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1. Overview

The so-called “complex analysis” is the theory of complex numbers C. Many modern math-

ematical subjects are based on the language of complex analysis. The fundamental notion

here is called holomorphy, which is regarded as analogous to the differentiability over R. The

holomorphic functions with a single variable strongly relate to Riemann surfaces.

The global version of complex analysis is applied in geometry and topology, i.e., the research

on Riemann surfaces, particularly complex algebraic curves of dimension 1. More generally, the

complex geometry and even algebraic geometry over C take care of those geometric objects of

higher dimensions by considering holomorphic functions with several variables. The most basic

tool we use in geometry is called multi-variable complex analysis.

Riemann zeta functions, as well as L-functions, are key objects in analytic number theory,

whose properties are probed by complex analysis as well. As for (homogeneous) dynamic sys-

tems, analysts are interested in Teichmuller spaces as an advanced topic in modern complex

analysis.

Outline

(I) Holomorphic functions.

◦ Cauchy–Riemann equations (Subsection 2.2.2).

◦ Cauchy theorem of local and global versions (Corollary 3.5, Theorem 3.10): the

existence of primitives.

◦ Cauchy integral formula (Theorem 3.13).

◦ Holomorphy is equivalent to analyticity (Theorem 3.20).

◦ The existence of complex logarithm on simply connected regions (Theorem 4.34).

◦ Liouville theorem (Corollary 3.16): the rigidity of entire functions.

◦ Montel’s theorem (Theorem 9.26).

◦ The Mean-value property (Section 5.1).

◦ The maximum principle (Proposition 4.27).

◦ Open mapping theorem (Proposition 4.26).

(II) Meromorphic functions.
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◦ Zeros and poles, local expansion near zeros and poles (Theorem 4.5).

◦ The residue formula (Corollary 4.9).

◦ Application I: evaluation of integrals (Example 4.10 & 4.11, etc.).

◦ Application II: the argument principle (Theorem 4.23).

◦ Rouché theorem (Corollary 4.25).

(III) On Fourier transform.

◦ Poisson summation formula (Theorem 5.9).

◦ Paley–Wiener theorem (Theorem 5.12).

(IV) Entire Functions.

◦ Jensen’s formula (Theorem 6.1, 6.2).

◦ Weierstrass infinite products (Theorem 6.10).

◦ Hadamard factorization theorem (Theorem 6.13).

◦ Basics of Nevanlinna Theory (Theorem 6.24 & 6.26).

(V) Special Functions.

◦ Analytic continuation of Γ(s) (Proposition 7.1, Theorem 7.3).

◦ Symmetry of Γ(s) (Theorem 7.6).

◦ Properties of 1/Γ(s) (Theorem 7.8, 7.9).

◦ Zeta function and Xi function.

(VI) The prime number theory.

◦ Euler identity (Proposition 7.18).

◦ Locations of zeros of ζ(s) (Theorem 8.3).

◦ The prime number theorem (Theorem 8.8).

(VII) Geometric theory of holomorphic functions.

◦ Conformal/biholomorphic maps.

◦ The unit disc D is conformally equivalent to the upper-half plane H (Example 9.5).

◦ Schwarz lemma (Lemma 9.6): to compute Aut(D) and Aut(H).

◦ D is a hyperbolic space (Theorem 9.23).

◦ The Riemann mapping theorem (Theorem 9.24).

◦ Boundary correspondences (Theorem 9.32) and the construction of a modular func-

tion (Subsection 9.6.2).

(VIII) Ellptic functions.

◦ Weierstrass ℘ function on lattices and the elliptic curve.

◦ Fourier transform and q-expansion (Subsection 10.2.2).

◦ The SL2(Z)-action and its fundamental domain (Proposition 10.18, Theorem 10.19).

(IX) The theta function.

◦ The Triple product formula (Theorem 11.2).

◦ Applications to combinatorics and number theory (Subsection 11.3.1 & 11.3.2).

2. Preliminaries

2.1. Complex numbers and complex plane. The complex field C := {z = x+ iy : x, y ∈ R}
with i2 = −1 is canonically isomorphic to R2 as R-vector spaces, where the isomorphism sends

x+ iy to (x, y). The real part and the imaginary part of z ∈ C is defined by

Re(z) := x, Im(z) := y.

Given this, the geometry of C is called the complex plane.

2.1.1. Algebraic properties of C. Say C can be endowed with two operations +, · via the following
way. For any z1 = x1 + iy1, z2 = x2 + iy2 ∈ C,

+ : C× C C
(z1, z2) z1 + z2,

and
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· : C× C C
(z1, z2) z1 · z2,

where z1+z2 = (x1+x2)+i(y1+y2) and z1·z2 = (x1+iy1)(x2+iy2) = x1x2+y1y2+i(x1y2+x2y1).

These can be viewed as actions of C on C itself, and then + is induced by (R2,+) directly and · is
induced by GL2(R) (recall that C ∼= R2 canonically). It is easy to verify the following properties

• (Commutativity) z1 + z2 = z2 + z1, z1 · z2 = z2 · z1.
• (Associativity) (z1 + z2) + z3 = z1 + (z2 + z3), (z1 · z2) · z3 = z1 · (z2 · z3).
• (Distributivity) z1 · (z2 + z3) = z1 · z2 + z1 · z3.
• (Additive & multiplicative identity) z + 0 = z, z · 1 = z.

• (Additive inverse) z + (−z) = 0.

• (Multiplicative inverse) For all z ∈ C\{0}, there is w ∈ C such that z · w = 1.

It turns out that (C,+, ·) is a field and is morally algebraically closed.

2.1.2. Geometric properties of C. Induced from the inner product on R2, the absolute value on

C is defined by

| · | : C −→ R2 −→ R

that sends z = x + iy ∈ C to |z| =

x2 + y2 ∈ R. In fact, it satisfies the following norm

properties:

• (Triangle inequality) For all z, w ∈ C, |z + w|  |z|+ |w|.
• (Homogeneity) For any a ∈ C (as a scalar) and z ∈ C (as a vector), |a · z| = |a||z|.
• (Positivity) For all z ∈ C, we have |z|  0 with the equality holds if and only if z = 0.

This shows that the absolute value we have defined is a norm on C, and then (C, | · |) is a normed

space.

Definition 2.1. Let {zn}∞n=1 = {z1, z2, . . .} be a sequence in C, we call {zn}∞n=1 is convergent

if there exists w ∈ C such that

lim
n→∞

|zn − w| = 0.

This is denoted by zn → w.

Definition 2.2 (Cauchy sequence). A sequence {zn}∞n=1 is called Cauchy if for all ε > 0, there

is some N ∈ N such that whenever m,n  N , |zm − zn| < ε is valid.

Theorem 2.3. (C, | · |) is complete, i.e., any Cauchy sequence {zn}∞n=1 is convergent in C.
Hence (C, | · |) is a Banach space, i.e., a complete normed space.

Proof. Let zn = xn + iyn with {xn}∞n=1 and {yn}∞n=1 being two real sequences. Since {zn} is

Cauchy, the completeness of (R, | · |) shows that {xn} and {yn} are convergent in R. Hence {zn}
is convergent. The ingredient is that finite copies of Banach spaces is still Banach. □

Let’s point out that the multiplication of complex numbers has a geometric interpretation.

For any z ∕= 0, it can be rewritten as the following polar coordinates:

z = reiθ = (r cos θ + ir sin θ),

where θ is called the argument of z, denoted by arg(z). Note that arg(z) is not unique for given

z, but is unique modulo 2πZ. In the sense of GL2(R), if z1 = r1e
iθ1 and z2 = r1e

iθ1 , then z1z2
is nothing but the image of z2 under the multiplication homomorphism by z1, and multz1 is

represented by

r1

r1


cos θ1 sin θ1
− sin θ1 cos θ1


∈ GL2(R).
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2.1.3. Topological properties of C. Loosely speaking, the topological information on C is totally

induced by that on R2. We begin with some notations. Given z0 ∈ C and r > 0, one can define:

(1) the open disc of radius r centered at z0:

Dr(z0) = {z ∈ C : |z − z0| < r};

also, the unit disc is denoted by D = D1(0);

(2) the closed disc of radius r centered at z0:

Dr(z0) = {z ∈ C : |z − z0|  r};

(3) the circle of radius r centered at z0:

Cr(z0) = {z ∈ C : |z − z0| = r} = ∂Dr(z0) = ∂Dr(z0).

Jargon Watch: suppose a subset Ω ⊂ C is given.

(1) A point z ∈ Ω is called an interior point if there is some r > 0 such that Dr(z) ⊂ Ω.

Denote the interior of Ω by

Int(Ω) = {interior points of Ω}.

(2) The subset Ω is called open if Ω = Int(Ω). For example, Dr(z0) is open whereas Dr(z0)

is not.

(3) A point z is a limit point of Ω if there exists a sequence {zn}∞n=1 in Ω such that z /∈ {zn}
but zn → z as n → ∞. The closure of Ω is

Ω := Ω ∪ {limit points of Ω}.

(4) The subset Ω is closed if Ω = Ω. For example, Dr(z0) is closed whereas Dr(z0) is not,

and C = D∞(0) is open and closed.

(5) The boundary of Ω is defined as

∂Ω = Ω− Int(Ω).

For example, ∂Dr(z0) = ∂Dr(z0) = Cr(z0).

(6) The subset Ω is bounded if there is a sufficiently large r ≫ 0 such that Ω ⊂ Dr(z0).

Exercise 2.4. Show that Ω is closed if and only if its complement Ωc = C− Ω is open.

In the upcoming context, we will discuss the notion of compactness, which is the most im-

portant topological property of the complex plane in the analysis theory.

Definition 2.5 (Compactness). An open covering of Ω is a family of open sets {Vα}α∈I such

that Ω ⊂


α∈I Vα. A subset Ω ⊂ C is called compact if every open covering of Ω has a finite

subcovering.

Theorem 2.6. Any subset in the vector space Rn with n < ∞ is compact if and only if it

is closed and bounded. In particular, Ω ⊂ C ∼= R2 is compact if and only if Ω is closed and

bounded. Even equivalently, say every sequence {zn} in Ω has a convergent subsequence.

Let’s consider the decreasing chain property of non-empty compact subsets. Define the di-

ameter of Ω as

diamΩ = sup
z,w∈Ω

|z − w|.

Proposition 2.7. Let Ω1 ⊃ Ω2 ⊃ · · ·Ωn ⊃ · · · be a sequence of non-empty compact subsets of

C satisfying diamΩn → 0 as n → ∞. Then there is a unique w ∈ C such that w ∈ Ωn for any

n, or equivalently, 

n1

Ωn = {w}.
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Proof. Since Ωn ∕= ∅, we can take zn ∈ Ωn to form a sequence {zn}∞n=1. Because of diamΩn → 0,

we see {zn} is a Cauchy sequence. Thus zn → w for some w ∈ C by the completeness of (C, | · |).
Again by the definition of compactness, w ∈ Ωn for any n  1 since Ωn is compact. □

Definition 2.8 (Region). The subset Ω ⊂ C is called connected if Ω cannot be the union of

two disjoint non-empty open sets. A connected open set is called a region.

Example 2.9. C, Dr(z0), and Dr(z0) are all connected as regions.

In summary, do remember the following:

(1) (C,+, ·) is an algebraically closed field.

(2) (C, | · |) is a complete normed space, namely a Banach space.

(3) The topology on C is induced by that on R2.

2.2. Holomorphic functions. Let Ω ⊂ C be an open set and let f : Ω → C be a complex

valued function.

Definition 2.10. Let z0 ∈ Ω, f is called holomorphic at z0 if the following limit exists:

f ′(z0) := lim
h→0,h∈C

f(z0 + h)− f(z0)

h
.

Note that z0 can be attained from any direction by h here.

2.2.1. The ring of holomorphic functions. In fact, f is holomorphic at z0 if and only if

f(z0 + h)− f(z0) = ah+ hϕ(h),

where a ∈ C and ϕ(h) → 0 as h → 0. The notation is

O(Ω) = {holomorphic functions on Ω}.

Then O(Ω) is non-empty, for example, all constant function and f(z) = z are holomorphic. In

the latter case, just note that f ′(z0) = 1 for all z0 ∈ C.

Proposition 2.11. O(Ω) has a structure of ring. In particular, if f, g ∈ O(Ω), then

• f + g ∈ O(Ω) and (f + g)′ = f ′ + g′,

• f · g ∈ O(Ω) and (f · g)′ = f ′g + fg′, and

• if g(z0) ∕= 0, then f/g is holomorphic at z0, and (f/g)′ = (f ′g − fg′)/g2.

Moreover, the O(Ω) admits the chain rule, i.e., for any holomorphic f and g, we have

(g ◦ f)′(z) = g′(f(z)) · f ′(z).

Remark 2.12. As rings of functions,

{polynomials in z} ⊂ {convergent series in z} ⊂ O(Ω).

Note that any f : Ω → C can always be factored through an embedding Ω ⊂ C and then can

be translated to another map

F : Ω R2


x

y

 
u(x, y)

v(x, y)



such that f(x + iy) = u(x, y) + iv(x, y). The keynote question is that is there any property of

F corresponding to holomorphy of f?

Exercise 2.13. Prove that f is holomorphic on Ω if and only if F is differentiable on Ω.
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2.2.2. Cauchy–Riemann equation. Let’s suppose f : Ω → C is holomorphic, hence

f ′(z) = lim
h∈C,h→0

f(z + h)− f(z)

h

exists by definition. Consider taking different values of h → 0 and say h = h1 + ih2.

(i) If h = h1, then

f ′(z) = f ′(x, y) = lim
h1→0

f(x+ h1, y)− f(x, y)

h1
=

∂f

∂x
(z).

(ii) If h = ih2, then

f ′(z) = f ′(x, y) = lim
h2→0

f(x, y + h2)− f(x, y)

ih2
= −i

∂f

∂y
(z).

By the uniqueness of f ′(z) for fixed z, we obtain

∂f

∂x
= −i

∂f

∂y
.

By writing f(z) = u(x, y) + iv(x, y), this equation is equivalent to

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x
,

which is called the Cauchy–Riemann equations.

The claim is that by introducing the notations

∂

∂z
=

1

2


∂

∂x
+ i

∂

∂y


,

∂

∂z
=

1

2


∂

∂x
− i

∂

∂y


,

holomorphy of f implies that

∂f

∂z
= 0,

∂f

∂z
= f ′(z).

Here the former equality is nothing but the Cauchy–Riemann equation.

On the other hand, it turns out that the Cauchy–Riemann equation implies holomorphy as

well.

Theorem 2.14. Suppose f = u+iv with u and v being differentiable. If f satisfies the Cauchy–

Riemann equation, then f is holomorphic.

Proof. Since u and v are differentiable, we get

u(x+ h1, y + h2)− u(x, y) =
∂u

∂x
h1 +

∂u

∂y
h2 + |h|ϕ1(h),

v(x+ h1, y + h2)− v(x, y) =
∂v

∂x
h1 +

∂v

∂y
h2 + |h|ϕ2(h).

Using Cauchy-Riemann, it follows that

f(z + h)− f(z) =


∂u

∂x
− i

∂u

∂y


h+ |h|(ϕ1(h) + iϕ2(h)).

Hence f ′(z) exists, and moreover

f ′(z) = 2
∂u

∂z
=

∂f

∂z
.

This completes the proof. □

Remark 2.15. Some interpretation on derivatives towards z and z.
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(1) For f : Ω ⊂ C → C, we obtain

df =
∂f

∂x
dx+

∂f

∂y
dy.

Denote dz = d(x+ iy) = dx+ idy, and dz = d(x− iy) = dx− idy, and then

df =
∂f

∂z
dz +

∂f

∂z
dz

which is equivalent to the above equality. From this, we see given f : Ω → C differen-

tiable, then f is holomorphic if and only if df = (∂f/∂z)dz.

(2) For f : Ω → C, there is a bijection between (x, y) and (z, z). Note that the chain rule

with respect to (z, z) yields to the second relation in (1).

(3) In the sense of probability over R2, one can regard f : Ω → C as a distribution function.

Then ∂f/∂z = 0 leads to holomorphy of f via the regularity of ∂/∂z (as a functor). In

particular, f is differentiable under this condition.

2.3. Power series. In this section we use C as (C, | · |). A power series is an expansion of the

form
∞

n=0 anz
n for an ∈ C. One can define the convergent (resp. divergent) series easily, and

then the definition of absolute convergent series follows: say
∞

n=0 |an||z|n converges as a real

series.

2.3.1. Radius of convergence.

Theorem 2.16. Given a power series
∞

n=0 anz
n, there exists 0  R  ∞ such that

(1) if |z| < R, the series is absolutely convergent. The disc of convergence is given by

{z ∈ C : |z| < R};

(2) if |z| > R, the series is divergent.

Moreover, R has a explicit expression read as

1

R
= lim sup

n→∞
|an|1/n.

Proof. It’s the same as the real case. The idea is to compare with the geometric series. □

Examples 2.17. Some calculation on radius of convergence.

(1) The power series
∞

n=0 z
n has a partial sum

N
n=0 z

n = (zN+1 − 1)/(z − 1). When

N → ∞, the convergence condition is given by |z| < 1. On the other hand, Theorem

2.16 leads to R = 1 since an = 1 for all n  0.

(2) Consider the exponential function

ez =

∞

n=0

zn

n!
.

By Theorem 2.16, the radius is given by

lim sup
n→∞


1

n!

1/n

= 0,

hence R = ∞, i.e., ez convergent for every z ∈ C. In this case we say ez is well-defined

on C.
(3) Consider the trigonometric functions

cos z :=
eiz + e−iz

2
=

∞

n=0

(−1)n
z2n

(2n)!
,

sin z :=
eiz − e−iz

2i
=

∞

n=0

(−1)n
z2n+1

(2n+ 1)!
.
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Note that their sum is given by

eiz = cos z + i sin z,

which is the same as the Euler formula on complex rotations.

Theorem 2.18. The series f(z) =
∞

n=0 anz
n is always holomorphic in the disc of convergence.

Moreover, f ′(z) =
∞

n=0 nanz
n−1 in the disc of convergence, and f ′(z) has the same radius of

convergence as that of f(z).

Proof. Note that n1/n → 1 as n → ∞. Consequently,

lim sup
n→∞

|an|1/n = lim sup
n→∞

|nan|1/n,

which gives the same radius. □

2.3.2. Complex derivative of power series. Let R be the radius of convergence of f . Taking

z0 ∈ DR(0) = {z ∈ C : |z| < R}, we aim to compute f ′(z0). Let’s first write

f(z) = SN (z) + EN (z) =


kN

akz
k +



k>N

akz
k.

Assume there is some r such that |z0| < r < R. By taking sufficiently small h ∈ C such that

|z0 + h| < r, one can rewrite the derivative as

f(z0 + h)− f(z0)

h
=

SN (z0 + h)− SN (z0)

h
− S′

N (z0)
  

I

+S′
N (z0)  
II

+
EN (z0 + h)− EN (z0)

h  
III

.

Watch the following observations:

• For N ≫ 0, since S′
N is the partial sum of f ′, |S′

N (z0)− f ′(z0)| < ε for any ε > 0.

• If |h| ≪ 1, then |I| < ε for any ε > 0.

• In part III, using the equality (z0+h)k−zk0 = h((z0+h)k−1+(z0+h)k−2z0+ · · ·+zk−1
0 ),

we see

III =
1

h
EN (z0 + h)− EN (z0) =



k>N

ak((z0 + h)k − zk0 )

=


k>N

ak((z0 + h)k−1 + (z0 + h)k−2z0 + · · ·+ zk−1
0 )




k>N

|ak||(z0 + h)k−1 + (z0 + h)k−2z0 + · · ·+ zk−1
0 |




k>N

|ak|
k

j=1

|(z0 + h)k−jzj−1
0 |




k>N

k|ak|rk−1 → 0

as N → ∞. The last inequality uses |z0| < r < R and |z0 + h| < r < R. Again, note

that f ′(z) =


k1 kakz
k−1 is absolutely convergent in DR(0), and then for N ≫ 0,

|III| < ε for any ε > 0.

In summary, if f is a power series with radius of convergence R, whenever h → 0,

f(z0 + h)− f(z0)

h
→ S′

∞(z0).

Namely, we have checked that the common real derivative algorithm of power series can be

realized over C as expected.

Corollary 2.19. A power series
∞

n=0 an(z − z0)
n is ∞-complex differentiable in the disc of

convergence DR(z0).
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Definition 2.20 (Analyticity). A function f : Ω → C is called analytic in Ω if for all z0 ∈ Ω,

f(z) can be realized as a power series expansion towards z0, say

f(z) =

∞

n=0

an(z − z0)
n

with disc of convergence DR(z0) for R > 0.

Note that analyticity implies holomorphy. We will prove the converse implication by using

the Cauchy integral formula later (see Subsection 3.6.2).

2.4. Integration along curves.

Definition 2.21. A parametrized curve is a map z : [a, b] → C defined over an real interval. It

is called smooth if z′(t) exists and is continuous on [a, b] as a complex function (i.e., [a, b] ⊂ R ⊂
C → C), where

z′(a) = lim
h→0+

z(a+ h)− z(a)

h
, z′(b) = lim

h→0−

z(b+ h)− z(b)

h
.

Definitions 2.22. A parametrized curve is called piecewise-smooth if z : [a, b] → C is continuous

and there are points a0, a1, . . . , aN such that a = a0 < a1 < · · · < aN = b and z|[ai,ai+1] is smooth

for any 0  i  N−1. Moreover, z is called closed if z(a) = z(b); z is called simple if z(t) ∕= z(s)

unless t = s or t = a, s = b.

Example 2.23. For t ∈ [0, 2π] and fixed z0, z(t) = z0 + Reit and z(t) = z0 + Re−it are closed

and simple parametrized curves. Whereas z(t) = z0 + Re2it is closed but not simple, since it

forms a 2-covering of a circle centered at z0 with radius R.

Definition 2.24. Two parametrizations z : [a, b] → C and w : [c, d] → C are called equivalent

if there is a continuous differentiable bijection t : [a, b] → [c, d] such that t′(s) > 0 (namely, t

preserves the orientation) and z = w ◦ t.

In the upcoming context, our convention dictates that a “curve” is always a piecewise-smooth

curve. Let Γ ⊂ C be a curve with a parametrization z : [a, b] → C. Let f be a continuous function

on Γ. We define the integral along the curve by the following complex-valued integral, say


Γ

f(z)dz :=

 b

a

f(z(t))z′(t)dt.

Due to the chain rule, we point out that this integral is well-defined, i.e., it is independent of

the choice of equivalent parametrization of Γ.

Proposition 2.25. Given Γ parametrized by z : [a, b] → C.
(1) The integration along z has linearity, i.e.,



Γ

(af(z) + bg(z))dz = a



Γ

f(z)dz + b



Γ

g(z)dz.

(2) Suppose Γ− is defined by z : [a, b] → C via z(t) = z(a+ b− t). Then


Γ

f(z)dz = −


Γ−
f(z)dz.

(3) The integration is bounded from above as follows



Γ

f(z)dz

  length(Γ) · sup
z∈Γ

|f(z)|,

where length(Γ) =
 b

a
|z′(t)|dt.
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Proof. (3) Compute by definition



Γ

f(z)dz

 =



 b

a

f(z(t))z′(t)dt

 
 b

a

|f(z(t))z′(t)|dt  sup
z∈Γ

|f(z)|
 b

a

|z′(t)|dt.

And (1) (2) are apparent. □

3. Cauchy theorem and its applications

3.1. Motivation from Stokes formula.

Theorem 3.1. Let f : Ω → C be continuous. Assume there is a holomorphic function F : Ω →
C such that F ′ = f (here F is called a primitive of f). If Γ ⊂ C is a curve that begins at w1

and ends at w2, then 

Γ

f(z)dz = F (w2)− F (w1).

In particular, if Γ is closed, then

Γ
f(z)dz = 0.

Proof. First assume Γ is smooth with a parametrization z : [a, b] → C. By definition,


Γ

f(z)dz =

 b

a

f(z(t))z′(t)dt =

 b

a

F ′(z(t))z′(t)dt.

In the sense of Cauchy–Riemann equation, we consider F = F (z, z). Then

d

dt
F (z(t)) =

∂F

∂z

dz(t)

dt
+

∂F

∂z

dz(t)

dt
=

∂F

∂z
z′(t) = F ′(z(t))z′(t)

because of holomorphy of F . Thus, the original integral becomes
 b

a

F ′(z(t))z′(t)dt =

 b

a

d

dt
F (z(t))dt = F (z(b))− F (z(a)) = F (w2)− F (w1).

In the case where Γ is piecewise-smooth, the argument is similar. □

Example 3.2. The following function does not have any primitives, so that Theorem 3.1 fails

to be true. Consider

f : C\{0} C

z 1/z.

Define Γ = {z : |z| = 1} as the unit circle which is parametrized by z(t) = eit for t ∈ [0, 2π].

Then 

Γ

1

z
dz =

 2π

0

1

eit
ieitdt = 2πi ∕= 0.

The emphasis lies on that f(x) = 1/x for f : R\{0} → R has log |x| as a primitive on R\{0}.
So the primitive condition is more subtle over C.

Notice that Theorem 3.1 is a particular version of Stokes formula. Recall that in the real

case, for f : [a, b] → R that admits a permitive, if dF/dt = f (i.e., dF = fdt), then
 b

a

f(t)dt =

 b

a

dF = F (b)− F (a).

We can translate this Newton-Leibniz-type statement as
 b

a

dF =



I

dF = F (b)− F (a) =



∂I

F,

where I = [a, b] and ∂I = {b} − {a} (as a formal sum of points). Again, Theorem 3.1 can be

interpreted as 

Γ

dF =



∂Γ

F = F (w2)− F (w1)
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for ∂Γ = {w2} − {w1}. More generally, the Stokes formula states that for a given manifold

M and a differential form ϕ, one obtain


M

dϕ =



∂M

ϕ.

3.2. Local Cauchy theorem. The motivation of the Cauchy theorem is seeking the existence

of primitives over C. Say given a real continuous function f : [a, b] → R, then

F (x) :=

 x

a

f(t)dt =



Γx

f(t)dt

is naturally the primitive of f . The second equality is given by canonically defining Γx = [a, x].

For an analogy, if f : Ω → C is given, is there any complex primitive of f? Consider z0 ∈ Ω and

F (z) :=

 z

z0

f(w)dw =



Γ

f(w)dw

where Γ is a connected path from z0 to z in Ω. The question is whether F is independent of the

choice of Γ.

3.2.1. Goursat’s theorem. Let’s say f : D → C where D is a unit disc. For z ∈ D, we define Γz

as the line segment from 0 to z. We need to verify that

F (z) :=



Γz

f(w)dw

is a primitive of f . Consider

F (z + h)− F (z) =



Γz+h

f(w)dw −


Γz

f(w)dw.

Recall that if F is a primitive, then for any closed curve Γ in D,

Γ
f(w)dw = 0. In particular,

this can be divided as 

Γz+h

f(w)dw +



γ

f(w)dw +



Γ−
z

f(w)dw = 0

in which γ is defined as the oriented line segment from z + h to z. We can rewrite the equality

above as 

Γz+h

f(w)dw −


Γz

f(w)dw =



γ
f(w)dw.

This observation is the so-called Goursat’s theorem as follows.

Theorem 3.3 (Goursat). Suppose f : Ω → C is holomorphic and T ⊂ Ω is a triangle with

Int(T ) ⊂ Ω. Then 

T

f(z)dz = 0.

Proof. Step 1: Triangulate partition.

T
(1)
2

T
(1)
1

T
(1)
4T

(1)
3

  
T (0) = T
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In the picture above, the triangle T = T (0) is divided in to 4 parts, say T
(1)
j with 1  j  4.

These triangular bounds (as piecewise-smooth curves) are parametrized anticlockwise. It’s easy

to prove that


T

f(z)dz =



T (0)

f(z)dz =

4

j=1



T
(1)
j

f(z)dz,

and therefore 


T

f(z)dz

  4




T
(1)
n

f(z)dz



for some n. Let’s denote T (1) = T
(1)
n .

Step 2: Iteration. The construction of T (1) from T (0) can be reused to arise T (i+1) from

T (i). Hence we get an inequality as in Step 1 of a higher order:



T

f(z)dz

  4n



T (n)

f(z)dz

 .

Step 3: Estimates. Denote T (n) for the solid triangle that is enclosed by T (n). In the

remaining proof, we introduce the following notations, say

d(n) := diamT (n) = 2−nd(0),

p(n) := perimeter of T (n) = 2−np(0).

Note that there is a sequence of compact sets

T (0) ⊃ T (1) ⊃ · · · ⊃ T (n) ⊃ · · ·

with diamT (n) → 0 as n → ∞. Thus there is a unique w ∈ T (n) for any n due to compactness

and Proposition 2.7. Since f is holomorphic at w, by definition,

f(z) = f(w) + f ′(w)(z − w)  
f0(z)

+ψ(z)(z − w),

where ψ(z) → 0 as z → w. One can observe that f0(z) has a primitive in Ω, and then


T (n)

f(z)dz =



T (n)

f0(z)dz

  
0

+



T (n)

ψ(z)(z − w)dz =



T (n)

ψ(z)(z − w)dz.

Then (3) of Proposition 2.25 is applied for



T (n)

f(z)dz

  p(n) sup
z∈T (n)

|ψ(z)| sup
z∈T (n)

|z − w|  p(n)d(n) sup
z∈T (n)

|ψ(z)|.

Accordingly, this implies that



T

f(z)dz

  4np(n)d(n) sup
z∈T (n)

|ψ(z)| = p(0)d(0) sup
z∈T (n)

|ψ(z)|.

However, supz∈T (n) |ψ(z)| → 0 as n → ∞ so that


T
f(z)dz

 = 0. □

3.2.2. Local existence of primitives.

Theorem 3.4. Let D ⊂ C be an open disc. Then any f ∈ O(D) has a primitive in D.

Proof. Define F (z) =

Γz

f(w)dw with Γz being the oriented line segment from z0 to z, where

z0 is the center of D. The claim followed is that F ′(z) = f(z) for all z ∈ D. This is valid

because by Goursat’s theorem,

F (z + h)− F (z)

h
=

1

h



γ

f(w)dw.

Again, γ is the oriented segment from z to z + h here whose parametrization is, say,
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w : [0, |h|] C

t z + ht/|h|.

Now one can calculate the integral as


γ

f(w)dw =

 |h|

0

f(w(t))
h

|h|dt.

Finally, it yields to that

lim
h→0,h∈C

F (z + h)− F (z)

h
= f(w(0)) = f(z).

The last step is not so obvious and is left as an exercise. □

Corollary 3.5 (Local Cauchy theorem). Let D ⊂ C be an open disc and let Γ ⊂ D be an

arbitrary closed curve. Then for any f ∈ O(D),


Γ

f(z)dz = 0.

Remark 3.6. Given a region Ω ⊂ C, recall that for z ∈ Ω and f ∈ O(Ω), f has a primitive in

disc D centered at z whenever D ⊂ Ω. For another point w ∈ Ω, we can still make a “parallel

moving” of D at z to w (may need diamD to be sufficiently small).

3.3. Global Cauchy theorem.

Definition 3.7. Let Γ0,Γ1 ⊂ Ω be two curves with common endpoints, say α and β. Let

γ0, γ1 : [a, b] → Ω be parametrizations of them. We call Γ0 and Γ1 homotopic in Ω if for all

0  s  1, there is a curve Γs whose parametrization is given by γs : [a, b] → Ω such that

γs(a) = α, γs(b) = β, and

γs|s=0 = γ0, γs|s=1 = γ1,

and γs(t) is jointly continuous with respect to s ∈ [0, 1] and t ∈ [a, b].

One can quickly check that the homotopic relation is an equivalence relation. In a topological

sense, homotopicity means a continuous deformation between two given curves.

Theorem 3.8 (Homotopy principle). Suppose Γ0,Γ1 ⊂ Ω with Γ0 ∼ Γ1 homotopically. For any

f ∈ O(Ω), 

Γ0

f(z)dz =



Γ1

f(z)dz.

Proof. Step 1: Local equality. The claim is that if s1, s2 ∈ [0, 1] are close enough, then


Γs1

f(z)dz =



Γs2

f(z)dz.

