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Recently, Ben-Zvi–Sakellaridis–Venkatesh proposed a duality in the relative Langlands pro-
gram [BZSV], in which the main player is a class of Hamiltonian G-varieties M called hyper-
spherical varieties. These are the expanded notes based on two seminar talks about the structure
theory of their new proposal.

We try to first introduce the motivations of their work and then describe the connection
between symplectic geometry and representation theory at an explicit level. The notes also con-
tain a vague discussion on certain technicalities for the cornerstone theory of relative Langlands
duality. We primarily focus on providing a refined overview of the background, as an addendum
of their paper, but it may result in a lack of rigor.

The main references besides [BZSV] are [Gan23, §9–§13], [BZ23, §11–§17], and [GW23, §1–
§6]. As for more backgrounds of [BZSV] beyond the present notes, [GW09, GN10, Zhu17,
Zhu18, BZCHN23] are particularly recommended. We claim responsibility for all mistakes while
disclaiming any originality.
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1. Motivations

1.1. Background on periods and L-functions. Over a global field F , let G be a reductive
group containing a subgroup H. Denote [H] = H(F )\H(AF ) ⊂ G(F )\G(AF ) = [G] the locally
symmetric spaces as automorphic quotients. A fundamental question in the automorphy theory
is to study the H-period integral. More precisely, let π be a (tempered) cuspidal automorphic
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2 SEMINAR ON RELATIVE LANGLANDS DUALITY

representation of G(AF ) and define the period for any ϕ ∈ π as the integral

PH(ϕ) :=

󰁝

[H]

ϕ(h) dh.

Some of the central themes of the (relative) Langlands program are as follows:
(a) Characterize the nonvanishing of certain automorphic periods PH(ϕ).
(b) Whenever PH(ϕ) ∕= 0, relate it to certain (special value of) L-function.

There is a corresponding problem of (a) at the local level, called the H-distinction problem:
(Dist) Classify irreducible smooth representations of G which possess nonzero H-invariant pe-

riods.
Our first goal of this introductory section is to explain why hyperspherical variety of [BZSV] is
the natural object to investigate when we aim to attack both (a) and (b). To begin with (b), the
notion of spherical varieties arises from trying to construct a generic recipe of understanding
when a subgroup H leads to a useful period. Moreover, to integrate the considerations of (a)
and (b) into a unified problem, drawing inspiration from the historical work of others, [BZSV]
establishes the concept of hyperspherical varieties. In a sequel, hyperspherical varieties serve as
the key object in addressing local problems around (Dist).

Given a representation V of G∨, one can associate it an automorphic L-function L(π, V, s)

with the variable s ∈ C by considering the characteristic polynomials of conjugacy classes in
G∨ that act on V. Since the G∨-conjugacy classes carry the information of Hecke eigenvalues
(which further correspond to conjugacy classes of V∨), it can be reasonable to match L(π, V, s)

with L(ρ, V, s), the L-function for a Galois representation ρ depending on V.
Conjecturally, at the global level, the classical Langlands correspondence asserts the following

picture, in which the automorphic L-function L(π, V, s) serves an intermediate role, linking up
the automorphic period PH(ϕ) and (the special value of) the Galois L-function L(ρ, V, s).

(Automorphic side) (Galois side)

Automorphic periods PH(ϕ) Galois L-functions L(ρ, V, s)

Data on [H] ⊂ [G] Data on V

Data on G Data on G∨

≈ ≈

Question 1.1. Is there a conjectural correspondence between data on G and data on G∨, realizing
the classical Langlands correspondence at a certain restricted level? How do we describe the
objects carrying the information about G or G∨?

Here comes the spoiler:
In [BZSV], we can enlarge the (global) correspondence between PH(ϕ) and
L(ρ, V, s) to that between hyperspherical Hamiltonian G-varieties and hyper-
spherical Hamiltonian G∨-varieties. The rigorous correspondence is realized
via the automorphic quantization and the spectral quantization on both sides
respectively.

Rather, before explaining such a rough answer to Question 1.1, note that there can be many
explicit evidences of the correspondence between automorphic periods and Galois L-functions.

Example 1.2 (Waldspurger formula and Whittaker period formula).
(1) Let E be a quadratic extension of the number field F . Take

H = ResE/F Gm ⊂ PGL2 = G
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as reductive groups over F , where ResE/F denotes the Weil restriction of scalar. It turns
out that H is the maximal torus in G. Morally, Waldspurger [Wal85] proved the formula

PH(ϕ)
2 ∼ L(πE , 1/2),

up to some local factors. Here L(πE , s) stands for the standard L-function of the base-
change πE of π to PGL2,E .

(2) Let F be a number field. Set G = 󰁩SL2 and thus G(AF ) is the two-fold metaplectic cover
of SL2(AF ). In SL2, take the subgroup N =

󰀋󰀃
1 ∗
0 1

󰀄󰀌
and let H = Hχ be the subgroup

of matrices in N twisted by some fixed character χ of F\AF . Then for the cuspidal
automorphic representation π of G(AF ), the global Whittaker period is written as

PH(ϕ) =

󰁝

[H]

ϕ(h) dh =

󰁝

F\AF

ϕ
󰀃
1 h
0 1

󰀄
· χ(h) dh

for any ϕ ∈ π. Roughly, up to some local factors, the Whittaker period formula dictates
that

PH(ϕ)
□ ∼ L(π, 1/2),

where the “doubling period” PH(ϕ)
□ resembles PH(ϕ)

2 in terms of (1). This formula
(cf. [Qiu13]) on metaplectic SL2 generalizes (1), relating the Fourier coefficients of
half-integral-weight modular forms to the central L-values of integral-weight modular
forms.

Innocently, since we are able to define the period for each pair [H] ⊂ [G], it seems ad hoc
when we opt for specific periods only in terms of Example 1.2. However, people are primarily
interested in certain nice periods in the sense that their (conjectural) corresponding L-functions
have nice analytic properties, such as admitting a decomposition of the Euler product. Also,
we may expect conversely a general principle that nice properties of L-functions come from
realizations as periods. This is why we care about which period to be realized.

1.2. Multiplicity-freeness and spherical varieties. To attack the H-distinction problem
(Dist), one may naturally consider first decomposing an automorphic representation of G after
restricting to H, and then detecting the properties of H-invariant periods defined by those
restricted subrepresentations. But when we work with infinite-dimensional representations of
G, such a process hardly makes sense. Fortunately, the meaning of the first step, namely
decomposing restricted representations of G, can be assigned in a precise way, by using the
Plancherel decomposition for unitary representations of G restricted to H. Such a phenomenon
is called the branching law.

The local Gan–Gross–Prasad conjecture, which is a theorem now, considers such branching
laws for certain pairs (G,H) of classical groups over a local field F . We choose one situation to
depict with more details as follows.

Example 1.3 (Multiplicity one property). Let Π and π be irreducible admissible automorphic
representations of SOn+1(F ) and SOn(F ), respectively. The question of interest for Gan–Gross–
Prasad is the understanding of

HomSOn(F )(Π,π) ∼= HomSOn(F )(Π⊗ π∨,C)
∼= HomSOn+1(F )×SOn(F )(S(X),Π∨ ⊗ π),

where X = SOn(F )\(SOn+1(F ) × SOn(F )). In the context of H-distinction problem (Dist),
note that π appears in Π if and only if HomSOn(F )(Π,π) ∕= 0. For this, historically, the first
important result proved is the multiplicity one property (cf. [AGRS10, SZ12])

mult(Π,π) := dimF HomSOn(F )(Π,π) 󰃑 1.

Before the full multiplicity one theorem was proved, even finite dimensionality of the multiplicity
spaces was not known, which were later answered in greater generality by Sakellaridis–Venkatesh
[SV17].
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Motivated by Example 1.3, we make the definition of multiplicity-free property. Recall first
that a homogeneous G-space is of the form H\G; it is naturally equipped with the G-variety
structure whenever G is an algebraic variety.

Definition 1.4 (Spherical varieties). A homogeneous G-variety X = H\G is called a spherical
variety if it satisfies the multiplicity-free condition, i.e., any irreducible character of H appearing
in some irreducible representation of G has multiplicity at most 1.

Write B for the Borel subgroup of G and X(T)+ for the group of dominant characters with
respect to B. Then the multiplicity-free condition in Definition 1.4 is equivalent to the following:

⋄ For each λ ∈ X(T)+, the coordinate ring F[X], as a G-module, satisfies

multλ(F[X]) := dimF HomG(F[X](λ),F[X]) 󰃑 1,

where F[X](λ) is the simple G-module of the highest weight λ.

Remark 1.5. A priori people define an arbitrary G-variety X to be spherical if the Borel subgroup
B ⊂ G has an orbit as an open subvariety of X; or alternatively, say X has finitely many B-orbits.
These alternative descriptions can be equivalent to the multiplicity-free condition whenever X

is a homogeneous space.

1.3. Theta correspondence and Adams’ conjecture. Our goal of this subsection is to claim
that:

The relative Langlands duality in [BZSV], using the quantization, encompasses
theta correspondence (or the Howe duality) and Adams’ conjecture, which are
results in the style of local-global compatibility.

Such an idea is enlightened by Wee Teck Gan’s CUHK talk in 2023.
Respectively, let V and W be a quadratic space and a symplectic space over a global field F .

