
ON THE MOD p JACQUET–LANGLANDS CORRESPONDENCE FOR GL2

LECTURES BY YONGQUAN HU

Abstract. This lecture series by Yongquan Hu aims to cover necessary preliminaries to
understand the mod p Jacquet–Langlands correspondence for GL2 as well as some recent
progresses around it. Most of the arguments are separated into the GL2(Qp) case locally and
the quaternionic case in a global sense. The main topics are as follows: (1) Serre weights
and the construction by Breuil–Paškūnasvia deformations; (2) Gelfand–Kirillov dimension
for some representations of GL2 and its estimation; (3) Some finiteness and the local-global
compatibility via Scholze’s functor for étale p-adic cohomology of representations arising from
mod p Jacquet–Langlands correspondence.
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1. Introduction

Let L be a finite extension of Qp. We state the classical local Langlands correspondence as
follows: there is a bijection between

(i) Frobenius-semisimple Weil–Deligne representations of Gal(L/L) over C;
(ii) Irreducible admissible smooth representations of GL2(L) over C.

We also propose another family of objects, read as
(iii) Irreducible admissible smooth representations of D× over C. Here D is a quaternion

algebra with center L.
The classical local Jacquet–Langlands correspondence gives an injective map JL from (iii) to (ii)
above, which is called the Jacquet–Langlands transfer map. Moreover, the image of JL consists
of two parts:

Im JL = {discrete series}
= {supercuspidal representations} ∪ {special series}.

By fixing a field isomorphism C ≃ Qp, we may rewrite the objects above into a p-adic story.
Furthermore, by modulo p and taking the residue field Fp, it becomes to a mod p story. In this
lecture series, we focus on the mod p story and assume L = Qp.

1.1. The mod p local Langlands correspondence for GL2. Historically, the mod p local
Langlands correspondence for GL2(Qp) is known by Breuil (together with Colmez). Let F be a
sufficiently large finite extension of Fp in some fixed algebraic closure Fp. Then:

Theorem 1.1 (The mod p local Langlands correspondence for GL2, Breuil). There is a bijection
󰀫

Continuous representations of
Gal(Qp/Qp) over F of dimension 2

󰀬 󰀫
Admissible smooth representation of

GL2(Qp) over F with continuous character

󰀬

(ρ : Gal(Qp/Qp) → GL2(F)) (κ(ρ) : GL2(Qp) → GL(V )).

κ

Here V is an F-vector space, which is possibly infinite-dimensional.

Note that due to the modulo p nature of Galois representations, the ρ’s on the left-hand
side are relatively easy to classify. However, since we do not require the representations on the
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right-hand side to be irreducible, there are four possible appearances of them, say

RHS = {principal series} ∪ {characters} ∪ {special series} ∪ {supersingular representations}.

Beware that this classification is not so refined that the four classes are possibly not disjoint.
According to a big theorem of Breuil, the supersingular representations are exactly identified
with the supercuspidal representations. Moreover, we have

⋄ ρ is irreducible if and only if κ(ρ) is supercuspidal (or equivalently, supersingular).
⋄ ρ is reducible if and only if κ(ρ) equals the direct sum of two principal series, i.e.,

κ(ρ) = PS1 ⊕ PS2.
Granting these, we are able to attain a complete understanding on the GL2(Qp)-side. Later on
Breuil’s work, Colmez has constructed a “functor” from GL2(Qp)-representations to Gal(Qp/Qp)-
representations.

1.2. The local-global compatibility. We state the result proved by Emerton by beginning
with the setups. Fix an integer N 󰃍 5. Let Y (N) be the modular curve of level Γ(N). Over F,
to propose more geometric information, it is natural to consider the étale cohomology of Y (N)
as well as the direct limit

H1 := lim−→
N

H1
et(Y (N) ×Q Q,F),

equipped with the action of GQ × GL2(AQ,f ). Here for simplicity we denote Gk := Gal(k/k) the
absolute Galois group of a field k.

Let r : GQ → GL2(F) be an irreducible absolute Galois representation, which is assumed to be
odd under some mild conditions (for example, the Taylor–Wiles condition and some restricted
condition on r|GQp

).

Theorem 1.2 (The local-global compatibility, Emerton). Over the setups above, there exists a
GL2(AQ,f )-equivariant isomorphism

(∗) HomGQ(r, H1) ≃
󰁒̂

ℓ prime
π(r|GQℓ

),

where the representation π(r|GQℓ
) is the image κ(r|GQℓ

) under the mod ℓ local Langlands corre-
spondence as in Theorem 1.1.

Remark 1.3. We have to propose a modified version of Theorem 1.2 when

r|GQp
≃

󰀕
1 ∗
0 ω

󰀖
⊗ (some twist),

where ω is the mod p cyclotomic character.

1.3. The mod p Jacquet–Langlands correspondence. Let D be a quaternion algebra over
Qp with the ring of integers OD (for the valuation vD). Since D× is compact modulo its center,
with [D× : O×

DQ×
p ] = 2, the representation theory of D× mod p is transparent and easy to be

caught. In fact, any irreducible representation of D× over F has dimension 󰃑 2, which truly
looks like the local Galois representation of GQp .

Unfortunately, even though one can write down a bijection between the D×-representations
and GQp -representations due to the similitude above, this is not expected to be the correct
one. The reason lies in that we are expecting the Jacquet–Langlands correspondence to be
realized at the level of cohomology, i.e., in (∗), if we replaced the modular curve Y (N) by
some appropriate quaternionic Shimura curve S , one would similarly expect a decomposition
as (∗).1 However, the “fake correspondence” above defines π(r|GQp

) to be of infinite dimension

1Here, by an appropriate quaternionic Shimura curve S , we mean S is defined for some quaternion algebra
B over Q, such that B is ramified at p (and hence there is an isomorphisms B ⊗Q Qp ≃ D.
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(by Breuil, Diamond, and Scholze), and hence it is built by infinitely many pieces of irreducible
representations in a highly semisimple way.

However, the main difficulty lies in how to describe this representation of infinite length,
denoted as JL(ρ) = π(r|GQp

), the p-component on the right-hand side of (∗). One way is looking
at the filtration of JL(ρ) with respect to O×

D.

Definition 1.4. Let V be an admissible smooth representation of D×. The O×
D-socle of V is

the maximal semisimple subrepresentation of V .

With this definition, we can get the socle filtration of V . Moreover, in the following theorem,
the real number c is called the Gelfand–Kirillov dimension (or GK-dimension) of V , denoted
by GK dim(V ), which measures the growth rate of the dimension of this socle filtration.

Theorem 1.5. Let V be an admissible representation of D×. Let Hn = 1 + pnOD. Then there
exists a unique real number c ∈ [0, 4] such that for all n ∈ N,

dim V Hn = λ · pcn + O(p(c−1)n),

for some other real number λ > 0.

Remark 1.6. In fact, we may view V ∨ as a finitely generated module over the (non-commutative)
Iwasawa algebra

F[[O×
D]] := lim−→

n

F[[O×
D/Hn]]

and Theorem 1.5 is an analogue description of Hilbert–Kunz function.

The main theorem of our lecture is as follows.

Theorem 1.7 (Hu–Wang). Under Taylor–Wiles condition and a genericity condition,

GK dim(JL(ρ)) = 1.

Remark 1.8. Recently, Paškūnashas proved this result when r|GQp
is reducible, using Scholze’s

functor together with a result of Ludwig. However, Hu–Wang don’t use Scholze’s functor but
rather deduce some consequences.

Proof Sketch of Theorem 1.7. The following context follows the case of GL2(Qpf ), proved by
Breuil–Herzig–Hu–Morra–Schraen.

Step I. Let mD be the maximal ideal of F[[O1
D/Z1

D]]. Let π[m3
D] be the subspace annihilated

by m3
D. Note that O×

D/O1
D is equipped with a π[m3

D]-action, which is semisimple because
O×

D/O1
D ≃ F×

p2 . We introduce the following criterion:
⋄ If π[m3

D] is multiplicity-free for the F×
p2 -action, then GK dim(π) 󰃑 1.

In commutative algebra, if M is a finitely generated module over a noetherian local ring (A,m),
then the Krull dimension of M is always bounded by that of A. The upshot is that, to determine
the size of M (or the Hilbert function on Krull dim M/mnM , we observe

• the size of M/mM corresponds to the number of generators of M ;
• the size of mM/m2M corresponds to the first relation between the generators.

To understand this, one can consider the extreme example where M is cyclic, and then

Krull dim M 󰃑 dimA/mA mM/m2M,

which is bounded by the dimension of tangent space.
Now we suppose π∨ is finitely generated over the non-commutative Iwasawa algebra F[[O1

D/Z1
D]]

and grmD
(π∨) is finitely generated over grmD

(F[[O1
D/Z1

D]]). The graded part is again non-
commutative and admits an isomorphism to the universal enveloping algebra of the following
graded Lie algebra:

g = Fe ⊕ Ff ⊕ Fh.
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Here we relate the basis via h = [e, f ] and [e, h] = [f, h] = 0. More importantly,

deg e = deg f = 1, deg h = 2.

This explains why we need to proceed on the series of subspaces until π[m3
D].

Step II. We check the multiplicity-free condition in Step I above. We are require to comput-
ing the potentially crystalline Galois deformation ring of ρ. In general, this process can be done
by using Kisin’s module in (integral) p-adic Hodge theory [BHH+20]. However, in our case, the
issue lies in that a strong genericity condition is needed in addition, for example,

ρ =
󰀕

ωr1 ∗
0 1

󰀖
, 12 󰃑 r1 󰃑 p − 13.

Here, as before, ω is the mod p cyclotomic character. Despite this, we choose to rather use
Paškūnas’ technique for the two purposes:

(i) to weaken the genericity condition, and
(ii) more conceptually, to avoid the heavy and explicit computation for the rings, just so

the congruence relation is sufficient.
One should beware that Paškūnas’ technique can only be applied to 2-dimensional representa-
tions of GQp . □

1.4. Applications of Scholze’s functor. Let D be the central division algebra over the field
L of invariant 1/n. Scholze has constructed a cohomologically covariant δ-functor

Si : Modadm,sm
GLn(L)(F) Modsm

GL×D×(F)

π Fπ.

Here π is any admissible smooth F-representation of GLn(L), and Fπ is a (Weil-equivariant)
sheaf on the étale site of the adic space Pn−1

L̆
, and indeed, L̆ = Cp. Scholze proved that this

functor equals
Si : π 󰀁−→ H1

et(Pn−1
Cp

, Fπ),

and moreover, Si = 0 if i > 2(n − 1) with S0(π) = S0(πSLn(L)). In particular, when n = 2 in
the GL2-case, we get Si = 0 for all i 󰃍 3.

Due to Theorem 1.1, our expectation is that when ρ is generic, we can associate a GL2(Qp)-
representation κ(ρ) to it, and

S0(κ(ρ)) = S2(κ(ρ)) = 0,

S1(κ(ρ)) = ρ(−1) ⊗ JL(ρ).
Again, the core difficulty here is to understand the structure of JL(ρ), because the functor S1(−)
is extremely hard to compute. But besides, a result of Ludwig can be useful:

⋄ If π = PS of GL2(Qp), i.e., it is a principal series of GL2(Qp), then S2(π) = 0.

Theorem 1.9. If π is supersingular and some minor genericity condition2 is satisfied, then
S2(π) = 0.

Proof Sketch. Let F/Q be a totally real field with a fixed place p | p such that Fp ≃ Qp. Let B

be a definite quaternion algebra over F that splits at p. Let B′ be another algebra over F that
ramifies at p, splits at ∞, and has the same ramification behavior as B at other places. Thus,

B ⊗F Ap,∞
F ≃ B′ ⊗F Ap,∞

F .

We then fix an open compact subgroup outside p, say

Up ⊂ (B ⊗F Ap,∞
F )×.

2It is read as 2 󰃑 r 󰃑 p − 3, which will be explained later.
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Consider for B that

S(Up,F) = {f : B×\(B ⊗ A∞
F )×/Up → F continuous function},

equipped with an action of (B ⊗ Fp)× = GL2(Qp) by rigid translator. And consider for B′ that

H1
et(Up,F) := lim−→

Up

(X(UpUp)F ,F),

equipped with an action of GF × (B′
p)× ≃ D×, where X(UpUp) is the quaternionic modular

curve associated to B′. On these setups, Scholze has discovered the following relation

Si(S(Up,F)) ≃ H1
et(Up,F),

which can be understood as a kind of local-global compatibility. Moreover, taking T(Up) as the
Hecke algebra of Up, if r : GF → GL2(F) is a continuous absolutely irreducible representation
corresponding to the maximal ideal mr ⊂ T(Up), then

Si(S(Up,F)mr
) ≃ H1

et(Up,F)mr
,

and both sides enjoy the T(Up)mr
-actions. So the isomorphism is T(Up)mr

-equivariant.
Roughly, after taking dual module to work on finitely generated modules over the Iwasawa

algebra, we are reduced to the situation with the following setups:
• A is a (commutative) local complete noetherian ring with Krull dimension d;
• M is an A[GL2(Qp))]-module that is flat over A and finitely generated as an F[GL2(Zp)]-

module of GK-dimension d + 1;
• S1(M) = M ′, which is an A[D×]-module and finitely generated over F[D×], is again of

GK-dimension d + 1;
• S0(M) = 0 by Ihara’s lemma.

Our goal now is to show that S1(M ⊗A F) has GK-dimension 1. Easily, it can be seen that
this is equivalent to M ′ being flat over A, or alternatively, S2(M ⊗A F) = 0. To prove this
equivalence, note that A always contains a power series ring of Krull dimension d. So we may
assume A is a regular noetherian ring. The following fact is at work:

⋄ (Miracle flatness, by Gee–Newton) M ′ is flat over A if and only if GK dim(M ′⊗AF) = 1.
In Paškūnas’ theorem (c.f. Remark 1.8), i.e., when r|GQp

is reducible, the equivalent assertion
S2(M ⊗A F) = 0 holds by Ludwig’s theorem. But for us, we choose to prove GK dim(S1(M ⊗A

F)) = 1 first, and then it implies the vanishing result. □

Here comes one more result on S1(π) for non-supersingular π. Assume ρ is irreducible and
ρss = χ1 ⊕ χ2. We impulse another assumption that ρ is generic, i.e. χ1χ−1

2 /∈ {1, ω±1}. Let

ρ1 =
󰀕

χ1 ∗
0 χ2

󰀖
, ρ2 =

󰀕
χ2 ∗
0 χ2

󰀖

be two non-split residual representations. Then

S1(κ(ρi)) = ρi(−1) ⊗ JL(ρi)

for D×-representation JL(ρi) with i = 1, 2. Also, we obtain the following result.

Theorem 1.10 (Hu–Wang). We have

JL(ρ1) = JL(ρ2),

or namely, JL(ρ) depends only on the supersingular part ρss of ρ.

Moreover, a similar result holds in the case where ρss = 1 ⊕ ω.
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2. Mod p representation theory

We state first a basic result in mod p representation theory. Let F be a sufficiently large finite
extension of Fp (or simply F = Fp).

Lemma 2.1. Let H be a pro-p group and (ρ, V ) be a smooth representation of H over F. Then
V H ∕= 0.

Proof. Take v ∈ V \{0}. Then v is fixed by some open subgroup H ′ ⊂ H, and hence 〈H.v〉 is
finite-dimensional. Replacing V by 〈H.v〉, we can assume that V itself is finite-dimensional and
that H is a finite p-group. The result is then classical, proved by counting the orbits: each orbit
has cardinality 1 (being a fixed point) or a power of p, so the set of fixed points has cardinality
󰃍 p; but it is nonempty as it always contains 0. □

In particular, we get the following consequence since V H in Lemma 2.1 can be always viewed
as a subrepresentation.

Corollary 2.2. If H is a pro-p group, then the trivial representation is the unique (up to
isomorphism) irreducible smooth F-representation of H.

2.1. The 2-dimensional F-representation of GQp . Denote GQp
:= Gal(Qp/Qp), the absolute

Galois group. Let IQp be the inertia subgroup of GQp . For n 󰃍 1, let ωn : IQp → F× denote the
fundamental character of Serre of level n, defined by

ωn(g) = g(p1/(pn−1))
p1/(pn−1) ∈ µpn−1(Zp) ∼−→ µpn−1(Fp), ∀g ∈ IQp

for some choice of the (pn − 1)st root of p. If n = 1, then ω1 is just the (restriction of) mod p

cyclotomic character. It is obvious that ωpn−1
n = 1; if m | n, then

ω1+pm+p2m+···+p(n/m−1)m

n = ωm.