To prove this, assume Γs1 and Γs2 are parametrized by z, w : [a, b] → C, respectively. Taking

a partition on [a, b] as a = x0 < x1 < · · · < xn < xn+1 = b and denote zi = z(xi) ∈ Γs1 ,

wi = w(xi) ∈ Γs2 for 0  i  n + 1. There are a sequence of discs {Di}ni=0 such that

{zi, wi, zi+1, wi+1} ∈ Di. See the picture below.

w0

z0

wn+1

zn+1

D0
D1 D2

Dn

w1
w2 w3

z1
z2 z3

zn

wn

Γs1

Γs2
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Now by local Cauchy theorem (see Corollary 3.5), for each Di, there is a primitive Fi on Di of

f , i.e., F ′
i (z) = f(z) for all z ∈ Di. On the intersection Di ∩Di+1, we see

(Fi − Fi+1)
′ = 0,

which implies that Fi − Fi+1 ≡ const, say Ci. Thus we obtain

Fi+1(zi+1)− Fi+1(wi+1) = Fi(zi+1)− Fi(wi+1).

Taking integrals, leads to



Γs1

f(z)dz −


Γs2

f(z)dz =

n

i=0

[Fi(zi+1)− Fi(zi)]−
n

i=0

[Fi(wi+1)− Fi(wi)]

= (Fn(zn+1)− Fn(wn+1))− (F0(z0)− F0(w0))

= (Fn(β)− Fn(β))− (F0(α)− F0(α)) = 0.

Step 2: Iteration. Using the compactness of [0, 1], we can divide [0, 1] into subintervals

[si, si+1] with |si−si+1| ≪ 1. Hence by Step 1, for all t, s ∈ [si, si+1], f(z) has the same integral

along Γt and Γs. To sum up,


Γ0

f(z)dz =



Γ1

f(z)dz.

This completes the proof. □

Definition 3.9. A region Ω ⊂ C is called simply connected if any two curves in Ω with common

endpoints are homotopic.

Theorem 3.10 (Global Cauchy theorem). If Ω ⊂ C is simply connected, then all f ∈ O(Ω)

has a primitive.

Proof. Fix a point z0 ∈ Ω. For any curve from z0 to z, we define

F (z) :=



Γz

f(w)dw.

This is well-defined (i.e., independent of the choice of Γz) when Ω is simply connected. It’s easy

to check F ′(z) = f(z). □

Alternative Proof. One may also fix Γz and define Γz+h as the combination of Γz and the

segment from z to z + h. Thus,

F (z + h)− F (z)

h
=

1

h



γ

f(w)dw.

Taking h → 0, we set F ′(z) = f(z) again. □

Remark 3.11. Do remember the Global Cauchy (Theorem 3.10) implies that all holomorphic

integrals along closed curves in a simply connected region vanish.

The general philosophy of the Cauchy theorem lies in translating topological information

(such as simply connected) on the complex plane into analytic information. Conversely, given

a connected open subset Ω ⊂ C, the question is to determine whether Ω is simply connected or

not whenever we assume for all f ∈ O(Ω) and any closed curve Γ ⊂ Ω, f has zero integral along

Γ.
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3.4. The first application: evaluation of some integrals (I). Our Cauchy theorem can be

used to compute several types of real and complex integrals. Also, we will see more approaches

to calculating, such as the residue formula (see Section 4.2), which is another corollary of the

Cauchy theorem.

Example 3.12. Using the Cauchy theorem, we will calculate the Fourier transform of e−πx2

.

Note that in Fourier analysis, for any f : R → R, one can define its Fourier transformation as

f(ξ) :=
 ∞

−∞
f(x)e−2πixξdx.

The aim is to prove for any ξ ∈ R,
 ∞

−∞
e−πx2

e−2πixξdx = e−πξ2 .

Namely, the Fourier transformation of f(x) = e−πx2

is nothing but itself.

Proof. It is equivalent to prove  ∞

−∞
e−π(x+iξ)2dx = 1.

Notice that for ξ = 0, the formula is well-known as
 ∞

−∞
e−πx2

dx = 1.

Let’s prove for ξ > 0, and the remaining case ξ < 0 follows similarly. Consider the complex-

variable function f(z) = e−πz2

. Recall that in Example 2.17, we have seen that exponential

functions are well-defined over C, and hence f ∈ O(C). Then define the curve ΓR for R ∈ R>0

as the clockwise oriented rectangle, which is shown in the following picture.

x

y

O−R R

−R+ iξ R+ iξ

IR

IIIR

IIRIVR

Thus the integral can be divided into


ΓR

f(z)dz =

 R

−R

e−πx2

dx

  
IR

+

 ξ

0

e−π(R+it)2dt

  
IIR

+

 −R

R

e−π(x+iξ)2dx

  
IIIR

+

 0

ξ

e−π(−R+it)2dt

  
IVR

.

As R → ∞, we have

IR →
 ∞

−∞
e−πx2

dx = 1.

As for part II, say

IIR =

 ξ

0

e−π(R2+2Rit−t2)dt =

 ξ

0

e−πR2

e−2πRiteπt
2

dt.

Therefore, it is bounded as

|IIR| 
 ξ

0

e−πR2

eπt
2

dt  (eπξ
2

e−πR2

).
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Since e−πR2 → 0 as R → ∞, we get IIR → 0. Similarly, IVR → 0 by symmetry (caution:

IIIR does not tend to 1). On the other hand, apply the Cauchy theorem to the piecewise-

smooth closed curve ΓR defined on C, which is simply connected, the integral of f along with

ΓR vanishes. That is,

lim
R→∞



ΓR

f(z)dz = 0 = IR + IIIR,

or equivalently,  ∞

−∞
e−π(x+iξ)2dx =

 ∞

−∞
e−πx2

dx = 1, ξ > 0.

Again, the same argument for ξ < 0 completes the proof. □

3.5. The second application: Cauchy integral formula. It turns out that under some nice

topological circumstances, the value of a holomorphic function at some point can be determined

by an average of the boundary points of some neighborhood.

Theorem 3.13 (Cauchy integral formula). Given an open subset Ω ⊂ C and an open disc

D ⊂ C with ∂D ⊂ Ω, assume f ∈ O(Ω). Then for all z ∈ D, we have

f(z) =
1

2πi



∂D

f(ξ)

ξ − z
dξ.

Proof. Consider the function F (ξ) = f(ξ)/(ξ − z) for fixed z ∈ D. Define the curve

Cε = {w : |w − z| = ε}.

Notice that F is holomorphic near z and ∂D is homotopic to Cε. In the Homotopy principle

(Theorem 3.8), taking Ω to be the punctured disc centered at z with radius ε, and then


∂D

F (ξ)dξ =



Cε

F (ξ)dξ.

Furthermore, one can compute


Cε

F (ξ)dξ =



Cε

f(ξ)

ξ − z
dξ =



Cε

f(ξ)− f(z)

ξ − z  
∼f ′(z)

dξ +



Cε

f(z)

ξ − z
dξ.

The punchline of this trick is read as follows. The first item has the same order as the integral

of f ′(z). However, f ′(z) is bounded near z by holomorphy of f . Hence the former term in the

equality above tends to be 0 as ε → 0.

Now, since Cε has a parametrization z(t) = z + εeiθ for θ ∈ [0, frm−epi], we see


Cε

f(z)

ξ − z
dξ = f(z)

 2π

0

1

εeiθ
ieiθdθ = 2πif(z).

Therefore, after taking ε → 0, we have

f(z) =
1

2πi



∂D

f(ξ

ξ − z
dξ.

This is the Cauchy integral formula. □

3.5.1. Applications of Cauchy integral formula. The following more general version of Theorem

3.13 is given as an application. A quick observation of its proof shows that it contains no more

information than the classical formula. However, it would be instrumental in proving the residue

formula (see Theorem 4.8).

Theorem 3.14 (Higher Cauchy integral formula). With the same statement as in Theorem

3.13, f has infinitely many complex derivatives in Ω. Moreover,

f (n)(z) =
n!

2πi



∂D

f(ξ)

(ξ − z)n+1
dξ.
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Proof. It suffice to prove for n  1. We first consider n = 1. Using the classical Cauchy integral

formula

f(z) =
1

2πi



∂D

f(ξ)

ξ − z
dξ,

we have

lim
h→0,h∈C

f(z + h)− f(z)

h
= lim

h→0

1

2πi

1

h



∂D

f(ξ)

ξ − z − h
− f(ξ)

ξ − z
dξ.

Note that
1

ξ − z − h
− 1

ξ − z
=

h

(ξ − z − h)(ξ − z)
,

and the equality becomes

f ′(z) =
1

2πi



∂D

f(ξ)

(ξ − z)2
dξ.

Accordingly, one can apply this process inductively to tackle general n  2. □

3.5.2. Remarks on the proof of Cauchy integral formula. Recall that the homotopy principle

(Theorem 3.8) tells us that if Γ0,Γ1 ⊂ Ω are two closed curves which are homotopic. Then for

all f ∈ O(Ω), we have

Γ0

f(z)dz =

Γ1

f(z)dz.

More generally, assume Γ0,Γ1 : [0, 1] → C are two curves in Ω such that

Γ0(0) = α0, Γ0(1) = β0, Γ1(0) = α1, Γ1(1) = β1

that are homotopic, i.e., for all t ∈ [0, 1] there exists F (s, t) : [0, 1]× [0, 1] → Ω such that

F (0, t) = Γ0(t), F (1, t) = Γ1(t).

Claim: for all f ∈ O(Ω),


Γ0

f(z)dz =



Γ1

f(z)dz +



I0

f(z)dz +



I1

f(z)dz,

where I0 (resp. I1) is an arbitrary oriented curves from α0 to α1 (resp. from β1 to β0).

Proof of the Claim. It suffices to check that the curves Γ0 and I0 + Γ1 + I1 are homotopic. We

define the following map

H(s, t) =






F ((1 + 2s)t, 0), 0  t  s/(1 + 2s);

F (s, (1 + 2s)t− s), s/(1 + 2s)  t  (s+ 1)/(1 + 2s);

F (−(1 + 2s)t+ 1 + 2s, 1), (s+ 1)/(1 + 2s)  t  1.

In particular, for fixed s, H(s, t) is the intermediate curve between Γ0(t) and Γ1(t). Moreover,

H(s, t) is continuous with respect to (s, t). The feature in need is the homotopy equivalence

H(0, t) = Γ0(t) ∼ H(1, t) = I0 + Γ1 + I1.

From what we have proved for homotopy with common fixed endpoints,


Γ0

f(z)dz =



I0+Γ1+I1

f(z)dz =



Γ1

f(z)dz +



I0

f(z)dz +



I1

f(z)dz.

In particular, consider the special case where α0 = β0 and α1 = β1. Then Γ0 and Γ1 are closed

curves such that 

I0

f(z)dz +



I1

f(z)dz = 0

by taking I1 = I−0 . Hence for all f ∈ O(Ω),


Γ0

f(z)dz =



Γ1

f(z)dz.

Note that this proof gives a slightly more robust relationship between the two integrals. □

Now we focus on another proof of the Cauchy integral formula (Theorem 3.13) using only

the global Cauchy (Theorem 3.10) rather than the homotopy principle.
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Alternative Proof. Keep the notation as in the original proof of Theorem 3.13. For any closed

circle D ⊂ Ω that contains Cε and any δ > 0, define the piecewise-smooth closed curve Γδ as

shown in the following.

(∂D)δ
Cε

z
}δ

D

I2

I1

For Γδ = (∂D)δ + I1 + Cε + I2, by Cauchy theorem,


Γδ

f(ξ)

ξ − z
dξ =



(∂D)δ

f(ξ)

ξ − z
dξ +



I1

f(ξ)

ξ − z
dξ +



I2

f(ξ)

ξ − z
dξ

  
0

+



C−
ε

f(ξ)

ξ − z
dξ = 0.

Letting δ → 0, we get


∂D

f(ξ)

ξ − z
dξ +



C−
ε

f(ξ)

ξ − z
dξ = 0,

which implies that


∂D

f(ξ)

ξ − z
dξ =



Cε

f(ξ)

ξ − z
dξ = 2πif(z) + o(ε).

This proves the Cauchy integral formula whenever ε → 0. □

3.6. More corollaries of Cauchy integral formula. The direct corollaries of the Cauchy

theorem involve several outstanding results that we will introduce.

Proposition 3.15 (Cauchy inequalities). Under the same statement as before, for all f ∈ O(Ω)

and DR(z0) ⊂ DR(z0) ⊂ Ω, we have

|f (n)(z0)| 
n!

Rn
f∂DR

, ∀n  0,

where f∂DR
= maxz∈∂DR

|f(z)|.

Proof. Using Higher Cauchy integral formula (see Theorem 3.14),

f (n)(z) =
n!

2πi



∂D

f(ξ)

(ξ − z)n+1
dξ =

n!

2πi

 2π

0

f(z(t))

Rn+1ei(n+1)θ
iReiθdθ

since we can parametrize ∂DR via z(t) = z0 +Reiθ for θ ∈ [0, 2π]. Hence

|f (n)(z0)| 
n!

2π

 2π

0

|f(z(t))|
Rn

dθ  n!

Rn
max

z∈∂DR

|f(z)|

as desired. This completes the proof. □

3.6.1. Liouville theorem and its application.

Corollary 3.16 (Liouville). Let f ∈ O(C) (say f is an entire function). If f is bounded, i.e.,

|f |  M < ∞ on C, then f is a constant function.
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Proof. Using the first-order Cauchy inequality,

|f ′(z0)| 
1

R
f∂DR

 M

R

for any disc DR with R > 0. The entire condition f ∈ O(C) guarantees that R can be any

positive number. Making R → ∞ to get f ′(z0) = 0 for arbitrary z0 ∈ C. Hence f(z) is a

constant function. □

Exercise 3.17. Show that for f ∈ O(C), if there is some constant C < ∞ such that |f(z)| 
CRd for any |z|  R together with some d (i.e., f has at most polynomial growth), then f must

be a polynomial of degree at most d.

Here comes one of several approaches to prove the fundamental theorem of algebra using

complex analysis.

Theorem 3.18 (Fundamental theorem of algebra). Every non-constant polynomial p(z) =d
k=0 akz

k with ak ∈ C has a root in C.

Proof. If for all z ∈ C we have p(z) ∕= 0, then the rational function 1/p(z) ∈ O(C). In particular,

1/p(z) is a bounded entire function as p(z) is a polynomial that is nowhere vanishing. Applying

Liouville theorem (Corollary 3.16), 1/p(z) is a constant, which yields to a contradiction. □

Corollary 3.19. Every polynomial p(z) = adz
d + · · ·+ a1z+ a0 with ad ∕= 0 has exactly d roots

in C, counted with multiplicity.

Proof. Theorem 3.18 shows that there is w1 ∈ C such that p(w1) = 0. Making a change of

variable, say z = (z − w1) + w1, we obtain

p(z) =

d

k=1

bk(z − w1)
k + b0.

A simple comparison shows that b0 = 0. Hence (z − w1) | p(z) and then p(z) = (z − w1)q(z)

for another polynomial q with degree d− 1. Using induction on the degree of polynomials, one

finally gets

p(z) =

d

k=1

(z − wk)

for some w1, w2, . . . , wk ∈ C. □

3.6.2. Holomorphy implies analyticity. Given Definition 2.20 of analyticity, we have already

seen it implies holomorphy. The following context shows the converse via the Cauchy integral

formula.

Theorem 3.20. Given DR(z0) ⊂ DR(z0) ⊂ Ω, any f ∈ O(Ω) has a power series expansion in

DR(z0). That is, for all z ∈ DR(z0),

f(z) =

∞

n=0

an(z − z0)
n =

∞

n=0

f (n)(z0)

n!
(z − z0)

n.

Proof. Fix z ∈ DR(z0). By Cauchy integral formula (Theorem 3.13),

f(z) =
1

2πi



∂DR

f(ξ)

ξ − z
dξ.

Let’s write
1

ξ − z
=

1

(ξ − z0)− (z − z0)
=

1

ξ − z0
· 1

1− z−z0
ξ−z0

,
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where | z−z0
ξ−z0

|  r < 1 for some r > 0. Thus it admits a power expansion

1

ξ − z
=

∞

n=0

z − z0
ξ − z0

n

=

∞

n=0

1

(ξ − z0)n+1
(z − z0)

n.

Therefore,

f(z) =
1

2πi



∂DR

f(ξ)

∞

n=0

1

(ξ − z)n+1
(z − z0)

ndξ

=

∞

n=0

1

2πi



∂DR

f(ξ)

(ξ − z)n+1
dξ(z − z0)

n

=

∞

n=0

an(z − z0)
n

for any z ∈ DR(z0). Note that
∞

n=0
1

(ξ−z)n+1 is uniformly convergent in z ∈ DR(z0) just so the

second equality holds. □

Remark 3.21. From a topological aspect of view, (Q, | · |), the rational numbers equipped with

a usual absolute value, is not complete. There is a completion (R, | · |) that is not algebraically
closed. This phenomenon gives a motivation to consider field extensions

(Q, | · |) ⊂ (R, | · |) ⊂ (C = Ralg, | · |).

The complex analysis theory primarily focuses on analytic functions (or, equivalently, holomor-

phic functions) on C. However, the completion of Q is not unique whenever we replace the usual

absolute value with other values. Given a prime p, the p-adic norm | · |p is defined by

∀x =
par

s
∈ Q, |x|p := p−a

where p neither divides r nor s for r, s ∈ Z. Similarly, we obtain field extensions

(Q, | · |p) ⊂ (Qp, | · |p) ⊂ (Qalg
p , | · |p) ⊂ (Cp, | · |p).

Here the first completion Qp is called the p-adic rational number field, which is not algebraically

closed. Also, Qalg
p is algebraically closed but not complete. To resolve this, taking Cp is enough.

The theory to understand analytic functions defined on Cp is the so-called p-adic analysis.

3.6.3. Analytic continuation. Thanks to Theorem 3.20, the holomorphic functions are analytic.

From this, we wish to control all properties of an analytic function by a sequence of points. The

following theorem makes the expectation morally valid. Note that the only subtlety here is the

requirement that the limit point of this sequence must lie in the region.

Theorem 3.22 (Analytic continuation). Let Ω ⊂ C be an open connected region and f ∈ O(Ω).

Assume there is a sequence {zn}∞n=1 ⊂ Ω with zn ∕= w whereas zn → w ∈ Ω, satisfying f(zn) = 0

for any n ∈ N. Then f ≡ 0 in Ω.

Proof. Define the set of zeroes of f as follows (which is precisely open by definition):

S = Int{z ∈ Ω : f(z) = 0}.

Claim: as a non-empty open subset, S is also closed in Ω, i.e., S ∩ Ω = S.

Proof of the Claim. To prove this claim, we fix w ∈ S and verify that there is a (non-empty)

open set V around w such that f = 0 in V . Once this is valid, we are able to take any limit

sequence {ξk}∞k=0 ⊂ S that converges to some point ξ ∈ S ∩ Ω ⊂ Ω, and a similar argument

shows that ξ ∈ S as well. Using holomorphy (hence analyticity) of f , we write

f(z) =

∞

n=0

an(z − w)n
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for z lying near w. If f does not vanish constantly near w, then there exists m  0 such that

am ∕= 0. This deduces to

f(z) = am(z − w)m + am+1(z − w)m+1 + · · ·
= am(z − w)m(1 + am+1(z − w) + · · · )
= am(z − w)m(1 + g(z))

for some g such that g(w) = 0, since 1+am+1(z−w)+ · · · is convergent. Now consider to apply

the condition zn → w with f(zn) = 0. We obtain

f(zk) = am(zk − w)(1 + g(zk)) ∕= 0,

which leads to a contradiction. So we have proved the claim.

Using the claim, we can easily get Ω ⊂ S. Consequently, f vanishes everywhere in Ω. □

Corollary 3.23. Let f, g ∈ O(Ω) for an open connected region Ω. Assume f = g in some

non-empty open set V ⊂ Ω, then f = g in Ω.

3.7. Further applications.

3.7.1. Morera’s theorem. The following theorem is the converse of Goursat’s (Theorem 3.3).

Theorem 3.24 (Morera). Suppose f is a continuous function in some open disc D, and


T

f(z)dz = 0

for any triangle T in D. Then f ∈ O(D).

Proof. Consider the primitive of f in Ω, say

F (z) :=



Γz

f(z)dz

for some fixed z0 and a curve Γz from z0 to z. The condition implies that F is independent of

the choice of Γz since any curve can be approximated by a piecewise-linear curve (where the

triangle division applies). In particular F ∈ O(Ω) since F ′(z) = f(z), and thus F is analytic by

Theorem 3.20. Again, f = F ′ is also analytic, which is equivalent to holomorphic. □

Exercise 3.25. Check that circles can replace the triangles in Theorem 3.24.

Theorem 3.26 (Holomorphic approximation). Let {fn}∞n=0 ⊂ O(Ω). Assume fn → f converges

uniformly on every compact subset of Ω, denoted by fn → f in C0
loc(Ω). Then f ∈ O(Ω).

Proof. For any triangle T ⊂ Ω, since fn → f in C0
loc(Ω),



T

f(z)dz = lim
n→∞



T

fn(z)dz = 0

because of fn ∈ O(Ω). By Morera’s theorem, f ∈ O(Ω). □

Remark 3.27. Theorem 3.26 is not true in the real case.

Theorem 3.28 (Higher local convergence). Let {fn}∞n=0 ⊂ O(Ω). Assume fn → f in C0
loc(Ω).

Then f
(k)
n → f (k) in C0

loc(Ω) for any k  1. Or equivalently, fn → f in C∞
loc(Ω).

Proof. We only need to verify f ′
n → f ′ uniformly on every compact set of Ω. And by inductive

arguments, this is equivalent to fn → f in C∞
loc(Ω). It suffices to verify that f ′

n → f ′ uniformly

on every Ωδ = {z ∈ Ω : Dδ(z) ⊂ Ω}.
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Ω

Dδ(z)

Ω2δ

Using the Cauchy integral formula, for all z ∈ Ω2δ, we have

(f ′
n − f ′)(z) =

1

2πi



∂Dδ(z)

(fn − f)(ξ)

(ξ − z)d
dξ.

Therefore,

|f ′
n − f ′|(z)  1

2π

 2π

0

|fn − f |(z)
δ2

δdθ  1

δ
sup
ξ∈Ωδ

|fn − f |(ξ)
  

→0

.

Hence f ′
n → f ′ uniformly in Ω2δ. □

Theorem 3.29. Given an open subset Ω ⊂ C (not necessarily connected), we define a function

F (z, s) on Ω× [0, 1]. Assume that

(1) F (z, s) is holomorphic with respect to z for any fixed s, and

(2) F is continuous with respect to (z, s).

Then the function

f(z) =

 1

0

F (z, s)ds

is holomorphic for z.

Proof. On condition (1), consider the Riemann sum

fn(z) :=
1

n

n

k=1

F (z,
k

n
) ∈ O(Ω)

for any n  1. We are going to prove that fn → f uniformly on every compact set K of Ω,

or namely, in C0
loc(Ω). Once this is valid, we obtain f ∈ O(Ω) by holomorphic approximation

(Theorem 3.26).

The condition (2) implies that F is uniformly continuous on K × [0, 1]. Hence

sup
z∈K

|F (z, s1)− F (z, s2)| < ε

whenever |s1 − s2| < δ ≪ 1. Furthermore,

|fn − f |(z) =



n

k=1

 k
n

k−1
n

(F (z,
k

n
)− F (z, s))ds




n

k=1

 k
n

k−1
n

F (z,
k

n
)− F (z, s)

 ds


n

k=1

1

n
ε = ε

whenever 1/n < δ. □
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3.7.2. Schwarz reflection principle. Here comes another direct application of Morera’s theorem

on symmetric regions.

Proposition 3.30 (Schwarz reflection principle). Let Ω be an open set that is symmetric with

respect to the real axis, i.e., for any z ∈ Ω, z ∈ Ω as well. Denote

Ω+ = Ω ∩ {Im(z) > 0}, Ω− = Ω ∩ {Im(z) < 0}.

Ω+

Ω−

I Re(z)

Suppose f± ∈ O(Ω±) satisfy f+(x) = f−(x) for all x ∈ I = Ω∩R, and f± extend continuously

to I. Then the function as follows is holomorphic in Ω.

f(z) :=






f+(z), z ∈ Ω+;

f+(z) = f−(z) z ∈ I;

f−(z), z ∈ Ω−.

Exercise 3.31. Prove Proposition 3.30. (Hint: Consider applying Morera theorem to verify

that for any triangle T ⊂ Ω, the integral of f along T is zero, whether T intersects with I or

not.)

Corollary 3.32. Let Ω be as above. Assume f ∈ O(Ω+) extends continuously on I and f(x) ∈ R
for x ∈ I. Then there is F ∈ O(Ω) such that F |Ω+ = f .

Proof. Define F as follows: for all z ∈ Ω−, let F (z) := f(z). Then F ∈ O(Ω−) and F (x) = f(x)

for x ∈ R. Applying Proposition 3.30 to F may complete the proof. □

3.8. A geometric point of view. The final remark on a geometric point-view towards the

Cauchy theorem and Cauchy integral formula comes. We introduce the wedge product of dif-

ferential forms. Given two differential 1-forms dx, dy, we define their linear wedge product as

dx ∧ dy such that

dx ∧ dy = −dy ∧ dx, dx ∧ dx = dy ∧ dy = 0.

Applying this to dz = dx+ idy and dz = dx− idy, one deduce that

i

2
dz ∧ dz =

i

2
(dx+ idy) ∧ (dx− idy) = dx ∧ dy.

3.8.1. Remarks on Cauchy theorem. In the context of (local) Cauchy theorem (see Corollary

3.5), we consider f ∈ O(Ω) and two closed curves in Ω, say Γ1 and Γ2, with two opposite

orientations. In particular, by focusing only on the local case (recall that under the global

situation, the region must be simply connected), assume Ω is an annulus as follows such that

∂Ω = Γ1 + Γ2.

Γ1Γ2

Ω
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Punchline: using the language of wedge products, we can show that the local Cauchy is exactly

implied by Stokes formula and Cauchy–Riemann equation.

Let’s check this explicitly by hand. Now the statement of local Cauchy is


Γ1

f(z)dz =



Γ−
2

f(z)dz ⇐⇒


∂Ω

f(z)dz = 0,

which is also equivalent to 

Ω

d(f(z)dz) =



∂Ω

f(z)dz = 0

by Stokes formula. Here the differential form on Ω is defined as

d(f(z)dz) := df(z) ∧ dz

via the wedge product. On the other hand, this can be computed explicitly via

df(z) ∧ dz = (
∂f

∂z
dz +

∂f

∂z
dz) ∧ dz =

∂f

∂z
dz ∧ dz  

0

+
∂f

∂z
0

dz ∧ dz = 0.

Recall that the second item vanishes because of the holomorphy of f by the Cauchy–Riemann

equation.

3.8.2. Remarks on Cauchy integral formula. One can apply a similar interpretation to prove

Cauchy integral formula. Say f ∈ O(Ω) and then

f(z0) =
1

2πi



∂Ω

f(ξ)

ξ − z0
dξ =

1

2πi



Ω

d(
f(ξ)

ξ − z0
dξ)

by Stokes formula. On the other hand, by definition again,

d(
f(ξ)

ξ − z0
dξ) =

∂

∂ξ


f(ξ)

ξ − z0


dξ ∧ dξ  

0

+
∂

∂ξ


f(ξ)

ξ − z0


dξ ∧ dξ

= f(ξ)
∂

∂ξ


1

ξ − z0


dξ ∧ dξ.

Therefore, we get

f(z0) =
1

2πi



Ω

f(ξ)
∂

∂ξ


1

ξ − z0


dξ ∧ dξ.

In a physical sense, the integral term

∂

∂ξ


1

ξ − z0


= cδz0

for some physical constant c. Here δz0 is called the Dirac measure at z0 (corresponding to

f(ξ)/(ξ − z0) as in the classical Cauchy integral formula).

4. Meromorphic Functions

In the previous chapter, based on holomorphy, we begin with polynomials in a single complex

variable, which yields definitions of rational and analytic functions. On the Cauchy integral for-

mula, some local analysis induces the equivalence relation between holomorphy and analyticity

of complex functions defined on nice topological subspaces of the complex plane. Meromorphy

can be loosely understood as “weak holomorphy with some singular points”. We begin with

discussions about special points defined by an arbitrary function in a single complex variable.



26 WENHAN DAI

4.1. Zeros and Poles. Consider the following 3 examples that corresponds to some essential

notions which will be defined later.

(1) (Removable Singularity) f(z) = z at z = 0: f is well-defined (thus bounded) near z = 0;

(2) (Pole) f(z) = 1/z at z → 0: we have |f(z)| → ∞.

(3) (Essential Singularity) f(z) = e1/z at z → 0: there are many different cases, such as

(i) whenever z → 0+ for z ∈ R, |f(z)| → ∞;

(ii) whenever z → 0− for z ∈ R, |f(z)| → 0;

(iii) if z = ix with x ∈ R, then x → 0 leads to z → 0 from the positive imaginary axis

— in this case,

f(ix) = e−i/x = cos


− 1

x


+ i sin


− 1

x



that oscillates rapidly.

Definition 4.1 (Zero). For f ∈ O(Ω), a point z0 ∈ Ω is called a zero if f(z0) = 0.

In fact, if f(z0) = 0 then there exists a sufficiently small open neighborhood V ⊂ Ω of z0
such that f(z) ∕= 0 for any z ∈ V \{z0} unless f ≡ 0 as a constant near z0. In particular, the

zeros of a non-constant holomorphic function are isolated.

Theorem 4.2 (Order of zero). Given an open connected region Ω with z0 ∈ Ω, assume that

f(z0) = 0 and f ∕≡ 0 in Ω. Then there is a sufficiently small open neighborhood V ⊂ Ω of z0
and a non-vanishing holomorphic function g ∈ O(V ) together with a unique m ∈ N such that

f(z) = (z − z0)
mg(z), ∀z ∈ V.

Proof. Using f ∈ O(Ω), it is analytic in Ω by Theorem 3.20. In particular, it is analytic near

z0 ∈ Ω. To be precise,

f(z) =

∞

n=0

an(z − z0)
n

for z lying near z0. Since f is not constantly vanishing, there is some m < ∞ such that am ∕= 0.

Finally, note that such smallest m does work. □

Notation 4.3. The unique integer in Theorem 4.2 is denoted by m := ordz0(f) and is called

the order of f at z0.

Definition 4.4 (Pole). For f ∈ O(Ω\{z0}), call z0 a pole of f if 1/f has a zero at z0.

It turns out that if f has a pole at z0 ∈ Ω, then there is a sufficiently small open set V of z0
such that

f(z) = (z − z0)
−mg(z), ∀z ∈ V,

where g(z) ∕= 0 for any z ∈ V . Similarly, m here is called the order of the pole z0, and it keeps

the same notation. Furthermore, if the order of a zero (resp. pole) z0 is exactly 1, we call z0 a

simple zero (resp. pole).

Theorem 4.5. If f has a pole z0 of order m, then near z0, we have

f(z) =
a−m

(z − z0)m
+

a−(m−1)

(z − z0)m−1
+ · · ·+ a−1

z − z0
+G(z)

where a−m ∕= 0 and G(z) is holomorphic near z0.

Proof. The condition forces f to be

f(z) = (z − z0)
−m

∞

k=0

bk(z − z0)
k =

b0
(z − z0)m

+
b1

(z − z0)m−1
+ · · ·+ bm−1

z − z0
+ bm.

Letting bi = ai−m gives the result in need. □
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Definitions 4.6. The last coefficient a−1 in Theorem 4.5 is called the residue of f at the pole

z0 and is denoted by

resz0(f) = a−1.

Also, the function f(z)−G(z) is called the principal part of f at the pole z0.

Remark 4.7. Some unusual approaches to attain the order of zeros or poles.

(1) If z0 is a simple pole, then

resz0(f) = lim
z→z0

(z − z0)f(z).

More generally, if z0 is a pole of order m, then

resz0(f) = lim
z→z0

1

(m− 1)!

dm−1

dzm−1
((z − z0)

mf(z)).

(2) If Ω is connected, then the poles and zeros of f in Ω are isolated whenever f is not a

constant.

(3) If z0 is a zero of f , then

ordz0(f) = max{k ∈ N : f (k)(z0) ∕= 0}.

4.2. Residue formula: evaluation of some integrals (II). In Section 3.4, we have given an

approach to calculating some integral via the Cauchy theorem. Here comes another corollary of

Theorem 3.8.

