
INTEGRAL MODELS OF SHIMURA VARIETIES OF HODGE TYPE

LECTURES BY XU SHEN
NOTES BY WENHAN DAI

In this series of lectures, we apply the results on Breuil–Kisin classification of p-divisible
groups to construct smooth integral canonical models for Shimura varieties of Hodge type,
following [Kis10]. As a preliminary, we will first review the results of Deligne [De82], Blasius
[Bla94] and Wintenberger about Hodge cycles on abelian varieties. Then we will cover the main
results of [Kis10, §2].
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1. Hodge cycles on abelian varieties

Fix a field k together with a complex embedding σ : k ↩→ C. Consider a projective smooth
variety X over k. There would be natural classical cohomology theories on this setup:

• de Rham cohomology.
Hi

dR(X) := Hi(X, Ω•
X/k),

as a filtered k-vector space of finite dimension, equipped with a descending Hodge fil-
tration, denoted by F •Hi

dR(X).
• ℓ-adic cohomology. For any prime ℓ,

Hi
ℓ(X) := Hi

et(Xk,Qℓ),

as a Qℓ-vector space, equipped with a continuous Galois action of Gk = Gal(k/k).
• Betti cohomology. For any embedding σ : k ↩→ C, consider the complex variety σX :=

X ⊗k,σ C and define
Hi

σ(X) := Hi
B((σX)an,Q),

which is a Q-vector space, equipped with a Hodge structure; namely, admits a Hodge
decomposition

Hi
σ(X) ⊗ C =

󰁐

p+q=i

Hp,q
σ .

These classical cohomology theories are connected via the comparison theorems.

Proposition 1.1. (1) We have isomorphisms of C-vector spaces

Hi
σ(X) ⊗ C Hi

dR(σX) Hi
dR(X) ⊗k,σ C,∼

I∞
∼
σ

Date: June 1, 2023.
These are the course notes of Xu Shen’s lecture series at Beijing International Center of Mathematical Research

during the 2023 Spring semester. The note-taker claims no originality of the present contexts. However, all minor
gaps and typos are due to the carelessness of the note-taker rather than the lecturer.

1



2 INTEGRAL MODELS OF SHIMURA VARIETIES OF HODGE TYPE

where the right isomorphism is induced by σ and hence depends on the choice of σ.
(2) We have isomorphisms of Qℓ-vector spaces

Hi
σ(X) ⊗ Qℓ Hi

et(σX,Qℓ) Hi
ℓ(X).∼

Iℓ

∼
σ

Again, the right isomorphism is induced by σ.
(3) All isomorphisms in (1) and (2) above are compatible with additional structures on

cohomological theories.

We then consider their behaviors under Tate twists. For an integer m 󰃍 0, we have for de
Rham cohomology that

Hi
dR(X)(m) = Hi

dR(X), F p−mHi
dR(X)(m) = F pHi

dR(X).

For ℓ-adic cohomology, if we write Zℓ(1) = lim←−n
µℓn , then

Hi
ℓ(X)(m) = Hi

ℓ(X) ⊗ Zℓ(1)⊗m.

As for the Betti cohomology,

Hi
σ(X)(m) = (2πi)mHi

σ(X), (Hi
σ(X)(m))p−m,q−m = Hp,q

σ (X).

In fact, as a conclusion, all of these cohomology theories Hi
?(X) with ? ∈ {dR, ℓ, σ} satisfy the

axioms of a Weil cohomology with Tate twists.
We are also interested in cycle class maps:

cliσ : CHi(X) ⊗ Q −→ H2i
σ (X)(i).

The image of the cycle class map of degree i (i.e. with cycles of codimension i) satisfies

Im cliσ ⊆ (H2i
σ (X)(i))0,0 ∩ H2i

σ (X)(i).

Here the left-hand side is the collection of algebraic cycles, and the right-hand side exactly
collects Hodge cycles. We have the following:

⋄ (Hodge conjecture) For k = C, the cycle class map is surjective, or equivalently,

Im cliσ = (H2i
σ (X)(i))0,0 ∩ H2i

σ (X)(i).

Definition 1.2. Write A for the adelic ring. Let X be a projective smooth k-variety.
(1) Assume k = k. Define the pair

t = (tdR, tet) ∈ H2p
A (X)(p) := H2p

dR(X)(p) × H2p
et (X)(p),

where
Hi

et(X) :=
󰁜

ℓ

′
Hi

ℓ(X) ∼−→ Hi
et(σX) ∼←− Hi

σ(X) ⊗Q Af .

The pair t is called a Hodge cycle relative to σ : k ↩→ C if
(a) t is rational under the map

H2p
σ (X)(p) ↩−→ H2p

σ (X)(p) ⊗ (C × Af )
∼−→ H2p

dR(X)(p) ⊗k,σ C × H2p
et (X)(p)

that is given by tσ 󰀁→ t.
(b) t admits the Hodge decomposition, i.e. tdR ∈ F 0H2p

dR(X)(p). Granting (a), this is
equivalent to tσ ∈ (H2p

σ (X)(p))0,0.
(2) Assume k = k. The pair t ∈ H2p

A (X)(p) is called an absolute Hodge cycle if it is a Hodge
cycle relative to any choice of σ : k ↩→ C.

(3) For any field k, an absolute Hodge cycle on X is an absolute Hodge cycle on Xk that is
fixed by the natural action of Gk.
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Here in (1), one may understand the de Rham cohomology and étale cohomology as the
archimedean part and finite part of A, respectively. It turns out that t = (tdR, (tℓ)ℓ) ∈
H2p

A (X)(p) is an absolute Hodge cycle if for any σ : k ↩→ C, there exists tσ ∈ H2p
σ (X)(p) ∩

(H2p
σ (X)(p))0,0 such that

I∞(tσ) = σtdR, Iℓ(tσ) = σtℓ.

Example 1.3. (1) Formally, we have that

{algebraic cycles} ⊆ {absolute Hodge cycles} ⊆ {Hodge cycles}.

If the Hodge conjecture holds, then both containments are to be equalities.
(2) Write d = dimk X and consider the diagonal image ∆ ⊆ X × X. Applying the Künneth

formula, one obtains

H2d(X × X)(d) =
2d󰁐

i=0
H2d−i(X) ⊗ Hi(X).

This leads to a decomposition on the image of cycle class map, read as

cl(∆) =
2d󰁛

i=0
πi,

where each πi is an absolute Hodge cycle.

The following big theorem of Deligne identifies absolute Hodge cycles with Hodge cycles.

