2p}_{\mathrm{dR}}(X)(p) \times H^{2p}_{\mathrm{et}}(X)(p),$$

where

$$H^i_{\text{\rm et}}(X) \coloneqq \prod_{\ell}' H^i_{\ell}(X) \xrightarrow{\sim} H^i_{\text{\rm et}}(\sigma X) \xleftarrow{\sim} H^i_{\sigma}(X) \otimes_{\mathbb{Q}} \mathbb{A}_f$$

The pair t is called a Hodge cycle relative to $\sigma \colon k \hookrightarrow \mathbb{C}$ if

(a) t is rational under the map

$$H^{2p}_{\sigma}(X)(p) \longleftrightarrow H^{2p}_{\sigma}(X)(p) \otimes (\mathbb{C} \times \mathbb{A}_{f})$$
$$\xrightarrow{\sim} H^{2p}_{\mathrm{dR}}(X)(p) \otimes_{k,\sigma} \mathbb{C} \times H^{2p}_{\mathrm{et}}(X)(p)$$

that is given by $t_{\sigma} \mapsto t$.

- (b) t admits the Hodge decomposition, i.e. $t_{dR} \in F^0 H^{2p}_{dR}(X)(p)$. Granting (a), this is equivalent to $t_{\sigma} \in (H^{2p}_{\sigma}(X)(p))^{0,0}$.
- (2) Assume $k = \overline{k}$. The pair $t \in H^{2p}_{\mathbb{A}}(X)(p)$ is called an *absolute Hodge cycle* if it is a Hodge cycle relative to any choice of $\sigma: k \hookrightarrow \mathbb{C}$.
- (3) For any field k, an absolute Hodge cycle on X is an absolute Hodge cycle on $X_{\overline{k}}$ that is fixed by the natural action of G_k .

Here in (1), one may understand the de Rham cohomology and étale cohomology as the archimedean part and finite part of \mathbb{A} , respectively. It turns out that $t = (t_{dR}, (t_{\ell})_{\ell}) \in H^{2p}_{\mathbb{A}}(X)(p)$ is an absolute Hodge cycle if for any $\sigma \colon k \to \mathbb{C}$, there exists $t_{\sigma} \in H^{2p}_{\sigma}(X)(p) \cap (H^{2p}_{\sigma}(X)(p))^{0,0}$ such that

$$I_{\infty}(t_{\sigma}) = \sigma t_{\mathrm{dR}}, \quad I_{\ell}(t_{\sigma}) = \sigma t_{\ell}.$$

Example 1.3. (1) Formally, we have that

 $\{algebraic cycles\} \subseteq \{absolute Hodge cycles\} \subseteq \{Hodge cycles\}.$

If the Hodge conjecture holds, then both containments are to be equalities.

(2) Write $d = \dim_k X$ and consider the diagonal image $\Delta \subseteq X \times X$. Applying the Künneth formula, one obtains

$$H^{2d}(X \times X)(d) = \bigoplus_{i=0}^{2d} H^{2d-i}(X) \otimes H^i(X).$$

This leads to a decomposition on the image of cycle class map, read as

$$\operatorname{cl}(\Delta) = \sum_{i=0}^{2d} \pi^i,$$

where each π^i is an absolute Hodge cycle.

The following big theorem of Deligne identifies absolute Hodge cycles with Hodge cycles.

Theorem 1.4 (Deligne). Assume $k = \overline{k}$ and X is an abelian variety over k. If t is a Hodge cycle on X relative to an embedding $\sigma: k \hookrightarrow \mathbb{C}$, then it is an absolute Hodge cycle.

The following two *p*-adic variants of Theorem 1.4 can be derived via comparison theorems from *p*-adic Hodge theory, which relates the result of Deligne with more deep intrinsic properties of cohomologies. Let $k \subseteq \overline{\mathbb{Q}} \subseteq \mathbb{C}$ be a number field. For any prime *p*, let $\sigma_p : \overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_p$ be an embedding, which restricts to *k* as $\sigma_p : k \hookrightarrow \overline{\mathbb{Q}}_p$. Let *X* be a projective smooth variety over *k*. Denote $\sigma_p X$ the base change of *X* over the completion $(\sigma_p(k))^{\wedge}$.

Proposition 1.5 (*p*-adic étale versus *p*-adic de Rham). There is a functorial isomorphism

$$I_{\mathrm{dR}} \colon H^i_{\mathrm{et}}((\sigma_p X)_{\overline{\mathbb{Q}}_p}, \mathbb{Q}_p) \otimes_{\mathbb{Q}_p} B_{\mathrm{dR}} \xrightarrow{\sim} H^i_{\mathrm{dR}}(\sigma_p X) \otimes_{(\sigma_p(k))^{\wedge}} B_{\mathrm{dR}}$$

compatible with additional structures on both sides.

Definition 1.6. Let $t = (t_{dR}, (t_p)_p) \in H^{2q}_{\mathbb{A}}(X)(q)$ be an absolute Hodge cycle. It is called *de Rham* if for any p and any $\sigma_p : \overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_p$, we have

$$I_{\rm dR}(\sigma_p t_p) = \sigma_p t_{\rm dR}.$$

Recall that we have isomorphisms

$$\sigma_p \colon H^i_p(X) \xrightarrow{\sim} H^i_{\text{et}}((\sigma_p X)_{\overline{\mathbb{Q}}_p}, \mathbb{Q}_p),$$

$$\sigma_p \colon H^i_{dR}(X) \otimes_{k, \sigma_p} (\sigma_p(k))^{\wedge} \xrightarrow{\sim} H^i_{dR}(\sigma_p X).$$

Theorem 1.7 (Blasius, Ogus). Let X be an abelian variety over $\overline{\mathbb{Q}}$. Then every Hodge cycle on X is de Rham.

Suppose the base change $\sigma_p X$ over $(\sigma_p(k))^{\vee}$ has a good reduction. Then $\overline{\sigma_p X}$ lies over another unramified extension κ satisfying

$$(\sigma_p(k))^{\wedge,\mathrm{ur}} = W(\kappa)_{\mathbb{Q}} = W(\sigma_p).$$

Then we are able to consider the crystalline cohomology $H^i_{\text{cris}}(\overline{\sigma_p X})$, as a $W(\sigma_p)$ -vector space equipped with a Φ -action.

Proposition 1.8 (*p*-adic étale versus crystalline). There is a functorial isomorphism

$$I_{\operatorname{cris}} \colon H^i_{\operatorname{\acute{e}t}}((\sigma_p X)_{\overline{\mathbb{Q}}_p}, \mathbb{Q}_p) \otimes_{\mathbb{Q}_p} B_{\operatorname{cris}} \stackrel{\sim}{\longrightarrow} H^i_{\operatorname{cris}}(\overline{\sigma_p X}) \otimes_{W(\sigma_p)} B_{\operatorname{cris}},$$

compatible with additional structures on both sides.

Combining Propositions 1.5 and 1.8, we deduce that

$$H^i_{\operatorname{cris}}(\overline{\sigma_p X}) \otimes_{W(\sigma_p)} (\sigma_p(k))^{\wedge} \cong H^i_{\operatorname{dR}}(\sigma_p X).$$

Therefore, $I_{\text{cris}} \otimes 1 = I_{\text{dR}}$.

Definition 1.9. Let $t = (t_{dR}, (t_p)_p) \in H^{2q}_{\mathbb{A}}(X)(q)$ be a de Rham cycle that is defined over k. Fix an embedding $\sigma_p: k \hookrightarrow \overline{\mathbb{Q}}_p$. This t is called *crystalline* at σ_p if

- (1) X has good reduction at σ_p , (2) $t_{dR} \in H^{2q}_{cris}(\overline{\sigma_p X})(q) \hookrightarrow H^{2q}_{dR}(\sigma_p X)(q)$, and
- (3) $\Phi(t_{\mathrm{dR}}) = t_{\mathrm{dR}}.$

Corollary 1.10. Let X be an abelian variety over k with good reduction at σ_p . Let t be a Hodge cycle defined over k. Then t is crystalline at σ_p .

Sketch of proofs of the theorems. Step I. Let \mathcal{C} be the category of projective smooth varieties over k, with $k \hookrightarrow \mathbb{C}$. This induces the category of motives for Hodge, absolute Hodge, de Rham cycles, respectively, denoted by

$$\bigotimes_{\mathrm{H}} \mathcal{C}, \quad \bigotimes_{\mathrm{AH}} \mathcal{C}, \quad \bigotimes_{\mathrm{dR}} \mathcal{C}.$$

So we have a semisimple Tannakian category for which $\omega_B = H_B^*$ is a fiber functor: for each object $X \in \mathcal{C}$,

$$\mathcal{G}_? = \operatorname{Aut}^{\otimes}(\omega_B, \bigotimes_? \langle X \rangle), \quad ? \in \{\operatorname{H}, \operatorname{AH}, \operatorname{dR}\}.$$

Principle A. Let X be a projective smooth variety over \mathbb{C} (resp. over a number field). Then $G_{\rm H} = G_{\rm AH}$ (resp. $G_{\rm dR} = G_{\rm AH}$) if and only if every Hodge cycle (resp. absolute Hodge cycle) in $\bigotimes_2 \langle X \rangle$ is absolutely Hodge (resp. de Rham).

In general, we always have the relations

$$\mathcal{G}_{\mathrm{H}} \subseteq \mathcal{G}_{\mathrm{AH}} \subseteq \mathcal{G}_{\mathrm{dR}}.$$

Step II. Let S be a projective smooth geometrically connected variety over k, with $k \hookrightarrow \mathbb{C}$. Let $\pi: X \to S$ be a smooth proper morphism over k. Take

$$t_B \in H^0(S_{\mathbb{C}}, R^{2n}\pi_{\mathbb{C},*}\mathbb{Q})(n).$$

Principle B. For the extension $k \subseteq L \subseteq \mathbb{C}$ and a geometric point $s \in S(L) \subseteq$

- $S(\mathbb{C})$, let $t_B(s) \in H^{2n}_B(X_S)(n)$ be the restriction. Let $s_0 \in S(k)$. Then
 - (i) When $k = \mathbb{C}$, if $t_B(s_0)$ is a Hodge cycle, then $t_B(s)$ is a Hodge cycle as well for each $s \in S(\mathbb{C})$;
 - (ii) When $k = \mathbb{C}$, if $t_B(s_0)$ is an absolute Hodge cycle, then $t_B(s)$ is an absolute Hodge cycle as well for each $s \in S(\mathbb{C})$;
 - (iii) When $k \subseteq \overline{\mathbb{Q}}$, if $t_B(s_0)$ is a de Rham cycle, then $t_B(s)$ is a de Rham cycle as well for each $s \in S(\mathbb{C})$.