We will see in §2.2.3 that there is a family of Weil representations of O(V )× Sp(W ), written as
{ΩV,W,ψ} and characterized by global characters ψ : F\AF → S1. Since there is a natural map

iV,W : O(V )× Sp(W ) −→ Sp(V ⊗W ),

one may expect to pullback a certain representation from Sp(V ⊗ W ) along iV,W to realize
ΩV,W,ψ. However, such a pullback is exclusively available from Mp(V ⊗ W ), the metaplectic
cover of Sp(V ⊗W ), which is still seen as a craggy enigma so far. Considering C([O(V )×Sp(W )]),
the space of smooth functions on the automorphic quotient, there would be an equivariant map

ΩV,W,ψ
θ−→ A(Mp(V ⊗W )) −→ C([O(V )× Sp(W )])

given by the “formation of theta series” (cf. [Gan23, §3–§4]).

Construction 1.6 (Theta lifting). For each φ ∈ ΩV,W,ψ, the image of θ(φ) along the right map
above (which will be made explicit in Construction 2.10) is a function on [O(V )× Sp(W )], and
thus can be used as a kernel function to transfer functions on [O(V )] to those on [Sp(W )].

More precisely, suppose σ ⊂ Acusp(Sp(W )) is a cuspidal representation of Sp(W )(AF ). Then
for φ ∈ ΩV,W,ψ and f ∈ σ, we define

θ(φ, f)(h) :=

󰁝

[Sp(W )]

θ(φ)(gh) · f(g) dg,

for g ∈ Sp(WAF
) and dg denoting the Tamagawa measure. Then we set

Θ(σ) := 〈θ(φ, f) : φ ∈ ΩV,W,ψ, f ∈ σ〉 ⊂ A(O(V )).

This is an O(VAF
)-submodule of the space of automorphic forms on O(V ) and we call it the

global theta lifting of σ. One may also switch the positions of Sp(W ) and O(V ) to define the
global theta lifting of Acusp(O(V )) that lands in A(Sp(W )).
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The first basic property about theta lifting, according to [Gan23], is the following finiteness
result. Here we consider G = O(V )× Sp(W ) as before.

Proposition 1.7 (Finiteness, by Howe [How89] and Kudla [Kud86]). Given the notations above,
for any π ∈ Irr(O(V )) and σ ∈ Irr(Sp(W )),

(1) Θ(π) ⊂ A(Sp(W )) has finite length, and
(2) dimHomG(ΩV,W,ψ,π ⊗ σ) < ∞.

The Howe duality theorem refines the finiteness results of Proposition 1.7. It was first shown
by Howe [How89] in the archimedean case, by Waldspurger [Wal90] in the p-adic case with p ∕= 2,
and in general in [Min08, GT16, GS17].

Theorem 1.8 (Howe duality). The Weil representation ΩV,W,ψ is strongly multiplicity-free,
i.e., for any π ∈ Irr(O(V )) and σ1,σ2 ∈ Irr(Sp(W )),

(1) dimHomG(ΩV,W,ψ,π ⊗ σi) 󰃑 1, and
(2) if HomG(ΩV,W,ψ,π ⊗ σi) ∕= 0 for i = 1, 2, then σ1

∼= σ2.

On the other hand, we introduce Adams’ conjecture in another flavor. Note that for G =

O(V )× Sp(W ) we have
G∨ = O(2m)× SO(2n+ 1),

with m = dimV and n = dimW .

Conjecture 1.9 (Adams, [Ada89]). Suppose Π = π ⊗ σ ∈ Irr(G) is of Arthur type with
A-parameter ψ : W ′

F × SL2 → G∨. If Π occurs in the Weil representation ΩV,W,ψ, namely
HomG(ΩV,W,ψ,Π) ∕= 0, then there exists a spherical variety X with X∨ = O(2m), such that the
A-parameter ψ factors through X∨ × SL2 as follows:

W ′
F × SL2 G∨ O(2m) SO(2n+ 1)

X∨ × SL2 O(2n) SO(2n+ 1− 2m).

ψ
= ×

ιX

×

From the insight of Sakellaridis–Venkatesh [SV17], we can see the desired maps ιX in Adams’
conjecture are encoded by the geometry of spherical varieties (see also §3.5), which admits
a description of multiplicity-freeness appeared in Howe duality. If there were a larger context
encompassing Theorem 1.8 and Conjecture 1.9, then there would be a hidden connection between
the geometry of spherical varieties and Weil representation. In [BZSV], we consider further
hyperspherical varieties, which are spherical varieties satisfying a stronger condition. Hopefully,
the Howe duality can be understood as a phenomenon of relative Langlands duality. Moreover,
we expect that the L-parameters and A-parameters in the usual sense can be classified by the
geometry of hyperspherical Hamiltonian G-varieties.

1.4. Derived geometric Satake and Hamiltonian actions. This subsection mainly refers
to [BZ23, §11–§17]. Let G be a reductive group over an algebraically closed field F. Recall the
definition of loop group and positive loop group associated with G as

LG(R) := G(R((t))) and L+G(R) := G(R[[t]])

for a k-algebra R. Let GrG = LG/L+G be the affine Grassmannian associated with G.
Let Shv(−) be a “topological” sheaf theory on F-schemes. For examples, we can use Betti

sheaves if F = C, or D-modules if F is of characteristic 0, or étale Qℓ-sheaves for ℓ not equal
to the characteristic of F. Let e be the coefficient field of our sheaf theory, which is always
an algebraically closed field of characteristic 0. Let G∨ be the dual group over e. Recall the
geometric Satake equivalence.
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Theorem 1.10 (Geometric Satake equivalence). There is an equivalence of e-linear symmetric
monoidal categories

(PervL+G(GrG), ∗) ∼= (Rep(G∨),⊗).

The monoidal structure on PervL+G(GrG) comes from the convolution structure on

HeckeG := L+G\LG/L+G = B(L+G)×B(LG) B(L+G).

However, this does not explain the commutativity of the convolution product. It only gives a
E1-structure. To get a symmetric monoidal category, we need an E3-structure. We still need an
E2-structure. This can be seen as follows. If our base field is C, and we take Betti sheaf theory.
We have

GrG = Map((D,D∗), (BG, ∗))
where D = SpecC[[t]] and D∗ = SpecC((t)) are respectively the formal disk and the punctured
formal disk. Up to homotopy, we can rewrite this as

GrG ≃ Map((R2,R2 −D0), (BG, ∗)) = Ω2(BG) = ΩG ≃ ΩGc,

where D0 = {x ∈ R2 : |x| < 1} is the unit dick, and Gc is the compact real form of G. In fact,
the homotopy equivalence GrG ≃ ΩGc can be made to be a homeomorphism. This shows that
the affine Grassmannian is homeomorphic to a double loop space and hence naturally has a
E2-product on the underlying topological space. This is the origin of the missing E2-structure.
In the algebraic zoo, we certainly cannot use the argument above. The solution is to use the
factorization property of GrG. Basically, it allows you to vary and collapse points on a curve C

over F.
One may expect that the geometric Satake equivalence can be upgraded to an equivalence

of derived categories. This is possible, but the answer is not the naive one taking QC(BG), the
category of quasi-coherent sheaves, on the right-hand side.

Theorem 1.11 (Derived Satake equivalence). There is an equivalence of (E3-)monoidal cate-
gories

Shv(HeckeG) ∼= QC!((pt×G∨ pt)/G∨) ∼= (Sym(g∨[2])-mod)G
∨

where QC! is a modified version of QC.

We can view derived Satake equivalence as an equivalence of local line operators of the 4-
dimensional topological field theories (TFT) AG and BG∨ . For this, we shall restrict to the Betti
setting. We work with ∞-categories in the rest of the present section. Roughly a TFT is a
symmetric monoidal functor

Z : Bord□2,4 −→ C
where

• Bord□2,4 is the 2-category where objects are 2-manifolds, morphisms are bordisms between
2-manifolds (i.e. 3-manifolds with boundaries) and 2-morphisms are 2-bordisms between
2-manifolds (i.e. 4-manifolds with corners). The notation □ is certain conditions on the
bordisms (oriented, etc.).

• C is a symmetric monoidal 2-category (usually taken to be dgCatC, the (∞, 2)-category
of C-linear cocomplete stable ∞-categories).

We take C = dgCatC. Then Z(M2) is a C-linear dg-category. Monoidality of Z ensures that
Z(∅) = VectC is the category of C-vector spaces.

A meta-version of geometric Langlands should say that there is an equivalence of two TFTs

AG
∼= BG∨ ,

which will be described later.
Consider the 2-sphere S2. By definition Z(S2) is a dg-category. We can endow Z(S2) with

a natural E3-monoidal structure as follows. Consider the bordism defined by a 3-dimensional
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ball with two small balls inside removed. It can be viewed as a bordism from S2 ⊔ S2 to S2.
Thus it defines an algebra structure on S2 and the structure turns out to be E3. Hence Z(S3)

inherits a natural E3-monoidal structure. The monoidal category Z(S2) is called the category
of line operators of Z.

Given a 2-manifold M2 and a point x ∈ M2, we have an action of Z(S2) on the category
Z(M2) defined as follows. Consider the identity bordism M2 × I on M . Digging a hole at
the point (x, 1

2 ) ∈ M2 × I defines a bordism from M ⊔ S2 to M . It induces the action map
Z(S2)⊗Z(M2) → Z(M2). These actions vary locally constantly on the surface M . As a result,
we obtain an action of the factorization homology

󰁕
M2 Z(S2) on Z(M2). The factorization

homology
󰁕
M2 Z(S2) is defined as the “quotient” of

󰁑
x∈M2 Z(S2) by the relation that the

objects vary locally constantly on the surface.
Similarly, the 3-sphere S3, viewed as a bordism between empty spaces, is mapping to a

complex in VectC = EnddgCatC(VectC). It carries a natural E4-algebra structure as above. The
E4-algebra Z(S3) is called the algebra of local operators of Z. If M3 is a 3-manifold, we have
an action of

󰁕
M2 Z(S3) on Z(M3). The relation between local operators and line operators is

Z(S3) = HomZ(S2)(Z(D3),Z(D3)) = EndZ(S2)(1Z(S2)).

