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NOTES ON COMPLEX ANALYSIS 3

1. OVERVIEW

The so-called “complex analysis” is the theory of complex numbers C. Many modern
mathematical subjects are based on the language of complex analysis. The fundamental
notion here is called holomorphicity, which is regarded as analogous to the differentiability
over R. The holomorphic functions with a single variable strongly relate to Riemann surfaces.

The global version of complex analysis is applied in geometry and topology, i.e., the
research on Riemann surfaces, particularly complex algebraic curves of dimension 1. More
generally, the complex geometry and even algebraic geometry over C take care of those
geometric objects of higher dimensions by considering holomorphic functions with several
variables. The most basic tool we use in geometry is called multi-variable complex analysis.

Riemann zeta functions, as well as L-functions, are key objects in analytic number theory,
whose properties are probed by complex analysis as well. As for (homogeneous) dynamic
systems, analysts are interested in Teichmuller spaces as an advanced topic in modern
complex analysis.

This note is intended to be written for the PhD Entrance and Qualifying Examination
at the Beijing International Center of Mathematical Research in 2022. The first previous
chapters do follow [SS10] loosely so that I claim no originality. Another standard reference
for these notes is [Lan03]. The outline is as follows.

(I) Holomorphic Functions.
e Cauchy-Riemann Equations (Subsection 2.2.2).
e Cauchy Theorem of local and global versions (Corollary 3.5, Theorem 3.10): the

existence of primitives.
Cauchy Integral Formula (Theorem 3.13).
Holomorphicity is equivalent to analyticity (Theorem 3.20).
The existence of complex logarithm on simply connected regions (Theorem 4.34).
Liouville Theorem (Corollary 3.16): the rigidity of entire functions.
Montel Theorem (Theorem 9.26).
The Mean-Value Property (Section 5.1).
The Maximum Principle (Proposition 4.27).
Open Mapping Theorem (Proposition 4.26).
eromorphic Functions.
Zeros and poles, local expansion near zeros and poles (Theorem 4.5).
The Residue Formula (Corollary 4.9).
Application I: evaluation of integrals (Example 4.10 & 4.11, etc.).
Application II: the argument principle (Theorem 4.23).
Rouché Theorem (Corollary 4.25).
(III) On Fourier Transform.

e Poisson Summation Formula (Theorem 5.9).

e Paley-Wiener Theorem (Theorem 5.12).
(IV) Entire Functions.

e Jensen’s Formula (Theorem 6.1, 6.2).

e Weierstrass infinite products (Theorem 6.10).

e Hadamard Factorization Theorem (Theorem 6.13).

e Basics of Nevanlinna Theory (Theorem 6.24 & 6.26).
(V) Special Functions.

e Analytic continuation of I'(s) (Proposition 7.1, Theorem 7.3).

o Symmetry of I'(s) (Theorem 7.6).

e Properties of 1/T'(s) (Theorem 7.8, 7.9).

e Zeta function and Xi function.

(ID)

.....z........
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(VI) The Prime Number Theory.
e Euler Identity (Proposition 7.18).
e Locations of Zeros of ((s) (Theorem 8.3).
e The Prime Number Theorem (Theorem 8.8).
(VII) Geometric Theory of Holomorphic Functions.
e Conformal/biholomorphic maps.
e The unit disc D is conformally equivalent to the upper-half plane H (Example
9.5).
Schwarz Lemma (Lemma 9.6): to compute Aut(D) and Aut(H).
D is a hyperbolic space (Theorem 9.23).
The Riemann Mapping Theorem (Theorem 9.24).
Boundary correspondences (Theorem 9.32) and the construction of a modular
function (Subsection 9.6.2).
(VIII) Ellptic Functions.
e Weierstrass p function on lattices and the elliptic curve.
e Fourier transform and g-expansion (Subsection 10.2.2).
e The SLy(Z)-action and its fundamental domain (Proposition 10.18, Theorem
10.19).
(IX) The Theta Function.
e The Triple-Product Formula (Theorem 11.2).
e Applications to combinatorics and number theory (Subsection 11.3.1 & 11.3.2).

2. PRELIMINARIES

2.1. Complex Numbers and Complex Plane. The complex field C : {z = z+iy | z,y €
R} with i2 = —1 is canonically isomorphic to R? as R-vector spaces, where the isomorphism
sends = + iy to (z,y). The real part and the imaginary part of z € C is defined by

R(z) =z, S(z):=v.

Given this, the geometry of C is called the complez plane.

2.1.1. Algebraic Properties of C. Say C can be endowed with two operations +,- via the
following way. For any z1 = x1 + iy1, 20 = 3 + 1ys € C,

+:CxC—C
(Z17Z2) ’_)Zl+2127

and
:CxC—C

(21,22) = 21 %2,

where 21 + 20 = (x1 + x2) + i(y1 + y2) and 21 - 20 = (x1 + iy1) (22 + iy2) = T122 + Y1Y2 +
i(z1y2 + T2y1). These can be viewed as actions of C on C itself, and then + is induced by
(R?, +) directly and - is induced by GLa(R) (recall that C 22 R? canonically). It is easy to
verify the following properties

(Commutativity) z1 4+ 22 = 29 + 21, 21 * 22 = 22 * 21.

(Associativity) (z1 + 22) + 23 = 21 + (22 + 23), (21 - 22) - 23 = 21 - (22 - 23).
(Distributivity) 21 - (22 + 23) = 21 - 22 + 21 - 23.

(Additive & Multiplicative Identity) z+0 =2z, z- 1 = 2.

(Additive Inverse) z 4+ (—z) = 0.

(Multiplicative Inverse) For all z € C\{0}, there is w € C such that z - w = 1.

It turns out that (C,+,-) is a field and is morally algebraically closed.
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2.1.2. Geometric Properties of C. Induced from the inner product on R?, the absolute value
on C is defined by
|-|:C—R*—R

that sends z = x + iy € C to |z] = /22 + y? € R. In fact, it satisfies the following norm
properties:

e (Triangle Inequality) For all z,w € C, |z + w| < |z| + |w|.

e (Homogeneity) For any a € C (as a scalar) and z € C (as a vector), |a - z| = |a|z|.

o (Positivity) For all z € C, we have |z| > 0 with the equality holds if and only if

z=0.

This shows that the absolute value we have defined is a norm on C, and then (C,|-|) is a
normed space.

Definition 2.1. Let {2, }52; = {21, 22, ...} be asequence in C, we call {2, }52; is convergent
if there exists w € C such that

lim |z, —w|=0.
n—r oo

This is denoted by z, — w.

Definition 2.2 (Cauchy Sequence). A sequence {z,}°2, is called Cauchy if for all £ > 0,
there is some N € N such that whenever m,n > N, |z, — z,| < € is valid.

Theorem 2.3. (C,|-|) is complete, i.e., any Cauchy sequence {z,}52, is convergent in C.
Hence (C,|-|) is a Banach space, i.e., a complete normed space.

Proof. Let zy, = xy, + iy, with {z,}52; and {y,}72, being two real sequences. Since {z,} is
Cauchy, the completeness of (R, |-|) shows that {z,} and {y,} are convergent in R. Hence
{zn} is convergent. The ingredient is that finite copies of Banach spaces is still Banach. O

Let’s point out that the multiplication of complex numbers has a geometric interpretation.
For any z # 0, it can be rewritten as the following polar coordinates:
0 _ (

z=re rcosf +irsiné),

where 6 is called the argument of z, denoted by arg(z). Note that arg(z) is not unique for
given z, but is unique modulo 27Z. In the sense of GLy(R), if 23 = r1€1 and zo = 7"16191,
then z1 2o is nothing but the image of z5 under the multiplication homomorphism by z1, and

mult,, is represented by
1 cosf;  sinb,
( 7"1) (— sinf; cos 91> € GL2(R).

2.1.3. Topological Properties of C. Loosely speaking, the topological information on C is
totally induced by that on R?. We begin with some notations. Given zg € C and r > 0, one
can define:

(1) the open disc of radius r centred at zp:
Dy(z0) ={z € C| |z — 20| <7}

also, the unit disc is denoted by D = D1 (0);
(2) the closed disc of radius r centred at zp:

D, (20) ={z€C||z— 2| <1}
(3) the circle of radius r centred at zp:

Cr(z0) ={2€C||z—z0| =7} = 90D,(20) = 0D, (20).
Jargon Watch: suppose a subset 2 C C is given.
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(1) A point z € Q is called an interior point if there is some r > 0 such that D,(z) C Q.
Denote the interior of Q2 by
Int(§2) = {interior points of Q}.
(2) The subset Q is called open if Q@ = Int(Q2). For example, D,.(zy) is open whereas
D,.(zp) is not.
(3) A point z is a limit point of Q if there exists a sequence {z,}52; in Q such that
z €& {z,} but z, — z as n — co. The closure of Q is

Q := QU {limit points of Q}.

(4) The subset  is closed if Q = Q. For example, D,.(z) is closed whereas D,.(z) is
not, and C = D, (0) is open and closed.
(5) The boundary of §2 is defined as

00 = 0 — Int(Q).

For example, 0D, (z9) = 0D, (z9) = Cr(20).
(6) The subset  is bounded if there is a sufficiently large r > 0 such that Q C D, (zp).

Exercise 2.4. Show that 2 is closed if and only if its complement Q¢ = C — Q is open.

In the upcoming context, we will discuss the notion of compactness, which is the most
important topological property of the complex plane in the analysis theory.

Definition 2.5 (Compactness). An open covering of Q is a family of open sets {Vj, }acr
such that Q C J,c; Va- A subset 2 C C is called compact if every open covering of € has
a finite subcovering.

Theorem 2.6. Any subset in the vector space R"™ with n < oo is compact if and only if it
is closed and bounded. In particular, Q C C = R? is compact if and only if Q is closed and
bounded. Even equivalently, say every sequence {z,} in Q has a convergent subsequence.

Let’s consider the decreasing chain property of non-empty compact subsets. Define the
diameter of § as
diamQ = sup |z —w|.
Z,WEN
Proposition 2.7. Let Q1 D QD ---Q, D -+ be a sequence of non-empty compact subsets
of C satisfying diamQ,, — 0 as n — oco. Then there is a unique w € C such that w € Q,

for any n, or equivalently,
ﬂ Q, = {w}.

n>1

Proof. Since Q,, # 0, we can take z, € Q, to form a sequence {z,}>2,. Because of
diamQ,, — 0, we see {z,} is a Cauchy sequence. Thus z, — w for some w € C by
the completeness of (C,|-|). Again by the definition of compactness, w € €, for any n > 1
since 2, is compact. O

Definition 2.8 (Region). The subset Q C C is called connected if € cannot be the union
of two disjoint non-empty open sets. A connected open set is called a region.

Example 2.9. C, D,(z), and D,(zp) are all connected as regions.

In summary, do remember the following:

(1) (C,+,) is an algebraically closed field.
(2) (C,]|-]) is a complete normed space, namely a Banach space.
(3) The topology on C is induced by that on R?.
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2.2. Holomorphic Functions. Let  C C be an open set and let f : Q@ — C be a complex
valued function.

Definition 2.10. Let zg € Q, f is called holomorphic at zg if the following limit exists:
B) —
Fl(z) = lim fzo+h) = fz0)

h—0,heC h

Note that zg can be attained from any direction by h here.

2.2.1. The Ring of Holomorphic Functions. In fact, f is holomorphic at zy if and only if
f(z0 + 1) = f(z0) = ah + he(h),
where a € C and ¢(h) — 0 as h — 0. The notation is
0 () = {holomorphic functions on }.

Then €(f2) is non-empty, for example, all constant function and f(z) = z are holomorphic.
In the latter case, just note that f’(z9) =1 for all z € C.
Proposition 2.11. &(Q) has a structure of ring. In particular, if f,g € O(), then

° f+9e0(Q) and (f+9) =f"+4

o frg€0(Q) and (f-g) = f'g+ fg', and

o if g(z0) £ 0, then f/g is holomorphic at zo, and (£/g) = (f'g — 19')/5".
Moreover, the O() admits the chain rule, i.e., for any holomorphic f and g, we have

(g0 f)'(2) =4 (f(2)) f'(2).

Remark 2.12. As rings of functions,

{polynomials in z} C {convergent series in z} C ().

Note that any f : 2 — C can always be factored through an embedding €2 C C and then
can be translated to another map

F:Q—R?

()= (o)

such that f(x +iy) = u(z,y) + iv(z,y). The keynote question is that is there any property
of F' corresponding to holomorphicity of f ¢

Exercise 2.13. Prove that f is holomorphic on 2 if and only if F is differentiable on €.

2.2.2. Cauchy-Riemann Equation. Let’s suppose f : € — C is holomorphic, hence
f(z+h) = f(2)
1) —
Fz) = heC,h—0 h
exists by definition. Consider taking different values of h — 0 and say h = hy + ths.
(i) If h = hy, then

h1—0 hy Oz

(2)-

f/(Z) _ f/(l’,y) _ hhm f($7y+ h2) - f(may) — —zg(z)
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By the uniqueness of f(z) for fixed z, we obtain
of Of
e —za—y.

By writing f(z) = u(z,y) + iv(z,y), this equation is equivalent to
ou Ov Ou ov
oy By ow

which is called the Cauchy-Riemann equations.

The claim is that by introducing the notations

9 10,0 0 10 0
0z 20x oy’ 0z 20x Oy’
holomorphicity of f implies that

aof of
_—= 0 _—= / .
0z T 0z 7'
Here the former equality is nothing but the Cauchy-Riemann equation.
On the other hand, it turns out that the Cauchy-Riemann equation implies holomorphic-

ity as well.

Theorem 2.14. Suppose f = u + iv with u and v being differentiable. If f satisfies the
Cauchy-Riemann equation, then f is holomorphic.

Proof. Since u and v are differentiable, we get

ou ou
u(® + hi,y + he) —u(z,y) = £h1 + 8_yh2 + [hle1(h),
v ov
v(z + h1,y + he) —v(z,y) = £h1 + 8_yh2 + [hlp2(h).
Using Cauchy-Riemann, it follows that
Oou .Ou .
fleth) = fz)= (5~ la—y)h + [l(p1(h) + ip2(h)).
Hence f'(z) exists, and moreover
ou Of
’ _ oot 9]
Fz) = Zaz 0z’
This completes the proof. [

Remark 2.15. Some interpretation on derivatives towards z and Z.
(1) For f:Q c C — C, we obtain

_of of
df = 8xdac + aydy.
Denote dz = d(z + iy) = dx + idy, and dz = d(x — iy) = dx — idy, and then
_of of _
df = gdz + gdz

which is equivalent to the above equality. From this, we see given f : Q@ — C
differentiable, then f is holomorphic if and only if df = (0f/0z)dz.

(2) For f: Q — C, there is a bijection between (z,y) and (z,Z). Note that the chain
rule with respect to (z,%z) yields to the second relation in (1).

(3) In the sense of probability over R?, one can regard f : Q@ — C as a distribution
function. Then df/0z = 0 leads to holomorphicity of f via the regularity of /0%
(as a functor). In particular, f is differentiable under this condition.
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2.3. Power Series. In this section we use C as (C, |-|). A power series is an expansion of the
form Y7 anz" for a,, € C. One can define the convergent (resp. divergent) series easily,
and then the definition of absolute convergent series follows: say Y |a,||z|" converges
as a real series.

2.3.1. Radius of Convergence.

Theorem 2.16. Given a power series Y .., anz", there exists 0 < R < oo such that
(1) if |z] < R, the series is absolutely convergent. The disc of convergence is given by
{z € C||z| < R};
(2) if |z| > R, the series is divergent.
Moreover, R has a explicit expression read as
% = liﬁsolip |an |/

Proof. 1t’s the same as the real case. The idea is to compare with the geometric series. [J

Examples 2.17. Some calculation on radius of convergence.

(1) The power series Y.~ ;2™ has a partial sum 25:0 2" = (N1 —1)/(z —1). When
N — oo, the convergence condition is given by |z| < 1. On the other hand, Theorem
2.16 leads to R = 1 since a,, = 1 for all n > 0.

(2) Consider the exponential function

s
=y
n=0
By Theorem 2.16, the radius is given by

1
lim sup(—')l/” =0,

n—oo M-

hence R = oo, i.e., €* convergent for every z € C. In this case we say e* is well-
defined on C.
(3) Consider the trigonometric functions

ez 4 o~z > 2n
cos 2z 1= ete Z(—l)”z—

'7
2 — (2n)!
iz —iz oo 2n+1
e” —e€ z
inz: = — = -t
s 2i nz:%( )

Note that their sum is given by
e = cosz + isinz,
which is the same as the Euler formula on complex rotations.

Theorem 2.18. The series f(z) = Y " anz" is always holomorphic in the disc of con-
vergence. Moreover, f'(z) = > 07 na,z""' in the disc of convergence, and f'(z) has the
same radius of convergence as that of f(z).

Proof. Note that n'/™ — 1 as n — co. Consequently,

lim sup |a, /" = lim sup |na,|"/",
n—oQ n—oo

which gives the same radius. O
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2.3.2. Complex Derivative of Power Series. Let R be the radius of convergence of f. Taking
20 € Dr(0) = {z € C| |z| < R}, we aim to compute f’(zp). Let’s first write

f(2) =Sn(2) +En(2) = Y e+ Y ap.
k<N E>N

Assume there is some 7 such that |z9| < r < R. By taking sufficiently small h € C such that
|z0 + h| < 7, one can rewrite the derivative as

flzo+h) = f(z0) _ Sn(z0+h) — Sn (%)
h h

E +h)—FE
— () + Sy (20) + N (%0 })L N(ZO).
N—_——
11

I II1

Watch the following observations:

e For N > 0, since S’ is the partial sum of f’, |Sy(20) — f'(20)| < € for any € > 0.
e If |h| < 1, then |I] < € for any € > 0.
e In part I1I, using the equality (zo + h)* — 25 = h((z0 +h)* "1+ (20 + h)F 220+ - +

2871, we see

11 = %EN(ZO +h) = En(20) = Y ax((20 + h)* — 2)

k>N

= 3 (0 + B+ o+ B a0 4o 2T
k>N

< Z lag||(z0 + h)E™1 4+ (20 + R)¥ 220 + - + 2571
k>N

k
<Y larl D10+ )R 9257

k>N j=1
< Z klag|r*=1 =0
k>N

as N — oo. The last inequality uses |zo| < r < R and |29+ h| < r < R. Again, note
that f'(2) =355, kay 2"~ is absolutely convergent in Dx(0), and then for N > 0,
[ITI| < € for any € > 0.
In summary, if f is a power series with radius of convergence R, whenever h — 0,
f(z0+h) = f(20)
h

Namely, we have checked that the common real derivative algorithm of power series can be
realized over C as expected.

Corollary 2.19. A power series Y - an(z — 20)" is oo-complex differentiable in the disc
of convergence Dr(zp).

Definition 2.20 (Analyticity). A function f: Q — Cis called analytic in Q if for all zy € ,
f(2) can be realized as a power series expansion towards zgp, say

F&) =3 anlz — 20)"
n=0

with disc of convergence Dg(zp) for R > 0.

Note that analyticity implies holomorphicity. We will prove the converse implication by
using the Cauchy integral formula later (see Subsection 3.6.2).
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2.4. Integration along Curves.

Definition 2.21. A parametrized curve is a map z : [a,b] — C defined over an real interval.
It is called smooth if 2’(t) exists and is continuous on [a,b] as a complex function (i.e.,
[a,b] C R C C — C), where

iy g 2(a+h) —z(a) ro e 2(b+h) —2(b)
R A

Definitions 2.22. A parametrized curve is called piecewise-smooth if z : [a,b] — C is
continuous and there are points ag,a1,...,ay such that a = ap < a; < --- < ay = b and
2|{as,a54.] 18 smooth for any 0 < i < N — 1. Moreover, z is called closed if z(a) = 2(b); 2 is
called simple if z(t) # z(s) unless t = s or t = a,s = b.