Step III. We now deal with the CM case. Let K be a CM field over \mathbb{Q} . Consider the abelian variety $A_{\Phi} \coloneqq \mathbb{C}^{\Phi}/\mathcal{O}_{K}$, which is called the graph of Φ . Then, if we take A to be any abelian variety of CM type, then A is isogenic to a quotient of a power of $B = \prod_{\Phi \in S} A_{\Phi}$. Then it suffices to prove the equalities

$$\mathcal{G}_{\mathrm{H}} = \mathcal{G}_{\mathrm{AH}} = \mathcal{G}_{\mathrm{dR}}$$

for B. Let L be another CM field over \mathbb{Q} . The work of Deligne includes results from three aspects:

- (1) Cycles of graphs: for any $\Phi \in S$, we have $L \hookrightarrow \text{End}(A_{\Phi})$.
- (2) For any $\sigma \in \operatorname{Gal}(L/\mathbb{Q})$, the Galois action of σ induces isomorphic graphs, that is, $A_{\Phi} \simeq A_{\Phi\sigma}$.
- (3) Let $T \subseteq S$ be a subset with |T| = d. Let $B_T = \prod_{\Phi \in T} A_{\Phi}$. Suppose L acts on $H^1_B(B_T)$ where each embedding of L occurs with the equal multiplicity. Then

$$\wedge^d_L H^1_B(B_T)(d/2) \subseteq H^d_B(B_T)(d/2).$$

Step IV. Consider the general case where A is not necessarily of CM type. Let \mathcal{G}_{H} be as above. This together with a cocharacter μ defines a Shimura datum. So we obtain a Shimura variety Sh of Hodge type. For each open compact subgroup $U \subseteq \mathcal{G}_{\mathrm{H}}(\mathbb{A}_f)$, there is a natural morphism $\pi: \mathcal{A} \to \operatorname{Sh}_U$ from the universal abelian variety, such that there is $s_0 \in \operatorname{Sh}_U(\mathbb{C})$ to carry an isogeny $\mathcal{A}_{s_0} \sim A$ (noting that \mathcal{A}_{s_0} is of CM type). In this case, using Principle B and the argument in Step III, we are able to prove the theorems and propositions above for X = A.

2. Reductive groups and crystalline representations

Let $S = \operatorname{Spec} R$ with a local ring R. Let M be a finite free R-module. Take $G \subseteq \operatorname{GL}(M)$ as a closed embedding of group schemes, where G is a connected reductive group over S. Consider a decreasing finite length filtration M^{\bullet} on M, such that $\operatorname{gr}^{\bullet} M$ is finite flat over R.

Consider $P \subseteq G$, the closed subgroup which respects to M^{\bullet} . Also consider $U \subseteq P$, the closed subgroup which acts trivially on $\operatorname{gr}^{\bullet} M$. We introduce the following facts about the parabolic subgroup without proof.

Lemma 2.1. (1) The followings are equivalent.

- (a) The filtration M^{\bullet} admits a splitting such that the corresponding cocharacter $\mu \colon \mathbb{G}_m \to \mathrm{GL}(M)$ factors through G. (Thus, we have a cocharacter on G.)
- (b) The subgroup $P \subseteq G$ is a parabolic subgroup with the unipotent radical U, and $\operatorname{gr}^{\bullet} M$ is induced by a cocharacter $\nu \colon \mathbb{G}_m \to P/U$.
- Moreover, if either of the conditions in (1) holds, then M^{\bullet} is called G-split.
- (2) If R is a field of characteristic 0, then M[•] is G-split if and only if ⟨M⟩[⊗], the Tannakian category of G-representations generated by M, admits a filtration which induces the given filtration on M.
- (3) If R is a discrete valuation ring and $K = \operatorname{Frac} R$, then M^{\bullet} is G-split if and only if the induced filtration on M_K is $G \otimes_R K$ -split.

Let M^{\otimes} be the direct sum of all *R*-modules formed from *M* by taking duals, tensor products, symmetric powers, and exterior powers. We obtain a natural isomorphism $M^{\otimes} \xrightarrow{\sim} M^{*\otimes}$. If $(s_{\alpha}) \subseteq M^{\otimes}$ is a finite collection of Galois invariant tensors, and $G \subseteq GL(M)$ is the pointwise stabilizer of the s_{α} , we say that *G* is the group defined by the tensors s_{α} .

Proposition 2.2. Suppose that R is a discrete valuation ring of mixed characteristic, and let $G \subseteq GL(M)$ be a closed R-flat subgroup whose generic fiber is reductive. Then G is defined by a finite collection of tensors $(s_{\alpha}) \subseteq M^{\otimes}$.

Proof. The proof is similar to that of [De82, Prop. 3.1]. For each finite free *R*-module *W* carrying an action of $GL(M) = \operatorname{Spec} \mathcal{O}_{GL}$, let W_0 denote *W* with the trivial GL(M)-action. We have the inclusion of *R*-schemes $GL(M) \subseteq \operatorname{End}(M)$, which is fibre by fibre dense. Thus

$$\mathcal{O}_{\mathrm{GL}} = \varinjlim_{n} \mathrm{Sym}(M \otimes M_0^*) \otimes (\det M)^{-n}.$$

with the transition maps being given by multiplication by det $\otimes \delta^{-1}$, where det \in Sym $(M \otimes M_0^*)$ and $\delta \in$ det M is some fixed basis vector. Each term in the injective limit is a direct summand of the next term, so it suffices to find a collection of tensors $(s_{\alpha}) \subseteq \mathcal{O}_{\text{GL}}$ defining G.

For any finite projective *R*-module *W* with an action of GL(M), the \mathcal{O}_{GL^-} comodule structure on *W* gives a GL(M)-equivariant map $W \to W_0 \otimes_R \mathcal{O}_{GL}$. This map is injective and its cokernel is a direct summand, a section being induced by the identity section $\mathcal{O}_{GL} \to R$. Hence it suffices to find elements defining G in any representation of GL(M) on a finite projective R-module.

Now let $I \subseteq \mathcal{O}_{\mathrm{GL}}$ denote the ideal of G. Then G is the scheme-theoretic stabilizer of I. Let $W \subseteq \mathcal{O}_{\mathrm{GL}}$ be a finite rank, $\mathrm{GL}(M)$ -stable, saturated R-submodule such that $W \cap I$ contains a set of generators of I. Then G is the stabilizer of $W \cap I \subseteq W$. If $r = \operatorname{rank}_R W \cap I$, then $L = \wedge^r (W \cap I) \subseteq \wedge^r W$ is a line, and G is the stabilizer of L.

Since G has reductive generic fibre the quotient map $(\wedge^r W)^* \to L^*$ has a G equivariant splitting over the generic point $\eta \in \operatorname{Spec} R$. Hence there exists a G-stable line $\tilde{L}^* \subseteq (\wedge^r W)^*$ which maps isomorphically to L^* over η . Now G acts trivially on $L \otimes_R \tilde{L}^*$ as this is true over η , and the stabilizer of $L \otimes_R \tilde{L}^* \subseteq (\wedge^r W) \otimes_R (\wedge^r W)^*$ is equal to G.

Now let k be a perfect field of characteristic p and W = W(k) the Witt ring. Take $K_0 = W_{\mathbb{Q}}$ the fractional field, and K a finite totally ramified extension over K_0 . Denote $G_K = \text{Gal}(\overline{K}/K)$ (which is not $G \otimes_R K$). Take $\text{Rep}_{G_K}^{\text{cris},\circ}$ the category of G_K -stable \mathbb{Z}_p -lattices in a fixed crystalline representation of G_K . Choose $L \in \text{Rep}_{G_K}^{\text{cris},\circ}$.

Consider the reductive group $G \subseteq \operatorname{GL}(L)$. Then by Proposition 2.2, there exists a finite collection $(s_{\alpha}) \subseteq L^{\otimes}$ that defines G. Also, the G_K action $G_K \to \operatorname{GL}(L)$ on L factors through $G(\mathbb{Z}_p)$ if and only if these tensors are G_K -invariant by definition.

Fix a uniformizer $\pi \in \mathcal{O}_K$, and let $E(u) \in W(k)[u]$ be the Eisenstein polynomial for π . We set $\mathfrak{S} = W[\![u]\!]$ equipped with a Frobenius φ which acts as the usual Frobenius on W and sends u to u^p . Let $\mathsf{Mod}_{\mathfrak{S}}^{\varphi}$ denote the category of finite free \mathfrak{S} -modules \mathfrak{M} equipped with a Frobenius semi-linear isomorphism

$$1 \otimes \varphi \colon \varphi^*(\mathfrak{M})[1/E(u)] \xrightarrow{\sim} \mathfrak{M}[1/E(u)].$$

For $i \in \mathbb{Z}$, we set

u

$$\operatorname{Fil}^{i} \varphi^{*}(\mathfrak{M}) = (1 \otimes \varphi)^{-1}(E(u)^{i}\mathfrak{M}) \cap \varphi^{*}(\mathfrak{M}).$$

Recall that there exists a fully faithful tensor functor

$$\mathfrak{M} \colon \mathsf{Rep}_{G_K}^{\mathrm{cris},\circ} \longrightarrow \mathsf{Mod}_{\mathfrak{S}}^{\varphi}$$

which is compatible with the formation of symmetric and exterior powers. Moreover, we have the following theorem as a reminder.

