STALKS OF AUTOMORPHIC VOGAN SHEAVES FOR THE STEINBERG PARAMETER OF GL_n

1. The main conjecture

1.1. **Vogan sheaf.** We first fix notation to define the Vogan stack, and then construct the Vogan sheaf with weight.

Notation 1.1. We use the same notation as in David's talk.

- For $n \ge 2$, take $G = GL_n$ over a finite extension E/\mathbb{Q}_p with residue field \mathbb{F}_q . Take coefficient ring $\Lambda = \overline{\mathbb{Q}}_\ell$ with $\ell \ne p$ and fix $q^{1/2} \in \Lambda$.
- Let $T \subset B \subset G$ be the maximal split torus and the standard Borel in G. For $1 \leq i \leq n-1$, denote by $\alpha_i := e_i e_{i+1} \in \mathbf{X}^*(\hat{T})$ the simple roots of GL_n .
- Let φ be the semisimple L-parameter such that $\varphi(I_F) = 1$ and $\varphi(Fr) = \delta^{1/2}$, where Fr is the geometric q-Frobenius and

$$\delta^{1/2} := \operatorname{diag}(q^{(1-n)/2}, \dots, q^{(n-1)/2}) \in \hat{T}(\Lambda).$$

Note that the finite Weyl group $W = S_n$ acts on $\delta^{1/2}$ by permuting the diagonal elements, so we get the G-conjugacy class $[\varphi] \in (\hat{T}/W)(\Lambda)$.

With Notation 1.1, we construct the Vogan sheaf \mathcal{L}_{k} as follows. Recall from [Han23, §1.3] that the Vogan stack $V_{\hat{G},\varphi}$ at φ parametrizes nilpotent elements $N \in \mathfrak{g}^{\operatorname{ad} \varphi(I_{F})}$ such that $\operatorname{ad} \varphi(\operatorname{Fr}) \cdot N = q^{-1}N$ up to S_{φ} -conjugacy, where $S_{\varphi} \coloneqq \operatorname{Cent}_{\hat{G}}(\varphi)$. For $G = \operatorname{GL}_{n}$, we have

$$V_{\hat{G},\varphi} = \mathbb{A}^{n-1}/\hat{T} \xrightarrow{\iota} \operatorname{Par}_{\hat{G}}^{\operatorname{unip}}$$

$$\downarrow \\ \mathbb{B}\hat{T}$$

as a closed substack of the stack of unipotent L-parameters for \hat{G} . This diagram depends only on $[\varphi]$. Note that ι factors through $\operatorname{Par}_{\hat{G}}^{\operatorname{ur}} \hookrightarrow \operatorname{Par}_{\hat{G}}^{\operatorname{unip}}$ because of the condition $\varphi(I_F) = 1$.

We then fix $\mathbf{k} = (k_1, \dots, k_n) \in \mathbf{X}^*(\hat{T})$ and consider its associated weight character

$$\chi_{\mathbf{k}} : \operatorname{diag}(t_1, \dots, t_n) \longmapsto t_1^{k_1} \cdots t_n^{k_n}$$

on $\hat{T} = \mathbb{G}_{\mathrm{m}}^n$, valued in Λ^{\times} . Viewing this χ_k as a coherent sheaf on $\mathbb{B}\hat{T}$, its pull-push along the diagram above yields a coherent sheaf

$$\mathcal{L}_{\boldsymbol{k}} \coloneqq \iota_* \mathcal{O}(\boldsymbol{k}) \in \operatorname{Coh}(\operatorname{Par}_{\hat{G}}^{\operatorname{unip}}),$$

where $\mathcal{O}(\mathbf{k})$ on \mathbb{A}^{n-1}/\hat{T} is the pullback of $\chi_{\mathbf{k}}$ from $\mathbb{B}\hat{T}$.

1.2. The Steinberg stalk. Assume the categorical local Langlands equivalence. Then \mathcal{L}_{k} corresponds to an automorphic sheaf $\mathcal{L}_{k}^{\text{aut}}$ on Bun_{G} . As we are interested in the smooth irreducible representation corresponding to \mathcal{L}_{k} , we aim to compute the stalk $i_{1}^{*}\mathcal{L}_{k}^{\text{aut}}$, where $i_{1} : \text{Rep}(G(E), \Lambda) \to D_{\text{lis}}(\text{Bun}_{G}, \Lambda)$. More generally, one can also consider $i_{b}^{*}\mathcal{L}_{k}^{\text{aut}}$ for basic $b \in B(G)_{\text{bas}}$, with $i_{b} : \text{Rep}(G_{b}(E), \Lambda) \to D_{\text{lis}}(\text{Bun}_{G}^{b}, \Lambda)$. In the GL_{n} case, this is called the *Steinberg stalk* as it turns out to be some generalized Steinberg representation π_{I} defined as follows, up to a cohomological degree shift (see Conjecture 1.4).

Definition 1.2. Given a subset $I \subset \{1, \ldots, n-1\}$ with elements $i_1 < \cdots < i_k$, we obtain the standard parabolic subgroup P_I with Levi $\operatorname{GL}_{i_1} \times \operatorname{GL}_{i_2-i_1} \times \cdots \times \operatorname{GL}_{i_k-i_{k-1}} \times \operatorname{GL}_{n-i_k}$. Define the generalized Steinberg representation π_I as the unique irreducible quotient of $\mathcal{C}(P_I(E) \setminus G(E), \Lambda)$.

Date: September 8, 2025.

Note that the $\pi_{\rm I}$'s are exactly the irreducible representations whose semisimple L-parameter is φ (corresponding to $\delta^{1/2}$). It is a standard fact that the map ${\rm I} \mapsto \pi_{\rm I}$ assigned by Definition 1.2 above is actually a canonical bijection.

We point out that in Zhu's context [Zhu25], the construction of $\mathcal{L}_{k}^{\text{aut}}$ from \mathcal{L}_{k} is unconditional at the tame level. In this note, we work for simplicity at the unipotent level, and then Zhu's proof yields an equivalence functor \mathbb{L}^{unip} . To apply Zhu's result, we need to change Bun_{G} to Isoc_{G} , and replace D_{lis} with the sheaf theory on Isoc_{G} . Moreover, the stalk $i_{b}^{*}\mathcal{L}_{k}^{\text{aut}}$ must be written as $i_{b}^{!}\mathcal{L}_{k}^{\text{aut}}$ instead; see [Zhu25, 1.2.1, 1.2.3] for more background.