Example 2.23. For t € [0,27] and fixed 29, 2(t) = 20 + Re® and z(t) = 2o + Re™" are
closed and simple parametrized curves. Whereas z(t) = 2z + Re?" is closed but not simple,
since it forms a 2-covering of a circle centred at zp with radius R.

Definition 2.24. Two parametrizations z : [a,b] — C and w : [¢,d] — C are called
equivalent if there is a continuous differentiable bijection ¢ : [a,b] — [c, d] such that ¢'(s) > 0
(namely, ¢ preserves the orientation) and z = w o t.

In the upcoming context, our convention dictates that a “curve” is always a piecewise-
smooth curve. Let I' C C be a curve with a parametrization z : [a,b] — C. Let f be a
continuous function on I'. We define the integral along the curve by the following complex-

valued integral, say
b
/f(z)dz ::/ F2(0)2 (D)dt
r a

Due to the chain rule, we point out that this integral is well-defined, i.e., it is independent
of the choice of equivalent parametrization of T'.

Proposition 2.25. Given I' parametrized by z : [a,b] — C.

(1) The integration along z has linearity, i.e.,

/F(af()+bg z—a/f dz—i—b/ g(2)dz.

(2) Suppose I'™ is defined by Z : [a,b] — C via Z(t) = z(a+ b —t). Then

/Ff(z)dz =— - f(z)dz

(3) The integration is bounded from above as follows

2| < length(T) - sup | f(2)],
zel

where length (T f |2/ (t)|dt.

Proof. (3) Compute by definition

t)dt| <

/ ()2 (Oldt < sup ) / (1) dt.

And (1) (2) are apparent. O
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3. CAucHY THEOREM AND ITS APPLICATIONS
3.1. Motivation from Stokes Formula.

Theorem 3.1. Let f : Q — C be continuous. Assume there is a holomorphic function
F : Q — C such that F' = [ (here F is called a primitive of f). If I' C C is a curve that
begins at w1 and ends at wa, then

/ f(2)dz = F(wy) — F(wy).
In particular, if T is closed, then fF z)dz = 0.

Proof. First assume I' is smooth with a parametrization z : [a,b] — C. By definition,

b b
/F F(2)dz = / F(0)2 (H)dt = / F/(2(1))2 (H)dt.

In the sense of Cauchy-Riemann equation, we consider F' = F'(z,Z). Then

d _OFdx(t)  OF dz(t) OF . ,
GFCO) =50~ + oz = 5,7 1) = F=0)Z(1)

because of holomorphicity of F'. Thus, the original integral becomes

b b d
| Pz = [ 5 PE0) = FEO) - F) = Fm) - F).

In the case where I' is piecewise-smooth, the argument is similar. (I

Example 3.2. The following function does not have any primitives, so that Theorem 3.1
fails to be true. Consider
f:C\{0} — C

z—1/z.
Define I' = {2 | |z| = 1} as the unit circle which is parametrized by z(t) = €' for t € [0, 27].

Then )
/ —dz = / —ze’tdt = 2mi # 0.
F z

The emphasis lies on that f(z) = 1/x for f : R\{O} — R has log |x| as a primitive on R\{0}.
So the primitive condition is more subtle over C.

Notice that Theorem 3.1 is a particular version of Stokes formula. Recall that in the real
case, for f : [a,b] — R that admits a permitive, if dF'/dt = f (i.e., dF = fdt), then

/ab F(t)dt = /ab dF = F(b) — F(a).

We can translate this Newton-Leibniz-type statement as

/:dF:/IdF:F(b)—F(a):/mF,

where I = [a,b] and 0 = {b} — {a} (as a formal sum of points). Again, Theorem 3.1 can

be interpreted as
/ dF = / F = F(wy) — Flw)
r ar

for OT' = {wy} —{w;}. More generally, the Stokes formula states that for a given manifold
M and a differential form ¢, one obtain

fute= b
M oM
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3.2. Local Cauchy Theorem. The motivation of the Cauchy theorem is seeking the ex-
istence of primitives over C. Say given a real continuous function f : [a,b] — R, then

F(z) := / " ptydt = G

is naturally the primitive of f. The second equality is given by canonically defining I', =
[a,z]. For an analogy, if f : Q — C is given, is there any complex primitive of f? Consider
zp € §) and

F(z):= /Z: flw)dw = /Ff(w)dw

where I' is a connected path from zg to z in 2. The question is whether F' is independent
of the choice of T".

3.2.1. Goursat’s Theorem. Let’s say f : D — C where D is a unit disc. For z € D, we define
I', as the line segment from 0 to z. We need to verify that

F(z) ::/F f(w)dw
is a primitive of f. Consider
F(z4+h)—F(z) = /F flw)dw — /1“ f(w)dw.

Recall that if F'is a primitive, then for any closed curve I' in I, [;, f(w)dw = 0. In particular,
this can be divided as

/ f(w)dw+/f(w)dw+  f(w)dw =0
T.qin ~ r;

in which ~ is defined as the oriented line segment from z + h to z. We can rewrite the

equality above as
dw — dw = dw.
[ e [t = [ s

This observation is the so-called Goursat’s theorem as follows.

Theorem 3.3 (Goursat). Suppose f: Q — C is holomorphic and T C ) is a triangle with

Int(T) C Q. Then
/ f(z)dz = 0.
T

Proof. Step 1: Triangulate Partition.
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In the picture above, the triangle T = T'©) is divided in to 4 parts, say Tj(l) with 1 < j < 4.
These triangular bounds (as piecewise-smooth curves) are parametrized anticlockwise. It’s

easy to prove that
4
dz = dz = / d
fiez= [ sas=3 [ s

o <4 \ [, 1
TV
for some n. Let’s denote T = TV,

Step 2: Iteration. The construction of 7 from T(©) can be reused to arise T(+1)
from T(). Hence we get an inequality as in Step 1 of a higher order:

/Tf(z)dz <4 /T(n) F(2)dz] .

Step 3: Estimates. Denote .7 for the solid triangle that is enclosed by 70", In the
remaining proof, we introduce the following notations, say

d™ .= diam 7™ = 27740,
p(™ := perimeter of 7 = 27"p(0).

and therefore

Note that there is a sequence of compact sets

with diam 7(") — 0 as n — co. Thus there is a unique w € T for any n due to compactness
and Proposition 2.7. Since f is holomorphic at w, by definition,

f(2) = f(w) + f/(w)(z = w) +3p(2)(z — w),

fo(2)
where ¢(z) — 0 as z — w. One can observe that fy(z) has a primitive in 2, and then
f(z)dz = fo(z)dz + P(2)(z —w)dz = P(2)(z —w)dz.
T T T T
| S —

0
Then (3) of Proposition 2.25 is applied for

/ f(2)dz
()

Accordingly, this implies that

/Tf(z)dz

¥(z)| = 0 as n — oo so that | [, f(2)dz| = 0. O

<p™ sup [9(2)] sup |z —w| < p™d™ sup [p(2)].
zeT(n) zeT(™) zeT (™)

<Amp™d™ sup [ip(z)| = p'Vd® sup [¥(z)].
2€T (™) 2€T(n)

However, sup,crm)
3.2.2. Local Ezistence of Primitives.
Theorem 3.4. Let D C C be an open disc. Then any f € O(D) has a primitive in D.

Proof. Define F(z fr w)dw with T', being the oriented line segment from zy to z,
where 2 is the center of D. The claim followed is that F'(z) = f(z) for all z € D. This is
valid because by Goursat’s theorem,

(z+h h/f
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Again, ~y is the oriented segment from z to z + h here whose parametrization is, say,

w:[0,|h]] — C
t — z+ ht/|hl.

Now one can calculate the integral as
|| h
[ fwdw= [ i)
¥ 0 | |

Finally, it yields to that
F(z+h)—F(2)

li = = .
i S Fw(0) = £(2)
The last step is not so obvious and is left as an exercise. [

Corollary 3.5 (Local Cauchy Theorem). Let D C C be an open disc and let T C D be an
arbitrary closed curve. Then for any f € O(D),

/Ff(z)dz = 0.

Remark 3.6. Given a region Q C C, recall that for z € Q and f € €(Q), f has a primitive
in disc D centred at z whenever D C 2. For another point w € 2, we can still make a
“parallel moving” of D at z to w (may need diam D to be sufficiently small).

3.3. Global Cauchy Theorem.

Definition 3.7. Let I'g,I'; C 2 be two curves with common endpoints, say « and 5. Let
0,71 : [a,b] = Q be parametrizations of them. We call 'y and T’y homotopic in Q if for all
0 < s < 1, there is a curve I'y whose parametrization is given by 75 : [a,b] — € such that

’YS(a) = qQ, ’Ys(b) = f3, and
75|$:0 =70, 'Ys|s:1 =1,
and ~,(t) is jointly continuous with respect to s € [0,1] and ¢ € [a, b].

One can quickly check that the homotopic relation is an equivalence relation. In a topo-
logical sense, homotopicity means a continuous deformation between two given curves.

Theorem 3.8 (Homotopy Principle). Suppose 'y, 'y C Q with Ty ~ 'y homotopically. For
any f € 0(),

(2)dz = f(z)dz.
'y

To

Proof. Step 1: Local Equality. The claim is that if s1,s2 € [0, 1] are close enough, then

/FSI f(z)dz = /1“2 f(z)dz.

To prove this, assume I'y, and Ty, are parametrized by z,w : [a,b] — C, respectively. Taking
a partition on [a,b] as a = g < 1 < -+ < Ty, < Tpy1 = b and denote z; = z(z;) € Ty,
w; = w(z;) € Ty, for 0 < i < n+ 1. There are a sequence of discs {D;}? , such that
{zi, Wi, zit1, wit1} € D;. See the picture below.
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Now by local Cauchy theorem (see Corollary 3.5), for each D;, there is a primitive F; on D;
of f,ie., F/(z) = f(z) for all z € D;. On the intersection D; N D;41, we see

(F; — Fip1) =0,
which implies that F; — F; 1 = const, say C;. Thus we obtain
Fii1(zit1) = Fipr(wish) = Fi(zis1) — Fi(wita).
Taking integrals, leads to

n

f(z)dz — f(z)dz = Z[F (zit1) — Fi(z)] Z Fi(wit1) — Fi(w;)]
i=0

Psy Lsy =0

= (Fu(2nt1) — Fn(wnt1)) — (Fo(20) — Fo(wo))
= (Fn(B) — Fu(B)) — (Fo(a) — Fo(a)) =

Step 2: Iteration. Using the compactness of [0, 1], we can divide [0, 1] into subintervals
[$i, Si+1] with |s; — s;41] < 1. Hence by Step 1, for all t,s € [s;, s;+1], f(2) has the same
integral along I'; and I's. To sum up,

f(2)dz= [ [f(z)dz
To T
This completes the proof. O

Definition 3.9. A region @ C C is called simply connected if any two curves in € with
common endpoints are homotopic.

Theorem 3.10 (Global Cauchy Theorem). IfQ C C is simply connected, then all f € O(Q)
has a primitive.

Proof. Fix a point zy € 2. For any curve from z; to z, we define

9= [ fwd

This is well-defined (i.e., independent of the choice of T',) when € is simply connected. It’s
easy to check F'(z) = f(z). O

Alternative Proof. One may also fix I', and define I',; as the combination of I, and the
segment from z to z + h. Thus,

F(z+h /f

Taking h — 0, we set F'(z) = f(z) again. O

Remark 3.11. Do remember the Global Cauchy (Theorem 3.10) implies that all holomorphic
integrals along closed curves in a simply connected region vanish.
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The general philosophy of the Cauchy theorem lies in translating topological information
(such as simply connected) on the complex plane into analytic information. Conversely,
given a connected open subset 2 C C, the question is to determine whether Q is simply
connected or not whenever we assume for all f € () and any closed curve I' C Q, f has
zero integral along T'.

3.4. The First Application: Evaluation of Some Integrals (I). Our Cauchy theorem
can be used to compute several types of real and complex integrals. Also, we will see more
approaches to calculating, such as the residue formula (see Section 4.2), which is another
corollary of the Cauchy theorem.

Example 3.12. Using the Cauchy theorem, we will calculate the Fourier transform of e~
Note that in Fourier analysis, for any f : R — R, one can define its Fourier transformation
as

(oo}
foy = [ fwpemtan,
— 00
The aim is to prove for any & € R,
—0Q

Namely, the Fourier transformation of f(z) = e¢~™* is nothing but itself.

o0 L2
/ e @) gy = 1.
— 00

Notice that for £ = 0, the formula is well-known as

/ e dy = 1.

Let’s prove for £ > 0, and the remaining case £ < 0 follows similarly. Consider the complex-
variable function f(z) = e~ . Recall that in Example 2.17, we have seen that exponential
functions are well-defined over C, and hence f € ¢(C). Then define the curve I'p for
R € Ry as the clockwise oriented rectangle, which is shown in the following picture.

Proof. 1t is equivalent to prove

y
—R+4i¢ Iy R+

Vg Ik

~R 0 In R @
Thus the integral can be divided into

R ¢ -R 0
(z)dz:/ e_”2da:+/ e_”(R”t)zdt—i-/ e_”(z+i§)2dm+/ e~ (=R gy
I'r —-R 0 R 13

Ir IIg IR IVg
As R — oo, we have

o0 2
Ir — / e ™ dx =1.
—00
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As for part II, say
13 13
Iy :/ e—w(R2+2Rit—t2)dt:/ e‘”Rze_Q’TR”e”zdt.
0 0

Therefore, it is bounded as
€
IIg| < / e e gt < (6”526_”}?‘2).
0

Since e~™"* — 0 as R — oo, we get IIgp — 0. Similarly, IVg — 0 by symmetry (caution:
IIIg does not tend to 1). On the other hand, apply the Cauchy theorem to the piecewise-
smooth closed curve I'p defined on C, which is simply connected, the integral of f along
with I'p vanishes. That is,

lim/ f(z)dz =0=1g + IR,
R

R—oo Jp
or equivalently,
o0 o0 2
/ e~ T(@Fit) d;z:—/ e ™ dr=1, £>0.
—0o0 —00
Again, the same argument for £ < 0 completes the proof. O

3.5. The Second Application: Cauchy Integral Formula. It turns out that under
some nice topological circumstances, the value of a holomorphic function at some point can
be determined by an average of the boundary points of some neighbourhood.

Theorem 3.13 (Cauchy Integral Formula). Given an open subset Q C C and an open disc
D c C with 0D C Q, assume f € O(2). Then for all z € D, we have

fo= o [ I

2mi Jop € — 2
Proof. Consider the function F(§) = f(€)/(§ — z) for fixed z € D. Define the curve

C.={w]||w-—z| =¢}

Notice that F'is holomorphic near z and 0D is homotopic to C.. In the Homotopy Principle
(Theorem 3.8), taking Q2 to be the punctured disc centred at z with radius ¢, and then

/ Feyde= [ Pe.
oD Ce

Furthermore, one can compute

/ dﬁ/s—zg/“gf “/5

~f (Z)
The punchline of this trick is read as follows. The first item has the same order as the
integral of f’(z). However, f’(z) is bounded near z by holomorphicity of f. Hence the
former term in the equality above tends to be 0 as ¢ — 0.
Now, since C. has a parametrization z(t) = z + ee®® for 6 € [0, frm—epi], we see

f(2) Tl e
/C 5_de f(z )/ pril df = 2mif(2).

Therefore, after taking ¢ — 0, we have

fz) =
This is the Cauchy integral formula. O

1 f(€

2mi Jop € — 2

d.
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3.5.1. Applications of Cauchy Integral Formula. The following more general version of Theo-
rem 3.13 is given as an application. A quick observation of its proof shows that it contains no
more information than the classical formula. However, it would be instrumental in proving
the residue formula (see Theorem 4.8).

Theorem 3.14 (Higher Cauchy Integral Formula). With the same statement as in Theorem
3.13, f has infinitely many complex derivatives in 2. Moreover,

M f©)
0= 55 o

Proof. 1t suffice to prove for n > 1. We first consider n = 1. Using the classical Cauchy
integral formula

1 f(&)

e have (4 h) — (2) ©  f©
O FG+h) - f2) . 11 G G
h—}tljr,li}ecc h :%%Q_ME/an—z—h_f—zdé

Note that

1 1 h

E—z-h €-z (E-z-h)(E-2)

and the equality becomes
oy L f(§)
1O f

Accordingly, one can apply this process inductively to tackle general n > 2. O

3.5.2. Remarks on the Proof of Cauchy Integral Formula. Recall that the homotopy principle
(Theorem 3.8) tells us that if T'g, T’y C 2 are two closed curves which are homotopic. Then
for all f € €(Q), we have [, f(2)dz = [ f(2)dz.
More generally, assume I'g,T'; : [0,1] — C are two curves in 2 such that
Lo(0) =g, To(1) = o, T1(0) =1, T'i(1)=p
that are homotopic, i.e., for all ¢ € [0, 1] there exists F(s,t) : [0,1] x [0,1] — € such that
F(0,t) =To(t), F(1,t)=T1(2).
Claim: for all f € O(Q),

f(2)dz= | f(z)dz+ | [f(z)dz+ [ [f(2)dz,
To Iy Io I

where Iy (resp. 1) is an arbitrary oriented curves from ag to oy (resp. from (1 to Bo).

Proof of the Claim. It suffices to check that the curves I'g and Iy + I'y 4+ I; are homotopic.
We define the following map

F((1+29)t,0), 0<t<s/(1+2s);
H(s,t) =< F(s,(1+2s)t —s), s/(14+2s) <t < (s+1)/(1+2s);
F(—(14+2s)t+1+25,1), (s+1)/(1+2s) <t <1
In particular, for fixed s, H(s,t) is the intermediate curve between I'g(¢) and I'y(t). More-
over, H(s,t) is continuous with respect to (s,t). The feature in need is the homotopy

equivalence
H(O,t)zl—‘o(t) ~ H(l,t):IO+F1—|—Il.
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From what we have proved for homotopy with common fixed endpoints,
f(z)dz = / f(z)dz = f)dz+ | f(z)dz+ | f(z)d=.
To Io+T1+1 Ty Iy I

In particular, consider the special case where g = By and «; = 8. Then I'g and I'; are
closed curves such that

f(z)dz+ | f(z)dz=0
Io L
by taking Iy = I . Hence for all f € 0(%),
f(z)dz = f(z)dz.
To T
Note that this proof gives a slightly more robust relationship between the two integrals. O

Now we focus on another proof of the Cauchy integral formula (Theorem 3.13) using only
the global Cauchy (Theorem 3.10) rather than the homotopy principle.

Alternative Proof. Keep the notation as in the original proof of Theorem 3.13. For any
closed circle D C Q that contains C. and any § > 0, define the piecewise-smooth closed
curve I's as shown in the following.

For I's = (0D)s + I + C: + I5, by Cauchy theorem,
&) e — &) ) &) ) ge —
dﬁ—/( df—l—/j df—i—/l d{—i—/c d¢ =0.

r, §—2 op); § =% L E-2 .67 sE—z

0

Letting § — 0, we get

L&d§+L &) e

pé—2 ;f—z

which implies that
GG
/8D£_Zd€_/05€_zd£ 2mif(z) + o(e).

This proves the Cauchy integral formula whenever € — 0. O



NOTES ON COMPLEX ANALYSIS 21

3.6. More Corollaries of Cauchy Integral Formula. The direct corollaries of the Cauchy
theorem involve several outstanding results that we will introduce.

Proposition 3.15 (Cauchy Inequalities). Under the same statement as before, for all f €
0 () and Dr(z0) C Dr(z0) C Q, we have

n n!
7™ o)l < 7lflopas W20,

where ||fllopy = max.capy | f(2)].