Theorem 2.3. If L is in $\operatorname{Rep}_{G_K}^{\operatorname{cris},\circ}$, $V = L \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$, and $\mathfrak{M} = \mathfrak{M}(L)$, then

(1) There are canonical isomorphisms

$$D_{\operatorname{cris}}(V) \xrightarrow{\sim} \mathfrak{M}/u\mathfrak{M}[1/p], \quad D_{\operatorname{dR}}(V) \xrightarrow{\sim} \varphi^*(\mathfrak{M}) \otimes_{\mathfrak{S}} K_{\mathfrak{S}}$$

where the map $\mathfrak{S} \to K$ is given by $u \mapsto \pi$. The first isomorphism is compatible with Frobenius, and the second maps $\operatorname{Fil}^{i} \varphi^{*}(\mathfrak{M}) \otimes_{W} K_{0}$ onto $\operatorname{Fil}^{i} D_{\mathrm{dR}}(V)$ for $i \in \mathbb{Z}$.

(2) There is a canonical isomorphism

$$\mathcal{O}_{\widehat{\mathcal{E}^{\mathrm{ur}}}} \otimes_{\mathbb{Z}_p} L \xrightarrow{\sim} \mathcal{O}_{\widehat{\mathcal{E}^{\mathrm{ur}}}} \otimes_{\mathfrak{S}} \mathfrak{M}.$$

(3) If k'/k is an algebraic extension of fields, then there exists a canonical φ equivariant isomorphism

$$\mathfrak{M}(L|_{G_{K'}}) \xrightarrow{\sim} \mathfrak{M}(L) \otimes_{\mathfrak{S}} \mathfrak{S}',$$

where $\mathfrak{S}' = W(k')\llbracket u \rrbracket$ and $G_{K'} = \operatorname{Gal}(\overline{K} \cdot W(k')_{\mathbb{Q}}/K \cdot W(k')_{\mathbb{Q}})$

Now we go back to the collection $(s_{\alpha}) \subseteq L^{\otimes}$. View the tensors s_{α} as morphisms $s_{\alpha} \colon \mathbb{1} \to L^{\otimes}$ in $\operatorname{\mathsf{Rep}}_{G_{K}}^{\operatorname{cris},\circ}$. Applying the functor \mathfrak{M} , we obtain morphisms $\tilde{s}_{\alpha} \colon \mathbb{1} \to \mathfrak{M}(L)^{\otimes}$ in $\operatorname{\mathsf{Mod}}_{\mathfrak{S}}^{\varphi}$.

Theorem 2.4. Let L be in $\operatorname{Rep}_{G_K}^{\operatorname{cris},\circ}$ and $G \subseteq \operatorname{GL}(L)$ a reductive \mathbb{Z}_p -subgroup defined by a finite collection of G_K -invariant tensors $(s_\alpha) \subseteq L^{\otimes}$.

(1) If $\mathfrak{M} = \mathfrak{M}(L)$, then $(\tilde{s}_{\alpha}) \subseteq \mathfrak{M}^{\otimes}$ defines a reductive subgroup of $\mathrm{GL}(\mathfrak{M})$.

(2) If k is separably closed, then there is an \mathfrak{S} -linear isomorphism

$$\mathfrak{M} \xrightarrow{\sim} L \otimes_{\mathbb{Z}_n} \mathfrak{S}$$

which takes the tensor \tilde{s}_{α} to s_{α} . In particular, the subgroup $G_{\mathfrak{S}} \subseteq \operatorname{GL}(\mathfrak{M})$ defined by (\tilde{s}_{α}) is isomorphic to $G \times_{\mathbb{Z}_p} \mathfrak{S}$.

Proof. Using Theorem 2.3(3), it suffices to prove the theorem while assuming $k = k^{\text{sep}}$. Moreover, the second statement implies the first. Set $\mathfrak{M}' = L \otimes_{\mathbb{Z}_p} \mathfrak{S}$, which induces the collection $(s_{\alpha}) \subseteq \mathfrak{M}'^{\otimes}$. Also set

$$P = \underline{\operatorname{Isom}}_{\mathfrak{S}}((\mathfrak{M}, (\tilde{s}_{\alpha})), (\mathfrak{M}', (s_{\alpha}))).$$

Then the fibers of P are either empty or a torsor under G.

Claim. P is a G-torsor, i.e. P is flat over \mathfrak{S} with non-empty fibers.

The claim implies the proposition since a torsor under a reductive group is étale locally trivial, while the ring \mathfrak{S} is strictly Henselian as k is separably closed, so any G torsor over \mathfrak{S} is trivial.

Step I. $P_{\mathfrak{S}_{(p)}}$ is a *G*-torsor. Since $\mathcal{O}_{\widehat{\mathcal{E}}^{ur}}$ is faithfully flat over $\mathcal{O}_{\mathcal{E}}$ and $\mathcal{O}_{\mathcal{E}}$ is faithfully flat over $\mathfrak{S}_{(p)}$, it suffices to show that $P_{\mathcal{O}_{\widehat{\mathcal{E}}^{ur}}}$ is a *G*-torsor. However the isomorphism in Theorem 2.3(2) shows that $P_{\mathcal{O}_{\widehat{\mathcal{L}}}}$ is a trivial *G*-torsor.

Step II. P_{K_0} is a *G*-torsor, where we regard K_0 as a \mathfrak{S} -algebra via $u \mapsto 0$. This follows from Theorem 2.3(1), which implies the existence of a canonical isomorphism

$$B_{\mathrm{dR}} \otimes_{\mathbb{Z}_n} L \xrightarrow{\sim} B_{\mathrm{dR}} \otimes_W \mathfrak{M}/u\mathfrak{M}.$$

Step III. $P_{\mathfrak{S}[1/pu]}$ is a *G*-torsor. Let $U \subseteq \operatorname{Spec} \mathfrak{S}[1/up]$ denote the maximal open subset over which *P* is flat with non-empty fibres. By Step I, we know this subset is non-empty, since it contains the generic point. In particular, the complement of *U* in Spec $\mathfrak{S}[1/up]$ contains finitely many closed points.

Let $x \in \operatorname{Spec} \mathfrak{S}[1/up]$ be a closed point. If $x \notin U$, we consider two cases. If $|u(x)| < |\pi|$, then since the s_{α} are Frobenius invariant, we have $P_{\mathfrak{S}[1/p]} \xrightarrow{\sim} \varphi^*(P_{\mathfrak{S}[1/p]})$ in a formal neighborhood of x. Hence $P_{\mathfrak{S}}[1/p]$ cannot be a G-torsor at $\varphi(x)$, since φ is a faithfully flat map on \mathfrak{S} . Repeating the argument we find $\varphi(x), \varphi^2(x), \ldots \notin U$, which gives a contradiction. Similarly, if $|u(x)| \ge |\pi|$, consider a sequence of points x_0, x_1, \ldots with $x_0 = x$, and $\varphi(x_{i+1}) = x_i$. For $i \ge 1$, we have $P_{\mathfrak{S}[1/p]} \xrightarrow{\sim} \varphi^*(P_{\mathfrak{S}[1/p]})$ in a formal neighborhood of x_i , so we find that $x_i \notin U$ for $i \ge 1$.

Step IV. $P_{\mathfrak{S}[1/p]}$ is a *G*-torsor. By Step III, it suffices to show that the restriction of *P* to $K_0[\![u]\!]$ is a *G*-torsor. For any \mathfrak{N} in $\mathsf{Mod}_{\mathfrak{S}}^{\varphi}$ there is a unique φ -equivariant isomorphism

$$\mathfrak{N} \otimes_{\mathfrak{S}} K_0\llbracket u \rrbracket \longrightarrow K_0\llbracket u \rrbracket \otimes_{K_0} \mathfrak{N}/u\mathfrak{N}[1/p]$$

lifting the identity map on $\mathfrak{N}/u\mathfrak{N} \otimes \mathcal{O}_{K_0}K_0$, which is functorial in \mathfrak{N} (see, for example, [Kis06, 1.2.6]). Applying this to \mathfrak{M} and the morphisms \tilde{s}_{α} shows that the restriction of P to $K_0[\![u]\!]$ is isomorphic to $P_{K_0} \otimes_{K_0} K_0[\![u]\!]$, which is a G-torsor by Step II.

Step V. *P* is a *G*-torsor. Let *U* be the complement of the closed point in Spec \mathfrak{S} . By Steps I and IV we know that $P|_U$ is a *G*-torsor. By a result of Colliot-Thélène and Sansuc [CS79, Thm. 6.13], *P* extends to a *G*-torsor over \mathfrak{S} and, as we remarked above, any such torsor is trivial. Hence $P|_U$ is trivial, and there is an isomorphism $\mathfrak{M}|_U \xrightarrow{\sim} \mathfrak{M}'|_U$ taking \tilde{s}_α to s_α . Since any vector bundle over *U* has a canonical extension to \mathfrak{S} , obtained by taking its global sections, this isomorphism extends to \mathfrak{S} . This implies that *P* is the trivial *G*-torsor and completes the proof of the proposition.

Corollary 2.5. With the assumptions of 2.4, suppose that G is connected and k is finite. Then there exists an isomorphism $\mathfrak{M} \xrightarrow{\sim} L \otimes_{\mathbb{Z}_p} \mathfrak{S}$ which takes the tensor \tilde{s}_{α} to s_{α} . In particular, the subgroup $G_{\mathfrak{S}} \subseteq \operatorname{GL}(\mathfrak{M})$ defined by (\tilde{s}_{α}) is isomorphic to $G \times_{\operatorname{Spec}\mathbb{Z}_p} \operatorname{Spec}\mathfrak{S}$. *Proof.* As in Theorem 2.4 we set $\mathfrak{M}' = L \otimes_{\mathbb{Z}_p} \mathfrak{M}$, and we denote by $P \subseteq \underline{\operatorname{Hom}}_{\mathfrak{S}}(\mathfrak{M}, \mathfrak{M}')$ the subscheme of isomorphisms between \mathfrak{M} and \mathfrak{M}' which take \tilde{s}_{α} to s_{α} . Then P is a G-torsor by 2.4. Since G is connected and k is finite, any such torsor is trivial [Sp79, 4.4], and the corollary follows.