Moreover, any continuous character of IQp
is a power of ωn for some n (as the wild inertia Iwild

Qp

is pro-p, it acts trivially).

Lemma 2.3. (1) Serre’s fundamental character ωn can be extended to GQ
pf

if and only if
n | f .

(2) Any character of GQ
pf

has the form χωm
f for some integer 0 󰃑 m 󰃑 pf − 2 and some

unramified character χ.

Proof. To show (1), it suffices notice that the image of ωn : IQ
pf

→ F× lands in µpn−1(Fp)
via the isomorphism above, and factors through F×

pf . The assertion (2) follows from the fact
that any representation of GQp/IQp is unramified, and hence the corresponding character χ is
unramified. Also, any continuous character of IQp is of form ωm

n , where 0 󰃑 m 󰃑 pf − 2 as
ωpf −1

n = 1. □

In the upcoming context, let ρ : GQp → GL2(F) be a continuous representation. It possibly
has two different appearances.

(1) If ρ is reducible, then, clearly,

ρ ∼=
󰀕

χ1ωm1 ∗
0 χ2ωm2

󰀖
,

where χ1, χ2 are unramified characters, and mis are two integers with 0 󰃑 mi 󰃑 p − 2.
(2) If ρ is irreducible, first look at the restriction of ρ to IQp . Since Iwild

Qp
is a pro-p subgroup,

it acts trivially on ρ. The quotient

IQp/Iwild
Qp

≃
󰁜

ℓ ∕=p

Zℓ(1)
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is a prime-to-p abelian group (where the twist (1) means that the conjugation action of
Gur

Qp
on IQp/Iwild

Qp
is by cyclotomic character). So ρ|IQp

is a direct sum of two characters
χ1 ⊕ χ2. Using the action of a well-chosen Frobenius element, i.e., s ∈ GQp is a lifting
of (arithmetic) Frobenius and acts trivially on p1/(pn−1) (here n depends on χi), then
one checks

χi(sgs−1) = χi(g)p

for g ∈ IQp , so {χ1, χ2} = {χp
1, χp

2}. If χ1 = χp
1, then χ2 = χp

2 and both χ1 and χ2

extend to GQp
, a contradiction. Hence, χ1 = χp

2 and χ2 = χp
1, so χp2

1 = χ1. This
implies that χ1 has the form ωm

2 with 0 󰃑 m 󰃑 p2 − 2, and p + 1 does not divide m as
χ1 ∕= χp

1. Note that χi then extends to GQp2 , so there exists an unramified character
η : GQp2 → F× such that ωm

2 η ↩→ ρ|GQ
p2

. By Frobenius reciprocity (Proposition 2.9),
we obtain an isomorphism

IndGQp

GQ
p2

(ωm
2 η) ∼= ρ.

But the left-hand side is isomorphic to (IndGQp

GQ
p2

ωm
2 ) ⊗ µ for some unramified character

µ : GQp
→ F× which extends η.3

Lemma 2.4. (1) Any irreducible 2-dimensional representation of GQp over F is isomorphic
to

ρ(r, χ) := (IndGQp

GQ
p2

ωr+1
2 ) ⊗ χ

for some 0 󰃑 r 󰃑 p − 1 and some smooth character χ : Q×
p → F×.

(2) We have the following isomorphisms:

ρ(r, χ) ∼= ρ(r, χµ−1) ∼= ρ(p − 1 − r, χωr) ∼= ρ(p − 1 − r, χωrµ−1).

Proof. For (1), write m = m0 + (p + 1)m1 with 0 󰃑 m0 󰃑 p; as p + 1 does not divide m, we
have m0 ∕= 0. Then

IndGQp

GQ
p2

ωm
2

∼= (IndGQp

GQ
p2

ωm0
2 ) ⊗ ωm1 .

Also, (2) essentially follows from the definition. The only ambiguity lies in the technique to prove
the second isomorphism. But this is a similar argument as in the proof of Theorem 2.15. □

2.2. The GL2(Qp)-case. We write G = GL2(Qp) and B = B(Qp) the Borel subgroup. As in
the classical case, irreducible smooth representations of G falls into four classes as follows.

(1) Principal series: IndG
B(χ1 ⊗ χ2) for χ1, χ2 : Q×

p → F×. It is irreducible if and only if
χ1 = χ2 (c.f. Theorem 2.6 below).

(2) Characters: χ ◦ det, where χ : Q×
p → F× is a character.

(3) Special series: Sp ⊗ (χ ◦ det), where Sp is the quotient of IndG
B(1 ⊗ 1) by constant

functions.
(4) Supersingular representations: other irreducible ones. (avatar of supercuspidal

representations in classical situation).
Before giving the proof, we recall a useful criterion to prove irreducibility of a smooth modulo

p representation (π, V ) of G.

Lemma 2.5 (Irreducibility criterion). Let P be a pro-p subgroup of G. If for any v ∈ V P we
have V = 〈G · v〉, then V is irreducible.

Proof. Let V ′ ⊂ V be a sub-G-representation. Then V ′ contains some nonzero P -fixed vector
by Lemma 2.1. By assumption, it generates V , so we must have V ′ = V . □

3If η sends Frob2, a generator of Gal(Fp/Fp2 ), to x ∈ F, then we can take µ : GQp → F× to be the unramified
character sending Frob to a fixed root

√
x ∈ F (this may require to enlarge F).
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Theorem 2.6. (1) IndG
B χ1 ⊗ χ2 is irreducible if and only if χ1 ∕= χ2.

(2) If χ = χ1 = χ2, then there is a non-split extension

(†) 0 −→ χ ◦ det −→ IndG
B(χ ⊗ χ) −→ Sp ⊗ (χ ◦ det) −→ 0

and Sp is irreducible.

Proof. (1) Step I. Denote by I (resp. I1) the so-called Iwahori (resp. pro-p-Iwahori) subgroup

I =
󰀕
Z×

p Zp

pZp Z×
p

󰀖
, I1 =

󰀕
1 + pZp Zp

pZp 1 + pZp

󰀖
.

Then I1 is a pro-p group, and hence (IndG
B χ1 ⊗χ2)I1 is nonzero by Lemma 2.1. The Bruhat

decomposition

G = BI1 ⊔ B

󰀕
0 1
1 0

󰀖
B = BI1 ⊔ B

󰀕
0 1
p 0

󰀖
I1 = BI1 ⊔ BΠI1.

It tells us that (IndG
B(χ1 ⊗ χ2))I1 is always 2-dimensional, spanned by the two functions

f1, f2 characterized by the following properties:
Supp f1 = BI1, f2(bg) = 1,

Supp f2 = BΠI1, f2(bΠg) = 1,

for all b ∈ B and g ∈ I1. By the criterion of Lemma 2.5, we need to prove that any vector
of the form af1 + bf2 (with a, b ∈ F) can generate IndG

B(χ1 ⊗ χ2) as a G-representation.
Step II. It is easy to show that IndG

B(χ1 ⊗ χ2) is generated by f1 and so also by f2 (as
Π · f1 = f2). If h =

󰀃
a 0
0 d

󰀄
∈ I, then

h · f1 = χ1(a)χ2(d)f1,

h · f2 = χ1(d)χ2(a)f1.

So if χ1|Z×
p

∕= χ2|Z×
p

, we are done. Otherwise we need some finer analysis which we omit.
(2) Up to twist, we may assume χ is the trivial character 1. It is clear that IndG

B(1⊗1) contains
the trivial representation 1G. But the proof of the irreducibility of Sp is a little subtle. We
need to show that when taking I1-invariants, (†) induces again a short exact sequence,
namely, SpI1 is 1-dimensional, generated by the image of f1 (note that f1 + f2 ∈ 1G), so we
have f1 = −f2 in the quotient Sp. This shows that Sp is irreducible by the criterion.

□

Remark 2.7. In term of Iwahori Hecke algebra, Theorem 2.6 means that (IndG
B(χ1 ⊗ χ2))I1 is

an irreducible module over the Iwahori–Hecke algebra H(I1,1) (see Subsection 2.3 below). This
algebra is generated by elements

Π, h =
󰀕

[a] 0
0 d

󰀖
,

󰁛

λ∈Fp

󰀕
[λ] 1
1 0

󰀖
.

In fact, the results of Theorem 2.6 hold for GL2(L), where L is any non-archimedean local
field of residual characteristic p. Next, we pass to supersingular representations, which are only
classified for GL2(Qp), up to present.

2.3. Compact inductions.

Definition 2.8. If H is an open subgroup of G, and (σ, W ) is a smooth representation of H,
define c-IndG

Hσ to be the space of all locally constant functions f : G → W such that
(i) f(hg) = h · f(g) for all h ∈ H and g ∈ G;
(ii) Supp(f) is compact modulo H.
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Let G act on c-IndG
Hσ by right translation:

(gf)(g′) = f(g′g).
In this way, we get a smooth representation, but it is not admissible.

Proposition 2.9 (Frobenius reciprocity). Suppose H is an open subgroup of G. Let (π, V ) be
a smooth representation of G and (σ, W ) be a smooth representation of H. Then

HomG(c-IndG
Hσ, π) ∼= HomH(σ, π|H).

We are mainly interested in the case when
H = KZ := GL2(Zp) × Q×

p

and σ is an irreducible representation of K, viewed as a representation of KZ by letting the
p-scalar matrix acts trivially.

Lemma 2.10. Irreducible F-representations of K = GL2(Zp) are of the form Symr F2 ⊗ detm

for 0 󰃑 r 󰃑 p − 1 and 0 󰃑 m 󰃑 p − 2. If σ is such a representation, then σI1 is 1-dimensional.

Proof. First, the representation has a standard basis {XiY r−i : 0 󰃑 i 󰃑 r}, with the action of
GL2(Zp) given by 󰀕

a b

c d

󰀖
XiY r−i = (aX + cY )i(bX + dY )r−i;

so the action factors through GL2(Fp). Its I1-invariant is 1-dimensional, spanned by Xr. More-
over, Xr generates the whole representation, so by the irreducibility criterion (Lemma 2.5),
Symr F2 ⊗ detm is irreducible.

Second, let K1 denote the first principal congruence subgroup, the kernel of K ↠ GL2(Fp).
Since K1 is pro-p, it acts trivially on σ. Second, by Brauer’s theory of modular characters,
the numbers of isomorphism classes of F-representation of GL2(Fp) is equal to the number of
conjugacy classes whose order is prime-to-p; it is exactly p(p − 1). □

For simplicity, write the Iwahori–Hecke algebra as
H(σ) := H(KZ, σ),

which naturally acts on c-IndG
KZσ. If π is a smooth representation of G, then H(σ) also acts

on the vector space HomG(c-IndG
KZσ, π), which by Frobenius reciprocity 2.9 is isomorphic to

HomKZ(σ, π|KZ). Note that if π is admissible, then this space is finite-dimensional over F.

Theorem 2.11 (Barthel–Livné).
(1) We have

H(σ) ∼= F[T ],
and the action of H(σ) on c-IndG

KZσ is free.
(2) Any irreducible smooth representation π of G with a central character is a quotient of

c-IndG
KZσ

T − λ
⊗ (χ ◦ det)

for some irreducible representation σ of K, λ ∈ F, and some χ : Q×
p → F×.

(3) If π in (2) is supersingular, then λ = 0.

Proof. We only work on (2). Up to twist we may assume that
󰀃 p 0

0 p

󰀄
acts on π trivially. Let

v ∈ π be any nonzero vector. Since π is a smooth representation and K is compact, 〈K, v〉 is
finite-dimensional (c.f. Lemma 2.1). By induction on dimension of 〈K.v〉, we see that 〈K.v〉 must
contain some irreducible representation of K, say σ. We then get a KZ-equivariant injection
σ ↩→ π by assumption on the action of Z. By Frobenius reciprocity, it induces a nonzero
G-equivariant morphism

c-IndG
KZσ −→ π
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and this is further surjective because π is assumed to be irreducible.
We only prove the result under the extra assumption that π is admissible; the original proof

of Barthel–Livné, without this restriction, is more complicated. Since π is admissible, the
space HomG(c-IndG

KZσ, π) is finite-dimensional and nonzero as seen above. As H(σ) ∼= E[T ]
is commutative and F is sufficiently large (or simply you may assume F = Fp is algebraically
closed), there exists an eigenvector in HomG(c-IndG

KZσ, π), with eigenvalue λ ∈ F say. Then the
result follows. □

We set, for 0 󰃑 r 󰃑 p − 1, λ ∈ F, and χ : Q×
p → F× a character, that

π(r, λ, χ) := c-IndG
KZ Symr F2

T − λ
⊗ (χ ◦ det).

Again by Barthel–Livné, π(r, λ, χ) is always “non-supersingular” if λ ∕= 0.

Theorem 2.12 (Breuil, 2001). The representation π(r, 0, χ) is irreducible. As a consequence,
any supersingular representation of GL2(Qp), with a central character, is isomorphic to some
π(r, 0, χ).

Proof Sketch. The key lies in the following first step.
Step I. Show that the subspace of I1-invariants of (c-IndG

KZσ)/T is 2-dimensional. Precisely,
there is a natural K-equivariant embedding σ ↩→ c-IndG

KZσ (this can be obtained by Frobenius
reciprocity). Fix a nonzero vector v ∈ σI1 and set w := Π(v). Then apply Lemma 2.13 below.

Step II. Each element of ((c-IndG
KZσ)/T )I1 generates (c-IndG

KZσ)/T as a G-representation.
This is the easy part, as in the case of principal series.

Step III. Conclude by the irreducibility criterion 2.5. □

Lemma 2.13. The images of {v, w} in (c-IndG
KZσ)/T are linearly independent, and span the

subspace ((c-IndG
KZσ)/T )I1 .

Proof. We may assume χ is trivial. Write σ = Symr F2 ⊗ 1 = Symr F2, then I acts on v via a
character η which sends

󰀃
a 0
0 d

󰀄
to ar. The vector w is also fixed by I1, and I acts on w via ηs,

so we obtain by Frobenius reciprocity

IndK
I ηs −→ c-IndG

KZσ.

There is a short exact sequence

0 −→ Symr F2 ⊗ 1 −→ IndK
I ηs −→ Symp−1−r F2 ⊗ detr −→ 0.

The point is that the subrepresentation Symr F2 is exactly T (σ), thus becomes 0 in c-IndG
KZσ.

Note that Symr F2 and Symp−1−r F2 ⊗ detr are not isomorphic. It proves that

(Symr F2 ⊗ 1) ⊕ (Symp−1−r F2 ⊗ detr) ↩→ c-IndG
KZσ.

So we conclude the proof. □

Remark 2.14. The result of Theorem 2.12 is a feature of the base field Qp, which fails to be
valid when L ∕= Qp.

Theorem 2.15. We have the following isomorphisms between supersingular representations of
G, read as

π(r, 0, χ) ∼= π(r, 0, χµ−1) ∼= π(p − 1 − r, 0, χωr) ∼= π(p − 1 − r, 0, χωrµ−1).

And these are all the descriptions of π(r, 0, χ).

Proof. We may assume χ = 1. The first isomorphism is clear, coming from

c-IndG
KZσ ∼= (µ−1 ◦ det) ⊗ c-IndG

KZσ.
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Moreover, the third one follows from the first two, so it suffices to prove the second one. Lemma
2.13 implies that π(r, 0, 1) contains Symp−1−r F2⊗detr as a sub-K-representation, which induces
by Frobenius reciprocity a G-equivariant morphism

(c-IndG
KZ Symp−1−r F2) ⊗ ωr ∼= c-IndG

KZ(Symp−1−r F2 ⊗ detr) ↠ π(r, 0, 1).

By the theorem 2.11 of Barthel-Livné, this surjection must factor through

φ : π(p − 1 − r, λ,1) ↠ π(r, 0, 1)

for some λ ∈ F, and since π(r, 0, 1) is supersingular, we have λ = 0 by Theorem 2.11(3). But
π(p − 1 − r, 0, 1) is irreducible by Breuil’s theorem 2.12, so φ must be an isomorphism. □

2.4. The mod p local Langlands correspondence. Fix a finite extension E of Qp. We first
normalize the local class field map ι : Q×

p ↩→ Gab
Qp

so that uniformizers are sent to the geometric
Frobenius.

Corollary 2.16. There exists a (unique) bijection between the isomorphism classes of super-
singular representations of GL2(Qp) and the isomorphism classes of irreducible 2-dimensional
representations of Gal(Qp/Qp) over E such that

π(r, 0, χ) ←→ (Ind ωr+1
2 ) ⊗ χ

for all 0 󰃑 r 󰃑 p − 1 and all χ.