Proof. Using Higher Cauchy integral formula (see Theorem 3.14),
! Lo t :
) 0

T 2mi p (£ —z)ntl i Rnt1gi(n+1)8

since we can parametrize dDp via z(t) = zy + Re® for 6 € [0, 27]. Hence

s R™ R™ 2€0Dp

as desired. This completes the proof. [

7o < g [T Dlgp < 2 s (1)

3.6.1. Liouville Theorem and Its Application.

Corollary 3.16 (Liouville). Let f € €(C) (say f is an entire function). If f is bounded,
e, |fl <M < oo onC, then f is a constant function.

Proof. Using the first-order Cauchy inequality,
M

1
|/ (20)] < EHf”aDR < R

for any disc Dr with R > 0. The entire condition f € ¢(C) guarantees that R can be any
positive number. Making R — oo to get f’(z9) = 0 for arbitrary zg € C. Hence f(z) is a
constant function. O

Exercise 3.17. Show that for f € &(C), if there is some constant C' < oo such that
|f(2)] < CR? for any |z| < R together with some d (i.e., f has at most polynomial growth),
then f must be a polynomial of degree at most d.

Here comes one of several approaches to prove the fundamental theorem of algebra using
complex analysis.

Theorem 3.18 (Fundamental Theorem of Algebra). Every non-constant polynomial p(z) =
ZZ:O arz® with a € C has a root in C.

Proof. If for all z € C we have p(z) # 0, then the rational function 1/p(z) € ¢(C). In
particular, 1/p(z) is a bounded entire function as p(z) is a polynomial that is nowhere
vanishing. Applying Liouville Theorem (Corollary 3.16), 1/p(z) is a constant, which yields
to a contradiction. ]

Corollary 3.19. Every polynomial p(z) = aqz® + -+ + a1z + ag with ag # 0 has evactly d
roots in C, counted with multiplicity.

Proof. Theorem 3.18 shows that there is w; € C such that p(w;) = 0. Making a change of
variable, say z = (z — w1 ) + wy, we obtain
d

p(z) = Zbk(z —w1)" + bo.

k=1
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A simple comparison shows that by = 0. Hence (z —w1) | p(z) and then p(z) = (z — w1 )q(2)
for another polynomial ¢ with degree d — 1. Using induction on the degree of polynomials,
one finally gets

d
T

for some wy,ws, ..., w; € C. O

3.6.2. Holomorphicity Implies Analyticity. Given Definition 2.20 of analyticity, we have al-
ready seen it implies holomorphicity. The following context shows the converse via the
Cauchy integral formula.

Theorem 3.20. Given Dr(z) C Dr(z) C Q, any f € O(Q) has a power series expansion
in Dg(z0). That is, for all z € Dg(z),

Zanz—zo Zf(n) 20) (z — 2z0)™.

Proof. Fix z € Dg(zp). By Cauchy integral formula (Theorem 3.13),
1 [

= de€.
S =g [ eore
Let’s write
1 1 1 1
E=2 (€-20)-(r-2) E-2 1-z=
where |§:z" < r < 1 for some r > 0. Thus it admits a power expansion
D e Ll
= - = - — .
-z = (§— )"
Therefore,

1 > 1 "
f(z)z%/aDRf@)Zw(z—Zo) dg

n=0

f() n
_ Z - /BDR T e = =)

= Z an(z — 20)"
n=0

for any z € Dg(z). Note that > > W is uniformly convergent in z € Dg(2g) just
so the second equality holds. O

Remark 3.21. From a topological aspect of view, (Q, | - |), the rational numbers equipped
with a usual absolute value, is not complete. There is a completion (R, |- |) that is not
algebraically closed. This phenomenon gives a motivation to consider field extensions

@ ]-)c®]-])c(C=R"E]-]).

The complex analysis theory primarily focuses on analytic functions (or, equivalently, holo-
morphic functions) on C. However, the completion of @ is not unique whenever we replace
the usual absolute value with other values. Given a prime p, the p-adic norm |- |, is defined
by

per _
szTEQ, |z|, ==p~ ¢
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where p neither divides r nor s for r, s € Z. Similarly, we obtain field extensions

Q1+ 1p) € (@p,] - 1) € (@351 - 1p) € (Cpy| - 1p)-

Here the first completion Q, is called the p-adic rational number field, which is not alge-
braically closed. Also, Qzlg is algebraically closed but not complete. To resolve this, taking
C, is enough. The theory to understand analytic functions defined on C, is the so-called
p-adic analysis.

3.6.3. Analytic Continuation. Thanks to Theorem 3.20, the holomorphic functions are an-
alytic. From this, we wish to control all properties of an analytic function by a sequence
of points. The following theorem makes the expectation morally valid. Note that the only
subtlety here is the requirement that the limit point of this sequence must lie in the region.

Theorem 3.22 (Analytic Continuation). Let Q@ C C be an open connected region and
f e o). Assume there is a sequence {zp}52; C Q with z, # w whereas z, — w € €,
satisfying f(zn) =0 for any n € N. Then f =0 in Q.

Proof. Define the set of zeroes of f as follows (which is precisely open by definition):
S=Int{z € Q| f(z) = 0}.

Claim: as a non-empty open subset, S is also closed in Q, i.e., SN =S.

Proof of the Claim. To prove this claim, we fix w € S and verify that there is a (non-empty)
open set V around w such that f = 0 in V. Once this is valid, we are able to take any limit
sequence {{}72, C S that converges to some point { € SNQ C Q, and a similar argument
shows that £ € S as well. Using holomorphicity (hence analyticity) of f, we write

F(z) = an(z —w)"
n=0
for z lying near w. If f does not vanish constantly near w, then there exists m > 0 such
that a,, # 0. This deduces to
f(2) = am(z —w)™ + amyr(z —w)™H 4+
=am(z—w)"(1+ apmy1(z —w)+--)
= am(z —w)™(1+g(2))

for some g¢ such that g(w) = 0, since 1+ apm41(2 — w) + - - - is convergent. Now consider to
apply the condition z, — w with f(z,) = 0. We obtain

f(z) = am (2, —w)(1 + g(z)) # 0,

which leads to a contradiction. So we have proved the claim.
Using the claim, we can easily get 2 C S. Consequently, f vanishes everywhere in 2. [

Corollary 3.23. Let f,g € O(R2) for an open connected region 2. Assume f = g in some
non-empty open set V-.C Q, then f =g in Q.

3.7. Further Applications.
3.7.1. Morera’s Theorem. The following theorem is the converse of Goursat’s (Theorem 3.3).

Theorem 3.24 (Morera). Suppose f is a continuous function in some open disc D, and

/ f(z)dz=0
T
for any triangle T in D. Then f € O(D).
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Proof. Consider the primitive of f in Q, say
F(z):= / f(z)dz
r.

for some fixed zy and a curve I', from zg to z. The condition implies that F' is independent of
the choice of T', since any curve can be approximated by a piecewise-linear curve (where the
triangle division applies). In particular F' € €/(f2) since F’(z) = f(z), and thus F' is analytic
by Theorem 3.20. Again, f = F’ is also analytic, which is equivalent to holomorphic. O

Exercise 3.25. Check that circles can replace the triangles in Theorem 3.24.

Theorem 3.26 (Holomorphic Approximation). Let {f,}32, C O(2). Assume f, — f
converges uniformly on every compact subset of ), denoted by f, — f in CL (). Then
feo9).

Proof. For any triangle T' C €, since f, — f in C{ (),

/ f(z)dz= lim [ fu(2)dz=0
T T

n—oo

because of f, € 0(2). By Morera Theorem, f € 0(Q). O
Remark 3.27. Theorem 3.26 is not true in the real case.

Theorem 3.28 (Higher Local Convergence). Let {f,}>2, C O(Q). Assume f, — f in
CP (). Then fy(bk) — %) in O (Q) for any k = 1. Or equivalently, f, — f in C22(Q).

loc loc
Proof. We only need to verify f; — f’ uniformly on every compact set of Q. And by
inductive arguments, this is equivalent to f, — f in C%(Q). It suffices to verify that
fI — f’ uniformly on every Q5 = {z € Q | Ds(z) C Q2}.

Using the Cauchy integral formula, for all z € Qqs, we have

o= () = LD()Qi:i&Q@.

2mi (& —2)1
Therefore,
1 / 1 /Qﬂ- |fn_f|<z) 1

— < — ——~25dO < < n .

s <5 [ 5 s 1= 1166

—_———

—0

Hence f; — f’ uniformly in Qqs. O

Theorem 3.29. Given an open subset Q@ C C (not necessarily connected), we define a
function F(z,s) on Q x [0,1]. Assume that

(1) F(z,s) is holomorphic with respect to z for any fized s, and
(2) F is continuous with respect to (z,s).
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Then the function

is holomorphic for z.

Proof. On condition (1), consider the Riemann sum
1o k

n(z) = — F(z,—) e 0

le)i= 1 o F ) € 00)

for any n > 1. We are going to prove that f,, — f uniformly on every compact set K of 2, or
namely, in CP, (). Once this is valid, we obtain f € ¢(2) by holomorphic approximation
(Theorem 3.26).

The condition (2) implies that F' is uniformly continuous on K x [0, 1]. Hence

sup |F(z,81) — F(z,82)| < €
zeK

whenever |s; — s2| < 0 < 1. Furthermore,

n k
z k
o — f1(2) = Z/,C_I(F“’ﬁ) ~ F(z,8))ds
k=17 "
n k k
<> [ G - Fslds
k=1 n
< i ls =€
~ n -
k=1
whenever 1/n < 0. O

3.7.2. Schwarz Reflection Principle. Here comes another direct application of Morera’s The-
orem on symmetric regions.

Proposition 3.30 (Schwarz Reflection Principle). Let 2 be an open set that is symmetric
with respect to the real axis, i.e., for any z € Q, Z € Q as well. Denote

QOF=0n{S(z) >0}, Q =0n{3(z) <0}

Suppose ft € O(QF) satisfy fT(x) = f~(z) for all v € I = QNR, and f* extend
continuously to I. Then the function as follows is holomorphic in €.

f+(z)a z€Q+;
fR)=f"(x)=f(2) z€l
[ (2), ze€ Q.

(
(
Exercise 3.31. Prove Proposition 3.30. (Hint: Consider applying Morera theorem to verify

that for any triangle T" C €2, the integral of f along T is zero, whether T intersects with I
or not.)
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Corollary 3.32. Let Q be as above. Assume f € O(Q1) extends continuously on I and
f(x) €R for x € I. Then there is F € O(2) such that Flo+ = f.

Proof. Define F as follows: for all z € Q7, let F(z) := f(z). Then F € 0(Q27) and
F(z) = f(x) for x € R. Applying Proposition 3.30 to F' may complete the proof. O

3.8. A Geometric Point of View. The final remark on a geometric point-view towards
the Cauchy theorem and Cauchy integral formula comes. We introduce the wedge product of
differential forms. Given two differential 1-forms dx, dy, we define their linear wedge product
as dx A dy such that

dr Ndy = —dy Ndzx, dxANdx=dyANdy=0.

Applying this to dz = dx + idy and dz = dx — idy, one deduce that
%dz Adz = %(dm +idy) A (dz — idy) = dz A dy.

3.8.1. Remarks on Cauchy Theorem. In the context of (local) Cauchy theorem (see Corollary
3.5), we counsider f € () and two closed curves in €2, say I'; and I', with two opposite
orientations. In particular, by focusing only on the local case (recall that under the global
situation, the region must be simply connected), assume 2 is an annulus as follows such
that 02 =T'; + Is.

I'y

Q

Punchline: using the language of wedge products, we can show that the local Cauchy is
exactly implied by Stokes formula and Cauchy-Riemann equation.
Let’s check this explicitly by hand. Now the statement of local Cauchy is

f(z)dz = f(z)dz <— f(z)dz =0,
r, r; o9

which is also equivalent to

[ = [ feraz=o
Q oQ
by Stokes formula. Here the differential form on €2 is defined as
d(f(2)dz) :=df (z) Ndz
via the wedge product. On the other hand, this can be computed explicitly via

O 4o+ Ytz o of

df(z)/\dz':(% 5% )/\dz=$dz/\dz+§d2/\dz:0.
0

0

Recall that the second item vanishes because of the holomorphicity of f by the Cauchy-
Riemann equation.
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3.8.2. Remarks on Cauchy Integral Formula. One can apply a similar interpretation to prove
Cauchy integral formula. Say f € 0(Q2) and then

_ @ .1 f©)
S = o [ e = 5 [ G50
by Stokes formula. On the other hand, by definition again,
1) 4oy = 0 (1O D FO
d(£ -~ Zodﬁ) = 85(5— Zo>d§;\d§+a§(§— z0>d§/\d§
0, 1 _
= f(f)a—g(f — Zo)df A dE.

Therefore, we get
1

o) = 37 [ 1O g2 nde.
In a physical sense, the integral term
0 1
0_3(5 — 20
for some physical constant c. Here ¢, is called the Dirac measure at zy (corresponding to
f(&)/(& — z0) as in the classical Cauchy integral formula).

) = by,

4. MEROMORPHIC FUNCTIONS

In the previous chapter, based on holomorphicity, we begin with polynomials in a sin-
gle complex variable, which yields definitions of rational and analytic functions. On the
Cauchy integral formula, some local analysis induces the equivalence relation between holo-
morphicity and analyticity of complex functions defined on nice topological subspaces of
the complex plane. Meromorphicity can be loosely understood as “weak holomorphicity
with some singular points”. We begin with discussions about special points defined by an
arbitrary function in a single complex variable.

4.1. Zeros and Poles. Consider the following 3 examples that corresponds to some essen-
tial notions which will be defined later.

(1) (Removable Singularity) f(z) = z at z = 0: f is well-defined (thus bounded) near
z =0

(2) (Pole) f(z) =1/z at z — 0: we have |f(z)| — oo.

(3) (Essential Singularity) f(z) = e!/# at z — 0: there are many different cases, such as

(i) whenever z — 07 for z € R, |f(2)| = oo;
(ii) whenever z — 0~ for z € R, |f(z)| = 0;
(iii) if z = ¢z with € R, then z — 0 leads to z — 0 from the positive imaginary
axis — in this case,

, 1 1
] = _l/x = —_—— ) 1 -
fliz)=e cos( 1’) + dsin( :c)
that oscillates rapidly.

Definition 4.1 (Zero). For f € 0(Q2), a point zy € Q is called a zero if f(z9) = 0.

In fact, if f(zp) = 0 then there exists a sufficiently small open neighborhood V' C Q of zg
such that f(z) # 0 for any z € V\{20} unless f = 0 as a constant near zo. In particular,
the zeros of a non-constant holomorphic function are isolated.
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Theorem 4.2 (Order of Zero). Given an open connected region Q with zo € 2, assume that
f(z0) =0 and f £ 0 in Q. Then there is a sufficiently small open neighborhood V- C Q of
20 and a non-vanishing holomorphic function g € O(V') together with a unique m € N such
that

fz)=(z-20)"g(z), VzeW

Proof. Using f € 0(R), it is analytic in Q by Theorem 3.20. In particular, it is analytic
near zg € 2. To be precise,

f(2) =) an(z = z0)"
n=0

for z lying near zp. Since f is not constantly vanishing, there is some m < oo such that
am # 0. Finally, note that such smallest m does work. (|

Notation 4.3. The unique integer in Theorem 4.2 is denoted by m := ord,, (f) and is called
the order of f at zp.

Definition 4.4 (Pole). For f € 0(2\{20}), call zg a pole of f if 1/f has a zero at z.

It turns out that if f has a pole at zg € €2, then there is a sufficiently small open set V'
of zg such that
f(z) =(z—20)""g(z), VzeV,
where g(z) # 0 for any z € V. Similarly, m here is called the order of the pole zg, and it
keeps the same notation. Furthermore, if the order of a zero (resp. pole) zg is exactly 1, we
call zg a simple zero (resp. pole).

Theorem 4.5. If f has a pole zy of order m, then near zy, we have
a_(m—1) a_1

e A
where a_p, # 0 and G(z) is holomorphic near zy.
Proof. The condition forces f to be
R & bo b1 bm—1
f(2) = (2 — 20) mkz_obk(z_ZD) = G + RPN ot T + by,
Letting b; = a;—, gives the result in need. O

Definitions 4.6. The last coefficient a_; in Theorem 4.5 is called the residue of f at the
pole zy and is denoted by

res,, (f) = a_1.
Also, the function f(z) — G(z) is called the principal part of f at the pole 2.

Remark 4.7. Some unusual approaches to attain the order of zeros or poles.
(1) if 2 is a simple pole, then

res,, (f) = lim (z — z0) f(2).

zZ—r20
More generally, if zg is a pole of order m, then
1 dm—l
— 1 m
res,, (f) = zlgleo WW((Z —20)" f(2))-

(2) If © is connected, then the poles and zeros of f in Q are isolated whenever f is not

a constant.
(3) If 2 is a zero of f, then

ord., (f) = max{k € N | f®)(z) # 0}.
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4.2. Residue Formula: Evaluation of Some Integrals (II). In Section 3.4, we have
given an approach to calculating some integral via the Cauchy theorem. Here comes another
corollary of Theorem 3.8.

Theorem 4.8 (Single Residue Formula). For f € O(Q\{z}) with zo being a pole of f, let
D C Q be an open disc containing zg. Then

() = 5 [ )

= omi

Proof. Using the Cauchy theorem (or homotopy principle), for the circle with radius e
centred at zq

- f(z)dz = /CE f(z)dz.

Since zg is a pole of f, we can write

G—m A—(m-1) -1

R P R P R
and hence
A_pm, a_3 a—1
z)dz = 7dz+-~-+/ 7dz—|—/ dz+/ G(z)dz.
= [ s o Gt Jo im T ), 6
0 27ria_1 0

The first part vanishes by applying the higher Cauchy integral formula (Theorem 3.14)
to constant functions. The second part is valued by the classical Cauchy integral formula
(Theorem 3.13), and the last part vanishes because G(z) is holomorphic near zy. As a result,
1
2 = ] = — d
res.y(f) = a1 = 5 | f(z)az

that gives the residue formula. O

The following corollary is given by applying Theorem 4.8 iteratively for generalizing it to
more points.

Corollary 4.9 (Residue Formula). Suppose f € O(Q\{z1,22,...,2n}) with z1,22,...,2n
being poles of f. Let T C Q be the closed curve encompassing {z1,22,...,2n}. Then

1 n
el ROLE > resa ()

Now we move to apply the residue formula in the evaluation of integrals.

Example 4.10. For 0 < a < 1, we are going to compute the real integral

oo e(ICE
dx.
/_ooHem !

Set f(z) = e**/(1 + e*) as a complex function, then f has a pole at z = mi with

az

lim (z — 7i) ¢ =—¢
Z—7i 1+ e?