Theorem 1.4 (Deligne). Assume k = k and X is an abelian variety over k. If t is a Hodge
cycle on X relative to an embedding σ : k ↩→ C, then it is an absolute Hodge cycle.

The following two p-adic variants of Theorem 1.4 can be derived via comparison theorems
from p-adic Hodge theory, which relates the result of Deligne with more deep intrinsic properties
of cohomologies. Let k ⊆ Q ⊆ C be a number field. For any prime p, let σp : Q ↩→ Qp be an
embedding, which restricts to k as σp : k ↩→ Qp. Let X be a projective smooth variety over k.
Denote σpX the base change of X over the completion (σp(k))∧.

Proposition 1.5 (p-adic étale versus p-adic de Rham). There is a functorial isomorphism

IdR : Hi
et((σpX)Qp

,Qp) ⊗Qp BdR
∼−→ Hi

dR(σpX) ⊗(σp(k))∧ BdR,

compatible with additional structures on both sides.

Definition 1.6. Let t = (tdR, (tp)p) ∈ H2q
A (X)(q) be an absolute Hodge cycle. It is called de

Rham if for any p and any σp : Q ↩→ Qp, we have

IdR(σptp) = σptdR.

Recall that we have isomorphisms

σp : Hi
p(X) ∼−→ Hi

et((σpX)Qp
,Qp),

σp : Hi
dR(X) ⊗k,σp

(σp(k))∧ ∼−→ Hi
dR(σpX).

Theorem 1.7 (Blasius, Ogus). Let X be an abelian variety over Q. Then every Hodge cycle
on X is de Rham.

Suppose the base change σpX over (σp(k))∨ has a good reduction. Then σpX lies over another
unramified extension κ satisfying

(σp(k))∧,ur = W (κ)Q = W (σp).

Then we are able to consider the crystalline cohomology Hi
cris(σpX), as a W (σp)-vector space

equipped with a Φ-action.
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Proposition 1.8 (p-adic étale versus crystalline). There is a functorial isomorphism

Icris : Hi
et((σpX)Qp

,Qp) ⊗Qp Bcris
∼−→ Hi

cris(σpX) ⊗W (σp) Bcris,

compatible with additional structures on both sides.

Combining Propositions 1.5 and 1.8, we deduce that
Hi

cris(σpX) ⊗W (σp) (σp(k))∧ ∼= Hi
dR(σpX).

Therefore, Icris ⊗ 1 = IdR.

Definition 1.9. Let t = (tdR, (tp)p) ∈ H2q
A (X)(q) be a de Rham cycle that is defined over k.

Fix an embedding σp : k ↩→ Qp. This t is called crystalline at σp if
(1) X has good reduction at σp,
(2) tdR ∈ H2q

cris(σpX)(q) ↩→ H2q
dR(σpX)(q), and

(3) Φ(tdR) = tdR.

Corollary 1.10. Let X be an abelian variety over k with good reduction at σp. Let t be a Hodge
cycle defined over k. Then t is crystalline at σp.

Sketch of proofs of the theorems. Step I. Let C be the category of projective smooth varieties
over k, with k ↩→ C. This induces the category of motives for Hodge, absolute Hodge, de Rham
cycles, respectively, denoted by 󰁒

H
C,

󰁒

AH
C,

󰁒

dR
C.

So we have a semisimple Tannakian category for which ωB = H∗
B is a fiber functor: for each

object X ∈ C,
G? = Aut⊗(ωB ,

󰁒

?
〈X〉), ? ∈ {H, AH, dR}.

Principle A. Let X be a projective smooth variety over C (resp. over a number
field). Then GH = GAH (resp. GdR = GAH) if and only if every Hodge cycle
(resp. absolute Hodge cycle) in

󰁑
?〈X〉 is absolutely Hodge (resp. de Rham).

In general, we always have the relations
GH ⊆ GAH ⊆ GdR.

Step II. Let S be a projective smooth geometrically connected variety over k, with k ↩→ C.
Let π : X → S be a smooth proper morphism over k. Take

tB ∈ H0(SC, R2nπC,∗Q)(n).
Principle B. For the extension k ⊆ L ⊆ C and a geometric point s ∈ S(L) ⊆
S(C), let tB(s) ∈ H2n

B (XS)(n) be the restriction. Let s0 ∈ S(k). Then
(i) When k = C, if tB(s0) is a Hodge cycle, then tB(s) is a Hodge cycle as

well for each s ∈ S(C);
(ii) When k = C, if tB(s0) is an absolute Hodge cycle, then tB(s) is an

absolute Hodge cycle as well for each s ∈ S(C);
(iii) When k ⊆ Q, if tB(s0) is a de Rham cycle, then tB(s) is a de Rham

cycle as well for each s ∈ S(C).

Step III. We now deal with the CM case. Let K be a CM field over Q. Consider the abelian
variety AΦ := CΦ/OK , which is called the graph of Φ. Then, if we take A to be any abelian
variety of CM type, then A is isogenic to a quotient of a power of B =

󰁔
Φ∈S AΦ. Then it

suffices to prove the equalities
GH = GAH = GdR

for B. Let L be another CM field over Q. The work of Deligne includes results from three
aspects:
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(1) Cycles of graphs: for any Φ ∈ S, we have L ↩→ End(AΦ).
(2) For any σ ∈ Gal(L/Q), the Galois action of σ induces isomorphic graphs, that is,

AΦ ≃ AΦσ.
(3) Let T ⊆ S be a subset with |T | = d. Let BT =

󰁔
Φ∈T AΦ. Suppose L acts on H1

B(BT )
where each embedding of L occurs with the equal multiplicity. Then

∧d
LH1

B(BT )(d/2) ⊆ Hd
B(BT )(d/2).

Step IV. Consider the general case where A is not necessarily of CM type. Let GH be as
above. This together with a cocharacter µ defines a Shimura datum. So we obtain a Shimura
variety Sh of Hodge type. For each open compact subgroup U ⊆ GH(Af ), there is a natural
morphism π : A → ShU from the universal abelian variety, such that there is s0 ∈ ShU (C) to
carry an isogeny As0 ∼ A (noting that As0 is of CM type). In this case, using Principle B and
the argument in Step III, we are able to prove the theorems and propositions above for X = A.

2. Reductive groups and crystalline representations

Let S = Spec R with a local ring R. Let M be a finite free R-module. Take G ⊆ GL(M) as a
closed embedding of group schemes, where G is a connected reductive group over S. Consider
a decreasing finite length filtration M• on M , such that gr• M is finite flat over R.

Consider P ⊆ G, the closed subgroup which respects to M•. Also consider U ⊆ P , the closed
subgroup which acts trivially on gr• M . We introduce the following facts about the parabolic
subgroup without proof.