1.3. Inner forms. Pick any integer d and let $b_{d/n} = b_d$ be the basic isocrystal of slope d/n. Write n' := n/(d,n) and d' := d/(d,n) (where we declare (0,n) = n). Take $D_{d'/n'}$ as the unique central division algebra over E with Brauer invariant $d'/n' \in \mathbb{Q}/\mathbb{Z}$. Then $G_{\mathbf{b}_d} = \mathrm{GL}_{(d,n)}(D_{d'/n'})$ gives an inner form of G (recall that for $G = \mathrm{GL}_n$ over E, any inner form must be of the form $\mathrm{GL}_m(D)$ with $\deg D = n/m$). Note that $G_{\mathbf{b}_d}$ depends only on $d \mod n$, because the image of Brauer invariant d'/n' in \mathbb{Q}/\mathbb{Z} depends only on $d \mod n$.

Fact 1.3. There is a canonical bijection between generalized Steinberg representations of G_{b_d} and subsets $I \subset \{1, \ldots, (d, n) - 1\}$.

Due to this fact, we can generalize the previous construction $I \mapsto \pi_I$ from representations of G(E) to representations of $G_{b_d}(E)$.

1.4. The main conjecture. Fix integers d, n as before. For $\mathbf{k} = (k_1, \dots, k_n) \in \mathbf{X}^*(\hat{T})$ of degree d, i.e., $k_1 + \dots + k_n = d$, there are unique integers $m_i \in \mathbb{Z}$ such that

$$\mathbf{k} = \boldsymbol{\omega}_d + \sum_{1 \leqslant i \leqslant n-1} m_i \alpha_i.$$

Here $\omega_d \in \mathbf{X}^*(\hat{T})$ is called the *Steinberg weight vector* of G_{b_d} , defined as

$$\omega_d := (\lceil d/n \rceil, \lceil 2d/n \rceil - \lceil d/n \rceil, \cdots, d - \lceil (n-1)d/n \rceil).$$

Notice that ω_d is an *n*-tuple of degree d. In particular, $k - \omega_d$ is of degree 0.

With the notations above, we state the main conjecture as follows.

Conjecture 1.4 (Hansen). Fix n, d as before. Suppose k has degree d. For each $1 \le i \le n-1$, define $\delta_i \in \{0,1\}$ by setting $\delta_i = 1$ if and only if n' = n/(d,n) divides i. Then we expect

$$i_{\mathrm{b}_d}^* \mathcal{L}_{\boldsymbol{k}}^{\mathrm{aut}} = \pi_{\mathrm{I}_{\boldsymbol{k}}} \left[\sum_{j \in \mathrm{J}_{\boldsymbol{k}}} (\delta_j - 2m_j) \right]$$

between derived complexes in $\operatorname{Rep}(G_{\mathbf{b}_d}(E), \Lambda)$ that are concentrated in degree 0. Here,

- $\circ I_{\mathbf{k}} := \{i \in \{1, \dots, (d, n) 1\} \mid m_{n'i} \leq 0\};$
- $\circ J_{\mathbf{k}} := \{ i \in \{1, \dots, n-1\} \mid m_i > 0 \};$
- $\circ \ \pi_{I_{\mathbf{k}}} \ is \ the \ unique \ generalized \ Steinberg \ representation \ of \ G_{b_d}(E) \ corresponding \ to \ I_{\mathbf{k}}.$

In fact, the stalk $i_{\mathrm{b}_d}^*\mathcal{L}_{\boldsymbol{k}}^{\mathrm{aut}}$ is identically zero unless \boldsymbol{k} has degree d. To check this, note that the central character $\omega_{\boldsymbol{k}}$ of \boldsymbol{k} on $Z(\hat{G}) = \mathbb{G}_{\mathrm{m}}$ is given by $\omega_{\boldsymbol{k}} \colon z \mapsto z^{k_1 + \dots + k_n}$; on the other hand, along the Kottwitz map $\kappa_G \colon \mathrm{B}(G) \to \mathbf{X}_*(Z(\hat{G})^\Gamma)$, we always have $\kappa_G(\mathrm{b}_d) = d \bmod n$ for $G = \mathrm{GL}_n$.

2. Proof of Conjecture 1.4 for b = 1

In this section, we prove Conjecture 1.4 for the special case b = 1, achieved by taking d = 0. Note that when d = 0, we have the following ingredients in practice.

- $\circ G_{\mathbf{b}_d} = G = \mathrm{GL}_n.$
- o (d, n) = (0, n) = n, which forces $I_{k} = \{i \in \{1, ..., n 1\} \mid m_{i} \leq 0\} = \{1, ..., n 1\} \setminus J_{k}$ to hold, and $\delta_{i} = 1$ for all $1 \leq i \leq n 1$.
- $\circ \mathbf{k} = (k_1, \dots, k_n)$ is of degree $k_1 + \dots + k_n = 0$ (with this degree condition, we attain $\mu_{\mathbf{k}} := k_1 e_1 + \dots + k_n e_n = k_1 \alpha_1 + (k_1 + k_2) \alpha_2 + \dots + (k_1 + \dots + k_{n-1}) \alpha_{n-1}$ by substituting $\alpha_j = e_j e_{j+1}$, and thus $m_j = k_1 + \dots + k_j$).

Therefore, Conjecture 1.4 for b = 1 can be simplified into the following statement.

Theorem 2.1. In Rep(GL_n(E), Λ), for $\mathbf{k} = (k_1, \dots, k_n)$ of degree 0, we have

$$i_1^* \mathcal{L}_{k}^{\text{aut}} = \pi_{I_{k}} \left[\sum_{j \notin I_{k}} (1 - 2m_j) \right],$$

where $m_j = k_1 + \cdots + k_j$.

The main strategy to prove Theorem 2.1 is first reducing to computation of some RHom-complex of derived sheaves on Steinberg stack by arguing with Jacquet module, and then constructing a free projective resolution to get the cohomology of this RHom-complex.

2.1. Jacquet module and coherent Springer sheaf. Recall that we have defined the semisimple L-parameter φ by $\delta^{1/2}$, whose corresponding smooth irreducible representations of $GL_n(E)$ are exactly π_I 's (where the monodromy of the Weil–Deligne parameter is parametrized by I). Thus, the stalk $i_1^*\mathcal{L}_k^{\text{aut}}$ must be a Steinberg representation up to shift. On the other hand, each π_I can be characterized among all generalized Steinberg representations by its Jacquet module $\mathbf{r}_G^B(\pi_I)$.

Proposition 2.2. For any $I \subset \{1, ..., n-1\}$, the Jacquet module of π_I admits a direct sum decomposition

$$\mathbf{r}_G^B(\pi_{\mathrm{I}}) = \bigoplus_{\sigma} \sigma(\delta^{1/2}),$$

where the direct sum runs over $\sigma \in S_n$ such that $I = P_{\sigma}$ with $P_{\sigma} := \{i \in \{1, ..., n-1\} \mid \sigma^{-1}(i) < \sigma^{-1}(i+1)\}.$

Proof. This is essentially proved in [Zel80, §2]; we omit the details.

Example 2.3. Taking $I = \{1, ..., n-1\}$ in Proposition 2.2, we get $\mathbf{r}_G^B(\pi_I) = \mathbf{r}_G^B(\operatorname{St}) = \delta^{1/2}$. This coincides with the usual characterization of the (generic) Steinberg representation.