Theorem 4.8 (Single residue formula). For f ∈ O(Ω\{z0}) with z0 being a pole of f , let D ⊂ Ω

be an open disc containing z0. Then

resz0(f) =
1

2πi



∂D

f(z)dz.

Proof. Using the Cauchy theorem (or homotopy principle), for the circle with radius ε centered

at z0 

∂D

f(z)dz =



Cε

f(z)dz.

Since z0 is a pole of f , we can write

f(z) =
a−m

(z − z0)m
+

a−(m−1)

(z − z0)m−1
+ · · ·+ a−1

z − z0
+G(z)

and hence

∂D

f(z)dz =



Cε

a−m

(z − z0)m
dz + · · ·+



Cε

a−2

(z − z0)2
dz

  
0

+



Cε

a−1

z − z0
dz

  
2πia−1

+



Cε

G(z)dz

  
0

.

The first part vanishes by applying the higher Cauchy integral formula (Theorem 3.14) to

constant functions. The second part is valued by the classical Cauchy integral formula (Theorem

3.13), and the last part vanishes because G(z) is holomorphic near z0. As a result,

resz0(f) = a−1 =
1

2πi



∂D

f(z)dz

that gives the residue formula. □

The following corollary is given by applying Theorem 4.8 iteratively for generalizing it to

more points.

Corollary 4.9 (Residue formula). Suppose f ∈ O(Ω\{z1, z2, . . . , zn}) with z1, z2, . . . , zn being

poles of f . Let Γ ⊂ Ω be the closed curve encompassing {z1, z2, . . . , zn}. Then

1

2πi



Γ

f(z)dz =

n

k=1

reszk(f).
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Now we move to apply the residue formula in the evaluation of integrals.

Example 4.10. For 0 < a < 1, we are going to compute the real integral
 ∞

−∞

eax

1 + ex
dx.

Set f(z) = eaz/(1 + ez) as a complex function, then f has a pole at z = πi with

lim
z→πi

(z − πi)
eaz

1 + ez
= −eaπi.

In particular, z = πi is a simple pole of f . Hence

a−1 = resπi(f) = −eaπi.

Now consider the following clockwise oriented triangle ΓR whose intersection with Im(z)-axis is

2πi, the period of 1 + ez.

x

y

O−R R

−R+ 2πi R+ 2πi

πi

2πi

IR

IIIR

IIRIVR

Using residue formula to ΓR:


ΓR

f(z)dz = 2πi resπi(f) = −2πieaπi.

On the other hand, we do the calculation as


ΓR

f(z)dz =

 R

−R

f(x)dx

  
IR

+

 2π

0

f(R+ it)dt

  
IIR

+

 −R

R

f(x+ 2πi)dx

  
IIIR

+

 0

2π

f(−R+ it)dt

  
IVR

.

For part II, we get

|IIR| =

 2π

0

ea(R+it)

1 + eR+it
dt

 
 2π

0

eaR

|1 + eR · eit|dt.

Since eR − 1  |1 + eR · eit|  eR + 1, the inequality further becomes
 2π

0

eaR

|1 + eR · eit|dt 
 2π

0

eaR

eR − 1
dt  Ce(a−1)R

as R → ∞ for 0 < a < 1. Similarly, |IVR| → 0 as well. Also,

IIIR = −
 R

−R

ea(x+2πi)

1 + ex+2πi
dx

= −
 R

−R

e2aπi · eax
1 + ex

dx

= −e2aπi
 R

−R

eax

1 + ex
dx = −e2aπiIR.

Letting R → ∞ and summing all pieces listed above, we see

−2πieaπi = I∞ − e2aπiI∞.
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Therefore, the desired integral is
 ∞

−∞

eax

1 + ex
dx = I∞ = − 2πieaπi

1− e2aπi
=

π

sinπa
.

Example 4.11. In this example, we aim to calculate the following integral as a Fourier trans-

formation (see Example 3.12) of 1/(coshπx), say
 ∞

−∞

e−2πixξ

coshπx
dx,

where cosh z = (ez+e−z)/2. Consider the function f(z) = e−2πizξ/ coshπz, then f(z) has poles

at eπz = −e−πz. Equivalently, the poles are given by ki + i/2 with k ∈ Z. Recall that coshπz

is a periodic function with coshπ(z + 2i) = coshπz.

x

y

O−R R

−R+ 2i R+ 2i

i/2

3i/2

2i

IR

IIIR

IIRIVR

We define ΓR similarly as in Example 4.10. In a single period, i/2 and 3i/2 are only poles. Note

that

resi/2(f) = lim
z→i/2

(z − i

2
)f(z) =

eπξ

πi
,

res3i/2(f) = lim
z→3i/2

(z − 3i

2
)f(z) =

e3πξ

πi
.

Hence by residue formula,


ΓR

f(z)dz = 2πi(resi/2(f) + res3i/2(f)) = 2πi · e
πξ − e3πξ

πi
.

On the other hand, we do the calculation as


ΓR

f(z)dz =

 R

−R

f(x)dx

  
IR

+

 2

0

f(R+ it)dt

  
IIR

+

 −R

R

f(x+ 2i)dx

  
IIIR

+

 0

2

f(−R+ it)dt

  
IVR

.

Again, we do similar operations to these parts. Firstly,

|IIR| =
 2

0

e−2πi(R+it)ξ

(eπ(R+it) + e−π(R+it))/2
dt

 2

 2

0

e2πtξ

eπR |eπit + e−2πR−πit|  
<∞

dt

 C
2e4πξ

eπR
→ 0

as R → ∞. Similarly, |IVR| → 0 as well. As for another part,

IIIR = −
 R

−R

e−2πi(x+2i)ξ

coshπ(x+ 2i)
dx = −e4πξ

 R

−R

e−2πixξ

coshπx
dx = −e4πξIR.

Thus, letting R → ∞, we get

(1− e4πξ)I∞ = 2(eπξ − e3πξ).
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Therefore, the result is given by
 ∞

−∞

e−2πixξ

coshπx
dx = I∞ =

2(eπξ − e3πξ)

1− e4πξ
=

1

coshπξ
.

This result dictates that the Fourier transform of 1/(coshπx) is itself.

4.3. Meromorphy on singularities.

4.3.1. Removable singularities.

Theorem 4.12 (Riemann extension theorem). For all f ∈ O(Ω\{z0}), f is bounded near z0
if and only if z0 is a removable singularity, i.e., f extends to a holomorphic function in Ω. In

particular, f(z0) is well-defined whenever f is bounded near z0.

Proof. It is clear that f is bounded near z0 whenever z0 is removable. Conversely, choose a

sufficiently small open disc DR(z0) ⊂ Ω such that f is bounded in DR(z0). For all z ∈ DR(z0),

we define

g(z) :=
1

2πi



∂D

f(ξ)

ξ − z
dξ.

Notice that f(ξ)/(ξ−z) is continuous with respect to (ξ, z) and is holomorphic in z. Hence g(z)

is holomorphic on DR(z0).

In the following context, we will verify that g(z) is the desired extension of f , i.e., g(z) = f(z)

away from z0. Applying Cauchy integral formula to f on Ω\{z0}, then

g(z) =
1

2πi



∂D

f(ξ)

ξ − z
dξ =

1

2πi



Γε

f(ξ)

ξ − z
dξ

  
Iε

+
1

2πi



Γε

f(ξ)

ξ − z
dξ

  
f(z)

,

where Γε and Γε are the circles centered at z0 and z with a uniform radius ε, respectively.

On right hand side of the equality above the second term is exactly f(z) by Cauchy integral

formula again. Also, f(ξ) is bounded above by assumption, and ξ − z is bounded below. Say

|f(ξ)/(ξ − z)|  M for some sufficiently large constant M < ∞. Accordingly,

|Iε| 
1

2π

 2π

0

εMdθ  Cε → 0

as ε → 0. Since ε > 0, we get g(z) = f(z) for z ∕= z0. □

Corollary 4.13. Let f ∈ O(Ω\{z0}). Then z0 is a pole of f if and only if |f(z)| → ∞ as

z → z0 (i.e., f is unbounded near z0).

Proof. Suppose |f(z)| → ∞ as z → z0. Then 1/f is bounded near z0. By Theorem 4.12, it turns

out that 1/f ∈ O(Ω) and (1/f)(z0) = 0. Thus z0 is a pole. The converse direction is clear. □

4.3.2. Essential singularities.

Definition 4.14 (Essential singularity). Let f ∈ O(Ω\{z0}). The point z0 is called an essential

singularity of f if z0 is neither a pole nor a removable singularity.

Example 4.15. As what we have seen in the beginning of Section 4.1, f(z) = e1/z has an

essential singularity z = 0. We have seen the phenomenon that a function may have various

values at an essential singularity attained from various directions.

Theorem 4.16 (Casorati–Weierstrass). Assume f ∈ O(Dr(z0)\{z0}) is defined over the punc-

tured disc, where z0 is an essential singularity. Then

f(Dr(z0)\{z0}) = C.

Namely, the image of f is dense in C.
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Proof. Otherwise, there is some w ∈ C − Dr(z0)\{z0}. Then there exists δ > 0 such that

|f(z) − w|  δ for any z ∈ Dr(z0)\{z0}. In particular, we consider g(z) := 1/(f(z) − w), then

|g|  1/δ on Dr(z0)\{z0}. In other words, g is bounded near z0 and is holomorphic on the small

punctured region around z0. From Riemann extension theorem 4.12, this implies that z0 is a

removable singularity of g. Here comes two cases:

• g(z0) = 0, then f(z)− w has a pole at z0;

• g(z0) ∕= 0, then f(z0) is well-defined and z0 is a removable singularity of f .

Neither the first nor the second case admits the assumption. So we get a contradiction. □

The following theorem shows the extreme complexity of essential singularities. Even the

holomorphic ones have wild manifestations near this kind of singularity.

Theorem 4.17 (Big Picard theorem). Assume f ∈ O(Dr(z0)\{z0}) has an essential singularity

at z0, then with at most one exception w0 ∈ C,

∀w ∈ C\{w0}, #{f−1(w)} = ∞.

4.3.3. Meromorphy versus rationality.

Definition 4.18 (Meromorphy). A function f : Ω → C is called meromorphic if there is a

sequence of points {zn}∞n=1 ⊂ Ω without any limit points in Ω such that

(i) f ∈ O(Ω\{zn}∞n=1), and

(ii) f has poles at {zn}∞n=1.

Recall from topology that the extended complex plane is the one-point compactification

C = C ∪ {∞} = S2 ⊂ R3

of C (as a Riemann surface). Note that the punctured 2-dimensional sphere is homeomorphic

to C itself. If f is holomorphic in the set {z ∈ C : |z| > R} then we define

F (z) := f


1

z


,

which is holomorphic in D1/R(0)\{0}. In convention, f is called to have a pole (resp. removable

singularity or essential singularity) at ∞ if F has a pole (resp. removable singularity or essential

singularity) at 0.

Definition 4.19. A meromorphic function on C which is either holomorphic at ∞ or has a pole

at ∞ is called a meromorphic function on C.

Theorem 4.20 (Rationality). Every meromorphic function on C is a rational function, i.e.,

the quotient of a polynomial by another polynomial (of any degree).

Proof. Let f be a meromorphic function on C, then by definition f(1/z) is either holomorphic

or has a pole at z = 0. Thus f has only finite poles at C, denoted by z1, . . . , zn ∈ C, since
the zeros of f(1/(z − w)) must be isolated by Remark 4.7 for some fixed w ∈ C. Assume the

principal parts of f at z1, . . . , zn are P1, . . . , Pn for which Pk is a polynomial in 1/(z−zk) (recall

Definition 4.6). For z lying sufficiently close to zk, one may write

f(z) = Pk(z) + hk(z)

for some holomorphic function hk defined near zk. If ∞ is a pole of f then

f


1

z


= P∞(z) + h∞(z),

where P∞(z) is a polynomial in 1/z and h∞(z) is holomorphic near z = 0. Denote P∞(z) =
P∞(1/z), which is a polynomial in z. Consider

H(z) = f(z)− P∞(z)−
n

k=1

Pk(z),
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then z1, . . . , zn are removable singularities of H. Thus H ∈ O(C) that is also bounded in C. By
Liouville (Corollary 3.16), H is a constant, say C. Therefore,

f(z) = C + P∞(z) +

n

k=1

Pk(z),

which is a rational function as required. □

In fact, Theorem 4.20 displays a phenomenon of “GAGA,” which is the abbreviation of

Géométrie Algébrique et Géométrie Analytique in French. The GAGA-type conclusions are

about some hidden connection between analytic geometry and algebraic geometry.

Examples 4.21. Here comes some meromorphic functions on extended complex plane.

(1) f(z) = z is holomorphic on C but with a pole at ∞ (since F (z) := f(1/z) = 1/z has a

pole at 0).

(2) f(z) = 1/z has a pole at 0 and a zero at ∞.

(3) f(z) =
∞

k=0 akz
k has n zeros in C and a pole at ∞ of order n.

Corollary 4.22. Any holomorphic function defined on C (i.e., meromorphic function on C
without poles) is a constant.

4.4. The argument principle and Rouché theorem. Here are some observations:

• if f is holomorphic and has a zero z0 of order n, then f(z) = (z−z0)
ng(z) with g(z) ∕= 0

near z0. Thus
f ′

f
(z) =

n

z − z0
+G(z),

where G = g′/g is also holomorphic near z0. Here z0 is the simple pole with residue n.

• if f is holomorphic in Ω\{z0} and has a pole z0 of order n, then f(z) = (z − z0)
−ng(z)

again. Thus
f ′

f
(z) =

−n

z − z0
+G(z).

Here z0 is the simple pole with residue −n.

From these, if f is meromorphic, then f ′/f will have simple poles with residues given by the

orders. These two extreme cases take care of the numbers of zeros and poles of a given mero-

morphic function. More generally, we obtain the following result.

Theorem 4.23 (Argument principle). Assume f is meromorphic in some open set containing

an open disc D, and f has no zeros and poles at ∂D. Then

1

2πi



∂D

f ′

f
(z)dz = #{zeros of f in D}−#{poles of f in D}.

Here the sizes on the right-hand side are counted with multiplicities.

Remark 4.24. Even without a suitably rigorous definition, one can formally write f ′/f = (log f)′,

where

log f(z) = log(|f(z)|ei arg f(z)) = log |f(z)|+ i arg f(z).

Consequently, we have
f ′

f
=

d

dz
log |f(z)|+ i

d

dz
arg f(z).

And then 

∂D

f ′

f
(z)dz =



f(∂D)

1

w
dw

by replacing w = f(z).

As a typical application of the argument principle, the following result is widely used in

counting zeros of holomorphic functions.
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Corollary 4.25 (Rouché theorem). Let f, g ∈ O(D) and |f(z)| > |g(z)| on ∂D. Then f + g

and f have the same number of zeros in D.

Proof. Consider the function

ft(z) = f(z) + tg(z), t ∈ [0, 1].

Then f0 = f and f1 = f + g. Also note that |ft| ∕= 0 on ∂D since

|ft(z)|  ||f(z)|− t|g(z)|| > 0

by assumption. Since f and g as well as ft are holomorphic, the number of poles of ft is forced

to be 0. From the argument principle (Theorem 4.23), we see

1

2πi



∂D

f ′
t

ft
(z)dz = nt := #{zeros of ft in D}.

Note that as a function in t, the left-hand side above is continuous with respect to t, whereas

the right-hand side only takes values in N through a discontinuous way. This forces nt to be a

constant for any t. In particular, n0 = n1 just so f and f + g have the same number of zeros in

D. □

The following result is a further application of the Rouché theorem.

Proposition 4.26 (Open mapping theorem). If f : Ω → C is a non-constant holomorphic

function defined on an open connected region Ω, then f maps open sets to open sets. Namely,

f is open as a map.

Proof. Assume w0 = f(z0) for any fixed z0 ∈ Ω. We need to verify if w ∈ C is close to w0, then

w also lands in the image of f . Denote

g(z) = f(z)− w = (f(z)− w0)  
F (z)

+(w0 − w)  
G(z)

.

Here G(z) is a constant function in z. Choose 0 < δ ≪ 1 such that {|z − z0|  δ} ⊂ Ω and

|f(z) − w0|  ε for sufficiently small ε > 0 on the circle Cδ(z0). The latter condition can be

valid as z0 is an isolated zero of the non-constant holomorphic function f(z) − w0. Once we

are given |w − w0| < ε, by Rouché theorem (Corollary 4.25), F (z) and (F + G)(z) have the

same number of zeros in Cδ(z0). As a result, there is z ∈ Ω such that f(z) = w because F (z) is

already known to have a zero z0. □

Proposition 4.27 (Maximum principle). Let Ω be an open connected region and let f ∈ O(Ω).

Then f cannot obtain a maximum in Ω unless f is a constant.

Proof. Otherwise, there is z0 ∈ Ω such that |f(z0)| is maximal. By the open mapping theorem

(Proposition 4.26), f maps a small disc around z0 to an open set of f(z0). This leads to a

contradiction. □

Corollary 4.28. Continuing on Proposition 4.27, assume moreover that Ω is bounded and f is

continuous in Ω. Then

sup
z∈Ω

|f(z)|  sup
z∈∂Ω

|f(z)|.

Proof. Since Ω is bounded in C ∼= R2, we see Ω is compact. The assumption on f deduces

that f attains a maximum in Ω. Consequently, the maximum principle shows that if f is not a

constant, this maximum must lie on ∂Ω. □

Remark 4.29. The bounded requirement for Ω is essential in Corollary 4.28. For example,

consider F (z) = e−iz2

defined on Ω = {z = x + iy : x, y  0}; here |F (z)| = 1 on ∂Ω but F is

clearly unbounded in Ω.
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As for unbounded sets, the Phragmén–Lindelöf theorem (Theorem 4.30) can be regarded as

a various version of the maximum principle. We will use it to prove the Paley–Wiener theorem

later (see Theorem 5.12).

Theorem 4.30 (Phragmén–Lindelöf). Suppose Dα ⊂ C is an angular region of opening π/α

with α > 1/2, say,

Dα =

z = reiθ : |θ| < π

2α
, r > 0


.

Let f ∈ O(Dα) satisfy the following conditions:

(1) |f(z)|  M on ∂Dα;

(2) there is 0 < β < α such that |f(reiθ)|  Cerβ as r → ∞.

Then |f(z)|  M for all z ∈ Dα.

Proof. Fix γ > 0 such that β < γ < α and define

Fε(z) = e−εzγ

f(z)

for ε > 0. We obtain

|Fε(Reiθ)| = e−εRγ cos(γθ)|f(Reiθ)|  |f(Reiθ)|

since γ < α implies |γθ| < πγ/(2α), and then cos γθ > 0. Therefore,

|Fε(z)|  M, ∀z ∈ ∂Dα.

Applying condition (2), since γ > β,

|Fε(Reiθ)|  e−εRγ cos(γπ/(2α)) · CeR
β

→ 0

as R → ∞ for some constant C < ∞. By the maximum principle, |Fε(z)|  M for z ∈ Dα,R

whenever R ≫ 1. Here Dα,R = Dα ∩ {|z| < R} is defined as follows.

x

y

Dα

Dα,R

Letting R → ∞ and we attain that |Fε|  M in Dα. Finally, letting ε → 0 to get |f(z)|  M

in Dα. □

Through the similar idea as in Theorem 4.30, we also have the result on a doubly infinite

strip given as follows.

Theorem 4.31. Let S ⊂ C be a doubly infinite strip, i.e., S = {z ∈ C : −1  Re(z)  1}. Let

f ∈ O(S) with |f(z)|  M for z ∈ ∂S. Assume f is bounded in S. Then |f(z)|  M for all

z ∈ S. Namely, the bound of f on ∂S extends to the interior region.

Proof. Consider the function Fε(z) = eεz
2

f(z) with ε > 0. Then

|Fε(x+ iy)| = eε(x
2−y2)|f(x+ iy)|.

Since f is bounded on ∂S by M , for T ≫ 1, one obtain

|Fε(x± iT )|  eε(x−T 2)|f(x± iT )|  M.
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Then |F (z)|  M for z ∈ ∂ST , where ST = z = x+ iy ∈ C : −1  x  1,−T  y  T . Applying

maximum principle (Proposition 4.27) to Fε on ST , we get |Fε(z)|  M in ST . Finally, letting

T → ∞ and ε → 0 gives |f(z)|  M in S. □

4.5. The complex logarithm. The discussion on complex logarithms refers to a subtle phe-

nomenon that the local complex geometry may not be compatible with that globally, even when

we care only about the complex plane, which is the simplest geometric object over C. Consider
z = reiθ with r > 0. Due to the experience in computing real logarithms, one can formally write

log z := log r + iθ.

However, the first problem is that θ is not uniquely determined as different θ’s can lead to the

same value of z up to 2πZ. Let’s make the following observations.

(1) If for some z0 ∕= 0, log z0 is defined, then log z is well-defined for z lying close to z0 via

the definition above.

(2) log z can be defined on C\[0,∞). Moreover,

z = reiθ, 0 < θ < 2π =⇒ log z = log r + iθ.

(3) log z can be defined on C\i(−∞, 0]. Moreover,

z = reiθ, −π

2
< θ <

3π

2
=⇒ log z = log r + iθ.

(4) log z cannot be well-defined on C\{0}.
To sum these observations up, the complex logarithm can be well-defined in some special (sim-

ply connected) regions that are not the whole complex plane. The admissible region must be

truncated to a single period 2π in θ such that one cannot vary the argument continuously.

Theorem 4.32. Assume Ω ⊂ C is simply connected such that 0 /∈ Ω and 1 ∈ Ω. Then there

exists a well-defined holomorphic function

F (z) := logΩ(z) ∈ O(Ω)

such that eF (z) = z for all z ∈ Ω; and for r > 0 close to 1, we have F (r) = log r.

Proof. The idea is naive: to construct F (z) as a primitive of 1/z. Since 0 /∈ Ω, we see f(z) =

1/z ∈ O(Ω). By the global Cauchy (Theorem 3.10), its primitive F (z) is well-defined on the

simply connected region, and moreover,

F (z) =



Γz

f(w)dw

that is independent of the choice of the path Γz from 1 to z in Ω. Taking z = 1, we see

F (z) = F (1) = 0 simply by definition of F . On the other hand, we note that

d

dz
(e−F (z)z) = −F ′(z)e−F (z)z + e−F (z) = 0,

and then e−F (z)z is a constant function e−F (1) = 1. Hence

eF (z) = z, F (r) =

 r

1

1

x
dx = log r.

□

Remark 4.33. If log z is well-defined in Ω, then for all α ∈ C, zα is also well-defined via zα :=

eα log z. Simultaneously, even if log z is well-defined in Ω,

log(z1z2) ∕= log z1 + log z2

in general. A counterexample is easy to find: say

log z = log r + iθ, z ∈ C\(−∞, 0], −π < θ < π
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and take z1 = z2 = e2πi/3. Then z1z2 = e4πi/3 = ei(−2π/3). In this case,

log(z1z2) = −2πi

3
, log z1 + log z2 =

4πi

3
.

The following theorem generates Theorem 4.32 about the existence of complex logarithms.

The log function is well-defined for an everywhere non-vanishing holomorphic function in a

simply connected region.

Theorem 4.34. Let Ω ⊂ C be simply connected. Assume f ∈ O(Ω) doesn’t vanish anywhere in

Ω. Then there is g ∈ O(Ω) such that f(z) = eg(z) for all z ∈ Ω. We denote g(z) = logΩ f(z).

Proof. Through a similar idea, let’s construct g as a primitive of f ′/f . Fix z0 ∈ Ω and define

g(z) :=



Γz

f ′(w)

f(w)
dw + C

where Γz is a path from z0 to z and C is a constant such that eC = f(z0) (or formally,

C = log f(z0)). Again, g(z) is well-defined and g ∈ O(Ω) with g′(z) = f ′(z)/f(z). Then

d

dz
(f(z)e−g(z)) = 0

and f(z)e−g(z) is a constant function. Take z = z0 to deduce that eg(z) = f(z). □

5. Fourier analysis and complex analysis

In this chapter, we shall describe some interesting connections between complex function

theory and Fourier analysis on the real line. The motivation for this study comes in part from

the simple and direct relation between Fourier series on the circle and power series expansions

of holomorphic functions in the disc, which we now investigate.

5.1. Motivation: Mean-value property. Recall Cauchy integral formula (Theorem 3.13 and

3.14) as follows. For f ∈ O(Ω) and DR(z0) ⊂ Ω, we obtain

f (n)(z0) =
n!

2πi



∂DR(z0)

f(z)

(z − z0)n+1
dz.

Now parametrize ∂DR(z0) via z0 +Reiθ and we get

(1) (Mean-value property) For n = 0,

f(z0) =
1

2πi

 2π

0

f(z0 +Reiθ)

Reiθ
Rieiθdθ

=
1

2π

 2π

0

f(z0 +Reiθ)dθ.

(2) More generally, for n > 0,

f (n)(z0) =
n!

2πRn

 2π

0

f(z0 +Reiθ)e−inθdθ.

Remark 5.1. As for the case n < 0, note that f(z)/(z−z0)
n+1 is holomorphic in Ω so its integral

along ∂DR(z0) vanishes. Hence
 2π

0

f(z0 +Reiθ)e−inθdθ = 0, n < 0.

Recall that holomorphy is equivalent to analyticity. Then the (higher) mean-value equations

above exactly reveal the coefficients of the analytic expansion at some z0. Notice that these

equations have to do with Fourier transformations on R. To be more precise, the result above

can be interpreted as a discrete version of the Fourier transform.
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Here comes a quick review of Fourier transforms defined over R. Let f be a nice function on

R (with some decay condition or integrable condition satisfied, say). Its Fourier transform is

defined as

f(ξ) :=
 ∞

−∞
f(x)e−2πiξxdx, ξ ∈ R.

Goal: In the present context, we aim to prove the following correspondence relation. Say the

possibility of extending f to a holomorphic function is equivalent to some decay condition of
f at ∞. In other words, holomorphy of a complex-valued function is determined (whereas not

over-determined) by its restriction on R as well as the manifestation of its Fourier transformation

at ∞.

Before the theoretical introduction, recall the following basic fact on the Fourier transform.

It shows that the inversion of Fourier transformation only drops information on a zero-measure

subset of R.

Theorem 5.2 (Fourier inversion on R). If f ∈ L1(R) and f ∈ L1(R), then
 ∞

−∞
f(ξ)e2πiξxdξ = f(x) a.e. in R.

5.2. The class F. Now we introduce a class of functions that are particularly suited to our goal:

proving theorems about the Fourier transform using complex analysis. Moreover, this class will

be large enough to contain many essential applications.

Definition 5.3 (Moderate decay). Let f be a function on R. We call f have moderate decay if

|f(x)|  A

1 + x2

for all x ∈ R. In particular, for f continuous and of moderate decay,

 ∞

−∞
|f(x)|dx < ∞.

Definition 5.4 (The class F). For a > 0, denote the class Fa to the functions f satisfying the

following conditions:

(i) f ∈ O(Sa), where Sa = {z ∈ C : | Im z| < a};
(ii) there is a constant A > 0 such that |f(x+ iy)|  A

1+x2 for all x ∈ R and |y| < a.

And we define the class F =


a>0 Fa.

Examples 5.5. One must intuitively note that the class F collects elements that behave well

in a sufficiently narrow strip containing R.

(1) f(z) = e−πz2 ∈ Fa for any a > 0.

(2) For any 0 < a < c with fixed constant c > 0,

f(z) =
c

c2 + z2
∈ Fa.

(3) For any 0 < a < 1/2,

f(z) =
1

coshπz
=

2

eπz + e−πz
∈ Fa.

Exercise 5.6. Show that for all f ∈ Fa and for any 0 < b < a, we have f (n) ∈ Fb. (Hint: using

Cauchy integral formula.)
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5.2.1. Exponential control for F. The following theorem is in preparation for the result by Paley–

Wiener in 1934 (Theorem 5.12), which will be useful in finding the support of Fourier transforms.

Theorem 5.7. If f ∈ Fa then | f(ξ)|  Be−2πb|ξ| for any ξ ∈ R and 0  b < a.

Proof. For any ξ ∈ R we obtain by definition that

f(ξ) =
 ∞

−∞
f(x)e−2πixξdx.

Consequently, it is bounded as

| f(ξ)| 
 ∞

−∞
|f(x)|dx 

 ∞

−∞

A

1 + x2
dx  C

for all ξ ∈ R and some constants A,C < ∞. So the result is true for b = 0. Let 0 < b < a and

denote g(z) = f(z)e−2πizξ. It suffices to consider the case where ξ > 0, and the situation for

ξ  0 must be similar. The idea is the same as what we have used twice in Example 4.10 and

4.11 before. Suppose ΓR is the piecewise-linear closed curve defined as follows.

x

y
O R−R

−R− bi R− bi

−bi

−ai

IR

IIIR

IIRIVR

Note that g(z) is holomorphic in Sa by assumption. Now we obtain

0 =



ΓR

g(z)dz =

 R

−R

g(x)dx

  
IR

+

 −b

0

g(R+ it)dt

  
IIR

+

 −R

R

g(x− ib)dx

  
IIIR

+

 0

−b

g(−R+ it)dt

  
IVR

from the Cauchy integral formula (Theorem 3.13). Firstly, we obtain

|IIR| 
 −b

0

A

1 +R2
e−2πi(R+it)ξdξ ∼ C

1 +R2
→ 0

for some constants A,C < ∞ as R → ∞. Similarly, |IVR| → 0 as well. Hence the equality

above becomes

0 = IR + IIIR = f(ξ) +
 −∞

∞
f(x− ib)e−2πi(x−ib)ξdx.

And therefore,

| f(ξ)| =

 ∞

−∞
f(x− ib)e−2πi(x−ib)ξdx




 ∞

−∞
|f(x− ib)|e−2πbξdx

 e−2πbξ

 ∞

−∞

A

1 + x2
dx = Be−2πbξ.

The remaining proof tackles the case ξ  0. From this, we get

f(ξ) =
 ∞

−∞
f(x+ ib)e−2πi(x+ib)ξdx.

Then the same inequality accomplishes the proof. □
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The key ingredient in the proof of Theorem 5.7 above lies in the expression of Fourier trans-

formation for f ∈ Fa through a complex integral along some line y = b. This idea together with

the Fubini theorem in real analysis deduce the following Fourier inversion. Proposition 5.8 is

a modified version of Theorem 5.2 in complex analysis, which drops the “almost everywhere”

condition.

5.2.2. Fourier inversion for F.

Proposition 5.8 (Complex Fourier inversion). Given f ∈ Fa, then

∀x ∈ R, f(x) =

 ∞

−∞
f(ξ)e2πiξxdξ.

Proof. Recall that we can rewrite the Fourier transform as

f(ξ) =
 ∞

−∞
f(x− ib)e−2πi(x−ib)ξdx.

Let’s first consider the integral along the positive-half part. For 0 < b < a, we obtain

 ∞

0

f(ξ)e2πiξxdξ =

 ∞

0

 ∞

−∞
f(u)e−2πuξdu


e2πixξdξ

=

 ∞

0

 ∞

−∞
f(u− ib)e−2π(u−ib)ξdu


e2πixξdξ

=

 ∞

−∞
f(u− ib)

 ∞

0

e−(2πb+2π(u−x)i)ξdξdu

=

 ∞

−∞
f(u− ib) · 1

2πb+ 2πi(u− x)
du

=
1

2πi

 ∞

−∞

f(u− ib)

(u− ib)− x
du

=
1

2πi



L1

f(ξ)

ξ − x
dξ.

In the last row, the line L1 = R− ib. Similarly, for L2 = R+ ib, we also have

 0

−∞
f(ξ)e2πiξxdξ =

1

2πi



L2

f(ξ)

ξ − x
dξ.

To sum these up, we get

 ∞

−∞
f(ξ)e2πiξxdξ =

 ∞

0

f(ξ)e2πiξxdξ +
 0

−∞
f(ξ)e2πiξxdξ

=
1

2πi



L1+L2

f(ξ)

ξ − x
dξ.