1.4.1. A-side. The A-side should take a Riemannian surface C to the category

AG(C) = Shv(BunG(C)).

We have AG(S
2) = Shv(BunG(P1)) ∼= Shv(HeckeG) because P2 and D ×D∗ D are “homotopic”.

It follows that the line operators on the A-side are exactly the spherical Hecke category.
Local operators for AG are given by

AG(S
3) = EndShv(HeckeG)(1) = H∗

L+G(pt) = H∗
G(pt) = Sym(h∨[−2])W .

1.4.2. B-side. The B-side can be made much more explicit. We will ignore the difference between
QC and QC! in the sequel. It should take a Riemannian surface C to the category

BG∨(C) = QC(LSG∨(C))

where LSG∨(C) is the moduli stack of G∨-local systems on C. Apply to S2. Note that S2 is
glued from two disks along a circle. Using that Maplc(S

1, BG∨) = G∨/G∨, we have

LSG∨(S2) = Maplc(pt×S1 pt, BG∨) = BG∨ ×G∨/G∨ BG∨ = (pt×G∨ pt)/G∨.

The underlying classical stack of LSG∨(S2) is simply BG. If we choose some coordinates, we
can write

(pt×G∨ pt)/G∨ = (pt×g∨ pt)/G∨ = Spec(∧•(g∨,∗[1]))/G∨.

Local operators for BG∨ are given by

BG∨(S3) = End∧•(g∨,∗[1])(C)G
∨
= Sym(g∨[−2])G

∨
= Sym(h∨[−2])W .

Therefore the local operators on the A-side and B-side are equal. Koszul duality shows that

∧•(g∨,∗[1])-mod ∼= Sym(g∨[−2])-mod.

Let C be a Riemann surface. Fix a point x ∈ C. We should have an action of (Sym(g∨[−2])-mod)G
∨

on BG∨(C). Or equivalently, the category BG∨(C) is linear over g∨,∗[2]/G∨. We first consider
the non-derived version. Restricting to a point x ∈ C, we obtain a morphism

LSG∨(C) −→ BG∨.

Hence we get a tensor action of QC(BG) on QC(LSG∨)(C). Integrating over C, we obtain an
action of

󰁕
C
QC(BG∨) on QC(LSG∨(C)). In fact, the factorization homology

󰁕
C
QC(BG∨) is

equal to QC(LSG∨(C)). The same story works for the A-side. The result is the spectral action
of QC(LSG∨(C)) on Shv(BunG(C)).

In the derived setting, we obtain an action of the factorization homology
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󰁕
C
BG∨(S2) BG∨(C).

A result of Beraldo shows that
󰁕
C
BG∨(S2) is equal to the deformation quantization of the shifted

cotangent bundle T ∗[1]LSG∨(C). Hence the line operators detect the singular support of sheaves
on LSG∨(C).

1.4.3. Hamiltonian spaces. Symplectic geometry enters the story naturally as an En-algebra can
be viewed as a deformation quantization of a Pn-algebra, which is roughly an n-shifted Poisson
algebra if n is odd. We can view g∨,∗[2]/G∨ as a 3-shifted symplectic stack. This is because
T ∗(BG∨) = g∨,∗[−1]/G∨ is a symplectic stack.

Hamiltonian spaces over G are related to boundary theories in TFTs. Let Z be a TFT, a
boundary theory is a morphism T between the trivial TFT and Z. For example, a boundary
theory for the trivial 4-dimensional TFT is equivalent to a 3-dimensional TFT. Hence T (S2)

will be a E3-algebra. On the level of cohomology, it is just a graded Poisson algebra. Hence
SpecH∗(T (S2)) is a graded Poisson variety. The Poisson product has degree −2. On the other
hand, from a graded symplectic space M (where the symplectic form has degree 2), there is a
3-dimensional TFT called the Rozansky–Witten theory associated with M .

Now consider the case that Z is not trivial. Then T (S2) is an E3-algebra in the category
Z(S2). This defines an affine morphism

Spec(T (S2)) −→ Spec(Z(S2))

compatible with Poisson products, where Spec(Z(S2)) is the 1-affine spectrum.
Apply the above discussion to the case Z = BG∨ . From a boundary theory T of BG∨ , we get

an affine morphism
M/G∨ −→ g∨,∗[2]/G∨

which is compatible with Poisson structures. This is same to a graded Hamiltonian G-space.
Conversely, from a graded Hamiltonian G∨-action on a symplectic space, we can construct a
Rozansky–Witten boundary theory for BG∨ .

2. Hamiltonian spaces and quantization

In the following, we work over an algebraically closed field F of characteristic 0. Referring to
[Gan23, §11] and [GW23], we plan to dedicate this section to revealing the hidden connection
between

Symplectic Geometry Representation Theory .?

2.1. Hamiltonian G-varieties.

2.1.1. Symplectic manifolds. In classical mechanics, the phase space of a classical system (i.e.
the moduli of all possible states of the given system) is modeled by a symplectic manifold (M,ω),
where M is a smooth variety over F and ω is a non-degenerate closed symplectic 2-form on M .
The symplectic form gives an identification

ιω : TM
∼−→ T ∗M

of tangent and cotangent bundles of M .
Denote by F(M) the space of rational F-valued functions on M . The space F∞(M) of

smooth F-valued functions on M is called the space of observables of the system. Any function
f ∈ F∞(M) gives a 1-form df . By contraction with ω we get a vector field Xf on M . The
symplectic form ω induces a Poisson bracket on F∞(M) (namely a Lie bracket which is a
derivation in each variable) via

{f1, f2} := ω(Xf1 ,Xf2),

making (F∞(M), {·, ·}) a Poisson algebra. In general, a manifold M for which F∞(M) is
equipped with a Poisson algebra structure is called a Poisson manifold. Geometrically, a Poisson
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manifold admits a foliation whose leaves are symplectic manifolds. Many constructs and results
in symplectic geometry continue to hold in the setting of Poisson manifolds and our discussion
will happen in this broader framework.

2.1.2. Moment maps and Hamiltonian G-varieties. Let M be a symplectic variety. The group
G acts on M by symplectomorphisms, i.e. the action preserves the symplectic form ω.

Definition 2.1. A moment map for M is a G-equivariant morphism

µ : M −→ g∗

satisfying the condition:
• For X ∈ g, the identity

ω(󰁨X,−) = dµX

holds, where 󰁨X is the vector field defined by differentiating the G-action on M and µX

is the function on M defined by µ composing with X : g∗ → Ga.

The condition above can be rewritten as follows:
• We have the following maps

g {Vector fields on M}

O(M)

X 󰀁→󰁨X

f 󰀁→Xf

compatible with Lie brackets or Poisson brackets. Giving a moment map is equivalent
to giving a G-equivariant lifting g → O(M) compatible with Lie brackets.

Definition 2.2. A Hamiltonian G-space is a symplectic G-variety M equipped with a G-
equivariant moment map µ : M → g∗.

Example 2.3 (Examples of Hamiltonian spaces).
(1) (Cotangent bundle). Let X be a smooth variety together with a G-action. The cotangent

bundle M = T ∗X carries a natural symplectic structure defined as follows: Let θ be
the tautological 1-form on M . Then ω = −dθ is a symplectic form on M . Then M is
naturally a Hamiltonian G-space. The moment map µ : M → g∗ is dual to the action
map g → TX.

(2) Let (V,ω) be a symplectic vector space. Take G = Sp(V ). Then V is naturally a
Hamiltonian G-space. The moment map is defined by

µ : V sp∗(V )

m (Z 󰀁→ 1
2ω(Zm,m))

for m ∈ V and Z ∈ sp(V ).
(3) (Whittaker space). Assume G is reductive. Let U be a maximal unipotent subgroup of

G. Let ψ : U → Ga be a generic additive character. Define M as the left quotient by U
of the preimage of dψ under T ∗G → u∗. It is a twist of the cotangent bundle of U\G.
As suggested by the construction, the Whittaker space captures the Whittaker models
studied in representation theory.

(4) Consider T ∗G with G× G-action via left and right multiplication (denoted by Gl × Gr).
Then T ∗G ∼= g∗ ×G with action (gl, gr) · (ξ, g) = (Ad(g−1

l )ξ, g−1
l ggr). The moment map

is
µ : g∗ × G g∗l × g∗r

(ξ, g) (−ξ,Ad(g)ξ).
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(5) (Coadjoint orbit). Let O ⊂ g∗ be a coadjoint orbit. It carries a natural Symplectic
structure defined as follows: Let ξ ∈ O be a point. There is an isomorphism TξO ∼= g/gξ
where gξ is the centralizer of ξ in g. Define a bilinear form ωξ on g by the formula

ωξ(X,Y) = ξ([X,Y]), ∀X,Y ∈ g.

Then ωξ descends to a symplectic form on g/gξ. Varying ξ along O, we obtain a non-
degenerate 2-form ωO on O which can be checked to be closed. Therefore O is naturally
a symplectic variety with G-action. The moment map for O is simply the inclusion
O ↩→ g∗.

2.1.3. Grading on Hamiltonian G-spaces. In most of the examples, the Hamiltonian spaces we
encountered admit natural gradings. Following [BZSV], we write Ggr = Gm for the multiplica-
tive group used for grading.

Definition 2.4. A Hamiltonian G-space M is graded if it is endowed with a Ggr-action commut-
ing with G-action, preserving the symplectic form ω up to square character (i.e. ω(λ ·X,λ ·Y) =

λ2ω(X,Y)), and compatible with the grading on g∗ given by scalar multiplying by square char-
acter.