By Proposition 2.2, to compute the (semi-simplified part of) cohomology of $i_1^*\mathcal{L}_k^{\text{aut}}$, it suffices to compute that of its Jacquet module. Applying [HHS24, Corollary 2.2.1], we rewrite this Jacquet module via the constant term functor as

$$\mathbf{r}_G^B i_1^* \mathcal{L}_{\mathbf{k}}^{\mathrm{aut}} = i_1^{*,T} \mathrm{CT}_{B,!} \mathcal{L}_{\mathbf{k}}^{\mathrm{aut}}$$

But the right hand side can be computed on spectral side, where automorphic sheaf $CT_{B,!}\mathcal{L}_{k}^{aut}$ corresponds to $CT_{B}^{Spec}\mathcal{L}_{k} := \mathfrak{p}_{*}^{Spec}\mathfrak{q}^{Spec,!}\mathcal{L}_{k}$; the spectral behavior of $i_{1}^{*,T}$ is the restriction of sheaves on $Par_{\hat{T}}^{unip} = \hat{T} \times \mathbb{B}\hat{T}$ to the part with trivial $\mathbb{B}\hat{T}$.

$$\operatorname{Par}_{\hat{B}}^{\operatorname{unip}}$$

$$\hat{T} \times \mathbb{B}\hat{T} = \operatorname{Par}_{\hat{T}}^{\operatorname{unip}}$$

$$\operatorname{Par}_{\hat{G}}^{\operatorname{unip}} \longleftarrow V_{\hat{G},\varphi}$$

Thus, the essential difficulty lies in computing $\mathfrak{q}^{\text{Spec},!}\mathcal{L}_{k}$. To compute this !-pullback, take $V_{\hat{G},\varphi}^{\wedge}$ and $\operatorname{Par}_{\hat{G}}^{\text{unip},\wedge}$ to be the formal completions of $V_{\hat{G},\varphi}$ and $\operatorname{Par}_{\hat{G}}^{\text{unip}}$, respectively. So we have $\hat{\iota}$ and $\hat{\mathfrak{q}}^{\text{Spec}}$ below.

$$\operatorname{Par}_{\hat{B}}^{\operatorname{unip}} \longleftarrow V_{\hat{B},\varphi}^{\wedge}$$

$$\operatorname{Par}_{\hat{G}}^{\operatorname{Spec}} \stackrel{\hat{\mathfrak{g}}^{\operatorname{Spec}}}{\longleftarrow} V_{\hat{G},\varphi}^{\wedge}$$

Let $V_{\hat{B},\varphi}^{\wedge}$ be the pullback of $V_{\hat{G},\varphi}^{\wedge}$ along $\hat{\mathfrak{q}}^{\mathrm{Spec}}$. The result below describes these formal stacks.

Proposition 2.4 (Xianggian Yang, see [Yan25, Proposition 3.12]).

(1) As formal stacks, there is an isomorphism

$$V_{\hat{G},\omega}^{\wedge} \simeq (\operatorname{Spf} \Lambda[v_1,\ldots,v_{n-1}][[u_1,\ldots,u_n]]/(u_1v_1,\ldots,u_{n-1}v_{n-1}))/\hat{T}.$$

(2) For each $\sigma \in S_n$, denote $P_{\sigma} := \{i \in \{1, \dots, n-1\} \mid \sigma^{-1}(i) < \sigma^{-1}(i+1)\}$ and let Q_{σ} be its complement in $\{1, \dots, n-1\}$. Then

$$V_{\hat{B},\varphi}^{\wedge} \simeq \coprod_{\sigma \in S_n} (\operatorname{Spf} \Lambda[v_i]_{i \in P_{\sigma}} \llbracket u_1, \dots, u_n \rrbracket / (u_i v_i)_{i \in P_{\sigma}}) / \hat{T}.$$

In all formal stacks above, \hat{T} acts on formal variable u_i trivially with weight 0 and acts on v_i with weight $\alpha_i \in \mathbf{X}^*(\hat{T})$.

Proof. We morally sketch the proof idea in [Yan25] in the special case $G = GL_2$. When n = 2, we have $\delta^{1/2} = \text{diag}(q^{-1/2}, q^{1/2})$. Given a Weil–Deligne parameter (φ, N) where φ is semisimple, it corresponds to a point (x, y) on completed Vogan variety with condition ad $\varphi(\text{Fr}) \cdot N = q^{-1}N$, described by

$$V_{\hat{G},\varphi}^{\wedge} = \left\{ x = \left(\begin{smallmatrix} u_1 & 0 \\ 0 & u_2 \end{smallmatrix} \right), \ y = \left(\begin{smallmatrix} 1 & v_1 \\ 0 & 1 \end{smallmatrix} \right) \mid u_1 \equiv q^{-1/2}, \ u_2 \equiv q^{1/2}, \ (qu_1 - u_2)v_1 = 0 \right\} / \hat{T}.$$

Here \hat{T} acts on x trivially, and acts on y by weight α_1 . This proves assertion (1) for GL_2 .

For assertion (2), up to \hat{G} -conjugacy, the Weyl group $W = S_2$ permutes diagonal entries of x, and hence $V_{\hat{B},\omega}^{\wedge}$ consists of two components

$$V_{\hat{B},\varphi}^{\wedge} = X_{\emptyset} \sqcup X_{\{1\}}.$$

Here X_{\emptyset} corresponds to $\sigma = \operatorname{id}$ and $Q_{\sigma} = \emptyset$, on which the points are (x, y) such that $x \equiv \operatorname{diag}(q^{-1/2}, q^{1/2})$ and $y \in B$; notice that on X_{\emptyset} , we always have $qu_1 - u_2 = 0$ so the variable v_1 is free. Also, $X_{\{1\}}$ corresponds to $\sigma = (12)$ and $Q_{\sigma} = \{1\}$, on which $x \equiv \operatorname{diag}(q^{1/2}, q^{-1/2})$ and $y \in B$; but $qu_1 - u_2 \neq 0$ on $X_{\{1\}}$, so the condition forces $v_1 = 0$. This completes the proof for $G = \operatorname{GL}_2$.