To take account of principal series, we define semisimple modulo p local Langlands correspon-
dence for GL2(Qp). For 0 󰃑 r 󰃑 p−1, we write [p−3−r] for the unique integer in {0, . . . , p−2}
which is congruence to p − 3 − r modulo p − 1. For example, [p − 3 − r] = p − 2 when r = p − 2.

Construction 2.17 (Breuil). The (semisimple) modulo p local Langlands correspondence when
λ ∕= 0 is given by the following rule:

󰀕
ωr+1µr 0

0 µλ−1

󰀖
←→

󰀣
c-IndG

KZσr

T − λ

󰀤ss

⊗ η ⊕
󰀣

c-IndG
KZσ[p−3−r]

T − λ−1 ⊗ ωr+1

󰀤ss

⊗ η.

Remark 2.18. In the language of principal series, the correspondence is written as
󰀕

χ1 0
0 χ2

󰀖
←→ (IndG

B χ1 ⊗ χ2ω−1) ⊕ (IndG
B χ2 ⊗ χ1ω−1).

We will also need the non-semisimple version of the correspondence, constructed by Colmez.
Assume that ρ satisfies EndGQp

(ρ) ∼= F, and ρ is generic in the reducible case.
(1) If ρ is absolutely irreducible, then κ(ρ) is the supersingular representation on the right-

hand side of Corollary 2.16 above.
(2) If ρ ∼

󰀃 χ1 ∗
0 χ2

󰀄
satisfies that χ1χ−1

2 ∕= ω±1,1, then there is an non-split exact sequence

0 −→ IndG
B(Qp)(χ2 ⊗ χ1ω−1) −→ κ(ρ) −→ IndG

B(Qp)(χ1 ⊗ χ2ω−1) −→ 0.

2.5. Quaternionic case. (Indeed, the results below hold true for more general D.) Let D be a
finite dimensional central Qp-division algebra with dimF D = 4. The homomorphism v : Q×

p → Z
extends to a surjective homomorphism vD : D× → Z, which is indeed a valuation. Extend vD to
D by defining vD(0) = ∞. Let OD = {x ∈ D : vD(x) 󰃍 0} and pD = {x ∈ D : vD(x) 󰃍 1}. Take
the residue field kD = OD/pD. Then OD is the unique maximal order in D, pD is the unique
maximal ideal of OD, and kD is isomorphic to Fp2 . We have a chain of subgroups

O×
D ⊇ 1 + pD ⊇ 1 + p2

D ⊇ · · · ,

each of them is normal in D×. We have canonical isomorphisms

O×
D/(1 + pD) ∼= F×

p2 , (1 + pi
D)/(1 + pi+1

D ) ∼= pi
D/pi+1

D .

Fix an embedding ξ : Fp2 → F. It serves the same role as ω2 with order p2 − 1.



ON THE MOD p JACQUET–LANGLANDS CORRESPONDENCE FOR GL2 13

Theorem 2.19. Let π : D× → GL2(F) be a continuous F-representation. Then π must have
one of the following forms:

(1) π is irreducible and
π ∼= IndD×

Q×
p O×

D

ξm ⊗ (η ◦ Nrd),

where 1 󰃑 m 󰃑 p − 1. In this case,

π|O×
D

∼= ξm ⊕ ξmp.

(2) π is reducible and

π ∼=
󰀕

χ1ξ(p+1)m1 ∗
0 χ1ξ(p+1)m2

󰀖

for some integers 0 󰃑 m1, m2 󰃑 p − 2 and characters χ1, χ2 which are trivial on O×
D.

Proof. This is similar to the proof for Galois representations. Use the following facts:
• 1 + pD is a pro-p group;
• O×

D/(1 + pD) ∼= F×
p2 is abelian and prime-to-p;

• Q×
p O×

D is of index 2 in D×;
• if ϖD is a uniformizer (with ϖ2

D = p), then ϖDxϖ−1
D = xp for x ∈ F×

p2 ↩→ O×
D via

Teichmüller lifting.
These are sufficient to complete the proof. □

3. Serre weights

3.1. Complement of mod p local Langlands: the non-semisimple case. Recall from
Theorem 1.1 that given ρ : GQp → GL2(F), the mod p local Langlands correspondence associates
an admissible smooth representation of GL2(Qp) to it. Precisely,

• If ρ ∼ (Ind ωr+1
2 ) ⊗ χ, then

κ(ρ) = π(r, 0, χ) := c-IndG
KZ Symr F2

T
⊗ (χ ◦ det)

is a supersingular representation;
• If ρ ∼

󰀃 χ1 ∗
0 χ2

󰀄
, then there is a non-split short exact sequence

0 −→ IndG
B(χ2 ⊗ χ1ω−1) −→ κ(ρ) −→ IndG

B(χ1 ⊗ χ2ω−1) −→ 0.

When ρ is semisimple, the classification is due to Breuil’s work. Also, Colmez has given a
more conceptual construction, which allows to treat also the non-semisimple case.

Definition 3.1. A (ϕ, Γ)-module over F((T )) is a finite free F((T ))-module M , equipped with
semi-linear actions of ϕ and Γ that commute to each other, where

ϕ : T 󰀁−→ T p, γ : T 󰀁−→ (1 + T )γ − 1

for all γ ∈ Γ. (Note that we have an isomorphism χcycl : Γ ∼−→ Z×
p .) Moreover, a (ϕ, Γ)-module

M is called étale if
M ⊗F((T )),ϕ F((T )) ∼= M.

Theorem 3.2 (Fontaine). There is an equivalence of categories between

{étale (ϕ, Γ)-modules over F((T ))} V←→ {F-representations of GQp
}.

Moreover, this correspondence preserves module ranks over different bases.

Construction 3.3 (Colmez’s observation). If we have an F-vector space M equipped with a
continuous action of the mirabolic monoid P + :=

󰀃 Zp\{0} Zp

0 1

󰀄
, then we can define a structure of

(ϕ, Γ)-module on M as follows:
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(1) View it as an F[[T ]]-module via the action of α =
󰀃 1 Zp

0 1
󰀄
, where the action is compatible

with the isomorphism F[[α]] ≃ F[[T ]], sending
󰀃 1 1

0 1
󰀄

− 1 to T .
(2) Identify

󰀃 Z×
p 0
0 1

󰀄
with Γ and

󰀃
p 0
0 1

󰀄
with ϕ; note that they do really commute.

The functor D of Colmez is defined as follows:
D(π) := F((T ))⊗̂F[[T ]] π

∨,

where π∨ = HomF(π,F) denotes the Pontryagin dual equipped with the mI1 -adic topology, with
mI1 the maximal ideal of F[[I1]].4

Using the equivalence of Fontaine, we get a continuous representation of GQp
from a (ϕ, Γ)-

module. In practice, we normalize the definition to get a covariant functor. Put
V(π) := V (D(π))∨(1).

Based on the classification of irreducible smooth GL2(Qp)-representations at the beginning of
Subsection 2.2, we have the following.

Theorem 3.4. The functor V : RepF(G) → RepF(GQp) is an exact covariant functor. Moreover,
on irreducible representations of form π = π(r, 0, χ), we have

(1) For principal series, V(IndG
B(χ1 ⊗ χ2ω−1)) = χ2.

(2) For characters, V(χ ◦ det) = 0.
(3) For special series, V(Sp ⊗ (χ ◦ det)) = ωχ.
(4) For supersingular representations, V(π(r, 0, χ)) = (Ind ωr+1

2 ) ⊗ χ.

This allows to extend the mod p local Langlands correspondence (c.f. Corollary 2.16 and
Construction 2.17) to the non-semisimple case.

Theorem 3.5. There is a representation κ(ρ) of finite length of G, unique up to isomorphism,
such that

(a) V(κ(ρ)) ∼= ρ;
(b) κ(ρ) has central character det(ρ)ω;
(c) κ(ρ) has no finite-dimensional G-subrepresentation;
(d) when ρ is reducible, say ρss ∼ χ1 ⊕ χ2, then the semisimplication of κ(ρ) is equal to

κ(ρ)ss = (IndG
B(χ2 ⊕ χ1ω−1))ss ⊕ (IndG

B(χ1 ⊕ χ2ω−1))ss.

Example 3.6 (Non-generic case).
(1) If ρ ∼

󰀃
ω ∗
0 1

󰀄
and it is non-split, then κ(ρ) has a filtration

Sp 1G IndG
B(ω ⊗ ω−1).

Note that Ext1
GQp

(1, ω) is 2-dimensional. Colmez proved that Ext1
GQp

(1, Sp) is also
2-dimensional and there is a natural bijection from it towards Ext1

GQp
(1, ω).

(2) If ρ ∼
󰀃 1 ∗

0 ω

󰀄
and it is non-split, then κ(ρ) has a filtration

IndG
B(ω ⊗ ω−1) Sp 1G.

3.2. Serre weights in GL2(Qp)-case.

Definition 3.7. An irreducible smooth F-representation σ of K = GL2(Zp) is called a Serre
weight of ρ if

HomK(σ, κ(ρ)) ∕= 0.

Recall that the socle of a representation π is defined to be its maximal semisimple subrepre-
sentation. Let W (ρ) consist of irreducible representations which occur in socK(κ(ρ)), without
counting the multiplicity.

4This is not the original definition of Colmez, because π∨ is not finitely generated as an F[[T ]]-module, so the
meaning of getting a (ϕ, Γ)-module of finite rank is not clear, which can be a potential obstruction to go further.
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Theorem 3.8. (1) If ρ ∼ (Ind ωr+1
2 ) ⊗ χ, then

W (ρ) = {Symr F2, Symp−1−r F2 ⊗ detr} ⊗ (χ ◦ det).

(2) If ρ ∼
󰀃 χ1 ∗

0 χ2

󰀄
with χ1χ−1

2 ∕= ω±1,1, then

W (ρ) = {Symr F2} ⊗ (χ2 ◦ det),

where r is determined by the rule χ1χ−1
2 |IQp

= ωr+1.

We take some preparation work before proving Theorem 3.8. For 0 󰃑 r 󰃑 p − 2, let ηr denote
the character F×

p → F× that sends a to ar.

Lemma 3.9. For 0 󰃑 r 󰃑 p − 2, there is a short exact sequence

0 −→ Symr F2 −→ IndGL2(Fp)
B(Fp) (1⊗ ηr) −→ Symp−1−r F2 ⊗ detr −→ 0.

Moreover, the sequence splits if and only if r = 0.

Proof. First, the coinvariant (Symr F2)U(Fp) is 1-dimensional spanned by Y r, and B(Fp) acts
via the character 1 ⊗ ηr. Thus, by Frobenius reciprocity, we deduce a nonzero (and hence
injective) morphism Symr F2 ↩→ IndGL2(Fp)

B(Fp) (1 ⊗ ηr). On the other hand, the invariants of
Symp−1−r F2 ⊗ detr is also given by

1⊗ ηr :
󰀕

a 0
0 d

󰀖
󰀁−→ ap−1−r(ad)r = dr,

so we deduce an surjection

IndGL2(Fp)
B(Fp) (1⊗ ηr) −↠ Symp−1−r F2 ⊗ detr.

Counting the dimension, the result follows. □

Remark 3.10. The two Jordan–Hölder factors of IndGL2(Fp)
B(Fp) (1 ⊗ ηr) are isomorphic, even when

r = (p − 1)/2, we also say IndGL2(Fp)
B(Fp) (1⊗ ηr) is multiplicity-free.

Now we are ready to tackle with the proof.

Proof of Theorem 3.8. (1) By definition, Symr F2 embeds in π(r, 0,1). Let v ∈ (Symr F2)I1 ,
and set w := Πv. Then we saw that w generates Symp−1−r F2 ⊗ detr in π(r, 0,1), so we
already have

Symr F2 ⊕ (Symp−1−r F2 ⊗ detr) ↩−→ socK(π(r, 0,1)).

Since dimF π(r, 0,1)I1 = 2 by Breuil’s theorem 2.12, the above embedding is an equality.
(2) We always have socK(π) ⊂ πK1 , where K1 denotes Ker(K → GL2(Fp)) (a pro-p group).

For principal series, the Iwasawa decomposition G = B · K implies

(IndG
B(χ1 ⊗ χ2))K1 = (IndK

B(Zp)(χ1 ⊗ χ2)|B(Zp))K1 = IndGL2(Fp)
B(Fp) (χ1 ⊗ χ2).

By definition and local class field theory, we have

χ1χ2
−1ω−1 = ηr,

where r is as in the statement, thus the socle of PS1 is Symr F2 ⊗ (χ2 ◦ det) by Lemma 3.9.
To conclude, we need to show that 0 → PS1 → κ(ρ) → PS2 → 0 induces an equality

socK(PS1) = socK(κ(ρ)). One checks that

socK(PS2) = σ2 := (Symp−3−r F2 ⊗ detr+1) ⊗ (χ2 ◦ det).

We prove that the induced sequence

0 −→ PS1|K −→ ∗ −→ σ2 −→ 0
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is non-split. Otherwise, say σ2 ↩→ κ(ρ), then there would be a morphism

c-IndG
KZσ2

T − λ
−→ κ(ρ)

for some λ ∈ F. Looking at Jordan–Hölder factors of κ(ρ), this λ is the unique element such
that

c-IndG
KZσ2

T − λ
∼= PS2

by Theorem 2.11 of Barthel–Livné. However, this implies that κ(ρ) splits, a contradiction.
□

If ρ = χ ⊕ χ2, then
W (ρ) = {Symr F2, Symp−3−r F2 ⊗ detr+1} ⊗ (χ2 ◦ det).

It is a general principe that W (ρ) ⊂ W (ρss). Also, we see ρ is “more split” implies that W (ρ)
is larger via unwinding the definition.

Remark 3.11. In the argument above, one may notice that

socK(κ(ρ)) =
󰁐

σ∈W (ρ)

σ.

This property is called multiplicity one.

Prototypically, the origin of the notion of Serre weight (Definition 3.7) comes from Serre’s
conjecture (and now a theorem of Khare–Wintenberger).

Conjecture 3.12 (Serre, 1987). Let r : GQ → GL2(F) be a continuous representation. Assume
r is absolutely irreducible and odd, i.e., det r(c) = −1. Then there exists a normalized cuspidal
modular form f =

󰁓
n󰃍1 anqn ∈ Sk(Γ1(N)) with a1 = 1, of weight k and level N , such that for

all prime ℓ ∤ pN ,
Tr(r(Frobℓ)) = aℓ.

Beyond this, Serre conjectured the minimal integer k(ρ) associated to each residual Galois
representation ρ, such that 2 󰃑 k(r ⊗ ωi) 󰃑 p + 1 for some i ∈ Z. He also predicted the minimal
level N for the normalized cuspidal modular form f , which is prime to p and equals the Artin
conductor of r. These are called Serre’s refined conjecture.

Note that Conjecture 3.12 holds for Galois representations on Q. When trying to generalize
Serre’s conjecture to totally real field case, Buzzard-Diamond-Jarvis observed that there is a
bijection

󰀫
(k, i)

󰀏󰀏󰀏󰀏󰀏
2 󰃑 k 󰃑 p + 1,

0 󰃑 i 󰃑 p − 2

󰀬
←→

󰀫
Irreducible representations

Symk−2 F2 ⊗ deti : GL2(Zp) → GL2(F)

󰀬
.

3.3. Serre weights in quaternion case. First, we note that the representation JL(ρ) is de-
fined on a global setup. So it is hard to obtain an explicit description, even for the Serre
weights.
Setups. We introduce the following objects.

• Fix a number field F . Fix another finite extension E of Qp, with O the ring of integers
and ϖ a choice of the uniformizer.

• Let B be a definite quaternion algebra with centre F ; let Σ be the set of primes at which
B ramifies.

• Assume B is ramified at p. Let D := B ⊗Q Qp be the quaternion algebra over Qp.
• Choose U =

󰁔
v Uv ⊂ (B⊗QA∞

Q )× to be a compact open subgroup. Write Up =
󰁔

v∤p Uv.
Insert the assumption that Up = O×

D.
• Let A be a topological O-algebra. Fix a continuous character ψ : Q×\A∞,×

Q → A×.
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• For those characters ψ that are trivial on the intersection Up ∩ A∞,×
Q , define Sψ(U, A)

as the space of those continuous functions f : B×\(B ⊗Q A∞
Q )×/U → A satisfying that

◦ for any z ∈ A∞,×
Q , the condition f(gz) = ψ(z)f(g) holds.

• Excluding the p-component, we also define
Sψ(Up, A) := lim−→

Vp⊂Up

Sψ(UpVp, A).