Using the notation in [BZSV], if we write M∨ for the dual Hamiltonian variety of M , then
Definition 2.4 means that M is equipped with a commuting Ggr action of weight 2 on M∨ → g∗.

Example 2.5 (Graded Hamiltonian spaces). The examples in Example 2.3 can be upgraded to
graded Hamiltonian spaces as follows:

(1) The grading on M = T ∗X is given by square character acting on fibers.
(2) The grading on V is given by the usual scalar multiplying.
(3) The Whittaker space is a vector bundle over U\G. We let λ ∈ Ggr acts by the left

multiplying by λ2ρ∨
on U\G and scalar multiplying by λ2 on fibers.

2.2. Hamiltonian reduction and quantization. The upcoming context in this subsection is
mostly copied from [GW23, §3] and [Gan23, §11].

2.2.1. Hamiltonian reduction. Symplectic reduction, also known as Hamiltonian reduction à la
Marsden–Weinstein [Lan95], is constructed as the procedure that transfers the essential physi-
cal information carried by a Hamiltonian G-variety (M,ω) along the moment map µ : M → g∗,
just so the representability of M as a phase space of classical mechanic systems is preserved.
Following the convention of [BZSV], we use the notion of Hamiltonian reduction (resp. induc-
tion) instead of symplectic reduction (resp. induction) in the present notes, to emphasize the
dependence on the Hamiltonian structure (i.e., on the moment map).

The philosophy behind the construction of [BZSV] postulates that many standard opera-
tions in symplectic geometry correspond to standard operations in representation theory (see
Proposition 3.4 later for an explicit realization). We shall review two of the most pertinent
ones, say Hamiltonian reduction and Hamiltonian induction, which correspond respectively to
the formation of coinvariant spaces (or, more generally, multiplicity spaces) and induction of
representations.

Definition 2.6 (Hamiltonian reduction). Let M be a Hamiltonian G-space with moment map
µ. Let O ⊂ g∗ be a coadjoint G-orbit. The fiber product µ−1(O) = M×g∗ O inherits a G-action.
The Hamiltonian reduction is defined to be the quotient symplectic stack1

M///OG := µ−1(O)//G = M ×G
g∗ O.

The symplectic form on M///OG is inherited from M : Let ω󰂐 be the non-degenerate 2-form on
M///OG determined by the condition

p∗ω󰂐 = i∗ω − µ∗ωO,

1We only use this construction when the action is free, and hence we can take the GIT quotient.
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where p : µ−1(O) → M///OG is the projection, i : µ−1(O) → M is the inclusion, and ωO is the
symplectic form on O defined in Example 2.3 (5). Then (M///OG,ω󰂐) is a symplectic space. If
O = {0} is the trivial orbit, we abbreviate

M///G := M///{0}G.

Example 2.7. If X is a smooth G-variety, then

T ∗X///G = T ∗(X/G).

Example 2.8 (Twisted cotangent bundle). Let X be a graded G-variety. Let Ψ → X be a
G×Ggr-equivariant Ga-torsor, where G acts on Ga trivially and Ggr acts on Ga via the square
character. We get a Hamiltonian Ga-space T ∗Ψ with a moment map T ∗Ψ → g∗a. Note that the
moment map is equivariant for the trivial G×Ggr-action on g∗a. It follows that

T ∗(X,Ψ) := T ∗Ψ///{1}Ga

is a graded Hamiltonian G-space.
Apply this construction to the case X = U\G where U is a unipotent subgroup in G and

Ψ = U0\G where U0 is the kernel of a generic character ψ : U → Ga. We recover the Whittaker
bundle in Example 2.3 (3).

2.2.2. The rough idea of quantization. Recall our philosophy that associates an object from
symplectic geometry with a group representation (and vice-versa). Morally,

The (geometric) quantization is the process that arises a unitary representation
of G from an arbitrary Hamiltonian G-space M .

Namely, it is the functor

H : Sp†G(F) Vect(C)

M VM

from the (groupoid) category of finite-dimensional symplectic G-manifolds over F satisfying the
Lagrangian involution condition † (which is a specific compatibility), to the category of finite-
dimensional C-vector spaces.

More precisely, regarding (M,ω) as the phase space of classical mechanics, suppose we want to
pass to quantum mechanics. This basically means replacing M by P(VM ), the projectivization of
a Hilbert space VM associated to M . The smooth functions on P(VM ) are Hermitian operators
on VM , so we can replace F∞(M) by Herm(VM ) after the quantization process. In fact, the
quantum spectra of the classical observables F∞(M) are given by the eigenvalues of elements in
Herm(VM ).

Since M is a Hamiltonian G-space, the natural G-action on M induces a G-action via unitary
operators on VM . In a sequel, the Hilbert space VM is a unitary representation of G. The
following context is about the precise construction of VM .

2.2.3. Weil representation as quantization. We first introduce Weil representation as a heuristic
example. The rough idea is as follows. Suppose Ξ is a symplectic vector space equipped with the
symplectic form ω. Every symplectic structure on Ξ is isomorphic to one of the form Ξ = X⊕X∗.
The subspace X is not unique, and a choice of X is called a polarization. The subspaces that
give such an isomorphism are called Lagrangians, and the natural projection Ξ → X∗ along X is
a Lagrangian fibration. The Weil representation is exactly the unitary representation of Sp(Ξ)
realized on L2(X∗), which is also a quantization of the Hamiltonian Sp(Ξ)-space Ξ.

Let V be a finite-dimensional quadratic space over F, born with the quadratic form q : V → F
and associated with the symmetric bilinear form 〈v1, v2〉V := q(v1 + v2) − q(v1) − q(v2).2 Let
W be a finite-dimensional symplectic vector space over F, equipped with the symplectic form
〈·, ·〉W . Then the tensor product space Ξ = V ⊗W inherits a natural symplectic form 〈·, ·〉Ξ =

2For simplicity, we shall assume that disc(V ) is trivial in F×/F×2.
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〈·, ·〉V ⊗ 〈·, ·〉W . Since the isometry groups of V,W,Ξ are respectively O(V ), Sp(W ), Sp(Ξ), we
get a natural map

iV,W : O(V )× Sp(W ) −→ Sp(V ⊗W ) = Sp(Ξ)

and the restriction of iV,W to O(V ) or Sp(W ) is injective. The images of O(V ) and Sp(W ) along
iV,W are mutual centralizers of each other in Sp(Ξ).

Moreover, there is a unique nonlinear metaplectic double cover of Sp(Ξ), denoted by Mp‡(Ξ),
which further extends by pushing out along µ2 ↩→ S1 as follows:

1 µ2 Mp‡(Ξ) Sp(Ξ) 1

1 S1 Mp(Ξ) Sp(Ξ) 1.

It turns out that the images of O(V ) and Sp(W ) are also mutual centralizers of each other in
Mp(Ξ). The main reason for considering the metaplectic groups is that if F is a local field,
Mp(Ξ) has a finite family of distinguished smooth genuine representations, which are the Weil
representations {ωΞ,ψ}ψ. Each Weil representation in this family is parametrized by a nontrivial
additive character ψ : F → S1, with the provision that

ωΞ,ψ
∼= ωΞ,ψ′ ⇐⇒ ψ′(−) = ψ(a2 · (−)) for some a ∈ F×.

We sketch the idea of doing this:

A quantization of the Sp(W )×O(V )-Hamiltonian space Ξ = V ⊗W is exactly
a Weil representation ΩV,W,ψ, as explained in the following.

Suppose now F is the prescribed global field F . Each nontrivial adelic character ψ : F\AF →
S1 uniquely characterizes an abstract Weil representation ωψ of Mp(ΞAF

), which can be realized
on S(X∗

AF
). A basic property is that Mp(ΞAF

) splits uniquely over Sp(WF ), which allows us
to consider the space A(Mp(Ξ)) of automorphic forms on Mp(ΞAF

). As a result, it admits a
natural equivariant map

θ : S(X∗
AF

) A(Mp(Ξ))

φ
󰁛

x∗∈X∗
F

(ωψ(−)(φ))(x∗).

given by “averaging over rational points”. This map is called the formation of theta series as
the function θ(φ)(−) is the automorphic incarnation of theta functions in the classical sense.

Now given the morphism iV,W : O(V )× Sp(W ) → Sp(Ξ), we wonder whether it can be lifted
to Mp(Ξ) both locally and globally. This has to do with pulling back a Weil representation ωΞ,ψ

of Sp(Ξ) to a representation of O(V )× Sp(W ) along iV,W . The technicalities in addressing this
question are omitted and we summarize the results here:

(i) When 2 | dimF V , the desired lift, denoted by i•,•V,W , exists both locally and globally,
fitting in the pullback diagram

O(V )× Sp(W ) Mp(Ξ)

O(V )× Sp(W ) Sp(Ξ)

i•,•V,W

i◦,◦V,W

in which we write i◦,◦V,W = iV,W before the lifting.
(ii) When 2 ∤ dimF V , the morphism iV,W fails to lift on Sp(W ) rather than on O(V ), i.e.,

we exclusively have the following pullback diagram
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O(V ) Mp(Ξ)

O(V )× Sp(W ) Sp(Ξ)

i•,◦V,W

i◦,◦V,W

in which the left vertical morphism is the natural subgroup embedding.

To avoid redundant arguments, we assume 2 | dimF V from now on. Note that i•,•V,W in (i) is
uniquely characterized by the identity map of O(V ) × Sp(W ) as the pullback. However, if we
choose to twist the identity map on O(V )-component by the global character ψ : F\AF → S1,
the lift of i◦,◦V,W would not be canonical, even if the lift i◦,•V,W on Sp(W )-component is unique and
independent of ψ. If this is the case to be described, we define

i•,◦V,W,ψ : O(V ) −→ Mp(Ξ)

to be the pullback in (i), with changing the identity map on O(V ) to the twist-by-ψ map.