Notation 2.5. To further simplify the notation, write

$$X_{\sigma} := (\operatorname{Spf} \Lambda[v_i]_{i \in P_{\sigma}} [u_1, \dots, u_n] / (u_i v_i)_{i \in P_{\sigma}}) / \hat{T}.$$

Then each X_{σ} is defined by setting $v_j=0$ for $j\in \mathcal{Q}_{\sigma}$ inside $V_{\hat{G},\varphi}^{\wedge}$; in particular, $X:=X_{\mathrm{id}}=V_{\hat{G},\varphi}^{\wedge}$. So X_{σ} is viewed as a closed substack via $i_{\sigma}\colon X_{\sigma}\hookrightarrow X$. As for the global sections, we take

$$\mathcal{O}_{X_{\sigma}} = \Lambda[v_i]_{i \in P_{\sigma}} \llbracket u_1, \dots, u_n \rrbracket / (u_i v_i)_{i \in P_{\sigma}}$$

and also set $\mathcal{O}_X/\mathbf{u} := \mathcal{O}_{X_{\mathrm{id}}}/(u_1,\ldots,u_n) = \Lambda[v_1,\ldots,v_{n-1}].$

Throughout the notes, we use the convention that the automorphic Vogan sheaf $\mathcal{L}_{\mathbf{k}}^{\text{aut}}$ corresponds to the spectral weight sheaf $(\mathcal{O}_X/\mathbf{u})(\mu_{\mathbf{k}})$ for $\mu_{\mathbf{k}} = k_1 e_1 + \cdots + k_n e_n = m_1 \alpha_1 + \cdots + m_{n-1} \alpha_{n-1}$.

Now, with notations above, the unipotent categorical local Langlands functor \mathbb{L}^{unip} (which is an equivalence in [Zhu25]) interpolates the equality

$$\mathbb{L}^{\mathrm{unip}}(\mathcal{L}_{\mathbf{k}}^{\mathrm{aut}}) = \hat{\iota}_*(\mathcal{O}_X/\mathbf{u})(\mu_{\mathbf{k}}) \in \mathrm{Coh}(\mathrm{Par}_{\hat{G}}^{\mathrm{unip},\wedge}).$$

On the other hand, to input the condition b = 1 (so that $G_b = G$), recall that the Iwahori compact induction of the trivial representation corresponds to the unipotent coherent Springer sheaf, i.e.,

$$\mathbb{L}^{\mathrm{unip}}(\mathrm{c\text{-}Ind}_{I}^{G}\mathbb{1}) = \mathrm{CohSpr}^{\mathrm{unip}} \coloneqq \hat{\mathfrak{q}}_{*}^{\mathrm{Spec}}\mathcal{O}_{\mathrm{Par}_{\hat{G}}^{\mathrm{unip}}} \in \mathrm{Coh}(\mathrm{Par}_{\hat{G}}^{\mathrm{unip},\wedge}).$$

For our purpose of computing $i_1^*\mathcal{L}_{\boldsymbol{k}}^{\mathrm{aut}}$, it suffices to compute

$$\operatorname{RHom}(\operatorname{c-Ind}_{I}^{G}\mathbb{1}, \mathcal{L}_{k}^{\operatorname{aut}}) \cong \operatorname{RHom}(\operatorname{CohSpr}^{\operatorname{unip}}, \hat{\iota}_{*}(\mathcal{O}_{X}/\boldsymbol{u})(\mu_{k})),$$

where the isomorphism is due to the full faithfulness of \mathbb{L}^{unip} . However, as a consequence of Proposition 2.4(2), there is a natural isomorphism

$$\hat{\iota}^!(\operatorname{CohSpr}^{\operatorname{unip}}) \cong \bigoplus_{\sigma \in S_n} \mathcal{O}_{X_{\sigma}}$$

of ind-coherent sheaves on X. Here each $\mathcal{O}_{X_{\sigma}}$ is viewed as an \mathcal{O}_{X} -module via the closed embedding $i_{\sigma} \colon X_{\sigma} \hookrightarrow X$.

To summarize, combining all the arguments above, the computation of $i_1^* \mathcal{L}_{k}^{\text{aut}}$ reduces to computing the direct sum of derived complexes

$$\bigoplus_{\sigma \in S_n} \mathrm{RHom}(\mathcal{O}_{X_\sigma}, (\mathcal{O}_X/\boldsymbol{u})(\mu_{\boldsymbol{k}})).$$

Remark 2.6. In (†), there are $|S_n| = n!$ direct summands, and each summand is determined by $P_{\sigma} \subset \{1, \ldots, n-1\}$ that has in total $2^{n-1} < n!$ different choices. Indeed, there is an explicit combinatorial formula for the fiber size of the map $\sigma \mapsto P_{\sigma}$ at each subset $I \subset \{1, \ldots, n-1\}$. Moreover, this fiber size is equal to the multiplicity of π_I appearing in the cohomology $H^*(i_1^*\mathcal{L}_k^{\operatorname{aut}})$. (Granting Theorem 2.1, we expect the cohomology of $\operatorname{RHom}(\mathcal{O}_{X_{\sigma}}, (\mathcal{O}_X/u)(\mu_k))$ to be concentrated in certain single degree, and so also is that of $i_1^*\mathcal{L}_k^{\operatorname{aut}}$; but these two degrees are a priori not necessarily the same.)

Suppose $I = P_{\sigma}$ for some $\sigma \in S_n$. On the spectral side, this multiplicity of π_I can also be interpreted as the multiplicity of the image of X_{σ} , as a closed substack of $\operatorname{Par}_{\hat{B}}^{\operatorname{unip}, \wedge}$, inside $\operatorname{Par}_{\hat{T}}^{\operatorname{unip}, \wedge} = \hat{T} \times \mathbb{B}\hat{T}$ along $\mathfrak{p}^{\operatorname{Spec}}$. On the automorphic side, in the context of Yang–Zhu's proof of torsion vanishing [YZ25], taking the global section of \hat{T} -part in $\operatorname{Par}_{\hat{T}}^{\operatorname{unip}, \wedge}$ gives a commutative Λ -algebra $\mathcal{O}(\hat{T})$ (also denoted by \mathcal{R} in [Yan25]), which essentially corresponds to the universal unramified character of T. This $\mathcal{O}(\hat{T})$ acts on CohSpr^{unip} and hence on (\dagger) above. Using this setting, we identify the multiplicity of π_I in $\operatorname{H}^*(i_1^*\mathcal{L}_k^{\operatorname{aut}})$ with the length of $\operatorname{H}^*(\operatorname{RHom}(\mathcal{O}_{X_{\sigma}}, (\mathcal{O}_X/u)(\mu_k)))$ as an $\mathcal{O}(\hat{T})$ -module.

2.2. A projective resolution. Continue with the computation of (†). We aim to compute cohomology of $\mathrm{RHom}(\mathcal{O}_{X_{\sigma}},(\mathcal{O}_X/\boldsymbol{u})(\mu_{\boldsymbol{k}}))$ for each $\sigma\in S_n$. The technical strategy is to construct a free projective resolution

$$\mathcal{P}_{\bullet} \longrightarrow \mathcal{O}_{X_{\sigma}} = \mathcal{O}_X/(v_i)_{i \in \mathbb{Q}_{\sigma}} \longrightarrow 0,$$

of \mathcal{O}_X -modules, satisfying the \hat{T} -equivariant condition.

Construction 2.7. Fix an arbitrary subset $Q \subset \{1, ..., n-1\}$. Then $Q = Q_{\sigma}$ for some $\sigma \in S_n$. We use the following notations.