In particular, z = i is a simple pole of f. Hence

ami

a_1 =resq(f) = —em,

Now consider the following clockwise oriented triangle Iz whose intersection with (z)-axis
is 271, the period of 1 + €.
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Y
—R+2mi g 2i R+ 27
IVgp o Ti IIg
~R 0 Tn R @

Using residue formula to I'g:
f(z)dz = 2miresy;(f) = —2mie®™
'r
On the other hand, we do the calculation as

2m

R -R 0
f(z)dz = / f(x)dz + f(R+it)dt+ / flx+2mi)de+ | f(—R+it)dt.
I'r —R 0 R 27

Ir IIr Il IVg

27 a(R-Ht) 27 aR
II dt| < ———dt.
Hr| = ’/ 1+ eR+it \/0 |1+ eF - eit|

Since e —1 < |1 +ef - €| < e® + 1, the inequality further becomes

27 eaR 27 eaR (a—D)R
————dt < ——dt < Ce'™
/0 |1+ el eit] /0 et —1

as R — oo for 0 < a < 1. Similarly, [IVgr| — 0 as well. Also,

R ea(ac-‘,—27ri)
Iz = — —d
R /—R 1+ e:v+27r1 x

R e2a7rz' . @0
= "
—R 1 + er

. R ed® .
_ _e2a7rz de = _€2a7erR.
—R 1 =+ er

For part II, we get

Letting R — oo and summing all pieces listed above, we see

—2mie?™ = I, — 2™
Therefore, the desired integral is
e 2mied™? T
[
oo 1 +e* 1—e2™  sinma

Example 4.11. In this example, we aim to calculate the following integral as a Fourier
transformation (see Example 3.12) of 1/(cosh7x), say

00 e—27rix§
/ dx,
oo COSh
where cosh z = (e* 4+ ¢7%)/2. Consider the function f(z) = e=2"*¢/ cosh 7z, then f(z) has

poles at €™ = —e~ ™. Equivalently, the poles are given by ki + i/2 with k € Z. Recall that
cosh 7z is a periodic function with cosh7(z + 2i) = cosh 7.
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Y
—R+2i Il 2% R+ 2
. 3i/2
IVg IIg
®i/2
-R 0 In R

We define ' similarly as in Example 4.10. In a single period, /2 and 3i/2 are only poles.
Note that

. ) emé
l“eSi/2(f) = z_l)rif}Q(Z - §)f(z) =i
. 31 e3¢
res3i/2(f) = zl:g,l/z(z - E)f(z) = i
Hence by residue formula,
eTrE _ 637r§
(2)dz = 2mi(res;jo(f) 4+ ress; o (f)) = 2mi - ————
T'r )

On the other hand, we do the calculation as

R 2 -R 0
. f(z)dz:/Rf(x)dx—i-/O f(R+zt)dt+/R f(x+22)da:+/2 f(—R+dt)dt.

In Ik g IVg

Again, we do similar operations to these parts. Firstly,

2 e—2mi(R+it)E
Ig| = /O (em(R+it) 4 efw(R+it))/2dt

2 e2mtE
< 2/0 eﬂ-R |em't + e—27rR—m't|dt

<oo

247T§
N

<Cfe7rR

as R — oco. Similarly, |[IVg| — 0 as well. As for another part,

R —2mi(x+24)¢ R _—2mixg
IIlg = —/ dr= —647’5/ ¢ dx = —e'™1p.
g coshm(x + 217) _p coshmz

Thus, letting R — oo, we get

(1 — eIy, = 2(e™ — &3,
Therefore, the result is given by
/°° e~ 2miwg 2(e™€ — 37¢) 1

o cosh Tz T e 1 — emé cosh ¢

This result dictates that the Fourier transform of 1/(coshwz) is itself.

4.3. Meromorphicity on Singularities.
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4.3.1. Removable Singularities.

Theorem 4.12 (Riemann Extension Theorem). For all f € O(2\{z0}), f is bounded near
zo if and only if zg is a removable singularity, i.e., f extends to a holomorphic function in
Q. In particular, f(zo) is well-defined whenever f is bounded near z.

Proof. 1t is clear that f is bounded near zy whenever zy is removable. Conversely, choose
a sufficiently small open disc Dg(z9) C Q such that f is bounded in Dpg(zp). For all

z € Dg(zp), we define
_ 1 f(§)
9(2) = 2mi /(9D £ — de.
Notice that f(£)/(¢ — z) is continuous with respect to (£, z) and is holomorphic in z. Hence
g(z) is holomorphic on Dg(zp).
In the following context, we will verify that g(z) is the desired extension of f, i.e., g(z) =
f(2) away from zp. Applying Cauchy integral formula to f on Q\{zo}, then

_ f(§)
9(2) = %ADE—Z 2m/ §—z % fsf—zdf’
f(2)

where I', and fa are the circles centred at zp and z with a uniform radius €, respectively.
On right hand side of the equality above the second term is exactly f(z) by Cauchy integral
formula again. Also, f(&) is bounded above by assumption, and & — z is bounded below.
Say |f(£)/(§ — 2z)| < M for some sufficiently large constant M < co. Accordingly,

1 27
1| < —/ eMdf < Ce — 0
2 0
as € — 0. Since € > 0, we get g(z) = f(z) for z # z. O

Corollary 4.13. Let f € O(2\{z0}). Then zo is a pole of f if and only if | f(z)] = oo as
z = 2o (i.e., f is unbounded near zy ).

Proof. Suppose |f(z)] — 0o as z — zp. Then 1/f is bounded near zy. By Theorem 4.12, it
turns out that 1/f € () and (1/f)(z0) = 0. Thus 2y is a pole. The converse direction is
clear. O

4.3.2. Essential Singularities.

Definition 4.14 (Essential Singularity). Let f € O(Q\{z0}). The point z; is called an
essential singularity of f if zy is neither a pole nor a removable singularity.

Example 4.15. As what we have seen in the beginning of Section 4.1, f(z) = €'/# has an
essential singularity z = 0. We have seen the phenomenon that a function may have various
values at an essential singularity attained from various directions.

Theorem 4.16 (Casorati-Weierstrass). Assume f € O(D,(z0)\{z0}) is defined over the
punctured disc, where zg is an essential singularity. Then

f(Dr(20)\{20}) =

Namely, the image of f is dense in C.

Proof. Otherwise, there is some w € C — D, (29)\{20}. Then there exists § > 0 such that
|f(z) —w| > ¢ for any z € D,(20)\{20}. In particular, we consider g(z) := 1/(f(z) — w),
then |g| < 1/ on D,.(20)\{z0}. In other words, g is bounded near zy and is holomorphic on
the small punctured region around zg. From Riemann Extension Theorem 4.12, this implies
that zg is a removable singularity of g. Here comes two cases:
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e g(z9) =0, then f(z) —w has a pole at z;
e g(z9) # 0, then f(zp) is well-defined and z( is a removable singularity of f.

Neither the first nor the second case admits the assumption. So we get a contradiction. O

The following theorem shows the extreme complexity of essential singularities. Even the
holomorphic ones have wild manifestations near this kind of singularity.

Theorem 4.17 (Big Picard Theorem). Assume f € O(D,(z0)\{z0}) has an essential sin-
gularity at zg, then with at most one exception wy € C,

vw € C\{wo}, #{f(w)} = oc.
4.3.3. Meromorphicity Versus Rationality.

Definition 4.18 (Meromorphicity). A function f : Q — C is called meromorphic if there
is a sequence of points {z,}52; C Q without any limit points in Q such that

(i) fe O(Q\{zn}7Z1), and
(ii) f has poles at {z,}22 ;.

Recall from topology that the extended complex plane is the one-point compactification
C=CU{0} =S*CR?

of C (as a Riemann surface). Note that the punctured 2-dimensional sphere is homeomorphic
to C itself. If f is holomorphic in the set {z € C | |z| > R} then we define

F(2) = £(2)

which is holomorphic in Dy, (0)\{0}. In convention, f is called to have a pole (resp. remov-
able singularity or essential singularity) at oo if F' has a pole (resp. removable singularity
or essential singularity) at 0.

Definition 4.19. A meromorphic function on C which is either holomorphic at co or has
a pole at oo is called a meromorphic function on C.

Theorem 4.20 (Rationality). Every meromorphic function on C is a rational function,
i.e., the quotient of a polynomial by another polynomial (of any degree).

Proof. Let f be ameromorphic function on C, then by definition f(1/z) is either holomorphic
or has a pole at z = 0. Thus f has only finite poles at C, denoted by 21, .. -, 2zn € C, since
the zeros of f(1/(z—w)) must be isolated by Remark 4.7 for some fixed w € C. Assume the
principal parts of f at zi,...,z2, are Py,..., P, for which P} is a polynomial in 1/(z — zj)
(recall Definition 4.6). For z lying sufficiently close to zj, one may write
f(2) = Pe(2) + hi(2)
for some holomorphic function hj defined near zx. If co is a pole of f then
1 ~ ~
JG) = Pal2) + i (2),

where P (z) is a polynomial in 1/z and hu(z) is holomorphic near z = 0. Denote Pa(z) =
P, (1/z), which is a polynomial in z. Consider

H(z) = f(z) — Pxo(2) — ZPk(z),
k=1
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then z1,..., 2, are removable singularities of H. Thus H € ¢'(C) that is also bounded in C.
By Liouville (Corollary 3.16), H is a constant, say C. Therefore,

f(2) = C+ Pu(2) + Y Pil2),
k=1

which is a rational function as required. O

In fact, Theorem 4.20 displays a phenomenon of “GAGA,” which is the abbreviation of
Géométrie Algébrique et Géométrie Analytique in French. The GAGA-type conclusions are
about some hidden connection between analytic geometry and algebraic geometry.

Examples 4.21. Here comes some meromorphic functions on extended complex plane.
(1) f(2) = z is holomorphic on C but with a pole at co (since F(z) := f(1/z) = 1/z
has a pole at 0).
(2) f(z) =1/z has a pole at 0 and a zero at co.
(3) f(z) =Y ey arz” has n zeros in C and a pole at oo of order n.

Corollary 4.22. Any holomorphic function defined on C (i.e., meromorphic function on C
without poles) is a constant.
4.4. The Argument Principle and Rouché Theorem. Here are some observations:

e if f is holomorphic and has a zero zy of order n, then f(z) = (z — 20)"g(z) with
g(z) # 0 near zg. Thus

f n

() = G

o) = 6L,
where G = ¢'/g is also holomorphic near zy. Here z is the simple pole with residue
n.

e if f is holomorphic in Q\{zp} and has a pole zy of order n, then f(z) = (z—z0) "g(2)

again. Thus

f —-n

—(z) = G(z).

2= 100

Here z( is the simple pole with residue —n.
From these, if f is meromorphic, then f’/f will have simple poles with residues given by
the orders. These two extreme cases take care of the numbers of zeros and poles of a given
meromorphic function. More generally, we obtain the following result.

Theorem 4.23 (Argument Principle). Assume f is meromorphic in some open set con-
taining an open disc D, and f has no zeros and poles at 0D. Then
1 !
— —(z)dz = #{zeros of f in D} — #{poles of f in D}.
2mi Jop f
Here the sizes on the right-hand side are counted with multiplicities.

Remark 4.24. Even without a suitably rigorous definition, one can formally write f'/f =
(log f)’, where

log f(2) = log(|f(2)|e" *# /) =log | f(2)| + i arg f(2).
Consequently, we have
"od d

Lo SloglfG)| i ag £(2).

—/(z)dz = /f ldw

op [ (D) W

And then
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by replacing w = f(z).

As a typical application of the argument principle, the following result is widely used in
counting zeros of holomorphic functions.

Corollary 4.25 (Rouché Theorem). Let f,g € O(D) and |f(2)] > |g(2)| on dD. Then
f+ g and f have the same number of zeros in D.

Proof. Consider the function

fi(2) = f(2) +tg(2), te€[0,1].
Then fo = f and f; = f + g. Also note that |f;| # 0 on 9D since

[fe(2) = [1f(2)] = tlg(2)| > 0

by assumption. Since f and g as well as f; are holomorphic, the number of poles of f; is
forced to be 0. From the argument principle (Theorem 4.23), we see
/

% - %(z)dz = ny := #{zeros of f; in D}.
Note that as a function in ¢, the left-hand side above is continuous with respect to ¢, whereas
the right-hand side only takes values in N through a discontinuous way. This forces n; to
be a constant for any ¢. In particular, ng = ny just so f and f + g have the same number
of zeros in D. O

The following result is a further application of the Rouché theorem.

Proposition 4.26 (Open Mapping Theorem). If f : Q@ — C is a non-constant holomorphic
function defined on an open connected region €2, then f maps open sets to open sets. Namely,
f is open as a map.

Proof. Assume wy = f(zp) for any fixed zy € . We need to verify if w € C is close to wo,
then w also lands in the image of f. Denote

9(2) = f(z) —w = (f(2) —wo) + (wo — w).
—_——— ——
F(z) G(z)

Here G(z) is a constant function in z. Choose 0 < § < 1 such that {|z — 29| < §} C Q and
|f(2) —wo| = € for sufficiently small € > 0 on the circle Cs(zp). The latter condition can
be valid as zp is an isolated zero of the non-constant holomorphic function f(z) — wp. Once
we are given |w — wp| < €, by Rouché Theorem (Corollary 4.25), F(z) and (F + G)(z) have
the same number of zeros in Cs(29). As a result, there is z € Q such that f(z) = w because
F(z) is already known to have a zero z. O

Proposition 4.27 (Maximum Principle). Let Q be an open connected region and let f €
O(Q). Then f cannot obtain a mazimum in Q unless f is a constant.

Proof. Otherwise, there is zg € € such that |f(zp)| is maximal. By the open mapping
theorem (Proposition 4.26), f maps a small disc around zy to an open set of f(zp). This
leads to a contradiction. |

Corollary 4.28. Continuing on Proposition 4.27, assume moreover that Q is bounded and
f is continuous in . Then

sup | f(z)] < sup [f(2)].
Z2€Q z€00

Proof. Since § is bounded in C & R?, we see Q is compact. The assumption on f deduces
that f attains a maximum in 2. Consequently, the maximum principle shows that if f is
not a constant, this maximum must lie on 9f). O
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Remark 4.29. The bounded requirement for 2 is essential in Corollary 4.28. For example,
consider F(z) = ¢~%" defined on Q = {z = x + iy | z,y > 0}; here |[F(z)| = 1 on dQ but F
is clearly unbounded in €.

As for unbounded sets, the Phragmén-Lindel6f theorem (Theorem 4.30) can be regarded
as a various version of the maximum principle. We will use it to prove the Paley-Wiener
theorem later (see Theorem 5.12).

Theorem 4.30 (Phragmén-Lindelof). Suppose D, C C is an angular region of opening
/o with a > 1/2, say,
™

Dy ={z=re? 0] < —,
{z=re” [10] < 5

r > 0}.

Let f € O(D,,) satisfy the following conditions:

(1) [f(z)] < M on Da;
(2) there is 0 < B < a such that |f(re??)| < Ce™ as r — .

Then |f(2)| < M for all z € D,.
Proof. Fix v > 0 such that 8 < v < o and define
Fe(z) = e f(2)

for ¢ > 0. We obtain

|Fe(Re')| = e~ 00| f(Re™)| < | f(Re"))|
since v < « implies |y0] < 7my/(2a), and then cosv0 > 0. Therefore,

|F.(2)| < M, Vz € dD,,.
Applying condition (2), since v > 3,
|Fe(Re™)| < e cos(rm/ ). gl

as R — oo for some constant C' < co. By the maximum principle, |F.(z)| < M for z € Do g
whenever R > 1. Here D, r = D, N {|z| < R} is defined as follows.

Letting R — oo and we attain that |F.| < M in D,. Finally, letting ¢ — 0 to get |f(z)| < M
in D,,. O

Through the similar idea as in Theorem 4.30, we also have the result on a doubly infinite
strip given as follows.

Theorem 4.31. Let S C C be a doubly infinite strip, i.e., S = {z € C| =1 < R(z) < 1}.
Let f € O(S) with |f(z)] < M for z € 9S. Assume f is bounded in S. Then |f(z)] < M
for all z € S. Namely, the bound of f on OS extends to the interior region.
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Proof. Consider the function F.(z) = efzzf(z) with € > 0. Then
[Fe(w +iy)| = & | f (2 + iy).
Since f is bounded on 9S by M, for T' > 1, one obtain
|F.(z +iT)| < @ T f(z +iT)| < M.

Then |F(z)] < M for z € dSp, where Sp = z=a2+iyeC|-1<z<1,-T<y<T.
Applying maximum principle (Proposition 4.27) to F. on St, we get |F (z)| < M in St.
Finally, letting 7' — oo and € — 0 gives |f(z)| < M in S. O

4.5. The Complex Logarithm. The discussion on complex logarithms refers to a subtle
phenomenon that the local complex geometry may not be compatible with that globally,
even when we care only about the complex plane, which is the simplest geometric object
over C. Consider z = re’® with » > 0. Due to the experience in computing real logarithms,
one can formally write
log z := log r + 6.
However, the first problem is that 6 is not uniquely determined as different 6’s can lead to
the same value of z up to 27Z. Let’s make the following observations.
(1) If for some zg # 0, log 2o is defined, then log z is well-defined for z lying close to zy
via the definition above.
(2) logz can be defined on C\[0, c0). Moreover,
z=re", 0<0<2r = logz=Ilogr+if.
(3) logz can be defined on C\i(—o0,0]. Moreover,

; 3
z=re", —g <6< 771- = logz=logr+i6.
(4) log z cannot be well-defined on C\{0}.
To sum these observations up, the complex logarithm can be well-defined in some special
(simply connected) regions that are not the whole complex plane. The admissible region
must be truncated to a single period 27 in 6 such that one cannot vary the argument
continuously.

Theorem 4.32. Assume Q C C is simply connected such that 0 ¢ Q and 1 € Q. Then there
exists a well-defined holomorphic function
F(z) :=logg(z) € O()
such that e¥?) = 2 for all z € Q; and for r > 0 close to 1, we have F(r) = logr.
Proof. The idea is naive: to construct F(z) as a primitive of 1/z. Since 0 ¢ Q, we see

f(z) = 1/z € 0(). By the global Cauchy (Theorem 3.10), its primitive F(z) is well-
defined on the simply connected region, and moreover,

@)= Sy

that is independent of the choice of the path I', from 1 to z in Q. Taking z = 1, we see

F(z) = F(1) = 0 simply by definition of F. On the other hand, we note that
d
a(e_F(z)z) = —F'(2)e F@ 4 e 1) =,

and then e=¥(*)z is a constant function e~

"1
ef'(2) — z, F(r) :/ —dx = logr.
1z

F(1) = 1. Hence
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d

Remark 4.33. If log z is well-defined in 2, then for all a € C, 2 is also well-defined via
2% 1= e*198 % Simultaneously, even if log z is well-defined in ,

log(2122) # log 21 + log 22
in general. A counterexample is easy to find: say
logz =logr+1i, z¢€C\(—0,0], —-mT<O<m
and take 21 = 2o = €2™/3. Then 2129 = e*™/3 = ¢/(=27/3) n this case,
271 47

log(z122) = —5 log z1 + log 2o = 5

The following theorem generates Theorem 4.32 about the existence of complex logarithms.
The log function is well-defined for an everywhere non-vanishing holomorphic function in a
simply connected region.

Theorem 4.34. Let 2 C C be simply connected. Assume f € () doesn’t vanish anywhere
in Q. Then there is g € O(Q) such that f(z) = e9%) for all z € Q. We denote g(z) =

logq f(2).
Proof. Through a similar idea, let’s construct g as a primitive of f'/f. Fix zp € Q and
define ()
w
9(2) =
r. f(w)
where T, is a path from zy to z and C is a constant such that e“ = f(z) (or formally,
C =1log f(#0)). Again, g(z) is well-defined and g € 0(Q) with ¢'(z) = f'(2)/f(z). Then
d
LR ®) =0

and f(z)e 9(*) is a constant function. Take z = 2 to deduce that e9(*) = f(z). O

dw+C

5. FOURIER ANALYSIS AND COMPLEX ANALYSIS

In this chapter, we shall describe some interesting connections between complex function
theory and Fourier analysis on the real line. The motivation for this study comes in part
from the simple and direct relation between Fourier series on the circle and power series
expansions of holomorphic functions in the disc, which we now investigate.

5.1. Motivation: Mean-value Property. Recall Cauchy integral formula (Theorem 3.13
and 3.14) as follows. For f € €(€Q) and Dgr(2o) C €2, we obtain

)y 1 f(z)
S (z0) = 2mi /8DR(20) (2 — Zo)”HdZ-

Now parametrize ODg(z) via zo + Re? and we get

(1) (Mean-value Property) For n = 0,
1 [* f(z0 + Re®)

- - i0
f(z0) = 371 /. Toit Rie*df
1 2w "
= Re™)d6.
o7 J, f(z0 + Re)
(2) More generally, for n > 0,
n!