Remark 2.9. One can describe this splitting concretely using the Schrödinger model (cf. [Gan23,
§2.4]). Choose a symplectic polarization W = W⊕W∗ so that Ξ† = V ⊗W∗ is a maximal isotropic
subspace of Ξ = V ⊗W . According to the construction of Schrödinger models, we are in case
able to realize the Weil representation ωΞ,ψ on the space S(Ξ†) of Schwarz–Bruhat functions on
Ξ†. In this model, the action of i•,◦V,W,ψ(O(V )) is geometric:

(hφ)(−) = φ(h−1 · (−)), ∀h ∈ i•,◦V,W,ψ(O(V )), φ ∈ S(Ξ†).

Construction 2.10 (Splitting symplectic Weil representation on metaplectic cover).

(1) In the local setting, we simply construct the Weil representation

ΩV,W,ψ := ωΞ,ψ ◦ i•,•V,W,ψ

of O(V )× Sp(W ) via pulling back the Weil representation of Mp(Ξ).
(2) In the global setting, one obtains by restriction of functions an equivariant map

ΩV,W,ψ = S(Ξ†
AF

) A(Mp(Ξ)) C([O(V )× Sp(W )]),θ i•,•,∗V,W,ψ

where the target equals to the space of smooth functions on [O(V )] × [Sp(W )] =

O(VF )\O(VAF
)× Sp(WF )\Sp(WAF

).

Remark 2.11 (Anomaly, cf. [GW23, Remark 3.7]). Note that the Weil representation is not a
representation of Sp(Ξ) but of the metaplectic cover Mp(Ξ). In the language of [BZSV], this is
because Ξ has anomaly (which can be detected via Betti or étale cohomology), and anomalous
varieties are at present excluded from the expectations of the duality of hyperspherical varieties.
This phenomenon is one of the deep mysteries of nature.

2.2.4. Quantization of Hamiltonian reduction. Since there would be some natural obstruction to
quantizing the Poisson variety g∗, the strategy to determine the quantization of a Hamiltonian
reduction M///OG (cf. Definition 2.6) is to work with the space of functions. It follows from the
same philosophy in algebraic geometry that motivates us to consider sheaves on schemes.

Given the Hamiltonian G-variety (M,ω) we write H(M,ω) = (ρM , VM ) as the resulting
quantization along the functor H. Here ρM is the unitary representation landing in Herm(VM ).
Indeed, ρM is exactly the quantization of µ∗ : F∞(g∗) → F∞(M), which is the pullback of the
moment map µ : M → g∗. Consider that, under the equivariant G-actions,

F∞(M///OG) = F∞((M ×g∗ O)//G) = F∞(M ×g∗ O)G = (F∞(M)⊗F∞(g∗) F∞(O))G.

If VM///O G is the Hilbert space quantizing M///OG, then one must have Herm(VM///O G) = H(F∞(M///OG)).
Then we take the following heuristic computation (in which we have used the duality of vector
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spaces liberally):

H(F∞(M///OG)) = H((F∞(M)⊗F∞(g∗) F∞(O))G)

= (Herm(VM )⊗H(F∞(g∗)) Herm(VO))
G

= (V∗M ⊗ (VM ⊗ V∗O)G ⊗ VO)
G

= HomG(V
∗
O ⊗ VM , (VM ⊗ V∗O)G)

= Herm((VM ⊗ V∗O)G).

Hence, we arrive at the conclusion: the quantization of the Hamiltonian reduction (M×g∗ O)//G
is

H(M///OG) = (VM ⊗ V∗O)G.

This space is essentially the (dual of the) multiplicity space of the irreducible representation VO
in VM .

2.3. Theta correspondence via quantization of Hamiltonian reduction. Recall from
§1.3 that the relative Langlands duality hopefully encompasses both Howe duality (Theorem
1.8) and Adams’ conjecture (Conjecture 1.9). However, the theory of theta correspondence
does not arise from a spherical variety and so does not really fit into the framework of Adams’
conjecture. But it does not go very far from these.

We use the same notations as in §2.2.3 and copy the following context from [Gan23, §10.4,
§11.9]. Write o(V ) = LieO(V ) and pick a coadjoint orbit O ⊂ o(V )∗. This corresponds to
choosing an (irreducible) representation π of O(2m). The Hamiltonian reduction

M///OG = (M ×o(V )∗ O)//O(V )

amounts to extracting the multiplicity space of the π-isotropic component of the Weil representa-
tion ΩV,W,ψ. As one has the commuting action of Sp(W ), M///OG is a symplectic Sp(W )-variety,
whose quantization is the multiplicity space

Θ(π) = (ΩV,W,ψ ⊗ π∨)O(V ),

namely the big theta lifting of π (see Construction 1.6).

2.4. Hamiltonian induction. Let H ⊂ G be a subgroup. Hamiltonian induction will take a
Hamiltonian H-space to a Hamiltonian G-space. Under geometric quantizations, Hamiltonian
induction corresponds to the (L2-)induction of representations.

Definition 2.12 (Hamiltonian induction). Let S be a Hamiltonian H-space. The Hamiltonian
induction is defined as

h-indGH(S) := (S × T ∗G)///H.

Here T ∗G is considered as a Hamiltonian H-space via the left multiplication. The G-action on
h-indGH(S) is induced from the right multiplication on T ∗G.

We can rewrite the Hamiltonian induction as

h-indGH(S) = S ×H
h∗ T ∗G.

Using the identification T ∗G = g∗ × G from Example 2.3 (4), we can further rewrite the Hamil-
tonian induction as

h-indGH(S) = (S ×h∗ g∗)×H G

where H acts on g∗ via h : ξ 󰀁→ ad(h−1)ξ. The moment map on h-indGH(S) is induced from
g∗ ×H G → g∗. We see that h-indGH(S) is a fiber bundle over H\G.

If S is a graded Hamiltonian H-space, we can endow h-indGH(S) with a natural grading using
the diagonal action of Ggr on S × T ∗G.
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2.4.1. Frobenius reciprocity. There is a “Frobenius reciprocity” for Hamiltonian inductions, par-
allel to the usual Frobenius reciprocity in representation theory. It should take place in the
category of Hamiltonian spaces and Lagrangian correspondences. For two symplectic spaces M

and N , a Lagrangian correspondence from M to N is a correspondence

M◦ ←− L −→ N,

where M◦ is the variety M equipped with opposite symplectic form, and L ↩→ M◦ × N is a
Lagrangian subspace. The composition of two Lagrangian correspondence should be taken as
a fiber product. However, due to the issues of non-transversal intersections, we should really
consider the category of shifted symplectic spaces in the derived world. We shall not go into
this.

Let H ⊂ G be a subgroup and S be a Hamiltonian H-space. Denote L := S ×h∗ g∗. Then L

embeds into h-indGH(S) as the fiber over 0 ⊂ H\G. Note that the restriction of the symplectic
form on h-indGH(S) to L is equal to the pullback of the symplectic form on S to L. It follows (by
dimension counting) that

ιS : (h-indGH(S))
◦ ←− L −→ S

is a Lagrangian correspondence. This Lagrangian correspondence is H-equivariant and compat-
ible with the moment map in the sense that the following two compositions are equal:

L −→ h-indGH(S) −→ g∗ −→ h∗ and L −→ S −→ h∗.

Now let M be a Hamiltonian G-space with an H-equivariant Lagrangian correspondence

α : M◦ ←− L −→ S

compatible with moment maps in the above sense. Then there is a natural G-equivariant La-
grangian correspondence

β : M◦ ←− L×H G −→ h-indGH(S)
compatible with moment maps such that α = β ◦ ιS .

3. Structure theory of relative Langlands duality

We still work over F, an algebraically closed field of characteristic 0.

3.1. Hyperspherical Hamiltonian G-spaces. We need first to describe the coisotropic con-
dition before defining the hyperspherical G-varieties.

3.1.1. Coisotropicity and multiplicity-freeness.

Definition 3.1 (Coisotropicity, cf. [BZSV, §3.5.1]).
(1) A symplectic G-variety (M,ω) is coisotropic if the field F(M)G of G-invariant rational

functions on M is commutative with respect to the Poisson bracket.
(2) A G-action on the symplectic G-variety M is coisotropic if there exists an open dense

subset U ⊂ M with Gu being a coisotropic subvariety for every u ∈ U .

Lemma 3.2. A homogeneous Hamiltonian G-variety (M,ω) is coisotropic if and only if it has
a coisotropic G-action.

Proof. We use the following fact: One can check by definition of the Poisson bracket that
Definition 3.1 (1) is equivalent to

(TxM)⊥,ω := {v ∈ TxM : ω(v, Tx(Gx)) = 0} ⊂ TxM, ∀x ∈ M,

where the left-hand side is namely the orthogonal subspace of TxM with respect to ω. Working
over R without loss of generality, we define for every z ∈ g the map fz : M → R via fz(x) =

µ(x)(z), where µ : M → g∗ is the moment map. Note that given any f ∈ F(M)G, we have

{f, fz} = ω(Xf ,Xfz ) = 0, ∀z ∈ g.
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Assume M carries a coisotropic G-action, and there is thus a generic orbit Gη for some η ∈ M

being coisotropic. Therefore, for each z ∈ g and f1, f2 ∈ F(M)G, the vanishing {f1, f1,z} =

{f2, f2,z} = 0 corresponds to Xf1 ,Xf2 ∈ (TηGη)
⊥,ω ⊂ TηGη. It follows that {f1, f2}(u) =

ω(Xf1 ,Xf2)(u) = 0 as functions on M , where u ∈ U runs through the open dense subset
implicated in Definition 3.1 (2). Consequently, F(M)G is Poisson-commutative.