- Define $\mathbb{N}^{\mathbb{Q}} := \{ \boldsymbol{d} = (d_i)_{i \in \mathbb{Q}} \mid d_i \in \mathbb{Z}_{\geqslant 0} \};$
- For each $d \in \mathbb{N}^{\mathbb{Q}}$, write $|d| \coloneqq \sum_{i \in \mathbb{Q}} d_i$ and define the weight

$$\chi_{\mathbf{d}} \coloneqq \sum_{i \in \mathbb{Q}} \lceil d_i/2 \rceil \alpha_i.$$

For $t \geq 0$, construct the t-th term of \mathcal{P}_{\bullet} by

$$\mathcal{P}_t := \bigoplus_{\boldsymbol{d} \in \mathbb{N}^{\mathbb{Q}}, |\boldsymbol{d}| = t} \mathcal{O}_X(\chi_{\boldsymbol{d}}).$$

This \mathcal{P}_t is a free \mathcal{O}_X -module with a basis denoted by $\{\mathbf{e}_d\}_{|d|=t}$. When t=0, the condition |d|=0 forces $d_i=0$ for all $i\in Q$, and thus $\mathcal{P}_0=\mathcal{O}_X$. For each $\sigma\in S_n$, the projection map $\mathcal{P}_0\twoheadrightarrow\mathcal{O}_{X_\sigma}$ is given by the natural quotient setting $v_i=0$ for $i\in Q_\sigma$.

Next, we construct the differential map $\partial \colon \mathcal{P}_{t+1} \to \mathcal{P}_t$ by giving the image of each \mathbf{e}_d as follows:

$$\partial(\mathbf{e}_{\boldsymbol{d}}) = \sum_{i \in \mathcal{Q}, d_i > 0} (-1)^{\varepsilon(i, \boldsymbol{d})} \vartheta(d_i) \cdot \mathbf{e}_{\boldsymbol{d} - \boldsymbol{e}_i}.$$

The notations in this formula are explained below.

- o Given variables v_i, u_i in \mathcal{O}_X , we set $\vartheta_i(r) = v_i$ when r is odd, and set $\vartheta_i(r) = u_i$ when r is even
- Define $\varepsilon(i, \mathbf{d}) \coloneqq \sum_{j \in Q_{< i}} d_j$, where $Q_{< i} = Q \cap \{1, \dots, i-1\}$; we also declare $\varepsilon(1, \mathbf{d}) = 0$.
- The e_i is the |Q|-tuple with 1 on its *i*-th coordinate and 0 elsewhere; set $e_{d-e_i} = 0$ if any coordinate of $d e_i$ is negative.

Note that the resolution \mathcal{P}_{\bullet} depends on Q, but we omit Q from the notation.

Lemma 2.8. The differential map $\partial: \mathcal{P}_{t+1} \to \mathcal{P}_t$ in Construction 2.7 satisfies $\partial \circ \partial = 0$.

Proof. We compute $(\partial \circ \partial)(\mathbf{e_d})$. This is a linear combination of elements $\mathbf{e_{d-e_i-e_j}}$. When i=j, the coefficient of $\mathbf{e_{d-2e_i}}$ is given by

$$(-1)^{\varepsilon(i,d)+\varepsilon(i,d-e_i)}\vartheta_i(d_i)\vartheta_i(d_i-1) = (-1)^{\varepsilon(i,d)+\varepsilon(i,d-e_i)}u_iv_i = 0,$$

because we have $u_i v_i = 0$ in \mathcal{O}_X . So it only remains to consider the case $i \neq j$. Note that there are two ways to get $\mathbf{e}_{\mathbf{d}-\mathbf{e}_i-\mathbf{e}_j}$ from $\mathbf{e}_{\mathbf{d}}$, namely through either $\mathbf{e}_{\mathbf{d}-\mathbf{e}_i}$ or $\mathbf{e}_{\mathbf{d}-\mathbf{e}_j}$. So the coefficient of $\mathbf{e}_{\mathbf{d}-\mathbf{e}_i-\mathbf{e}_j}$

in $(\partial \circ \partial)(\mathbf{e_d})$ is computed as

$$(-1)^{\varepsilon(i,\boldsymbol{d})+\varepsilon(j,\boldsymbol{d}-\boldsymbol{e}_i)}\vartheta_i(d_i)\vartheta_j(d_j) + (-1)^{\varepsilon(j,\boldsymbol{d})+\varepsilon(i,\boldsymbol{d}-\boldsymbol{e}_j)}\vartheta_j(d_j)\vartheta_i(d_i).$$

But we always have $\varepsilon(j, \mathbf{d} - \mathbf{e}_i) = \varepsilon(j, \mathbf{d}) - \mathbbm{1}_{i < j}$, where $\mathbbm{1}_{i < j} \in \{0, 1\}$ is the characteristic function to test whether i < j is true or not; similarly, $\varepsilon(i, \mathbf{d} - \mathbf{e}_j) = \varepsilon(i, \mathbf{d}) - \mathbbm{1}_{j < i}$. Thus, for arbitrary i and j, the two exponents of -1 above always differ by 1, so this coefficient equals zero.

Lemma 2.9. The resolution \mathcal{P}_{\bullet} in Construction 2.7 is \hat{T} -equivariant.

Proof. Recall that \hat{T} acts on v_i with weight α_i and acts on u_i with weight 0. Fix $\chi \in \mathbf{X}^*(\hat{T})$. We claim that the following two multiplication maps of \mathcal{O}_X -modules are \hat{T} -equivariant:

$$v_i : \mathcal{O}_X(\chi) \longrightarrow \mathcal{O}_X(\chi - \alpha_i), \qquad u_i : \mathcal{O}_X(\chi) \longrightarrow \mathcal{O}_X(\chi)$$

Indeed, it suffices to consider the case $\chi = m\alpha_i$ for some $m \in \mathbb{Z}_{\geqslant 0}$, so $\chi - \alpha_i = (m-1)\alpha_i$. To check the first map, for $t \in \hat{T}$, note that $t.(v_ia) = \alpha_i(t) \cdot v_i(t.a)$ for any section a in \mathcal{O}_X . So in $\mathcal{O}_X((m-1)\alpha_i)$, we have $t.(v_ia) = \alpha_i^{m-1}(t) \cdot t.(v_ia) = \alpha_i^m(t) \cdot v_i(t.a)$. On the other hand, inside $\mathcal{O}_X(m\alpha)$, we have $v_1(t.a) = v_1(\alpha_i^m(t) \cdot (t.a)) = \alpha_i^m(t) \cdot v_i(t.a)$. Comparing these two right hand sides, we identify $t.(v_ia)$ in $\mathcal{O}_X((m-1)\alpha_i)$ and $v_i(t.a)$ in $\mathcal{O}_X(m\alpha_i)$. This gives the \hat{T} -equivariant property of the multiplication by v_i , and that by u_i can be checked similarly. So we have verified the claim.