On the other hand, from the Cauchy integral formula (Theorem 3.13),

f(x) =
1

2πi



ΓR

f(ξ)

ξ − x
dξ = IR + IIR + IIIR + IVR,

where ΓR is defined as in the picture. It suffices to show that |IIR|, |IVR| → 0 as R → ∞.
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x

y

O

bi

−bi

R−R

L2

L1
IR

IIIR
IIR

IVR

The result in need is deduced from the typical argument. Say

|IIR| =


1

2πi

 b

−b

f(R+ it)

R+ it− x
dt

 
1

2π

 b

−b

A

1 +R2
· 1

|R− x|dt 
C

R3
→ 0

for some constant A,C < ∞ as R → ∞. Similarly, |IVR| → 0 as well. Therefore,

f(x) = lim
R→∞

1

2πi



ΓR

f(ξ)

ξ − x
dξ =

1

2πi



L1+L2

f(ξ)

ξ − x
dξ =

 ∞

−∞
f(ξ)e2πixξdξ.

This completes the proof. □

5.2.3. Poisson summation formula for F.

Theorem 5.9 (Complex Poisson summation formula). Given f ∈ Fa, we have


n∈Z
f(n) =



n∈Z

f(n).

Proof. Consider the function f(z)/(e2πiz − 1), it has simple poles at every n ∈ Z with

resn
f(z)

e2πiz − 1
= lim

z∈n
(z − n)

f(z)

e2πiz − 1
=

f(n)

2πi
.

Now we fix N ∈ N and apply the residue formula on ΓN . Here we keep the statement as in the

proof of Proposition 5.8: ΓN is defined by the picture above with R = N + 1/2. Hence


ΓN

f(z)

e2πiz − 1
dz = 2πi



pole x∈ΓN

resx
f(z)

e2πiz − 1
=



|n|N

f(n).

Claim: the integrals on the vertical segments tends to 0 as N → ∞.

To show this claim, letting N → ∞, we get

lim
N→∞



ΓN

f(z)

e2πiz − 1
dz = lim

N→∞



|n|N

f(n) =


n∈Z
f(n).

Apply the same argument as in Proposition 5.8, this leads to



n∈Z
f(n) =



L1

f(z)

e2πiz − 1
dz +



L2

f(z)

e2πiz − 1
dz.

We have some observations as follows.

• on L1 = R− ib, we see e2πiz = e2πi(x−ib) = e2πbe2πix, thus |e2πiz| = e2πb > 1. Therefore,

1

e2πiz − 1
= e−2πiz 1

1− e−2πiz
= e−2πiz

∞

n=0

e−2πinz =

∞

n=0

e−2πi(n+1)z.

• on L2 = R+ ib, similarly, |e2πiz| = e−2πb < 1. Therefore,

1

e2πiz − 1
= − 1

1− e2πiz
= −

∞

n=0

e2πinz.
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So our calculation can be done:



n∈Z
f(n) =



L1

f(z)

∞

n=0

e−2πi(n+1)zdz −


L2

f(z)

∞

n=0

e2πinzdz

=

∞

n=0

 ∞

−∞
f(x− ib)e−2πi(n+1)(x−ib)dx+

∞

n=0

 ∞

−∞
f(x+ ib)e−2πi(−n)(x+ib)dx

=

∞

n=0

f(n+ 1) +

∞

n=0

f(−n) =


n∈Z
f(n).

This proves the Poisson summation formula. □

There are two precise applications of Theorem 5.9. It is used to deduce more formulas.

Example 5.10 (Functional equation). Recall that for f(x) = e−πx2

, its Fourier transform is

itself (Example 3.12):

f(ξ) =
 ∞

−∞
e−πx2

e−2πxξdx = e−πξ2 .

Thus, for F (x) = e−πt(x+a)2 with t > 0 and a ∈ R, we have

F (ξ) =

 ∞

−∞
F (x)e−2πixξdx = t−1/2e2πiaξe−πξ2/t

The Poisson summation formula deduces that


n∈Z
e−πt(n+a)2 = t−1/2



n∈Z
e−πn2/t · e2πian.

In particular, letting a = 0 and denoting θ(t) =


n∈Z e
−πtn2

for t > 0, we get

θ(t) = t−1/2θ


1

t


.

This is an important functional equation in analytic number theory, which is relevant to the

Riemann hypothesis.

Example 5.11. Recall Example 4.11 in which we have shown that f(x) = 1/ coshπx takes

itself as its Fourier transform. One can also show that

F (x) =
e−2πiax

cosh(πx/t)
, F (ξ) =

t

cosh(π(ξ + a)t)

for all t > 0 and a ∈ R. Again, by Poisson summation formula, one deduces that



n∈Z

e−2πian

cosh(πn/t)
=



n∈Z

t

cosh(π(n+ a)t)
.

5.3. Paley–Wiener theorem.

Theorem 5.12 (Paley–Wiener, 1934). Suppose f : C → C is continuous and of moderate decay

on R, i.e., for all x ∈ R, |f(x)|  A/(1 + x2). Then the following are equivalent:

(1) f has an extension to a holomorphic function on C with |f(z)|  Ae2πM |z| for some

constants A,M > 0, and for all z ∈ C.
(2) f is supported on [−M,M ], i.e., f(ξ) = 0 for any |ξ| > M .

Proof. The converse direction (2) ⇒ (1) is relatively easy. Suppose f is supported on [−M,M ],

then f is of moderate decay implies that the Fourier inversion for F (Proposition 5.8) holds for

f . In particular,

∀x ∈ R, f(x) =

 ∞

−∞
f(ξ)e2πixξdξ =

 M

−M

f(ξ)e2πixξdξ.
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Let’s define the complex-valued function

g(z) :=

 M

−M

f(ξ)e2πizξdξ.

Then g ∈ O(C) and g(x) = f(x) over R. Moreover, for any z = x+ iy, we obtain

|g(z)| =



 M

−M

f(ξ)e2πizξdξ

 
 M

−M

| f(ξ)|e−2πyξdξ  Ae2πM |z|

for some constant A. The last inequality above is given the exponential control (Theorem 5.7).

Now we prove (1) ⇒ (2) step by step.

Step 1: Strengthen growth condition. Assume f ∈ O(C) is controlled by a stronger

growth condition, say

|f(x+ iy)|  A′ e
2πM |y|

1 + x2

for some A′ > 0. The claim is that f(ξ) = 0 whenever |ξ| > M .

(i) ξ > M : a similar computation through the Cauchy integral formula as if in the proof of

Theorem 5.7 deduces that

f(ξ) =
 ∞

−∞
f(x)e−2πixξdx =

 ∞

−∞
f(x− iy)e−2πi(x−iy)ξdx

for all y > 0. Applying the stronger growth condition, we attain that

| f(ξ)| 
 ∞

−∞

A′

1 + x2
e2πMy−2πyξdx =

 ∞

−∞

A′

1 + x2
dxe2πy(M−ξ) → 0

as y → ∞, because of y > 0 and M − ξ < 0. Thus for ξ > M , we have | f(ξ)| = 0.

(ii) ξ < −M : same as in (i). One can compute

f(ξ) =
 ∞

−∞
f(x)e−2πixξdx =

 ∞

−∞
f(x+ iy)e−2πi(x+iy)ξdx

for all y > 0 again. It can be verified that

| f(ξ)|  Ce2πy(ξ+M) → 0

for some constant C as y → ∞. Thus for ξ < −M , | f(ξ)| = 0.

Step 2: Relaxing the growth condition. Take f ∈ O(C) such that |f(x+iy)|  Ae2πM |y|.

The claim is that f(ξ) = 0 for all |ξ| > M as well.

(i) ξ > M : consider for ε > 0 that

fε(z) :=
f(z)

(1 + iεz)2
.

It suffices to verify the following two facts. Firstly, the function fε satisfies the stronger

growth condition in Step 1. That is,

|fε(x+ iy)|  D
e2πM |y|

1 + x2

for another constant D. Applying the argument that we have used, we can immediately

get fε(ξ) = 0 for |ξ| > M . Secondly, check that fε(ξ) → f(ξ) as ε → 0. These are

relatively easy to do (so we choose to omit the details).

(ii) ξ < −M : consider for ε > 0 that

fε(z) :=
f(z)

(1− iεz)2
.

One can verify the conditions as in (i) again.
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Step 3: Applying Phragmén–Lindelöf maximum principle. We aim to prove that if

|f(x)|  1 for x ∈ R and |f(z)|  e2πM |z| for all z ∈ C, then

|f(x+ iy)|  e2πM |y|.

For this, we consider the function

F (z) := f(z)e2πiMz.

On Q1 = {(x, y) ∈ R2 : x, y  0}, we have

|F (x)| = |f(x)|  1, |F (iy)| = |f(iy)e−2πMy|  1.

Hence |F (z)|  1 for all z ∈ ∂Q1. Also, the condition |f(z)|  e2πM |z| yields that

|F (z)|  e4πM |z|

for all z ∈ Q1. Now by the Phragmén–Lindelöf maximum principle (Theorem 4.30),

∀z ∈ Q1, |F (z)|  1.

Hence |f(z)|  e−2πMy for all z ∈ Q1. Applying the same argument to other quadrant closure

Q2, Q3, and Q4, we finally have |f(z)|  e−2πMy for all z ∈ C. Furthermore, note that

the condition |f(x)|  1 can be dropped without changing anything essentially. The result is

naturally generated to

|f(z)|  e−2πM |z|

for all z ∈ C as desired. □

Remark 5.13. The moderate decay condition for f in Theorem 5.12 can be replaced by some

integrable property of f to attain a more general version.

6. Entire function

Recall in Corollary 3.16 that f is called entire if f ∈ O(C). In Subsection 4.3.2 and 4.3.3,

we have seen the complexity of the manifestation of the meromorphics at the infinity. In this

chapter we are going to construct the hidden connection between the growth of f at ∞ and

the zeros of f on C. Morally, the intuition which will be proved is that the faster it growths at

∞, the more zeros it contains (Theorem 6.7). This result is compatible with the fundamental

theorem of algebra (Theorem 3.18).

Also, it turns out that if an entire function has a finite (exponential) order of growth, then

it can be specified by its zeros up to multiplication by a simple factor. The precise version

of this assertion is the Hadamard factorization theorem (Theorem 6.13). It may be viewed as

another instance of the general rule that was formulated before: under appropriate conditions,

a holomorphic function is essentially determined by its zeros (Theorem 6.10).

6.1. Jensen’s formula. Jensen’s formula, central to much of the theory developed in this

section, exhibits a deep connection between the number of zeros of a function in a disc and the

(logarithmic) average of the function over the circle. In fact, Jensens formula not only constitutes

a natural starting point for us, but also leads to the fruitful theory of value distributions, also

called Nevanlinna theory.

The following result says that for a well-behaved holomorphic function on a disc, its central

logarithmic value is and its logarithmic average along the boundary circle are almost mutually

determined, where the difference is given by some information about zeros.

Theorem 6.1 (Jensen). Let Ω ⊂ C be an open subset and let DR := DR(0) ⊂ Ω. Suppose

f ∈ O(Ω) satisfies f(0) ∕= 0 and is nonzero along ∂DR. Assume z1, . . . , zN are the zeros of f

in DR counted with multiplicities. Then

log |f(0)| =
N

k=1

log

zk
R

+
1

2π

 2π

0

log |f(Reiθ)|dθ.
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Proof. Note that the formula is stable under additive. That is, if the result holds for f1 and f2
simultaneously, then it holds for f1 · f2 as well. Denote

g(z) =
f(z)

N
k=1(z − zk)

,

then every zk is a removable singularity of g. Thus g ∈ OO(DR) and g ∕= 0 in DR everywhere.

Hence we may write

f(z) = g(z) ·
N

k=1

(z − zk).

It suffices to verify the formula for g without zeros, that is, to show

log |g(0)| = 1

2π

 2π

0

log |g(Reiθ)|dθ.

If g ∕= 0 in DR, then log |g(z)| is harmonic in DR and we can apply the mean-value property

for harmonic functions. Furthermore, suppose DR is simply connected and then h = log g is

well-defined in DR with eh = g by Theorem 4.32. Hence

log |g(z)| = Re |h(z)|.

This suggests us to apply the mean-value property to h and to take real parts. As a result, the

Jensen’s formula is valid for g(z). On the other hand, let’s check for the function z − w, where

w ∈ DR. One may need to prove

log |w| = log
|w|
R

+
1

2π

 2π

0

log |Reiθ − w|dθ.

This is equivalent to say  2π

0

log
eiθ −

w

R

 dθ = 0.

Claim: for all |a| < 1 we have
 2π

0

log |eiθ − a|dθ = 0 ⇐⇒
 2π

0

log |1− aeiθ|dθ = 0.

Proof of the Claim. For this, consider the function F (z) = 1− az. Then F ∕= 0 in the unit disc

D. Hence there is some G being holomorphic in D such that eG = F by Theorem 4.32 again.

Thus,

log |F | = log |1− az| = ReG(z).

Finally, applying the mean-value property to G, we get

0 = log |F (0)| = 1

2π

 2π

0

log |F (eiθ)|dθ =
1

2π

 2π

0

log |1− aeiθ|dθ.

This is enough to complete the proof by taking some sufficiently large R. □

In fact, the holomorphy assumption in Theorem 6.1 can be dropped to deduce a general

version of Jensen’s formula.

Theorem 6.2 (General Jensen’s formula). Let Ω ⊂ C be an open subset and DR := DR(0) ⊂ Ω.

Let f be a meromorphic function in Ω. Counting with multiplicities, assume a1, . . . , aN are

zeros and b1, . . . , bN are poles of f in Dr, respectively. Then for all z ∈ DR with f(z) ∕= 0 and

f(z) ∕= ∞, we have

log |f(z)| = 1

2π

 2π

0

log |f(Reiθ)| · R2 − |z|2
|Reiθ − z|2 dθ

−
N

i=1

log


R2 − aiz

R(z − ai)

+
M

j=1

log


R2 − bjz

R(z − bj)

 .
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Exercise 6.3. Prove Theorem 6.2 with a similar approach as in the proof of classical Jensen’s

formula. Consider the function

ψα(z) :=
R2 − αz

R(z − α)
, α ∈ DR.

First prove the result for f(z) ·
N

i=1 ψai(z) · (
M

j=1 ψbj (z))
−1.

6.2. Zeros and the order of growth. In the present context, we are doing some preparation

works for the ultimate goal of this section: to construct the connection between zeros and the

speed of growth at the infinity. Given f ∈ O(DR), we denote

nf (r) := #{z ∈ Dr : f(z) = 0} = #(f−1(0) ∩Dr),

counted with multiplicities.

Proposition 6.4. Keep the same statement of Theorem 6.1 on f and Ω. Then
 R

0

nf (r)
dr

r
=

1

2π

 2π

0

log |f(Reiθ)|dθ − log |f(0)|.

Proof. By Jensen’s formula, we only need to verify

 R

0

nf (r)
dr

r
=

N

k=1

log
R

|zk|
,

where z1, . . . , zN are zeros of f in DR. Let’s define

ηk(r) =


1, |zk| < r;

0, |zk|  r.

Thus nf (r) =
N

k=1 ηk(r). On the other hand, we obtain
 R

0

ηk(r)
dr

r
=

 R

|zk|

dr

r
= log

R

|zk|
.

Therefore,
 R

0

nf (r)
dr

r
=

 R

0

N

k=1

ηk(r)
dr

r
=

N

k=1

 R

0

ηk(r)
dr

r
=

N

k=1

log
R

|zk|
.

Note that the key point of this proof lies in the case of a single zero. □

Now we are defining the order of growth, which is to be applied at the infinity later.

Definition 6.5 (Order of growth). Given f ∈ O(C), if there exists some ρ > 0 and constants

A,B > 0 such that |f(z)|  AeB|z|ρ for any z ∈ C, i.e., log |f(z)|  B|z|ρ + O(1) where O(1)

denotes a bounded term, then we call f has order of growth at most ρ. Then take ρf := inf ρ

for all such ρ. And ρf is called the order of growth of f .

Examples 6.6. The subtlety in Definition 6.5 is that the order of growth is possibly not precise.

For example, if f is a polynomial in z, then ρf = 0 whereas |f(z)| cannot be bounded by

AeB < ∞. Similarly, one can show that if f(z) = exp ez, then ρf = ∞. For a more prototypical

example, consider f(z) = ez whose ρf = 1.

Theorem 6.7. Let f ∈ O(C) with order of growth ρf  ρ. Then

(1) nf (r)  Crρ for some C > 0 and r ≫ 1;

(2) if {zn}∞n=1 are zeros of f with zk ∕= 0 for any k, then for all s > ρ we have

∞

k=1

1

|zk|s
< ∞.
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Proof. If f(0) = 0 then consider f(z)/zm, where m = ord0(f). So we may assume f(0) ∕= 0 for

convenience and by Proposition 6.4,
 R

0

nf (r)
dr

r
=

1

2π

 2π

0

log |f(Reiθ)|dθ − log |f(0)|  Arρ

for some constant A > 0 by assumption. Let R = 2r and note that

nf (r) log 2 = nf (r)

 2r

r

ds

s


 2r

r

nf (s)
ds

s


 R

0

nf (s)
ds

s
.

So there exists another constant C > 0 such that nf (r)  Crρ for r ≫ 1. This gives (1) as

required. As for (2), we obtain



|zk|1

|zk|−s =

∞

j=0



2j|zk|<2j+1

|zk|−s 
∞

j=0

2−jsnf (2
j+1)

 C ·
∞

j=0

2−js2(j+1)ρ  C1 ·
∞

j=0

(2ρ−s)j < ∞.

The last inequality in the first and the second row above respectively uses (1) and ρ < s. □

6.3. Infinite product. A natural question is whether or not, given any sequence of complex

numbers {zn}∞n=1, there exists an entire function f with zeros precisely at the points of this

sequence. A necessary condition is that {zn}∞n=1 do not accumulate, in other words we must

have limk→∞ |zk| = ∞, otherwise f would vanish identically by the analytic continuation (The-

orem 3.22). Weierstrass proved that this condition is also sufficient by explicitly constructing a

function with these prescribed zeros. A first guess is of course the product

∞

n=1

(z − zn)

when the sequence of zeros is finite. In general, Weierstrass inserted factors in this product so

that the convergence is guaranteed, yet no new zeros are introduced.

Before coming to the general construction, we review infinite products and study a basic

example. Given {an}∞n=1 ⊂ C, say the product converges if the limit limN→∞
N

n=1(1 + an)

exists.

Proposition 6.8. Whenever
∞

n=1 |an| < ∞, the product
N

n=1(1+an) converges and vanishes

if and only if some factor 1 + ak = 0.

Proof. For |z| < 1 we have the logarithmic expansion

log(1 + z) = −
∞

k=1

zk

k
.

Suppose
∞

n=1 |an| < ∞ and then |an| < 1/2 for n  N0 ≫ 0. Consequently, log(1 + an) is

well-defined with elog(1+an) = 1 + an. Then we do calculation as

∞

n=1

(1 + an) =

N0

n=1

(1 + an) ·
∞

n=N0+1

(1 + an)

=

N0

n=1

(1 + an) ·
∞

n=N0+1

exp(log(1 + an))

=

N0

n=1

(1 + an) · exp
 ∞

n=N0+1

log(1 + an)


.
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Note that | log(1 + z)|  2|z| for |z| < 1/2. So there exists some constant B such that
∞

n=N0+1

| log(1 + an)| 
∞

n=N0+1

2|an| → B < ∞

by assumption. Hence the infinite product factors through a finite product as

∞

n=1

(1 + an) =

N0

n=1

(1 + an) · eB

and the product is zero if and only if one of these factors is 0. □

Proposition 6.9. Let Ω ⊂ C be an open subset and Fn ∈ O(Ω). Assume there are cn > 0 such

that
∞

n=1 cn < ∞ and |Fn(z)− 1|  cn for all z ∈ Ω. Then

(1)
∞

n=1 Fn(z) → F (z) uniformly (with respect to z) on Ω for some F ∈ O(Ω).

(2) If Fn ∕= 0 for every n  1 then for any z ∈ Ω,

F ′

F
(z) =

∞

n=1

F ′
n

Fn
(z).

Proof. For (1), we can write
∞

n=1 Fn(z) =
∞

n=1 1 + (Fn(z) − 1). And for (2), just use the

formula
(f · g)′
f · g =

f ′

f
+

g′

g
.

The undisclosed details are left to readers. □

Let’s introduce the main theorem by Weierstrass, which dictates the existence of an entire

function that vanishes at a given infinite sequence exactly. Moreover, such entire function is

unique up to an exponential factor.

Theorem 6.10 (Weierstrass infinite product). Given {an}∞n=1 ⊂ C with |an| → ∞ as n → ∞.

Then there exists some f ∈ O(C) with the zeros exactly at z = an. Any other such entire

function is of the form f(z)eg(z), where g ∈ O(C).

Before proving this, a lemma at work about canonical factors is in display.

Definition 6.11. For k  0 we define the canonical factors as

E0(z) = 1− z, Ek(z) = (1− z) exp


k

n=1

zn

n


.

Lemma 6.12. If |z|  1/2, then

|1− Ek(z)|  c|z|k+1

for some c > 0 that is independent of k.

Proof. Whenever |z|  1/2, we have 1− z = exp(log(1− z)) where

log(1− z) = −
∞

n=1

zn

n
.

Thus we can write for all k  1 that

Ek(z) = exp


log(1− z) +

k

n=1

zn

n


= exp



−


nk+1

zn

n



 = ew(z).

Here |w(z)| is bounded as follows:

|w(z)|  |z|k+1


nk+1

|z|n−k+1

n
 |z|k+1

∞

j=0

1

2j
= 2|z|k+1
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because of |z|  1/2. In particular, |w(z)|  1. Therefore,

|1− Ek(z)| = |1− ew(z)|  e|w|  2e|z|k+1.

For the middle inequality above, recall that ew =
∞

n=0 w
n/n!, and then

|ew − 1|  |w|
∞

n=1

|w|n−1

n!
 |w|

∞

n=1

1

n!
= e|w|.

Taking c = 2e does finish the proof. □

Now we move to the construction by Weierstrass.

Proof of Theorem 6.10. Step 1: Existence. The most naive idea is to consider the infinite

product
∞

n=1


1− z

an


.

However, this product does not converge in general. Fortunately, the result is differed from this

by another exponential factor. Obtaining the canonical factors (Definition 6.11), we move to

f(z) := zm
∞

n=1

En


z

an


= zm

∞

n=1


1− z

an


exp


n

k=1

(z/an)
k

k


, m  0.

Claim: f ∈ O(C) has a zero at z = 0 of order m and zeros at each an, but nowhere else.

Proof of the Claim. For this, we first check that f is holomorphic in every disc DR(0) for R > 0.

Write
∞

n=1

En


z

an


=



|an|2R

En


z

an

 

|an|>2R

En


z

an


.

The motivation to consider this truncated product is that as |an| → ∞, the finite part vanishes

at z = an for |an| < R in DR(0), and the infinite part is convergent. Now for z ∈ DR and

|an| > 2R, we have |z/an| < 1/2. Thus,

|1− En


z

an


|  c


z

an


n+1

 c(
1

2
)n+1

by Lemma 6.12. Now by Proposition 6.9, the infinite part


|an|>2R En(z/an) converges uni-

formly to some holomorphic function in DR(0). Letting R → ∞ finishes the proof of existence.

Step 2: Uniqueness. This is relatively easy. If f1 and f2 are two such functions, then f1/f2
is holomorphic in C and f1/f2 ∕= 0. Since C is simply connected, there exists some g ∈ O(C)
such that f1/f2 = eg by Theorem 4.32. □

6.4. Hadamard factorization theorem. The main result: if an entire function has a finite

(exponential) order of growth, then it can be specified by its zeros.

Recall Definition 6.5 that if f ∈ O(C) has finite order of growth, denoted by ρf , then for any

ε > 0,

log |f(z)|  Aε|z|ρf+ε +O(1)

as |z| → ∞. In fact, if the sequence of zeros is given, say {an}∞n=1 = f−1(0), then


an ∕=0

1

|an|ρf+ε
< ∞.

Theorem 6.13 (Hadamard factorization). Let f ∈ O(C) has a growth order ρf < ∞ and take

k = [ρf ] as the integer part of ρf . If {an}∞n=0 are the zeros of f that are away from 0, then

f(z) = eP (z)zm
∞

n=1

Ek


z

an



where P is a polynomial of degree at most k, and m = ord0(f).
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Proof. For z ∈ DR(0) we write

∞

n=1

Ek


z

an


=



|an|2R

Ek


z

an


·



|an|>2R

Ek


z

an


.

On the right hand side, the first term is a product of finite terms with zeros z = an for |an| < R

in the disc DR. Moreover, there is a constant C such that the second term satisfies



|an|>2R

Ek


z

an


 C


z

an


k+1

 CRk+1 1

|an|k+1

by Lemma 6.12 (because of |z/an| < 1/2 for z ∈ DR). By Theorem 6.7 (2),



n1

1

|an|k+1
< ∞,

which implies that
∞

n=1 Ek(z/an) is holomorphic in DR. Letting R → ∞, we define

E(z) = zm
∞

n=1

Ek


z

an


∈ O(C).

Note that this function has the same zeros as f(z). Therefore, the function f(z)/E(z) ∈ O(C)
vanishes nowhere, that is, there is some g(z) ∈ O(C) such that f(z)/E(z) = eg(z). So

f(z) = eg(z)zm
∞

n=1

Ek


z

an


.

Now it suffices to control g(z) by a polynomial of degree at most k.

Claim: if f has the growth order ρf , then for all s > ρf , there is a constant C such that

∞

n=1

Ek


z

an


 exp(−C|z|s)

on |z| = rm → ∞ as m → ∞.

Assuming the claim, we get on |z| = rm → ∞ that

|eg(z)| = eRe(g) =


f(z)

E(z)

 
A exp(B|z|s)
exp(−C|z|s)

for some constants A,B. So Re(g)(z)  C|z|s on |z| = rm → ∞. Using this condition, it can

be shown that g(z) is a polynomial of degree  s (as an exercise). Let s → ρf , we get g(z) is a

polynomial of degree  k = [ρf ]. The proof of claim is omitted for convenience. □

Examples 6.14. There are some basic examples as applications of Theorem 6.13.

(1) f(z) = ez − 1.

It is an entire function with ρf = 1 and m = ord0(z) = 1 with zeros at z = 2πin for all

n ∈ Z. Applying Hadamard factorization, we obtain

ez − 1 = eaz+bz ·


n∈Z\{0}


1− z

2πin


exp

 z

2πin


= eaz+bz

∞

n=1


1 +

z2

4π2n2



for some a, b ∈ C. We use the following recipe to determine these constants:

lim
z→0

ez − 1

z
= 1 =⇒ b = 0;

also, the infinite product is an even function with respect to z, which means that

ez − 1

eaz · z =
e−z − 1

e−az · (−z)
=⇒ a =

1

2
.
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Therefore, the factorization of f(z) is read as

ez − 1 = ez/2z

∞

n=1


1 +

z2

4π2n2


.

(2) f(z) = sin(πz).

It is apparent that ρf = 0 and m = ord0(z) = 1 with zeros at z = n for all n ∈ Z.
Consequently,

sin(πz) = eaz


n∈Z\{0}


1− z

n


= eaz

∞

n=1


1− z2

n2



for some constant a ∈ C. Similarly, by considering

lim
z→0

sin(πz)

z
= π = ea,

we get the desired factorization.

6.5. Divisors. Let f ∈ O(C) be a nonzero function. We define the divisor of f to describe its

zeros and poles.

Definition 6.15 (Zero divisor). The following formal sum of points in C is called the zero

divisor associated to f , say

Z(f) :=


f(a)=0

orda(f) · a.

Here the sum runs through all points a ∈ C such that f(a) = 0.

Comparing with Theorem 6.10, we have the following neat result.

Theorem 6.16. Given a discrete set {an}∞n=1 ⊂ C, there is an entire function f ∈ O(C) such

that {an}∞n=1 are exactly all the zeros of f (counted with multiplicity).

Collecting the information in {an}∞n=1 as a formal sum of points in C, say
∞

k=1

mk · Pk, mk ∈ N,

then the theorem implies that this formal sum can be realized as Z(f) for some f ∈ O(C).

Definitions 6.17 (Divisors). A Z-coefficient divisor in C is a formal sum

D =

∞

k=1

mk · Pk

with mk ∈ Z, where the set {Pk}∞k=1 ⊂ C is discrete. A divisor is effective if all mk  0.

Let f be a meromorphic function in C. Then the divisor associated to f is defined to be

(f) = Z(f) + P (f) =


f(a)=0

orda(f) · a+


f(a)=∞

orda(f) · a.

The following theorem shows that divisors with Z-coefficients in C are in a one-to-one corre-

spondence with meromorphic functions on C.

Theorem 6.18. For any divisor D with Z-coefficients in C, there exists a meromorphic function

f on C such that D = (f).
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6.6. Nevanlinna theory. Recall that Jensen’s formula reveals a hidden connection between

the number of zeros of a function in a disc and the (logarithmic) average of the function over

the circle. Starting from the following Poisson-Jensen formula, which is a variant of Jensen’s

formula, we construct the theory developed by Nevanlinna in 1925.

Let f be a meromorphic function in Dr, then for z ∈ DR with f(z) ∕= 0 and f(z) = ∞, we

have

log |f(z)| = 1

2π

 2π

0

log |f(Reiθ)|Re

Reiθ + z

Reiθ − z


dθ −



a∈DR

orda(f) log |BR,a(z)|,

where BR,a(z) = (R2 − az)/R(z − a). In particular, if z = 0 is neither a zero nor a pole, i.e., it

satisfies f(0) ∕= 0 and f(0) ∕= ∞, then

log |f(0)| = 1

2π

 2π

0

log |f(Reiθ)|dθ −


a∈DR

orda(f) log

r

a

 .

In general, if for those z landing near z = 0 we have an expansion f(z) = cfz
m + · · · with

cf ∕= 0, then by applying the equation above to f(z)/zm we get

(∗) log |cf | =
1

2π

 2π

0

log |f(Reiθ)|dθ −


a∈DR\{0}

orda(f) log

r

a

−m logR.

We now introduce the number of poles of f in Dr (counted with multiplicity), say

nf (r) = nf (r,∞) := #(f−1(∞) ∩Dr).

For a ∈ C, we also define the number of solutions of f(z) = a in Dr (counted with multiplicity)

by

nf (r, a) := n1/(f−a)(r,∞).

In particular, nf (0, 0) − nf (0,∞) = m = ord0(f) is the difference of zeros and poles of f at

z = 0. Using these sense, we are clear for the motivation of Nevanlinna’s definition for the

counting function.

Definition 6.19 (Nevanlinna counting function). For r > 0 we define (for the second and the

third terms in (∗)) that

Nf (r) = Nf (r,∞) :=


a∈Dr\{0},
f(a)=∞

(− orda(f)) · log

r

a

+ nf (0,∞) log r,

and

Nf (r, 0) :=


a∈Dr\{0},
f(a)=0

orda(f) · log

r

a

+ nf (0, 0) log r.

Using the expressions of Nf (r,∞) and Nf (r, 0), Jensen’s formula (∗) can be written as

(∗∗) log |cf |+Nf (R, 0) =
1

2π

 2π

0

log |f(Reiθ)|dθ +Nf (R,∞).

In fact, there is an explicit expression of Nf (r) whose proof is leave as an exercise.

Proposition 6.20. We have the equality

Nf (r) =

 r

0

nf (t)− nf (0)

t
dt+ nf (0) log r.

Definition 6.21 (Proximity function). Let f be a meromorphic function in Dr. Then for

0 < r < R, we define

mf (r) = mf (r,∞) =
1

2π

 2π

0

log+ |f(reiθ)|dθ.
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Here log+ α := max(0, logα) for α > 0. Also, for a ∈ C, we define

mf (r, a) =
1

2π

 2π

0

log+
1

|f(reiθ)− a|dθ.

Remark 6.22. Note that logα = log+ α− log+(1/α) and | logα| = log+ α+ log+(1/α).

Definition 6.23 (Nevanlinna height function). For r > 0 we define

Tf (r) = Tf (r,∞) := Nf (r,∞) +mf (r,∞).

Note that the height function is the “pole part” of the right hand side of (∗). Again, by

Jensen’s formula (∗∗),

log |cf |+Nf (R, 0) =
1

2π

 2π

0

log+ |f(Reiθ)|dθ − 1

2π

 2π

0

log+
1

|f(Reiθ)|dθ +Nf (R,∞)

= mf (R,∞)−m1/f (R,∞) +Nf (R,∞).

This is equivalent to

log |cf |+N1/f (R,∞) +m1/f (R,∞) = mf (R,∞) +Nf (R,∞).