27
£ (z0) / f(z0 + Re?)e=™0qg.
0

- 2w R™
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Remark 5.1. As for the case n < 0, note that f(z)/(z — 2z0)"*! is holomorphic in 2 so its
integral along ODg(zo) vanishes. Hence
27
f(z0 + Re®)e™™%d0 =0, n <.
0

Recall that holomorphicity is equivalent to analyticity. Then the (higher) mean-value
equations above exactly reveal the coefficients of the analytic expansion at some zy. Notice
that these equations have to do with Fourier transformations on R. To be more precise, the
result above can be interpreted as a discrete version of the Fourier transform.

Here comes a quick review of Fourier transforms defined over R. Let f be a nice function
on R (with some decay condition or integrable condition satisfied, say). Its Fourier transform
is defined as

HG) ;:/_ f(x)e 2™ dz, ¢ €R.

Goal: in the present context, we aim to prove the following correspondence relation. Say the
possibility of extending f to a holomorphic function is equivalent to some decay condition
of f at oo. In other words, holomorphicity of a complex-valued function is determined
(whereas not over-determined) by its restriction on R as well as the manifestation of its
Fourier transformation at oo.

Before the theoretical introduction, recall the following basic fact on the Fourier trans-
form. It shows that the inversion of Fourier transformation only drops information on a
zero-measure subset of R.

Theorem 5.2 (Fourier Inversion on R). If f € L'(R) and ]?E LY(R), then
/ J?(f)ezmgxdf = f(z) ae inR.

5.2. The Class §. Now we introduce a class of functions that are particularly suited to
our goal: proving theorems about the Fourier transform using complex analysis. Moreover,
this class will be large enough to contain many essential applications.

Definition 5.3 (Moderate Decay). Let f be a function on R. We call f have moderate
decay if
A
g -
@<

for all x € R. In particular, for f continuous and of moderate decay,

| @it < o

—o0
Definition 5.4 (The Class §). For a > 0, denote the class §, to the functions f satisfying
the following conditions:
(i) f e 0(S,), where S, ={z € C||3z| < a};
(ii) there is a constant A > 0 such that |f(z + iy)| < H% for all x € R and |y| < a.
And we define the class § = (J,~( Sa-

Examples 5.5. One must intuitively note that the class § collects elements that behave
well in a sufficiently narrow strip containing R.
(1) f(z) = e~ € F, for any a > 0.
(2) For any 0 < a < ¢ with fixed constant ¢ > 0,
flz) = € Fa-

c
c2 + 22
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(3) For any 0 < a < 1/2,

fe)=——=— 5.

coshmz  em e 72

Exercise 5.6. Show that for all f € §, and for any 0 < b < a, we have f( € §,. (Hint:
using Cauchy integral formula.)

5.2.1. Ezponential Control for §. The following theorem is in preparation for the result by
Paley-Wiener in 1934 (Theorem 5.12), which will be useful in finding the support of Fourier
transforms.

Theorem 5.7. If f € §, then |f(§)| < Be 2™l for any € € R and 0 < b < a.

Proof. For any £ € R we obtain by definition that
fo= [ s
— 00

Consequently, it is bounded as

N oo [ee] A
fol< [ e [ s
for all £ € R and some constants A,C' < co. So the result is true for b= 0. Let 0 <b < a
and denote g(z) = f(z)e™2"%*¢. It suffices to consider the case where £ > 0, and the situation
for £ < 0 must be similar. The idea is the same as what we have used twice in Example
4.10 and 4.11 before. Suppose I'g is the piecewise-linear closed curve defined as follows.

Vg g

Note that g(z) is holomorphic in S, by assumption. Now we obtain

0= /FR g(2)dz = /R g(x)dx—f—/o_b g(R+ it)dt+/_Rg(:r — ib)dw—i—/o g(—R +it)dt

-R R -b

Ir IIgr Il IVg

from the Cauchy integral formula (Theorem 3.13). Firstly, we obtain

—b
|IIR| < / A 6—27T'L'(R+it)£d§ ~ =0
0

1+ R? 1+ R2

for some constants A,C' < oo as R — oo. Similarly, [IVg| — 0 as well. Hence the equality
above becomes

0=1gr+1IIg = f(&) + / f(x — ib)e™ 2mi@=i)E gy,

o0
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And therefore,

7€) = ’/_00 F(x — ib)e2ri@=ivE gy

< / [F(x — ib) e~ da

< A
< 6_2”1’5/ dx = Be 2%,

oo L+ a2

The remaining proof tackles the case £ < 0. From this, we get
fle) = / f@ +ib)e 2T gy,
Then the same inequality accomplishes the proof. O
The key ingredient in the proof of Theorem 5.7 above lies in the expression of Fourier

transformation for f € §, through a complex integral along some line y = b. This idea
together with the Fubini theorem in real analysis deduce the following Fourier inversion.
Proposition 5.8 is a modified version of Theorem 5.2 in complex analysis, which drops the

“almost everywhere” condition.

5.2.2. Fourier Inversion for §.

Proposition 5.8 (Complex Fourier Inversion). Given f € §,, then

Ve eR, f(z)= /_ - Fle)e¥ i€ .

Proof. Recall that we can rewrite the Fourier transform as

f(f) = /:x’ Fla — ib)e=2mi@=®E gy

Let’s first consider the integral along the positive-half part. For 0 < b < a, we obtain

- 2milT g¢ > > —27ué 2mixé
| Reemae= [T fwetncan) eresac
:/ </ f(u_ib)e—Qﬂ'(u—ib)ﬁdu) e27m'a:§d£
0 —0o0

_ / f(u _ ’Lb)/ e—(2ﬂb+2ﬂ(u—x)i)§d€du
—00 0

o ) 1
B /oof(u—zb) . 27rb—|—27ri(u—x)du

B I flu—1b)
_%[m (u—ib)—rdu
VNI

2mi Jp, -
In the last row, the line L; = R — ¢b. Similarly, for Ly = R + ib, we also have

0 N wi€x _ 1 f(g)
[ _Feemsac= o [ g
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To sum these up, we get
% 2 2mie % 2 2mie ° = 2mig

| Feemsa= [ foema [ feensa

1 G

— d.
21 Li+Lo g_ x

On the other hand, from the Cauchy integral formula (Theorem 3.13),

fz) = 2;- /F gf(_f) d§ =1g +1Igr + Iz +1Vpg,

where I'g is defined as in the picture. It suffices to show that |IIg|,[IVg| — 0 as R — co.

Yy I
g bi
g
-R R
0] T
Vg
Ir L
—bi

The result in need is deduced from the typical argument. Say

b j 1 [ A 1
— Mdt<—/ —.7dt<£_>0

II == X X
x| 2 J_y R+it—x 2r |, 1+ R? |R— x| R3

for some constant A,C < oo as R — oo. Similarly, |IV R\ — 0 as well. Therefore,

1 &) 1 / / o2
=1 - — Tixg
f(x) Rl—I)nOO 271 /FR g 5 27TZ Li+Lo f d§ f dé‘
This completes the proof. [

5.2.3. Poisson Summation Formula for §.

Theorem 5.9 (Complex Poisson Summation Formula). Given f € §,, we have
Y )= fn)
nez neEL
Proof. Consider the function f(z)/(e*™** — 1), it has simple poles at every n € Z with
) flz) _ f(n)
1eSn e2miz _ | - LleIl;ll(Z TL) e2miz _ | - o2mi

Now we fix N € N and apply the residue formula on I'y. Here we keep the statement as in
the proof of Proposition 5.8: 'y is defined by the picture above with R = N + 1/2. Hence

f(z) :
/FN e G LU DI e 2m = 2 S

pole zel'n In|<N

Claim: the integrals on the vertical segments tends to 0 as N — oo.
To show this claim, letting N — oo, we get

Jim [ = gm0 =3 sto)

[n|<N nez
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Apply the same argument as in Proposition 5.8, this leads to

f(z) f(z)
Zf /1mdz+/;2mdz

neZ
We have some observations as follows.
eonlL; =R— Zb, we see 2% — e27ri(x—ib) — e27rbe27rix’ thus |6271'iz| — 27b > 1.
Therefore,
1 1 o0 o0
__—2mi _ _—2mi —2minz __ —2mi(n+1)
e — o 2miz T — o~ 2miz Ze minz _ Z e~ 2mi(n z
n=0 n=0
e on Ly = R+ ib, similarly, [e2"%*| = e=27% < 1. Therefore,
1 _ Z 27rznz
627Tiz -1 - eZ‘/rzz -
So our calculation can be done:
o0 o0
Z f(n) _ f(Z) Z e—27rz(n+1)zdz o f(Z) Z e2minz 4,
nez L n=0 L2 n=0
[e%e] 00 o0 [e'e]
— Z/ f(ZII _ ,L-b)6727ri(n+1)(m7ib)dx + Z/ f(.%' + Z-b)6727ri(*n)(z+ib)d$
n=0" ~> n=0" ~>
o0 R oo
=2 fn+1) Z =>_f(n)
n=0 n=0 nez
This proves the Poisson summation formula. ([

There are two precise applications of Theorem 5.9. It is used to deduce more formulas.

Example 5.10 (Functional Equation). Recall that for f(z) = =™, its Fourier transform
is itself (Example 3.12):

f(é) = / e~ g2 0 o= TE”

—00

Thus, for F(z) = e~™@+)* with t > 0 and a € R, we have

ﬁ(f) _ / F(x)e—27rix§dx _ t—1/2e27ria§e—7r§2/t

— 00
The Poisson summation formula deduces that

Z e—Trt(n+a)2 _ t_1/2 Z e—7rn2/t . g2mian.

neZ ne’

In particular, letting a = 0 and denoting 0(t) = >, _, e=™n for t > 0, we get
1
0(t) =t~20(2).

This is an important functional equation in analytic number theory, which is relevant to the
Riemann hypothesis.

Example 5.11. Recall Example 4.11 in which we have shown that f(z) = 1/ coshrz takes
itself as its Fourier transform. One can also show that

—2miax t

cosh(w (& + a)t)

Flw) = cosh(mz/t)’ Fe) =
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for all ¢ > 0 and a € R. Again, by Poisson summation formula, one deduces that

Z e—27rian Z t

= cosh(mn/t) = cosh(m(n + a)t)
5.3. Paley-Wiener Theorem.
Theorem 5.12 (Paley-Wiener, 1934). Suppose f : C — C is continuous and of moderate
decay on R, i.e., for all z € R, |f(z)| < A/(1 + 2?). Then the following are equivalent:

(1) f has an extension to a holomorphic function on C with |f(2)| < Ae>™I=| for some
constants A, M >0, and for all zeC.
(2) f is supported on [-M,M], i f(f)—Ofor any |€] > M.

Proof. The converse direction (2) = (1) is relatively easy. Suppose f is supported on
[-M, M], then f is of moderate decay implies that the Fourier inversion for § (Proposition
5.8) holds for f. In particular,

vreR, f(z / F(e)emi=eae = / Fle)ermincae.

Let’s define the complex-valued function

M o~ .
)= / Fle)emizede.

Then g € 0(C) and g(x) = f(x) over R. Moreover, for any z = = + iy, we obtain

/ Fle)erde| <

for some constant A. The last inequality above is given the exponential control (Theorem
5.7). Now we prove (1) = (2) step by step.
Step 1: Stronger Growth Condition.
Assume f € 0(C) is controlled by a stronger growth condition, say
27 M|y|

9| = / F©)le>medg < AP

e
1+ 22
for some A’ > 0. The claim is that f({) = 0 whenever |§| > M.

(i) &€ > M: a similar computation through the Cauchy integral formula as if in the
proof of Theorem 5.7 deduces that

o= [ swerta = [ j— e

for all y > 0. Applying the stronger growth condition, we attain that

~ o0 A’ o A’
MRS / H—ﬁe%My_%yédx = / T2 dre?™M=8) _
—o0

|f(x+iy)| < A

— 00

as y — 00, because of y > 0 and M — ¢ < 0. Thus for £ > M, |f(§)| =
(ii) £ < —M: same as in (i). One can compute

) = /_ f(x)e ™8 dy = /_ f(x +iy)e 2mi@HwE gy

for all y > 0 again. It can be verified that
7€) < ce™EM 0

for some constant C' as y — co. Thus for £ < —M, |f(¢)| = 0.
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Step 2: Relaxing the Growth Condition. ~
Take f € O(C) such that |f(x + iy)| < Ae*™MW¥I. The claim is that f(&) = 0 for all
€] > M as well.

(i) € > M: consider for € > 0 that

f(2)

fe(z) = m

It suffices to verify the following two facts. Firstly, the function f. satisfies the
stronger growth condition in Step 1. That is,
e2mM|y|

|fo(x +dy)| < DW

for another constant D. Applying the argument that we have used, we can immedi-
ately get ]/”;(5) =0 for |{| > M. Secondly, check that fg(f) — f(é) as € — 0. These
are relatively easy to do (so we choose to omit the details).

(ii) £ < —M: consider for € > 0 that

f(z)

(1 —ie2)?

fe(2) =

One can verify the conditions as in (i) again.

Step 3: Applying Phragmén-Lindel6f Maximum Principle.
We aim to prove that if |f(x)| < 1 for z € R and |f(2)| < e>™™/*l for all z € C, then

|f(x +iy)| < ML
For this, we consider the function

F(2) i= f(2)e?mM>.
On Q; = {(z,y) € R? | z,y > 0}, we have

[F(a)] = |f(2)l <1, [Fiy)| = [f@iy)e ™| < 1.
Hence |F(z)| < 1 for all z € Q;. Also, the condition |f(2)| < e2™I*I yields that
|F(2)] < et

for all z € @1. Now by the Phragmén-Lindel6f maximum principle (Theorem 4.30),

Ve @, [|F(2)|<1L

Hence |f(2)| < e72™V for all z € Q;. Applying the same argument to other quadrant
closure Q2, Q3, and Q4, we finally have |f(2)| < e”?™MY for all z € C. Furthermore, note
that the condition |f(z)| < 1 can be dropped without changing anything essentially. The
result is naturally generated to

|f(2)] < 72 M1

for all z € C as desired. (I

Remark 5.13. The moderate decay condition for f in Theorem 5.12 can be replaced by some
integrable property of f to attain a more general version.
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6. ENTIRE FUNCTION

Recall in Corollary 3.16 that f is called entire if f € 0(C). In Subsection 4.3.2 and 4.3.3,
we have seen the complexity of the manifestation of the meromorphics at the infinity. In
this chapter we are going to construct the hidden connection between the growth of f at
oo and the zeros of f on C. Morally, the intuition which will be proved is that the faster it
growths at co, the more zeros it contains (Theorem 6.7). This result is compatible with the
fundamental theorem of algebra (Theorem 3.18).

Also, it turns out that if an entire function has a finite (exponential) order of growth,
then it can be specified by its zeros up to multiplication by a simple factor. The precise
version of this assertion is the Hadamard factorization theorem (Theorem 6.13). It may be
viewed as another instance of the general rule that was formulated before: under appropriate
conditions, a holomorphic function is essentially determined by its zeros (Theorem 6.10).

6.1. Jensen’s Formula. Jensen’s formula, central to much of the theory developed in this
section, exhibits a deep connection between the number of zeros of a function in a disc and
the (logarithmic) average of the function over the circle. In fact, Jensens formula not only
constitutes a natural starting point for us, but also leads to the fruitful theory of value
distributions, also called Nevanlinna theory.

The following result says that for a well-behaved holomorphic function on a disc, its
central logarithmic value is and its logarithmic average along the boundary circle are almost
mutually determined, where the difference is given by some information about zeros.

Theorem 6.1 (Jensen). Let Q C C be an open subset and let Dg := Dg(0) C Q. Suppose
f € 0(Q) satisfies f(0) # 0 and is nonzero along 0Dg. Assume z1,...,zN are the zeros of
fin Dr counted with multiplicities. Then

27
log /(0 \—Zl Sl 5 [ sl (R ab.

Proof. Note that the formula is stable under additive. That is, if the result holds for f; and
f2 simultaneously, then it holds for f; - fo as well. Denote

f(z

o) = L

[Th=1(z — 2)

then every zy, is a removable singularity of g. Thus g € OO(Dpg) and g # 0 in Dg everywhere.

Hence we may write
N

F(2)=9(z) - [z = =)

k=1
It suffices to verify the formula for g without zeros, that is, to show

1 27 i
loglg(0)| = 5= [ 1ogla(Re)lab

If g # 0 in Dg, then log|g(z)]| is harmonic in D and we can apply the mean-value property
for harmonic functions. Furthermore, suppose Dpg is simply connected and then h = logg
is well-defined in Dp with e = g by Theorem 4.32. Hence

log|g(2)| = R|h(2)].

This suggests us to apply the mean-value property to h and to take real parts. As a result,
the Jensen’s formula is valid for g(z). On the other hand, let’s check for the function z — w,
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where w € Dg. One may need to prove

_ |w] 1 /27T i0
log |w| = log 7 +27r | log |Re*” — w|db.

27
. w
log |e?? — =1|d# = 0.
/Oogle RI

This is equivalent to say

Claim: for all |a| < 1 we have
2 ) 2 )
/ logle? —aldd =0 <= / log |1 — ae™|df = 0.
0 0

Proof of the Claim. For this, consider the function F(z) =1 — az. Then F # 0 in the unit
disc D. Hence there is some G being holomorphic in D such that ¢“ = F' by Theorem 4.32
again. Thus,

log |F| = log |1 — az| = RG(z).
Finally, applying the mean-value property to G, we get

1 27 . 1 27 .
0 =1log|F(0)| = %/o log |F(e?)|df = g/o log |1 — ae'®|de.

This is enough to complete the proof by taking some sufficiently large R. (]

In fact, the holomorphicity assumption in Theorem 6.1 can be dropped to deduce a general
version of Jensen’s formula.

Theorem 6.2 (General Jensen’s Formula). Let @ C C be an open subset and Dg :=
Dr(0) C Q. Let f be a meromorphic function in Q. Counting with multiplicities, assume
ai,...,ay are zeros and by, ...,by are poles of f in Dg, respectively. Then for all z € Dr
with f(z) #0 and f(z) # oo, we have

|2

1 27 0 R2 _
MU@F%A mv&erWT—

2
Z log + Z log

Exercise 6.3. Prove Theorem 6.2 with a similar approach as in the proof of classical
Jensen’s formula. Consider the function

R?-a
’l/)a(z) = _R(Z——O[O‘[Z)’ [OAS DR

First prove the result for f(z) - Hfil Ya; (%) - (HJM=1 Yy, (2)) 7"

6.2. Zeros and the Order of Growth. In the present context, we are doing some prepa-
ration works for the ultimate goal of this section: to construct the connection between zeros
and the speed of growth at the infinity. Given f € &(Dg), we denote

ng(r) = #{z € D, | f(z) = 0} = #(f1(0) N Dy),

counted with multiplicities.

do

—bz
z—b)

Proposition 6.4. Keep the same statement of Theorem 6.1 on f and Q. Then

R 27
‘/mmwz—/l%umMWI%m»
0
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Proof. By Jensen’s formula, we only need to verify

R N
dr R
n (7")— = E IOg IR
/0 T = P

where 21, ..., 2N are zeros of f in Dg. Let’s define
17 ‘Zk:| <
ne(r) =
{0, |zi| = 7.

Thus ny(r) = Zszl Nk(r). On the other hand, we obtain

R dr R dr R
ne(r)— = — =log —.
0 r P |2k

Therefore,
R R N N R N
dr dr dr R
[ =[Sm0 =3 [ =S
k=1 k=1 k=1
Note that the key point of this proof lies in the case of a single zero. O

Now we are defining the order of growth, which is to be applied at the infinity later.

Definition 6.5 (Order of Growth). Given f € &(C), if there exists some p > 0 and
constants A, B > 0 such that |f(z)| < AePI*l” for any z € C, i.e., log|f(z)| < Blz|” + O(1)
where O(1) denotes a bounded term, then we call f has order of growth at most p. Then
take py :=inf p for all such p. And p; is called the order of growth of f.