Back to our construction of \mathcal{P}_{\bullet} . When d_i is odd (resp. even), we have $\vartheta_i(d_i) = v_i$ of \hat{T} -weight α_i (resp. $\vartheta_i(d_i) = u_i$ of \hat{T} -weight 0), and thus $v_i \colon \mathcal{O}_X(\chi_{\mathbf{d}}) \to \mathcal{O}_X(\chi_{\mathbf{d}} - \alpha_i)$ (resp. $u_i \colon \mathcal{O}_X(\chi_{\mathbf{d}}) \to \mathcal{O}_X(\chi_{\mathbf{d}})$) is \hat{T} -equivariant by the claim. But when d_i is odd (resp. even), there must be $\lceil (d_i - 1)/2 \rceil = \lceil d_i/2 \rceil - 1$ (resp. $\lceil (d_i - 1)/2 \rceil = \lceil d_i/2 \rceil$), so the target of multiplication by v_i (resp. multiplication by u_i) equals $\mathcal{O}_X(\chi_{\mathbf{d}} - \alpha_i) = \mathcal{O}_X(\chi_{\mathbf{d}-e_i})$ (resp. $\mathcal{O}_X(\chi_{\mathbf{d}}) = \mathcal{O}_X(\chi_{\mathbf{d}-e_i})$), which is the same as in \mathcal{P}_{\bullet} .

Example 2.10. We illustrate the resolution in Construction 2.7 for GL₂ and GL₃.

(1) For $G = GL_2$, the Weyl group $W = S_2 = \{id, (12)\}$; we have $Q_{id} = \emptyset$ and $Q_{(12)} = \{1\}$. Only the latter case is nontrivial so we take $Q = Q_{(12)}$. Then

$$d = d_1 \in \mathbb{Z}_{\geq 0} = \mathbb{N}^{\mathbb{Q}}, \qquad \chi_{d_1} = \lceil d_1/2 \rceil \alpha_1.$$

So the resolution is 2-periodic, given by

$$\mathcal{P}_t = \mathcal{O}_X(\lceil t/2 \rceil \alpha_1).$$

As for the differential map, we compute $\varepsilon(i, \mathbf{d}) = \varepsilon(i, d_1) = 0$, and hence

$$\partial(\mathsf{e}_{\boldsymbol{d}}) = \partial(\mathsf{e}_{d_1}) = \vartheta_1(d_1) \cdot \mathsf{e}_{d_1-1}.$$

Recall that $\vartheta_1(d_1) = v_1$ for $2 \nmid d_1$ and u_1 for $2 \mid d_1$. To conclude, the resolution is

As a remark, this recovers the resolution constructed in $[BM23, \S2]$ for the PGL₂ case (which is essentially the same as the GL₂ case).

(2) For $G = GL_3$, the case of $Q = \{1\}$ or $\{2\}$ is essentially the same as in (1), and that of $Q = \emptyset$ is trivial. So we only need to consider $Q = \{1, 2\}$. In this case,

$$d = (d_1, d_2) \in \mathbb{Z}_{\geq 0}^2 = \mathbb{N}^{\mathbb{Q}}, \qquad \chi_d = \lceil d_1/2 \rceil \alpha_1 + \lceil d_2/2 \rceil \alpha_2.$$

Then we have

$$\mathcal{P}_t = \bigoplus_{d_1 + d_2 = t} \mathcal{O}_X(\lceil d_1/2 \rceil \alpha_1 + \lceil d_2/2 \rceil \alpha_2),$$

where \mathcal{P}_t consists of exactly t+1 direct summands, and each of which has a basis $\mathbf{e}_d = \mathbf{e}_{(d_1,d_2)}$. To get the formula of $\partial(e_d)$, first compute $\varepsilon(1,d) = 0$ and $\varepsilon(2,d) = d_1$; it then follows that

$$\partial(\mathsf{e}_{(d_1,d_2)}) = \vartheta_1(d_1)\mathsf{e}_{(d_1-1,d_2)} + (-1)^{d_1}\vartheta_2(d_2)\mathsf{e}_{(d_1,d_2-1)}.$$

In particular, the map $\partial: \mathcal{P}_{t+1} \to \mathcal{P}_t$ can be illustrated by a matrix of size $(t+1) \times (t+2)$ with all elements lying in $\{\pm v_i, \pm u_i, 0\}$. This map will be significantly simplified if we work in \mathcal{O}_X/\mathbf{u} with setting all $u_i = 0$.

2.3. **Proof of Theorem 2.1.** We proceed to compute the cohomology

$$\mathrm{H}^*(\mathrm{RHom}(\mathcal{O}_{X_{\sigma}},(\mathcal{O}_X/\boldsymbol{u})(\mu_{\boldsymbol{k}})))$$

of each summand of (†) using the resolution in Construction 2.7. In $\operatorname{IndCoh}(\operatorname{Par}_{\hat{G}}^{\operatorname{unip},\wedge})$, applying the internal Hom functor to

$$\mathcal{P}_{\bullet} \longrightarrow \mathcal{O}_{X_{\sigma}} \longrightarrow 0,$$

and then taking the \hat{T} -invariant part, we get a cochain complex

$$(\mathcal{C}^{\bullet})^{\hat{T}} := \operatorname{Hom}_{\mathcal{O}_{X}}(\mathcal{P}_{\bullet}, (\mathcal{O}_{X}/\boldsymbol{u})(\mu_{\boldsymbol{k}}))^{\hat{T}}$$

$$= \bigoplus_{\boldsymbol{d} \in \mathbb{N}^{Q}, |\boldsymbol{d}| = t} \operatorname{Hom}_{\mathcal{O}_{X}}(\mathcal{O}_{X}(\chi_{\boldsymbol{d}}), (\mathcal{O}_{X}/\boldsymbol{u})(\mu_{\boldsymbol{k}}))^{\hat{T}}$$

$$\cong \bigoplus_{\boldsymbol{d} \in \mathbb{N}^{Q}, |\boldsymbol{d}| = t} (\mathcal{O}_{X}/\boldsymbol{u})(\mu_{\boldsymbol{k}} - \chi_{\boldsymbol{d}})^{\hat{T}}.$$

Here the second equality uses the formula of \mathcal{P}_{\bullet} . Note that the differential map in $(\mathcal{C}^{\bullet})^{\hat{T}}$ is directly induced from ∂ in \mathcal{P}_{\bullet} .

To further compute $(\mathcal{O}_X/u)(\mu_k - \chi_d)^{\hat{T}}$, we need the following result.