Lemma 2.1. (1) The followings are equivalent.
(a) The filtration M• admits a splitting such that the corresponding cocharacter µ : Gm →

GL(M) factors through G. (Thus, we have a cocharacter on G.)
(b) The subgroup P ⊆ G is a parabolic subgroup with the unipotent radical U , and

gr• M is induced by a cocharacter ν : Gm → P/U .
Moreover, if either of the conditions in (1) holds, then M• is called G-split.

(2) If R is a field of characteristic 0, then M• is G-split if and only if 〈M〉⊗, the Tannakian
category of G-representations generated by M , admits a filtration which induces the
given filtration on M .

(3) If R is a discrete valuation ring and K = Frac R, then M• is G-split if and only if the
induced filtration on MK is G ⊗R K-split.

Let M⊗ be the direct sum of all R-modules formed from M by taking duals, tensor products,
symmetric powers, and exterior powers. We obtain a natural isomorphism M⊗ ∼−→ M∗⊗. If
(sα) ⊆ M⊗ is a finite collection of Galois invariant tensors, and G ⊆ GL(M) is the pointwise
stabilizer of the sα, we say that G is the group defined by the tensors sα.

Proposition 2.2. Suppose that R is a discrete valuation ring of mixed characteristic, and let
G ⊆ GL(M) be a closed R-flat subgroup whose generic fiber is reductive. Then G is defined by
a finite collection of tensors (sα) ⊆ M⊗.

Proof. The proof is similar to that of [De82, Prop. 3.1]. For each finite free R-module W

carrying an action of GL(M) = Spec OGL, let W0 denote W with the trivial GL(M)-action. We
have the inclusion of R-schemes GL(M) ⊆ End(M), which is fibre by fibre dense. Thus

OGL = lim−→
n

Sym(M ⊗ M∗
0 ) ⊗ (det M)−n.

with the transition maps being given by multiplication by det⊗δ−1, where det ∈ Sym(M ⊗M∗
0 )

and δ ∈ det M is some fixed basis vector. Each term in the injective limit is a direct summand
of the next term, so it suffices to find a collection of tensors (sα) ⊆ OGL defining G.

For any finite projective R-module W with an action of GL(M), the OGL− comodule structure
on W gives a GL(M)-equivariant map W → W0 ⊗R OGL. This map is injective and its cokernel
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is a direct summand, a section being induced by the identity section OGL → R. Hence it suffices
to find elements defining G in any representation of GL(M) on a finite projective R-module.

Now let I ⊆ OGL denote the ideal of G. Then G is the scheme-theoretic stabilizer of I. Let
W ⊆ OGL be a finite rank, GL(M)-stable, saturated R-submodule such that W ∩ I contains
a set of generators of I. Then G is the stabilizer of W ∩ I ⊆ W . If r = rankR W ∩ I, then
L = ∧r(W ∩ I) ⊆ ∧rW is a line, and G is the stabilizer of L.

Since G has reductive generic fibre the quotient map (∧rW )∗ → L∗ has a G equivariant
splitting over the generic point η ∈ Spec R. Hence there exists a G-stable line L̃∗ ⊆ (∧rW )∗

which maps isomorphically to L∗ over η. Now G acts trivially on L ⊗R L̃∗ as this is true over
η, and the stabilizer of L ⊗R L̃∗ ⊆ (∧rW ) ⊗R (∧rW )∗ is equal to G. □

Now let k be a perfect field of characteristic p and W = W (k) the Witt ring. Take K0 = WQ
the fractional field, and K a finite totally ramified extension over K0. Denote GK = Gal(K/K)
(which is not G⊗R K). Take Repcris,◦

GK
the category of GK-stable Zp-lattices in a fixed crystalline

representation of GK . Choose L ∈ Repcris,◦
GK

.
Consider the reductive group G ⊆ GL(L). Then by Proposition 2.2, there exists a finite

collection (sα) ⊆ L⊗ that defines G. Also, the GK action GK → GL(L) on L factors through
G(Zp) if and only if these tensors are GK-invariant by definition.

Fix a uniformizer π ∈ OK , and let E(u) ∈ W (k)[u] be the Eisenstein polynomial for π. We
set S = W [[u]] equipped with a Frobenius ϕ which acts as the usual Frobenius on W and sends
u to up. Let Modϕ

S denote the category of finite free S-modules M equipped with a Frobenius
semi-linear isomorphism

1 ⊗ ϕ : ϕ∗(M)[1/E(u)] ∼−→ M[1/E(u)].

For i ∈ Z, we set
Fili ϕ∗(M) = (1 ⊗ ϕ)−1(E(u)iM) ∩ ϕ∗(M).

Recall that there exists a fully faithful tensor functor

M : Repcris,◦
GK

−→ Modϕ
S

which is compatible with the formation of symmetric and exterior powers. Moreover, we have
the following theorem as a reminder.

Theorem 2.3. If L is in Repcris,◦
GK

, V = L ⊗Zp Qp, and M = M(L), then
(1) There are canonical isomorphisms

Dcris(V ) ∼−→ M/uM[1/p], DdR(V ) ∼−→ ϕ∗(M) ⊗S K,

where the map S → K is given by u 󰀁→ π. The first isomorphism is compatible with
Frobenius, and the second maps Filiϕ∗(M) ⊗W K0 onto FiliDdR(V ) for i ∈ Z.

(2) There is a canonical isomorphism

O󰁦Eur ⊗Zp L
∼−→ O󰁦Eur ⊗S M.

(3) If k′/k is an algebraic extension of fields, then there exists a canonical ϕ equivariant
isomorphism

M(L|GK′ )
∼−→ M(L) ⊗S S′,

where S′ = W (k′)[[u]] and GK′ = Gal(K · W (k′)Q/K · W (k′)Q).

Now we go back to the collection (sα) ⊆ L⊗. View the tensors sα as morphisms sα : 1 → L⊗

in Repcris,◦
GK

. Applying the functor M, we obtain morphisms s̃α : 1 → M(L)⊗ in Modϕ
S.

Theorem 2.4. Let L be in Repcris,◦
GK

and G ⊆ GL(L) a reductive Zp-subgroup defined by a finite
collection of GK-invariant tensors (sα) ⊆ L⊗.

(1) If M = M(L), then (s̃α) ⊆ M⊗ defines a reductive subgroup of GL(M).
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(2) If k is separably closed, then there is an S-linear isomorphism

M
∼−→ L ⊗Zp

S

which takes the tensor s̃α to sα. In particular, the subgroup GS ⊆ GL(M) defined by
(s̃α) is isomorphic to G ×Zp S.