Therefore,

(1) log |cf |+ T1/f (R) = Tf (R).

Now let a ∈ C. Applying Jensen’s formula to f(z)− a, we get

log |cf−a|+Nf−a(R, 0) =
1

2π

 2π

0

log |f(Reiθ)− a|dθ +Nf (R,∞)

= Nf (R,∞) +
1

2π

 2π

0

log+ |f(Reiθ)− a|dθ

− 1

2π

 2π

0

log+
1

|f(Reiθ)− a|dθ.

Consequently,

log |cf−a|+N1/(f−a)(R) +m1/(f−a)(R) = Nf (R) +
1

2π

 2π

0

log+ |f(Reiθ)− a|dθ.

Note that

log+(α1 + · · ·+ αn)  max
1in

(log+ αi) + log n 
n

i=1

log+ αi + log n.

In particular,

log+ |f − a|  log+ |f |+ log+ |a|+ log 2,

log+ |f |  log+ |f − a|+ log+ |a|+ log 2.

So we get

(2) Tf−a(R) = Tf (R) +Oa(1),

where Oa(1) denotes a bounded term depending on a.

Theorem 6.24 (The first main theorem of Nevanlinna theory). Let R > 0 and f be a mero-

morphic function defined on Dr. Then

(1) log |cf |+ T1/f (R) = Tf (R);

(2) Tf−a(R) = Tf (R) +Oa(1).
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Theorem 6.25 (Cartan). Keep the same statement. We obtain

Tf (r) =
1

2π

 2π

0

Nf (r, e
iθ)dθ + C

=
1

2π

 2π

0

Nf (r, e
iθ)dθ +


log+ |f(0)|, f(0) ∕= ∞,

log |cf |, f(0) = ∞.

Proof Idea. For example, if f(0) ∕= ∞, then apply Jensen’s formula to f(z) − eiθ and then

integrate with respect to θ. □

Recall the definitions of nf and Nf , we see they are increasing functions. Hence by Theorem

6.25, Tf (r) is an increasing function with respect to r as well, and is convex with respect to

log r.

Theorem 6.26. Let f be a meromorphic function on C.
(1) If Tf (R) is bounded as R → ∞, then f is a constant.

(2) Tf (R) ∼ O(logR) as R → ∞ if and only if f is rational on C.

Let f ∈ O(Dr). Define Mf (r) := log fr, where fr = sup|z|r |f(z)| = sup|z|=r |f(z)|.
Then

mf (r) =
1

2π

 2π

0

log+ |f(reiθ)|dθ  max(Mf (r), 0).

Lemma 6.27. Let f ∈ O(Dr), then for 0 < r < R we have

Mf (r) 
R+ r

R− r
mf (R,∞)− R− r

R+ r
mf (R, 0)  R+ r

R− r
mf (R).

Proof. Applying Jensen’s formula to f (which is holomorphic), we get

log |f(z)| = 1

2π

 2π

0

log |f(Reiθ)|Re

Reiθ + z

Reiθ − z


dθ −



a∈DR,
orda(f)>0

orda(f) · log |BR,a(z)|

 1

2π

 2π

0

log |f(Reiθ)|Re

Reiθ + z

Reiθ − z


dθ

for z with f(z) ∕= 0. Now for z = reiθ and r < R, we have

R− r

R+ r
 Re


Reiθ + z

Reiθ − z


 R+ r

R− r
.

We write

log |f(Reiθ)| = log+ |f(Reiθ)|− log+
1

|f(Reiθ)| .

This completes the proof. □

Corollary 6.28. For f that is holomorphic in D2r, we have

Mf (r)  3mf (2r,∞) = 3Tf (2r).

The latter equality holds because of the holomorphy.

Proof Idea of Theorem 6.26. (1) Applying Liouville’s Theorem (Corollary 3.16) is enough.

(2) The direction ⇒ is easy by Cartan’s Theorem 6.25. As for ⇐, use the definitions of

Tf (R), Nf (R) and so on. □

7. The gamma and zeta functions

7.1. The gamma function. For s > 0 we define

Γ(s) :=

 ∞

0

e−tts−1dt.
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7.1.1. Analytic continuation.

Proposition 7.1. Γ(·) extends to a holomorphic function in the right-half plane Re(s) > 0 by

replacing s by complex numbers.

Proof. For ε > 0 we define

Fε(s) =

 1
ε

ε

e−tts−1dt,

then Fε(·) is holomorphic with respect to s ∈ C.
Claim: on every strip Sδ,M = {s ∈ C : δ < Re(s) < M}, the series of functions Fε → Γ

converges uniformly as ε → 0.

Proof of Claim. Note that for t > 0 with any s ∈ C, we have ts = exp(s log t) = exp(Re(s) ·
log t) · exp(i Im(s) log t). Hence |ts| = eRe(s)·log t = tRe(s). Now we denote σ = Re(s). Then

|Fε(s)− Γ(s)| =



 ε

0

e−tts−1dt+

 ∞

1
ε

e−tts−1dt




 ε

0

e−ttσ−1dt+

 ∞

1
ε

e−ttσ−1dt


 ε

0

tσ−1dt+

 ∞

1
ε

e−ttM−1dt

 εδ

δ
+

 ∞

1
ε

e−ttM−1dt → 0

as ε → 0. So we have proved the claim.

Now the claim implies that Γ is naturally a holomorphic function in Sδ,M . This completes

the proof. □

Proposition 7.2. For Re(s) > 0 we have Γ(s+1) = sΓ(s). In particular, Γ(n+1) = n! for all

n ∈ N.

Proof. Using the formula

 1
ε

ε

d

dt
(e−tts−1)dt = −

 1
ε

ε

e−ttsdt+ s

 1
ε

ε

e−tts−1dt

and letting ε → 0, we get

0 = −Γ(s+ 1) + s · Γ(s),
that is, Γ(s+ 1) = sΓ(s). In particular, since Γ(1) = 1, we get Γ(n+ 1) = n!. □

For Re(s) > 0, we have Γ(s) = Γ(s + 1)/s by Proposition 7.1. And for Re(s) > −1 we have

Re(s+ 1) > 0, which deduces that Γ(s+ 1)/s is well-defined on Re(s) > −1. So we define

F1(s) :=
Γ(s+ 1)

s
, Re(s) > −1.

Then F1(·) is a meromorphic function on {s ∈ C : Re(s) > −1} with a simple pole at s = 0, and

res0 F1 = lim
s→0

(s− 0)F1(s) = lim
s→0

Γ(s+ 1) = Γ(1) = 1.

Also, we note that F1(s) = Γ(s) when Re(s) > 0, i.e., F1 is an analytic extension of Γ.

For Re(s) > −2, we also define

F2(s) :=
F1(s+ 1)

s
=

Γ(s+ 2)

(s+ 1)s
,

then F2(·) is meromorphic in {s ∈ C : Re(s) > −2} and F2(s) = Γ(s) for Re(s) > 0.
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Now by induction, for Re(s) > −m where m ∈ N, we define

Fm(s) :=
Fm−1(s)

s
= · · · = Γ(s+m)

(s+m− 1)(s+m− 2) · · · s .

Then Fm(·) extends Γ(·) to a meromorphic function on Re(s) > −m, with simple poles at

δ = 0,−1, · · · ,−(m− 1). Moreover,

ress=−n Fm = lim
s→−n

(s+ n)Fm(s) =
(−1)n

n!
, 0  n  m− 1.

Therefore, we have proved the following theorem.

Theorem 7.3 (Analytic continuation). The gamma function Γ(·) that is initially holomor-

phically defined on {s ∈ C : Re(s) > 0} has an analytic continuation to a meromorphic

function on C (which we denote by Γ as well), whose only singularities are simple poles at

s = 0,−1, · · · ,−m, · · · with res−m Γ = (−1)m/m! for all m ∈ N.

Remark 7.4. The analytic continuation of Theorem 7.3 is unique, since C\{0,−1, · · · ,−m, · · · }
is topologically connected.

Morally, the gamma function Γ(s) can be almost realized as a holomorphic function, and the

only problem lies in the neighborhood of s = 0.

Proposition 7.5. For s ∈ C such that Re(s) > 0, we have

Γ(s) =

∞

k=0

(−1)k

k!(s+ k)
+

 ∞

1

e−tts−1dt.

Proof. We do the computation directly. Fix some ε > 0,

Γ(s) =

 ∞

0

e−tts−1dt

=

 ε

0

e−tts−1dt+

 ∞

ε

e−tts−1dt

=

 ε

0

ts−1
∞

k=0

(−t)k

k!
dt+

 ∞

ε

e−tts−1dt

=

∞

k=0

(−1)k

k!

 ε

0

tk+s−1dt+

 ∞

ε

e−tts−1dt

=

∞

k=0

(−1)kεs+k

k!(s+ k)
  

meromorphic

+

 ∞

ε

e−tts−1dt

  
holomorphic

.

In particular, by taking ε = 1, we get the desired result. □

7.1.2. The symmetry property.

Theorem 7.6 (Gamma symmetry). For all s ∈ C, we have

Γ(s) · Γ(1− s) =
π

sinπs
.

In particular, for s = 1/2, we get Γ(1/2) =
√
π.
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Proof. By analytic continuation (Theorem 7.3), we only need to check the formula on {s ∈ C :

0 < Re(s) < 1}. For 0 < Re(s) < 1, we have

Γ(s) · Γ(1− s) =

 ∞

0

e−tts−1dt ·
 ∞

0

e−uu−sdu

=

 ∞

0

e−tts−1

 ∞

0

e−uu−sdu


dt

=

 ∞

0

e−tts−1

 ∞

0

e−vt(vt)−stdu


dt

=

 ∞

0

 ∞

0

e−(1+v)tv−sdvdt

=

 ∞

0

v−s

1 + v
dv

=

 ∞

−∞

e(1−s)x

1 + ex
dx.

Here the change of variants are u = vt and v = ex with t > 0. Recall that in Example 4.10, for

0 < a < 1,  ∞

−∞

eax

1 + ex
dx =

π

sinπa
.

Therefore, the desired integral is
 ∞

−∞

e(1−s)x

1 + ex
dx =

π

sinπ(1− s)
=

π

sinπs
.

This completes the proof. □

Remark 7.7. Note that for all s ∈ C, we have Γ(s) ∕= 0.

7.1.3. The growth of gamma functions.

Theorem 7.8. The function 1/Γ(·) enjoys the following properties.

(1) 1/Γ(·) ∈ O(C) has simple zeros at s = 0,−1, . . ., and it vanishes nowhere else.

(2) The order of growth of 1/Γ(·) is 1, and for all s ∈ C,


1

Γ(s)

  C1 exp(C2|s| log |s|)

for some constants C1 and C2.

Proof. (1) By Theorem 7.6, the symmetry of Γ shows that

1

Γ(s)
= Γ(1− s) · sinπs

π
,

where Γ(1 − s) has simple poles at s = 1, 2, . . . and sinπs/π has simple zeros at s ∈ Z. Since

Γ(s) ∕= 0 for all s ∈ C, we see 1/Γ(·) is holomorphic in C with the only zeros at s = 0,−1, . . .,

which are all simple.

(2) Again, by Theorem 7.6,

1

Γ(s)
= Γ(1− s) · sinπs

π

=

 1

0

e−tt−sdt+

 ∞

1

e−tt−sdt


· sinπs

π

=
sinπs

π

∞

n=0

(−1)n

n!(n+ 1− s)
  

I

+
sinπs

π

 ∞

1

e−tt−sdt

  
II
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For I, the trouble term is on

1

n+ 1− s
=

1

n+ 1− Re(s)− i Im(s)
.

If | Im(s)| > 1, then 

∞

n=0

(−1)n

n!(n+ 1− s)

  C

for some constant C. Otherwise | Im(s)|  1, in this case 1/(n + 1 − s) can be infinite when

s = n+1. For this, note that given any s, we have some k such that k− 1/2  Re(s) < k+1/2.

When k  0,

|n+ 1− s| = |n+ 1− Re(s)− i Im(s)|  1

2
=⇒



∞

n=0

(−1)n

n!(n+ 1− s)

  C.

When k > 0, we have n− k+1/2  n+1−Re(s)  n− k+3/2. The case is valid for n ∕= k− 1

because of |n+ 1− Re(s)|  C for some C that is independent of k. It boils down to tackle to

the case where n = k − 1 > −1. We obtain
∞

n=0

(−1)n

n!(n+ 1− s)

sinπs

π
= (−1)k−1 sinπs

(k − 1)!(k − s)π  
A

+


n ∕=k−1

(−1)n

n!(n+ 1− s)

sinπs

π
  

B

.

In fact, the part A is bounded from above because of

sinπs

s− k

 =

sinπ(s− k)

s− k

 =

sinπξ

ξ



for ξ = s − k. This is bounded on ξ ∈ {s ∈ C : |Re(s)|  1, | Im(s)|  1}. On the other hand,

by Euler’s formula, we see

sinπs =
eiπs − e−iπs

2i
=⇒ | sinπs|  eπ|s|.

Hence the part B is bounded by some Ceπ|s|. To sum up, |I| < ∞.

As for II, since

 ∞

1

e−tt−sdt

 
 ∞

1

e−ttRe(s)dt  exp((|Re(s)|+ 1) · log(|Re(s)|+ 1)),

there is a constant C ′ such that

|II|  exp(C|s| log |s|) · exp(C|s|)  exp(C ′|s| log |s|).

Consequently,

|I + II|  C1 exp(C2|s| log |s|).
for some constants C1, C2 that are independent of s. □

Starting with Theorem 7.8, the Hadamard factorization (Theorem 6.13) shows that

1

Γ(s)
= eAs+B · s ·

∞

n=1


1 +

s

n


e−s/n.

Here A,B are constants (to be determined). Note that

lim
s→0

Γ(s) · s = lim
s→0

Γ(s+ 1) = Γ(1) = 1 =⇒ 1 = lim
s→0

eAs+B
∞

n=1


1 +

s

n


e−s/n = eB .

Hence B = 0. Letting s = 1, the equation becomes

1 = eA
∞

n=1


1 +

1

n


e−1/n =⇒ e−A =

∞

n=1


1 +

1

n


e−1/n.
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To compute A, we note that

∞

n=1


1 +

1

n


e−1/n = lim

N→∞

N

n=1


1 +

1

n


e−1/n = lim

N→∞
exp


N

n=1


log


1 +

1

n


− 1

n


.

Hence as N → ∞,

N

n=1


log


1 +

1

n


− 1

n


= −

N

n=1

1

n
+ log

2

1
+ log

3

2
+ · · ·+ log

N

N − 1
+ log

N + 1

N

= −


N

n=1

1

n
− logN



  
γ

+ log
N + 1

N  
→0

→ −γ,

where γ is the Euler constant. So we have A = r. We have proved the following theorem.

Theorem 7.9. For all s ∈ C, we obtain

1

Γ(s)
= eγs · s ·

∞

n=1


1 +

s

n


e−s/n.

Here γ denotes the Euler constant.

7.2. Riemann zeta function. For s ∈ R satisfying s > 1, it is well-known that the series

ζ(s) :=

∞

n=1

1

ns

is convergent. By replacing the real number s by any s ∈ C, we get the definition of Riemann

zeta function.

Proposition 7.10. The Riemann zeta function ζ(s) converges on {s ∈ C : Re(s) > 1} and

converges uniformly on {s ∈ C : Re(s)  1+δ} for any δ > 0. In particular, ζ(s) is holomorphic

on {s ∈ C : Re(s) > 1}.

Proof. Write s = σ + it, then |1/ns| = 1/nσ. For σ  1 + δ with δ > 0, we have


∞

n=1

1

ns

 
∞

n=1

1

nσ


∞

n=1

1

n1+δ

in which the right item is called convergent. □

7.2.1. The zeta, gamma and theta functions.

Definition 7.11 (The theta function). For a real number t > 0 we define

Θ(t) :=

∞

n=−∞
e−πn2t.

We the list out some basic properties of Θ(t).

Proposition 7.12. For the real variable t > 0, we have:

(1) Θ(t)  Ct−1/2 for some constant C > 0 as t → 0+.

(2) |Θ(t)− 1|  Ce−πt for some constant C > 0 and any t  1.

Proof. (1) Recall the Poisson summation formula (Theorem 5.9) dictates that


n∈Z
f(n) =



n∈Z

f(n),
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where f is the Fourier transform of f . Consider f(x) = exp(−πt(x+ a)2) with t > 0 and a ∈ R.
Then we get

Θ(t) = t−1/2Θ


1

t


, t > 0.

From this formula, Θ(t)  Ct−1/2 is obvious.

(2) We write

Θ(t) = 1 + 2

∞

n=1

e−πn2t,

in which for t  0,
∞

n=1

e−πn2t 
∞

n=1

e−πnt =

∞

n=1

(e−πt)n  Ce−πt

if πt  δ > 0 (in particular, this is valid for t  1). Therefore, for t  1 we have

0  Θ(t)− 1  Ce−πt.

This is exactly what we want. □

The following theorem reveals the hidden connection between the zeta, gamma and theta

functions.

Theorem 7.13 (The xi identity). If Re(s) > 1 we have

π−s/2 · Γ
s
2


· ζ(s) = 1

2

 ∞

0

us/2−1(Θ(u)− 1)du.

Proof. Beginning with the definition of Θ(·), we compute

1

2

 ∞

0

us/2−1(Θ(u)− 1)du =

 ∞

0

∞

n=1

us/2−1e−πn2udu

=

∞

n=1

 ∞

0

us/2−1e−πn2udu.

Here the second equality is because of Proposition 7.12. Letting t = πn2u, the right hand side

becomes
∞

n=1

π−s/2

 ∞

0

e−t · ts/2−1dt


n−s = π−s/2 · Γ

s
2


· ζ(s).

This completes the proof. □

People are truly interested in the LHS in Theorem 7.13.

Definition 7.14 (Xi function). For Re(s) > 1, we define

ξ(s) := π−s/2 · Γ
s
2


· ζ(s).

Theorem 7.15. The xi function enjoys the following properties.

(1) ξ(·) is holomorphic in {s ∈ C : Re(s) > 1}.
(2) ξ(·) has an analytic continuation to a meromorphic function on C with simple poles only

at s = 0, 1.

(3) ξ(s) = ξ(1− s) for any s ∈ C.

Proof. (1) is clear.

(2) By Theorem 7.13, for Re(s) > 1 we have

ξ(s) =
1

2

 ∞

0

us/2−1(Θ(u)− 1)du.
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Denote ψ(u) = (Θ(u)− 1)/2, then by the identity Θ(t) = t−1/2Θ(1/t) we have

ψ(u) = u−1/2ψ(u−1) +
1

2u1/2
− 1

2
, u > 0.

Consequently,

ξ(s) =

 ∞

0

us/2−1 · ψ(u)du

=

 1

0

us/2−1 · ψ(u)du+

 ∞

1

us/2−1 · ψ(u)du

=
1

s− 1
− 1

s
+

 ∞

1

(us/2−1 + u−1/2−s/2)ψ(u)du,

where the last equality is given by the variable exchanging u → 1/u in the first integral. Now

for s ∈ C, we define

(∗) ξ(s) :=
1

s− 1
− 1

s
+

 ∞

1

(us/2−1 + u−1/2−s/2)ψ(u)du.

Then ξ(·) is a meromorphic function on C with simple poles at s = 0, 1.

(3) Using (∗) above, we directly get the result. □

Theorem 7.16 (Analytic continuation). The zeta function ζ(·) that is initially holomorphically

defined on {s ∈ C : Re(s) > 1} has an analytic continuation to a meromorphic function on C,
whose singularity is a simple pole at s = 1.

Proof. Note that ζ(s) = πs/2 · ξ(s)/Γ(s/2) by Definition 7.14. Now Theorem 7.15 (2) shows

that ξ(s) has simple poles at s = 0, 1, and Theorem 7.8 (1) dictates that Γ(s) has simple poles

at s = 0,−2,−4, . . .. □

Remark 7.17. The continued definition of ζ(s) is given by

ζ(s) =

∞
n=1 n

−s, Re(s) > 1;

πs/2 · ξ(s)/Γ(s/2), Re(s)  1.

Also note that ζ(s) has simple poles at s = −2,−4, . . ..

7.2.2. Zeros of Riemann zeta function. We begin with the Euler identity without proof.

Proposition 7.18 (Euler identity). For Re(s) > 1 we have

ζ(s) =

∞

n=1

1

ns
=



p prime

1

1− p−s
.

Proof. Note that on the connected region {s ∈ C : Re(s) > 1},


n−s and

(1 − p−s)−1 are

analytical functions with respect to s. Hence it suffices to check the equality for real numbers

s > 1, and then the equality extends continuously.

The fundamental theorem of arithmetic shows that for all n ∈ N, we have n = pk1
1 · · · pkm

m ,

where p1, . . . , pm are distinct primes. Then

N

n=1

1

ns




pN


1 +

1

ps
+ · · ·+ 1

pMs






pN

1

1− p−s
, M ≫ 0.

The second inequality is because of

1

1− p−s
=

∞

k=0

p−ks = 1 +
1

ps
+

1

p2s
+ · · · .

By taking N → ∞, we have
∞

n=1

1

ns




p prime

1

1− p−s
.
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Similarly, one may deduce the converse inequality. This completes the proof. □

The immediate corollary of Proposition 7.18 is for Re(s) > 1 we have ζ(s) ∕= 0. Recall that

ξ(s) = π−s/2Γ(s/2)ζ(s) and ξ(s) = ξ(1− s). Thus,

ζ(s) =
ξ(1− s)

π−s/2Γ(s/2)
= πs−1/2 · Γ((1− s)/2)

Γ(s/2)
· ζ(1− s).

For {s ∈ C : Re(s) < 0}, we have ζ(1 − s) ∕= 0 and Γ((1 − s)/2) ∕= 0 (since Γ(·) ∕= 0) on C.
Also, 1/Γ(s/2) = 0 exactly at s = −2,−4, . . . Hence all zeros of ζ(s) in {s ∈ C : Re(s) < 0} are

−2,−4, . . .

−2−4−6 1

Re(s) > 0

To sum up, we are to seek the zeros of ζ(·) in the critical strip {s ∈ C : 0  Re(s)  1}.

8. Riemann zeta function and prime number theory

Euler found, through his product formula for the zeta function, a deep connection between

analytical methods and arithmetic properties of numbers, in particular primes. An easy con-

sequence of Eulers formula is that the sum of the reciprocals of all primes,


p 1/p, diverges,

a result that quantifies the fact that there are infinitely many prime numbers. The natural

problem then becomes that of understanding how these primes are distributed. With this in

mind, we consider the following function:

π(x) := #{primes  x} =


px

1.

Then π(x) = π([x]) for any x  0. A conjecture of Gauss made in 1792 (and independently, of

Legendre in 1808) says that

(∗) lim
x→∞

π(x)

x/ log x
= 1.

This is denoted as π(x) ∼ x/ log x as x → ∞. On the work of Dirichlet (1837), Chebychev

(1850s) and Riemann (1859), this conjecture is proved as the prime number theorem.

Theorem 8.1 (Hadamard, de la Vallée Poussin, 1896). The conjecture (∗) is true.

8.1. The Riemann memoir. In this subsection we list out some basic and important proper-

ties given by Riemann.1

(A) The zeta function ζ(s) =
∞

n=1 n
−s that is holomorphically defined in {s ∈ C : Re(s) > 1}

has an analytic continuation to a meromorphic function in C with a simple pole at s = 1.

(B) One can define ξ(s) = π−s/2Γ(s/2)ζ(s), then ξ(s) = ξ(1 − s) for any s ∈ C. Also, ξ(·) is

meromorphic on C with simple poles at s = 0, 1.

1Riemann (1859): Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse (English translation: on

the number of prime less than a given magnitude).
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(C) The zeta function ζ(·) has simple zeros at s = −2,−4, · · · (trivial zeros) and ζ(s) ∕= 0 for

Re(s) > 1. There are infinitely many nontrivial zeros of the form ρ = σ + it for 0  σ  1

and t ∈ R (i.e., living in the critical strip). Moreover, let N(T ) = #{ρ = σ + it : 0  σ 
1, |t|  T}, then

N(T ) =
T

2π
log

T

2π
− T

2π
+O(log T )

as T → ∞. This is proved by von-Mangoldt in 1895 and 1905.

(D) (The product formula) We have the following (to be proved as an exercise):

s(s− 1)π−s/2Γ(s/2)ζ(s) = e−Bs


ζ(ρ)=0,
0Re(ρ)1


1− s

ρ


es/ρ

where B = 1+γ/2−log 2
√
π and γ denotes the Euler constant. This is proved by Hadamard

in 1893.

(E) (Riemann’s explicit formula) Denote

ψ(x) :=


pmx,
p prime, n∈N

log p =


nx

Λ(n), ψ#(x) :=


n<x

Λ(n) +
1

2
Λ(x),

where

Λ(n) =


log p, if n = pm for some prime p and m ∈ N;
0, otherwise.

Then the formula (proved by von-Mangoldt in 1895) is read as

ψ#(x) = x−


ζ(ρ)=0,
0Re(ρ)1

xρ

ρ
− ζ ′(0)

ζ(0)
− 1

2
log(1− x−2), x  2.

This formula is powerful, whereas it is still very difficult to find out all zeros ρ lying in the

critical strip.

(F) (Riemann hypothesis) Any nontrivial zeros of ζ(s) is on the line Re(s) = 1/2.

−2−4−6 1

Re(s) > 1/2Re(s) < 1/2

Remark 8.2 (RH implies PNT). Suppose the Riemann hypothesis is true. Then (without proof)

as x → ∞, we have

ψ(x) =


nx

Λ(n) ∼ x, ψ#(x) =


n<x

Λ(n) +
1

2
Λ(x) ∼ x.

This is equivalent to

π(x) =


px

1 ∼ x

log x
,

which is nothing but the prime number theorem (PNT).
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Proof Sketch for Riemann’s explicit formula. Recall that for Re(s) > 1 we have Euler identity

ζ(s) =


p prime


1− 1

ps

−1

,

and it implies that

−ζ ′(s)

ζ(s)
= (− log ζ(s))′ =



p prime


log


1− 1

ps

′

=



−


p prime

∞

m=1

p−ms

m




′

=


p,m

(log p) · p−ms.

We use the following sublemma as a fact (whose proof is leave as an exercise). For y > 0 and

for any fixed α > 0, we have

lim
T→∞

1

2πi

 α+iT

α−iT

ys

s
ds =






0, if 0 < y < 1;

1/2, if y = 1;

1, if y > 1.

Obtaining this, we consider the following limit:

lim
T→∞

1

2πi

 α+iT

α−iT

ys

s
· −ζ ′(s)

ζ(s)
ds = lim

T→∞

1

2πi

 α+iT

α−iT

ys

s
·


p,m

(log p) · p−msds

=


p,m

(log p) · lim
T→∞

1

2πi

 α+iT

α−iT

(yp−m)s

s
ds

=


pm<y

log p+


pm=y

1

2
log p = ψ#(y).

The last equality above takes the sublemma above at work. Next, we consider the function

F (s) = −ys

s
· ζ

′(s)

ζ(s)

and its integral along ΓC defined as follows, where α > 1 and C ≪ 0.

−2−4−6 1 α > 1

α+ iT

α− iT

C

C + iT

C − iT

ΓC

Applying the residue formula (Theorem 4.8 and Corollary 4.9), we get

1

2πi



ΓC

F (s)ds =


F (z)=∞

ress=z F (s).

To compute the right hand side, all poles of F are listed out below.

• s = 1 (simple pole):

ress=1 F = lim
s→1

(s− 1) · F (s) = lim
s→1

ys

s
· lim
s→1

(1− s)
ζ ′(s)

ζ(s)
= y.
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• s = 0 (simple pole):

ress=0 F = − lim
s→0

s · y
s

s
· ζ

′(s)

ζ(s)
= −ζ ′(0)

ζ(0)
.

• s = ρ ∕= 0 with 0  Re(ρ)  1 and | Im(ρ)|  T :

ress=ρ F = −yρ

ρ
, ζ(ρ) = 0.

• s = −2m with m ∈ N (simple poles):

ress=−2m F = −y−2m

2m
.

Finally, letting T → ∞ and C → −∞, we get

ψ#(y) = y − lim
T→∞



ζ(ρ)=0,
0Re(ρ)1

yρ

ρ
− ζ ′(0)

ζ(0)
−

∞

m=1

y−2m

2m

= y − lim
T→∞



ζ(ρ)=0,
0Re(ρ)1

yρ

ρ
− ζ ′(0)

ζ(0)
− 1

2
log(1− y−2).

This completes the proof. □

8.2. The prime number theorem. We have claimed in Remark 8.2 that Riemann hypothesis

implies the prime number theorem (PNT). This subsection is to make this explicit. The essential

property at work is the following corollary of Riemann hypothesis.

Theorem 8.3 (Non-degeneracy). ζ(s) ∕= 0 when Re(s) = 1.

To prove Theorem 8.3, we first introduce several lemmas as follows.

Lemma 8.4. If Re(s) > 1 then

log ζ(s) =


p prime,
m1

p−ms

m
:=

∞

n=1

cnn
−s,

with the coefficients given by

cn =


1/m, if n = pm;

0, otherwise.

Proof. By the Euler identity, for Re(s) > 1, we have

ζ(s) =


p prime


1− 1

ps

−1

.

So that for the real number s > 1, we have

log ζ(s) = log


p prime


1− 1

ps

−1

= −


p prime

log


1− 1

ps

−1

=


p prime

∞

m=1

p−ms

m
=



p,m

p−ms

m
.

On the other hand, ζ(s) ∕= 0 for Re(s) > 1, which implies that log ζ(s) is a well-defined holomor-

phic function. Accordingly,


p−ms/m is also a holomorphic function in Ω = {s ∈ C : Re(s) > 1.

However, we know that Ω is a connected region, so

log ζ(s) =


p,m

p−ms

m



COMPLEX ANALYSIS 65

for any s such that Re(s) > 1. □

Lemma 8.5. For any θ ∈ R, we have 3 + 4 cos θ + cos 2θ  0.

Proof. This follows from 3 + 4 cos θ + cos 2θ = 2(cos θ + 1)2 at once. □

Lemma 8.6. If σ > 1 and t ∈ R, then log |ζ(σ)3 · ζ(σ + it)4 · ζ(σ + 2it)|  0.

Proof. We calculate directly, say

LHS = 3 log |ζ(σ)|+ 4 log |ζ(σ + it)|+ log |ζ(σ + 2it)|
= 3Re log ζ(σ) + 4Re log ζ(σ + it) + Re log ζ(σ + 2it)

= Re

∞

n=1

cn · 3n−σ +Re

∞

n=1

cn · 4n−σ−it +Re

∞

n=1

cn · n−σ−2it.

Here the last equality is deduced from Lemma 8.4. On the other hand,

Re

∞

n=1

cn · 3n−σ +Re

∞

n=1

cn · 4n−σ−it +Re

∞

n=1

cn · n−σ−2it

=

∞

n=1

cn · n−σ(3 + 4 cos(t log n) + cos(2t log n))  0.

by Lemma 8.5. □

Proof of Theorem 8.3. Note that ζ(·) is a meromorphic function on C with a simple pole at

s = 1. Then ζ(s) ∕= 0 for those s that are landing close to 1. We need to verify that ζ(1+ it) ∕= 0

for any t ∈ R. Suppose not for the sake of contradiction. Then there is some t0 ∕= 0 such that

ζ(1 + it0) = 0. Consequently,

|ζ(σ + it0)|4  C(σ − 1)4

as σ → 1 for some constant C > 0. For other terms, Since s = 1 is a simple pole of ζ(·), we
see |ζ(σ)|3 ∼ C|σ − 1|−3 as σ → 1. Again, note that ζ(·) is holomorphic for s ∕= 1, we have

ζ(σ + 2it0) being bounded as σ → 1. Therefore,

|ζ(σ)3 · ζ(σ + it)4 · ζ(σ + 2it)|  C|σ − 1|, σ → 1.

This is contradicting with Lemma 8.6. □

Remark 8.7. By the symmetry of ξ, we have ξ(s) = π−s/2 · Γ(s/2) · ζ(s) = ξ(1 − s), hence

ζ(s) ∕= 0 for Re(s) ∕= 0.

Theorem 8.8. Theorem 8.3 implies the following prime number theorem: as x → ∞,

π(x) =


px

1 ∼ x

log x
.