Corollary 2.6. Let L be a G_K -stable lattice in a crystalline representation V, $\mathfrak{M} = \mathfrak{M}(L)$ and $(s_{\alpha}) \subseteq L^{\otimes}$ a collection of G_K -invariant tensors which define a reductive subgroup G of $\mathrm{GL}(L)$. Then we have the following.

(1) If we view $(s_{\alpha}) \subseteq \operatorname{Fil}^{0} D_{\operatorname{cris}}(V)^{\otimes}$ via the p-adic comparison isomorphism

 $B_{\operatorname{cris}} \otimes_{\mathbb{Z}_p} L \xrightarrow{\sim} B_{\operatorname{cris}} \otimes_{\mathcal{O}_{K_0}} D_{\operatorname{cris}}(V),$

then $(s_{\alpha}) \subseteq (\mathfrak{M}/u\mathfrak{M})^{\otimes} \subseteq D_{\mathrm{cris}}(V)^{\otimes}$.

(2) If k^{sep} denotes a separable closure of k, then there exists a $W(k^{sep})$ -linear isomorphism

 $L \otimes_{\mathbb{Z}_n} W(k^{\operatorname{sep}}) \xrightarrow{\sim} \mathfrak{M}/u\mathfrak{M} \otimes_{W(k)} W(k^{\operatorname{sep}})$

taking s_{α} to s_{α} . In particular, $(s_{\alpha}) \subseteq (\mathfrak{M}/u\mathfrak{M})^{\otimes}$ defines a reductive subgroup G' of $\operatorname{GL}(\mathfrak{M}/u\mathfrak{M})$, which is a pure inner form of G.

(3) If k is finite and G is connected, then there exists a W-linear isomorphism

$$L \otimes_{\mathbb{Z}_n} W \xrightarrow{\sim} \mathfrak{M}/u\mathfrak{M}$$

taking s_{α} to s_{α} . In particular, $(s_{\alpha}) \subseteq (\mathfrak{M}/u\mathfrak{M})^{\otimes}$ defines a reductive subgroup $G' \subseteq \operatorname{GL}(\mathfrak{M}/u\mathfrak{M})$, which is isomorphic to $G \times_{\mathbb{Z}_p} W$.

Proof. (1) and (2) follow from 2.4; in fact (1) holds for any G_K -invariant tensors, without assuming that G is reductive. To see that G' is a pure inner form of G in (2), note that specializing the torsor P which appears in the proof of 2.4 at u = 0 gives a class in $H^1(\operatorname{Spec} W, G)$, and G' can be obtained from G by twisting by this class.

Finally, (3) follows from Corollary 2.5 once we remark that $s_{\alpha} \in D_{cris}(V)^{\otimes}$ is equal to

$$\tilde{s}_{\alpha}|_{u=0} \colon \mathbb{1} \longrightarrow (\mathfrak{M}/u\mathfrak{M})^{\otimes} \hookrightarrow D_{\mathrm{cris}}(V)^{\otimes},$$

the final inclusion being given by the first isomorphism of Theorem 2.3(1). The equality is a formal consequence of the functoriality of this isomorphism. \Box

Corollary 2.7. Let \mathscr{G} be a p-divisible group over \mathcal{O}_K , and if p = 2 assume that \mathscr{G}^* is connected. Let $L = T_p \mathscr{G}^*$, $\mathfrak{M} = \mathfrak{M}(L) = \mathfrak{M}(\mathscr{G})$, and $(s_\alpha) \subseteq L^{\otimes}$ be a collection of G_K -invariant tensors defining a reductive subgroup $G \subseteq \operatorname{GL}(L)$. Then

- (1) There is a canonical φ -equivariant isomorphism $\varphi^*(\mathfrak{M}/u\mathfrak{M}) \xrightarrow{\sim} \mathbb{D}(\mathscr{G}_0)(W)$, where $\mathscr{G}_0 = \mathscr{G} \otimes_{\mathcal{O}_K} k$.
- (2) There exists a $W(k^{sep})$ -linear isomorphism

$$L \otimes_{\mathbb{Z}_n} W(k^{\operatorname{sep}}) \xrightarrow{\sim} \mathbb{D}(\mathscr{G}_0)(W) \otimes_W W(k^{\operatorname{sep}})$$

taking s_{α} to $\varphi^*(s_{\alpha}) \in \mathbb{D}(\mathscr{G}_0)(W)^{\otimes}$. In particular, $(\varphi^*(s_{\alpha})) \subseteq \mathbb{D}(\mathscr{G}_0)(W)^{\otimes}$ defines a reductive subgroup $G_W \subseteq \operatorname{GL}(\mathbb{D}(\mathscr{G}_0)(W))$ which is an inner form of G.

(3) If G is connected and k is finite, then there exists a W-linear isomorphism

$$L \otimes_{\mathbb{Z}_p} W \xrightarrow{\sim} \mathbb{D}(\mathscr{G}_0)(W)$$

taking s_{α} to $\varphi^*(s_{\alpha}) \in \mathbb{D}(\mathscr{G}_0)(W)^{\otimes}$. In particular, $(\varphi^*(s_{\alpha})) \subseteq \mathbb{D}(\mathscr{G}_0)(W)^{\otimes}$ defines a reductive subgroup $G_W \subseteq \operatorname{GL}(\mathbb{D}(\mathscr{G}_0)(W))$ which is isomorphic to $G \times_{\mathbb{Z}_p} W$.

(4) The filtration $\operatorname{Fil}^1 \mathbb{D}(\mathscr{G}_0)(k) \subseteq \mathbb{D}(\mathscr{G}_0)(k)$ is given by a cocharacter

$$\mu_0\colon \mathbb{G}_m \longrightarrow G_W \otimes_W k.$$

3. Deformation theory

Let k be a perfect field of characteristic p. Let \mathcal{G}_0 be a p-divisible group over k. Take $M_0 = \mathbb{D}(\mathcal{G}_0)(W)$ with W = W(k) the Witt ring. Fix a cocharacter $\mu \colon \mathbb{G}_m \to \operatorname{GL}(M_0)$ such that $\mu_0 \equiv \mu \mod p$ gives rise to the Hodge filtration on $\mathbb{D}(\mathcal{G}_0)(k) = M_0 \otimes_W k$. According to the Grothendieck–Messing deformation theory, we have \mathcal{G} a p-divisible group over W that lifts \mathcal{G}_0 .

Let $U^{\circ} \subseteq \operatorname{GL}(M_0)$ be the opposite unipotent deformation defined by μ . Let R be the complete local ring at the identity of U° . Then

$$R \cong W[\![t_1, \dots, t_n]\!], \quad n = \dim_W U^\circ,$$

equipped with a Frobenius action $\varphi: t_i \mapsto t_i^p$ for $1 \leq i \leq n$. Put $M \coloneqq M_0 \otimes_W R$ and there is a filtration on M, written the first piece as

$$\operatorname{Fil}^{1}M = (\operatorname{Fil}^{1}M_{0}) \otimes_{W} R$$

Also, for each tautological R-point $u \in U^{\circ}(R)$, the composition

$$\Phi \colon M = M_0 \otimes_W R \xrightarrow{\varphi \otimes \varphi} M \xrightarrow{u} M$$

is semi-linear. The work of Faltings shows that there is a p-divisible group \mathcal{G}_R over R such that

$$\mathcal{G}_R \otimes_R (R/(t_1,\ldots,t_n)) \simeq \mathcal{G}$$

and \mathcal{G}_R is a versal deformation of \mathcal{G}_0 . Moreover, there is an isomorphism

$$\mathbb{D}(\mathcal{G}_R)(R) \simeq M$$

which is compatible with the actions of Frobenii and filtrations. Whenever R is formally smooth, there exists an integral connection

$$\nabla \colon M \longrightarrow M \otimes \Omega^1_R$$

such that $\varphi^* M \to M$ is parallel.

Let $G_W \subseteq \operatorname{GL}(M_0)$ be a connected reductive group defined by a finite collection of φ -invariant tensors $(s_\alpha) \subseteq M_0^{\otimes}$, such that the Hodge filtration on $\mathbb{D}(\mathcal{G}_0)(k)$ is $G_W \otimes_W k$ -split. Then we may take $\mu \colon \mathbb{G}_m \to G_W$ lifting μ_0 . Denote $U_G^0 \subseteq G_W = G$ the opposite unipotent deformation given by μ . Then R_G is a complete local ring at the identity of U_G^0 . We may choose the t_i such that

$$R_G \simeq R/(t_{r+1},\ldots,t_n) = W[[t_1,\ldots,t_r]], \quad r = \operatorname{rank}_W(\mathcal{G}/\operatorname{Fil}^0\mathcal{G}),$$

where $\mathcal{G} = \text{Lie}(G)$. Take a totally ramified extension K over $K_0 = W[1/p]$.

Proposition 3.1. Suppose that p > 2 or \mathcal{G}_0^* is connected. Let $\varpi \colon R \to \mathcal{O}_K$ be a map of Walgebras and \mathcal{G}_{ϖ} the induced p-divisible group over \mathcal{O}_K . Then ϖ factors through R_G if and only if \mathcal{G}_{ϖ} is G_W -adapted, i.e., there is a collection of φ -invariants, say $(\tilde{s}_{\alpha}) \subseteq \mathbb{D}(\mathcal{G}_{\varpi})(S)^{\otimes}$, lifting $(s_{\alpha}) \subseteq \mathbb{D}(\mathcal{G}_0)(W)^{\otimes}$, such that

(1) If s_{α,\mathcal{O}_K} denotes \tilde{s}_{α} in $\mathbb{D}(\mathcal{G}_{\varpi})(\mathcal{O}_K)^{\otimes}$, then

$$s_{\alpha,\mathcal{O}_K}) \subseteq \operatorname{Fil}^0(\mathbb{D}(\mathcal{G}_{\varpi})(\mathcal{O}_K)^{\otimes}).$$

(2) The collection (\tilde{s}_{α}) deforms a reductive group $G_S \subseteq \operatorname{GL}(\mathbb{D}(\mathcal{G}_{\varpi})(S))$.