Conversely, assume M is a coisotropic G-variety. Given a regular point x ∈ M , there is an
open neighborhood W of Gx together with finitely many functions f1, . . . , fk ∈ F(M)G, satisfying
df1 ∧ · · · ∧ dfk ∕= 0 and

Gx = {w ∈ W : f1(w) = · · · = fk(w) = 0}.
Note that a priori Xfi ∈ (TxM)⊥,ω for each i = 1, . . . , k. On the other hand, the assumption
leads to {fi, fj} = 0, and hence Xfi ∈ TxM . Since all Xfi are independent in W , we see Gx is
a coisotropic subvariety as desired. □

Lemma 3.3. Let X be a normal G-variety. Then X is spherical if and only if F(X)B = F,
namely any B-invariant rational function on X is constant.

Proof. If X is spherical then by definition F(X)B is a multiplicity free nontrivial G-module, and
hence F(X)B = F. Conversely, we suppose that F(X)B = F. By a theorem of Rosenlicht [Gro97,
Theorem 19.5] (cf. [Gan18, Theorem 2.8]), B-orbits in general position can be separated by
B-invariant functions, that is, there exists a B-stable affine open subset U ⊂ X such that for all
x, y ∈ U with Bx ∕= By there exists f ∈ F(U)B such that f(x) ∕= 0 and f(y) = 0. On the other
hand, f must be a constant; therefore, U is a single B-orbit. This completes the proof that X

is spherical. □

Notice that the coisotropic condition in Definition 3.1 concerns dynamics on a symplectic man-
ifold. On the other hand, the multiplicity-free condition in Definition 1.4 has a representation-
theoretic flavor. It turns out that these two conditions are strongly related. The upcoming
result can serve as a specific bridge connecting symplectic geometry and representation theory.
The proof is adapted from some ingredients of [Gan18, §2].

Proposition 3.4. Suppose the homogeneous Hamiltonian G-variety (M,ω) satisfies the multiplicity-
free condition in Definition 1.4. Then M is coisotropic. In particular, if X is a spherical variety
then T ∗X is coisotropic.

Proof. Since M is a homogeneous space, it is quasi-affine, and F(M) is the fractional field of
coordinate ring F[M ]. Let f = p/q ∈ F(M)B for p, q ∈ F[M ]. We may assume p, q lie in F [M ](B),
the subspace of B-eigenfunctions. Let V be the subspace of F[M ] generated by the B-orbit of
q, then V is finite-dimensional (see [PV94, Lemma 1.4] for the detailed reason). Since it is B-
stable, Lie–Kolchin theorem (see [Spr98, Theorem 6.3.1] for example) dictates that it contains a
B-eigenvector q′. Write q′ =

󰁓
i ξi(bi.q) with ξi ∈ F and bi ∈ B. Denote p′ =

󰁓
i ξi(bi.p). Then

f = bi.f = (bi.p)/(bi.q) for all i, and hence f = p′/q′. It follows that p′ ∈ F[M ]B as well. Clearly,
p′ and q′ have the same weight, hence they are proportional because F[M ] is multiplicity-free
by assumption, and f is a constant. Therefore, F(M)B = F and the Poisson-commutativity of
F(M)G follows directly. This completes the proof. □

Remark 3.5. One may naturally expect a converse of Proposition 3.4, which implies that if M is
coisotropic then it is multiplicity-free. However, it fails to be valid in general, and the converse
result appears to be a more complicated description in [BZSV, Proposition 3.6.3], using the
language of distinguished polarization and Hamiltonian induction. In fact, M = T ∗X admits a
distinguished polarization and we have the equivalence between coisotropicity and multiplicity-
freeness for M .

Proposition 3.6. Suppose X is a smooth quasi-affine G-variety. Then X is spherical if and
only if T ∗X is coisotropic.
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Proof. The proof is suggested by Zeyu Wang. By Proposition 3.4, assuming T ∗X is coisotropic,
it suffices to prove that X is spherical. Denote µ : T ∗X → g∗ for the moment map. Fix
A ⊂ B ⊂ G to be a maximal torus and a Borel subgroup of G. Denote F(X)(B) ⊂ F(X) to
be the B-eigenfunctions. For each f ∈ F(X)(B), denote χf ∈ X∗(A) to be the corresponding
eigencharacter. Denote X∗(AX) ⊂ X∗(A) to be the sublattice generated by χf for all f ∈
F(X)(B), which defines a toric quotient A ↠ AX . Let P(X) be the stabilizer of general B-orbits
in X with its unipotent radical U(X). Write aX = LieAX , a = LieA, and u(X) = LieU(X).
Define WX to be the little Weyl group in the sense of [Kno94, §3], which is a subquotient of
the Weyl group W of G. We identify g and g∗ by means of an invariant scalar product. Choose
f1, . . . , fn ∈ F(X)(B) ⊂ F(X)U to be a transcendental basis of F(X)U/F and consider maps

An ×X◦ T ∗X g∗

T ∗X//G a∗X//WX a∗//W

s µ

χ

ϕ

in which s is defined on an open subset X◦ ⊂ X by sending ((ai), x) to
󰁓n

i=1 ai · (dfi)x/fi(x).
Our goal is to construct an open B-orbit in X. By (a variant of) [BZSV, Proposition 5.3],

the condition T ∗X being coisotropic is equivalent to that the generic fiber of χ ◦ µ contains an
open G-orbit. On the other hand, [Kno94, Lemma 3.4] dictates that the generic fiber of ϕ is
connected. Therefore, the generic fiber of ϕ is a G-orbit. Also, µ ◦ s factors through u⊥ ⊂ g∗.

Without loss of generality, we may assume that χf1 , . . . ,χfm form a basis of X∗(AX)Q for
some m 󰃑 n. It follows that the composition map Am × X → T ∗X → a∗X//WX is dominant.
Consequently, G · s(Am × X◦) is dense in T ∗X. We claim that B · s(Am × X◦) is open in
µ−1(u⊥). In fact, by our choice of P(X), fi are also eigenvectors of P(X). Therefore, we know
B · s(Am ×X◦) = P(X) · s(Am ×X◦) hence codimB · s(Am ×X◦) 󰃑 dimU(X). On the other
hand, [Kno94, Theorem 2.3] implies that U(X) acts freely on general U-orbits of X hence we
know codimµ−1(u⊥) = dimU(X). Combining these, the claim is proved.

If we replace X by X//U in the result above, we see

A · s(Am × (X◦//U)) ⊂ T ∗(X//U)

is a open subset, which implies that X//U has an open dense A-orbit. By definition, X//U is a
toric variety and therefore X is spherical. □

3.1.2. Hyperspherical G-varieties. As we have claimed before, the main player of the relative
Langlands duality is the class of Hamiltonian G-varieties over F, satisfying the hyperspherical
condition as follows.

Definition 3.7. A hyperspherical G-variety is a Hamiltonian G-variety M such that:
(i) M is smooth and affine, equipped with a grading (see Definition 2.4) via a commuting

Gm-action;
(ii) M further satisfies several technical conditions as mentioned in [BZSV, §3.5.1];
(iii) M is coisotropic (rather than multiplicity-free, cf. §3.1.1).

We emphasize that condition (iii) is the punchline of Definition 3.7. The relation between
coisotropicity and multiplicity-freeness in Proposition 3.4 and Remark 3.5 dictates that a hyper-
spherical G-variety M can be regarded as an object arising from representation theory as well
as that from symplectic geometry.

3.2. Whittaker induction. We introduce the operation of Whittaker inductions for Hamilton-
ian spaces, which are roughly “twisted Hamiltonian inductions”. Given the data of a subgroup
H ⊂ G and a homomorphism SL2 → G that commutes with H, the Whittaker induction takes
(graded) Hamiltonian H-spaces to (graded) Hamiltonian G-spaces. In the following, we introduce
several possible motivations to consider Whittaker inductions.
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⋄ The graded structure of the Hamiltonian G-space output by Hamiltonian induction is
inappropriate for the purpose of relative Langlands duality, and a modification called
shearing is thus in need. The procedure of Whittaker induction is partially defined by
the shearing.

⋄ In usual practice, a Hamiltonian H-space M is possibly identified with certain symplectic
H-representation SM ; in this case, the Whittaker induction is simply a vector bundle
over H\G.

⋄ More generally, the Tannakian duality M∨ of M conjecturally assembles all the dual
data and turns out to be a Whittaker induction of SM . Further, M∨ defines the correct
L-sheaf LM∨ as desired.

Before giving the definition of Whittaker inductions, we recall the parallel stories of Whittaker
models for representations. Fix a G-invariant perfect pairing κ on g. Let γ = {e, h, f} ⊂ g be
the sl2-triple defined by the morphism SL2 → G. Denote Mγ the centralizer of γ in G.

3.2.1. Generalized Whittaker model. Let F be a non-archimedean local field. Assume G, H are
defined over F . We write G = G(F ) and H = H(F ) for the locally compact topological groups
of F -points. Fix a nontrivial unitary character ψ : F → C×.

The Lie algebra g decomposes with respect to the adjoint h-action

g =
󰁐

j∈Z
gj .

Note that e ∈ g2 and f ∈ g−2. Write

u :=
󰁐

j>0

gj , l := g0, u :=
󰁐

j<0

gj , p :=
󰁐

j󰃍0

gj = l⊕ u.

Let P be the parabolic subgroup of G with Lie algebra p. Write P = LU for the Levi decompo-
sition corresponding to p = l⊕ u. Denote also

u+ =
󰁐

j󰃍2

gj .

It integrates to a unipotent subgroup U+ of G. We call the sl2-triple γ even if u = u+, or
equivalently all weights of g are even, or equivalently the image of −1 ∈ SL2 in G is central.