Proof. Using Theorem 2.3(3), it suffices to prove the theorem while assuming k = ksep. More-
over, the second statement implies the first. Set M′ = L ⊗Zp S, which induces the collection
(sα) ⊆ M′⊗. Also set

P = IsomS((M, (s̃α)), (M′, (sα))).
Then the fibers of P are either empty or a torsor under G.

Claim. P is a G-torsor, i.e. P is flat over S with non-empty fibers.

The claim implies the proposition since a torsor under a reductive group is étale locally trivial,
while the ring S is strictly Henselian as k is separably closed, so any G torsor over S is trivial.

Step I. PS(p) is a G-torsor. Since O󰁥Eur is faithfully flat over OE and OE is faithfully flat over
S(p), it suffices to show that PO󰁥Eur

is a G-torsor. However the isomorphism in Theorem 2.3(2)
shows that PO󰁥Eur

is a trivial G-torsor.
Step II. PK0 is a G-torsor, where we regard K0 as a S-algebra via u 󰀁→ 0. This follows from

Theorem 2.3(1), which implies the existence of a canonical isomorphism

BdR ⊗Zp L
∼−→ BdR ⊗W M/uM.

Step III. PS[1/pu] is a G-torsor. Let U ⊆ SpecS[1/up] denote the maximal open subset over
which P is flat with non-empty fibres. By Step I, we know this subset is non-empty, since it
contains the generic point. In particular, the complement of U in Spec S[1/up] contains finitely
many closed points.

Let x ∈ SpecS[1/up] be a closed point. If x /∈ U , we consider two cases. If |u(x)| < |π|, then
since the sα are Frobenius invariant, we have PS[1/p]

∼−→ ϕ∗(PS[1/p]) in a formal neighborhood
of x. Hence PS[1/p] cannot be a G-torsor at ϕ(x), since ϕ is a faithfully flat map on S.
Repeating the argument we find ϕ(x), ϕ2(x), . . . /∈ U , which gives a contradiction. Similarly, if
|u(x)| 󰃍 |π|, consider a sequence of points x0, x1, . . . with x0 = x, and ϕ(xi+1) = xi. For i 󰃍 1,
we have PS[1/p]

∼−→ ϕ∗(PS[1/p]) in a formal neighborhood of xi, so we find that xi /∈ U for i 󰃍 1.
Step IV. PS[1/p] is a G-torsor. By Step III, it suffices to show that the restriction of P to

K0[[u]] is a G-torsor. For any N in Modϕ
S there is a unique ϕ-equivariant isomorphism

N ⊗S K0[[u]] ∼−→ K0[[u]] ⊗K0 N/uN[1/p]

lifting the identity map on N/uN ⊗ OK0K0, which is functorial in N (see, for example, [Kis06,
1.2.6]). Applying this to M and the morphisms s̃α shows that the restriction of P to K0[[u]] is
isomorphic to PK0 ⊗K0 K0[[u]], which is a G-torsor by Step II.

Step V. P is a G-torsor. Let U be the complement of the closed point in Spec S. By Steps I
and IV we know that P |U is a G-torsor. By a result of Colliot-Thélène and Sansuc [CS79, Thm.
6.13], P extends to a G-torsor over S and, as we remarked above, any such torsor is trivial.
Hence P |U is trivial, and there is an isomorphism M|U

∼−→ M′|U taking s̃α to sα. Since any
vector bundle over U has a canonical extension to S, obtained by taking its global sections, this
isomorphism extends to S. This implies that P is the trivial G-torsor and completes the proof
of the proposition. □

Corollary 2.5. With the assumptions of 2.4, suppose that G is connected and k is finite. Then
there exists an isomorphism M

∼−→ L ⊗Zp S which takes the tensor s̃α to sα. In particular, the
subgroup GS ⊆ GL(M) defined by (s̃α) is isomorphic to G ×SpecZp SpecS.



8 INTEGRAL MODELS OF SHIMURA VARIETIES OF HODGE TYPE

Proof. As in Theorem 2.4 we set M′ = L ⊗Zp M, and we denote by P ⊆ HomS(M,M′) the
subscheme of isomorphisms between M and M′ which take s̃α to sα. Then P is a G-torsor by
2.4. Since G is connected and k is finite, any such torsor is trivial [Sp79, 4.4], and the corollary
follows. □

Corollary 2.6. Let L be a GK-stable lattice in a crystalline representation V , M = M(L) and
(sα) ⊆ L⊗ a collection of GK-invariant tensors which define a reductive subgroup G of GL(L).
Then we have the following.

(1) If we view (sα) ⊆ Fil0Dcris(V )⊗ via the p-adic comparison isomorphism

Bcris ⊗Zp L
∼−→ Bcris ⊗OK0

Dcris(V ),

then (sα) ⊆ (M/uM)⊗ ⊆ Dcris(V )⊗.
(2) If ksep denotes a separable closure of k, then there exists a W (ksep)-linear isomorphism

L ⊗Zp W (ksep) ∼−→ M/uM ⊗W (k) W (ksep)

taking sα to sα. In particular, (sα) ⊆ (M/uM)⊗ defines a reductive subgroup G′ of
GL(M/uM), which is a pure inner form of G.

(3) If k is finite and G is connected, then there exists a W -linear isomorphism

L ⊗Zp W
∼−→ M/uM

taking sα to sα. In particular, (sα) ⊆ (M/uM)⊗ defines a reductive subgroup G′ ⊆
GL(M/uM), which is isomorphic to G ×Zp

W .

Proof. (1) and (2) follow from 2.4; in fact (1) holds for any GK-invariant tensors, without
assuming that G is reductive. To see that G′ is a pure inner form of G in (2), note that
specializing the torsor P which appears in the proof of 2.4 at u = 0 gives a class in H1(Spec W, G),
and G′ can be obtained from G by twisting by this class.

Finally, (3) follows from Corollary 2.5 once we remark that sα ∈ Dcris(V )⊗ is equal to

s̃α|u=0 : 1 −→ (M/uM)⊗ ↩−→ Dcris(V )⊗,

the final inclusion being given by the first isomorphism of Theorem 2.3(1). The equality is a
formal consequence of the functoriality of this isomorphism. □

Corollary 2.7. Let G be a p-divisible group over OK , and if p = 2 assume that G ∗ is connected.
Let L = TpG ∗, M = M(L) = M(G ), and (sα) ⊆ L⊗ be a collection of GK-invariant tensors
defining a reductive subgroup G ⊆ GL(L). Then

(1) There is a canonical ϕ-equivariant isomorphism ϕ∗(M/uM) ∼−→ D(G0)(W ), where G0 =
G ⊗OK

k.
(2) There exists a W (ksep)-linear isomorphism

L ⊗Zp W (ksep) ∼−→ D(G0)(W ) ⊗W W (ksep)

taking sα to ϕ∗(sα) ∈ D(G0)(W )⊗. In particular, (ϕ∗(sα)) ⊆ D(G0)(W )⊗ defines a
reductive subgroup GW ⊆ GL(D(G0)(W )) which is an inner form of G.