Remark 3.13. For any character ψ, we can consider Ŝψ(Up, A), the space of those continuous
functions f : B×\(B ⊗Q A∞

Q )×/U → A satisfying the same condition as above. Then

Sψ(Up, A) ⊂ Ŝψ(Up, A).
The equality holds if the topology of A is discrete; for example, when A ∈ {F, O/ϖn, E/O}.
Moreover, whenever A = O, the equality fails but

Sψ(Up, A) = Ŝψ(Up, A)sm,

the subspace consisting of smooth functions.

We may write
(B ⊗Q A∞

Q )× =
󰁤

i∈I

B×tiA∞,×
Q

for some finite index set I and ti ∈ (B ⊗Q A∞
Q )×; here A∞,×

Q is identified with the center of
(B ⊗Q A∞

Q )×. We further assume for each i ∈ I that

U(A∞
Q )× ∩ t−1

i B×ti = Q×.

This is always possible when Up is sufficiently small.

Lemma 3.14. (1) Sψ(Up,F) is an admissible representation of D×. Moreover, when re-
stricted to O×

D, it is injective in the category of smooth representations of O×
D over F

with central character.
(2) Sψ(Up, E/O) is injective as a smooth representation of O×

D over O-module, with central
character.

Proof. Note that (2) follows from (1) together with the O-divisibility. As for (1), it is clear
that Sψ(Up,F) is an admissible representation of D×, since for open subgroup Vp ⊂ Up =
O×

D, the invariant subspace Sψ(Up,F)Vp consists of functions which factor through B×\(B ⊗
A∞

Q )×/UpVp → F, and hence Sψ(Up,F)Vp is a finite set.
To show the injectivity, by the condition U(A∞

Q )× ∩ t−1
i B×ti = Q×, the map sending f ∈

Sψ(Up,F) to the function (u 󰀁→ (f(tiu))i∈I) induces an isomorphism

Sψ(Up,F) ∼=
󰁐

i∈I

Cψ(Up,F),

where Cψ(Up,F) denotes the space of continuous F-valued functions on Up with central character
ψ. □

Now we introduce the Hecke algebra. Let S be the union of finite places
S = Σ ∪ {p} ∪ {v | Uv is not maximal} ∪ {v | ψ ramifies}.

For each v /∈ S, define Hecke operators as double-coset operators

Tv := Uv

󰀕
ϖv 0
0 1

󰀖
Uv, Sv := Uv

󰀕
ϖv 0
0 ϖv

󰀖
Uv.

Let T(UpVp) be the endomorphism ring acting on Sψ(UpVp, O) that is generated by Tv and Sv.
Put

T := lim←−
Vp⊂Up

T(UpVp).
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Then T (also denoted by T(Up)) acts faithfully and semisimply on Sψ(Up, O).
Let r : GQ → GL2(F) be a continuous absolutely irreducible representation, unramified out-

side S. Given r, define a maximal ideal of T to be the kernel of
T F
Tv Tr(r(Frobv))

Sv N(v)−1 det(r(Frobv))

where v /∈ S. We may consider the localization Tm as well as Sψ(Up, A)m.

Lemma 3.15. Lemma 3.14 holds true after everything being localized at m.

Proof. This is because Tm isa complete noetherian semi-local ring and Sψ(Up, A)m is a direct
summand of Sψ(Up, A). □

Lemma 3.16. Let W be a continuous representation of O×
D on a finite O-torsion-free module.

Then the following statements are equivalent:
(i) HomO×

D
(σ, Sψ(Up,F)m) ∕= 0 for some Jordan–Hölder factor σ of W/ϖW ;

(ii) HomO×
D

(W/ϖW, Sψ(Up,F)m) ∕= 0;
(iii) HomO×

D
(W, Ŝψ(Up, O)m) ∕= 0.

Moreover, if W is smooth, then the above are also equivalent to
(iv) HomO×

D
(W, Sψ(Up, O)m) ∕= 0.

Proof. The equivalence between (i) and (ii) is because Sψ(Up,F)m is an injective object, by
Lemma 3.15. Also, (ii) and (iii) are equivalent because Ŝψ(Up, O)m is dually projective, i.e.,

Homcont
O (Ŝψ(Up, O)m, O) ∼= HomF(Sψ(Up, E/O)m,F).

After this, using that W d/ϖW d = (W/ϖW )∨, it is easy to see that

(ii) ⇐⇒ HomO×
D

(Ŝψ(Up, O)d, W d) ∕= 0 ⇐⇒ HomO×
D

(Ŝψ(Up, O)d/ϖ, W d/ϖ) ∕= 0 ⇐⇒ (iii).

Moreover, in case that W is smooth, (iii) is clearly equivalent to (iv) as Sψ(Up, O)m identifies
with Ŝψ(Up, O)sm

m (see Remark 3.13). □

Recall that O×
D/U1

D
∼= F×

p2 , so that any irreducible representation of O×
D is a character.

Definition 3.17. A character χ of O×
D is called a Serre weight of r : GQ → GL2(F) if

HomO×
D

(χ, Sψ(Up,F)m) ∕= 0.

The set of Serre weights of r is denoted by WB(r).

Let ϖD denote a fixed uniformizer of D× with ϖ2
D = p. Then

ϖ−1
D [λ]ϖD = [λp], ∀λ ∈ F×

p2 .

Lemma 3.18. The elements in the set WB(r) always appear with their couple, i.e., if χ ∈
WB(r), then so also χp ∈ WB(r).

Theorem 3.19. Consider a character χ : O×
D → F×

p with the norm map F×
p2 → F×

p .
(1) Assume χ does not factor through the norm. Then χ ∈ WB(r) if and only if r lifts to

a modular Galois representation GQ → GL2(E), which at p is potentially crystalline of
type [χ] ⊕ [χp] with Hodge–Tate weights (0, 1).

(2) Assume χ factors through the norm. Then χ ∈ WB(r) if and only if r lifts to a mod-
ular Galois representation GQ → GL2(E), which at p is potentially semistable, but not
potentially crystalline, of type [χ] ⊕ [χ] with Hodge–Tate weights (0, 1).
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Our main object to study is the eigenspace of m, say

πB(r) := Sψ(Up,F)[m].

Since the action of T commutes with that of D×, it is easy to see that χ ∈ WB(r) if and only
if HomO×

D
(χ, πB(r)) ∕= 0. We have the following useful lemma, which gives more information of

πB(r).

Lemma 3.20. Let σ1 ⊂ σ be two O×
D-representations such that ι : σ1 ↩→ πB(r). Assume also

JH(σ/σ1) ∩ WB(r) = ∅,

where JH(−) denotes the (spectrum of) Jordan–Hölder factors. Then ι extends to an embedding
σ ↩→ πB(r).

Proof. By assumption, following Lemma 3.16, we have

HomO×
D

(σ/σ1, Sψ(Up,F)m) = 0.

Applying Lemma 3.15, there exists a (unique) embedding σ ↩→ Sψ(Up,F)m extending ι. So it
suffices to show that the image of σ along this extended embedding is contained in πB(r), or
namely, is annihilated by m.

For this, let f ∈ m be viewed as an endomorphism of Sψ(Up,F)m; we need to show the
composition

σ Sψ(Up,F)m Sψ(Up,F)m
f

is zero. By assumption, f |σ1 = 0, so we obtain an induced morphism f : σ/σ1 → Sψ(Up,F)m
(by an abuse of the notation). However, this f must be zero due to the assumption. □

In practice, we suppose that σ1 = socK(πB(r)) and σ is the maximal representation of
InjO×

D
σ1 (the injective envelope of σ1 as a representation of O×

D, which is isomorphic to Sψ(Up,F)m),
such that JH(σ/σ1) ∩ WB(r) = ∅ is satisfied, then σ ↩→ πB(r).

3.4. Tame types and inertial local Langlands correspondence. Let WQp
denote the Weil

group of the Galois group of Qp.

Definition 3.21. An inertial type is a 2-dimensional representation τ : IQp → GL2(Qp) with
an open kernel, which can be extended to a representation of WQp . An inertial type τ is said to
be tame if it is trivial on the wild inertia subgroup, i.e. τ |Iwild

Qp
= 0.

Lemma 3.22. An inertial type always has one of the following forms:
(i) τ is reducible and isomorphic to the sum χ1 ⊕χ2 of two characters which extend to WQp ;
(ii) τ is reducible and isomorphic to η1 ⊕ η2, where η1, η2 don’t extend to WQp ; in this case,

ηi extends to WQp2 and η2 = ηconj
1 .

(iii) τ is irreducible.

An inertial type τ in case (i) above is called a principal series. In case (ii) and (iii), τ is called
a supercuspidal type. Also, τ is called a discrete series if it is either supercuspidal, or is of case
(i) with τ ∼= χ ⊕ χ.

Theorem 3.23 (Henniart). Let τ be an inertial type.
(1) There exists a unique smooth irreducible representation σ(τ) of K = GL2(Zp), such that

for any infinite-dimensional smooth irreducible representation π of G,

HomK(σ(τ), π) ∕= 0 ⇐⇒ WD(π)|IQp

∼= τ.

Here WD(π) denotes the Weil–Deligne representation associated to π.
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(2) Similarly, there exists a unique smooth irreducible representation σcris(τ) of K = GL2(Zp),
such that

HomK(σcris(τ), π) ∕= 0 ⇐⇒ WD(π)|IQp

∼= τ and N = 0.

In both cases, the Hom space is 1-dimensional.

We always have σ(τ) = σcris(τ) except when τ = χ ⊕ χ is a scalar, for which σ(χ ⊕ χ) =
St ⊗(χ◦det) and σcris(χ⊕χ) = χ◦det. Here St denotes the Steinberg representation of GL2(Fp)
over Qp.

Example 3.24. We will be only interested in Lemma 3.22(ii). There is a unique irreducible
(p − 1)-representation Θ(η) characterized by the isomorphism

Θ(η) ⊗ St ∼= IndGL2(Fp)
F×

p2
η.

Then, when τ is of case (ii), we have σ(τ) = Θ(η).

Gee–Geraghty [GG15] developed an analogous theory for D×. Let τ be a discrete series of
inertial type. Then there exists σD(τ), a finite-dimensional representation of O×

D such that
HomO×

D
(σD(τ), πD) ∕= 0 ⇐⇒ LL−1(JL(πD))|IQp

∼= τ.

Here LL denotes the functor of local Langlands correspondence.

Example 3.25. Let η : F×
p2 → E× with η ∕= ηp. Let τ := η ⊕ ηp be the supercuspidal inertial

type associated to η, where it is customary to denote by η the composition IQp → F×
p2

η→ E×.
Then σ(τ) = Θ(η) and σD,τ |O×

D
= η ⊕ ηp.

Proof of Theorem 3.19. Let χ ∈ WB(r) and η := [χ]. By Lemma 3.16, we have
HomO×

D
(η, Sψ(Up, O)m) ∕= 0.

This implies that there is a cuspidal automorphic form on B× that, locally at p, has type
η ⊕ ηp. In particular, by the Jacquet–Langlands correspondence, it corresponds to a cuspidal
automorphic form on GL2(Q); moreover, by the local-global compatibility (the version of Saito,
c.f. Theorem 1.2) the associated Galois representation r is potentially crystalline of type σ(τ)
with Hodge–Tate weights (0, 1). □

This motivates the following definition.

Definition 3.26. Let W ?
D(ρ) denote the set of χ such that ρ has a potentially crystalline lift

of type [χ] ⊕ [χp] with Hodge–Tate weights (0, 1) (c.f. Theorem 3.19(1)).

It follows from Theorem 3.19 that WB(r) ⊂ W ?
D(ρ). Indeed, we have the following. (See

[Gee11] for the proof.)

Theorem 3.27. We have WB(r) = W ?
D(ρ).

3.5. Explicit form of W ?
D(r). Fix an embedding ξ : Fp2 → F×; let α = ξp−1 so that αp = α−1.

Theorem 3.28. Let ζ denote the character ξp+1, and let α denote the character ξp−1.
(1) Assume ρ is irreducible and

ρ ∼ (Ind ωr+1
2 ) ⊗ (some twist).

(1a) If r ∕= 0 or p − 1, then χ ∈ W ?
D(ρ) if and only if χ ∈ {ξr, ξpr, ξrα−1, ξprα}.

(1b) If r = 0 or p − 1, then χ ∈ W ?
D(ρ) if and only if χ ∈ {α−1, α}.

(2) Assume ρ is reducible and

ρ|IQp
∼

󰀕
ωr+1 ∗

0 1

󰀖
.

Then χ ∈ WD(ρ) if and only if χ ∈ {ξrα−1, ξprα}.
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Proof. Equivalently, we need to show that there exists a lift of ρ of type Θ([χ]) and with Hodge–
Tate weights (0, 1). See [GS11] for an explicit construction of such deformations.

There is a way to reduce the statement to GL2-case. Using an analog of Lemma 3.16 in
GL2-case, we have the following equivalent statements: σ ∈ W (ρ) and dim σ 󰃑 p−2, if and only
if ρ has a potentially crystalline lift with Hodge–Tate weights (0, 1) and tame cuspidal type τ ;
moreover, we have σ ∈ JH(σ(τ)) if and only if η ∈ W ?

D(ρ). We shall need the following fact:
⋄ Let η : F×

p2 → E× with η ∕= ηp. Write η = [ξ]a+1+(p+1)b with 0 󰃑 a 󰃑 p − 1 and
0 󰃑 b 󰃑 p − 2. Then

Θ(η)
ss ∼= (Syma−1 F2 ⊗ detb+1) ⊕ (Symp−2−a F2 ⊗ deta+1+b),

with the convention that Sym−1 F2 = 0.
For example, in (1a) above, take σ1 := Symr F2 ∈ W (ρ) and a = r + 1, b = p − 2, so that

σ1 ∈ JH(Θ(η)), then we obtain

ξr+1+(p+1)(p−2) = ξrα−1 ∈ W ?
D(ρ).

We then deduce ξprα ∈ W ?
D(ρ) by Lemma 3.18. Similarly, take Symp−1−r F2 ⊗ detr ∈ W (ρ), we

will get the other pair ξr, ξpr ∈ W ?
D(ρ). □

4. Deformation theory

4.1. Classical theory. As before, let E be a finite extension of Qp and O its ring of integers.
Let ρ : GQp → GL2(F) be a continuous representation such that EndGQp

(ρ) = F. Consider
C the category of (commutative) local Artinian O-algebras with residue field F, in which the
morphisms are local O-algebra homomorphisms. Consider the functor

Defρ : C −→ Sets,
sending (A,mA) to the set of deformations of ρ over A modulo the strict equivalence.5 Fix
ψ : Q×

p → O× which lifts to detρ. Let Defψ
ρ be the sub-functor by requiring detρA = ψ.

Theorem 4.1 (Mazur). (1) Defρ is (pro-)represented by (Rρ, ρun), which is universal in
the sense that, for any deformation ρA, there exists a unique local homomorphism
φ : Rρ → A such that φ ◦ ρun = ρA. Similarly, Defψ

ρ is (pro-)represented by Rψ
ρ .

(2) Rρ (resp. Rψ
ρ ) is a local complete noetherian flat O-algebra of relative dimension 5 (resp.

3) over O, with residue field F.

Mazur showed that Rρ is isomorphic to a quotient of an O-power series ring with number
of generators equal to dimF H1(GQp , ad(ρ)), through dimF H2(GQp , ad(ρ)) relations. Here, we
write ad(ρ) for the representation EndF(ρ) on which GQp acts by conjugation.

When ρ is irreducible, or ρ ∼
󰀃 χ1 ∗

0 χ2

󰀄
with χ−1

1 χ2 ∕= ω, we have, by local Euler characteristic
formula and Tate duality, that

dimF H1(GQp
, ad(ρ)) = 5, dimF H2(GQp

, ad(ρ)) = 0,

so that
Rρ

∼= O[[X1, X2, X3, X4, X5]].
Similarly, one has

Rψ
ρ

∼= O[[X1, X2, X3]].
If x : Run

ρ [1/p] → Qp is a closed point, with E′ a finite extension of E, we get a genuine p-adic
representation

ρun
x : GQp

−→ GL2(Qp)
via the specialization. Fix a p-adic Hodge type (w, τ, ψ), where

5Recall that, given a continuous representation ρA : GQp → GL2(A) such that ρA (mod mA) ≃ ρ, we have
defined ρA ∼ ρ′

A if and only if ρA = Mρ′
AM−1 for some matrix M ≡ 1 (mod mA).
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◦ w = (a, b) is a pair of integers with a < b,
◦ τ : IQp → GL2(E) is an inertial type, and
◦ ψ : GQp → O× is a continuous character such that ψ ≡ detρ (mod ϖ).