Proof. We first prove the "only if" part. If $\varpi \colon R_G \to \mathcal{O}_K$ to a map $\tilde{\varpi} \colon R_G \to S$. Set $\tilde{s}_{\alpha} = \tilde{\varpi}(s_{\alpha} \otimes 1)$. Then \tilde{s}_{α} satisfy conditions (1) and (2). We only need to check that $\tilde{\varpi}(s_{\alpha} \otimes 1)$ are φ -invariant. For this, take

$$M_S \coloneqq \mathbb{D}(\mathcal{G}_{\varpi})(S) = M_{R_G} \otimes S$$

with the Frobenius action inherited. Then

$$\varphi_S^*(M_S) = \varphi^* \tilde{\varpi}^* M_{R_G} \xrightarrow{\sim}_{\varepsilon} \varphi_{R_G}^* \tilde{\varpi}^* M_{R_G} \xrightarrow{\tilde{\varpi}^*(\varphi \otimes 1)} \tilde{\varpi}^* M_{R_G}.$$

Since each s_{α} is φ -invariant, we deduce

$$\tilde{\varpi}^*(\varphi \otimes 1) \circ \varepsilon(\tilde{s}_{\alpha}) = \tilde{\varpi}^*(\varphi \otimes 1)(s_{\alpha} \otimes 1) = \tilde{s}_{\alpha}.$$

Conversely, we prove the "if" part. Suppose we obtain (\tilde{s}_{α}) that satisfies (1) and (2). Let $\varpi_0: R \to W$ be the natural projection that gives $\varpi \times \varpi_0: R \to \mathcal{O}_K \times_k W$. Denote by $\mathcal{G}_{\varpi \times \varpi_0}$ the *p*-divisible group over $\mathcal{O}_K \times_k W$ induced by it.

Assume first that p > 2. Then the surjective map $W[u] \to \mathcal{O}_K \times_k W$ sending u to $(\pi, 0)$ induces a map $\widehat{S} \to \mathcal{O}_K \times_k W$. Let $G_{\widehat{S}} = G_S \otimes_S \widehat{S}$. It turns out there is a $G_{\widehat{S}}$ -split filtration on $\mathbb{D}(\mathscr{G}_{\varpi}(\widehat{S}))$ which simultaneously lifts the filtration on $\mathbb{D}(\mathscr{G}_{\varpi}(\mathcal{O}_K))$ and the chosen filtration on $\mathbb{D}(\mathscr{G})(W)$. Since the kernel of $\widehat{S} \to \mathcal{O}_K \times_k W$ is equipped with topologically nilpotent divided powers, such a filtration corresponds to a p divisible group $\mathscr{G}_{\widetilde{\varpi}}$ over \widehat{S} , deforming $\mathscr{G}_{\varpi \times \varpi_0}$. Since R is a versal deformation ring for $\mathscr{G}_0, \mathscr{G}_{\widetilde{\varpi}}$ is induced by a map $\widetilde{\varpi} : R \to \widehat{S}$ lifting $\varpi \times \varpi_0$.

We may identify

$$\mathbb{D}(\mathscr{G}_{\tilde{\varpi}})(\widehat{S}) = \mathbb{D}(\mathscr{G}_{\varpi})(\widehat{S}) = \mathbb{D}(\mathscr{G}_{\varpi}(S)) \otimes_{S} \widehat{S}$$

with $M_{\widehat{S}} \coloneqq M_R \otimes_R \widehat{S} = M_0 \otimes_W \widehat{S}$, and we view \widetilde{s}_{α} as elements of $M_{\widehat{S}}^{\otimes}$. Consider the composite

$$\varphi^*(M_{\widehat{S}}) \xrightarrow{\sim} \tilde{\varpi}^* \varphi^*(M_R) \xrightarrow{\tilde{\varpi}^*(\varphi \otimes 1)} \tilde{\varpi}^*(M_R) = M_{\widehat{S}}.$$

The map $\theta: M_0 \to M_{\widehat{S}} = M_0 \otimes_W \widehat{S}$ is induced by an element of $U^{\circ}(\widehat{S}[1/p])$. Hence, viewing \widetilde{s}_{α} and $s_{\alpha} \otimes 1$ in $(M_{\widehat{S}} \otimes_{\widehat{S}} K_0[\![u]\!])^{\otimes}$, and applying [Kis10, 1.5.6], we find that $\widetilde{s}_{\alpha} = s_{\alpha} \otimes 1$ and that θ is induced by a point of $U^{\circ}_G(K_0[\![u]\!]) \cap U^{\circ}(\widehat{S}[1/p]) = U^{\circ}_G(\widehat{S}[1/p])$. In particular, each of the two maps in [Kis10, 1.5.10] sends $s_{\alpha} \otimes 1$ to $s_{\alpha} \otimes 1$. For ε this holds as $\nabla_{\widehat{S}}(s_{\alpha} \otimes 1) = \nabla_{\widehat{S}}(\widetilde{s}_{\alpha}) = 0$, while $\widetilde{\varpi}^*(\varphi \otimes 1) \circ \varepsilon$ has this property since \widetilde{s}_{α} is φ -invariant. It follows that

$$\varpi^*(\varphi \otimes 1) \colon M_0 \xrightarrow{m \mapsto m \otimes 1} \tilde{\varpi}^* \varphi^*(M_R) \longrightarrow \tilde{\varpi}^* M_R = M_0 \otimes_W \widehat{S}$$

has the form $m \mapsto A\varphi(m)$ for some $A \in U_G^{\circ}(\widehat{S})$. This means that $\tilde{\varpi}$ factors through R_G , and hence so does ϖ .

Finally suppose that \mathscr{G}_0^* is connected. Then using results of Zink, we can repeat the above argument with S in place of \widehat{S} , even when p = 2: Consider the map $S \to \mathcal{O}_K \times_k W$ sending uto $(\pi, 0)$, and choose a G_S -split filtration on $\mathbb{D}(\mathscr{G}_{\varpi})(S)$ which lifts the filtrations on $\mathbb{D}(\mathscr{G})(W)$ and $\mathbb{D}(\mathscr{G}_{\varpi})(\mathcal{O}_K)$. In the terminology of [Zi01] this filtration gives $\mathbb{D}(\mathscr{G}_{\varpi})(S)$ the structure of an S-window over S, and hence gives rise to a p-divisible group \mathscr{G}_{ϖ} over S which deforms $\mathscr{G}_{\varpi \times \varpi_0}$. By [Zi02, Corollary 97] the canonical isomorphism $\mathbb{D}(\mathscr{G}_{\varpi})(S) \xrightarrow{\sim} \mathbb{D}(\mathscr{G}_{\varpi})(S)$ respects filtrations. The rest of the argument is as in the case p > 2.

Corollary 3.2. Suppose p > 2 or \mathcal{G}_0^* is connected. Let K'/K be a finite extension and $\varpi : R \to \mathcal{O}_{K'}$ a map of W-algebras inducing a p-divisible group \mathcal{G}_{ϖ} over $\mathcal{O}_{K'}$. Let $L = T_p \mathcal{G}_{\varpi}^*(-1)$, and $(s_{\alpha,\text{et}}) \subseteq L^{\otimes}$ a family of $G_{K'}$ -invariant tensors defining a reductive subgroup of $\operatorname{GL}(L)$, such that under the p-adic comparison isomorphism

$$L \otimes_{\mathbb{Z}_p} B_{\operatorname{cris}} \xrightarrow{\sim} M_0 \otimes_{\mathbb{Z}_p} B_{\operatorname{cris}}$$

 $s_{\alpha,\text{et}}$ maps to $s_{\alpha} \in M_0^{\otimes}$. Then ϖ factors through R_G .

4. INTEGRAL CANONICAL MODELS FOR SHIMURA VARIETIES OF HODGE TYPE

We first introduce the Shimura datum (G, X). Let G be a reductive group over \mathbb{Q} and X a conjugacy class of maps of algebraic groups over \mathbb{R} , read as

$$h: \mathbb{S} = \operatorname{Res}_{\mathbb{C}/\mathbb{R}} \mathbb{G}_m \longrightarrow G_{\mathbb{R}}.$$

On \mathbb{R} -points, such a map induces a map of real groups $\mathbb{C}^{\times} \to G(\mathbb{R})$. We require that (G, X) satisfy the following conditions:

(1) For $\mathfrak{g} = \operatorname{Lie} G_{\mathbb{R}}$, the composite

$$\mathbb{S} \longrightarrow G_{\mathbb{R}} \longrightarrow G_{\mathbb{R}}^{\mathrm{ad}} \longrightarrow \mathrm{GL}(\mathfrak{g})$$

defines a Hodge structure of type (-1, 1), (0, 0), (1, -1).

- (2) h(i) is a Cartan involution on $G_{\mathbb{R}}^{\mathrm{ad}}$.
- (3) G^{ad} has no factors whose real points form a compact group.