The proof of Theorem 8.8 follows the proof by Zagier in 1997, which is based on the proof of

Newman in 1980. It truly relies on the following result.

Theorem 8.9 (Tauberian theorem). Let f be a bounded measurable function on [0,∞). Assume

the Laplace transform

g(z) =

 ∞

0

f(t)e−ztdt

that is a holomorphic function for Re(z) > 0 extends holomorphically in an open set containing

{z ∈ C : Re(z)  0}. Then the integral
 ∞

0

f(t)dt = lim
T→∞

 T

0

f(t)dt

converges and equals to g(0), which is the value of the extended g at z = 0.

In the upcoming context we are to use the language of Φ function and ϕ function.
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Definitions 8.10. We define

Φ(s) :=


p prime

log p

ps
, ϕ(s) :=



px

log p.

Lemma 8.11. Φ(s) is holomorphic for Re(s) > 1.

Lemma 8.12. Φ(s) − (s − 1)−1 extends holomorphically to an open set containing {s ∈ C :

Re(s)  1}.

Proof. For Re(s) > 1, the Euler identity ζ(s) =

(1− p−s)−1 dictates that

(− log ζ(s))′ = −ζ ′(s)

ζ(s)
=



−


p prime

log
1

1− p−s




′

=


p prime

log p

ps − 1
.

Moreover, this can be written as



p prime

log p

ps − 1
=



p prime


log p

ps − 1
− log p

ps


+ Φ(s).

Therefore,

Φ(s) = −ζ ′(s)

ζ(s)
−



p prime

log p

p(ps − 1)
.

Note that the second term is holomorphic for Re(s) > 1/2. The first term is meromorphic with

poles at the pole s = 1 of ζ(·), as well as the zeros of ζ(·). This together with Theorem 8.3 that

ζ(s) ∕= 0 for Re(s) = 1, we see ζ ′(s)/ζ(s) is holomorphic near {Re(s) = 1} (except a pole at

s = 1).

Recall for Re(s) > 0 that ζ(s) = (s − 1)−1 + (a holomorphic function). As the derivation of

analytic function is still analytic,

ζ ′(s)

ζ(s)
= − 1

s− 1
+ (a holomorphic function)

near s = 1. To sum these up, the function

Φ(s)− 1

s− 1

is holomorphically defined near {s ∈ C : Re(s) = 1}. □

Now we are ready to introduce the main theorem on PNT by using the function ϕ(·).

Theorem 8.13. As x → ∞, we have ϕ(x) ∼ x, i.e., limx→∞ ϕ(x)/x = 1. Furthermore, this

result implies PNT.

Proof. The proof for ϕ(x) ∼ x is relatively easy. We are to do the second part. Note that

ϕ(x) =


px

log p 


px

log x = π(x) · log x,

which immediately implies that

lim inf
x→∞

π(x)

x/ log x
 lim inf

x→∞

ϕ(x)

x
= 1.

On the other hand, for all ε > 0,

ϕ(x) 


x1−ε<px

log p 


x1−ε<px

log x

= (1− ε) · log x · (π(x)− π(x1−ε))

 (1− ε) · log x · (π(x)− x1−ε)



COMPLEX ANALYSIS 67

Here the equality is deduced from the definition of π(·). Therefore,

lim sup
x→∞

π(x)

x/ log x
 1

1− ε
.

By letting ε → 0+, we get

lim sup
x→∞

π(x)

x/ log x
 1.

This finally proves Theorem 8.8. □

Lemma 8.14. The following integral converges:

 ∞

1

ϕ(x)− x

x2
dx.

Proof. Claim: For Re(s) > 1, by substituting x = et, we have

Φ(s) =


p prime

log p

ps
= s

 ∞

1

ϕ(x)

xs+1
dx = s

 ∞

0

e−stϕ(et)dt.

Apply this claim without proof. Note that via x = et,

 ∞

1

ϕ(x)− x

x2
dx =

 ∞

0

(ϕ(et)e−t − 1)dt =

 ∞

0

f(t)dt,

where we denote f(t) := ϕ(et)e−t − 1. Then consider the Laplace transform

g(s) =

 ∞

0

f(t)e−stdt =

 ∞

0

(ϕ(et)e−t − 1)e−stdt

=

 ∞

0

e−(s+1)t · ϕ(et)dt
  

Φ(s+1)/(s+1)

−
 ∞

0

e−stdt

  
1/s

=
1

s+ 1


Φ(s+ 1)− 1

s
− 1


.

By Lemma 8.12, the function g(·) extends holomorphically to {s ∈ C : Re(s)  0}. Now apply

Tauberian theorem (Theorem 8.9), we see the integral

g(0) =

 ∞

0

f(t)dt

converges. This completes the proof. □

At the end of this section, we are going to prove Theorem 8.9.

Proof of Theorem 8.9. The bounded condition for f is essential. Assume |f(t)|  M for t ∈
[0,∞). For T > 0 we define its truncated Laplace transform as

gT (z) :=

 T

0

f(t) · e−ztdt,

which is an entire function. We need to verify that

lim
T→∞

gT (0) = g(0).
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R−δ

D+D−

Apply the Cauchy integral formula (Theorem 3.13) to

G(z) = (g(z)− gT (z)) · ezT ·

1 +

z2

R2


,

which is holomorphic in D = {|z|  R,Re(z)  −δ(R)}, we get

G(0) =
1

2πi



∂D

G(z)

z
dz.

Or equivalently,

g(0)− gT (0) =
1

2πi



∂D

(g(z)− gT (z)) · ezT ·

1 +

z2

R2


· 1
z
dz.

For convenience, we denote ∂D+ = ∂D ∩ {x > 0} and ∂D− = ∂D ∩ {x  0}. On ∂D+, via

z = x+ iy,

|g(z)− gT (z)| = |
 ∞

T

f(t)e−ztdt|  M ·
 ∞

T

e−xtdt =
Me−xT

x
.

On the other hand, for |z| = R,
e

zT ·

1 +

z2

R2


· 1
z

 = exT · 2|x|
R2

.

Combining these, we see

1

2πi



∂D+

(g(z)− gT (z)) · ezT ·

1 +

z2

R2


· 1
z
dz


1 +

z2

R2

 
M

R
.

On ∂D−, we choose to estimate gT (z) and g(z) respectively. Say

|gT (z)| = |
 T

0

f(t)e−ztdy|  M ·
 T

−∞
e−xtdt =

Me−xT

|x| .

Note that gT (z) is entire, hence



∂D

(g(z)− gT (z)) · ezT ·

1 +

z2

R2


· 1
z
dz






Γ−

Me−xT

|x| · exT · 2|x|
R2

dz  M

R

by local Cauchy theorem (Corollary 3.5). Here Γ− = {|z| = R,Re(z)  0} denotes the left semi-

circle. For g(z), g(·) is holomorphic on ∂D−. Hence there exists some constant K = K(R, δ) > 0

such that on ∂D−, g(z) ·

1 +

z2

R2


· 1
z

  K(R, δ).

Note that ezT is bounded on ∂D− and ezT → 0 uniformly on every compact set of {z ∈ C :

Re(z) < 0}. Then

lim
T→∞

| 1

2πi



∂D−

g(z) ·

1 +

z2

R2


· ezT · 1

z
dz| = 0.
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Therefore,

lim sup
T→∞

|g(0)− gT (0)|  lim sup
T→∞


1

2πi



∂D+

(g(z)− gT (z)) · ezT ·

1 +

z2

R2


· 1
z
dz



+ lim sup
T→∞


1

2πi



∂D−

gT (z) ·

1 +

z2

R2


· ezT · 1

z
dz



+ lim sup
T→∞


1

2πi



∂D−

g(z) ·

1 +

z2

R2


· ezT · 1

z
dz



 2M

R
→ 0, R → ∞.

This shows that limT→∞ |g(0)− gT (0)| = 0. □

Remarks 8.15 (Final remarks on RH). Recall that ζ(·) has two types of zeros: the nontrivial

ones and the trivial ones. The trivial zeros are given by ζ(−2m) = 0 with m ∈ N. The Riemann

hypothesis claims that all nontrivial zeros lie on the line Re(s) = 1/2, and in particular, the

known fact is that ζ(s) ∕= 0 for Re(s) = 1. By symmetry, ζ(s) ∕= 0 on Re(s) = 0.

According to the known result by von-Mangoldt in 1905, as T → ∞, we obtain an estimation

for the number of zeros of ζ(·) in the critical strip. Say

N(T ) := #{s ∈ C : ζ(s) = 0, 0 < Re(s) < 1, | Im(s)|  T}

=
T

2π
log

T

2π
− T

2π
+O(log T ), T → ∞.

To study the hypothesis, we denote

M(T ) := #{s ∈ C : ζ(s) = 0, Re(s) = 1/2, | Im(s)|  T}.
In 1943, Selberg showed that M(T )  A · T log T for some constant A > 0 that is independent

of T . In particular, this result implies

M(T )

N(T )
 C > 0.

Philosophically speaking, it shows that there are at least a certain proportion of zeros lie on

Re(s) = 1/2. In 1974, Levinson had shown that A  1/3; in 1991, Conrey had shown that

A  2/5.

9. Conformal mappings: on geometry of the disc

We are to study the geometry of holomorphic functions. The problems and upshot ideas

we present in this chapter are more geometric in nature than the ones we have seen so far. In

fact, here we will be primarily interested in mapping properties of holomorphic functions. In

particular, most of our results will be “global,” as opposed to the more “local” analytical results

proved in the first three chapters. The motivation behind much of our presentation lies in the

following simple question:

• Given open sets U, V ⊂ C, does there exist a holomorphic bijection between them?

By a holomorphic bijection we simply mean a function that is both holomorphic and bijective.

(It will turn out that the inverse map is then automatically holomorphic.) A solution to this

problem would permit a transfer of questions about analytic functions from one open set with

little geometric structure to another with possibly more useful properties. The prime example

consists in taking V = D the unit disc, where many ideas have been developed to study analytic

functions. In fact, since the disc seems to be the most fruitful choice for V we are led to a

variant of the above question:

• Given an open subset Ω of C, what conditions on Ω guarantee that there exists a holomor-

phic bijection from Ω to D?
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• Given an open set Ω ⊂ C, what is the group of holomorphic automorphisms on Ω, i.e., how

to find out Aut(Ω) := {f : Ω → Ω conformal map}?

9.1. Conformal equivalence and examples.

Definitions 9.1 (Conformality, biholomorphy).

(1) Let U, V ⊂ C be open sets and f : U → V be holomorphic. Then f is called a conformal

map or biholomorphic map if f is also bijective.

(2) If there exists a conformal map from U to V , then U, V are called conformally equivalent

or biholomorphically equivalent.

Note that an equivalent definition of biholomorphy is read as follows. There exists two

holomorphic maps F : U → V and G : V → U such that F ◦G = idV and G ◦F = idU . In some

other materials, one may define conformal mapping as a map that preserves all local angles. We

will no longer follow this definition.

Proposition 9.2. If f : U → V is holomorphic and injective, then f ′(z) ∕= 0 for all z ∈ U . In

particular, f−1 : f(U) → U is also holomorphic.

Proof. If there is z0 ∈ U such that f ′(z0) = 0, then f(z)− f(z0) = a(z− z0)
k +G(z) for those z

lying near z0, where k ≥ 2, a ∕= 0, and ordz0 G  k+1. On the other hand, the condition that f

is injective implies that f is not a constant. Then z0 is an isolated zero of f ′(z), i.e., f ′(z) ∕= 0

for z ∕= z0 that are close to z0. Hence the roots of f(z)− f(z0)−w are distinct near z0 for some

w ∕= 0. Write

f(z)− f(z0)− w = (a(z − z0)
k − w)  

F (z)

+G(z).

Note that |F (z)| > |G(z)| on the circle |z−z0| = δ for 0 < δ ≪ 1. By Rouché theorem (Corollary

4.25), F (z) = a(z − z0)
k − w and F (z) + G(z) have the same number of zeros in |z − z0| < δ.

Therefore, f(z) − f(z0) − w has k ≥ 2 roots in |z − z0| < δ. This leads to a contradiction as

δ → 0.

Let g = f−1. For w = f(z) that is close to w0 = f(z0), we have

g(w)− g(w0)

w − w0
=

z − z0
f(z)− f(z0)

.

Consequently, g′(w0) = 1/f ′(g(w0)) ∕= 0. So f−1 is also holomorphic. □

Corollary 9.3. The inverse of a conformal map is holomorphic.

Remark 9.4. Here are some remarks for the sake of understanding Definitions 9.1.

(1) Suppose f : U → V is holomorphic and f ′(z) ∕= 0 for any z ∈ U . However, this does

not imply the injectivity of f . For a counterexample, on D∗ = {0 < |z| < 1},
f : D∗ → D∗; z −→ z2.

But f ′(z0) ∕= 0 locally implies that f is (locally) biholomorphic near z0.

(2) On the terminology “conformal”: let f : U → V be conformal. By Proposition 9.2,

f ′(z) ∕= 0 for any z ∈ U . We claim that f preserves angles. To be more explicit, let Γ1

and Γ2 be two curves intersecting at z ∈ C with the intersection angle θ. Then f(Γ1)

and f(Γ2) intersect at f(z) with angle θ as well.

Examples 9.5. Here comes a series of examples on conformal maps. We are particularly

interested to focus on the conformal equivalence class of H.

(1) The upper-half plane H = {z ∈ C : Im(z) > 0} is conformally equivalent to the open

unit disc D = {z ∈ C : |z| < 1}, denoted as H ∼= D. Note that for any z ∈ H,

|F (z)| = |z − i|
|z + i| < 1.
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Therefore, we get the holomorphic map F : H → D. Its inverse is given by G : D → H
with G(w) = i(1− w)/(1 + w).

i

−i

z
H D

F
∼

G

∼

Then F ◦G = idD and G ◦F = idH. Focusing on the image of the real line R ⊂ C under

F , for z = x ∈ R,

i− x

i+ x
=

(i− x)2

1 + x2
=

1− x2

1 + x2
+ i

2x

1 + x2
= cos(2t) + i sin(2t).

by changing the variable x = tan t for t ∈ (−π/2,π/2). In particular, F (∞) = F (−∞) =

−1.

(2) We now define S = {z ∈ C : 0 < arg(z) < π/n}, and then S ∼= H via F : S → H and

G : H → S such that F (z) = zn and G(w) = w1/n.

π/n S H

F
∼

G

∼

Note that the proportion 1/n can be replaced by any irrational number α ∈ R.
(3) Using the similar idea as in (2), D is conformally equivalent to the upper-half unit disc

D+ = {z ∈ D : Im(z) > 0}, which is open as well. But the boundary behavior is not the

same. In fact, there is a conformal map

F : D+ → H; z −→ −1

2


z +

1

z


.

To verify this, note that the equation F (z) = w ∈ H reduces to z2 + 2wz + 1 = 0 that

has two distinct roots whenever w ∕= ±1.

(4) Again, the upper-half plane can be conformally equivalent to a strip. Define Ω =

{z ∈ C : 0 < Im(z) < π} and for z = reiθ ∈ H with θ ∈ [−π/2, 3π/2), we take

F : z → log z = log r + iθ to see the result. Its inverse is given by G : w → ew.

H Ω

πi

F
∼

G

∼

(5) We define the half-strip T = {z ∈ C : Im(z) > 0,−π/2 < Re(z) < π/2}. Note that

the map z → exp(iz) takes T to the right half-disc D′
+ := {|z| < 1,Re(z) > 0}. This

is immediate from the fact that if z = x + iy, then eiz = eixe−y. Also, we have the

orientation given by multiplicating with i, say D′
+ → D+.
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π/2−π/2
T H

D′
+ D+

z →sin z

∼

∼z →exp(iz)

z →iz
∼

∼ z →− z+1/z
2

Combining these with the result of (3), we have a biholomorphic map T ∼= H. This is

nothing but sin z, because

sin z =
eiz − e−iz

2i
= −1

2


iζ +

1

iζ


, ζ = eiz.

(6) For a non-example, we see D ∕∼= C∗ = C− {0}. Otherwise if there is some holomorphic

map f : C∗ → D, it must be bounded, and equivalently, f has a removable singularity at

0 by the Riemann extension (Theorem 4.12). Moreover, it extends to some holomorphic

and bounded map g : C → D. From Liouville theorem (Corollary 3.16), g must be a

constant. This contradicts to the assumption.

(7) We claim D ∕∼= C. By Definitions 9.1, if U ∼= V then they have the same set of holo-

morphic functions. Moreover, there exists a group homomorphism O(U) ≃ O(V ) by

Proposition 9.2. The result is given by the fact that there is some bounded non-constant

holomorphic function on D, whereas by Liouville theorem (Corollary 3.16), there is no

such bounded and non-constant entire function on C.

9.2. The Schwarz lemma. The statement and proof of the Schwarz lemma are both simple,

but the applications of this result are far-reaching.

Lemma 9.6 (Schwarz). Suppose f : D → D is holomorphic with f(0) = 0. Then

(1) |f(z)|  |z| for all z ∈ D with equality at some z0 ∈ D if and only if f(z) = eiθ · z (i.e.,

f is a rotation);

(2) |f ′(0)|  1 with equality being valid if and only if f is a rotation.

Proof. (1) Consider the function g(z) = f(z)/z, then f(0) = 0 implies that z = 0 is a removable

singularity of g. If |z| = r < 1 then

max
|z|r

|g(z)| = max
|z|=r

|g(z)| = 1

r
max
|z|=r

|f(z)|  1

r
.

Letting r → 1 from r > 0, we see for all z ∈ D that |g(z)|  1. By the maximum principle

(Proposition 4.27) applying to g, the equality holds if and only if g(z) = C for some constant C

such that |C| = 1, that is, C = eiθ for some θ. Thus, f(z) = eiθ · z.
(2) We still consider g(z) = f(z)/z. Note that

f ′(0) = lim
z→0

f(z)− f(0)

z
= lim

z→0

f(z)

z
= lim

z→0
g(z) = g(0).

By (1), we get |f ′(0)| = |g(0)|  1 with equality if and only if g(z) = eiθ. This shows that

f(z) = eiθ · z. □

9.2.1. Aut(D). The next goal is to apply Lemma 9.6 to understand the group Aut(D).

Examples 9.7. We list out some basic elements in Aut(D) as examples.

• The rotation z → eiθ · z.
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• Given α ∈ D, we define

ψα(z) :=
α− z

1− α · z ,

then ψα ∈ Aut(D). One can verify some properties such as ψα(0) = α, ψα(α) = 0, and

ψ2
α = ψα ◦ ψα = idD (i.e. ψ−1

α = ψα).

The following fundamental theorem dictates that the second example above almost represents

all elements in Aut(D) (up to some rotation).

Theorem 9.8 (The fundamental theorem on Aut(D)). For any f ∈ Aut(D), there are some

θ ∈ R and α ∈ D such that

f(z) = eiθ · α− z

1− αz
, ∀z ∈ D.

Proof. For f ∈ Aut(D), there is a unique α = f(0) such that g(z) := ψα ◦ f(z) ∈ Aut(D)
and g(0) = 0. Note that g : D → D is holomorphic and satisfies the condition of the Schwarz

lemma (Lemma 9.6), for all z ∈ D, |g(z)|  |z|. On the other hand, by Proposition 9.2, for each

g ∈ Aut(D), we have g−1 ∈ Aut(D) and g−1(0) = 0 as well. Again by Schwarz, |g−1(w)|  |w|
for all |w| ∈ D. Let w = g(z) and then |z|  |g(z)|. Hence |g(z)| = |z| for any z ∈ D. This

means that the equality in Lemma 9.6 holds, or equivalently, g(z) = eiθz, denoted by rθ(z), for

some θ ∈ R. By definition, we get ψα ◦ f = rθ and then f = ψ−1
α ◦ rθ = ψα ◦ rθ by Example 9.7.

Finally, by replacing α by α · e−iθ, we finish the proof. □

9.2.2. Aut(H). Recall Example 9.5 (1) that H is conformally equivalent to D via

F : H −→ D, z −→ i− z

i+ z
,

and hence we expect that Aut(H) can be expressed by Aut(D). Consider the composition

H D D HF

F−1◦ϕ◦F

ϕ F−1

We know that for each ϕ ∈ Aut(D) (represented by Theorem 9.8), F induces an isomorphism

ΓF : Aut(D) Aut(H)

ϕ F−1 ◦ ϕ ◦ F
whose image is given by conjugations of F .

Exercise 9.9. Fix ϕ ∈ Aut(D). Show that ΓF (ϕ) defined as above is of the form

z −→ γ.z :=
az + b

cz + d
, γ =


a b

c d


,

where γ ∈ SL2(R), the special linear group over R (i.e. ad− bc = 1 and a, b, c, d ∈ R).

Starting from this point of view, we define the fractional linear transformation as

fM (z) =
az + b

cz + d
, M =


a b

c d


∈ SL2(R).

Theorem 9.10. A map g ∈ Aut(H) if and only if g = fM for some M ∈ SL2(R).

Remark 9.11. Note that fM = f−M for any M ∈ SL2(R). By defining the equivalence relation

∼ by identifying M and −M , we see

Aut(H) ≃ PSL2(R) := SL2(R)/ ∼,

which is the so-called projective special linear group.

At the end of this part, we will introduce a generalized version of the Schwarz lemma 9.6

which drops the condition f(0) = 0.
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Proposition 9.12 (Schwarz–Pick lemma). Suppose f : D → D is holomorphic. Then for any

z ∈ D,
|f ′(z)|

1− |f(z)|2  1

1− |z|2
with equality at some z0 ∈ D if and only if f ∈ Aut(D).

Proof. Fix z ∈ D and consider the composition

F : 0 −→ z = g(0) −→ f(z) −→ 0 = h(f(z))

where g(ξ) := (ξ + z)/(1 + zξ) and h(ξ) = (ξ − f(z))/(1− f(z)ξ). Then F = h ◦ f ◦ g : D → D
with g, h ∈ Aut(D) such that F (0) = 0. Now applying Lemma 9.6 to F , we get

|F ′(0)| = |h′(f(z)) · f ′(z) · g′(0)| = 1− |z|2
1− |f(z)|2 |f

′(z)|  1

with equality if and only if F is a rotation, i.e.,

|f ′(z)|
1− |f(z)|2  1

1− |z|2

with equality at some z0 ∈ D if and only if f ∈ Aut(D). □

9.3. Hyperbolic geometry on D. Recall the Cauchy–Riemann equation is read as

∂

∂z
=

1

2


∂

∂x
− i

∂

∂y


,

∂

∂z
=

1

2


∂

∂x
+ i

∂

∂y



for dz = dx+ idy and dz = dx− idy. For a smooth function f , we see

df =
∂f

∂z
dz +

∂f

∂z
dz =

∂f

∂x
dx+

∂f

∂y
dy.

If f is holomorphic, then df(z) = f ′(z)dz by definition.

Definition 9.13 (Kähler metric). Let Ω ⊂ C be an open set. Suppose g(z) > 0 is a smooth

function on z ∈ Ω. A Kähler Metric on Ω is defined to be

ds2(z) = g(z) · |dz|2,

where |dz|2 = (dx)2 + (dy)2.

Definition 9.14 (Pull-back of Kähler metric). Let Ω1,Ω2 ⊂ C be open sets. Suppose ds2Ω2
(z) =

g(z)|dz|2 is a metric on Ω2 and f : Ω1 → Ω2 is a holomorphic map. We define the pull-back of

ds2Ω2
(z) along f as

f∗(ds2Ω2
) := f∗(g|dz|2) = (g ◦ f) · |df |2 = (g ◦ f) · |f ′(z)|2|dz|2.

Example 9.15 (Poincaré metric on D). By taking g(z) = 4/(1− |z|2)2 in a Kähler metric, we

get the Poincaré metric on D:

ds2P(z) :=
4|dz|2

(1− |z|2)2 , dsP =
2|dz|

1− |z|2 .

As for the pull-backs, we take f ∈ Hol(D,D) = {f : D → D holomorphic}. Then

f∗ds2P(z) =
4

(1− |f ′(z)|2)2 |f
′(z)|2|dz|2.

Through the holomorphic function f , (D, ds2P) is sent to (D, ds2P) as well. By cancelling the |dz|2
term and applying the Schwarz–Pick lemma (Proposition 9.12), we see

f∗ds2P(z)  ds2P(z)

with equality holds at some z0 ∈ D if and only if f ∈ Aut(D). Note that the inequality above is

equivalent to the previous Schwarz lemma (Lemma 9.6).
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Remark 9.16. One can check that the curvature of (D, ds2P) is a negative constant. The negativity
here is often regarded as some “hyperbolic property” in complex geometry. Denote

Iso(D, ds2P) = {f : D → D holomorphic with f∗ds2P = ds2P}

as the isometric group on (D, ds2P). Then the Schwarz–Pick shows that Aut(D) = Iso(D).

Example 9.17. Recall Example 9.5 (1) that for H, we have the conformal equivalence

ϕ : H −→ D; z −→ z − i

z + i
.

Then the pull-back of ds2P along ϕ is readily read as

ϕ∗ds2P(z) =
4|dϕ(z)|2

(1− |ϕ(z)|2)2 =
4

(1− | z−i
z+i |2)2

· 4

|z + i|4 · |dz|2 =
1

y2
|dz|2

where y = Im(z). Then (D, ds2P(z)) ≃ (H, |dz|2/| Im(z)|2). In this sense, we see the geometry

on D is the same as that on H.

9.3.1. Poincaré length. Let Γ ⊂ D be a (piecewise smooth) curve in D joining two fixed points

a, b ∈ D. Assume Γ has a parametrization z(t) = x(t) + iy(t) : [0, 1] → D with z(0) = a and

z(1) = b. Then the Poincaré length of Γ with respect to ds2P(z) is given by

L(Γ) :=



Γ

dsP(z(t)) =

 1

0

2

1− |z(t)|2 |dz(t)|

that is independent of the choice of the parametrization of Γ. Note that dz(t) = (x′(t)+iy′(t))dt

and then |dz(t)| = (x′(t)2 + y′(t)2)1/2dt, we see


Γ

dsP(z(t)) =

 1

0

2(x′(t)2 + y′(t)2)1/2

1− (x(t)2 + y(t)2)
dt.

Example 9.18. Consider Γ1 : z(t) = t with 0  t  a. Then

L(Γ1) =

 a

0

2

1− t2
dt =

 a

0


1

1− t
+

1

1 + t


dt = log

1 + a

1− a
.

Note that as a → 1, we have L(Γ1) → ∞, which does not coincide with the intuition for classical

Eulerian geometry.

0 aΓ1

Γ2

D

Now consider Γ2 : z(t) = x(t) + iy(t) with 0  t  1 such that z(0) = 0 and z(1) = a. Then

L(Γ2) =

 1

0

2(x′(t)2 + y′(t)2)1/2

1− x(t)2 − y(t)2
dt


 1

0

2|x′(t)|
1− x(t)2

dt 
 1

0

2dx(t)

1− x(t)2

=

 a

0

2ds

1− s2
= log

1 + a

1− a
= L(Γ1).

From this, we know that with respect to ds2P, the line segment Γ1 from 0 to a is actually the

shortest path.
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Definition 9.19 (Poincaré distance). For a, b ∈ D we define the Poincaré distance from a to b

as

distP(a, b) := inf
Γ

L(Γ),

where Γ runs through all curves joining a and b.

Then for 0 < a < 1 we have distP(0, a) = log((1 + a)/(1− a)).

Exercise 9.20. Calculate the Poincaré distance on D as follow.

(1) For any a ∈ D, show that

distP(0, a) = log
1 + |a|
1− |a| .

(Hint: consider a rotation rθ such that rθ(a) = |a|.)
(2) For any a, b ∈ D, show that

distP(a, b) = log
|1− ab|+ |a− b|
|1− ab|− |a− b|

.

(Hint: consider h(ξ) = (ξ − b)/(1− bξ) such that h(b) = 0 and h(a) = (a− b)/(1− ab),

and use the fact that the group action of Aut(D) preserves ds2P.)

Theorem 9.21. For all a, b ∈ D and f ∈ Hol(D,D), we have

distP(f(a), f(b))  distP(a, b).

Sketchy Idea for Proof. Use the definition of Poincaré distance and apply the Schwarz–Pick

Lemma (Proposition 9.12). □

9.3.2. Kobayashi pseudo-distance. Let Ω ⊂ C be an open connected set with x, y ∈ Ω. Consider

a sequence of holomorphic maps fi : D → Ω (i = 1, 2, . . . ,m) and points pi, qi ∈ D satisfying the

following Kobayashi condition:

(∗) f1(p1) = x, fm(qm) = y; fi(qi) = fi+1(pi+1).

Geometrically, this construction is nothing but a chain of discs connecting x and y.

Definition 9.22 (Kobayashi hyperbolic). We define the Kobayashi pseudo-distance as

dK(x, y) := inf
fi,pi,qi

m

i=1

distP(pi, qi),

where the index runs over all such fi and pi, qi satisfying (∗). One can check that for any

x, y, z ∈ Ω,

dK(x, y) = dK(y, x)  0, dK(x, z)  dK(x, y) + dK(y, z).

Moreover, the region Ω is called Kobayashi hyperbolic if for all x, y ∈ Ω such that x ∕= y, we

always have dK(x, y) > 0.

We introduce the main result due to Kobayashi theory without proof (also leave as an exer-

cise).

Theorem 9.23. Consider dK(·, ·) on D and C.
(1) For D, we have dK = distP, thus D is Kobayashi hyperbolic.

(2) For C, we have dK ≡ 0, thus C is not Kobayashi hyperbolic.
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9.4. The Riemann mapping theorem. The motivation of the Riemann mapping theorem

comes from the following natural question.

• Given an open set Ω ⊂ C, is Ω conformally equivalent to D?
For this, we make two trivial observations. Firstly, Ω ∕= C by Liouville (Corollary 3.16) because of

the boundedness of D. Secondly, Ω must be simply connected since the biholomorphic functions

preserves all topology information.

Surprisingly, the Riemann mapping theorem dictates that these two necessary conditions are

also sufficient to determine the conformal equivalence class of D.

Theorem 9.24 (Riemann mapping theorem). Let Ω be a proper (i.e. Ω ∕= C) and simply

connected open set of C. Fix z0 ∈ Ω. Then there exists a unique biholomorphic map F : Ω → D
such that F (z0) = 0 and F ′(z0) > 0.

Proof of the Uniqueness. We prove the uniqueness first. If there are F,G : Ω ≃ D satisfying

that F (z0) = G(z0) = 0 and F ′(z0), G
′(z0) > 0, then F ◦G−1 ∈ Aut(D) satisfies F ◦G−1(0) = 0.

Thus,

F ◦G−1(z) = eiθ · z,
that is, F ◦G−1 is a rotation on D. However, the condition F ′(z0), G

′(z0) > 0 shows that

(F ◦G−1)′(0) = eiθ > 0

as a real number. Therefore, eiθ = 1 and F = G. □

Corollary 9.25. Any two proper simply connected open sets of C are conformally equivalent.

The proof for existence is hard. We will consider the function space

F = {Ω f−→ D : f is holomorphic and injective such that f(z0) = 0}.

Some preparation work for this is in need.

9.4.1. Montel’s theorem.

Theorem 9.26 (Montel). Let Ω ⊂ C be an open set and F be a family of holomorphic functions

on Ω. Assume that F is uniformly bounded on every compact set of Ω, i.e., for any compact subset

K ⊂ Ω, there is a constant B(K) > 0 such that for each f ∈ F, we have supz∈K |f(z)|  B(K).

Then

(1) F is equicontinuous on every compact subset of Ω, i.e., for any compact subset K ⊂ Ω,

for all ε > 0 there is δ(ε) > 0 such that for each f ∈ F, |f(z) − f(w)| < ε whenever

z, w ∈ K and |z − w| < δ(ε);

(2) F is a normal family, i.e., each sequence in F has a subsequence that converges uni-

formly on every compact subset of Ω.

Sketchy Proof. (1) By Cauchy integral formula (Theorem 3.13), the condition that all f ∈ F are

uniformly bounded on compact sets implies that F is equicontinuous on every compact set.

(2) By (1), F is equicontinuous and uniformly bounded on every compact set. By Arzela-

Ascoli theorem, F is normal. □

Proposition 9.27. Let Ω ⊂ C be open and connected. Suppose {fn}∞n=1 is a series of injective

and holomorphic functions on Ω. Assume fn → f uniformly on every compact set of Ω, then f

is also injective unless it is a constant.