Examples 6.6. The subtlety in Definition 6.5 is that the order of growth is possibly not
precise. For example, if f is a polynomial in z, then p; = 0 whereas |f(z)| cannot be
bounded by Ae® < co. Similarly, one can show that if f(z) = expe?, then p; = co. For a
more prototypical example, consider f(z) = e* whose py = 1.

Theorem 6.7. Let f € 0(C) with order of growth py < p. Then

(1) ng(r) < Cr? for some C >0 and r > 1;
(2) if {zn}5%, are zeros of f with z, # 0 for any k, then for all s > p we have

IR
k=1 |Zk|s .

Proof. If f(0) = 0 then consider f(z)/z", where m = ordo(f). So we may assume f(0) # 0
for convenience and by Proposition 6.4,

R d 27 )
[ = o= [ rosrre?)jan —10g10)] < A
0 0

r

for some constant A > 0 by assumption. Let R = 2r and note that

2r 2r R
ds ds ds
nytos2=ns(r) [ <[0T < [T T

r S s
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So there exists another constant C' > 0 such that ng(r) < Cr? for r > 1. This gives (1) as
required. As for (2), we obtain

(oo}
Dol =3 > Al S<Z2 Tng(271)
|z |>1 J= 02J<|Zxc|<2J+1

oo

<C- ZQ 1823+1)p<c ng %)

The last inequality in the first and the second row above respectlvely uses (1) and p <s. O

6.3. Infinite Product. A natural question is whether or not, given any sequence of com-
plex numbers {z,}52 ,, there exists an entire function f with zeros precisely at the points of
this sequence. A necessary condition is that {z,}72; do not accumulate, in other words we
must have limg_,o |2x| = 00, otherwise f would vanish identically by the analytic continu-
ation (Theorem 3.22). Weierstrass proved that this condition is also sufficient by explicitly
constructing a function with these prescribed zeros. A first guess is of course the product

oo

H (z = 2n)

n=1
when the sequence of zeros is finite. In general, Weierstrass inserted factors in this product
so that the convergence is guaranteed, yet no new zeros are introduced.

Before coming to the general construction, we review infinite products and study a basic

example. Given {a,}>2,; C C, say the product converges if the limit limp_ o ngl(l +an)
exists.

Proposition 6.8. Whenever Y. |a,| < oo, the product HnN:1(1 + a,) converges and
vanishes if and only if some factor 1 + ay = 0.

Proof. For |z| < 1 we have the logarithmic expansion

log(1+2) = Zk

Suppose Yo7 |a,| < co and then |a,| < 1/2 for n > Ny > 0. Consequently, log(1 + a,,) is
well-defined with elog(1+an) =1 4 ... Then we do calculation as

oo No oo
H(1+an):H(1+an)' H (1+an)
n=1 n=1 n=Np+1
No o)
= H 1+ay,)- H exp(log(1 + ay))
n=1 n=No+1
Ny e
H 1+ ay,) - exp( Z log(1 + ay)).
n=1 n=Np+1
Note that |log(1 + 2)| < 2|z| for |z| < 1/2. So there exists some constant B such that
Z |log(1 + a,)| < Z 2|an| = B < o0
n=No+1 n=No+1

by assumption. Hence the infinite product factors through a finite product as
No

ﬁ(1+an) = H(l—l—an)-eB
n=1

n=1
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and the product is zero if and only if one of these factors is 0. O

Proposition 6.9. Let Q C C be an open subset and F,, € O(QY). Assume there are ¢, > 0
such that Yo ¢, < 00 and |F,(z) — 1| < ¢, for all z € Q. Then

(1) TIo—, Fu(2) = F(2) uniformly (with respect to z) on Q for some F € 0(1).
(2) If F, #£0 for every n > 1 then for any z € Q,

F' = F!
7(2) = Z F—n(2)~

n=1
Proof. For (1), we can write [[7, F},(2) =[]~ 1+ (Fu(z) — 1). And for (2), just use the
formula , , ,
Vg I o
fg g
The undisclosed details are left to readers. O

Let’s introduce the main theorem by Weierstrass, which dictates the existence of an entire
function that vanishes at a given infinite sequence exactly. Moreover, such entire function
is unique up to an exponential factor.

Theorem 6.10 (Weierstrass Infinite Product). Given {a,}32,; C C with |a,| — oo as
n — 0o. Then there exists some f € O(C) with the zeros exactly at z = a,. Any other such
entire function is of the form f(2)ed®), where g € O(C).

Before proving this, a lemma at work about canonical factors is in display.

Definition 6.11. For k& > 0 we define the canonical factors as
k
Bo(z)=1—2 Ey(z) = (1—2)exp(3

n=1

).

on
n

Lemma 6.12. If |z]| < 1/2, then
11— Ep(2)] < clz|"*!
for some ¢ > 0 that is independent of k.
Proof. Whenever |z| < 1/2, we have 1 — z = exp(log(1 — z)) where

log(l1—2)=—
Thus we can write for all £ > 1 that
k
z z
E = log(1 — )= - 2y = ew(z)
() = expllog(1—2) + Y ) =exp(— Y D)=
Here |w(z)| is bounded as follows:

w(z)] <= Y

n>k+1

|Z|n~k+1 - el 1. . A
Z (L ) =9 +1
—— <Y () =20
Jj=0

because of |z| < 1/2. In particular, |w(z)| < 1. Therefore,
11— Er(2)] = |1 — e¥®| < e|lw| < 2e|z|FF.

For the middle inequality above, recall that e* = > ° jw™/n!, and then

le¥ —1] < |w|i L |w|i L el
n=1 n=1 n!

|n71
!

n
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Taking ¢ = 2e does finish the proof. O
Now we move to the construction by Weierstrass.

Proof of Theorem 6.10. Step 1: Existence.
The most naive idea is to consider the infinite product

However, this product does not converge in general. Fortunately, the result is differed from
this by another exponential factor. Obtaining the canonical factors (Definition 6.11), we
move to

o0 o0 n k
z z z/an
f(z):=2" H E,(—)=2z" H(l — —)exp(z G/an) ), m=0.
an a'n k
n=1 n=1 k=1
Claim: f € 0(C) has a zero at z =0 of order m and zeros at each a,, but nowhere else.
Proof of the Claim. For this, we first check that f is holomorphic in every disc Dg(0) for

R > 0. Write

o0

z z z

H En(a_) = H En(a_) H En(a_)'

n=1 n lan|<2R " lan|>2R "
The motivation to consider this truncated product is that as |a,| — oo, the finite part
vanishes at z = a,, for |a,| < R in Dr(0), and the infinite part is convergent. Now for
z € Dg and |a,| > 2R, we have |z/ay| < 1/2. Thus,

z z n+1 1 n+1
1= Eu( D) <d 1™ < elg)

by Lemma 6.12. Now by Proposition 6.9, the infinite part H‘an‘>2 i En(z/an) converges
uniformly to some holomorphic function in Dg(0). Letting R — oo finishes the proof of
existence.
Step 2: Uniqueness.

This is relatively easy. If fi and fo are two such functions, then fi1/fs is holomorphic
in C and f1/f2 # 0. Since C is simply connected, there exists some g € &(C) such that
fi/f2 = €9 by Theorem 4.32. O

6.4. Hadamard Factorization Theorem. The main result: if an entire function has a
finite (exponential) order of growth, then it can be specified by its zeros.
Recall Definition 6.5 that if f € ¢/(C) has finite order of growth, denoted by py, then for
any € > 0,
log|f(2)] < Ael2” T +0(1)

as |z| — oo. In fact, if the sequence of zeros is given, say {a,}5°; = f~1(0), then
Y o <
20 |an|Pf+E .

Theorem 6.13 (Hadamard Factorization). Let f € O(C) has a growth order py < oo and
take k = [pys| as the integer part of py. If {a,}52 are the zeros of f that are away from 0,
then

f(Z) _ eP(z)Zm ﬁEk(ai>
n=1 n

where P is a polynomial of degree at most k, and m = ordg(f).
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Proof. For z € Dr(0) we write

lo:o[lEk(i)Z 11 Ek( - 11 Ek

lan|<2R " lan|>2R

On the right hand side, the first term is a product of finite terms with zeros z = a,, for
lan| < R in the disc Dg. Moreover, there is a constant C' such that the second term satisfies

1

H Ek <c| |’“+1<OR’“+1| ==

lan|>2R
by Lemma 6.12 (because of |z/a,| < 1/2 for z € Dg). By Theorem 6.7 (2),

1
> lap [FH1 < 0,
n>1
which implies that [ 2, Ex(z/a,) is holomorphic in Dg. Letting R — oo, we define
d z
=2" || Ex(—) € O(C).
A== [T <o)

Note that this function has the same zeros as f(z). Therefore, the function f(z)/E(z) €
0(C) vanishes nowhere, that is, there is some g(z) € €(C) such that f(z)/E(z) = e9*). So

£ = I Bi(=)
n=1 n

Now it suffices to control g(z) by a polynomial of degree at most k.
Claim: if f has the growth order py, then for all s > py, there is a constant C' such that

[T Eu(-) > exp(~Cll")
n=1 n

on |z| = rym — 00 as m — oo.
Assuming the claim, we get on |z| = r,, — oo that

|eg(z)| _ eg%(g) _ | f(Z) | < AeXp(B|z|S)
E(z) exp(—C|z|*)
for some constants A, B. So (g)(z) < C|z|® on |z| = r,, — oo. Using this condition, it can

be shown that g(z) is a polynomial of degree < s (as an exercise). Let s — ps, we get g(2)
is a polynomial of degree < k = [ps]. The proof of claim is omitted for convenience. (]

Examples 6.14. There are some basic examples as applications of Theorem 6.13.

(1) f(z) =€ —1.
It is an entire function with py =1 and m = ordy(z) = 1 with zeros at z = 27in for
all n € Z. Applying Hadamard factorization, we obtain

zZ_ 1= az+b 1— o ? _ az+b
¢ ¢ “ H ( 2m'n>eXp(27rm i H 47r 472n2

neZ\{0}
for some a,b € C. We use the following recipe to determine these constants:
e —1
lim =1 = b=0;
z—0 z
also, the infinite product is an even function with respect to z, which means that
e’ —1 e -1 1

e .z e=a%.(—2) “=y
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Therefore, the factorization of f(z) is read as

22
To3)

o0
e —1=e*?z H(l t )
n=1

(2) f(z) =sin(mz).
It is apparent that py = 0 and m = ordg(z) = 1 with zeros at z = n for all n € Z.
Consequently,

oo
: a _ E — p2 — Z_
sin(mz) = e*z H (1 n)—e zH(l )
neZ\{0} n=1
for some constant a € C. Similarly, by considering

lim sin(7z) E——
z—0 VA

we get the desired factorization.

6.5. Divisors. Let f € &(C) be a nonzero function. We define the divisor of f to describe
its zeros and poles.

Definition 6.15 (Zero Divisor). The following formal sum of points in C is called the zero
divisor associated to f, say

Z(f) = Z ord,(f) - a.

f(a)=0
Here the sum runs through all points a € C such that f(a) = 0.

Comparing with Theorem 6.10, we have the following neat result.

Theorem 6.16. Given a discrete set {a,}oe, C C, there is an entire function f € O(C)
such that {a,}52, are exactly all the zeros of f (counted with multiplicity).

Collecting the information in {a, }22; as a formal sum of points in C, say
oo
Z my - Pe, mp €N,

k=1

then the theorem implies that this formal sum can be realized as Z(f) for some f € &(C).

Definitions 6.17 (Divisors). A Z-coefficient divisor in C is a formal sum

D:imk~P]€
k=1

with my, € Z, where the set {P;}72, C C is discrete. A divisor is effective if all my > 0.
Let f be a meromorphic function in C. Then the divisor associated to f is defined to be

(N =2(N+P()= > orda(f)-at > orda(f)-a.
f(a)=0 fla)=oc0

The following theorem shows that divisors with Z-coefficients in C are in a one-to-one
correspondence with meromorphic functions on C.

Theorem 6.18. For any divisor D with Z-coefficients in C, there exists a meromorphic
function f on C such that D = (f).
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6.6. Nevanlinna Theory. Recall that Jensen’s formula reveals a hidden connection be-
tween the number of zeros of a function in a disc and the (logarithmic) average of the
function over the circle. Starting from the following Poisson-Jensen formula, which is a
variant of Jensen’s formula, we construct the theory developed by Nevanlinna in 1925.

Let f be a meromorphic function in Dpg, then for z € Dg with f(z) # 0 and f(z) = oo,
we have

1 [ 4 Re® + 2
log 1 (:)| = 5= [ Tor | (Re )R o

Reif — Z)da — Z Orda(f) IOg |BR,a(Z)|7

a€Dgr

where Br.(2) = (R? —az)/R(z — a). In particular, if z = 0 is neither a zero nor a pole,
i.e., it satisfies f(0) # 0 and f(0) # oo, then

2m
log 1(0)] = 5= [ Tog | (Re™)ldp— 3 ond()log |
a€Dpr

In general, if for those z landing near z = 0 we have an expansion f(z) = cy2™ + --- with
¢t # 0, then by applying the equation above to f(z)/z™ we get

1 2 . R
(%) log|cs| = —/ log | f(Re')|do — E ord,(f)log|—| — mlog R.
2 0 a
0#a€DpRr
We now introduce the number of poles of f in D, (counted with multiplicity), say
ng(r) =ng(r,00) == #(f ' (c0) N D).

For a € C, we also define the number of solutions of f(z) = a in D, (counted with multi-
plicity) by
ng(r,a) = nf%(r,oo).

In particular, ny(0,0) —ng(0,00) = m = ordy(f) is the difference of zeros and poles of f at
z = 0. Using these sense, we are clear for the motivation of Nevanlinna’s definition for the
counting function.

Definition 6.19 (Nevanlinna Counting Function). For r > 0 we define (for the second and
the third terms in (x)) that

r
Ng(r) = Ny(r,00) := Z (—orda(f))'log|a|+nf(0,oo)logr,
0#a€D,,f(a)=00

and

Ni(r0):= Y orda(f) - log| -]+ ns(0,0) logr.
0#£a€ D, f(a)=0 a

Using the expressions of Ny (r,00) and N¢(r,0), Jensen’s formula (*) can be written as

1 271' i
(xx) log |cf| + N¢(R,0) = %/ log |f(Reze)|d9 + Ny(R, 00).
0

In fact, there is an explicit expression of N¢(r) whose proof is leave as an exercise.

Proposition 6.20. We have the equality

Ny(r) = /OT Mdt +nys(0)logr.
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Definition 6.21 (Proximity Function). Let f be a meromorphic function in Dg. Then for
0 < r < R, we define

1 2m )
myr) = my(r.o0) = 5= [ log* |f(re) b,

Here log™ o := max(0,log a) for a > 0. Also, for a € C, we define

1 27 + 1
myg(r,a) = 2—/0 log |f(—d0

T rei?) —al
Remark 6.22. Note that loga = log™ o — log™* (1/a) and |loga| = log" a +log™ (1/a).
Definition 6.23 (Nevanlinna Height Function). For r > 0 we define
Ty(r) = Ty (r,00) := Ny (r,00) + mj(r, 00).

Note that the height function is the “pole part” of the right hand side of (x). Again, by
Jensen’s formula (%),

1 27 . 1 27 1

=my(R,00) — m%(R, 00) + N¢(R, 00).
This is equivalent to

log |cy| + N%(R,oo) +mi(R,00) =mys(R,00) + Ns(R,0).

%
Therefore,
(1) logles|+ Ty (R) = Ty (R).

Now let a € C. Applying Jensen’s formula to f(z) — a, we get

1 2 )
log|cf—a| + Nf—o(R,0) = %/0 log |f(Re™) — aldf + N (R, oo)

1 2m )
= Ny (R, 00) + —/ log™ |f(Re) — aldb
21 0

_ i o loet ;dg
27 Jy % TF(ReT) —a]
Consequently,
1 27 X
logegal + N1 (B) +m s (B) = Ny(R)+ 5 [ log (") ~ alas.
a —a 0
Note that
n
log" (o + -+ 4+ ay) < max (log™t a;) +logn < zjlogJr a; + logn.

1N
Xt .
=1

In particular,
log™ |f — al <log™ | f| +log™ |a| + log2,
log® | f| <log™ |f — a| +log™ |a| + log 2.
So we get
@ Ty—o(R) = Ty(R) + Oa(1),

where O, (1) denotes a bounded term depending on a.
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Theorem 6.24 (The First Main Theorem of Nevanlinna Theory). Let R > 0 and f be a
meromorphic function defined on Dgr. Then

(1) logles| + Ty (R) = Ty (R);
(2) Ty—a(R) =Tf(R) + Oq(1).

Theorem 6.25 (Cartan). Keep the same statement. We obtain

2
Ty(r) = L Ny(r,e®)dd + C
2 0
1 2 ) 1 +
_ Nf(?", eze)de + 0og |f(0)|7 f(0> 7& o0,

27 Jo log |cy|, f(0) = 0.
Proof Idea. For example, if f(0) # oo, then apply Jensen’s formula to f(z) — e? and then
integrate with respect to 6. O

Recall the definitions of ny and Ny, we see they are increasing functions. Hence by
Theorem 6.25, T¢(r) is an increasing function with respect to r as well, and is convex with
respect to logr.

Theorem 6.26. Let f be a meromorphic function on C.
(1) If T¢(R) is bounded as R — oo, then f is a constant.
(2) T§(R) ~ O(log R) as R — oo if and only if f is rational on C.

Let f € 0(D,). Define My (r) :=log||f|,, where || f||, = sup|, <, |f(2)| = sup,—,. [ f(2)].
Then

_ 1 %1 + 9|do < M¢(r),0
mf(r)—%/o og™ | f(re")|dd < max(M;y(r),0).

Lemma 6.27. Let f € O(Dg), then for 0 <r < R we have
R+r R—

r
My (r) < ,00) — ,0) < :
1(r) < = my (R, 00) R+Tmf(R 0) < g, ms(R)
Proof. Applying Jensen’s formula to f (which is holomorphic), we get
1 [ , Re' + 2
08|/ = 5= [ loglf(RRGGT)db— Y ordu(f)-log|Bra(2)

a€Dpg,ord,(f)>0

1 [? - Re® + 2

< — 1 Re?)|R(=—— =
5 | esls (R R

for z with f(2) # 0. Now for z = re?® and r < R, we have
_ i0
Mg (Rel +z)<R+r.
R+r Re —z" ~ R—r

We write log | f(Re')| = log™ |f(Re')| — log™ m. This completes the proof. O

)db

el — 2

Corollary 6.28. For f that is holomorphic in Da,., we have
My(r) < 3my(2r,00) = 3T¢(2r).
The latter equality holds because of the holomorphicity.

Proof Idea of Theorem 6.26. (1) Applying Liouville’s Theorem (Corollary 3.16) is enough.
(2) The direction = is easy by Cartan’s Theorem 6.25. As for <=, use the definitions of
T¢(R), N¢(R) and so on. O
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7. THE GAMMA AND ZETA FUNCTIONS

7.1. The Gamma Function. For s > 0 we define
o0
I'(s) := / et dt.
0

7.1.1. Analytic Continuation.

Proposition 7.1. I'(-) extends to a holomorphic function in the right-half plane R(s) > 0
by replacing s by complexr numbers.

Proof. For £ > 0 we define

1
Fe(s):/ e 5 at,
€

then F.(-) is holomorphic with respect to s € C.

Claim: on every strip Ssp = {s € C : 6 < R(s) < M}, the series of functions F, — T
converges uniformly as € — 0.