Let $K = K_p K^p \subseteq G(\mathbb{A}_f)$ be a compact open subgroup. This leads to an algebraic variety $\mathbf{Sh}_K(G, X)$ over the reflex field E = E(G, X). Then a theorem of Baily–Borel asserts that

$$\mathbf{Sh}_K(G, X)(\mathbb{C}) = G(\mathbb{Q}) \setminus X \times G(\mathbb{A}_f) / K.$$

Lemma 4.1. Let $i: (G_1, X_1) \hookrightarrow (G_2, X_2)$ be an embedding of Shimura data and $K_{2,p} \subseteq G_2(\mathbb{Q}_p)$ be an open compact subgroup. Let $K_{1,p} \coloneqq K_{2,p} \cap G_1(\mathbb{Q}_p)$, with $K_1 = K_{1,p}K^{1,p} \subseteq G_1(\mathbb{A}_f^p)$. Then there exists a compact open subgroup $K_2 = K_{2,p}K^{2,p} \subseteq G_2(\mathbb{A}_f)$ with $K_1 \subseteq K_2$, such that *i* induces an embedding

$$\mathbf{Sh}_{K_1}(G_1, X_1) \hookrightarrow \mathbf{Sh}_{K_2}(G_2, X_2).$$

Fix a finite-dimensional Q-vector space V and $\psi: V \times V \to \mathbb{Q}$ a perfect alternating form. Take $G = \operatorname{GSp}(V, \psi)$ and $X = S^{\pm}$ the Siegel double space. From these, we obtain $\operatorname{Sh}_{K}(G, X)$ over $E = \mathbb{Q}$, a moduli space of polarized abelian varieties, where (G, X) is a Shimura datum of Hodge type, i.e., there exists an embedding $i: (G, X) \hookrightarrow (\operatorname{GSp}, S^{\pm})$. Fix compact open subgroups $K \subseteq G(\mathbb{A}_{f})$ and $K' \subseteq \operatorname{GSp}(\mathbb{A}_{f})$, such that $K \subseteq K'$. Also, i induces a morphism

$$\mathbf{Sh}_K(G,X) \longrightarrow \mathbf{Sh}_{K'}(\mathrm{GSp},S^{\pm})$$

of algebraic varieties over E = E(G, X). Let $(s_{\alpha,B}) \subseteq V^{\otimes}$ be a finite collection of tensors defining $G \subseteq \operatorname{GSp}(V, \psi) \subseteq \operatorname{GL}(V)$. Let $f \colon \mathcal{A} \to \operatorname{Sh}_K(G, X)$ be a pullback of the universal abelian scheme. Denote

$$\mathcal{V}_B \coloneqq R^1 f_{\mathbb{C},*} \underline{\mathbb{Q}}, \qquad \mathcal{V}_{\mathrm{dR},\mathbb{C}} = R^1 f_{\mathbb{C},*} \Omega^{\bullet}_{\mathcal{A}/\mathbf{Sh}_K(G,X)}$$

We choose collections $(s_{\alpha,B}) \subseteq \mathcal{V}_B^{\otimes}$ and $(s_{\alpha,\mathrm{dR}}) \subseteq \mathcal{V}_{\mathrm{dR},\mathbb{C}}^{\otimes}$. Now let $\kappa \supset E$ be a field of characteristic 0, and $\overline{\kappa}$ an algebraic closure of κ . Fix an embedding $\mathbb{Q}_p \hookrightarrow \mathbb{C}$ and an embedding of *E*-algebras $\sigma : \overline{\kappa} \hookrightarrow \mathbb{C}$. Let $x \in \mathbf{Sh}_K(G, X)(\kappa)$ and denote by \mathcal{A}_x the corresponding abelian variety over κ . Denote by $H^1_B(\mathcal{A}_x(\mathbb{C}), \mathbb{Q})$ the Betti cohomology of $\mathcal{A}_x(\mathbb{C})$. Write $H^1_{\mathrm{dR}}(\mathcal{A}_x)$ for its de Rham cohomology and $H^1_{\mathrm{et}}(\mathcal{A}_{x,\overline{\kappa}}) = H^1_{\mathrm{et}}(\mathcal{A}_{x,\overline{\kappa}}, \mathbb{Q}_p)$ for the *p*-adic étale cohomology of $\mathcal{A}_{x,\overline{\kappa}} = \mathcal{A}_x \otimes_{\kappa} \overline{\kappa}$. The embedding σ induces isomorphisms

$$H^1_{\mathrm{dR}}(\mathcal{A}_x) \otimes_{\kappa,\sigma} \mathbb{C} \xrightarrow{\sim} H^1_B(\mathcal{A}_x(\mathbb{C}), \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{C} \xrightarrow{\sim} H^1(\mathcal{A}_{x,\overline{\kappa}}, \mathbb{Q}_p) \otimes_{\mathbb{Q}_p} \mathbb{C}.$$

Let $s_{\alpha,B,x}$ be the fibre of $s_{\alpha,B}$ at x (regarded as a \mathbb{C} -valued point via σ), and denote by $s_{\alpha,\mathrm{dR},x} \in H^1_{\mathrm{dR}}(\mathcal{A}_x)^{\otimes} \otimes_{\kappa,\sigma} \mathbb{C}$ and $s_{\alpha,\mathrm{et},x} \in H^1_{\mathrm{et}}(\mathcal{A}_{x,\overline{\kappa}})^{\otimes}$ the images of $s_{\alpha,B,x}$ under these two isomorphisms.

Lemma 4.2. The action of $\operatorname{Gal}(\overline{\kappa}/\kappa)$ on $H^1_{\operatorname{et}}(\mathcal{A}_{x,\overline{\kappa}}, \mathbb{Q}_p)$ fixes each $s_{\alpha,\operatorname{et},x}$ and factors through $G(\mathbb{Q}_p)$. Moreover we have $s_{\alpha,\operatorname{dR},x} \in H^1_{\operatorname{dR}}(\mathcal{A}_x)^{\otimes}$.

Proof. Let $\mathbf{Sh}_{K^p}(G, X) = \lim_{H_p} \mathbf{Sh}_{H_pK^p}(G, X)$, where H_p runs over compact open subgroups of K_p , and similarly for $\mathbf{Sh}_{K'^p}(\mathrm{GSp}, S^{\pm})$.

The action of $\operatorname{Gal}(\overline{\kappa}/\kappa)$ on $H^1_{\operatorname{\acute{e}t}}(\mathcal{A}_{x,\overline{\kappa}}, \mathbb{Q}_p)$ is induced by the map $\operatorname{Gal}(\overline{\kappa}/\kappa) \to K'_p$, obtained by pulling back to $\overline{\kappa}$ the $K_{p'}$ -torsor $\operatorname{Sh}_{K'^p}(\operatorname{GSp}, S^{\pm}) \to \operatorname{Sh}_{K'}(\operatorname{GSp}, S^{\pm})$. On the other hand, we have a commutative, K_p -equivariant diagram

$$\begin{aligned}
\mathbf{Sh}_{K^p}(G, X) &\longrightarrow \mathbf{Sh}_{K'^p}(\mathrm{GSp}, S^{\pm}) \\
& \downarrow & \downarrow \\
\mathbf{Sh}_K(G, X) &\longrightarrow \mathbf{Sh}_{K'}(\mathrm{GSp}, S^{\pm})
\end{aligned}$$

which shows that the restriction of $\mathbf{Sh}_{K'^p}(\mathrm{GSp}, S^{\pm})$ to $\mathbf{Sh}_K(G, X)$ descends to a K_p -torsor. This shows that the action of $\mathrm{Gal}(\overline{\kappa}/\kappa)$ on $H^1_{\mathrm{\acute{e}t}}(\mathcal{A}_{x,\overline{\kappa}}, \mathbb{Q}_p)$ is induced by a map $\mathrm{Gal}(\overline{\kappa}/\kappa) \to K_p \subseteq G(\mathbb{Q}_p)$. In particular this action fixes each $s_{\alpha,\mathrm{et},x}$.

To see the final statement note that, by a result of Deligne [De82, 2.11], the Hodge cycle $(s_{\alpha,dR,x}, s_{\alpha,et,x})$ is an absolute Hodge cycle, for each α . In particular, this implies [De82, 2.7]

that $s_{\alpha,\mathrm{dR},x} \in H^1_{\mathrm{dR}}(\mathcal{A}_x)^{\otimes} \otimes_{\kappa} \overline{\kappa}$. Moreover, since an absolute Hodge cycle is determined by either its de Rham or étale component, $\mathrm{Gal}(\overline{\kappa}/\kappa)$ fixes $s_{\alpha,\mathrm{dR},x}$ as it fixes $s_{\alpha,\mathrm{et},x}$. Hence $s_{\alpha,\mathrm{dR},x} \in H^1_{\mathrm{dR}}(\mathcal{A}_x)^{\otimes}$.

Now we come to the construction of integral models. Let $i: (G, X) \to (\operatorname{GSp}(V, \psi), S^{\pm})$ as before. Assume G is unramified over \mathbb{Q}_p , i.e. there exists a reductive group $G_{\mathbb{Z}_p}$ over \mathbb{Z}_p such that $G_{\mathbb{Z}_p} \otimes_{\mathbb{Z}_p} \mathbb{Q}_p = G_{\mathbb{Q}_p}$. Let $K_p = G_{\mathbb{Z}_p}(\mathbb{Z}_p)$ and $K = K_p K^p$, where $K^p \subseteq G(\mathbb{A}_f^p)$ is an open compact subgroup. The goal now is to find a smooth integral canonical model $\mathscr{S}_K(G, X)$ over $\mathcal{O}_{(v)}$ for some place $v \mid p$ of $\mathcal{O} \subseteq E(G, X)$. We will need the following.