Proof. We argue by contradiction and suppose that f is not injective, so there exist distinct

complex numbers z1 and z2 in Ω such that f(z1) = f(z2). Define a new sequence by gn(z) =

fn(z)−fn(z1), so that gn has no other zero besides z1, and the sequence {gn} converges uniformly
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on compact subsets of Ω to g(z) = f(z)−f(z1). If g is not identically zero, then z2 is an isolated

zero for g (because Ω is connected); therefore, by the argument principle (Theorem 4.23),

1 =
1

2πi



γ

g′(ζ)

g(ζ)
dζ,

where γ is a small circle centered at z2 chosen so that g does not vanish on γ or at any point

of its interior besides z2. Therefore, 1/gn converges uniformly to 1/g on γ, and since g′n → g′

uniformly on γ we have
1

2πi



γ

g′n(ζ)

gn(ζ)
dζ −→ 1

2πi



γ

g′(ζ)

g(ζ)
dζ

But this is a contradiction since gn has no zeros inside γ, and hence

1

2πi



γ

g′n(ζ)

gn(ζ)
dζ = 0

for all n. This shows that g ≡ 0 and f must be a constant. □

9.4.2. Proof of the Riemann mapping theorem. The proof consists of 3 steps.

Step 1. Let Ω ⊊ C be a simply connected open set.

Claim: Ω is biholomorphic to an open set of D containing 0.

Proof of Claim. By translations and rescalings, it is enough to prove that Ω is conformally

equivalent to a bounded open set of C. Since Ω is proper and simply connected, there exists

α /∈ Ω such that z − α ∕= 0 for any z ∈ Ω. Consequently,

f(z) := logΩ(z − α)

is well-defined and holomorphic, and ef(z) = z − α. Pick w ∈ Ω then

f(z) ∕= f(w) + 2πi

for any z ∈ om. To see this, the case where z = w is obvious. For z ∕= w, if f(z) = f(w) + 2πi

then

z − α = ef(z) = ef(w) = w − α =⇒ z = w,

which leads to a contradiction. Moreover, there is an open disc D centered at f(w) + 2πi such

that D ∩ f(Ω) = ∅. Otherwise there is a series {zn} ⊂ Ω such that f(zn) → f(w) + 2πi, and

hence ef(zn) → ef(w)+2πi (i.e. zn → w). Thus we have f(zn)] → f(w), which is a contradiction.

We then consider

F (z) =
1

f(z)− (f(w) + 2πi)
.

As f is injective, for a fixed w, F is injective as well. Hence F : Ω → F (Ω) is biholomorphic.

On the other hand, there is some C > 0 such that for all z ∈ Ω, |F (z)|  C. These proves the

claim.

Step 2. By Step 1, we can assume 0 ∈ Ω ⊂ D. Consider the following family

F := {Ω f−→ D : f is holomorphic and injective such that f(0) = 0}.

Since f(z) = z ∈ F we know at least F ∕= ∅. Also, F is uniformly bounded. Let s = supf∈F |f ′(0)|
then s  1 since f(z) = z ∈ F. Moreover, one can prove that s < ∞. This is because

f ′(0) =
1

2πi



|ξ|=r

f(ξ)

ξ2
dξ =⇒ |f ′(0)|  1

r

by higher Cauchy integral formula (Theorem 3.14). Choose a sequence {fn} ⊂ F such that

|f ′
n(0)| → s. By applying Montel’s theorem (Theorem 9.26) to {fn}, we see there exists a

subsequence of {fn} that converges to f uniformly on every compact subset.

(i) By definition, fn are all injective and s  1. Hence f is injective as well.
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(ii) Since |fn|  1 in Ω, we have |f |  1 in Ω. Applying the maximum principle (Proposition

4.27) to f on the open connected region Ω, we have |f | < 1 in Ω. Therefore, the image

of f is strictly contained in D.
(iii) Note that f(0) = 0.

From (i)-(iii) above, f readily lies in F and |f ′(0)| = s.

Step 3. Let f : Ω → D be the map constructed in Step 2.

Claim: f is surjective, that is, f(Ω) = D; and therefore f is biholomorphic.

Proof of Claim. Otherwise there is some α ∈ D such that for all z ∈ Ω, f(z) ∕= α. Consider

f = ψg(α) ◦ g ◦ ψα ◦ f
where ψα(z) = (α − z)/(1 − αz) as in Example 9.7. Also, g : ψα ◦ f(Ω) → C is defined on a

simply connected region ψα ◦ f(Ω) by g(w) =
√
w = exp((logw)/2), which is injective. Then

f ∈ F where F is the same as in Step 2. By the definition of f ,

f = Φ ◦ f := ψ−1
α ◦ g−1 ◦ ψ−1

g(α)  
Φ

◦ f

where g−1(w) = w2. Thus, f ′(0) = Φ′( f(0)) · f ′(0) = Φ′(0) · f ′(0). Note that Φ : D → D
satisfies Φ(0) = 0 and Φ is not injective. By the Schwarz lemma (Lemma 9.6), |Φ′(0)| < 1 and

| f ′(0)| > |f ′(0)|, which contradicts with the definition |f ′(0)| = suph∈F |h′(0)|.
Now the whole proof for Theorem 9.24 is accomplished.

Example 9.28 (Topological comb). We consider a classical example in topology that is (glob-

ally) path-connected but not locally path-connected. Say

Ω = {s ∈ C : 0 < Re(s) < 1, 0 < Im(s) < 1}−
∞

n=1


1

n
,
1

n
+

n− 1

n
i


.

0

1 + i

1

i

Ω

That is the open set by removing a series of the “comb intervals” from the interior of the square

with vertices 0, 1, i, 1 + i. Note that Ω is simply connected and open with ∂Ω = Ω\Ω being the

union of the comb space and the edges of the square. By Riemann mapping theorem (Theorem

9.24), there is a conformal map F : Ω → D.

Remark 9.29. The conformal equivalence relation implies the topological homeomorphism. For

(the most important) example, suppose Ω1,Ω2 ⊊ C are two simply connected open sets that are

conformally equivalent, then Ω1 ≃ Ω2 as a topological homeomorphism. However, given a map

that preserves all local angles, it need not be a homeomorphism unless it is bijective.

9.5. Correspondence of boundaries.

Definition 9.30 (Regularity). Let Ω ⊂ C be a bounded region. A point z0 ∈ ∂Ω is called

regular if there exists r(z0) > 0 such that for all 0 < r < r(z0) we have

Ω ∩ {z ∈ C : |z − z0| = r} = {z0 + reiθ : θ1(r) < θ < θ2(r)}
for some constants with θ1(r) < θ2(r), which are continuous with respect to r.
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Ω z0

If every point of ∂Ω is regular, then we say Ω is regular.

Example 9.31. If ∂Ω is C1 with some corners, then Ω is regular. In particular, if ∂Ω is

piecewise smooth, then Ω is regular.

Theorem 9.32 (Boundary correspondence). Let Ω ⊂ C be an open set that is bounded, simply

connected, and regular. Then any conformal map F : Ω → D extends to a continuous bijection

F : Ω → D. In particular, F induces a homeomorphism from ∂Ω to ∂D.

Upshot for Proof. We need to verify limz→z0,z∈Ω F (z) exists for any z0 ∈ ∂Ω.

We insert a lemma as the preparation work. For each 0 < r < r(z0) we denote Cr = {z ∈
C : |z − z0| = r}. For any given two points zr, z

′
r ∈ Ω ∩ Cr, let ρ(r) := |F (zr) − F (z′r)|. This

statement essentially uses the regularity assumption.

Ω z0

zr

z′r Cr

α

Lemma 9.33. We have lim infr→0 ρ(r) = 0.

Proof. We take α as the arc on Cr from zr to z′r. Note that F is holomorphic, and hence

F (z′r)− F (zr) =



α

F ′(ξ)dξ.

If lim supr→0 ρ(r) > 0, i.e., there is some C > 0 together with 0 < R ≪ 1 such that ρ(r)  C

for any 0 < r < R. On the other hand,

ρ(r) =




α

F ′(ξ)dξ

 
 θ2(r)

θ1(r)

|F ′(ξ)|rdθ


 θ2(r)

θ1(r)

|F ′(ξ)|2 · rdθ
1/2

·
 θ2(r)

θ1(r)

rdθ

1/2

 (2πr)1/2

 θ2(r)

θ1(r)

|F ′(ξ)|2 · rdθ
1/2

.

Here the second inequality is the Cauchy-Schwarz. This is equivalent to

ρ(r)2

r
 2π

 θ2(r)

θ1(r)

|F ′(ξ)|2 · rdθ.

After taking the integral for 0 < r < R, we have
 R

0

ρ(r)2

r
dr  2π

 R

0

 θ2(r)

θ1(r)

|F ′(ξ)|2 · rdθdr

 2π



Ω

|F ′(ξ)|2dxdy

= 2π



F (Ω)

dxdy = 2π



D
dxdy = 2π2.
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However, as ρ(r)  C from the assumption,
 R

0

ρ(r)2

r
dr  C2

 R

0

dr

r
= ∞.

This leads to a contradiction. Thus, lim infr→0 ρ(r) = 0. □

Exercise 9.34. In the proof of Lemma 9.33 above, we have used the following fact. Let

f : U → f(U) be a conformal map. Prove that


U

|f ′(z)|2dxdy =



f(U)

dxdy.

Proof for Theorem 9.32. We first prove limz→z0,z∈Ω F (z) exists. Otherwise, there are two se-

quences {z1, z2, . . .} and {z′1, z′2, . . .} in Ω with zk → z0 and z′k → z0 but F (zk) → ξ, F (z′k) → ξ′

such that ξ ∕= ξ′. Note that ξ, ξ′ ∈ ∂D as F : Ω → D is a conformal equivalence. This contradicts

with Lemma 9.33.

Now define F (z0) = limz→z0,z∈Ω F (z) for z0 ∈ ∂Ω. Then F : Ω → D is continuous by

Lemma 9.33 again. Applying similar argument to F−1 : D → Ω, we get a continuous extension

F−1 : D → Ω. It can be verified that

F ◦ F−1 = idD, F−1 ◦ F = idΩ .

Therefore, F is a continuous bijection. □

Remarks 9.35. We have some comments on the boundary correspondence and the Riemann

mapping theorem.

(1) For the uniqueness in the Riemann mapping theorem (Theorem 9.24), we have the

following. Let Ω ⊂ C be a proper and simply connected region with ∂Ω being a closed

piecewise smooth curve. Take three distinct points z1, z2, z3 ∈ ∂Ω. For arbitrary and

distinct a, b, c ∈ ∂D, there exists a unique conformal map F : Ω → D such that the

homeomorphic extension F : Ω → D maps z1, z2, z3 to a, b, c, respectively.

(2) The boundary correspondence (Theorem 9.32) also holds for domains in the extended

complex plane C = C ∪ {∞}. Here {∞} (as a point or a region) is called regular if {0}
is regular in ∂Ω−1 := ∂{z−1 : z ∈ Ω}.

Theorem 9.36 (Extended Riemann mapping theorem and boundary correspondence). Suppose

Ω ⊂ C is a simply connected open subset that is proper (i.e., Ω ∕= C or C). Then

(1) there is a conformal map F : Ω → D;
(2) furthermore, if Ω is also regular, we have the correspondences of boundaries as in The-

orem 9.32.

9.6. Applications of Riemann mapping theorem. This part refers to [Kod07, pp. 224-241].

We will introduce two types of applications about reflections and modular functions respectively.

9.6.1. The principle of reflection. Recall the Schwarz reflection principle (Proposition 3.30)

which deduces the following theorem.

Theorem 9.37. Suppose Ω, D are open subsets of the upper-half plane H whose boundaries

intersect R with at least an interval. Assume (a, b) is part of boundary of Ω and (α,β) is part

of boundary of D on R. If F : Ω → D is a conformal map extending homeomorphically such

that F : Ω ∪ (a, b) → D ∪ (α,β), then we can extend F to a conformal map

F : Ω ∪ (a, b) ∪ Ω∗ −→ D ∪ (α,β) ∪D∗

through taking

F (z) =


F (z), z ∈ Ω ∪ (a, b);

F (z), z ∈ Ω∗.
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Here Ω∗ and D∗ denote the reflection image of Ω and D with respect to the real axis, respectively.

Or equivalently, Ω∗ := {z ∈ C : z ∈ Ω} and D∗ := {z ∈ C : z ∈ D}.

H

a b

Ω

Ω∗

H

α β

D

D∗

Now we are to study reflections with respect to a line or a circle. Consider the equation

λ(w) := (c1 − c0)w + c0. If w ∈ R, then λ(w) = 0 is the equation of ℓ that passes through

c0, c1 ∈ C. If w ∈ C, then λ(·) : C → C is a conformal equivalence and maps R ∪ {∞} onto

ℓ ∪ {∞}; and such that λ(0) = c0, λ(1) = c1, and λ(∞) = ∞.

∞

∞

R

ℓ

0 1

c0

c1

w

w∗ = w

z∗

z

Exercise 9.38. Denote z∗ the image of z ∈ C under the reflection by ℓ.

(1) Let z = λ(w). Show that z∗ = λ(w).

(2) If µ is another linear fractional transform, i.e.,

µ(z) =
az + b

cz + d
,


a b

c d


∈ GL2(C).

which maps R ∪ {∞} to ℓ ∪ {∞}. Prove that z = µ(w) implies z∗ = µ(w).

Remark 9.39. Suppose a, b, c, d ∈ C with ad− bc ∕= 0. Then

ϕ(z) =
az + b

cz + d
∈ Aut(C).

Note that ϕ(∞) = a/c and ϕ(−d/c) = ∞. So

ϕ : C\{∞,−d

c
} = C\{−d

c
} ≃ C\{∞,

a

c
} = C\{a

c
}.

Now let C be a circle on C and c0, c1, c∞ be three distinct points on C. Set λ(·) : C → C by

λ(w) =
(c0 − c∞)(c∞ − c1)

(c1 − c0)w + (c∞ − c1)
+ c∞.

It can be verified that λ(0) = c0, λ(1) = c1, and λ(∞) = c∞.

∞R
0 1

w

w∗ = w

C

z

z∗

c0

c1

c∞
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The idea to deal with the reflections with respect to a circle is to regard a line ℓ as a circle with

infinite radius, say {z ∈ ℓ : |z +∞| = ∞}. Then the linear fractional transforms always map a

circle to another circle. In particular, λ maps R ∪ {∞} onto C.

Definition 9.40. For z = λ(w) with λ defined as above, the reflection of z with respect to the

circle C is defined by

z∗ = λ(w) =
(c0 − c∞)(c∞ − c1)

(c1 − c0)w + (c∞ − c1)
+ c∞.

Remark 9.41. It can be checked that the definition of z → z∗ is independent of the choice

of λ, or equivalently, independent of the choice of points c0, c1, c∞. For any linear fractional

transformation µ ∈ GL2(C) which maps R ∪ {∞} onto C, we have z = µ(w) implying z∗ =

µ(w) = λ(w).

Note that whether λ preserves the direction of R from −∞ to ∞ or not leads to two different

cases.

R ∞
0 1

λ

λ
(Case 1)

(Case 2)

c0 c∞

c0 c∞

c1

c1

H

H∗

In Case 1 above, λ maps H conformally to the interior of C; but in Case 2, it maps H∗ to the

interior of C. One can prove that in any case, λ(·) can be written as

z = λ(w) = c+Reiθ · w − w0

w − w0

for some θ ∈ R, where c ∈ C and R > 0 denotes the center and the radius of C, respectively.

The point w0 is chosen to be on H in Case 1, and on H∗ in Case 2. Therefore, z = λ(w) has its

reflection with respect to C given by

z∗ = λ(w) = c+Reiθ · w − w0

w − w0
.

By an easy comparison on expressions of z = λ(w) and z∗ = λ(w), we get the circle-power

theorem in Euclid geometry:

(z − c) · (z∗ − c) = R2.

There is a consequence of this result at once, say for r > 0 and ϕ ∈ R,

z − c = reiϕ ⇐⇒ z∗ − c =
R2

r
eiϕ.

As expected, note that the reflection map with respect to C is an involution (that is, (z∗)∗ = z)

and preserves the circle. According to the convention, write c∗ = ∞ and ∞∗ = c for the center

c of C. Finally, proof of the following proposition is left as an exercise.

Proposition 9.42. Reflections with respect to a line or a circle are invariant under linear

fractional transforms. In other words, the reflections commute with the action of GL2(C). To

be more precise, if C is a line or a circle and µ ∈ GL2(C), then

µ(z∗) = µ(z)∗.

On the right hand side, µ(z) → µ(z)∗ is a reflection with respect to µ(C).

Theorem 9.43 (The principle of reflection). We make the following statements.

• C is a circle in C with center c.
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• Ω is a connected open subset contained in the interior of C or the exterior of C, satisfying

c /∈ Ω.

• γ ⊊ C is a part of the boundary of Ω, i.e., γ ⊂ ∂Ω = Ω\Ω.
• D ⊂ H is a connected open subset with a real interval (α,β) as a part of ∂D.

If the conformal map f : Ω → D extends to a homeomorphism f : Ω ∪ γ → D ∪ (α,β), then f

extends to a conformal map

g : Ω ∪ γ ∪ Ω∗ −→ D ∪ (α,β) ∪D∗,

which is defined by

g(z) =


f(z), z ∈ Ω ∪ γ;

f(z∗), z ∈ Ω∗.

Note that Theorem 9.43 generalizes Theorem 9.37 but preserves all essential ingredients. In

short, the result dictates that if a conformal map extends to some boundary of the reflection

axis (which is a circle or a line), then it extends to the reflection image as well.

Proof. Assume Ω is in the interior of C with c /∈ Ω. Recall that for some θ ∈ R,

λ(w) = c+Reiθ · w − w0

w − w0
.

We can choose some θ such that λ(∞) ∈ C\γ. Set w0 = λ−1(c). Note that λ : C\{w0} ≃
C\{λ(∞)} is conformal. Conversely,

λ−1 : C\{λ(∞)} −→ C\{w0}

is conformal. Since c /∈ Ω, we have ∞ /∈ Ω∗. Hence Ω ∪ γ ∪ Ω∗ ⊂ C\{λ(∞)}. Applying the

Schwarz reflection principle (Proposition 3.30) to g ◦ λ−1, we get the result. The case where Ω

lies in the exterior of C is similar. □

Remark 9.44. The same result as in Theorem 9.43 also holds when C is a line in C if Ω is on

one side of C and γ ⊂ C is a segment such that γ ⊂ Ω\Ω.

Moreover, in case Ω is a simply connected open set of C such that Ω ∪ C = ∅, γ ⊂ ∂Ω, and

γ ⊊ C, where C is a circle or a line. By the Riemann mapping theorem (Theorem 9.24), we

have the following result.

Theorem 9.45. A conformal map f : Ω → H whose extension maps γ to a segment (α,β) ⊂ ∂H
can extend to a conformal map

g : Ω ∪ γ ∪ Ω∗ ∼−→ H ∪ (α,β) ∪H∗.

9.6.2. Construction of a modular function. Let’s recall Theorem 9.23 that D is (Kobayashi)

hyperbolic. Let C = ∂D = {z ∈ C : |z| = 1} with distinct points (c0, c1, c∞) ∈ C. The partition

of D is given in the next page.

Step 0: Preparation. As D is simply connected, by Riemann mapping theorem and

boundary correspondence (Theorem 9.36), there exists a unique conformal map f : D → H
whose extension

f : D −→ H = H ∪ R ∪ {∞}

is a homeomorphism satisfying f |∂D : ∂D → R∪{∞} with f(c0) = 0, f(c1) = 1, and f(c∞) = ∞.

Then the correspondence is read as

f(γ1) = (1,∞), f(γ2) = (−∞, 0), f(γ3) = (0, 1).
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D

D3 D1

D2

γ1

γ3

γ2

c∞ = v3v1 = c0

c1 = v2

γ21

γ31

γ23

γ13

γ32 γ12

v22

v11v33

Step 1: Reflections with respect to γj for j = 1, 2, 3.

Proposition 9.46. Let C be a line or a circle and let c be the center of C if C is a circle.

(1) Let Γ1,Γ2 be smooth curves in C intersecting at a ∕= c, let θ be the angle between Γ1,Γ2

at a. If Γ∗
1,Γ

∗
2, a

∗ are the reflection images with respect to C, then the angle between

Γ∗
1,Γ

∗
2 is −θ.

(2) The reflection z → z∗ with respect to C maps circles (resp. lines) onto circles (resp.

lines).

C

Γ1 Γ2

Γ∗
1 Γ∗

2

a

a∗

θ

−θ

Proof. Note that (1)(2) hold for C = R ∪ {∞}. For the general case, apply a linear fractional

transform λ : R ∪ {∞} → C to complete the proof. □

Applying Proposition 9.46 to our setting, we get the following result.

• The reflections with respect to γj map ∂D to ∂D.
• The reflections with respect to γj map the intersection angle (with ∂D) π/2 to π/2.

• The reflections with respect to γj map D to the interior of D.
By the principle of reflections (Theorem 9.43) applying to the reflection with respect to γ1,

we extend f to a conformal map

f1 : D ∪ γ1 ∪D∗ ∼−→ H ∪ (1,∞) ∪H∗.

Here f1(D
∗) = H∗ and f1(γ1) = (1,∞). It is also such that f1(γ21) = (−∞, 0) and f1(γ31) =

(0, 1). Similarly, we have maps f2 and f3. Denote

S(1) = D ∪ γ1 ∪ γ2 ∪ γ3 ∪D1 ∪D2 ∪D3.

Define g1 : S(1) → C as

g1(z) =


f(z), z ∈ D ∪ γj (j = 1, 2, 3);

fj(z), z ∈ Dj (j = 1, 2, 3).

Then g1 : S(1) → C\{0, 1} is a holomorphic map.



86 WENHAN DAI

Step 2: Reflections with respect to γij for i, j = 1, 2, 3. By the similar construction as

in Step 1, we get another holomorphic map

g2 : S(2) −→ C\{0, 1}.

Again, using the induction, we have for all n ∈ N that

gn : S(n) −→ C\{0, 1}.

Here D ⊂ S(1) ⊂ S(2) ⊂ · · · ⊂ S(n) and
∞

n=1 S
(n) = D. Gluing these up, we get a holomorphic

map

g : D −→ C\{0, 1},
which is the so-called modular function on D.

As for some application, the following result is a corollary for the existence of g.

Proposition 9.47 (Little Picard theorem). If f : C → C\{0, 1} is a holomorphic function,

then f is a constant.

Proof. From the existence of the modular function g, we obtain a commutative diagram

D

C C\{0, 1}

g
f

f

such that f has a holomorphic lifting f such that g ◦ f = f . But by Liouville (Corollary 3.16),
f must be a constant as it is bounded and holomorphic on C. Then f is a constant as well. □

Note that Proposition 9.47 also holds for those functions to the punctured complex plane

with exactly two points missed, i.e., for f : C → C\{c0, c1} with c0 ∕= c1 ∈ C.

10. An introduction to elliptic functions

In short, elliptic functions are meromorphic functions defined on C/L, where L is a lattice

of C. These functions are called “elliptic” because the domain C/L ≃ C/Z2 can be not only

interpreted as a torus but also an elliptic curve.

10.1. Basics on elliptic functions.

Definition 10.1 (Lattice). A lattice L of C is a subgroup of (C,+) which is generated by

ω1,ω2 ∈ C over Z such that ω1,ω2 generates C over R. That is,

L = {mω1 + nω2 : m,n ∈ Z}.

Without loss of generality, we assume Im(ω1/ω2) > 0.

Definition 10.2 (Elliptic function). An elliptic function f with respect to a lattice L of C is a

non-constant meromorphic function on C which is L-periodic, i.e.,

f(z + ω) = f(z), ∀z ∈ C, ω ∈ L.

Or equivalently, for all z ∈ C,

f(z) = f(z + ω1) = f(z + ω2).

Remark 10.3. For the second condition on L-periodicity above, let ω1,ω2 ∈ C be arbitrary. If

ω1/ω2 ∈ Q then f is periodic with a single period. If ω1/ω2 ∈ R\Q, then f must be a constant.

Proposition 10.4. An elliptic function which is entire is a constant function.
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Proof. An elliptic function descends to a function on the torus C/L, which is compact. The

equivalence relation in C/L is given by

z1 ≡ z2 mod L ⇐⇒ z1 − z2 = mω1 + nω2 for some (m,n) ∈ Z2.

If the function is entire, then it is bounded. By Liouville (Corollary 3.16), it must be a constant.

□

Definition 10.5 (Fundamental parallelogram). Let L = [ω1,ω2] be a lattice of C and suppose

α ∈ C. Then the set

P = {α+ t1ω1 + t2ω2 : 0  t1 < 1, 0  t2 < 1}

is called a fundamental parallelogram of L.

It’s not hard to see that if f is elliptic, then f is determined by its behavior in P .

Theorem 10.6. Let f be elliptic with respect to L and P be a fundamental parallelogram for

L. Assume f has no poles on ∂P . Then


z∈P

resz f = 0.

Proof. Suppose P has a vertex, say α as follows.

P

α α+ ω2

α+ ω1 + ω2α+ ω1

By the residue formula (Theorem 4.8), we have

2πi


z∈P

resz f =



∂P

f(z)dz

=

 α+ω2

α

f(z)dz +

 α+ω1+ω2

α+ω2

f(z)dz +

 α+ω1

α+ω1+ω2

f(z)dz +

 α

α+ω1

f(z)dz

=

 α+ω2

α

f(z)dz +

 α+ω1+ω2

α+ω2

f(z)dz −
 α+ω2

α

f(z)dz −
 α+ω1+ω2

α+ω2

f(z)dz

= 0

by the double-periodicity. □

Corollary 10.7. The total number of poles (counted with multiplicities) of an elliptic function

f in P is not less than 2.

Proof. If f has no poles on ∂P , then the result follows from Theorem 10.6. Otherwise f has

poles on ∂P , then consider a slight perturbation of P to P + h with |h| ≪ 1. By applying

Theorem 10.6 to P + h again, we get the result. □

Theorem 10.8. Let P be a fundamental parallelogram and f be an elliptic function. Let

{an}Nn=1 be the collection of all zeros and poles of f in P with order ordai f = mi, respectively.

(Recall that mi > 0 if ai is a zero and that mi < 0 if ai is a pole.) Then

N

i=1

mi = 0.
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Proof. Note that f ′/f is elliptic as well as f since it is meromorphic. Therefore, by the argument

principle (Theorem 4.23), if f has no zeros or poles along ∂P , then

N

i=1

mi =
1

2πi



∂P

f ′(z)

f(z)
dz = 0

as f ′/f is elliptic (c.f. the proof of Theorem 10.6 above). Again, if f has zeros or poles on ∂P ,

then consider a slight perturbation P + h and apply the same argument. □

Exercise 10.9. Keeping the same hypothesis as in Theorem 10.8, prove that

N

i=1

miai ≡ 0 mod L,

i.e.
N

i=1 miai = kω1+ℓω2 for some (k, ℓ) ∈ Z2. (Hint: consider the integral

∂P

(zf ′(z)/f(z))dz

and apply the residue formlua (Theorem 4.8).)

10.2. Weierstrass ℘ function. Suppose [ω1,ω2] is a lattice of C and

L∗ := {mω1 + nω2 : (m,n) ∈ Z2\(0, 0)} = L\{(0, 0)}.

The Weierstrass ℘ Function is defined over C but essentially depends on the choice of L.

Definition 10.10. The Weierstrass ℘ function for L is defined as

℘(z) :=
1

z2
+



ω∈L∗

(
1

(z − ω)2
− 1

ω2
)

for all z ∈ C.

Theorem 10.11. ℘ is elliptic with respect to L.

Proof. The first step is to verify that the sum in ℘ converges uniformly on all compact sets that

include no lattice points. For |z| < ∞ staying away from L,

1

(z − ω)2
− 1

ω2
=

−z2 + 2zω

ω4 − 2zω3 + ω2z2
∼ O(

1

|ω|3 ).

The following fact will be at work for this.

Fact: for λ > 2, the infinite sum converges:



ω∈L∗

1

|ω|λ =


(m,n)∈Z2\{(0,0)}

1

|mω1 + nω2|λ
< ∞.

Coming back to the proof, note that |ω| = |mω1 + nω2| ∼ |m|+ |n| and hence

1

|ω|λ ∼ 1

(|m|+ |n|)λ .

To estimate the right hand side, for fixed n,

1

|n|λ + 2


m1

1

(|m|+ |n|)λ =
1

|n|λ + 2


k|n|+1

1

kλ

 1

|n|λ + 2

 ∞

|n|

1

xλ
dx

 1

|n|λ +
C

|n|λ−1
.
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Using this property, we see


(m,n)∈Z2\{(0,0)}

1

(|m|+ |n|)λ =


m ∕=0

1

|m|λ +


m∈Z,n ∕=0

1

(|m|+ |n|)λ




m ∕=0

1

|m|λ +


n ∕=0

(
1

|n|λ +
C

|n|λ−1
)

< ∞

as λ > 2 due to the fact above. Therefore, ℘ is a meromorphic function on C with a double pole

at each ω ∈ L. Furthermore, ℘ is even, i.e. ℘(z) = ℘(−z). Also note that

℘′(z) = −2


ω∈L

1

(z − ω)3

and thus ℘′ is L-periodic and odd. It suffices to check whether ℘ is L-periodic or not. As for

any z,

℘′(z + ω1) = ℘′(z) =⇒ ℘(z + ω1)− ℘(z) = c

for some constant c. The claim is that c = 0. To see this, let z = −ω1/2 and get

℘(
ω1

2
) = ℘(−ω1

2
) + c = ℘(

ω1

2
) + c =⇒ c = 0.

Here the second equality holds because ℘(·) is even. Thus ℘(z + ω1) = ℘(z) and similarly,

℘(z + ω2) = ℘(z). □

Note that the set of all elliptic functions (with respect to a fixed lattice L) forms a field,

denoted by m(C/L), which contains C as the constant field. Here m(C/L) is called the function

field of the torus C/L.

Theorem 10.12. The field m(C/L) is generated by ℘ and ℘′, i.e.,

m(C/L) = C(℘,℘′).

Or equivalently, any elliptic function on C/L is a rational function of ℘ and ℘′.

Proof. If f is elliptic, we write

f(z) =
f(z) + f(−z)

2  
even, elliptic

+
f(z)− f(−z)

2  
odd, elliptic

.

If f is odd, then f · ℘′ is even. We only need to prove that the field of even elliptic functions is

equal to C(℘).
Fact. Let f be an even elliptic function, then:

• if f has a zero (resp. pole) of order m at some point u, then f has also a zero (resp.

pole) of order m at −u;

• if u ≡ −u mod L (or 2u ≡ 0 mod L), then f has either a zero or a pole of even order at

u.

Using the fact in particular, f has a zero or a pole of even order at z = 0. Hence there exists

some m ∈ Z such that f · ℘m has no poles or zeros at z = 0 (thus at all points of L).

We now assume u ∕≡ 0 mod L and let g(z) := ℘(z)− ℘(u). The result above shows that g(z)

has a zero of even order at u if 2u ≡ 0 mod L, i.e., u ≡ ω1/2,ω2/2, (ω1 + ω2)/2 mod L. By

Theorem 10.8, 

z∈P

ordz(g) = 0

so ordu(g) = 2 if u ≡ ω1/2,ω2/2, (ω1 + ω2)/2 mod L. Under the same assumption, g has zeros

at u and −u of order 1.
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0

−ω1

ω1

ω2
−ω2

ω1/2

ω2/2

(ω1 + ω2)/2

−u

u

Without loss of generality, we can assume f has no zeros or poles at points of L. Let u1, u2, . . . , ur

be points in P where f has a zero or pole. Let

mi =


ordui f, if 2ui ∕≡ 0 mod L;

(ordui f)/2, if 2ui ≡ 0 mod L.

Define G(z) :=
r

i=1(℘(z) − ℘(ui))
mi , then G has the same order at ui as f does. Then

f(z)/G(z) is entire (and elliptic) so that f(z)/G(z) = C for some constant C by Liouville

(Corollary 3.16). □

10.2.1. The canonical elliptic curve. For the half-periods ω1/2, ω2/2, and (ω1 + ω2)/2, denote

e1 = ℘(
ω1

2
), e2 = ℘(

ω2

2
), e3 = ℘(

ω1 + ω2

2
).