(3) If G is connected and k is finite, then there exists a W -linear isomorphism

L ⊗Zp W
∼−→ D(G0)(W )

taking sα to ϕ∗(sα) ∈ D(G0)(W )⊗. In particular, (ϕ∗(sα)) ⊆ D(G0)(W )⊗ defines a
reductive subgroup GW ⊆ GL(D(G0)(W )) which is isomorphic to G ×Zp W .

(4) The filtration Fil1D(G0)(k) ⊆ D(G0)(k) is given by a cocharacter

µ0 : Gm −→ GW ⊗W k.
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3. Deformation theory

Let k be a perfect field of characteristic p. Let G0 be a p-divisible group over k. Take
M0 = D(G0)(W ) with W = W (k) the Witt ring. Fix a cocharacter µ : Gm → GL(M0) such
that µ0 ≡ µ mod p gives rise to the Hodge filtration on D(G0)(k) = M0 ⊗W k. According to the
Grothendieck–Messing deformation theory, we have G a p-divisible group over W that lifts G0.

Let U◦ ⊆ GL(M0) be the opposite unipotent deformation defined by µ. Let R be the complete
local ring at the identity of U◦. Then

R ∼= W [[t1, . . . , tn]], n = dimW U◦,

equipped with a Frobenius action ϕ : ti 󰀁→ tp
i for 1 󰃑 i 󰃑 n. Put M := M0 ⊗W R and there is a

filtration on M , written the first piece as

Fil1M = (Fil1M0) ⊗W R.

Also, for each tautological R-point u ∈ U◦(R), the composition

Φ : M = M0 ⊗W R M M
ϕ⊗ϕ u

is semi-linear. The work of Faltings shows that there is a p-divisible group GR over R such that

GR ⊗R (R/(t1, . . . , tn)) ≃ G

and GR is a versal deformation of G0. Moreover, there is an isomorphism

D(GR)(R) ≃ M

which is compatible with the actions of Frobenii and filtrations. Whenever R is formally smooth,
there exists an integral connection

∇ : M −→ M ⊗ Ω1
R

such that ϕ∗M → M is parallel.
Let GW ⊆ GL(M0) be a connected reductive group defined by a finite collection of ϕ-invariant

tensors (sα) ⊆ M⊗
0 , such that the Hodge filtration on D(G0)(k) is GW ⊗W k-split. Then we may

take µ : Gm → GW lifting µ0. Denote U0
G ⊆ GW = G the opposite unipotent deformation given

by µ. Then RG is a complete local ring at the identity of U0
G. We may choose the ti such that

RG ≃ R/(tr+1, . . . , tn) = W [[t1, . . . , tr]], r = rankW (G/Fil0G),

where G = Lie(G). Take a totally ramified extension K over K0 = W [1/p].

Proposition 3.1. Suppose that p > 2 or G∗
0 is connected. Let ϖ : R → OK be a map of W -

algebras and Gϖ the induced p-divisible group over OK . Then ϖ factors through RG if and only
if Gϖ is GW -adapted, i.e., there is a collection of ϕ-invariants, say (s̃α) ⊆ D(Gϖ)(S)⊗, lifting
(sα) ⊆ D(G0)(W )⊗, such that

(1) If sα,OK
denotes s̃α in D(Gϖ)(OK)⊗, then

(sα,OK
) ⊆ Fil0(D(Gϖ)(OK)⊗).

(2) The collection (s̃α) deforms a reductive group GS ⊆ GL(D(Gϖ)(S)).

Proof. We first prove the “only if” part. If ϖ : RG → OK to a map ϖ̃ : RG → S. Set s̃α =
ϖ̃(sα ⊗ 1). Then s̃α satisfy conditions (1) and (2). We only need to check that ϖ̃(sα ⊗ 1) are
ϕ-invariant. For this, take

MS := D(Gϖ)(S) = MRG
⊗ S

with the Frobenius action inherited. Then

ϕ∗
S(MS) = ϕ∗ϖ̃∗MRG

∼−−−→
ε

ϕ∗
RG

ϖ̃∗MRG

ϖ̃∗(ϕ⊗1)−−−−−−−→ ϖ̃∗MRG
.

Since each sα is ϕ-invariant, we deduce

ϖ̃∗(ϕ ⊗ 1) ◦ ε(s̃α) = ϖ̃∗(ϕ ⊗ 1)(sα ⊗ 1) = s̃α.
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Conversely, we prove the “if” part. Suppose we obtain (s̃α) that satisfies (1) and (2). Let
ϖ0 : R → W be the natural projection that gives ϖ × ϖ0 : R → OK ×k W . Denote by Gϖ×ϖ0

the p-divisible group over OK ×k W induced by it.
Assume first that p > 2. Then the surjective map W [u] → OK ×k W sending u to (π, 0)

induces a map 󰁥S → OK ×k W . Let G󰁥S = GS ⊗S
󰁥S. It turns out there is a G󰁥S-split filtration on

D(Gϖ( 󰁥S)) which simultaneously lifts the filtration on D(Gϖ(OK)) and the chosen filtration on
D(G )(W ). Since the kernel of 󰁥S → OK ×k W is equipped with topologically nilpotent divided
powers, such a filtration corresponds to a p divisible group Gϖ̃ over 󰁥S, deforming Gϖ×ϖ0 . Since
R is a versal deformation ring for G0, Gϖ̃ is induced by a map ϖ̃ : R → 󰁥S lifting ϖ × ϖ0.

We may identify
D(Gϖ̃)( 󰁥S) = D(Gϖ)( 󰁥S) = D(Gϖ(S)) ⊗S

󰁥S
with M󰁥S := MR ⊗R

󰁥S = M0 ⊗W
󰁥S, and we view s̃α as elements of M⊗

󰁥S . Consider the composite

ϕ∗(M󰁥S) ∼−−−→
ε

ϖ̃∗ϕ∗(MR) ϖ̃∗(ϕ⊗1)−−−−−−−→ ϖ̃∗(MR) = M󰁥S .