Lemma 4.3. Let W be a \mathbb{Q}_p -vector space and $i: G_{\mathbb{Q}_p} \hookrightarrow \mathrm{GL}(W)$ a closed embedding of algebraic groups. If p = 2, assume that $G_{\mathbb{Q}_p}^{\mathrm{ad}}$ has no factors of type B^{1} . Suppose that $G_{\mathbb{Z}_p}$ is a reductive group over \mathbb{Z}_p with generic fiber $G_{\mathbb{Q}_p}$. Then there exists a \mathbb{Z}_p -lattice $W_{\mathbb{Z}_p}$ in W such that i is induced by a closed imbedding

$$i_{\mathbb{Z}_p} \colon G_{\mathbb{Z}_p} \hookrightarrow \mathrm{GL}(W_{\mathbb{Z}_p}).$$

Proof. Denote $\mathbb{Z}_p^{\mathrm{ur}}$ a strict henselization of \mathbb{Z}_p , and write $\mathbb{Q}_p^{\mathrm{ur}} = \mathbb{Z}_p^{\mathrm{ur}}[1/p]$. Write $W^{\mathrm{ur}} = W \otimes_{\mathbb{Z}_p} \mathbb{Z}_p^{\mathrm{ur}}$ and $G_{\mathbb{Z}_p^{\mathrm{ur}}} = G_{\mathbb{Z}_p} \otimes_{\mathbb{Z}_p} \mathbb{Z}_p^{\mathrm{ur}}$. Then $G_{\mathbb{Z}_p}(\mathbb{Z}_p^{\mathrm{ur}})$ is a bounded subgroup of $G_{\mathbb{Q}_p}(\mathbb{Q}_p^{\mathrm{ur}})$ in the sense that any regular function on $G_{\mathbb{Z}_p^{\mathrm{ur}}}$ is bounded on $G_{\mathbb{Z}_p}(\mathbb{Z}_p^{\mathrm{ur}})$. Let L be any $\mathbb{Z}_p^{\mathrm{ur}}$ -lattice in W^{ur} . The boundedness implies that $\bigcup_{q \in G_{\mathbb{Z}_p}(\mathbb{Z}_p^{\mathrm{ur}})} g \cdot L$ is a $\mathbb{Z}_p^{\mathrm{ur}}$ -lattice in W^{ur} . Hence

$$W_{\mathbb{Z}_p^{\mathrm{ur}}} = \sum_{\gamma \in G_{\mathbb{Z}_p}(\mathbb{Z}_p^{\mathrm{ur}}) \rtimes \Gamma} \gamma \cdot L$$

is a $\mathbb{Z}_p^{\mathrm{ur}}$ -lattice in W^{ur} , where $\Gamma = \mathrm{Gal}(\mathbb{Q}_p^{\mathrm{ur}}/\mathbb{Q}_p)$. Then it is equipped with a natural $G_{\mathbb{Z}_p^{\mathrm{ur}}}$ -action, which induces $i_{\mathbb{Z}_p^{\mathrm{ur}}} : G_{\mathbb{Z}_p^{\mathrm{ur}}} \to \mathrm{GL}(W_{\mathbb{Z}_p^{\mathrm{ur}}})$. Since $W_{\mathbb{Z}_p^{\mathrm{ur}}}$ is Γ -stable, $i_{\mathbb{Z}_p^{\mathrm{ur}}}$ arises from a \mathbb{Z}_p -lattice $W_{\mathbb{Z}_p}$ of W by étale descent. The map $i_{\mathbb{Z}_p^{\mathrm{ur}}}$ is compatible with the descent data on the source and target, as this can be checked on generic fibers, so it descends to a map $i_{\mathbb{Z}_p} : G_{\mathbb{Z}_p} \to \mathrm{GL}(W_{\mathbb{Z}_p})$. Finally, $i_{\mathbb{Z}_p}$ is a closed embedding by Prasad–Yu [PY06, 1.3].

Remark 4.4. If p = 2, Kisin assumed that $G_{\mathbb{Q}_p}^{\mathrm{ad}}$ has no factors of type B. For a Shimura datum (G, X) of Hodge type, by Deligne's classification, factors of type B of $G_{\mathbb{Q}_p}^{\mathrm{ad}}$ have simply connected derived subgroup, for which Prasad–Yu [PY06, 1.3] applies successfully.

Now by Lemma 4.3, there is a lattice $V_{\mathbb{Z}}$ of V such that $i_{\mathbb{Q}_p}$ is induced by an embedding $G_{\mathbb{Z}_p} \hookrightarrow \operatorname{GL}(V_{\mathbb{Z}_p})$. Fix such a choice of $V_{\mathbb{Z}}$. Since $G_{\mathbb{Z}_p}$ has generic fiber $G \otimes_{\mathbb{Q}} \mathbb{Q}_p$, flat base change implies that the closure of G in $\operatorname{GL}(V_{\mathbb{Z}_{(p)}})$ is a reductive subgroup $G_{\mathbb{Z}_{(p)}}$ such that $G_{\mathbb{Z}_{(p)}} \otimes_{\mathbb{Z}_{(p)}} \mathbb{Z}_p = G_{\mathbb{Z}_p}$.

Let $(s_{\alpha}) \subseteq V_{\mathbb{Z}_{(p)}}^{\otimes}$ be a finite collection of tensors defining $G_{\mathbb{Z}_{(p)}} \subseteq \operatorname{GL}(V_{\mathbb{Z}_{(p)}})$. Let $K'_p \subseteq \operatorname{GSp}(\mathbb{Q}_p)$ be the stabilizer of $V_{\mathbb{Z}_p}$, which is a maximal compact subgroup of $\operatorname{GSp}(\mathbb{Q}_p)$ (but is not hyperspecial in general). By Lemma 4.1 we may choose $K' = K'_p K'^p$ so that *i* induces an embedding

$$\mathbf{Sh}_K(G, X) \hookrightarrow \mathbf{Sh}_{K'}(\mathrm{GSp}, S^{\pm}).$$

We may assume that ψ induces an inclusion $V_{\mathbb{Z}} \hookrightarrow V_{\mathbb{Z}}^*$ into the dual lattice $V_{\mathbb{Z}}^* \subseteq V_{\mathbb{Q}}$. Let $d = |V_{\mathbb{Z}}^*/V_{\mathbb{Z}}|$ and write $2g = \dim_{\mathbb{Q}} V$. We attain an embedding $\mathbf{Sh}_K(\mathrm{GSp}, S^{\pm}) \hookrightarrow \mathcal{A}_{g,d,K'}$ where the target is the moduli space over \mathbb{Q} of abelian varieties with a polarization of degree d and a K'^p -level structure. It has a natural integral model, and we get an embedding of $\mathbb{Z}_{(p)}$ -schemes, read as

$$\mathscr{S}_{K'}(\mathrm{GSp}, S^{\pm}) \hookrightarrow \mathcal{A}_{g,d,K'}.$$

By the theory of moduli spaces of Mumford, for any $\mathbb{Z}_{(p)}$ -scheme T,

$$\mathcal{A}_{g,d,K'}(T) = \{(A,\lambda,\varepsilon_{K'}^p)\} / \sim,$$

¹This restriction, which arises from the necessary restriction in the result of Prasad–Yu [PY06, 1.3] used in the proof, is one of the reasons for the restrictions in our results when p = 2.

where

- A is an abelian scheme over T,
- $\lambda: A \to A^*$ is a polarization of degree d, and
- $\varepsilon_{K'}^p \in \Gamma(T, \underline{\operatorname{Isom}}(V_{\hat{\mathbb{Z}}^p}, \hat{V}^p(A))/K'^p)$, where $\hat{V}^p(A) = \varprojlim_{n \nmid n} A[n]$.

Denote by $\mathscr{S}_{K}^{-}(G, X)$ the closure of $\mathbf{Sh}_{K}(G, X)$ in $\mathscr{S}_{K'}(\mathrm{GSp}, S^{\pm})_{\mathcal{O}_{(v)}}$. From now on we make the following assumption when p = 2:

(\$) If p = 2, then the abelian variety over any characteristic p point of $\mathscr{S}_{K}^{-}(G, X)$ has connected p-divisible group.

Proposition 4.5. Let $x \in \mathscr{S}_{K}^{-}(G, X)$ be a closed point with residue field of characteristic p, and write $\hat{U}_{x} \coloneqq \mathscr{S}_{K}^{-}(G, X)_{x}^{\wedge}$ for the completion of $\mathscr{S}_{K}^{-}(G, X)$ at x. Then the irreducible components of \hat{U}_{x} are formally smooth over $\mathcal{O}_{(v)}$.

Proof. Let k = k(x) and \mathcal{G}_0 be the *p*-divisible group over *k* associated to *x*. Let F/E be a finite extension and $\tilde{x} \in \mathscr{S}_K^-(G, X)(F)$ a point specializing to *x*. Write W = W(k) and take the $\operatorname{Gal}(\overline{E}/F)$ -invariant tensors $s_{\alpha, \mathrm{et}, \tilde{x}}$ (or $s_{\alpha, p, \tilde{x}}$. These tensors give rise to φ -invariant tensors $(s_{\alpha, 0, \tilde{x}}) \subseteq \mathbb{D}(\mathcal{G}_0)(W)^{\otimes}$ which defines the reductive group $G_W \subseteq \operatorname{GL}(\mathbb{D}(\mathcal{G}_0)(W))$ such that the Hodge filtration on $\mathbb{D}(\mathcal{G}_0)(W) \otimes_W k$ is $G_W \otimes k$ -split. Let R be the versal deformation ring of \mathcal{G}_0 . From this we obtain a formally smooth quotient R_{G_W} of R.

Let $\hat{U}'_x = \mathscr{S}_{K'}(\mathrm{GSp}, S^{\pm})^{\wedge}_x$ be the completion at x. Let $j: \hat{U}'_x \to \mathrm{Spf} R$ be the induced map defining the *p*-divisible group over \hat{U}'_x which arises from the universal family of polarized abelian schemes over $\mathscr{S}_{K'}(\mathrm{GSp}, S^{\pm})$. Then j is a closed embedding since a polarization on a deformation of \mathcal{G}_0 is determined by its restriction to \mathcal{G}_0 .

We claim that the composite

$$Z \longleftrightarrow \hat{U}_x \longleftrightarrow \hat{U}'_x \longleftrightarrow \operatorname{Spf} R$$

factors through Spf R_{G_W} . Granting the claim, since Z and R_{G_W} have the same dimension over W, we have the isomorphism $Z \xrightarrow{\sim} \text{Spf } R_{G_W}$. As \tilde{x} was an arbitrary point of $\mathscr{S}_K^-(G, X)$ lifting x, this proves the proposition.