Assume γ is even. Write κf : u+ → Ga for the additive character u 󰀁→ κ(f, u), where κ :

g
∼−→ g∗ is the fixed isomorphism as before. Write U = U(F ) and U+ = U+(F ). There is a

natural character
χγ,ψ : U+ C×

exp(u) ψ(κf (u))

for all u ∈ u+(F ).

Definition 3.8 (Whittaker model). Assume γ is even. The Whittaker representation is the
induced representation

Wγ,ψ := IndGHU (χγ,ψ).

For π an irreducible smooth admissible representation of G, the Whittaker model of π is the
space

Wγ,ψ(π) := HomG(Wγ,ψ,π
∨) = HomHU (π,χγ,ψ).

If γ is not even (i.e. g ∕= 0), by sl2-theory, there would be an isomorphism g1 ∼= g−1 induced
by the ad(f)-action. It induces a H-equivariant symplectic form κ1 on g1 by the formula

κ1(x, y) = κ(ad(f)x, y) = κ(f, [x, y]).

Consider the Heisenberg group Hγ = g1×F with multiplication (x, 0)·(y, 0) = (x+y, 1
2κ1(x, y)).

There is a group homomorphism
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U Hγ

exp(v) exp(u) (v,κf (u))

αγ

where v ∈ g1 and u ∈ u+, realizing Hγ as a quotient U/U ′, where U ′ = exp(Ker(κf |u+)).
Let ωψ be the unique smooth irreducible unitary representation of Hγ with central character

ψ. Therefore U acts on ωψ via αγ . Since κ1 is stable under H-action, we get an action of 󰁨H on
ωψ, where 󰁨H is a metaplectic cover of H. For a genuine representation ρ of 󰁨H, ρ⊗ωψ descends
to a representation of HU .

Definition 3.9 (Generalized Whittaker model). Define the generalized Whittaker representation
as

Wγ,ρ,ψ := IndGHU (ρ⊗ ωψ).

For π an irreducible smooth admissible representation of G, the generalized Whittaker model of
π is the space

Wγ,ρ,ψ(π) := HomG(Wγ,ρ,ψ,π
∨) = HomHU (π, ρ⊗ ωψ).

In the even case, ωψ = χγ,ψ, and we can take ρ = 1. Then we recover the Whittaker model
in Definition 3.8.

3.2.2. Construction of Whittaker inductions.

Construction 3.10. By the discussion in the previous section, we know that the quotient vector
space u/u+ is endowed with an H-invariant symplectic form κ1. We define the Hamiltonian HU-
space (u/u+)f as follows:

• The underlying symplectic space is (u/u+,κ1).
• H acts on (u/u+)f by the adjoint action.
• U acts by translation on u/u+ = U/U+.
• The moment map for H is as in Example 2.3 (2).
• The moment map for U is the shift-by-f map

u/u+ ∼= (u/u+)
∗ ξ 󰀁→ξ+f−−−−−−→ u∗.

Now we can define the Whittaker induction.

Definition 3.11. Let S be a Hamiltonian H-space. The Whittaker induction of S via H×SL2 →
G is the Hamiltonian induction

M := h-indGHU(󰁨S),

where 󰁨S is the Hamiltonian HU-space 󰁨S := S × (u/u+)f .

Comparing with Definition 3.9, we see that the Whittaker induction corresponds precisely to
the generalized Whittaker model under geometric quantization:

◦ The Hamiltonian H-space S corresponds to the representation ρ.
◦ The Hamiltonian HU-space (u/u+)f corresponds to the Weil representation ωψ.
◦ The Hamiltonian induction corresponds to the usual induction in representation theory.

Example 3.12. Assume that S is trivial and the sl2-triple is even. We see that the Whittaker
induction is equal to

h-indGHU(∗f )

where ∗f is the trivial Hamiltonian HU-space with moment map sending the point to κf ∈
(h+ u)∗. In particular, we recover the Whittaker space in Example 2.3 (3) if H is trivial and γ

is a principal sl2.
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3.2.3. Grading on a Whittaker induction. We define the natural Ggr-action on the Whittaker in-
duction provided that the Hamiltonian H-space is graded. We can write the Whittaker induction
as

M = (S × (u/u+)f )×HU
(h+u)∗ (g∗ × G).

Let ϖ : Gm → G be the cocharacter λ 󰀁→ λh, where h ∈ g is the element in the given sl2-triple.
The Ggr-action on the Whittaker induction can be defined as follows:

• Ggr acts on S via the given grading.
• Ggr acts by scalar multiplication on (u/u+)f .
• Ggr acts on g∗ via the composition of the square character and the left coadjoint action

of ϖ on g∗.
• Ggr acts on G via left multiplication by ϖ.

One can check that this defines a grading on M . There is also a more conceptual definition of
the grading via shearing.

Definition 3.13 (Sheared Hamiltonian spaces). Let ϖ : Ggr → Aut(G) be a homomorphism,
i.e. G is a graded group. A Hamiltonian G-space M is sheared if the there is a Ggr-action on M

that is compatible with the grading on G and the moment map µ : M → g∗ is Ggr-equivariant,
where the grading on g∗ is given by the composition of the square character and the ϖ-action.

Example 3.14. We collect the following examples of sheared Hamiltonian spaces.

(1) If ϖ : Ggr → Aut(G) is trivial, then a sheared Hamiltonian G-space is equivalent to a
graded Hamiltonian G-space.

(2) Consider ∗ as a Ga-space. Let Ggr act on Ga by the square character. Define the moment
map ∗ 󰀁→ 1 ∈ g∗a. The resulting Hamiltonian Ga-space, denoted by ∗1, is sheared.

(3) Let W be a symplectic vector space. Let H = W ⋉Ga be the Heisenberg group. Let Ggr

act on W by scalar multiplication and act on Ga by the square character; this defines a
grading on H. Suppose H acts on a symplectic space W by translation. The morphism

W −→ W ⊕ g∗a
∼= W ∗ ⊕ g∗a = Lie(H)∗, x 󰀁−→ (x, 1)

defines a moment map for this action. Then W with scalar action by Ggr is a sheared
Hamiltonian H-space.

(4) Let notations be as in Section 3.2.2. By the above example, (u/u+)f is a sheared
Hamiltonian HU-space. Here the grading on H is trivial and the grading on U is defined
through the adjoint action by (λ 󰀁→ λh) : Gm → G.

(5) Assume the grading on G is given by the right adjoint action by a cocharacter ϖ : Gm →
G. Then graded Hamiltonian G-spaces are equivalent to sheared Hamiltonian G-spaces
via a twisting of gradings. Let M be a graded Hamiltonian G-space. We obtain a sheared
Hamiltonian G-space by altering the grading with the action of ϖ on M .

Now the process of Whittaker induction can be depicted as follows:

Graded Hamiltonian H-spaces Sheared Hamiltonian HU-spaces

Graded Hamiltonian G-spaces Sheared Hamiltonian G-spaces

×(u/u+)f

h-indG
HU

where the lower horizontal arrow is the inverse operation of Example 3.14 (5).

3.2.4. Vectorial cases. We will see later that all the Hyperspherical variety are Whittaker in-
duction from a symplectic H-vector space. In this case, the geometry of the Whittaker induction
is simple. It can be realized as a vector bundle over H\G.
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Lemma 3.15 (Slodowy slices). There is an isomorphism

U× (f + ge)
∼−→ f + u⊥+

via the adjoint action of U on f + ge. Here ge is the centralizer of e.

Proof. We sketch a proof of this lemma. It follows from sl2-theory that [u, f ]∩ge = 0 and the map
u → [u, f ] via x 󰀁→ [x, f ] is an isomorphism. A dimension counting shows that u⊥+ = [u, f ]⊕ ge.
Hence the action map

α : U× (f + ge) → f + u⊥+

induces an isomorphism on the tangent space at (1, f). Consider the action ρ of Gm on g

given by ρ(λ)(x) = λ2ad(λh)(x). The ρ-action stabilizes f + ge and f + u⊥+ and contracts
them to f . Let Gm acts on U via conjugation by λ 󰀁→ λh. Then α is Gm-equivariant and the
Gm-actions contracts both spaces to a point. Moreover, α induces an isomorphism on tangent
spaces at contraction points. Now it follows from a geometric result that such a map is an
isomorphism. □

3.2.5. Simplifying Whittaker induction. We note that

(S × (u/u+)f )×(h+u)∗ g∗ = {(s, x) ∈ S × g∗ : µ(s)|h = x|h, x|u+ = κf}.

The latter condition is equivalent to x ∈ f + u⊥+. If follows that

(S × (u/u+)f )×(h+u)∗ g∗ = S ×h∗ (f + u⊥+)
∼= (S ×h∗ (f + ge))× U,

where the second isomorphism is given by the Slodowy slice and is HU-equivariant. It follows
that as G-spaces, we have an isomorphism

h-indGHU(S × (u/u+)f ) ∼= (S ×h∗ (f + ge))×H G.

The morphism f + ge → h∗ is surjective with fiber isomorphic to h⊥ ∩ (f + ge). After choosing
a H× SL2-eqiuivariant splitting of g∗ → h∗, we obtain an isomorphism

S ×h∗ (f + ge) ∼= S × (h⊥ ∩ (f + ge)).

We see that there is an isomorphism

h-indGHU(󰁨S) ∼= V ×H G, V = S ⊕ (h⊥ ∩ ge)

compatible with G-actions, where the right hand side is an vector bundle over H\G. Moreover,
this isomorphism can be made to be compatible with Ggr-actions, if we endow V with the
Ggr-action as follows:

• Ggr acts by scalar multiplication on S.
• Ggr acts with weight 2 + t on the weight t part of ge.