The map θ : M0 → M󰁥S = M0 ⊗W
󰁥S is induced by an element of U◦( 󰁥S[1/p]). Hence, viewing s̃α

and sα ⊗ 1 in (M󰁥S ⊗󰁥S K0[[u]])⊗, and applying [Kis10, 1.5.6], we find that s̃α = sα ⊗ 1 and that
θ is induced by a point of U◦

G(K0[[u]]) ∩ U◦( 󰁥S[1/p]) = U◦
G( 󰁥S[1/p]). In particular, each of the two

maps in [Kis10, 1.5.10] sends sα ⊗ 1 to sα ⊗ 1. For ε this holds as ∇󰁥S(sα ⊗ 1) = ∇󰁥S(s̃α) = 0,
while ϖ̃∗(ϕ ⊗ 1) ◦ ε has this property since s̃α is ϕ-invariant. It follows that

ϖ∗(ϕ ⊗ 1) : M0
m 󰀁→m⊗1−−−−−−−→ ϖ̃∗ϕ∗(MR) −→ ϖ̃∗MR = M0 ⊗W

󰁥S

has the form m 󰀁→ Aϕ(m) for some A ∈ U◦
G( 󰁥S). This means that ϖ̃ factors through RG, and

hence so does ϖ.
Finally suppose that G ∗

0 is connected. Then using results of Zink, we can repeat the above
argument with S in place of 󰁥S, even when p = 2: Consider the map S → OK ×k W sending u

to (π, 0), and choose a GS-split filtration on D(Gϖ)(S) which lifts the filtrations on D(G )(W )
and D(Gϖ)(OK). In the terminology of [Zi01] this filtration gives D(Gϖ)(S) the structure of an
S-window over S, and hence gives rise to a p-divisible group Gϖ̃ over S which deforms Gϖ×ϖ0 .
By [Zi02, Corollary 97] the canonical isomorphism D(Gϖ̃)(S) ∼−→ D(Gϖ)(S) respects filtrations.
The rest of the argument is as in the case p > 2. □

Corollary 3.2. Suppose p > 2 or G∗
0 is connected. Let K ′/K be a finite extension and ϖ : R →

OK′ a map of W -algebras inducing a p-divisible group Gϖ over OK′ . Let L = TpG∗
ϖ(−1), and

(sα,et) ⊆ L⊗ a family of GK′-invariant tensors defining a reductive subgroup of GL(L), such
that under the p-adic comparison isomorphism

L ⊗Zp
Bcris

∼−→ M0 ⊗Zp
Bcris,

sα,et maps to sα ∈ M⊗
0 . Then ϖ factors through RG.

4. Integral canonical models for Shimura varieties of Hodge type

We first introduce the Shimura datum (G, X). Let G be a reductive group over Q and X a
conjugacy class of maps of algebraic groups over R, read as

h : S = ResC/R Gm −→ GR.

On R-points, such a map induces a map of real groups C× → G(R). We require that (G, X)
satisfy the following conditions:

(1) For g = Lie GR, the composite

S −→ GR −→ Gad
R −→ GL(g)

defines a Hodge structure of type (−1, 1), (0, 0), (1, −1).



INTEGRAL MODELS OF SHIMURA VARIETIES OF HODGE TYPE 11

(2) h(i) is a Cartan involution on Gad
R .

(3) Gad has no factors whose real points form a compact group.
Let K = KpKp ⊆ G(Af ) be a compact open subgroup. This leads to an algebraic variety

ShK(G, X) over the reflex field E = E(G, X). Then a theorem of Baily–Borel asserts that
ShK(G, X)(C) = G(Q)\X × G(Af )/K.

Lemma 4.1. Let i : (G1, X1) ↩→ (G2, X2) be an embedding of Shimura data and K2,p ⊆ G2(Qp)
be an open compact subgroup. Let K1,p := K2,p ∩ G1(Qp), with K1 = K1,pK1,p ⊆ G1(Ap

f ). Then
there exists a compact open subgroup K2 = K2,pK2,p ⊆ G2(Af ) with K1 ⊆ K2, such that i

induces an embedding
ShK1(G1, X1) ↩→ ShK2(G2, X2).

Fix a finite-dimensional Q-vector space V and ψ : V × V → Q a perfect alternating form.
Take G = GSp(V, ψ) and X = S± the Siegel double space. From these, we obtain ShK(G, X)
over E = Q, a moduli space of polarized abelian varieties, where (G, X) is a Shimura datum
of Hodge type, i.e., there exists an embedding i : (G, X) ↩→ (GSp, S±). Fix compact open
subgroups K ⊆ G(Af ) and K ′ ⊆ GSp(Af ), such that K ⊆ K ′. Also, i induces a morphism

ShK(G, X) −→ ShK′(GSp, S±)
of algebraic varieties over E = E(G, X). Let (sα,B) ⊆ V ⊗ be a finite collection of tensors
defining G ⊆ GSp(V, ψ) ⊆ GL(V ). Let f : A → ShK(G, X) be a pullback of the universal
abelian scheme. Denote

VB := R1fC,∗Q, VdR,C = R1fC,∗Ω•
A/ShK (G,X).

We choose collections (sα,B) ⊆ V⊗
B and (sα,dR) ⊆ V⊗

dR,C. Now let κ ⊃ E be a field of char-
acteristic 0, and κ an algebraic closure of κ. Fix an embedding Qp ↩→ C and an embedding
of E-algebras σ : κ ↩→ C. Let x ∈ ShK(G, X)(κ) and denote by Ax the corresponding abelian
variety over κ. Denote by H1

B(Ax(C),Q) the Betti cohomology of Ax(C). Write H1
dR(Ax) for

its de Rham cohomology and H1
et(Ax,κ) = H1

et(Ax,κ,Qp) for the p-adic étale cohomology of
Ax,κ = Ax ⊗κ κ. The embedding σ induces isomorphisms

H1
dR(Ax) ⊗κ,σ C ∼−→ H1

B(Ax(C),Q) ⊗Q C ∼−→ H1(Ax,κ,Qp) ⊗Qp
C.

Let sα,B,x be the fibre of sα,B at x (regarded as a C-valued point via σ), and denote by sα,dR,x ∈
H1

dR(Ax)⊗ ⊗κ,σ C and sα,et,x ∈ H1
et(Ax,κ)⊗ the images of sα,B,x under these two isomorphisms.

Lemma 4.2. The action of Gal(κ/κ) on H1
et(Ax,κ,Qp) fixes each sα,et,x and factors through

G(Qp). Moreover we have sα,dR,x ∈ H1
dR(Ax)⊗.