Definition 4.2. We say ρun
x is of type (w, τ, ψ) if

(a) it is potentially semi-stable of Hodge–Tate weights w;
(b) WD(ρun

x )|IQp

∼= τ , where WD(ρun
x ) denotes the Weil–Deligne representation associated

to ρun
x by Fontaine;

(c) its determinant detρun
x = ψ.

Theorem 4.3. There exists a unique reduced O-flat quotient of Rψ
ρ , denoted by Rψ

ρ (k, τ) (resp.
Rψ,cris

ρ (k, τ)), parametrizing all potentially semi-stable (resp. potentially crystalline) deforma-
tions of type (k, τ, ψ) of ρ.

Whenever nonzero, Rψ
ρ (k, τ) (resp. Rψ,cris

ρ (k, τ)) is a local complete reduced flat O-algebra,
equidimensional of relative O-dimension 1.

In the following, we introduce the Breuil–Mézard conjecture. For a complete noetherian local
ring A, let e(A) denotes the Hilbert–Samuel multiplicity. Precisely, if dim A = d, then e(A) is
equal to d! times the leading coefficient of the Hilbert polynomial of A. Given the pair (w, τ),
we define

σ(w, τ) := Symb−a−1 E2 ⊗ deta ⊗ σ(τ),

σcris(w, τ) := Symb−a−1 E2 ⊗ deta ⊗ σcris(τ).

Conjecture 4.4 (Breuil–Mézard). There exists integers µ(σ) for all irreducible F-representations
σ of K, such that for any type (w, τ),

e(Rψ
ρ (w, τ)/ϖ) =

󰁛

σ

µ(σ)[σ(w, τ) : σ].

Here [V : σ] denotes the multiplicity of σ in V . Moreover, the similar statement also holds for
e(Rψ,cris

ρ (w, τ)/ϖ).

We actually have µ(σ) = 0 if and only if σ ∈ W (ρ). This gives a simple way to predict the
size of the deformation ring of a given type and Hodge–Tate weights.

Example 4.5. Let ρ = Ind ωr+1
2 , so that

W (ρ) = {σ1, σ2} = {Symr F2, Symp−1−r F2 ⊗ detr}.

(1) If τ = 1⊕ [ητ ] (recall that ηr : F×
p → F× via a 󰀁→ ar), then

σ(τ) = IndK
I (1⊗ ηr), JH(σ(τ)) = {σ1, σ2}.

So, assuming Breuil–Mézard conjecture 4.4, we have

Rψ,cris
ρ ((0, 1), τ) ∕= 0, e(Rψ,cris

ρ ((0, 1), τ)/ϖ) = 2.

In fact, an explicit computation shows that

Rψ,cris
ρ ((0, 1), τ) ≃ O[[X, Y ]]/(XY − p).

(2) If τ = [η] ⊕ [ητ ] for some η : F×
p2 → F× which does not factor through F×

p , then σ(τ) is
a cuspidal representation of GL2(Fp), and at most one of σ1 and σ2 lies in JH(σ(τ)). If
this is the case, then

Rψ,cris
ρ ((0, 1), τ) ≃ O[[X]].
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4.2. Deformations of GL2(Qp)-representations. Colmez has defined an exact covariant
functor V : RepF(G) → RepF(GQp) (see Theorem 3.4). It can be extended to unitary Banach
space representations (i.e., a Banach space Π equipped with a continuous action of G, such
that 󰀂gv󰀂 = 󰀂v󰀂 for all g ∈ G and v ∈ Π) of G as follows. Fix a Banach space (Π, 󰀂 · 󰀂). Let
Π0 := {v ∈ Π : 󰀂v󰀂 󰃑 1} be the unit ball and assume that Π0/ϖΠ0 has finite length. Define

V(Π0) := lim−→
n

V(Π0/ϖnΠ0), V(Π) := V(Π0)[1/p].

Kisin observed that V should be viewed as a transformation between deformation functors
(assuming EndGQp

(ρ) = F and so EndG(κ(ρ)) = F):

V : Defκ(ρ) −→ Defρ,

hence a map between the deformation space Spec R
ψχcycl
κ(ρ) −→ Spec Rψ

ρ . Later on, Colmez
checked that the natural map tangent spaces

Ext1
GL2(Qp),ψχcycl

(κ(ρ), κ(ρ)) −→ Ext1
GQp ,ψ(ρ, ρ)

is injective, so V induces a closed immersion via Defκ(ρ) → Defρ.

Remark 4.6. It is in fact nontrivial to see that if

0 −→ κ(ρ) −→ E −→ κ(ρ) −→ 0

is an extension with central character ψχcycl, then V(E) automatically has determinant ψ. But
we ignore this issue here.

Colmez had a reverse construction of V : ρ 󰀁→ Π(ρ), and he showed that V(Π(ρ)) ∼= ρ for
“trianguline” points. Since such points form a dense subset of Spec Rψ

ρ [1/p], the transformation
V is actually an isomorphism.

As a consequence, V sends the universal deformation of κ(ρ) to the universal deformation of
ρ. In practice, we shall work on the dual side. Precisely,

Definition 4.7. Assume ρ is generic and EndGQp
(ρ) ∼= F. Define N to be the universal defor-

mation of κ(ρ)∨.

By definition, N simultaneously carries actions of G and Rψ
ρ , commuting with each other.

We list some important properties of N .

Theorem 4.8 (Colmez, Paškūnas).
(N1) N is a flat Rψ

ρ -module, and

F ⊗Rψ

ρ

N ∼= κ(ρ)∨.

(N2) EndG(N) ∼= Rψ
ρ and V(N) is isomorphic to ρun as Rψ

ρ [[GQp ]]-module6, and for any closed
Qp-point x : Rψ

ρ [1/p] → Qp,

V(N ⊗Rψ

ρ
,x Qp) ∼= ρun

x .

(N3) N is projective in the category C(O) defined below.
(N4) There exists x ∈ Rψ

ρ such that N/xN is isomorphic to a projective envelope of
󰁏

σ∈W (ρ) σ∨

as a K-representation.

The properties (N1) and (N2) follow from the construction. Below we explain how to prove
(N3) and (N4). We first explain the category C(O).

Definition 4.9. A smooth F-representation π of G is called locally admissible if 〈G.v〉 is ad-
missible for any v ∈ π.

6More rigorously, the functor V here should be dualized.
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Remark 4.10. (1) The compact induction c-IndG
KZσ is not locally admissible.

(2) For each n 󰃍 1, c-IndG
KZσ/T n is admissible (because c-IndG

KZσ/T is admissible by
Breuil’s theorem 2.12), so

lim−→
n󰃍1

c-IndG
KZσ

T n

is locally admissible.

Let C(F) be the dual category of locally admissible F-representations of G (with central
character ψχcycl); let C(O) be the dual category of locally admissible O-torsion representations
of G (with central character ψχcycl).

Lemma 4.11 (Emerton). Injective objects exist in the category of locally admissible F-representations
of G or that of O-torsion representations of G. Dually, projective objects exist in C(F) or C(O).

4.2.1. Proof of 4.8(N3). We only indicate the proof when ρ is irreducible, so π := κ(ρ) is
irreducible and supersingular.

Definition 4.12. Let P̃ be a projective envelope of κ(ρ)∨ in C(O). Let

Ẽ := EndC(O)(P̃ ).

It is a general fact that Ẽ is a local ring with the maximal ideal

m̃ := {φ ∈ Ẽ : pr ◦ φ = 0},

where pr : P → κ(ρ)∨.

Remark 4.13. As can be seen from Remark 4.10,

lim−→
n󰃍1

c-IndG
KZσ1

T n
↩→ P̃ ∨,

so P̃ ∨ is not admissible; equivalently, P̃ is not finitely generated as O[[K]]-module. Actually,
this is the only obstruction for P̃ to be admissible (c.f. (N4)).

Proposition 4.14. P̃ is a deformation of π∨ to Ẽ, i.e., P̃ is a flat Ẽ-module and F⊗Ẽ P̃ ∼= π∨.

Proof Upshot. The key is to prove that the block containing π is just {π}. This means that if
π′ is another irreducible smooth representation of G, and if

Ext1
G(π, π′) ∕= 0 or Ext1

G(π′, π) ∕= 0,

then π′ ∼= π. As a consequence, any irreducible subquotient of P̃ is isomorphic to π∨; this is a
necessary condition for P̃ to be flat over Ẽ. The rest of the proof is more or less formal. □

Proposition 4.15. P̃ is isomorphic to the universal deformation of π∨ to the category of not-
necessarily-commutative artinian O-algebras.

Proof. Since P̃ is projective, there exists h : P̃ → M making the diagram

P̃ π∨

M F ⊗A M

h

α

commute. We claim that the map A 󰀁→ HomC(O)(P̃ , M) sending a to a◦h is an isomorphism. A
dévissage, using the fact that P̃ is projective and M is flat over A, reduces to the case ℓO(A) = 1
and the result is clear. □
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Let (M, α) be a deformation of S to a local artinian O-algebra (A,mA), which is not neces-
sarily commutative. Then Proposition 4.15 means that there exists φ : Ẽ → A such that

M ∼= A ⊗ϕ,Ẽ P̃ .

To show (N3), it is equivalent to show N = P . Comparing the definition of N and P̃ , we need
to show Ẽ is a commutative ring. In general, a ring of endomorphisms is not commutative; so
this turns out to be a serious issue. However, Paškūnasproved that it was indeed a commutative
ring, using the following criterion.

By the above discussion, Ẽ is a complete noetherian local O-algebra, and can be generated
by 3 elements over O, with

dimF m̃/(ϖ, m̃2) = dimF Ext1
G,ψχcycl

(π∨, π∨) = 3.

Moreover, there exists a surjection Ẽ ↠ Rψ
ρ

∼= O[[x1, x2, x3]]; to show it is an isomorphism, by
Nakayama’s lemma, it suffices to show it induces an isomorphism after modulo ϖ:

E := Ẽ/ϖẼ
∼−→ F[[x1, x2, x3]].

Theorem 4.16 (Criterion for commutativity). Assume that for every exact sequence

0 −→ π∨ −→ E −→ π∨ −→ 0

such that dimF HomG(E , π∨) = 1 and dimF Ext1(E , π∨) 󰃑 3. Then E is commutative and iso-
morphic to F[[x1, x2, x3]].

Proof. Note that the condition in Theorem 4.16 is equivalent to that: the image of Ext1(E , π∨) →
Ext1(π∨, π∨) is one-dimensional over F.

It suffices to show that the graded ring grm(E) is commutative. In fact, using the equality
dimF m̃/(ϖ, m̃2) = dimF Ext1

G,ψχcycl
(π∨, π∨) = 3 above, this will imply that grm(E) is a quotient

of a polynomial ring with 3 variables, thus the induced map grm(E) → gr(F[[x1, x2, x3]]) must
be an isomorphism. Consequently,

mi/mi+1 ∼= (x1, x2, x3)i/(x1, x2, x3)i+1, ∀i 󰃍 0.

Taking limits, we obtain E ∼= F[[x1, x2, x3]].
Therefore, it further suffices to prove that

E/m3 −→ F[[x1, x2, x3]]/(x1, x2, x3)3

is an isomorphism. In fact, this will imply that E/m3 is commutative, so the commutator of
any two elements in gr1

m(E) is zero, so grm(E) is commutative, and we can conclude by the
argument above.

So we may assume that m3 = 0 in E. Using the natural isomorphism

HomC(O)(P̃ , M)⊗̂Ẽ P̃
∼−→ M,

the equivalent assumption essentially implies the following: for any t ∈ m\m2, there exists
a unique quotient ring of E which has dimension 3 over F, such that mA/m2

A
∼= Ft; precisely,

A = F⊕Ft⊕Ft2. One then shows using this description that E ∼= F[[x1, x2, x3]]/(x1, x2, x3)2. □

Remark 4.17. Indeed, Paškūnashas verified the condition in Theorem 4.16 by complicated com-
putation on Ext1 groups.

4.2.2. Proof of 4.8(N4). To proceed with, we need a result of Breuil and Paškūnas [BP12].

Theorem 4.18. There exists Ω ∈ Repsm
F (G) such that

π ↩→ Ω, Ω|K ∼= InjK(σ1 ⊕ σ2).

Lemma 4.19. We have dimF Ext1
G(π, Ω) = 1 and Exti

G(π, Ω) = 0 for i 󰃍 2.
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Proof. Write I(σ) := c-IndG
KZσ for simplicity. Recall that

socKκ(ρ) = σ1 ⊕ σ2, κ(ρ) ∼= I(σ1)/T

by Breuil’s theorem 2.12. Using the exact sequence

0 −→ I(σ1) T−→ I(σ1) −→ π −→ 0,

we obtain a long exact sequence

0 HomG(π, Ω) HomG(σ1, Ω) HomG(σ1, Ω)

Ext1(π, Ω) Ext1
K(σ1, Ω) Ext1

K(σ1, Ω) · · ·

where we have used the isomorphism

Exti
G(I(σ1), Ω) ∼= Exti

K(σ1, Ω)

by Shapiro’s lemma. Since Ω|K is injective as a K-representation by Theorem 4.18, we have
Exti

K(σ1, Ω) = 0 for i 󰃍 1. This proves the vanishing assertion that Exti
G(π, Ω) = 0 for

i 󰃍 2. The first assertion dimF Ext1
G(π, Ω) = 1 is also clear because dimF HomG(π, Ω) = 1 by

construction. □

By Lemma 4.19 and the fact that the block containing π is just {π}, we obtain an injective
resolution of Ω, read as

0 −→ Ω −→ InjG π −→ InjG π −→ 0.

Dually, it gives
0 −→ P −→ P −→ Ω∨ −→ 0.

The first map P → P gives rise to an element in EndG(P ) ∼= Rψ
ρ /ϖ, say x. Pick any lift x in

Rψ
ρ , then P̃ /xP̃ is isomorphic to a projective envelope of σ∨

1 ⊕ σ∨
2 .

4.3. Reconstruction of deformation rings. If σ is a finite O-module (resp. F-module) with
a continuous action of K, we define

M(σ) := N ⊗̂O[[K]] σ.

This defines an exact functor M(−) as N is projective (and hence flat). An equivalent definition
can be

M(σ) := HomO[[K]](N, σ∨)∨.

Using 4.8(N0), this implies that M(σ) is a finitely generated Rψ
ρ -module.

Theorem 4.20 (Paškūnas). Let w, τ be as above. Let Θ be any K-stable lattice in σ(w, τ)
(resp. σcris(w, τ)). Then Rψ

ρ / AnnRψ

ρ

(M(Θ)) is equal to Rψ
ρ (w, τ) (resp. Rψ,cris

ρ (w, τ)).

Proof. For any x : Rψ
ρ → Qp, we have

M(Θ) ⊗Rψ

ρ

Qp
∼= HomK(N ⊗Rψ

ρ
,x Qp, Θ∨)∨.

If ρx denotes the corresponding Galois representation, which is a deformation of ρ, then (N ⊗Rψ

ρ

Qp)∨ is just the unitary Banach space representation Πx := LL(ρx); for this, see in Theorem
4.8(N2) that

V(N ⊗Rψ

ρ

Qp) ∼= ρun
x .

By Colmez’s theorem on locally algebraic vectors of Πx, HomK(Θ, Πx) ∕= 0 if and only if x is a
deformation of type (w, τ) (see Definition 4.2), thus x lies in Spec Rψ

ρ (w, τ). In other words,

Supp M(Θ) = Spec Rψ
ρ (w, τ).
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Since by definition Rψ
ρ (w, τ) is reduced, we get

Rψ
ρ /

󰁳
Ann(M(Θ)) = Rψ

ρ (w, τ).

To really conclude, we need to show that Ann(M(Θ)) is a radical ideal. This is a hard theorem
whose proof uses a result of Dospinescu [Dos15]; we omit the details. □

5. Applications of deformation theory

5.1. Cyclicity. Sometimes (for simple types (w, τ)), it is possible to choose Θ ⊂ σ(w, τ) such
that M(Θ) is cyclic as an Rψ

ρ -module. When this is the case, we deduce from Theorem 4.20
that

M(Θ) ∼= Rψ
ρ (w, τ).

Note that by Nakayama’s lemma, the cyclicity is equivalent to saying that M(Θ) ⊗Rψ

ρ

F is
1-dimensional as an F-vector space; also, this is equivalent to

dimF HomK(Θ/pΘ, κ(ρ)) = 1,

by the definition M(Θ) above.