Example 3.16. Consider the case when H and S are trivial. Assume the SL2-triple is even.
The Whittaker induction is equal to the Whittaker twisted bundle T ∗(U\G,Ψ) in Example 2.8.
By the above discussion, we see that there is an isomorphism

T ∗(U\G,Ψ) ∼= G× ge

of graded G-spaces.

3.3. The main theorem on hyperspherical structures. The upcoming main structure
theorem states that hyperspherical G-varieties always come from some Whittaker induction.

Theorem 3.17 ([BZSV, Theorem 3.6.1]). For a hyperspherical Hamiltonian G-space M , there
exist

• a reductive subgroup H of G,
• an SL2-action on G restricting to H, giving rise to a homomorphism ι : H × SL2 → G,

and
• a symplectic H-vector space S,
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such that
M ≃ (Whittaker induction of S along ι).

Proof sketch of Theorem 3.17. Recall that a Whittaker induction is roughly a “twisted Hamil-
tonian induction”. The main idea of the proof in [BZSV, §3.6] is natural —

Compare M with a Hamiltonian induction h-indGHU(󰁨S) with some symplectic
space 󰁨S by using the Lagrangian correspondence. To characterize the H-actions,
first detect the weight decomposition of TxM under G×Ggr-actions, and then
focus on the subspace of weight 1.

We sketch out the proof in a faithful guideline as follows.

Step I (Graded structure of TxM via weight decomposition). We fix a point x ∈ M and
take M0 = Gx. Note that the image of TxM0 along the extended moment map TxM → g∗ is
a subalgebra of g∗. Thus TxM0 = g/h for some subalgebra h of g, and gf = Stabg(f) ⊂ g for
each f ∈ g∗. There is a natural filtration on TxM :

0 ⊂ TxM0 ∩ (TxM0)
⊥ = gf/h ⊂ TxM0 = g/h ⊂ TxM0 + (TxM0)

⊥ = (gf/h)
⊥ ⊂ TxM.

Recall from §3.2.3 that we obtain the cocharacter ϖx : Gm → G via λ−h 󰀁→ λ, and hence Gm

acts on M by the pair (λ−h,λ) ∈ G × Ggr. Up to the choice of x, we define M+ ⊂ M as the
subscheme of points that the Gm-action contracts to x. Accordingly,

◦ The tangent space TxM+ admits a weight decomposition via the G×Ggr-action, in which
all direct summands are of positive weights (so that the notation M+ is reasonable).3

◦ There is a noncanonical isomorphism TxM+ ≃ M+ of symplectic G-schemes.

Combining these, we detect the weights of subquotients and subspaces of TxM as follows:

Sub/Subquotient-spaces gf/h g/gf TxM0 TxM/TxM0 TxM+ TxM/(gf/h)
⊥

Weights 󰃑 0 {0, 1} 󰃑 1 󰃍 1 󰃍 1 󰃍 2

Here g/gf = (g/h)/(gf/h) = (TxM0)/(gf/h). From the table we see

S := (gf/h)
⊥/TxM0

must be of weight 1. If we denote by (g/gf )1 the component of weight 1 in g/gf , then

󰁨S = S ⊕ (g/gf )1 = S ⊕ (u/u+)

is the whole subspace of weight 1 in TxM .

Step II (Using TxM to investigate M+). The goal is to prove that the following commutative
diagram is Cartesian.

M+
󰁨S

g∗ (h+ u)∗

Λ

x 󰀁−→0

µ

Here the right vertical map is the moment map for HU acting on 󰁨S and Λ is an HU ⋊ Gm-
equivariant morphism. In particular, we have an isomorphism

Υ : M+
∼−→ 󰁨S ×(h+u)∗ g∗.

For this, the following ingredients are required:

3Caution. We have TxM/TxM0 ⊂ TxM+, yet the equality possibly fails to hold. Indeed, TxM+ =

(TxM/TxM0) ⊕ (u/u+). Further, notice from the table that subspaces of TxM0 are not exclusively of non-
positive weights.



HYPERSPHERICAL HAMILTONIAN VARIETIES 23

(Λ) The starting point is the natural differential map4 Λ : M+ → TxM+, along which the
image of M+ has weight 1, and hence Λ(M+) ⊂ 󰁨S. This leads to the map Λ : M+ → 󰁨S,
which we still denote by Λ as an abuse of notation.

(µ) On the other hand, the moment map µ : M → g∗ admits a canonical lifting to TxM ,
denoted by µ󰂑 : TxM → g∗, just so µ󰂑(S) = h∗ ⊂ g∗. Also, Kerµ󰂑 = TxM

⊥
0 and

Imµ󰂑 = h⊥. Hence there is an exact sequence of vector spaces:

0 −→ TxM
⊥
0 −→ TxM

µ󰂑

−−−→ g∗ −→ g∗/h⊥ −→ 0.

(Υ) In fact, the nature of µ1 = µ|S : S → h∗ deduces that we can translate Υ to the level of
tangent spaces, written as

Υ󰂑 : TxM+ −→ Tµ1(x)(
󰁨S ×(h+u)∗ g∗) = 󰁨S ⊕ (hu)⊥.

By construction, Υ󰂑 exactly annihilates (TxM+)󰃍2, the subspace of TxM+ of weight
󰃍 2.

Note also that (TxM
⊥
0 )󰃍2 = (TxM/TxM0)

∗,󰃍2. Using this, based on (µ) and (Υ) above, one
can check

KerΥ󰂑 = (TxM+)󰃍2 = (TxM)󰃍2 = h⊥󰃍2 = (h+ u)⊥.

Step III (Trivializing the Lagrangian correspondence on M+). Since Υ is an isomorphism
by Step II, we have a Lagrangian correspondence

M◦ ←− M+ −→ 󰁨S

in the sense of §2.4.1. Applying the Hamiltonian induction from HU to G, it further induces

M◦ ϖ←−− M+ ×HU G
∼−−→ h-indGHU(󰁨S).

Again, the right morphism above is an isomorphism as Υ is an isomorphism. It remains to show
that ϖ on the left is a G-equivariant isomorphism. To complete this final step, we need:

◦ Luna’s lemma [Lun73, Lemme, p.89] (deduced from Zariski’s main theorem), asserting
that if we can check several geometric conditions (such as affineness) then ϖ is finite.

◦ The fact that #ϖ−1(m0) = 1 for each m0 ∈ M◦
0 , namely ϖ has trivial fiber on M0◦.

These imply that ϖ is a finite étale morphism of degree 1, and hence an isomorphism.

Now the proof is almost completed and the remaining ambiguity lies in the SL2-action on
G and the G × Ggr-action on both sides of the claimed isomorphism in Theorem 3.17. Such a
capstone argument is rather subtle just so we choose to omit it.

3.4. The converse of Theorem 3.17. We may expect the converse structure theorem of
Whittaker inductions; that is, the Whittaker induction of S along ι : H× SL2 → G in Theorem
3.17 is automatically hyperspherical. For this, it suffices to check that such a Whittaker induction
is coisotropic (or equivalently, multiplicity-free).

Proposition 3.18 (The structure of Whittaker inductions). Keep the same assumptions as
before. Let M be the Whittaker induction of S along ι as in Theorem 3.17. Then

(1) M is affine.
(2) M satisfies the technical conditions by [BZSV, §3.5.1] implied in Definition 3.7, and

hence is hyperspherical.

Proof. Note that (2) is simply a paraphrase of [BZSV, Proposition 3.6.3]. For (1), M as in
§3.2.3 can be written as (S ×h∗ (f + ge))×H G, where ge is the centralizer of e, considered as a
subspace of g∗ via κ. This requires a simplification on the Whittaker induction, see §3.2.5 (cf.
[GW23, §4.2] and [GG02, Lemma 2.1]) for more details. □

4Caution. This Λ does not equal the prescribed noncanonical isomorphism TxM+ ≃ M+.
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3.5. Remarks on relative Langlands parameters and BSZV duality. The substantials
about the homomorphism ι : H×SL2 → G in Theorem 3.17 are as follows. We introduce both the
original and the relative versions of the incarnation of Langlands parameter in various contexts.
(a) (Langlands and Arthur). Over a global field F , one will hopefully classify all discrete au-

tomorphic representations of G(AF ) anyway. If so, there is an extension of the Langlands
conjecture due to Arthur, in which a discrete automorphic representation π should have a
parameter

ιπ : LF × SL2(C) −→ LG = G∨ ⋊WQ,

where WQ is the Weil group and LF is the conjectural “Langlands sheaf” that contains huge
amounts of geometric data yet we know very little about it.

(b) (Sakellaridis–Venkatesh). Using spherical varieties, [SV17] associates to a spherical variety
X = H\G the explicit data about Langlands dual group X∨, consisting of a spherical
parameter

ιX : X∨ × SL2 −→ G∨

and a graded finite-dimensional (typically) symplectic representation VX of X∨ (cf. [Gan23,
§1]). The representation VX of X∨ is the main ingredient allowing one to form the auto-
morphic L-function which controls the relevant period. See [SV17] or [GW18, §1] for more
details.

(c) (Ben-Zvi–Sakellaridis–Venkatesh). From Theorem 3.17, we see any hyperspherical G-variety
can be determined from a finite-dimensional symplectic H-vector space S (seen as a sym-
plectic H-representation), together with the homomorphism

ι : H× SL2 −→ G

with the condition that H ⊂ ZG(ι(SL2)) being a spherical subgroup.
Note that the data in (b) and (c) above are very similar:

(ιX : X∨ × SL2 → G, VX) (ι : H× SL2 → G, S).

Indeed, the Whittaker induction of (ιX , VX) is the hyperspherical G∨-variety M∨ over C with
M = T ∗X. Such a phenomenon serves as the cornerstone of [BZSV].
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