Then the equation ℘(z) = e1 (resp. e2, e3) has a double root at ω1 (resp. ω2/2, (ω1 + ω2)/2)

because of the fact in the proof of Theorem 10.12. Also, e1, e2, e3 are distinct. Moreover,

℘′(
ω1

2
) = ℘′(

ω2

2
) = ℘′(

ω1 + ω2

2
) = 0

and the order equals to 1 at every point. Then ℘′(z)2 and (℘(z)−e1)(℘(z)−e2)(℘(z)−e3) have

the same zeros and poles in P . So there is a constant C such that

℘′(z)2

(℘(z)− e1)(℘(z)− e2)(℘(z)− e3)
= C.

A natural question asks for the value of C. Consider the power series of ℘ and ℘′ near z = 0:

℘(z) =
1

z2
+



ω∈L∗


1

(z − ω)2
− 1

ω2



=
1

z2
+



ω∈L∗


1

ω2
· 1

(1− z/ω)2
− 1

ω2



=
1

z2
+



ω∈L∗


1

ω2
· (1 + z

ω
+
 z

ω

2

+ · · · )2 − 1

ω2



=
1

z2
+



ω∈L∗

∞

m=1

(2m+ 1) ·
 z

ω

2m

· 1

ω2

=
1

z2
+

∞

m=1

cm · zm,

where cm =


ω∈L∗(m+ 1)/ωm+2. Denote

Em(L) = Em :=


ω∈L∗

1

ωm
,
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which is the Eisenstein series of order m. By this,

℘(z) =
1

z2
+

∞

n=1

(2n+ 1)E2n+2(L) · z2n

=
1

z2
+ 3E4 · z2 + 5E6 · z4 + 7E8 · z6 + · · · ,

and

℘′(z) = − 2

z3
+

∞

n=1

2n(2n+ 1)E2n+2(L) · z2n−1

= − 2

z3
+ 6E4 · z + 20E6 · z3 + 42E8 · z5 + · · · ,

Therefore, by a comparison on leading terms of these two equations, we have C = 4. In other

(geometric) words, the point (℘(z),℘′(z)) that is parametrized by z ∈ C\L lies on the cubic

curve

{(x, y) ∈ C2 : y2 = 4(x− e1)(x− e2)(x− e3)} ⊂ C2.

Again, from the two equations above,

℘′(z)2 =
4

z6
− 24E4

z2
− 80E6 + · · · ,

℘(z)3 =
1

z6
+

9E4

z2
+ 15E6 + · · · ,

60E4℘(z) =
60E4

z2
+ 180E2

4z
2 + · · · .

By comparison, we see the function ℘′(z)2 − 4℘(z)3 + 60E4℘(z) + 140E6 is holomorphic near

z = 0 and vanishes at z = 0. Then

℘′(z)2 = 4℘(z)3 − 60E4℘(z)− 140E6.

Denote g2 = 60E4 and g3 = 140E6. Then ℘′(z) = 4℘(z)2 − g2℘(z)− g3.

Proposition 10.13 (Weierstrass canonical form). For any z ∈ C\L, the point (℘(z),℘′(z)) is

on the cubic curve defined by

AC : y2 = 4(x− e1)(x− e2)(x− e3) = 4x3 − g2x− g3 ⊂ C2 ⊂ P2
C.

This curve is called an elliptic curve of Weierstrass canonical form. Moreover, as e1, e2, e3 are

distinct, the discriminant of equation 4x3 − g2x− g3 = 0 is nonzero, say

∆ = g32 − 27g23 ∕= 0.

Remark 10.14 (j-invariant). Continuing with Proposition 10.13, define the j-invariant by

J =
g32
∆

, j = 1728 · g
3
2

∆
= 26 · 33 · g

3
2

∆
.

Then J and j = 1728J are invariants of L. Also note that there is a (non-canonical) isomorphism

(C/L)\{(0, 0)} A∗
C\{∞}

z (1,℘(z),℘′(z)).

∼

Here A∗
C denotes the projective compactification of AC. This isomorphism interprets why a

complex torus can be regarded as an elliptic curve.
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10.2.2. Fourier expansion and q-expansion. Keep the same assumption as before. By considering

F (z) := f(ω2z), we see F is elliptic with respect to a new lattice [τ = ω1/ω2, 1] with τ ∈ H
(recall that we have assumed Im(ω1/ω2) > 0.

Definition 10.15. For τ ∈ H, we call L = [τ, 1] a normalized lattice of C.

As for the Eisenstein series

Em(τ) =


(k,ℓ)∈Z2\{(0,0)}

1

(kτ + ℓ)m
, m ∈ 2N, τ ∈ H.

For m > 2, Em(τ) is absolutely convergent. However, for m = 2, it is not absolutely convergent

but


k


ℓ(kτ + ℓ)−2 is convergent, i.e., we can define

E2(τ) :=


k=0,ℓ∈Z\{0}

1

ℓ2
+



k ∕=0



ℓ∈Z

1

(kτ + ℓ)2
.

The remaining task of this part is to expand E2k(τ). By Hadamard factorization theorem

(Theorem 6.13),

sinπz = πz

∞

n=1


1− z2

n2


.

Using this, we have

π · cosπz
sinπz

= (log(sinπz))′ =


log


πz

∞

n=1

n2 − z2

n2

′

=
1

z
+

∞

n=1


1

z − n
+

1

z + n


.

Applying the Euler identity (Proposition 7.18), it turns out to be

π · cosπz
sinπz

= π · (eiπz + e−iπz)/2

(eiπz − e−iπz)/2i
= πi · q + 1

q − 1
= πi+

2πi

q − 1
,

where q = qz = e2πiz (for z ∈ H we have |q| < 1). Thus, whenever z ∈ H,

πi+
2πi

q − 1
= πi− 2πi

∞

ν=0

qν .

In conclusion, the formula we need is read as

1

z
+

∞

n=1


1

z − n
+

1

z + n


= πi− 2πi

∞

ν=0

qν .

Taking derivatives with respect to z, it becomes

− 1

z2
−

∞

n=1


1

(z − n)2
+

1

(z + n)2



= −


n∈Z

1

(z − n)2
= −2πi

∞

ν=0

νqν−1(2πi)q = −(2πi)2
∞

ν=0

νqν .

One may repeat the same operation recursively, and by induction,

(∗) (−1)k−1 · (k − 1)! ·


n∈Z

1

(τ − n)k
= −

∞

ν=1

(2πi)kνk−1qν , k ∈ Z>0.

Remark 10.16. The same result in (∗) can be obtained by applying the Poisson summation

formula (Theorem 5.9) to f(z) = 1/(z + τ)k for τ ∈ H (see [SS10, Chapter 4, Exercise 7]).
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Now we are ready to get the expansion for E2k(τ):

E2k(τ) =


(m,n) ∕=(0,0)

1

(mτ + n)2k

=


m=0,n ∕=0

1

n2k
+



m ∕=0



n∈Z

1

(mτ + n)2k

= 2ζ(2k) + 2

∞

m=1



n∈Z

1

(mτ + n)2k

= 2ζ(2k) + 2

∞

m=1

∞

ν=1

(2πi)2k · ν2k+1

(2k − 1)!
qνmτ

= 2ζ(2k) + 2

∞

m=1

∞

ν=1

(2πi)2k · ν2k+1

(2k − 1)!
qmν
τ ,

where qz = e2πiz and the second last equality is deduced from (∗). This is the q-expansion

for Eisenstein series. Denote σk(n) =


d|n d
k in which the sum runs through all positive

divisors for n. Then the expansion formula can be rewritten as

E2k(τ) = 2ζ(2k) + 2
(2πi)2k

(2k − 1)!

∞

n=1

σ2k−1(n)e
2πinτ .

10.3. Arithmetic properties of elliptic curves.

10.3.1. The modular function. Let’s begin with the setups. The modular group is a discrete

subgroup of SL2(R) defined by

Γ = SL2(Z) =


a b

c d


∈ GL2(Z) : det = ad− bc = 1


.

Recall that SL2(R) has an action on H. More explicitly, for z ∈ H and α ∈ SL2(R), we define

α(z) :=
az + b

cz + d
, Imα(z) =

(ad− bc) Im(z)

|cz + d|2 =
Im(z)

|cz + d|2 .

Also recall that the automorphism group for the upper-half plane is

Aut(H) = PSL2(R) = SL2(R)/{±1}.

Definitions 10.17 (Fundamental domain).

(1) An orbit of Γ is defined as Γ.z = {α(z) : α ∈ Γ} for a fixed z ∈ H.

(2) A subset D ⊂ H is called a fundamental domain for Γ = SL2(Z) if every orbit of Γ has

at least one element in D, and any two elements of D are in the same orbit if and only

if they lie on the boundary of D.

In short, a fundamental domain of H for Γ can be regarded as a domain that generates H via

the action of Γ.

Proposition 10.18. The discrete modular group Γ = SL2(Z) is generated by

T =


1 1

0 1


, S =


0 −1

1 0


.

In other words, every α ∈ SL2(Z) can be written as TmSn or SmTn for some (m,n) ∈ Z2.

Furthermore, the following picture describes the action of T and S on H from the fundamental

domain D = I2.
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I2 T T 2T−1T−2

TS T 2SST−1ST−2S

0 1 2−1−2

T−1STS T−1ST T 2STTST−1TSTST−1STS ST

Theorem 10.19. The subset

D =


z ∈ H : |Re(z)|  1

2
, |z|  1



is a fundamental domain for Γ. Moreover, if z, z′ ∈ D are in the same orbit of Γ (i.e., z′ = α(z)

for some α ∈ Γ), then either α = T±1 or α = S±1.

• For the case α = T±1, the points z and z′ are on the vertical lines of ∂D. The action

is given by the horizontal translation

T (z) =
z + 1

0 + 1
= z + 1.

• For the case α = S±1, the points z and z′ are on the base arc of ∂D. The action is

given by the reflection with respect to the vertical axis

S(z) =
0 + (−1)

z + 0
= −1

z
.

1−1 1/2−1/2

z′z D

z′z

10.3.2. Automorphic functions of degree 2k. For a real number B > 0, we define the truncated

upper-half plane by

HB = {z ∈ C : Im(z) > B} ⊂ H.

The map z → e2πiz = qz gives a holomorphic mapping from HB to D∗(0, e−2πB) := {z ∈ C :

0 < |z| < e−2πB}. Consider HB/〈T 〉, the quotient space of HB modulo translations by integers,

i.e., z1 ∼ z2 if z1 = z2 +m for some m ∈ Z in HB .
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iB 1 + iB
Im(z) = B

∼
qz = e2πiz

Remark 10.20. If a meromorphic function f on HB has period 1, i.e., f(z + 1) = f(z) for all

z ∈ HB , then f descends to a function f∗ on D∗(0, e−2πB), where f∗(qz) := f(z).

Definition 10.21. The function f is called meromorphic (resp. holomorphic) at ∞ if f∗ defined

as in Remark 10.20 above is meromorphic (resp. holomorphic) at 0.

Definition 10.22 (The SL2(Z)-action). Let f be a meromorphic function on H and α ∈ Γ =

SL2(Z). For fixed integer k  0, define

(Tk(α)f)(z) := f(α(z)) · (cz + d)−2k = f


az + b

cz + d


(cz + d)−2k, α =


a b

c d


.

Definition 10.23 (Automorphic forms). A function f ∈ m(H) is called an automorphic form

of weight 2k with respect to Γ if

(1) for any α ∈ Γ, we have Tk(α)f = f ;

(2) f is meromorphic at ∞.

Example 10.24. There exists an one-to-one correspondence:





Functions G : L → C of lattices which

are homogeneous with deg = −2k,

i.e. G(λL) = λ−2kG(L), λ ∈ C\{0}





←→


Functions g : H → C satisfying that

g(α(z)) = (cz + d)2kg(z) for all α ∈ Γ



G(L) g(z) := G([z, 1])

G([τ, 1]) = g(τ) g(z)

In particular, the Eisenstein series

E2k(L) =


ω∈L∗

1

ω2k

gives an automorphic function.

11. Jacobi’s theta functions

This section is devoted to a closer look at the theory of theta functions and some of its

applications to combinatorics and number theory. The theta function of Jacobi is given by the

series

Θ(z|τ) =
∞

n=−∞
eπin

2τe2πinz

which converges for all z ∈ C and τ ∈ H.

A remarkable feature of the theta function is its dual nature. When viewed as a function of z,

we see it in the arena of elliptic functions, since Θ is periodic with period 1 and “quasi-period”

τ . When considered as a function of τ , Θ reveals its modular nature and close connection with

the partition function and the problem of representation of integers as sums of squares.

The two main tools allowing us to exploit these links are the triple-product for Θ and its

transformation law. Once we have proved these theorems, we give a brief introduction to the

connection with partitions, and then pass to proofs of the celebrated theorems about represen-

tation of integers as sums of two or four squares.
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11.1. The triple product formula. We begin our closer look at Θ as a function of z, with τ

fixed, by recording its basic structural properties, which to a large extent characterize it.

11.1.1. Basic statements.

Proposition 11.1. The theta function Θ(z|τ) =
∞

n=−∞ eπin
2τe2πinz enjoys the following

properties.

(1) For τ ∈ H fixed, Θ(z|τ) is entire with respect to z; for z ∈ C fixed, Θ(z|τ) is holomorphic

with respect to τ .

(2) Θ(·|τ) is periodic with period 1, that is,

Θ(z + 1|τ) = Θ(z|τ).

(3) Θ(·|τ) is quasi-periodic with period τ , that is,

Θ(z + τ |τ) = Θ(z|τ) · e−πiτ · e−2πiz.

(4) Θ(z|τ) = 0 whenever z = (1 + τ)/2 + n+mτ for m,n ∈ Z.

Proof. (1) Assume Im(τ) = t  t0 > 0 and |z|  M . Then

|Θ(z|τ)| 


n∈Z
|eπin

2τe2πinz|  2


n0

e−πn2t0e2πnM < ∞.

(2) This is obvious since e2πin(z+1) = e2πinz.

(3) We compute

Θ(z + τ |τ) =


n∈Z
eπin

2τe2πin(z+τ)

=


n∈Z
eπi(n

2+2n)τe2πinz

=


n∈Z
eπi(n+1)2τe2πi(n+1)ze−πiτe−2πiz

= Θ(z|τ) · e−πiτ · e−2πiz.

(4) By (2)(3), it boils down to verify Θ((1 + τ)/2|τ) = 0. This is given by

Θ(
1 + τ

2
|τ) =



n∈Z
eπin

2τeπin(1+τ) =


n∈Z
(−1)neπi(n

2+n)τ .

Note that for n  0, n2 + n = (−n − 1)2 + (−n − 1) and −n − 1 has the different parity from

that of n. Thus


n∈Z
(−1)neπi(n

2+n) =


n∈Z
(−1)−n−1eπi((−n−1)2+(−n−1)) = 0.

Thus, Θ(z|τ) = 0 whenever z = (1 + τ)/2 + n+mτ for m,n ∈ Z. □

Theorem 11.2 (Jacobi’s triple product formula, 1829). For z ∈ C and τ ∈ H,



n∈Z
qn

2

e2πinz =

∞

n=1

(1− q2n)(1 + q2n−1e2πiz)(1 + q2n−1e−2πiz),

where q = eπiτ . By defining the right hand side as Π(z|τ), we write Θ(z|τ) = Π(z|τ).

Corollary 11.3. Set z = 0 in the Triple product formula, we get

Θ(τ) =


n∈Z
eπin

2τ = Θ(0|τ) =
∞

n=1

(1− q2n)(1 + q2n−1)2.

In particular, Θ(τ) ∕= 0 for any τ ∈ H (c.f. Definition 7.11).
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Proposition 11.4. For any fixed τ ∈ H, the function

(logΘ(z|τ))′′ = Θ(z|τ)Θ′′(z|τ)−Θ′(z|τ)2
Θ(z|τ)

is an elliptic function with periods 1 and τ and has double poles at z = (1 + τ)/2 +m+ nτ for

m,n ∈ Z.

Remark 11.5. There is indeed some constant cτ such that

(logΘ(z|τ))′′ = ℘(z − (1 + τ)/2; τ) + cτ .

Here ℘(z; τ) denotes the Weierstrass ℘-function defined by the lattice [τ, 1].

11.1.2. Proof of the triple product formula. The proof of Theorem 11.2 ramifies into the following

3 steps.

Step 1. We prove Π(z|τ) also satisfies properties (1)-(4) in Proposition 11.1.

(1) For τ ∈ H with Im(τ)  t0 > 0, we have

|q| = e−π Im(τ)  e−πt0 < 1,

and

|(1− q2n)(1 + q2n−1e2πiz)(1 + q2n−1e−2πiz)| = 1 +O(|q|2n−1e2π|z|).

On the other hand, the series


n∈Z |q|2n−1 converges and hence Π(z|τ) satisfies (1).
(2) This is again obvious.

(3) We compute

Π(z + τ |τ) =
∞

n=1

(1− q2n)(1 + q2n−1e2πi(z+τ))(1 + q2n−1e−2πi(z+τ))

=

∞

n=1

(1− q2n)(1 + q2n+1e2πiz)(1 + q2n−3e−2πiz)

=

∞

n=1

(1− q2n) ·
∞

n=1

(1 + q2n+1e2πiz) ·
∞

n=1

(1 + q2n−3e−2πiz)

= Π(z|τ) · 1 + q−1e−2πiz

1 + qe2πiz

= Π(z|τ) · q−1 · e−2πiz

= Π(z|τ) · e−πiτ · e−2πiz.

(4) Note that for τ ∈ H, |q|2n ∕= 1. Therefore, Π(z|τ) = 0 if and only if (1+ q2n−1e2πiz)(1+

q2n−1e−2πiz) = 0 for some n ∈ Z. This is also equivalent to z = (1 + τ)/2 + n+mτ for

m,n ∈ Z.

Step 2. For τ ∈ H fixed, consider

F (z) =
Θ(z|τ)
Π(z|τ) .

Then F (z) is holomorphic and doubly-periodic with periods 1 and τ by Step 1 (1)-(3). By

Liouville’s Theorem (Corollary 3.16),

F = c(τ)

for some constant c(τ) which is depending on τ .

Step 3. We are to prove the claim that c(τ) = 1 for any τ ∈ H. From Step 2, Θ(z|τ) = c(τ) ·
Π(z|τ). We first consider to prove an identity c(τ) = c(4τ). Set z = 1/2 in Θ(z|τ) = c(τ) ·Π(z|τ)
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to get


n∈Z
(−1)nqn

2

= c(τ)

∞

n=1

(1− q2n)(1− q2n−1)(1− q2n−1)

= c(τ)

∞

n=1

(1− qn)

∞

n=1

(1− q2n−1),

This shows that

c(τ) =


n∈Z(−1)nqn

2

∞
n=1(1− qn)(1− q2n−1)

.

Again, by setting z = 1/4, we can a similar process renders that

c(τ) =


m∈Z(−1)mq4m

2

∞
m=1(1− q4m)(1− q8m−4)

.

A comparison is enough to show c(τ) = c(4τ). By induction applying on c(τ) = c(4τ), we see

for any k  1, c(τ) = c(4kτ) for any τ ∈ H. On the other hand, as k → ∞,

q4kτ = eπi·4
kτ → 0 =⇒ c(τ) = 1.

The proof for Theorem 11.2 is accomplished.

11.2. Modular character of Θ. We still work on the modular group SL2(Z). Recall the

definition for theta functions that

Θ(z|τ) =
∞

n=−∞
eπin

2τe2πinz.

From this, the immediate consequence is

Θ(z|τ + 2) = Θ(z|T 2(τ)) = Θ(z|τ), T =


1 1

0 1


,

where T ∈ SL2(Z) is the generator for horizontal translation. Again, by Proposition 10.18,

SL2(Z) is generated by

T =


1 1

0 1


, S =


0 −1

1 0


.

The natural question is that under the action of S towards τ ∈ H, what property does the theta

function obtain.

Theorem 11.6. For τ ∈ H, we have

Θ(z|S(τ)) = Θ(z|− 1

τ
) =


τ

i
eπiτz

2

Θ(zτ |τ)

for all z ∈ C, where
√
α = |α|1/2 exp(i(argα)/2) with 0 < argα < π.

Proof. By the analytic continuation (Theorem 3.22), it suffices to check the identity for z = x ∈
R and τ = it with t > 0. For this, we obtain

LHS = Θ(x|− 1

it
) =



n∈Z
e−πn2/te2πinx,

RHS = t1/2e−πtx2 

n∈Z
e−πn2/te−2πtnx = t1/2



n∈Z
eπtht(x+n)2 .

By applying the Poisson summation formula (Theorem 5.9) to f(y) = e−πt(y+x)2 we get the

identity. □

Recall Definition 7.11 that by letting z = 0,

Θ(τ) := Θ(0|τ) =


n∈Z
eπin

2τ .
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Corollary 11.7. For all τ ∈ H,

Θ(−1

τ
) =


τ

i
Θ(τ).

On the other hand, by definition again, note that

Θ(1 + τ) =


n∈Z
eπin

2(1+τ) =


n∈Z
(−1)neπin

2τ = Θ(
1

2
|τ).

Corollary 11.8. For all τ ∈ H, as Im(τ) → ∞,

Θ(1− 1

τ
) =


τ

i
(2eπiτ/4 + · · · ) ∼


τ

i
· 2eπiτ/4.

Proof. By the equality above, plugging in −1/τ , we have

Θ(1− 1

τ
) = Θ(

1

2
|− 1

τ
).

Using Theorem 11.6, we can compute

Θ(
1

2
|− 1

τ
) =


τ

i
eπiτ/4Θ(

τ

2
|τ)

=


τ

i
eπiτ/4



n∈Z
eπin

2τeπinτ

=


τ

i



n∈Z
eπi(n+1/2)2τ

=


τ

i
(2eπiτ/4 +



n ∕=0,−1

eπi(n+1/2)2τ ).

So it remains to estimate the second term. We obtain




n ∕=0,−1

eπi(n+1/2)2τ


 2



k1

e−π(k+1/2)2t ∼ e−O(t).

Thus, the higher terms can be sufficiently small. □

11.3. Combinatoric applications on generating functions. Given a sequence {Fn}∞n=0, we

have a generating function

F (x) =

∞

n=0

Fnx
n.

The properties of this function correspond to the properties of the sequence {Fn}∞n=0, and par-

ticularly, the generating function usually has combinatoric interpretations for various sequences.

11.3.1. Partition function. Given n ∈ N, a partition of n is defined as a unordered series of

non-negative integers whose sum is exactly n. For example, by defining

P (n) := #{Partitions of n},

we have the following basic counting results.

n Partitions of n P (n)

1 1+0 1

2 1+1, 2+0 2

3 1+1+1, 2+1, 3+0 3
...

...
...
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(1) (Euler identity) The generating function for {P (n)} can be explicitly computed by the Euler

identity : for |x| < 1,
∞

n=0

P (n)xn =

∞

k=1

1

1− xk
.

To prove this, note first that

1

1− xk
=

∞

m=0

xkm = 1 +O(xk),

thus the product
∞

k=1 1/(1− xk) converges. Moreover,

∞

k=1

1

1− xk
=

∞

k=1

∞

m=0

xkm

= (1 + x+ x2 + · · · )(1 + x2 + x4 + · · · )(1 + x3 + x6 + · · · ) · · · .

Focusing on the right hand side, we are to find out the coefficients of xn for all n  0. Since

each monomial in each fact has coefficient 1, the coefficient of xn is nothing but the number

of partitions. Then

RHS =

∞

n=0

P (n)xn.

(2) (Odd partitions correspond to unequal partitions) Denote

Podd(n) = #{Partitions of n into odd integers},
Pun(n) = #{Partitions of n into unequal integers}.

The the claim is Podd(n) = Pun(n) for each n  0. The observation based on understanding

the Euler identity in (1) is useful:

∞

n=0

Podd(n)x
n =

∞

k=1

1

1− x2k−1
,

∞

n=0

Pun(n)x
n =

∞

k=1

(1 + xk).

To show these two products are the same, we say

∞

k=1

1

1− x2k−1
=

∞
k=1(1− xk)−1

∞
k=1(1− x2k)−1

=

∞
k=1(1− x2k)∞
k=1(1− xk)

=

∞
k=1(1− xk)

∞
k=1(1 + xk)∞

k=1(1− xk)

=

∞

k=1

(1 + xk).

(3) (Euler’s Pentagonal Counting) Denote

P even
un (n) = #{Partitions of n into an even number of unequal integers},

P odd
un (n) = #{Partitions of n into an odd number of unequal integers}.

The result for Euler concerns about their difference.

P even
un (n)− P odd

un (n) =


(−1)k, if n = k(3k + 1)/2 for some k ∈ Z;
0, otherwise.
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Here n = k(3k+1)/2 is called a pentagonal number, which can be interpreted as the number

of small stones piled into a Pentagon with k as the side length. From the construction, we

have
∞

n=0

P even
un (n)− P odd

un (n)xn =

∞

n=0



n=n1+···+nr
n1,...,nr distinct

(−1)r · xn

=

∞

n=1

(1− xn).

To prove Euler’s result, we only need to verify the following:

∞

n=1

(1− xn) =


k∈Z
(−1)kxk(3k+1)/2.

Let’s recall the Triple product formula (Theorem 11.2), say



n∈Z
qn

2

e2πinz =

∞

n=1

(1− q2n)(1 + q2n−1e2πiz)(1 + q2n−1e−2πiz).

For convenience we set τ = 3u and z = (1 + u)/2. It turns out to be


n∈Z
e3πin

2u · (−1)neπinu =


n∈Z
(−1)neπin(3n+1)u

=

∞

n=1

(1− eπi(6n)u)(1− eπi(6n−2)u)(1− eπi(6n−4)u)

=

∞

n=1

(1− e2πinu).

The required result follows from simply replacing e2πiu by x.

11.3.2. Sums of squares. The second example is about the famous problem on how to decompose

an integer into the sum of two squares. This is an application of the theta function on analytic

number theory.

Given n ∈ N, denote

rk(n) := #{n : there exist x1, . . . , xk ∈ N such that n = x2
1 + · · ·+ x2

k}.

The most impressive result on counting the number of two-squares is as follows. Denote

d1(n) = #{Divisors of n of the form 4k + 1},
d3(n) = #{Divisors of n of the form 4k + 3}.

Theorem 11.9 (Two-square theorem).

r2(n) = 4(d1(n)− d3(n)).

Note that Θ(τ) = Θ(0|τ) =


n∈Z e
πin2τ =


n∈Z q

n2

. Then

Θ(τ)2 =


n1∈Z
qn

2
1



n2∈Z
qn

2
2 =



(n1,n2)∈Z2

qn
2
1+n2

2 =

∞

n=0

r2(n)q
n.

Lemma 11.10. Theorem 11.9 is equivalent to the identities for τ ∈ H:

Θ(τ)2 = 2


n∈Z

1

qn + q−n
= 1 + 4

∞

n=1

qn

1 + q2n
,

where q = qτ = eπiτ .
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Proof. The following equalities hold without any assumption:

1 + 4

∞

n=1

qn

1 + q2n
= 1 + 4

∞

n=1

qn(1− q2n)

1− q4n

= 1 + 4

∞

n=1


qn

1− q4n
− q3n

1− q4n



= 1 + 4

∞

n=1

 ∞

m=0

qn(4m+1) −
∞

m=0

qn(4m+3)



= 1 + 4

∞

k=1

(d1(k)− d3(k))q
k.

The last equality is valid because d1(k) and d3(k) count the number of divisors of k that are of

the forms 4m+1 and 4m+3, respectively; and therefore,
∞

n=1

∞
m=0 q

n(4m+1) =
∞

k=1 d1(k)q
k

and similarly for d3(k). Assuming Theorem 11.9, the right hand side above is exactly Θ(τ)2. □

To prove the two-square theorem (Theorem 11.9), denote

C(τ) := 2


n∈Z

1

qn + q−n
=



n∈Z

1

cos(nπτ)
,

where q = eπiτ again, and the second equality is deduced from eπinτ + e−πinτ = 2 cos(nπτ). We

need to verify for τ ∈ H that Θ(τ)2 = C(τ).

Proposition 11.11. Denote G(τ) := Θ(τ)2 (or equivalently, G(τ) := C(τ)). Then

(1) G(τ + 2) = G(τ);

(2) G(τ) = (i/τ) ·G(−1/τ);

(3) G(τ) → 1 as Im(τ) → ∞;

(4) G(1− 1/τ) ∼ 4(τ/i) · eπiτ/2 as Im(τ) → ∞.

Proof. Note that (1)(3) follow from the definition of C(τ) at once. For (2)(4), note that

cosh(iz) = cos z =
eiz + e−iz

2
.

Recall that in Example 5.11 (c.f. Example 4.11), we have used the Poisson summation formula

(Theorem 5.9) to f(x) = e−2πixa/ cosh(πx/t) with a ∈ R and t > 0, in order to get



n∈Z
f(n) =



n∈Z

e−2πian

cosh(πn/t)
=



n∈Z

t

cosh(π(n+ a)t)
=



n∈Z

f(n).

In particular, if we set a = 0, then


n∈Z

1

cosh(πn/t)
=



n∈Z

t

cosh(πnt)
.

Therefore, via the variable change τ = it with t > 0,

C(τ) =


n∈Z

1

cos(πnit)
=



n∈Z

1

cosh(πnt)

= t−1


n∈Z

1

cosh(πn/t)

=
i

it
C


− 1

it


=

i

τ
C


−1

τ


.

By the analytic continuation (Theorem 3.22), the formula in (2) holds for all τ ∈ H. Again, by

setting a = 1/2, we get (4) through the same argument. □

Proposition 11.12. Let f ∈ O(H) and assume that
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◦ f(τ + 2) = f(τ) for all τ ∈ H;

◦ f(−1/τ) = f(τ) for all τ ∈ H;

◦ f(τ) is bounded.

Then f is a constant.

Proof. Assume f is not a constant for the sake of contradiction. Denote the basic actions from

SL2(Z) by

T2 : τ −→ τ + 2, S : τ −→ −1

τ
.

Consider G = 〈T2, S〉, the group generated by T2 and S.

Claim 1: when G acts on H,

F = {τ ∈ H : |Re(τ)|  1, |τ |  1}

is a fundamental domain.

Setting z = eπiτ , the function f1(z) := f(τ) is a well-defined holomorphic function on D∗ =

{z ∈ C : 0 < |z| < 1} as f(τ +2) = f(τ). Moreover, f1 is bounded as well as f is. Consequently,

f1 extends holomorphically from D∗ to D, i.e. the limit

f1(0) = lim
z→0

f1(z) = lim
Im(τ)→∞

f(τ)

is well-defined. Applying the maximum principle (Proposition 4.27) to f1, on the open connected

region Ω = {z ∈ C : |Re(z)| < 1, |z| > 1}, we attain

lim
Im(τ)→∞

|f(τ)| < sup
τ∈F

|f(τ)|.

Claim 2: the limit limIm(τ)→∞ f(1− 1/τ) exists and

lim
Im(τ)→∞

f(1−
1

τ
)

 < sup
τ∈F

|f(τ)|.

For the second claim, set F (τ) = f(1− 1
τ ), then F is periodic of period 1. Let

µ(τ) =
1

1− τ
, µ−1(τ) = 1− 1

τ
, T (τ) = τ + 1.

Then for any n ∈ Z,
f(µ−1 ◦ Tn ◦ µ(τ)) = f(τ).

Therefore, the function F (τ) = f(µ−1(τ)) satisfies

F (Tnτ) = F (τ)

for all n ∈ Z. In particular, F (τ + 1) = F (τ) and therefore

f2(z) := F (τ), z = e2πiτ

is a well-defined holomorphic function on D∗, which is bounded since f is bounded. Thus,

f2 extends to D by Riemann extension (Theorem 4.12). Again, apply the maximum principle

(Proposition 4.27) to f2,

lim
Im(τ)→∞

f(1−
1

τ
)

 < sup
τ∈F

|f(τ)|.

Then f attains its maximum at some point z0 ∈ H, contradicting with the assumption that f

is not a constant. Therefore, f must be a constant. □

Now the proof of the two-square theorem is easy to catch.

Proof of Theorem 11.9. By applying Proposition 11.12 to C(τ)/Θ(τ)2, it must be a constant.

The conditions of the proposition are satisfied by Proposition 11.11. Again, it can be shown

that the constant value is 1. □
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