Proof. Let ShKp(G, X) = limHp
ShHpKp(G, X), where Hp runs over compact open subgroups

of Kp, and similarly for ShK′p(GSp, S±).
The action of Gal(κ/κ) on H1

et(Ax,κ,Qp) is induced by the map Gal(κ/κ) → K ′
p, obtained

by pulling back to κ the Kp′ -torsor ShK′p(GSp, S±) → ShK′(GSp, S±). On the other hand, we
have a commutative, Kp-equivariant diagram

ShKp(G, X) ShK′p(GSp, S±)

ShK(G, X) ShK′(GSp, S±)

which shows that the restriction of ShK′p(GSp, S±)to ShK(G, X) descends to a Kp-torsor. This
shows that the action of Gal(κ/κ) on H1

ét (Ax,κ,Qp) is induced by a map Gal(κ/κ) → Kp ⊆
G(Qp). In particular this action fixes each sα,et,x.

To see the final statement note that, by a result of Deligne [De82, 2.11], the Hodge cycle
(sα,dR,x, sα,et,x) is an absolute Hodge cycle, for each α. In particular, this implies [De82, 2.7]
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that sα,dR,x ∈ H1
dR(Ax)⊗ ⊗κ κ. Moreover, since an absolute Hodge cycle is determined by either

its de Rham or étale component, Gal(κ/κ) fixes sα,dR,x as it fixes sα,et,x. Hence sα,dR,x ∈
H1

dR(Ax)⊗. □

Now we come to the construction of integral models. Let i : (G, X) ↩→ (GSp(V, ψ), S±) as
before. Assume G is unramified over Qp, i.e. there exists a reductive group GZp over Zp such
that GZp

⊗Zp
Qp = GQp

. Let Kp = GZp
(Zp) and K = KpKp, where Kp ⊆ G(Ap

f ) is an open
compact subgroup. The goal now is to find a smooth integral canonical model SK(G, X) over
O(v) for some place v | p of O ⊆ E(G, X). We will need the following.

Lemma 4.3. Let W be a Qp-vector space and i : GQp ↩→ GL(W ) a closed embedding of algebraic
groups. If p = 2, assume that Gad

Qp
has no factors of type B.1 Suppose that GZp is a reductive

group over Zp with generic fiber GQp
. Then there exists a Zp-lattice WZp

in W such that i is
induced by a closed imbedding

iZp
: GZp

↩−→ GL(WZp
).

Proof. Denote Zur
p a strict henselization of Zp, and write Qur

p = Zur
p [1/p]. Write W ur = W ⊗ZpZur

p

and GZur
p

= GZp
⊗Zp

Zur
p . Then GZp

(Zur
p ) is a bounded subgroup of GQp

(Qur
p ) in the sense that

any regular function on GZur
p

is bounded on GZp
(Zur

p ). Let L be any Zur
p -lattice in W ur. The

boundedness implies that
󰁖

g∈GZp (Zur
p ) g · L is a Zur

p -lattice in W ur. Hence

WZur
p

=
󰁛

γ∈GZp (Zur
p )⋊Γ

γ · L

is a Zur
p -lattice in W ur, where Γ = Gal(Qur

p /Qp). Then it is equipped with a natural GZur
p

-action,
which induces iZur

p
: GZur

p
→ GL(WZur

p
). Since WZur

p
is Γ-stable, iZur

p
arises from a Zp-lattice WZp

of W by étale descent. The map iZur
p

is compatible with the descent data on the source and
target, as this can be checked on generic fibers, so it descends to a map iZp

: GZp
→ GL(WZp

).
Finally, iZp is a closed embedding by Prasad–Yu [PY06, 1.3]. □

Remark 4.4. If p = 2, Kisin assumed that Gad
Qp

has no factors of type B. For a Shimura datum
(G, X) of Hodge type, by Deligne’s classification, factors of type B of Gad

Qp
have simply connected

derived subgroup, for which Prasad–Yu [PY06, 1.3] applies successfully.

Now by Lemma 4.3, there is a lattice VZ of V such that iQp
is induced by an embedding

GZp
↩→ GL(VZp

). Fix such a choice of VZ. Since GZp
has generic fiber G ⊗Q Qp, flat base

change implies that the closure of G in GL(VZ(p)) is a reductive subgroup GZ(p) such that
GZ(p) ⊗Z(p) Zp = GZp

.
Let (sα) ⊆ V ⊗

Z(p)
be a finite collection of tensors defining GZ(p) ⊆ GL(VZ(p)). Let K ′

p ⊆
GSp(Qp) be the stabilizer of VZp , which is a maximal compact subgroup of GSp(Qp) (but is
not hyperspecial in general). By Lemma 4.1 we may choose K ′ = K ′

pK ′p so that i induces an
embedding

ShK(G, X) ↩−→ ShK′(GSp, S±).
We may assume that ψ induces an inclusion VZ ↩→ V ∗

Z into the dual lattice V ∗
Z ⊆ VQ. Let

d = |V ∗
Z /VZ| and write 2g = dimQ V . We attain an embedding ShK(GSp, S±) ↩→ Ag,d,K′ where

the target is the moduli space over Q of abelian varieties with a polarization of degree d and a
K ′p-level structure. It has a natural integral model, and we get an embedding of Z(p)-schemes,
read as

SK′(GSp, S±) ↩−→ Ag,d,K′ .

By the theory of moduli spaces of Mumford, for any Z(p)-scheme T ,
Ag,d,K′(T ) = {(A, λ, εp

K′)}/ ∼,

1This restriction, which arises from the necessary restriction in the result of Prasad–Yu [PY06, 1.3] used in
the proof, is one of the reasons for the restrictions in our results when p = 2.
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where
• A is an abelian scheme over T ,
• λ : A → A∗ is a polarization of degree d, and
• εp

K′ ∈ Γ(T, Isom(VẐp , V̂ p(A))/K ′p), where V̂ p(A) = lim←−p∤n A[n].

Denote by S −
K (G, X) the closure of ShK(G, X) in SK′(GSp, S±)O(v) . From now on we make

the following assumption when p = 2:
(⋄) If p = 2, then the abelian variety over any characteristic p point of S −

K (G, X) has
connected p-divisible group.

Proposition 4.5. Let x ∈ S −
K (G, X) be a closed point with residue field of characteristic p, and

write Ûx := S −
K (G, X)∧

x for the completion of S −
K (G, X) at x. Then the irreducible components

of Ûx are formally smooth over O(v).