Lemma 2.11. Let $\nu = r_1\alpha_1 + \cdots + r_{n-1}\alpha_{n-1}$ for $r_1, \ldots, r_{n-1} \in \mathbb{Z}$. Then we have

$$\mathcal{O}_{X}(\nu)^{\hat{T}} = \begin{cases} 0, & \text{if } r_{j} > 0 \text{ for some } j; \\ v_{1}^{-r_{1}} \cdots v_{n-1}^{-r_{n-1}} \Lambda \llbracket u_{n} \rrbracket \llbracket u_{j} \rrbracket_{r_{j}=0}, & \text{otherwise.} \end{cases}$$

In particular, $(\mathcal{O}_X/\mathbf{u})(\nu)^{\hat{T}}$ is either isomorphic to Λ or 0, determined by whether all $r_i \leq 0$ or not.

Proof. Since the \hat{T} -weights of v_i and u_i are respectively α_i and 0, for any monomial of the form $v_1^{a_1} \cdots v_{n-1}^{a_{n-1}} \cdot u_1^{b_1} \cdots u_n^{b_n}$ in \mathcal{O}_X , after twisting by $\mathcal{O}_X(\nu)$, its \hat{T} -weight equals $\sum_{1 \leq j \leq n-1} (r_j + a_j) \alpha_j$. So the \hat{T} -invariant condition forces $r_j + a_j = 0$, or equivalently $a_j = -r_j \geq 0$. Also, we have conditions $v_j u_j = 0$ in \mathcal{O}_X , so we see if $r_j < 0$ (and hence $a_j > 0$), then no u_j is allowed, meaning that $b_j = 0$ for all j; else if $r_j = 0$ (and hence $a_j = 0$), the u_j is free. This completes the proof.

Corollary 2.12. Fix $Q \subset \{1, ..., n-1\}$ as before. If $(\mathcal{C}^{\bullet})^{\hat{T}} \neq 0$, then there exists $\mathbf{d} \in \mathbb{N}^{Q}$ such that for all $i \in Q$, we have $\lceil d_i/2 \rceil \geqslant m_i = k_1 + \cdots + k_i$.

Proof. This follows immediately from the condition $\mu_k - \chi_d \leq 0$ given by Lemma 2.11.

For the proof of Theorem 2.1, we point out that the case of GL_3 already exhibits all phenomena present for GL_n . Thus, in the following, we only consider n=3. There are $2^{n-1}=4$ different choices of Q_{σ} , and we compute the cohomology or the desired $RHom(\mathcal{O}_{X_{\sigma}},(\mathcal{O}_X/\boldsymbol{u})(\mu_{\boldsymbol{k}}))$ case by case.

Case I. Let $Q_{\sigma} = \emptyset$. This uniquely corresponds to $\sigma = id$, so $X_{\sigma} = X$. Applying Lemma 2.11 (together with the formula of $(\mathcal{C}^{\bullet})^{\hat{T}}$ before), we directly get

$$\operatorname{RHom}(\mathcal{O}_X, (\mathcal{O}_X/\boldsymbol{u})(\mu_{\boldsymbol{k}})) \cong \begin{cases} 0, & \text{if } m_1 > 0 \text{ or } m_2 > 0, \\ \Lambda, & \text{if } m_1 \leqslant 0 \text{ and } m_2 \leqslant 0. \end{cases}$$

Therefore, for k of degree 0 such that $m_1, m_2 \leq 0$, we have $I_k = \{1, 2\}$ and $J_k = \emptyset$ by definition. It gives rise to the generic Steinberg representation $\pi_{\{1,2\}} = \text{St}$ without cohomological degree shift.

Case II. Let $Q_{\sigma} = \{1\}$, corresponding to $\sigma \in \{(12), (123)\} \subset S_3$. In this case, $\mathcal{O}_{X_{\sigma}} = \mathcal{O}_X/v_1$. The resolution of $\mathcal{O}_{X_{\sigma}}$ is essentially the same as Example 2.10(1) for the GL₂ case, namely $\mathcal{P}_{\bullet} \to \mathcal{O}_{X_{\sigma}} \to 0$ with $\mathcal{P}_t = \mathcal{O}_X(\lceil t/2 \rceil \alpha_1)$. Applying Lemma 2.11, we compute

$$(\mathcal{C}^{i})^{\hat{T}} := \operatorname{Hom}_{\mathcal{O}_{X}}(\mathcal{P}_{i}, (\mathcal{O}_{X}/\boldsymbol{u})(\mu_{\boldsymbol{k}}))^{\hat{T}}$$

$$= (\mathcal{O}_{X}/\boldsymbol{u})((m_{1} - \lceil i/2 \rceil)\alpha_{1} + m_{2}\alpha_{2})^{\hat{T}}$$

$$\cong \begin{cases} 0, & \text{if } m_{1} - \lceil i/2 \rceil > 0 \text{ or } m_{2} > 0, \\ \Lambda, & \text{if } m_{1} - \lceil i/2 \rceil \leqslant 0 \text{ and } m_{2} \leqslant 0. \end{cases}$$

In particular, if $(C^i)^{\hat{T}} \neq 0$, then $m_1 \leq \lceil i/2 \rceil$; this condition is equivalent to $i \geq 2m_1 - 1$ (and we always have $i \geq 0$). So the whole complex, which is bounded below, is written as

$$(\mathcal{C}^{\bullet})^{\hat{T}} = \left[0 \to \cdots \to 0 \to \Lambda \xrightarrow{u_1} \Lambda \xrightarrow{v_1} \Lambda \xrightarrow{u_1} \Lambda \xrightarrow{u_1} \Lambda \xrightarrow{v_1} \cdots \right].$$

Here the first term sits in degree 0 and the first nonzero term sits in degree $2m_1 - 1$. This complex is bounded below. Each multiplication by v_1 is an isomorphism, whereas each multiplication by u_1 is zero as the base ring is \mathcal{O}_X/u . Therefore, taking cohomology on the complex $(\mathcal{C}^{\bullet})^{\hat{T}}$, we see exactly two possibilities:

- (2a) If $m_1 \leq 0$, then the cohomology of $(\mathcal{C}^{\bullet})^{\hat{T}}$ vanishes at all degrees.
- (2b) If $m_1 > 0$ and $m_2 \leq 0$, the cohomology is non-vanishing only at the first nonzero term, i.e., $H^*((\mathcal{C}^{\bullet})^{\hat{T}}) = 0$ except for degree $2m_1 1$, where

$$H^{2m_1-1}((\mathcal{C}^{\bullet})^{\hat{T}}) = \Lambda.$$

To conclude, we explain the meaning of this cohomology. For k of degree 0 such that $m_1 > 0$ and $m_2 \leq 0$, we have $I_k = \{2\}$ and $J_k = \{1\}$ by definition. So this cohomology gives the representation $\pi_{\{2\}}[1-2m_1]$, as predicted by Conjecture 1.4.