Example 5.1. Assume ρ ∼ Ind ωr+1
2 , so W (ρ) = {σ1, σ2}. Consider the principal series type

τ = 1⊕ [ηr], such that JH(σ(τ)) = {σ1, σ2}. In this case, Proposition 5.2 below does not apply,
but we can find a lattice inside σ(τ), say Θ, such that

0 −→ σ1 −→ Θ/pΘ −→ σ2 −→ 0.

Indeed, we have
Θ = IndK

I (1⊗ [ηr]), Θ/pΘ ∼= IndK
I (1⊗ ηr).

By Frobenius reciprocity,

HomK(Θ/pΘ, κ(ρ)) ∼= HomI(1⊗ ηr, κ(ρ))

is 1-dimensional (recall Breuil’s theorem on κ(ρ)I1). By Proposition 5.2 and Theorem 4.20,

M(Θ) ∼= Rψ,cris
ρ ((0, 1), τ).

Similarly, there is another lattice Θ′ ⊂ σ(τ) such that

0 −→ σ2 −→ Θ′/pΘ′ −→ σ1 −→ 0

and we have M(Θ′) ∼= Rψ,cris
ρ ((0, 1), τ).

Next, we look at another special case.

Proposition 5.2. Let σ ∈ W (ρ) be a Serre weight. Then M(σ) is a cyclic Rψ
ρ -module and is

isomorphic to F[[x]] where x ∈ Rψ
ρ is as in 4.8(N4).

Proof. Consider the short exact sequence

0 −→ N
x−→ N −→ N/xN −→ 0.

By (N4), N/xN is projective as representation of K. Hence, by applying HomK(−, σ∨)∨, we
obtain

0 −→ M(σ) x−→ M(σ) −→ HomK(N, σ∨)∨ −→ 0.

Again by (N4), the last term is 1-dimensional over F, from which the result follows. □
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5.2. Regularity. Recall that O is ramified over Zp.

Proposition 5.3. Let w, τ be as above. Assume that there exist two K-stable lattices Θ, Θ′ in
σ(w, τ) (resp. σcris(w, τ)) such that the following conditions hold:

(i) pΘ ⊂ Θ′ ⊂ Θ and dimF HomK(Θ/pΘ, κ(ρ)) = dimF HomK(Θ′, κ(ρ)) = 1;
(ii) taking into account multiplicities, JH(Θ/Θ′) contains exactly one element in W (ρ).

Then Rψ
ρ (w, τ) (resp. Rψ,cris

ρ (w, τ)) is a regular local ring.

Proof. We only treat the case for Rψ
ρ (w, τ). The condition (i) implies that M(Θ) and M(Θ′)

are both cyclic modules over Rψ
ρ , hence are isomorphic to Rψ

ρ (w, τ) by Theorem 4.20. The short
exact sequence

0 −→ Θ′ −→ Θ −→ Θ/Θ′ −→ 0
induces an exact sequence

0 −→ M(Θ′) f−→ M(Θ) −→ M(Θ/Θ′) −→ 0.

Since both M(Θ) and M(Θ′) are isomorphic to Rψ
ρ (w, τ), the morphism f is equal to multi-

plication by some element y ∈ Rψ
ρ (w, τ). On the other hand, by Proposition 5.2, condition (ii)

implies that M(Θ/Θ′) is isomorphic to F[[x]]. This means that Rψ
ρ (w, τ)/(y) is a regular local

ring of Krull dimension 1. Since Rψ
ρ (w, τ) has Krull dimension 2, it is also regular. □

Example 5.4. Emerton–Gee–Savitt computed explicitly the ring in Example 5.1 and attained
the result that

Rψ,cris
ρ ((0, 1), τ) ≃ O[[X, Y ]]/(XY − p),

which is a regular ring (as O is unramified).
One may use Proposition 5.3 to give another proof of regularity of Rψ

ρ ((0, 1), τ) without
explicit computation. Indeed, one may check that (with the notion of Example 5.1): if Θ′ is
chosen to satisfy Θ′ ⊂ Θ but Θ′ ∕⊂ pΘ, then there exists a short exact sequence7

0 −→ Θ′ −→ Θ −→ σ2 −→ 0.

Then we can conclude by Proposition 5.3.

5.3. Gluing lattices. Consider the following situation:
• V1, V2 are two non-isomorphic irreducible locally algebraic representations of K,
• Θi ⊂ Vi is an O-lattice for i = 1, 2, and
• for each σ ∈ W (ρ), there exists K-equivariant surjections ri : Θi ↠ σ.

Let L be the fibered product of r1 and r2, i.e.

0 −→ Θ −→ Θ1 ⊕ Θ2
r1−r2−−−−−→ σ −→ 0.

We also call Θ the gluing of Θ1 and Θ2 along σ.

Proposition 5.5. Fix σ ∈ W (ρ). Assume M(Θ1) and M(Θ2) are both cyclic Rψ
ρ -modules. Let

Θ be the gluing of Θ1 and Θ2 along σ. Then M(Θ) is cyclic if and only if
Ann(M(Θ1)) + Ann(M(Θ2)) = Ann(M(σ)).

Proof. It follows from the following fact of commutative algebra. Let (R,mR) be a commutative
noetherian local ring. Let I0, I1, I2 be ideals of R such that I1, I2 ⊂ I0 ⊂ mR. Consider the
natural surjective homomorphism R/I1 ⊕ R/I2 ↠ R/I0. Then Ker(R/I1 ⊕ R/I2 ↠ R/I0) is a
cyclic R-module if and only if I1 + I2 = I0. □

7If O is not unramified, then we would rather get

0 −→ Θ′ −→ Θ −→ (O/p) ⊗F σ2 −→ 0.

Then M((O/p) ⊗F σ2) ≃ (O/p)[[x]], which is not a regular ring.
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Note that p ∈ I0, so to deduce the cyclicity of M(L), it requires (at least) p ∈ I1 + I2.

Example 5.6. Assume ρ ∼ Ind ωr+1 as in previous examples. Take τ1 to be the principal series
type and τ2 to be the cuspidal type. Since σ1 := Symr F2 occurs in both σ(τ1) and σ(τ2), we
can find Θi ⊂ σ(τi) such that Θi ↠ σ and σ is cosocle. Precisely,

0 Symp−1−r F2 ⊗ detr Θ1/pΘ1 σ1 0,

0 Symp−3−r F2 ⊗ detr+1 Θ2/pΘ2 σ1 0.

One checks that the gluing lattice Θ ⊂ σ(τ1) ⊕ σ(τ2) has mod p reduction isomorphic to
ProjGL2(Fp)(σ1), i.e.,

Θ/pΘ ∼= (σ1 F2 ⊗ detr ⊕ Symp−3−r F2 ⊗ detr+1 σ1).

By explicit description of κ(ρ)K1 (which is multiplicity free), we see that

HomK(Θ/pΘ, κ(ρ))

is 1-dimensional, so M(Θ) is a cyclic Rψ
ρ -module by Proposition 5.2, and by Proposition 5.5,

I1 + I2 = I0 := AnnRψ

ρ

(M(σ1)).

Note that M(Θ2/pΘ2) ∼= M(σ1) ∼= F[[x]] follows from the second short exact sequence above.
Thus,

I2 + (p) = AnnRψ

ρ

(M(Θ2)) + (p) = AnnRψ

ρ

(M(Θ2/pΘ2)) = I0

and so I1 + I2 = (p, I2).

6. Gelfand–Kirillov dimension

6.1. Definition of Gelfand–Kirillov dimension. Let G be a compact p-adic analytic group,
or equivalently a closed subgroup of GLn(Zp) for some n 󰃍 1. Define G1 := G and inductively
Gi+1 := Gp

i [Gi, G] for i 󰃍 1. Then {Gi} forms a decreasing chain, called the lower p-series of
G.

Definition 6.1. The group G is uniform if it satisfies:
• G/Gp is abelian for odd p, or G/G4 is abelian for p = 2,
• G is topologically finitely generated, and
• [G : G2] = [Gi : Gi+1] for all i 󰃍 1.

When G is uniform and pro-p, if [G : G2] = pd with non-negative integer d, then we say G

has dimension d. Also, d is equal to the cardinality of a minimal set of (topological) generators
of G.

Example 6.2. Consider subgroups of GL2(Qp).
(1) K1/Z1 is a uniform group of dimension 3.
(2) I1/Z1 is not uniform. First, we have the Iwahori decomposition

I1 = (I1 ∩ U−)(I1 ∩ T )(I1 ∩ U).

Second, using the following identity
󰀕

1 0
−p(1 + p)−1 1

󰀖 󰀕
1 1
0 1

󰀖 󰀕
1 0
p 1

󰀖 󰀕
1 −(1 + p)−1

0 1

󰀖
=

󰀕
1 + p 0

0 (1 + p)−1

󰀖
,

we deduce that the group I1 ∩ SL2(Qp) has the following two topological generators:
󰀕

1 1
0 1

󰀖
,

󰀕
1 0
p 1

󰀖
.

So I1/Z1 is generated by two elements.
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Theorem 6.3. Assume G is uniform and pro-p of dimension d. Let π be an admissible smooth
F-representation of G. There exist 0 󰃑 c 󰃑 d and real numbers a 󰃍 b > 0 such that8

bpnc + O(pn(c−1)) 󰃑 dimF(πGn) 󰃑 apnc + O(pn(c−1)).

The integer c (or −∞ if π = 0) is called the Gelfand–Kirillov dimension of π.

Remark 6.4. If G′ is a p-adic analytic group, say GL2(Qp) or D×, and π is an admissible smooth
F-representation of G′, we define its GK-dimension to be the dimension when restricted to a
uniform pro-p subgroup. This clearly does not depend on the choice of the subgroup.

Now we give another definition of dimG(π) in the theory of Iwasawa algebra. Let Λ be the
Iwasawa algebra of G over F, i.e.,

Λ := F[[G]] = lim←−F[G/N ],

where the inverse limit is taken over the open normal subgroups N of G. It is always a complete
(left and right) noetherian ring (by Lazard), and is local if G is pro-p, an integral domain if G

has no (nontrivial) p-torsion elements.
A finitely generated (left) Λ-module is said to be of grade (or codimension) c if

Exti
Λ(M, Λ) = 0, ∀i < c

and is nonzero for i = c; the grade of the zero module is defined to be ∞. We denote the grade
by jΛ(M). If M is nonzero, then jΛ(M) 󰃑 d.

Let π be an admissible smooth F-representation of G. Let d be the dimension of G. The dual
π∨ := HomF(π,F) is a finitely generated Λ-module.

Theorem 6.5. The Gelfand–Kirillov dimension of π is equal to

d − jΛ(π∨).

6.2. p-valuation. Let G be a compact p-adic analytic group.

Definition 6.6. A p-valuation ω on G is a real-valued function

ω : G\{1} −→ (0, ∞)

which, with the convention ω(1) = ∞, satisfies for any g, h ∈ G that
(a) ω(g) > 1/(p − 1);
(b) ω(g−1h) 󰃍 min(ω(g), ω(h));
(c) ω([g, h]) 󰃍 ω(g) + ω(h);
(d) ω(gp) = ω(g) + 1.

The p-valuation ω is called saturated if any g ∈ G satisfying ω(g) > p/(p − 1) lies in a pth power
of G.

Take h = 1 in (b) we get ω(g−1) 󰃍 ω(g), and by symmetry,

ω(g−1) = ω(g).

One also checks using (b) and (c) that

ω(ghg−1) = ω(h),

and if ω(g) ∕= ω(h), then
ω(gh) = min(ω(g), ω(h)).

Whenever G has nontrivial p-torsion elements, there exists no p-valuation on G because ω(·) = ∞
on such elements by (d).

Example 6.7. The followings are examples of p-valuations in practice.

8In fact, one can prove that a 󰃍 b 󰃍 1/c!.
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(1) Let L be a finite extension of Qp, with valuation v normalized such that v(p) = 1. As
for the first principal congruence subgroup K1 ⊂ GL2(OL), a p-valuation on K1 is given
by ω(g) := v(g − 1), where for (mij) ∈ M2(L) we set

v(mij) := min{vp(mij)}.

(2) Consider the pro-p-Iwahori subgroup

I1 =
󰀕

1 + pZp Zp

pZp 1 + pZp

󰀖
.

We cannot define ω in the same way as in (1), because its value sends
󰀃 1 1

0 1
󰀄

∈ I1 to 0.
But one can embed I1 into GL2(Qp(√p)) as follows. Let D be the diagonal matrix

D =
󰀕

1 0
0 √

p

󰀖

and define for x ∈ I1 that
ω(x) := v(D−1xD − I2).

Then ω is a saturated p-valuation on I1. We may identify I1/Z1 with I1 ∩ SL2(Zp). For

g =
󰀕

1 + pa b

pc 1 + pd

󰀖
∈ I1 ∩ SL2(Zp),

the definition of ω(·) gives

ω(g) = min
󰀝

1 + vp(a), 1
2 + vp(b), 1

2 + vp(c), 1 + vp(d)
󰀞

.

(3) For (1 + pD)/Z1, we set vD(a) := vp(NrdD(a)) and

ω(g) := 1
2vD(g − 1).

Again, this is a saturated p-valuation.

For any ν > 0, we put
Gν := {g ∈ G : ω(g) 󰃍 ν}, Gν+ := {g ∈ G : ω(g) > ν}

and form the graded abelian group

gr G :=
󰁐

ν>0
grνG =

󰁐

ν>0
Gν/Gν+.

This is an Fp-vector space by 6.6(d). It becomes a Lie algebra via
grνG × grν′G grν+ν′G

(ξ, η) [ξ, η] = [g, h]G(ν+ν′)+

where g, h are representatives of ξ, η, respectively, and [g, h] := ghg−1h−1. It also carries an
action of F[ε] (where ε is a formal variable) via

ε : gGν+ 󰀁−→ gpG(ν+1)+.

We have the following facts:
• gr G is torsion-free as an Fp[ε]-module.
• (G, ω) is saturated if and only if

ε(gr G) =
󰁐

ν>p/(p−1)

grνG.

As a consequence, when (G, ω) is saturated, gr G is a finite free Fp[ε]-module with a basis given
by an Fp-basis of

󰁏
0<ν󰃑p/(p−1) grνG.

Example 6.8. Below we assume p 󰃍 5.
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(1) Let G = K1/Z1 which is isomorphic to K1 ∩ SL2(Zp). We only need to determine an
Fp-basis of gr1G, which is given by the images of

󰀕
1 p

0 1

󰀖
,

󰀕
1 0
p 1

󰀖
,

󰀕
1 + p 0

0 (1 + p)−1

󰀖
.

Denote them by e, f, h, respectively. One checks that

[e, f ] = εh, [h, e] = 2εe, [h, f ] = −2εf.

(2) Let G = I1/Z1 which is isomorphic to I1 ∩ SL2(Zp). We only need to determine an
Fp-basis of gr1/2G ⊕ gr1G which is given by

󰀕
1 1
0 1

󰀖
,

󰀕
1 0
p 1

󰀖
,

󰀕
1 + p 0

0 (1 + p)−1

󰀖
.

Denote them by e, f, h, respectively. Then one checks that

[e, f ] = h, [h, e] = 2εe, [h, f ] = −2εf.

We will use later the base of gr G to Fp, i.e.,

gFp
= Fp ⊗Fp[ε],ε 󰀁→0 gr G = Fpe ⊕ Fpf ⊕ Fph,

satisfying
[e, f ] = h, [h, e] = [h, f ] = 0.

(3) Let G = (1 + pD)/Z1. Again, we only need to determine an Fp-basis of gr1/2G ⊕ gr1G

which is given by

1 + ϖD, 1 + ϖD[t], 1 + p(t − tp)

where t ∈ µp2−1\µp−1 ↩→ O×
D. Moreover, this gives the same Lie algebra as in (2).

6.3. Iwasawa algebras. Now we consider the algebra Zp[[G]]. The p-valuation ω on G induces
a filtration on Zp[[G]] as follows. For ν 󰃍 0, let Jν denote the smallest closed Zp-submodule of
Zp[[G]] which contains all elements of the form

pℓ(g1 − 1) · · · (gs − 1)

with s 󰃍 0, gi ∈ G, and
ℓ + ω(g1) + · · · + ω(gs) 󰃍 ν.

Let Jν+ :=
󰁖

ν′>ν Jν′ and
grJΛ :=

󰁐

ν󰃍0
Jν/Jν+.