Proof. Let k = k(x) and G0 be the p-divisible group over k associated to x. Let F/E be a
finite extension and x̃ ∈ S −

K (G, X)(F ) a point specializing to x. Write W = W (k) and take
the Gal(E/F )-invariant tensors sα,et,x̃ (or sα,p,x̃. These tensors give rise to ϕ-invariant tensors
(sα,0,x̃) ⊆ D(G0)(W )⊗ which defines the reductive group GW ⊆ GL(D(G0)(W )) such that the
Hodge filtration on D(G0)(W ) ⊗W k is GW ⊗ k-split. Let R be the versal deformation ring of
G0. From this we obtain a formally smooth quotient RGW

of R.
Let Û ′

x = SK′(GSp, S±)∧
x be the completion at x. Let j : Û ′

x → Spf R be the induced map
defining the p-divisible group over Û ′

x which arises from the universal family of polarized abelian
schemes over SK′(GSp, S±). Then j is a closed embedding since a polarization on a deformation
of G0 is determined by its restriction to G0.

We claim that the composite

Z ↩−→ Ûx ↩−→ Û ′
x ↩−→ Spf R

factors through Spf RGW
. Granting the claim, since Z and RGW

have the same dimension over
W , we have the isomorphism Z

∼−→ Spf RGW
. As x̃ was an arbitrary point of S −

K (G, X) lifting
x, this proves the proposition.

To prove the claim, by Corollary 3.2, it suffices to check that for any finite extension F ′/F

in E and x̃′ ∈ ShK(G, X)(F ′) lying in Z(F ′
v), the tensor sα,et,x̃′ maps to sα,0,x̃ under the p-adic

comparison theorem. A result of Blasius and Wintenberger [Bla94] asserts that under the p-adic
comparison isomorphism,

IdR(sα,et,x̃′) = sα,dR,x̃′

So it suffices to check that the isomorphism

H1
cris(Ax/W ) ⊗F ′ F ′

v
∼−→ H1

dR(Ax̃′) ⊗F ′ F ′
v

takes sα,0 to sα,dR,x̃′ . Equivalently, we are to check that the composite

I : H1
dR(Ax̃′) ⊗F ′ F ′

v
∼−→ H1

cris(Ax/W ) ⊗F ′ F ′
v

∼−→ H1
dR(Ax̃′) ⊗F ′ F ′

v

takes sα,dR,x̃ to sα,dR,x̃′ . By Berthelot–Ogus [BO83, 2.9], I is given by parallel transport of
Gauss–Manin connection. Since the generic fiber Zη of Z is connected and sα,dR|Zη

is parallel,
we see I(sα,dR,x̃) = sα,dR,x̃′ . This completes the proof. □

Let X be an O(v)-scheme. We say X has the extension property if for any regular, formally
smooth O(v)-scheme S, a map S ⊗ E → X extends to S.

Theorem 4.6. For K = KpKp, let SK(G, X) denote the normalization of S −
K (G, X), and set

SKp(G, X) = lim←−
Kp

SKpKp(G, X),

where Kp ⊆ G(Ap
f ) runs over sufficiently small compact open subgroups of G(Ap

f ). Then, under
the assumption (⋄),
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(1) SKp(G, X) is an inverse limit of smooth O(v)-schemes with finite étale transition maps,
whose restriction to E may be G(Ap

f )-equivariantly identified with ShKp(G, X), i.e.

SKp(G, X) ⊗ E ∼= ShKp(G, X).

(2) SKp
(G, X) has the extension property, and in particular depends only on (G, X) and

Kp, and noto on the symplectic embedding i.

Proof. (1) follows directly from Proposition 4.5. For (2), suppose that S is regular and formally
smooth over O(v). A morphism S ⊗E → SK′

p
(GSp, S±) can be extended to the height 1 primes

by [Mil92, Prop 2.13] and then to all of S by a result of Faltings [Mo98, 3.6]. Hence a morphism
S ⊗ E → ShKp

(G, X) extends to a map S → S −
Kp

(G, X) and this map lifts to SKp
(G, X) since

S is formally smooth; equivalently, the following diagram commutes:

S S −
Kp

(G, X)

SKp(G, X).

This completes the proof of (2). □

Corollary 4.7. Let V◦
dR = R1f∗Ω•

A/SKp (G,X) be the vector bundle on SKp(G, X) by pulling
back the de Rham cohomology of the universal abelian scheme A over SK′

p
(GSp, S±). Then the

section sα,dR ∈ V⊗
dR extends to G(Ap

f )-invariant sections of (V◦
dR)⊗ over O(v).

We comment on recent nontrivial improvements around Theorem 4.6.
• By Kim–Madapusi Pera [KMP16], the assumption (⋄) can be removed. Involving the

use of deformation theory, such a result depends on the following ingredients:
(i) The Vasin–Zink parity, which implies the Faltings purity.
(ii) The classification of p-divisible groups over some 2-adic discrete valuation ring, by

Kim and Lavi.
• By Y. Xu [Xu20], we are able to prove

SK(G, X) ∼−→ S −
K (G, X) ⊆ SK′(GSp, S±).

The following gives more details in Y. Xu’s work. Write

S−
K,K′(G, X) := S−

K(G, X) ⊆ SK′(GSp, S±).

Lemma 4.8. Either of the following two statements hold:
(1) either there is a sufficiently small open compact subgroup K ′ such that

SK(G, X) ∼−→ S −
K,K′(G, X),

(2) or there are distinct points x, x′ ∈ SK(G, X)(k), which have the same image in SK′(GSp, S±)
for all K ′ ⊇ K.

Moreover, in case (2), sα,ℓ,x = sα,ℓ,x′ for ℓ ∕= p.

We also consider the ℓ-adic tensors with ℓ = p. For any finite extension F of E, x ∈
SK(G, X)(k), and its lifting x̃ ∈ SK(G, X)(F ), the isomorphism

H1
et(Ax̃,F ) ⊗Qp

Bcris
∼−→ H1

cris(Ax/W ) ⊗W Bcris

takes sα,p,x̃ to sα,cris,x̃ = sα,0,x̃. By the result of Kisin, we have
• The tensor sα,cris,x̃ depends only on x, and hence we can only concern about sα,cris,x.
• Both x, x′ ∈ SK(G, X)(k) have the same image in SK,K′(G, X). Then x = x′ if and

only if sα,cris,x = sα,cris,x′ .
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The general sense is that crystalline collections overdetermines the point x. This is relatively
clear when ℓ = p, and indeed, it also holds for ℓ ∕= p. Therefore, it suffices to show that

Lemma 4.9. sα,ℓ,x = sα,ℓ,x′ if and only if sα,cris,x = sα,cris,x′ .

Obtaining this, we are able to apply the CM lifting on SK(G, X) by Kisin.
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