To prove the claim, by Corollary 3.2, it suffices to check that for any finite extension F'/Fin \overline{E} and $\tilde{x}' \in \mathbf{Sh}_K(G, X)(F')$ lying in $Z(F'_v)$, the tensor $s_{\alpha, \mathrm{et}, \tilde{x}'}$ maps to $s_{\alpha, 0, \tilde{x}}$ under the *p*-adic comparison theorem. A result of Blasius and Wintenberger [Bla94] asserts that under the *p*-adic comparison isomorphism,

$$I_{\mathrm{dR}}(s_{\alpha,\mathrm{et},\tilde{x}'}) = s_{\alpha,\mathrm{dR},\tilde{x}'}$$

So it suffices to check that the isomorphism

$$H^1_{\operatorname{cris}}(A_x/W) \otimes_{F'} F'_v \xrightarrow{\sim} H^1_{\operatorname{dR}}(A_{\tilde{x}'}) \otimes_{F'} F'_v$$

takes $s_{\alpha,0}$ to $s_{\alpha,dR,\tilde{x}'}$. Equivalently, we are to check that the composite

$$I \colon H^1_{\mathrm{dR}}(A_{\tilde{x}'}) \otimes_{F'} F'_v \xrightarrow{\sim} H^1_{\mathrm{cris}}(A_x/W) \otimes_{F'} F'_v \xrightarrow{\sim} H^1_{\mathrm{dR}}(A_{\tilde{x}'}) \otimes_{F'} F'_v$$

takes $s_{\alpha,\mathrm{dR},\tilde{x}}$ to $s_{\alpha,\mathrm{dR},\tilde{x}'}$. By Berthelot–Ogus [BO83, 2.9], I is given by parallel transport of Gauss–Manin connection. Since the generic fiber Z_{η} of Z is connected and $s_{\alpha,\mathrm{dR}}|_{Z_{\eta}}$ is parallel, we see $I(s_{\alpha,\mathrm{dR},\tilde{x}}) = s_{\alpha,\mathrm{dR},\tilde{x}'}$. This completes the proof.

Let X be an $\mathcal{O}_{(v)}$ -scheme. We say X has the *extension property* if for any regular, formally smooth $\mathcal{O}_{(v)}$ -scheme S, a map $S \otimes E \to X$ extends to S.

Theorem 4.6. For
$$K = K_p K^p$$
, let $\mathscr{S}_K(G, X)$ denote the normalization of $\mathscr{S}_K^-(G, X)$, and set
 $\mathscr{S}_{K_p}(G, X) = \lim_{K_p} \mathscr{S}_{K_p K^p}(G, X),$

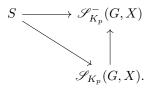
where $K^p \subseteq G(\mathbb{A}_f^p)$ runs over sufficiently small compact open subgroups of $G(\mathbb{A}_f^p)$. Then, under the assumption (\diamond) ,

(1) $\mathscr{S}_{K_p}(G, X)$ is an inverse limit of smooth $\mathcal{O}_{(v)}$ -schemes with finite étale transition maps, whose restriction to E may be $G(\mathbb{A}_f^p)$ -equivariantly identified with $\mathbf{Sh}_{K_p}(G, X)$, i.e.

$$\mathscr{S}_{K_n}(G,X)\otimes E\cong \mathbf{Sh}_{K_n}(G,X).$$

(2) $\mathscr{S}_{K_p}(G, X)$ has the extension property, and in particular depends only on (G, X) and K_p , and noto on the symplectic embedding *i*.

Proof. (1) follows directly from Proposition 4.5. For (2), suppose that S is regular and formally smooth over $\mathcal{O}_{(v)}$. A morphism $S \otimes E \to \mathscr{S}_{K'_p}(\mathrm{GSp}, S^{\pm})$ can be extended to the height 1 primes by [Mil92, Prop 2.13] and then to all of S by a result of Faltings [Mo98, 3.6]. Hence a morphism $S \otimes E \to \mathbf{Sh}_{K_p}(G, X)$ extends to a map $S \to \mathscr{S}^-_{K_p}(G, X)$ and this map lifts to $\mathscr{S}_{K_p}(G, X)$ since S is formally smooth; equivalently, the following diagram commutes:



This completes the proof of (2).

Corollary 4.7. Let $\mathcal{V}_{dR}^{\circ} = R^1 f_* \Omega^{\bullet}_{\mathcal{A}/\mathscr{S}_{K_p}(G,X)}$ be the vector bundle on $\mathscr{S}_{K_p}(G,X)$ by pulling back the de Rham cohomology of the universal abelian scheme \mathcal{A} over $\mathscr{S}_{K'_p}(GSp, S^{\pm})$. Then the section $s_{\alpha,dR} \in \mathcal{V}_{dR}^{\otimes}$ extends to $G(\mathbb{A}_f^p)$ -invariant sections of $(\mathcal{V}_{dR}^{\circ})^{\otimes}$ over $\mathcal{O}_{(v)}$.

We comment on recent nontrivial improvements around Theorem 4.6.

- By Kim–Madapusi Pera [KMP16], the assumption (\$) can be removed. Involving the use of deformation theory, such a result depends on the following ingredients:
 - (i) The Vasin–Zink parity, which implies the Faltings purity.
 - (ii) The classification of *p*-divisible groups over some 2-adic discrete valuation ring, by Kim and Lavi.
- By Y. Xu [Xu20], we are able to prove

$$\mathscr{S}_{K}(G,X) \xrightarrow{\sim} \mathscr{S}_{K}^{-}(G,X) \subseteq \mathscr{S}_{K'}(\mathrm{GSp},S^{\pm}).$$

The following gives more details in Y. Xu's work. Write

$$S^{-}_{K,K'}(G,X) \coloneqq S^{-}_{K}(G,X) \subseteq S_{K'}(\mathrm{GSp},S^{\pm}).$$

Lemma 4.8. Either of the following two statements hold:

(1) either there is a sufficiently small open compact subgroup K' such that

$$\mathscr{S}_K(G,X) \xrightarrow{\sim} \mathscr{S}^-_{K,K'}(G,X),$$

(2) or there are distinct points $x, x' \in \mathscr{S}_K(G, X)(k)$, which have the same image in $\mathscr{S}_{K'}(GSp, S^{\pm})$ for all $K' \supseteq K$.

Moreover, in case (2), $s_{\alpha,\ell,x} = s_{\alpha,\ell,x'}$ for $\ell \neq p$.

We also consider the ℓ -adic tensors with $\ell = p$. For any finite extension F of $E, x \in \mathscr{S}_K(G, X)(k)$, and its lifting $\tilde{x} \in \mathscr{S}_K(G, X)(F)$, the isomorphism

$$H^1_{\mathrm{\acute{e}t}}(\mathcal{A}_{\tilde{x},\overline{F}})\otimes_{\mathbb{Q}_p}B_{\mathrm{cris}} \xrightarrow{\sim} H^1_{\mathrm{cris}}(\mathcal{A}_x/W)\otimes_W B_{\mathrm{cris}}$$

takes $s_{\alpha,p,\tilde{x}}$ to $s_{\alpha,\mathrm{cris},\tilde{x}} = s_{\alpha,0,\tilde{x}}$. By the result of Kisin, we have

- The tensor $s_{\alpha, \operatorname{cris}, \tilde{x}}$ depends only on x, and hence we can only concern about $s_{\alpha, \operatorname{cris}, x}$.
- Both $x, x' \in \mathscr{S}_K(G, X)(k)$ have the same image in $\mathscr{S}_{K,K'}(G, X)$. Then x = x' if and only if $s_{\alpha, \operatorname{cris}, x} = s_{\alpha, \operatorname{cris}, x'}$.

The general sense is that crystalline collections overdetermines the point x. This is relatively clear when $\ell = p$, and indeed, it also holds for $\ell \neq p$. Therefore, it suffices to show that

Lemma 4.9. $s_{\alpha,\ell,x} = s_{\alpha,\ell,x'}$ if and only if $s_{\alpha,\operatorname{cris},x} = s_{\alpha,\operatorname{cris},x'}$.

Obtaining this, we are able to apply the CM lifting on $\mathscr{S}_K(G, X)$ by Kisin.

References

- [Bla94] D. Blasius, A p-adic property of Hodge classes on abelian varieties, Motives (Seattle 1991), 293–308, Proc. Sympos. Pure Math. 55, Part 2, Amer. Math. Soc., pp. 293-308, 1994.
- [BO83] P. Berthelot, A. Ogus, *F*-isocrystals and de Rham cohomology, I. Invent. Math. **72** (1983), 159–199.
- [CS79] J.-L. Colliot-Thélène, J.-J. Sansuc, Fibrés quadratiques et composantes connexes réelles, Math. Ann. 244 (1979), 105–134.
- [De82] P. Deligne, Hodge cycles on abelian varieties, Hodge cycles, motives, and Shimura varieties, Lecture Notes in Math. 900, pp. 9–100, Springer-Verlag, 1982.
- [Kis06] M. Kisin, Crystalline representations and F-crystals, Algebraic geometry and number theory, Progr. Math 253, Birkhäuser Boston, pp. 459–496, 2006.
- [Kis10] M. Kisin, Integral models for Shimura varieties of abelian type, J. Amer. Math. Soc. 23, pp. 967–1012, 2010.
- [KMP16] W. Kim, K. Madapusi Pera, 2-adic integral canonical models, Forum Math. Sigma 4, e28, 2016.
- [Mil92] J. Milne, The points on a Shimura variety modulo a prime of good reduction, The zeta functions of Picard modular surfaces, 1992, pp. 151–253.
- [Mo98] B. Moonen, Models of Shimura varieties in mixed characteristics, Galois representations in arithmetic algebraic geometry (Durham, 1996), London Math. Soc. Lecture Note Ser. 254, Cambridge Univ. Press, pp. 267–350, 1998.
- [PY06] G. Prasad, J.-K. Yu, On quasi-reductive group schemes. With an appendix by Brian Conrad, J. Algebraic Geom. 15 (2006), 507–549.
- [Sp79] T. Springer, *Reductive groups*, Automorphic forms, representations and L-functions (Corvallis, 1977), Proc. Sympos. Pure Math. XXXIII, Amer. Math. Soc., pp. 1–27, 1979.
- [Xu20] Y. Xu, Normalization in integral models of Shimura varieties of Hodge type, preprint, arXiv:2007.01275.
- [Zi01] T. Zink, Windows for displays of p-divisible groups, Moduli of abelian varieties (Text 1999), Prog. in Math. 195, Birkhäuser, pp. 491–518, 2001.
- [Zi02] T. Zink, The display of a formal p-divisible group, Cohomologies p-adiques et application arithmétiques I, Astérisque 278, Soc. Math. France, pp. 127–248, 2002.

School of Mathematical Sciences, Peking University, 100871, Beijing, China *Email address:* daiwenhan@pku.edu.cn