Proof of Claim. Note that for ¢ > 0 with any s € C, we have ¢* = exp(slogt) = exp(R(s) -
logt) - exp(iS(s)logt). Hence [t°| = e®(s)1ogt = tR(s) Now we denote ¢ = R(s). Then

13 (o @]
Fo(s) = T(s)| = | / et =1dt + / ety
: :

IS5 o0
g/ e_tt"_ldt+/ e to Lt
0 :

15 o0
< t"’ldt+/ e Mgt
1

S~

g® °
< < +/ e HM=1qt — 0
1

as € = 0. So we have proved the claim.
Now the claim implies that I' is naturally a holomorphic function in Ss ;. This completes
the proof. O

Proposition 7.2. For R(s) > 0 we have I'(s+ 1) = sI'(s). In particular, T'(n+1) = n! for
all n € N.

Proof. Using the formula

1 1

1
= d B B
/ —(e_tts_l)dt:—/ e_ttsdt+s/ et ldt
€ dt g g

and letting € — 0, we get
0=-T(s+1)+s-I(s),
that is, I'(s + 1) = sI'(s). In particular, since I'(1) = 1, we get I'(n + 1) = nl. O

For (s) > 0, we have I'(s) = I'(s 4+ 1) /s by Proposition 7.1. And for R(s) > —1 we have
R(s+ 1) > 0, which deduces that I'(s + 1)/s is well-defined on R(s) > —1. So we define
r 1
Fi(s) := %, R(s) > —1.
Then Fi(-) is a meromorphic function on {s € C : R(s) > —1} with a simple pole at s = 0,
and
resg Fy = li_r}%)(s —0)Fi(s) = li_r}x})f‘(s +1)=T(1)=1.

Also, we note that Fy(s) = I'(s) when R(s) > 0, i.e., F} is an analytic extension of T.
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For R(s) > —2, we also define

Fi(s+1) T(s+2)
F: = =

2(5) s (s+1)s’

then F»(-) is meromorphic in {s € C: R(s) > —2} and Fi(s) = I'(s) for R(s) > 0.
Now by induction, for R(s) > —m where m € N, we define
Fr— r
F(s) i Emmt() _ (s +m) |

S (s+m—-1)(s+m—2)---s
Then F,,(-) extends I'(:) to a meromorphic function on R(s) > —m, with simple poles at
d=0,-1,---,—(m —1). Moreover,

(=D"

n!

ress——n Fip = EI’EI (s+n)Fy(s) = , 0<n<m-—1.
Therefore, we have proved the following theorem.

Theorem 7.3 (Analytic Continuation). The Gamma function I'(-) that is initially holo-
morphically defined on {s € C: R(s) > 0} has an analytic continuation to a meromorphic
function on C (which we denote by T' as well), whose only singularities are simple poles at
s=0,—-1,--+,—m,- -+ withres_,, ' = (=1)"/m! for all m € N.

Remark 7.4. The analytic continuation of Theorem 7.3 is unique, since C\{0, —1,--- , —m,--- }
is topologically connected.

Morally, the Gamma function I'(s) can be almost realized as a holomorphic function, and
the only problem lies in the neighborhood of s = 0.

Proposition 7.5. For s € C such that R(s) > 0, we have
]_"(S) — i ﬂ + /oo e_tts—ldt
= k(s + k) 1 '
Proof. We do the computation directly. Fix some ¢ > 0,
I'(s) =/ e s at
0
e 't dt +/ e 't dt
g
oo k o0
s—1 (_t) —tys—1
t Zk!dt+/set dt
oo
-1 k € o]
= Z ( ) / tk+s_1dt—|—/ ettt
k' Jo R
o~ (—1)Festh /oo —tys5—1
= —_— t°T N dt .
D s T
———

holomorphic

meromorphic

In particular, by taking € = 1, we get the desired result. (]
7.1.2. The Symmetry Property.
Theorem 7.6 (Gamma Symmetry). For all s € C, we have

I(s) T(1—s) = —

sinws’
In particular, for s =1/2, we get T'(1/2) = /7.
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Proof. By analytic continuation (Theorem 7.3), we only need to check the formula on {s €
C:0< R(s) <1}. For 0 < R(s) < 1, we have

(oo} (oo}
I'(s) - T(1—s)= / e s at - / e “u%du
0 0
[ee] (oo}
= / e_tts_l(/ e “u" du)dt
0 0
= / e‘ttsfl(/ eVt (vt) " Stdu)dt
0 0
= / / e~ 0= dudt
o Jo
oo —S
= / Y dv
o 1+w
0o L(l-s)z
e
= dz.
/,m Tre ™
Here the change of variants are u = vt and v = e* with ¢ > 0. Recall that in Example 4.10,

for0<a<1,
o e T
/ Ida:: - .
_o l+e sinma

Therefore, the desired integral is

< e(1=9) T T
de = — = — .
/_Oo 1+e® sinm(l—s) sinws
This completes the proof. ([l
Remark 7.7. Note that for all s € C, we have I'(s) # 0.
7.1.3. The Growth of Gamma Functions.

Theorem 7.8. The function 1/T(:) enjoys the following properties.

(1) 1/T'(-) € O(C) has simple zeros at s =0,—1,..., and it vanishes nowhere else.
(2) The order of growth of 1/T(+) is 1, and for all s € C,

1
— | <
|F(S) | X Cl eXp(C2|S| log |S|)

for some constants Cy and Cs.
Proof. (1) By Theorem 7.6, the symmetry of I shows that

1 sinms
— =I'(1—-35)-

where I'(1 — s) has simple poles at s = 1,2,... and sin ws/m has simple zeros at s € Z. Since
I'(s) # 0 for all s € C, we see 1/T'(+) is holomorphic in C with the only zeros at s = 0, —1,.

which are all simple.
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(2) Again, by Theorem 7.6,

1 sin s
= T(1-235)-
T'(s) (1=s) v
1 e8] :
— (/ e—tt—sdt +/ e—tt—sdt> . SIN7Ts
0 1 m
_ sinms i (=)™ N sinms /°° o—ti—s g
™ nl(n+1-—s) T )1
n=0

I 11

For I, the trouble term is on
1 1

n+l—s n+1-Rs)—iS(s)

If |3(s)| > 1, then
o0
(="
———[<C
‘le:%n!(n-ﬁ-l—s)'
for some constant C'. Otherwise |J(s)| < 1, in this case 1/(n + 1 — s) can be infinite when

s = n+1. For this, note that given any s, we have some k such that k—1/2 < R(s) < k+1/2.
When k£ <0,

. 1 — (="
= . e > = ——| < C.
1= s = o+ 1= R(s) = iS(s)| > 5 2 i1 <€

When k > 0, we have n — k+1/2 < n+1—R(s) < n—k+ 3/2. The case is valid for
n # k — 1 because of |n + 1 — R(s)| > C for some C that is independent of k. It boils down
to tackle to the case where n =k —1 > —1. We obtain

o0 . . .
(-1)™  sinws b1 sinms (-1)™  sinws
Z nl( (=1) T Z nl

— n+l—s) =« (k—Dlk—s) Norni (n+l-3s) =
A B
In fact, the part A is bounded from above because of
|sin7rs| B |Sin7r(s - k)| B |51n7rf|
s—k s—k &

for £ = s — k. This is bounded on £ € {s € C: |R(s)| < 1,|](s)| < 1}. On the other hand,
by Euler’s formula, we see
) eiﬂ's _ e—ifrs )
sinws = ——Wpr— = |sinms| < e
Hence the part B is bounded by some Ce™*|. To sum up, |I| < co.
As for 11, since

7|s|

o0 o0
[t < [ et < expl(R(6)] -+ 1) -log(R(s)| + 1)
1 1
there is a constant C’ such that
1| < exp(C|s|log|s|) - exp(C|s|) < exp(C’|s|log |s]).

Consequently,
T+ 11| < Cy exp(Ca|s|log|s]).
for some constants C,Cs that are independent of s. O
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Starting with Theorem 7.8, the Hadamard factorization (Theorem 6.13) shows that

1 As+B M S\e—s/
I s . 1 2 s/n.
) e s H( +n)e

n=1

Here A, B are constants (to be determined). Note that

1 . = 1i = = = 1i AS+BOO f —s/n: B
imP(s)-s=lmT(s+1)=T(1)=1 = 1=lime H<1+n>e el

s—0 il
Hence B = 0. Letting s = 1, the equation becomes
O 1 N 1
=2+ 2)e /" = e 4= 14+ Z)e lUn,
I =Tl e
To compute A, we note that
0o N 1 N 1
—1/n _ 7: “No—l/n s il W
};[1(1 + n)e 1\}l—r>noo (T4 2)e J\}gnoo exp(;(log(l + n) n))
Hence as N — oo,
N N
1 1 1 2 3 N N+1
log(l+—-)——-)=-— —+log-+log—+---+1 1
Z(og(—l—n) n) Zn+og1+og2+ +log - +log —
n=1 n=1
N
1 N+1
=—(D_~ —logN)+log — -,
n=1 S——

—0
M

where 7 is the Euler constant. So we have A = r. We have proved the following theorem.
Theorem 7.9. For all s € C, we obtain

1 N s
R T 14 2)e—s/m,
) e s 1+ n)e

n=1

Here ~ denotes the Euler constant.

7.2. Riemann Zeta Function. For s € R satisfying s > 1, it is well-known that the series
oo
1
((s) = e
n=1

is convergent. By replacing the real number s by any s € C, we get the definition of Riemann
Zeta Function.

Proposition 7.10. The Riemann zeta function ((s) converges on {s € C : R(s) > 1}
and converges uniformly on {s € C : R(s) = 14 6} for any § > 0. In particular, {(s) is
holomorphic on {s € C: R(s) > 1}.

Proof. Write s = o +it, then |1/n®| =1/n°. For 0 > 1+ § with 6 > 0, we have

1 =1 =1
|ZE|<Z,@7<Z”1+5
n=1 n=1 n=1

in which the right item is called convergent. O
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7.2.1. The Zeta, Gamma and Theta Functions.
Definition 7.11 (The Theta Function). For a real number ¢ > 0 we define
o0
O(t) := Z et
We the list out some basic properties of O(t).

Proposition 7.12. For the real variable t > 0, we have:

(1) ©(t) < Ct=Y/2 for some constant C >0 ast — 0F.
(2) 10(t) — 1| < Ce™™ for some constant C > 0 and any t > 1.

Proof. (1) Recall the Poisson summation formula (Theorem 5.9) dictates that

Y fm) =" fn),

neZ ne’

where [ is the Fourier transform of f. Consider f(z) = exp(—mt(z + a)?) with ¢ > 0 and
a € R. Then we get

o(t) = rl/?@(%), £ 0.

From this formula, ©(¢) < Ct~'/2 is obvious.
(2) We write

in which for ¢ > 0,

Cre—ﬂ't

NE
o
]
n
NE
[
(]
|
3
-
IN

if 7t > 0 > 0 (in particular, this is valid for ¢ > 1). Therefore, for ¢t > 1 we have
0<0O(t)—1<Ce ™,
This is exactly what we want. (I

The following theorem reveals the hidden connection between the Zeta, Gamma and
Theta functions.

Theorem 7.13 (The Xi Identity). If R(s) > 1 we have
(o)
/ w2710 (u) — 1)du.

0

2 D(5) - ((s) =

Proof. Beginning with the definition of O(-

1 [ R 2
5/ w271 (O(u) — 1)du = / Zus/2_le_m “du
0 0 n=1

e o)
1 2
:§ :/ us/? 16 U g
n=170

Here the second equality is because of Proposition 7.12. Letting ¢t = wn?u, the right hand
side becomes

~ N

, we compute

Zﬂ'_s/2(/ e—t.t8/2—ldt)n—s :,ﬂ._s/2r(§)<(8).
n=1 0

This completes the proof. O
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People are truly interested in the LHS in Theorem 7.13.
Definition 7.14 (Xi Function). For R(s) > 1, we define

E(s) :=m"2 - T(5) - ((s)-

Theorem 7.15. The Xi function enjoys the following properties.

(1) &(+) is holomorphic in {s € C: R(s) > 1}.

(2) &(¢) has an analytic continuation to a meromorphic function on C with simple poles
only at s =0, 1.

(3) &(s) =&(1—s) for any s € C.

Proof. (1) is clear.
(2) By Theorem 7.13, for R(s) > 1 we have

1 oo
&(s) = 5/0 w271 (O(u) — 1)du.
Denote ¢(u) = (©(u) — 1)/2, then by the identity ©(t) = t~/20(1/t) we have
_ 1 1 1
Y(u) =u 1/2@&(;) toE g >0

Consequently,

&(s) = /000 w27 () du

1 o)
:/ w21 -w(u)du+/ w21 ~p(u)du
0 1

1 1 ° _ —1/2—s
:s—1_§+/1 (u¥/? 71 V232 () du,

where the last equality is given by the variable exchanging u — 1/u in the first integral.
Now for s € C, we define

(%) &(s) = LI + /Oo(us/z_1 + u_1/2_5/2)1/)(u)du.

s—1 s 1

Then £(+) is a meromorphic function on C with simple poles at s =0, 1.
(3) Using (x) above, we directly get the result. O

Theorem 7.16 (Analytic Continuation). The Zeta function ((-) that is initially holomor-
phically defined on {s € C : R(s) > 1} has an analytic continuation to a meromorphic
function on C, whose singularity is a simple pole at s = 1.

Proof. Note that ((s) = m*/2-&(s)/T'(s/2) by Definition 7.14. Now Theorem 7.15 (2) shows
that &(s) has simple poles at s = 0,1, and Theorem 7.8 (1) dictates that I'(s) has simple
poles at s =0,—2,—4,.... |

Remark 7.17. The continued definition of {(s) is given by

C(S) — Zfzo=1 n_s7 %(S) > ]-;
72 €(s)/T(s/2), R(s) < 1.

Also note that ((s) has simple poles at s = —2,—4, .. ..
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7.2.2. Zeros of Riemann Zeta Function. We begin with the Euler identity without proof.
Proposition 7.18 (Euler Identity). For R(s) > 1 we have

1 1
C<S) = Z s H —s"
n L 1—-»p

n=1 p prime
Proof. Note that on the connected region {s € C : R(s) > 1}, > n~* and [[(1 —p~%)~!
are analytical functions with respect to s. Hence it suffices to check the equality for real
numbers s > 1, and then the equality extends continuously.

The fundamental theorem of arithmetic shows that for all n € N, we have n = p’fl R

where p1, ..., pn are distinct primes. Then

N

1 1 1 1
> < H(1+E+"'+pMs)< 11 T M>o0
n=1 p<N p<N

The second inequality is because of

1 =~ _x 11
—_— _Szl — — LECEE I
1—ps ,;Op Tt T

By taking N — oo, we have

NE

1 1
Eg H 1—p—s’
n=1 p prime

Similarly, one may deduce the converse inequality. This completes the proof. [

The immediate corollary of Proposition 7.18 is for R(s) > 1 we have ((s) # 0. Recall
that £(s) = m%/2T'(s/2)((s) and &(s) = £(1 — s). Thus,
L -8 (-8
) = =Gy " 1 r2) sk
For {s € C: R(s) < 0}, we have (1 —s) # 0 and I'((1 — s)/2) # 0 (since I'(:) # 0) on C.
Also, 1/T'(s/2) = 0 exactly at s = —2,—4,... Hence all zeros of {(s) in {s € C: R(s) < 0}
are —2,—4,...

N

R(s) >0

I
I
I
I
I
|
I
I
|
o
A 4
I
I
I
I
I
I
I
I
I

To sum up, we are to seek the zeros of ((-) in the critical strip {s € C: 0 < R(s) < 1}.

8. RIEMANN ZETA FUNCTION AND PRIME NUMBER THEORY

Euler found, through his product formula for the zeta function, a deep connection between
analytical methods and arithmetic properties of numbers, in particular primes. An easy
consequence of Eulers formula is that the sum of the reciprocals of all primes, Zp 1/p,
diverges, a result that quantifies the fact that there are infinitely many prime numbers.
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The natural problem then becomes that of understanding how these primes are distributed.
With this in mind, we consider the following function:

m(x) := #{primes < z} = Z 1.
p<T
Then 7(z) = 7([z]) for any > 0. A conjecture of Gauss made in 1792 (and independently,
of Legendre in 1808) says that

(%) lim &)

z—oo x/log x

This is denoted as m(z) ~ z/logz as x — oo. On the work of Dirichlet (1837), Chebychev
(1850s) and Riemann (1859), this conjecture is proved as the Prime Number Theorem.

Theorem 8.1 (Hadamard, de la Vallée Poussin, 1896). The conjecture (x) is true.

8.1. The Riemann Memoir. ! In this subsection we list out some basic and important
properties given by Riemann.

(A) The Zeta function ((s) = Y2, n~* that is holomorphically defined in {s € C: R(s) >
1} has an analytic continuation to a meromorphic function in C with a simple pole at
s=1.

(B) One can define £(s) = 7~%/2T'(s/2)((s), then &(s) = £(1 — s) for any s € C. Also, £(-)
is meromorphic on C with simple poles at s =0, 1.

(C) The Zeta function {(-) has simple zeros at s = —2, —4,--- (trivial zeros) and {(s) # 0
for R(s) > 1. There are infinitely many nontrivial zeros of the form p = o + it for
0<o<1andteR (ie., living in the critical strip). Moreover, let N(T) = #{p =
oc+it:0< o <1,[t| < T}, then

T T T

o log 5~ om +O(logT)
as T — oo. This is proved by von-Mangoldt in 1895 and 1905.

(D) (The Product Formula) We have the following (to be proved as an exercise):

s(s — D= /T(s/2)¢(s) = e 2 J[ (- 2)eslr

¢(p)=0,
0<R(p)<1

where B = 1+ /2 — log2y/7 and v denotes the Euler constant. This is proved by
Hadamard in 1893.
(E) (Riemann’s Explicit Formula) Denote

Y= Y lewp= " AM), vF@)i= 3 W)+ AG),

p" <Lz, n<x n<x
p prime, n€N

N(T) =

where
An) logp, if n = p™ for some prime p and m € N;
n)=
0, otherwise.
Then the formula (proved by von-Mangoldt in 1895) is read as
P (0 1
V() =2 — Z - M—Elog(l—at:_2), x =2

(oo P € (0)
0<R(p)<1

IRiemann (1859): Ueber die Anzahl der Primzahlen unter einer gegebenen Grésse (English translation:
on the number of prime less than a given magnitude).
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This formula is powerful, whereas it is still very difficult to find out all zeros p lying in
the critical strip.
(F) (Riemann Hypothesis) Any nontrivial zeros of ((s) is on the line R(s) = 1/2.

R(s) < 1/2 R(s) > 1/2

-6 -4 =2 | il

Remark 8.2 (RH implies PNT). Suppose the Riemann Hypothesis is true. Then (without
proof) as x — oo, we have

o) =S Am) ~a, ) = 3 A+ %A(@ ~ .

This is equivalent to

X
ﬂx):ZMIOM,

p<zT
which is nothing but the prime number theorem (PNT).

A Sketchy Proof for Riemann’s Explicit Formula. Recall that for (s) > 1 we have Euler
identity

o= I] 0=
p prime
and it implies that
_w = (— — _ i l
05 = (—log((s)) ppzﬁ;ne(log(l ps))
== 2 Z]%m)’ZZ(logp)m‘ms.
p prime m=1 p,m

We use the following sublemma as a fact (whose proof is leave as an exercise). For y > 0
and for any fixed a > 0, we have

Oz-‘riTys 0, ifo<y<l1;
lim —/ —ds=41/2, ify=1,;
a—iT S .
1, ify > 1.

Obtaining this, we consider the following limit:

a+iT | s /! a+iT | s
: y* —d(s) Lo 1 y _
lim —— g ds = lim — YN (logp) - p~™ed
700 2 /a_n s s TN )i s z;(ogp) poas
1 a+iT —m\s
:Z(logp)- lim —/ Mds
o T—00 2700 J i1 s

1
= logp+ Y Slogp=1v¥(y).
P =y

pm<y
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The last equality above takes the sublemma above at work. Next, we consider the function

S !
Fs) = -2 d(s)
s ((s)
and its integral along I'c defined as follows, where o > 1 and C < 0.
I'c :
C+iT T a+ 1T
I
c| -6 -4 =2 V1 a>1
C —iT a—iT

Applying the residue formula (Theorem 4.8 and Corollary 4.9), we get

1
211 I'c

F(s)ds = Z ress—; F(s).