Case III. Let $Q_{\sigma} = \{2\}$, corresponding to $\sigma \in \{(23), (132)\} \subset S_3$. This is the same computation as in Case II, with only swapping the two indices m_1, m_2 and v_1, v_2 . Thus, we also get exactly two possibilities of the cohomology of $(\mathcal{C}^{\bullet})^{\hat{T}}$, namely:

- (3a) If $m_2 \leq 0$, then $H^*((\mathcal{C}^{\bullet})^{\hat{T}}) = 0$ at all degrees.
- (3b) If $m_1 \leq 0$ and $m_2 > 0$, then $H^*((\mathcal{C}^{\bullet})^{\hat{T}}) = 0$ except for degree $2m_2 1$, where

$$H^{2m_2-1}((\mathcal{C}^{\bullet})^{\hat{T}}) = \Lambda.$$

Again, for k of degree 0 such that $m_1 \leq 0$ and $m_2 > 0$, this corresponds to $I_k = \{1\}$, $J_k = \{2\}$, and hence gives the representation $\pi_{\{1\}}[1 - 2m_2]$ as predicted by Conjecture 1.4.

Case IV (The difficult case). Let $Q_{\sigma} = \{1, 2\}$, corresponding to $\sigma \in \{(23), (132)\} \subset S_3$. Following Construction 2.7 and Example 2.10(2), we write down the resolution \mathcal{P}_{\bullet} of $\mathcal{O}_{X_{\sigma}} = \mathcal{O}_{X}/(v_1, v_2)$, that is,

$$\mathcal{P}_t = \bigoplus_{d_1 + d_2 = t} \mathcal{O}_X(\lceil d_1/2 \rceil \alpha_1 + \lceil d_2/2 \rceil \alpha_2).$$

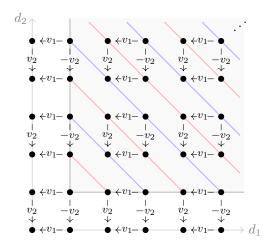
Using Lemma 2.11, whenever $(C^i)^{\hat{T}} := \operatorname{Hom}_{\mathcal{O}_X}(\mathcal{P}_i, (\mathcal{O}_X/\boldsymbol{u})(\mu_{\boldsymbol{k}}))^{\hat{T}} \neq 0$, we must have $\lceil d_1/2 \rceil \geqslant m_1$ and $\lceil d_2/2 \rceil \geqslant m_2$. Thus, the minimal possible values of d_i for $i \in \{1, 2\}$ are given by

$$d_{i,\min} = \begin{cases} 0, & m_i \leqslant 0, \\ 2m_i - 1, & m_i \geqslant 1. \end{cases}$$

We then describe the differential map. Since we eventually work over \mathcal{O}_X/u , to simplify the argument, we take all $u_i = 0$ in the formula of $\partial(\mathbf{e_d})$ in Construction 2.7. Then the map ∂ over \mathcal{O}_X/u is read as

$$\mathsf{e}_{(d_1,d_2)} \longmapsto \begin{cases} 0, & \text{if } 2 \mid d_1 \text{ and } 2 \mid d_2, \\ v_2 \cdot \mathsf{e}_{(d_1,d_2-1)}, & \text{if } 2 \mid d_1 \text{ and } 2 \nmid d_2, \\ v_1 \cdot \mathsf{e}_{(d_1-1,d_2)}, & \text{if } 2 \nmid d_1 \text{ and } 2 \mid d_2, \\ v_1 \cdot \mathsf{e}_{(d_1-1,d_2)} - v_2 \cdot \mathsf{e}_{(d_1,d_2-1)}, & \text{if } 2 \nmid d_1 \text{ and } 2 \nmid d_2. \end{cases}$$

The following picture depicts the differential map above. The node at coordinate (d_1, d_2) represents the direct summand $\mathcal{O}_X(\lceil d_1/2 \rceil \alpha_1 + \lceil d_2/2 \rceil \alpha_2)$ in $\mathcal{P}_{d_1+d_2}$. Each arrow is given by a multiplication. If there are no arrows between two nodes, then the differential map is zero. When $m_1, m_2 \geq 1$, the gray-shaded part in the picture indicates the part of $d_i \geq d_{i,\min}$ for $i \in \{1,2\}$; note that in this case $2 \nmid d_{i,\min}$.



Therefore, taking cohomology on this bicomplex, we see exactly two possibilities again:

- (4a) If $m_1 \leqslant 0$ or $m_2 \leqslant 0$, we have $d_{1,\min} = 0$ or $d_{2,\min} = 0$, and then $H^*((\mathcal{C}^i)^{\hat{T}}) = 0$ at all degrees.
- (4b) If $m_1, m_2 > 0$, the cohomology is non-vanishing only at the corner $(d_{1,\min}, d_{2,\min})$. It follows that $H^*((\mathcal{C}^i)^{\hat{T}}) = 0$ except at the degree $d_{1,\min} + d_{2,\min} = (2m_1 1) + (2m_2 1)$, where

$$\mathbf{H}^{(2m_1-1)+(2m_2-1)}((\mathcal{C}^i)^{\hat{T}}) = \Lambda.$$

Similar to the explanation given in the three cases before, for k of degree 0 such that $m_1, m_2 > 0$, we have $I_k = \emptyset$ and $J_k = \{1, 2\}$. As $\pi_\emptyset = 1$, the trivial representation of $G(\mathbb{Q}_p)$, this cohomology corresponds to the representation $\mathbf{1}[(1-2m_1)+(1-2m_2)]$, as desired.

This finishes the computation of cohomology of the derived complex (\dagger) and proves Theorem 2.1 for $G = GL_3$. The argument for $G = GL_n$ is essentially the same.

References

- [BM23] Alexander Bertoloni Meli. Coherent sheaves for the Steinberg parameter of PGL₂, 2023. Unpublished notes.
- [Han23] David Hansen. Beijing notes on the categorical local Langlands conjecture, with an appendix by Adeel Khan, 2023. Last updated on May 2025. URL.
- [HHS24] Linus Hamann, David Hansen, and Peter Scholze. Geometric Eisenstein series I: Finiteness theorems, 2024. Preprint. arXiv:2409.07363.
- [Yan25] Xiangqian Yang. On Ihara's lemma for definite unitary groups, 2025. Preprint. arXiv: 2504.07504.
- [YZ25] Xiangqian Yang and Xinwen Zhu. On the generic part of the cohomology of Shimura varieties of abelian type, 2025. Preprint. arXiv:2505.04329.
- [Zel80] Andrei V. Zelevinsky. Induced representations of reductive p-adic groups. II. On irreducible representations of GL(n). Annales scientifiques de l'École Normale Supérieure, 13(2):165–210, 1980. URL.
- [Zhu25] Xinwen Zhu. Tame categorical local Langlands correspondence, 2025. Preprint. arXiv:2504.07482.

DEPARTMENT OF MATHEMATICS, NATIONAL UNIVERSITY OF SINGAPORE, BLOCK S17, 10 LOWER KENT RIDGE ROAD, SINGAPORE 119076

Email address: daiwenhan@u.nus.edu