The homomorphism of abelian groups
Lν : grνG Jν/Jν+

gGν+ (g − 1) + Jν+

extends to a homomorphism of graded Fp[ε]-Lie algebra

L : gr G −→ grJZp[[G]],

where the Fp[ε]-algebra structure on grJZp[[G]] is given through the isomorphism Fp[ε] ∼−→ grZp

(sending ε to the principal part of p + p2Zp).
Let UFp[ε](gr G) be the universal enveloping algebra of gr G as an Fp[ε]-Lie algebra. Then by

the universal property we have a homomorphism of associative Fp[ε]-algebras

L̃ : UFp[ε](gr G) −→ grJ Zp[[G]].

Theorem 6.9 ([Laz65, Chap III, 2.1.2]). The map L̃ is an isomorphism.

The filtration Jν on Zp[[G]] induces a filtration on Fp[[G]], which we denote by Jν .
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Corollary 6.10. As a consequence, there is an isomorphism

UFp
(Fp ⊗Fp[ε] gr G) ∼= grJ Fp[[G]].

Example 6.11. (1) If G is uniform of dimension d, then grJ Fp[[G]] is a commutative poly-
nomial ring of d variables.

(2) For G = I1/Z1 (and similarly G = (1 + pD)/Z1), we have

grJ Fp[[G]] ∼= UFp
(gFp

)

where gFp
is defined in Example 6.8(2).

6.4. The m-adic filtration. Let m denote the maximal ideal of Fp[[G]]. In practice, we need to
consider the m-adic filtration on Fp[[G]] (as a finitely generated module over Fp[[G]] that carries
naturally a compatible m-adic filtration).

Lemma 6.12. Assume G = I1/Z1 or (1 + pD)/Z1. Then, up to rescalar, the J-filtration on
Fp[[G]] coincides with the m-adic filtration. Precisely,

J i/2 = mi, i 󰃍 0.

We finally obtain the following result. Note that F[[G]] = F ⊗Fp Fp[[G]].

Theorem 6.13. Assume G = I1/Z1 or (1 + pD)/Z1. Then,

(1) grmF[[G]] is isomorphic to F ⊗Fp U(gFp), with deg e = deg f = 1 and deg h = 2.
(2) h is a regular sequence of central elements of grmF[[G]], and grmF[[G]]/(h) is isomorphic

to F[e, f ], a commutative polynomial ring in two variables.

6.5. H-action. We only treat the GL2 case. Let

H :=
󰀝󰀕

[a] 0
0 [d]

󰀖
: a, d ∈ F×

p

󰀞
,

viewed as a subgroup of I. It acts naturally on F[[I1/Z1]] via conjugation, and also on gri
m(F[[I1/Z1]]).

One checks that for 1 󰃑 i 󰃑 p − 1,
󰀕

1 i

0 1

󰀖
− 1 ≡ i

󰀕󰀕
1 1
0 1

󰀖
− 1

󰀖
mod m2

which implies that in m/m2,
󰀕

[a] 0
0 [d]

󰀖 󰀕
1 1
0 1

󰀖 󰀕
[a] 0
0 [d]

󰀖−1

− 1 = (ad−1)
󰀕󰀕

1 1
0 1

󰀖
− 1

󰀖
.

This means that H acts on e via the character α, where α : H → F× sends
󰀃 [a] 0

0 [d]
󰀄

to ad−1.
Similarly, one checks that H acts on f (resp. h) via α−1 (resp. 1).

Remark 6.14. In the case of (1 + pD)/Z1, the group [F×
p2 ] acts naturally on F[[(1 + pD)/Z1]],

and also on grmF[[(1 + pD)/Z1]]. But the elements e, f constructed in Example 6.8(3) are not
eigenvectors of F×

p2 . However, one can construct X, Y ∈ F[[(1+pD)/Z1]] such that for all t ∈ F×
p2 ,

[t] · X = α(t)X, [t] · Y = α−1(t)Y,

where α : F×
p2 → F× is the character sending t to tp−1.
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6.6. A control theorem. Now we are ready to prove the following criterion for controlling the
GK-dimension.

Theorem 6.15. Let π be an admissible smooth representation of G := O×
D/Z1 over F. Assume

that for each character χ such that HomG(χ, π) ∕= 0, we have the equality

[π[m3] : χ] = [π[m] : χ]

where m denotes the maximal ideal of F[[(1 + pD)/Z1]]. Then

GK dim(π) 󰃑 1.

Proof. The dual π∨ is a finitely generated F[[G]]-module, so grmπ∨ is finitely generated over
grmF[[G]]. Moreover the graded grmF[[G]]-module grmπ∨ is generated by its homogeneous ele-
ments of degree 0.

Let aG be the left ideal of grmF[[G]] generated by xy, yx (of degree 2). We easily see that aG is
in fact a two-sided ideal of grmF[[G]]. The assumption implies that xy, yx act trivially on grmπ∨,
hence so does aG. Since grmF[[G]]/aG is isomorphic to F[x, y]/(xy), which is a commutative ring
of Krull dimension 1, the result follows. □

It is natural to make the following definition.

Definition 6.16. Let C denote the category of admissible smooth F-representations of GL2(Qp)
or D×, such that grmπ∨ is annihilated by some power of aG.

Any π ∈ C has Gelfand–Kirillov dimension 1. Our main result says that the representation
πB(r) lies in C (under some genericity condition). It is clear that C is an abelian category, and
is stable under extensions (using Artin–Rees lemma).

7. Estimating Gelfand–Kirillov dimension in quaternion case

7.1. An upper bound of GK-dimension. Recall that we have defined an admissible smooth
representation of D×:

πB(r) := Sψ(Up,F)[m]
where B is a definite quaternion algebra over Q, r : GQ → GL2(F) an absolutely irreducible
continuous representation, assumed to be modular, and D := B ⊗Q Qp.

Our aim is to understand the structure of πB(r). It can be proven that πB(r) is infinite
dimensional (as F-vector space), so it is natural to look at its O×

D-socle filtration. We have
determined the structure of the socle πB(r)[m] without counting the multiplicity. For example,
by Theorem 3.28,

• if ρ := r|GQp
∼ Ind(ωr+1

2 ) and r ∕= 0, p − 1, then

WB(r) = {ξr, ξpr, ξrα−1, ξprα};

• if ρ ∼
󰀕

ωr+1 ∗
0 1

󰀖
and is generic, then

WB(r) = {ξrα−1, ξprα}.

The main result of the lecture is the following.

Theorem 7.1. Under some genericity condition on ρ, we have

GK dim(πB(r)) 󰃑 1.

For simplicity, let’s assume that each Serre weight occurs with multiplicity one in socO×
D

πB(r),
i.e.,

πB(r)[m] =
󰁐

χ∈WB(ρ)

χ.
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In other words, [πB(r)[m] : χ] = 1 for any χ ∈ WB(r). Then, as a direct consequence of Theorem
6.15, it is sufficient to show that for any χ ∈ WB(r),

[πB(r)[m3] : χ] = 1,

or equivalently,
HomO×

D
(V3 ⊗ χ, πB(r)) = 1

where by definition V3 := ProjO×
D

/m3 1.

7.2. The patched module. In the setting of quaternion algebra (or GL2-case beyond GL2(Qp)),
one has a construction of patched modules (due to Caraiani–Emerton–Gee–Geraghty–Paškūnas–
Shin) which serves a replacement of Paškūnas’ P̃ . Roughly, M∞ is a finitely generated R∞[D×]-
module, where

R∞ := Rψ
ρ [x1, . . . , xg]

for some n 󰃍 1 (the xi are called patched variables), satisfying the following conditions.
(a) M∞/mR∞

∼= πB(r)∨.
(b) For any type (w, τ), the action of R∞ on M∞(σD(w, τ)) factors through

R∞(w, τ) := R∞ ⊗Rψ

ρ

Rψ
ρ (w, τ).

Here, M∞(−) is defined as HomO×
D

(M∞, (−)∨)∨ and σD(w, τ) is the representation of
O×

D defined by
Symb−a−1 E2 ⊗ deta ⊗ σD(τ).

(c) There exists another regular local ring S∞, and a local map S∞ ↩→ R∞ such that
M∞/mS∞ is projective as O×

D-representation. Moreover,

(♦) dim S∞ = dim R∞(w, τ).

Equivalently, this requires S∞ ∼= O[[y1, . . . , yg+1]] in our situation.
Recall that O×

D embeds into GL2(Zp2) and then embeds into GL2(O) via the embedding
GL2(Zp2) ⊂ GL2(O). An explicit embedding is given by

ϖD 󰀁−→
󰀕

0 1
p 0

󰀖
, a 󰀁−→

󰀕
a 0
0 σ(a)

󰀖

for all a ∈ Qp2 . We are particularly interested in the case (a, b) = (−1, 2). Equipped with this
O×

D-action, Sym2 E2 ⊗ det−1 is an irreducible representation of O×
D. Note that the action of O×

D

stabilizes the lattice Sym2 O2 ⊗ det−1.

Lemma 7.2. As a representation of O×
D,

(Sym2 O2 ⊗ det−1)/p ∼= Sym2 F2 ⊗ det−1,

and the semisimplification is given by

(Sym2 O2 ⊗ det−1)ss = α ⊕ 1⊕ α−1.

Proof. It is a direct verification. For each a ∈ µp2−1,

[a]X2 =
󰀕

[a] 0
0 [ap]

󰀖
X2 = a2(aap)−1X2 = a−(p−1)X2 = α−1(a)X2.

Similarly, XY has eigencharacter 1 and Y 2 has eigencharacter α. □
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7.3. The Gluing argument. To prove the main result Theorem 7.1, it suffices to verify the
isomorphism

HomO×
D

(V3 ⊗ χ, πB(r)) = 1.

It is further equivalent to show that M∞(V3 ⊗ χ) is a cyclic R∞-module.

Step I. Fix χ ∈ WB(r). We do this by gluing the following three types:
• w0 = (0, 1), τ0 = [χ] ⊕ [χp], and take σD(w0, τ0) = [χ];
• w1 = (−1, 2), τ1 = [χα] ⊕ [(χα)p], and take σD(w1, τ1) = (Sym2 E2 ⊗ det−1) ⊗ [χ];
• w2 = (−1, 2), τ2 = [χα−1] ⊕ [(χα−1)p], and take σD(w2, τ2) = (Sym2 E2 ⊗ det−1) ⊗

[χα−1].
The Jordan–Holder factors of reduction mod p of

󰁏2
i=0 σD(wi, τi) exactly gives JH(V3 ⊗ χ).

Step II. Choose an integral lattice Θi ⊂ σD(wi, τi) such that Θi/pΘi has cosocle χ; this is
always possible.

Proposition 7.3. For i = 0, 1, 2, M∞(Θi) is a cyclic R∞-module.

Proof. This uses that R∞(wi, τi) is a regular local ring, as Rψ
ρ (wi, τi) is (see Proposition 5.3).

Recall Auslander–Buchsbaum theorem: if A is a noetherian local ring and M ∕= 0 is a finitely
generated A-module such that proj dim M < ∞, then

depth M + proj dim M = depth A.

Note that, when A is regular, the condition proj dim M < ∞ is automatic.
Apply it to M∞(Θi), which is a Cohen–Macauley module of Krull dimension equal to dim S∞

by condition (c) above, thus

depth M∞(Θi) = dim S∞ = dim R∞(wi, τi)

by (♦). The formula of Auslander–Buchsbaum for M∞(Θi) implies that M∞(Θi) is projective,
and hence free. □

Step III. We glue the lattices Θi for i = 0, 1, 2. For example, let

0 −→ Θ′ −→ Θ0 ⊕ Θ1 −→ χ −→ 0

be the gluing of Θ0 and Θ1 along the common quotient χ. To show that M∞(Θ′) is cyclic, it is
equivalent to show

AnnR∞ M∞(Θ0) + AnnR∞ M(Θ1) = AnnR∞ M∞(χ).

The latter condition can be translated to relations between local deformation rings Rψ
ρ (−)

(i.e. forgetting patching variables), which can be proved via GL2(Qp)-side, because by work of
Barthel–Livné, Breuil, Paškūnas, Morra, we have a complete understanding about κ(ρ).

7.4. A lower bound of GK-dimension. First recall the miracle flatness from commutative
algebra.

Theorem 7.4 (Miracle flatness). Let R be a noetherian local ring and M be a finitely generated
R-module. Assume that

• R is regular,
• M is Cohen–Macaulay, and
• dim R + dim M ⊗R F = dim M .

Then M is a flat R-module.

In fact, one always have
dim R + dim M ⊗R F 󰃍 dim M

and the equality holds if and only if M is flat.
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Gee–Newton generalized this to finitely generated modules over non-commutative Iwasawa
algebras. Let G be compact p-adic analytic group, which we assume to be pro-p. Let R be
a noetherian local O-algebra, M be a finitely generated R[[G]] := R ⊗̂O O[[G]]-module. For
simplicity, assume R is a power series ring over O, say

R ∼= O[[x1, . . . , xn]].
By identifying R with O[[Zn

p ]], we may identify R[[G]] with O[[G × Zd
p]]. Thus we can define the

grade of M , and define its δ-dimension9 to be
δR[[G]](M) := (n + 1 + dim G) − jR[[G]](M).

The module M is said to be Cohen–Macaulay if
Extj

R[[G]](M, R[[G]]) ∕= 0 only for j = jR[[G]](M).

Theorem 7.5 (Gee–Newton, [GN22, Appendix A]). Let R, M be as above. Assume that M is
Cohen–Macaulay. Then

dim R + δ(M ⊗R F) 󰃍 δ(M)
and the equality holds if and only if M is flat over R. Moreover, if this is the case, then M ⊗R F
is also Cohen–Macaulay.

Proof. For the first statement, by induction it suffices to show δ(M/xM) 󰃍 δ(M)−1 for x ∈ mR.
Setting M [x∞] :=

󰁖
n󰃍1 M [xn], we have a short exact sequence

0 −→ M [x∞] −→ M −→ M/M [x∞] −→ 0
and δ(M) = max(δ(M [x∞]), δ(M/M [x∞])). Since M is finitely generated, we have M [x∞] =
M [xn] for some n ≫ 0. Also note that the induced map

x : M/M [x∞] −→ M/M [x∞]
is injective. We are thus reduced to treat separately the two cases: (a) x is nilpotent on M ; (b)
x is not a zero-divisor. In case (a), it is easy to see that δ(M) = δ(M/xM). In case (b), we
have a short exact sequence

0 −→ M
x−→ M −→ M/xM −→ 0;

if δ(M/xM) 󰃑 δ(M) − 2, then the map

x : Extj(M)(M, R[[G]]) −→ Extj(M)(M, R[[G]])
would be an isomorphism, which is not possible by Nakayama’s lemma (for x ∈ mR).

As for the second statement, we need to show δ(M/xM) 󰃑 δ(M) − 1 if and only if x is
injective on M .

(i) If x is injective, then we have a short exact sequence about x : M → M as above. A
Hilbert-polynomial-type argument then shows that M/xM must have a smaller size
than M .

(ii) The converse use the Cohen–Macaulayness of M : we see M is pure, i.e. any nonzero
submodule of M has the same grade as M (hence the same size as M). Thus, if M [x] ∕= 0,
again a Hilbert-polynomial-type argument shows that M/xM has the same size as M ,
which means that δ(M/xM) = δ(M).

□

Corollary 7.6. Assume that ρ := r|GQp
is generic (and hence R∞ is formally smooth).

(1) GK dim πB(r) = 1 and πB(r)∨ is a Cohen–Macaulay module.
(2) M∞ is flat over R∞.
(3) Tm is a complete intersection ring.

9If π is an admissible representation of G, then δ-dimension of π∨ is just the GK-dimension of π. We should
think of δ-dimension as Krull dimension in commutative algebras.
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Proof. By the construction of M∞ one has

δ(M∞) = dim R∞ + 1,

so implies δ(πB(r)∨) 󰃍 1 by Gee–Newton 7.5. Combined with the main result in last lecture,
we obtain (1); the others assertions except (3) follow from Theorem 7.5 again.

For (3), we use that fact that there exists a surjection

Rr := R∞/mS∞ −↠ Tmr
.

By choosing a regular sequence of S∞ which generates mS∞ , we show inductively that Rr acts
faithfully on S1(Up, O)mr

. Since Tmr
also acts faithfully, the surjection is an isomorphism. □

Corollary 7.7. Assume that ρ is generic. Then πB(r) does not admit nonzero quotients which
are finite-dimensional as F-vector spaces.

Proof. Otherwise, we obtain dually a nonzero submodule M ↩→ πB(r)∨, which is finite-dimensional.
Let Λ := F[[(1 + pD)/Z1]]. For finite-dimensional M , its grade is 3, so Ext3

Λ(M, Λ) ∕= 0. But the
inclusion M ↩→ πB(r)∨ thus implies that

Ext3
Λ(πB(r)∨, Λ) ∕= 0

as Ext4
Λ(−, Λ) = 0. This leads to a contradiction to the Cohen–Macaulayness of Corollary

7.6. □

We explain why we are interested in the flatness of M∞. Given any point x : Rψ
ρ → O′, where

O′ is a finite extension of Zp, we are able to extend it to a point x : R∞ → O′ by, for example,
a modularity lifting argument. Define

Π(x) := (M∞ ⊗R∞ O′)d ⊗O′ E′

which is a unitary Banach space representation of D×; it is expected to be the Jacquet–Langlands
correspondence to ρx. But it is not clear from the definition that Π(x) is nonzero: indeed,
M∞ ⊗R∞ O′ could be an O-torsion module, so that (−)d = 0. Gee–Newton observed that
this non-nullity is implied by the stronger statement that M∞ is flat, which turns out to be
equivalent to GK dim(πB(r)) 󰃑 1.

Note that one can also talk about the δ-dimension of Π(x), viewing Π(x)d as a finitely
generated module over O[[(1 + pD)/Z1]][1/p].

Theorem 7.8. For any point x : Rψ
ρ → O′, Π(x) is nonzero and has δ-dimension 1. Moreover,

its mod p reduction is isomorphic to πB(r).

Remark 7.9. This non-nullity at all points differs from the classical Jacquet–Langlands corre-
spondence, as only discrete series of GLn(L)-representations show up in the correspondence.
More precisely, for ρx non-discrete series, it is expected that Π(x)alg = 0.

8. Applications of Scholze’s functor and Ludwig’s result

8.1. Scholze’s functor. Let L be a finite extension of Qp. Let L̆ denote the completion of
the maximal unramified extension of L in a fixed L. Let D be the central division algebra over
L of invariant 1/n. To any admissible smooth F-representation π of G, Scholze associates a
Weil-equivariant sheaf Fπ on the étale site of the adic space Pn−1

L̆
.

More precisely, define the sheaf Fπ on (Pn−1
L̆

)et by setting

Fπ(U) := Mapcont,GLn(L)×D×(|U ×Pn−1
L̆

MLT,∞|, π)

for U ∈ (Pn−1
L̆

)et. Here MLT,∞ is the perfectoid space of Lubin–Tate tower at infinite level,
which admits the Gross–Hopkins period map the association

πGH : MLT,∞ −→ Pn−1
L̆

.
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Scholze proved that
Si : π 󰀁−→ Hi

et(Pn−1
Cp

, Fπ)

defines a covariant cohomological δ-functor from Repadm
F (GLn(L)) to the category of admissible

smooth representations of D× which carries a continuous commuting action of GL.
We denote the functors by Si. The following result comes from [Sch18].

Theorem 8.1 (Scholze). Let π be an admissible smooth F-representation of GLn(L).
(1) Si(π) = 0 for i > 2(n − 1).
(2) If π is an injective GLn(OL)-representation then Si(π) = 0 for i > n − 1.
(3) The natural map

S0(πSLn(L)) ↩−→ S0(π)
is an isomorphism. In particular, if πSLn(L) = 0 then S0(π) = 0. Moreover, if π carries
a central character, then S0(π) is always finite-dimensional (as F-vector space).10

Originally, Scholze defined the functors for admissible representations on O-torsion modules,
but it directly extends to locally admissible representations.

We will also need to work on the modules via the Pontryagin duality. Namely, we will consider
the covariant homological δ-functor {S̆i}i󰃍0 defined by

S̆i : M 󰀁−→ (Si(M∨))∨.

8.2. Local-global compatibility à la Scholze. From now on, we assume G = GL2(Qp).
• Suppose B/Q is an indefinite quaternion algebra (i.e. split at ∞) that is ramified at p;

so B ⊗Q Qp
∼= D.

• Suppose B′/Q is a definite quaternion algebra that splits at p, so B′ ⊗Q Qp
∼= M2(Qp);

suppose B′ has the same ramification behavior as B at all the other places.
• Fix an isomorphism B×(Ap

Q,f ) ∼= B′×(Ap
Q,f ) and an open compact subgroup Up ⊂

B×(Ap
Q,f ) ∼= B′×(Ap

Q,f ).
• On B′, define S1(Up,F) as before; on B, we define Hi(Up,F) for i = 0, 1, 2 as

Hi(Up,F) := lim−→
Up⊂D×

Hi
et(ShUpUp,Q,F).

Both of them carry an action of the Hecke algebra T, and Hi(Up,F) carries an extra
action of GQ.

• Let r : GQ → GL2(F) and mr ⊂ T be as before. We may consider

S(Up,F)mr
, S(Up,F)[mr]

as well as
H1(Up,F)mr

, H1(Up,F)[mr].
• Let M ′

∞ be the patched module for B′, and M∞ be the one for B, both over R∞. Then

M ′
∞/mR∞

∼= (S(Up,F)[mr])∨, M∞/mR∞
∼= (H1(Up,F)[mr])∨.

Remark 8.2. In previous sections we have worked with definite quaternion algebra which is ram-
ified at p, for example πB(r). But the results remain true with πB(r) replaced by H1(Up,F)[mr].

We collect some known results about Si in the case of GL2(Qp).

Theorem 8.3. Assume G = GL2(Qp).

10This is because πSLn(L) is finite-dimensional (which uses that there is no nontrivial extension between
characters of GLn(L) admitting central character), and that S0(χ ◦ det) is finite-dimensional.
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(1) There is a canonical Tmr
[GQp × D×]-equivariant isomorphism

S1(S(Up,F))mr
∼= H1(Up,F)mr

.

More generally, there is a canonical R∞[GQp
× D×]-equivariant isomorphism

S̆1(M ′
∞) = M∞.

(2) We have Si(S(Up,F)mr
) = 0 for i = 0, 2. Similarly,

S̆0(M ′
∞) = S̆2(M ′

∞) = 0.

(3) There is an inclusion

S1(S(Up,F)[mr]) ⊂ H1
et(Up,F)[mr]

whose cokernel is finite-dimensional.

Proof. (1) Use p-adic uniformization theorem of Čerednik.
(2) For i = 2 it is Theorem 8.1(2); for i = 0 it is Ihara’s lemma and Theorem 8.1(3). The

statement for M ′
∞ is a consequence of the construction.

(3) Let (f1, . . . , fn) be a set of generators of mr. Write V = S(Up,F)mr
for simplicity. Then

there is a left-exact sequence

0 −→ V [mr] −→ V
(f1,...,fn)−−−−−−−→

n󰁐

i=1
V.

Let Q and C be the image and the cokernel of (f1, . . . , fn), respectively. Then
• We have S0(Q) = 0 as S0(Q) ↩→ S0(

󰁏n
i=1 V ); also, S2(Q) = 0 as S2(V ) ↠ S2(Q).

• Thus,

0 −→ S1(V [mr]) −→ S1(V ) α−→ S1(Q) −→ S2(V [mr]) −→ 0.

• Moreover, the sequence

0 −→ Q −→
n󰁐

i=1
V −→ C −→ 0

induces the cohomological sequence

0 −→ S0(C) −→ S1(Q) β−→ S1

󰀣
n󰁐

i=1
V

󰀤
.

On the other hand, H1
et(Up,F)[mr] is identified with the kernel of

β ◦ α : S1(V ) −→ S1

󰀣
n󰁐

i=1
V

󰀤
=

n󰁐

i=1
S1(V )

and we want to control the cokernel of the following map

γ : S1(V [mr]) −→ ker(β ◦ α);

but it embeds in ker(β) = S0(C) and we conclude by Theorem 8.1(3). □

Corollary 8.4. When Rψ
ρ is formally smooth, the inclusion in Theorem 8.3(3) is an equality,

i.e.
S1(S(Up,F)[mr]) = H1

et(Up,F)[mr].

Proof. This follows from Corollary 7.7. □

Finally, we recall the following theorem [Lud17].

Theorem 8.5 (Ludwig). If π is a principal series, then S2(π) = 0.
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8.3. Local-global compatibility à la Emerton. Recall that κ(ρ) denotes the representation
of GL2(Qp) corresponding to ρ by mod p LLC.

Theorem 8.6 ([Eme06]). There is an isomorphism

S(Up,F)[mr] ∼= κ(ρ)⊕s

of GL2(Qp)-representations, for some s 󰃍 1.

Proof. In fact, Emerton treated the modular curve case; the generalization in the case of definite
quaternion algebras was done by Dospinescu–Le Bras [DB17]. □

Scholze also showed that H1(Up,F)[mr] is r-typic, meaning that

r ⊗ HomGQ(r, H1(Up,F)[mr]) ∼−→ H1(Up,F)[mr].

In summary, restricted to GQp we get an GQp × D×-equivariant isomorphism11

S1(κ(ρ)) ∼= ρ ⊗ JL(ρ)

for some admissible smooth representation JL(ρ) of D×.

8.4. Paškūnas’ argument.

Proposition 8.7. Assume that Rψ
ρ is formally smooth. Then M ′

∞ is a flat R∞-module. More-
over, the following statements are equivalent:

(1) GK dim S1(S(Up,F)[mr]) = 1;
(2) S2(S(Up,F)[mr]) = 0.

Remark 8.8. (1) Paškūnashas proved the following result: If ρ is reducible, then

GK dim S1(S(Up,F)[mr]) = 1.

He used Ludwig’s theorem 8.5, together with the equivalence in Proposition 8.7.
(2) Since we have shown that GK dim S1(S(Up,F)[mr]) = 1 under some genericity condi-

tions, we can deduce
S2(S(Up,F)[mr]) = 0.

Using the local-global compatibility result of Theorem 8.6, it implies S2(κ(ρ)) = 0. In
particular, when ρ is irreducible, we deduce the vanishing of S2(π) for π supersingular.

Proof. The flatness of M ′
∞ follows from Gee–Newton and the fact that κ(ρ) has GK-dimension

1 (and so also is S(Up,F)[mr]). When π is non-supersingular, it can be directly checked12; when
π is supersingular, it is proved by Paškūnas(and Morra).

Now we prove the equivalence. It is proved by an induction. Choose x ∈ R∞ and consider

0 −→ M ′
∞

x−→ M ′
∞ −→ M ′

∞/xM ′
∞ −→ 0.

Applying S̆1 gives the long cohomological exact sequence. Note that S̆0(−) = 0 in our situation
and S̆2(M ′

∞) = 0 by the projectivity of M ′
∞. Hence there is a short exact sequence

0 −→ S̆2(M ′
∞/xM ′

∞) −→ S̆1(M ′
∞) x−→ S̆1(M ′

∞) −→ S̆1(M ′
∞/xM ′

∞) −→ 0.

As seen in the proof of Theorem 8.3, S̆2(M ′
∞/xM ′

∞) = 0 if and only if x is injective, if and only
if S̆1(M ′

∞/xM ′
∞) has δ-dimension smaller by 1 than S̆1(M ′

∞). Then the induction finishes the
proof. □

11In the formula we should indeed take ρ(−1) instead of ρ.
12In fact, we have

dimF(IndGL2(Qp)
B(Qp) χ1 ⊗ χ2)Kn = |B(Qp)\GL2(Qp)/Kn| = pn(p + 1),

where Kn := 1 + pnM2(Zp).
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8.5. Generic case. Recall the representation JL(ρ) introduced after Theorem 8.6:
S1(κ(ρ)) ∼= ρ ⊗ JL(ρ).

Theorem 8.9. Assume that ρ is reducible and generic. Then JL(ρ) depends only on ρss.

Proof. Write ρ1 (resp. ρ2) for the non-split extension
󰀕

χ1 ∗
0 χ2

󰀖
, resp.

󰀕
χ2 ∗
0 χ1

󰀖
.

Recall that there exist exact sequences
0 −→ π1 −→ κ(ρ1) −→ π2 −→ 0,

0 −→ π2 −→ κ(ρ2) −→ π1 −→ 0,

where π1 := IndG
B(Qp) χ1 ⊗ χ2ω−1 and π2 := IndG

B(Qp) χ2 ⊗ χ1ω−1. We have for i ∈ {1, 2} that

S1(κ(ρi)) = ρi ⊗ JL(ρi).
Note that S0(πi) = S2(πi) = 0 for i ∈ {1, 2} by Ludwig’s theorem. Hence, applying the functor
Si and using the equality above, we obtain

0 −→ S1(π1) ι1−−→ ρ1 ⊗ JL(ρ1) −→ S1(π2) −→ 0,

0 −→ S1(π2) ι2−−→ ρ2 ⊗ JL(ρ2) −→ S1(π1) −→ 0.

We state the following lemma at work.

Lemma 8.10. When restricted to GQp , S1(π1) (resp. S1(π2)) is semisimple and any irreducible
subquotient of it is isomorphic to χ1 (resp. χ2).

Proof of Lemma. Since ρ1 is non-split, we have
HomGQp

(χ2, ρ1 ⊗ JL(ρ1)) = 0.

As a consequence,
HomGQp

(χ2, S1(π1)) = 0
by the first short exact sequence above. Also, applying HomGQp

(χ2, −) to the second short exact
sequence above leads to an isomorphism

HomGQp
(χ2, S1(π2)) ∼= HomGQp

(χ2, ρ2 ⊗ JL(ρ2)) ∼= JL(ρ2)

where the last isomorphism follows from the definition of ρ2. This implies a GQp
⊗D×-equivariant

embedding
χ2 ⊗ JL(ρ2) ↩−→ S1(π2)

and one checks that its composition with ι2 coincides with the morphism obtained by tensoring
the inclusion χ2 ↩→ ρ2 by JL(ρ2). Using these, a diagram chasing gives a surjection

χ1 ⊗ JL(ρ2) −↠ S1(π1).
This proves the lemma. □

Now resume on the proof of Theorem 8.9. Referring to the proof of Lemma 8.10, we similarly
have an embedding

χ1 ⊗ JL(ρ1) ↩−→ S1(π1).
We claim that this embedding is an isomorphism. Indeed, the injection ι1 : S1(π1) → ρ1⊗JL(ρ1)
induces a GQp × D×-equivariant embedding

S1(π1)/(χ1 ⊗ JL(ρ1)) ↩→ (ρ1 ⊗ JL(ρ1))/(χ1 ⊗ JL(ρ1)) ∼= χ2 ⊗ JL(ρ1),
which forces S1(π1)/(χ1 ⊗ JL(ρ1)) = 0 by Lemma 8.10, proving the claim. In a similar way,
the embedding χ2 ⊗ JL(ρ2) ↩→ S1(π2) is also an isomorphism and consequently so is it for ρ1.
Therefore, the result follows. □
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8.6. Non-generic case. We only state the theorem without proof. Let

ρ1 ∼
󰀕

ω ∗
0 1

󰀖
, ρ2 ∼

󰀕
1 ∗
0 ω

󰀖
.

Recall that
κ(ρ1) ∼= (Sp 1G IndG

B ω ⊗ ω−1),

κ(ρ2) ∼= (IndG
B ω ⊗ ω−1 Sp 1⊕2

G ).

Theorem 8.11. There exist exact sequences

0 −→ 1D× −→ JL(ρ1) −→ V −→ 0

and
0 −→ V −→ JL(ρ2) −→ (1D×)⊕2 −→ 0.

Moreover, JL(ρ2) is isomorphic to the universal extension of (1D×)⊕2 by V .

Note that Rψ
ρ1

is formally smooth, but Rψ
ρ2

is not. So we have

S1(κ(ρ1)) ∼= ρ1 ⊗ JL(ρ1)

but the inclusion
S1(κ(ρ2)) ⊂ ρ2 ⊗ JL(ρ2)

is strict.
One key ingredient in the proof is the following precision of Scholze’s result. We have claimed

in Theorem 8.3(3) that the inclusion

S1(S(Up,F)[mr] ⊂ H1
et(Up,F)[mr]

has a finite-dimensional cokernel. Moreover, we have the following result.

Lemma 8.12. With the above notations, the cokernel of the inclusion in Theorem 8.3(3) for
ρ2, i.e., that of

S1(κ(ρ2)) ⊂ ρ2 ⊗ JL(ρ2),
is equal to

S̆0(TorR∞
1 (F, M ′

∞)).

The above lemma reduces the cokernel to the information about TorR∞
1 (F, M ′

∞), which turns
to be more transparent via the isomorphism

TorR∞
1 (F, M ′

∞) ∼= Tor
Rψ

ρ2
1 (F, P̃ ),

where P̃ is the projective envelope of κ(ρ2)∨. This can be computed using Paškūnas’s results.
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