F(z)=00
To compute the right hand side, all poles of F are listed out below.
e s =1 (simple pole):

res,—1 F = lim(s = 1) - F/(s) = lim Y Jim(1 - s)

e s =0 (simple pole):

resszoF:—lims-y—~ = —

520" s ((s) ¢(0)°
e s=p#0with0<R(p) <1and )| <T:

yp
resg—, F' = 5 C(p)=0.

e s = —2m with m € N (simple poles):
y—2m
2m

reSs—_om F = —

Finally, letting 7" — oo and C' — —o0, we get

P / x —2m
V) =y~ lim Y y__C(O)_Zy

e A e 0 A em
0<R(p)<1
_ : y? (¢'(0) 1 —9
=y— Jlim RO R
¢(p)=0,
0<R(p)<1

This completes the proof. O
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8.2. The Prime Number Theorem. We have claimed in Remark 8.2 that Riemann hy-
pothesis implies the prime number theorem (PNT). This subsection is to make this explicit.
The essential property at work is the following corollary of Riemann hypothesis.

Theorem 8.3 (Non-degeneracy). ((s) # 0 when R(s) =
To prove Theorem 8.3, we first introduce several lemmas as follows.
Lemma 8.4. If R(s) > 1 then

—ms

p

log (s

[ee]
= Z cnn” 8,
p prime, n=1
m2=1
with the coefficients given by
Cn =

0, otherwise.

Proof. By the Euler identity, for ®(s) > 1, we have

p prime

So that for the real number s > 1, we have

log ((s) = log H Z log( 1—— -
p prime p prime
p-
> e

—m
- m
p prime m=1 p,m

On the other hand, {(s) # 0 for R(s) > 1, which implies that log((s) is a well-defined
holomorphic function. Accordingly, > p~™%/m is also a holomorphic function in Q = {s €
C : R(s) > 1. However, we know that 2 is a connected region, so

p

ms

—ms

log ¢(s

for any s such that $(s) > 1. O

Lemma 8.5. For any 0 € R, we have 3 + 4cos 8 + cos 20 > 0.
Proof. This follows from 3 + 4 cos 0 + cos 20 = 2(cos § + 1)? at once. O

Lemma 8.6. Ifo > 1 and t € R, then log [((0)? - {(o +it)* - ((o + 2it)| > 0.
Proof. We calculate directly, say
LHS = 3log|¢(o)| + 4log | (o + it)| + log | (o + 2it)]|
= 3Rlog (o) + 4Rlog (o + it) + Rlog (o + 2it)

00 o 50
= é}%z Cn 3077 + %Z Cn - Ao 4 %Z n - n o2t
n=1

n=1 n=1

Here the last equality is deduced from Lemma 8.4. On the other hand,

o0 [e'e) 0o
R Z Cn 3077+ R Z ¢ - An—o"i 4 %Z ¢, - n 02t

n=1 n=1

n=1
oo
Z 7(3 4+ 4 cos(tlogn) + cos(2tlogn)) > 0.
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by Lemma 8.5. O

Proof of Theorem 8.3. Note that () is a meromorphic function on C with a simple pole
at s = 1. Then ((s) # 0 for those s that are landing close to 1. We need to verify that
¢(1+1it) # 0 for any t € R. Suppose not for the sake of contradiction. Then there is some
to # 0 such that {(1 + itp) = 0. Consequently,

[C(o +ito)|* < Co —1)*

as 0 — 1 for some constant C' > 0. For other terms, Since s = 1 is a simple pole of ((-), we
see |((0)]> ~ Clo — 1|73 as ¢ — 1. Again, note that ((-) is holomorphic for s # 1, we have
C(o + 2itg) being bounded as o — 1. Therefore,

IC(0)? - (o +it)*- (o +2it)| < Clo — 1|, o —1.
This is contradicting with Lemma 8.6. ]

Remark 8.7. By the symmetry of &, we have &(s) = 7=%/2 - T'(s/2) - ((s) = &(1 — s), hence
¢(s) # 0 for R(s) # 0.

Theorem 8.8. Theorem 8.3 implies the following prime number theorem: as xr — oo,

X
7r(x)=21~10gm.

P

The proof of Theorem 8.8 follows the proof by Zagier in 1997, which is based on the proof
of Newman in 1980. It truly relies on the following result.

Theorem 8.9 (Tauberian Theorem). Let f be a bounded measurable function on [0,00).
Assume the Laplace transform

o) = [ rwear

that is a holomorphic function for R(z) > 0 extends holomorphically in an open set contain-
ing {z € C:R(z) > 0}. Then the integral

/0 " fdt = 1im /O ey

T—o0

converges and equals to g(0), which is the value of the extended g at z = 0.
In the upcoming context we are to use the language of ® function and ¢ function.

Definitions 8.10. We define
logp
ws) = Y L (o)== logp.

p prime p<x
Lemma 8.11. ®(s) is holomorphic for R(s) > 1.

Lemma 8.12. ®(s) — (s — 1)~ extends holomorphically to an open set containing {s € C :
R(s) = 1}.

Proof. For R(s) > 1, the Euler identity ((s) = [[(1 — p~*)~! dictates that
¢'(s) 1 log p
! __ _ I _
(—log((s)) - = _(_ Z logl_p—s) - Z ps_l'

p prime P prime
Moreover, this can be written as

Z logp Z (Ing _10gp)+q)(8)_

s _1 s 1 s
pprimep p prime p p
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Therefore,

B(s) = () Z log p

pps —1)

Note that the second term is holomorphic for R(s) > 1/2. The first term is meromorphic
with poles at the pole s = 1 of ((+), as well as the zeros of ((+). This together with Theorem
8.3 that ((s) # 0 for R(s) = 1, we see ¢’(s)/¢(s) is holomorphic near {R(s) = 1} (except a
pole at s = 1).

Recall for R(s) > 0 that ¢(s) = (s — 1)~* + (a holomorphic function). As the derivation
of analytic function is still analytic,

p prime

!
1
CC ((;) =-3_1 + (a holomorphic function)
near s = 1. To sum these up, the function
1
O(s) —
(8) = -3
is holomorphically defined near {s € C: R(s) = 1}. O

Now we are ready to introduce the main theorem on PNT by using the function ¢(-).

Theorem 8.13. As x — oo, we have p(x) ~ z, i.e., limy o p(x)/x = 1. Furthermore,
this result implies PNT.

Proof. The proof for p(x) ~ x is relatively easy. We are to do the second part. Note that
p(z) = Z logp < Z logz = m(x) - logz,
P PST

which immediately implies that

lim inf > liminf £ 1,
T—00 x/ log T—00 I

7(x)

On the other hand, for all € > 0,

e(x) > Z logp > Z log

= (1-¢)-logz- (n(2) - 7(2*~))
> (1-2)-log - (n(x) — 2" ~)

Here the equality is deduced from the definition of 7(-). Therefore,

. 7(x) 1
lim sup < .
s—oo T/logx T 1—c¢

By letting ¢ — 0, we get

. m(x)
lim sup <
z—o0 X/logx

This finally proves Theorem 8.8. (]

Lemma 8.14. The following integral converges:

/ o) =Ty
1 X
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Proof. Claim: For R(s) > 1, by substituting z = e’, we have

_ logp _  [Tel), [ s
O(s) = Z p—s—s/l ms+1dz—s | e *"p(e")dt.

p prime

Apply this claim without proof. Note that via x = e?,

/100 %dw = /Ooo(w(et)e_t —1)dt = /Oo F()dt

where we denote f(t) := ¢(e')e™* — 1. Then consider the Laplace transform

/ f(t)e stdt = / (p(ete ™ — 1)e *tat

o0 (o)
= / e~ HDE (e dt —/ e Stdt
0 0

D(s+1)/(s+1) 1/s
_ ! (P(s+1) L 1)
s +1 s '

By Lemma 8.12, the function g(-) extends holomorphically to {s € C : R(s) > 0}. Now
apply Tauberian theorem (Theorem 8.9), we see the integral

0) = /O "

converges. This completes the proof. O

At the end of this section, we are going to prove Theorem 8.9.

Proof of Theorem 8.9. The bounded condition for f is essential. Assume |f(t)] < M for
t € [0,00). For T > 0 we define its truncated Laplace transform as

T
- [ 10 ar
0

which is an entire function. We need to verify that
lim_g7(0) = g(0).
—00

Apply the Cauchy integral formula (Theorem 3.13) to

G(2) = (9(2) = gr(2)) - - (1 + 5
which is holomorphic in D = {|z| < R, R(z) > —6(R)}, we get

Gl0) = —— /BD G 4,

271 z
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Or equivalently,

90 =900 = 5 [ (65~ r() T (14 1) L

21

For convenience, we denote 0D = 9D N {xz > 0} and D_ = dD N{x < 0}. On 9D, via
z =z +1y,

o0 (') . Me—zT
92) —gr(@) =| [ foe e < [ et =2
T T T
On the other hand, for |z| = R
221 2|z|
T (1+ﬁ)';|= xT'ﬁ-
Combining these, we see
1 2T 22 M
— _ . (14 2 —d -
s 00 00 e (1 )l <

On 0D_, we choose to estimate gr(z) and g(z) respectively. Say

—a:T
g2 (= |—|/f —thy\<M/ ewtdt = ||

Note that gr(z) is entire, hence

[ @0 - e (14 5) - 2

My 2l M
T |.'17| R2 R
by local Cauchy theorem (Corollary 3.5). Here I'_ = {|z|] = R,R(z) < 0} denotes the

left semi-circle. For g(z), g(-) is holomorphic on dD_. Hence there exists some constant
K = K(R,¢) > 0 such that on 0D_,

dz <

52

o) (14 =) 2| < K(R.9).

Note that e*7 is bounded on dD_ and e*T — 0 uniformly on every compact set of {z € C :
R(z) < 0}. Then

. 1 22 o7 L
Jim lg [ a4 1) e T 2l o
Therefore,
. 1 2T 22 1
limsup |g(0) — gr(0)] < limsup |— (9(2) —gr(2)) - - (14 53) - ~dz]
T—o0 T—o00 oDy z
+ limsup | — / (2)-(1+ z_2) T lciz|
T_wop 27t Jop_ gr R? z
+ Tim sup | —— / (2)- (14 2y T Ly
Ton 27 oD_ I Rr? z
< % -0, R— o

This shows that lim7_, |g(0) — g7(0)| = 0. =
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Remarks 8.15 (Final Remarks on RH). Recall that ¢(-) has two types of zeros: the nontrivial
ones and the trivial ones. The trivial zeros are given by ((—2m) = 0 with m € N. The
Riemann Hypothesis claims that all nontrivial zeros lie on the line (s) = 1/2, and in
particular, the known fact is that ((s) # 0 for R(s) = 1. By symmetry, ((s) # 0 on
R(s) = 0.

According to the known result by von-Mangoldt in 1905, as T' — oo, we obtain an
estimation for the number of zeros of {(+) in the critical strip. Say

N(T):=#{s€C:((s) =0,0<R(s) < 1,|S(s)| < T}

T T T

To study the hypothesis, we denote
M(T):=#{seC:({(s) =0,R(s) =1/2,|S(s)| < T}.

In 1943, Selberg showed that M (T) > A-Tlog T for some constant A > 0 that is independent
of T. In particular, this result implies

> C >0.

Philosophically speaking, it shows that there are at least a certain proportion of zeros lie on
R(s) = 1/2. In 1974, Levinson had shown that A > 1/3; in 1991, Conrey had shown that
A>2/5.

9. CONFORMAL MAPPINGS: ON GEOMETRY OF THE DISC

We are to study the geometry of holomorphic functions. The problems and upshot ideas
we present in this chapter are more geometric in nature than the ones we have seen so far.
In fact, here we will be primarily interested in mapping properties of holomorphic functions.
In particular, most of our results will be “global,” as opposed to the more “local” analytical
results proved in the first three chapters. The motivation behind much of our presentation
lies in the following simple question:

e Given open sets U,V C C, does there exist a holomorphic bijection between them?

By a holomorphic bijection we simply mean a function that is both holomorphic and bijec-
tive. (It will turn out that the inverse map is then automatically holomorphic.) A solution
to this problem would permit a transfer of questions about analytic functions from one open
set with little geometric structure to another with possibly more useful properties. The
prime example consists in taking V' = I the unit disc, where many ideas have been devel-
oped to study analytic functions. In fact, since the disc seems to be the most fruitful choice
for V we are led to a variant of the above question:

e Given an open subset Q of C, what conditions on ) guarantee that there exists a
holomorphic bijection from € to D?

e Given an open set 2 C C, what is the group of holomorphic automorphisms on €2, i.e.,
how to find out Aut(2) := {f : @ — Q conformal map}?

9.1. Conformal Equivalence and Examples.

Definitions 9.1 (Conformality, Biholomorphicity).

(1) Let U,V C C be open sets and f : U — V be holomorphic. Then f is called a
conformal map or biholomorphic map if f is also bijective.

(2) If there exists a conformal map from U to V, then U,V are called conformally
equivalent or biholomorphically equivalent.
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Note that an equivalent definition of biholomorphicity is read as follows. There exists two
holomorphic maps F': U — V and G : V — U such that F oG =idy and Go F =idy. In
some other materials, one may define conformal mapping as a map that preserves all local
angles. We will no longer follow this definition.

Proposition 9.2. If f : U — V is holomorphic and injective, then f'(z) # 0 for all z € U.
In particular, f~1: f(U) — U is also holomorphic.

Proof. If there is zy € U such that f’(z9) = 0, then f(2) — f(20) = a(z — 20)* + G(z) for
those z lying near zp, where & > 2, a # 0, and ord,, G > k + 1. On the other hand, the
condition that f is injective implies that f is not a constant. Then zg is an isolated zero of
f(2), ie., f'(z) # 0 for z # 2z, that are close to zp. Hence the roots of f(z) — f(z0) — w are
distinct near zg for some w # 0. Write

F(2) = f(z0) —w = (a(z — 20)" — w) +G(2).
—_—
F(z)
Note that |F(z)] > |G(z)| on the circle |z — zp] = ¢ for 0 < § < 1. By Rouché Theorem
(Corollary 4.25), F(z) = a(z — 20)¥ — w and F(2) + G(z) have the same number of zeros in
|z — z9| < 0. Therefore, f(z) — f(z0) — w has k > 2 roots in |z — zo| < §. This leads to a

contradiction as 6 — 0.
Let g = f~!. For w = f(z) that is close to wo = f(z), we have

g9(w) — g(wo) ___*T*%
w — wo f(2) = f(z0)
Consequently, g'(wo) = 1/f'(g(wo)) # 0. So f~! is also holomorphic. O

Corollary 9.3. The inverse of a conformal map is holomorphic.

Remark 9.4. Here are some remarks for the sake of understanding Definitions 9.1.

(1) Suppose f : U — V is holomorphic and f'(z) # 0 for any z € U. However, this does
not imply the injectivity of f. For a counterexample, on D* = {0 < |z| < 1},
f:D* = D* 2z 22
But f/(z0) # 0 locally implies that f is (locally) biholomorphic near zg.
(2) On the terminology “conformal”: let f : U — V be conformal. By Proposition 9.2,
f'(2) #0 for any z € U. We claim that f preserves angles. To be more explicit, let

I'; and T's be two curves intersecting at z € C with the intersection angle 6. Then
f(T'1) and f(I's) intersect at f(z) with angle 6 as well.

Examples 9.5. Here comes a series of examples on conformal maps. We are particularly
interested to focus on the conformal equivalence class of H.

(1) The upper-half plane H = {z € C: ¥(z) > 0} is conformally equivalent to the open
unit disc D = {z € C: |z| < 1}, denoted as H = . Note that for any z € H,

|z — il
F = .
)= <
Therefore, we get the holomorphic map F': H — D. Itsinverseis given by G : D — H
with G(w) =i(1 —w)/(1 + w).

&
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Then F o G =idp and G o F = idy. Focusing on the image of the real line R C C
under F', for z = x € R,

(i —x)? 1—x2+_ 2z
= = VA
i+ 1+ 22 1+ 22 1+ 22

11—

= cos(2t) + ¢sin(2t).

by changing the variable & = tant for ¢t € (—n/2,7/2). In particular, F(co) =
F(—oc0) = —1.

We now define S = {z € C: 0 < arg(z) < n/n}, and then S 2 H via F: S - H
and G : H — S such that F(z) = 2" and G(w) = w'/".

/n

‘ W

Note that the proportion 1/n can be replaced by any irrational number a € R.
Using the similar idea as in (2), D is conformally equivalent to the upper-half unit
disc Dy = {z € D : §(z) > 0}, which is open as well. But the boundary behavior is
not the same. In fact, there is a conformal map

RPN Y
2 2z’

F:Dy — H;
To verify this, note that the equation F(z) = w € H reduces to 2% + 2wz +1 =0
that has two distinct roots whenever w # +1.
Again, the upper-half plane can be conformally equivalent to a strip. Define Q =
{z€C:0< 32 <7} and for z = re’? € H with § € [~7/2,37/2), we take
F: 2z~ logz=Ilogr +i6 to see the result. Its inverse is given by G : w — e®.

v

Q A\ \

We define the half-strip ' = {z € C : §(2) > 0, —7/2 < R(z) < 7/2}. Note that
the map z — exp(iz) takes T to the right half-disc D', := {|z| < 1,R(z) > 0}. This
is immediate from the fact that if z = x + iy, then e = e™®e~¥. Also, we have the
orientation given by multiplicating with ¢, say D/, — D

o A T H
—7T/2 7'['/2 v
zsin z
z—exp(iz) |~ ~ z.—)—#
/Z'_’iz\
IR . (I

/
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Combining these with the result of (3), we have a biholomorphic map 7' = H. This
is nothing but sin z, because

. e —e "? 1, 1 iz

sinz = 5 = 2(2C+2,C), ¢ =e€".

(6) For a non-example, we see D ¢ C* = C—{0}. Otherwise if there is some holomorphic
map f : C* — D, it must be bounded, and equivalently, f has a removable singularity
at 0 by the Riemann extension (Theorem 4.12). Moreover, it extends to some
holomorphic and bounded map g : C — D. From Liouville Theorem (Corollary
3.16), g must be a constant. This contradicts to the assumption.

(7) We claim D % C. By Definitions 9.1, if U = V then they have the same set of
holomorphic functions. Moreover, there exists a group homomorphism O(U) =~
O (V') by Proposition 9.2. The result is given by the fact that there is some bounded
non-constant holomorphic function on I, whereas by Liouville Theorem (Corollary
3.16), there is no such bounded and non-constant entire function on C.

9.2. The Schwarz Lemma. The statement and proof of the Schwarz lemma are both
simple, but the applications of this result are far-reaching.

Lemma 9.6 (Schwarz). Suppose f: D — D is holomorphic with f(0) = 0. Then

(1) |f(2)] < |2| for all z € D with equality at some 2o € D if and only if f(z) = € - 2
(i.e., [ is a rotation);
(2) 1£'(0)] < 1 with equality being valid if and only if f is a rotation.

Proof. (1) Cousider the function ¢g(z) = f(z)/z, then f(0) = 0 implies that z = 0 is a
removable singularity of g. If |z] =r < 1 then

S| =

max [9(2)] = max|g(=)| = - max|f(2)] <
J2I<r |zl=r rzl=r
Letting » — 1 from r > 0, we see for all z € D that |g(z)| < 1. By the maximum principle
(Proposition 4.27) applying to g, the equality holds if and only if g(z) = C for some constant
C such that |C] = 1, that is, C' = €% for some 6. Thus, f(z) = ¢e% - 2.

(2) We still consider g(z) = f(z)/z. Note that

lim £ SOy FG)

/ — —
£1(0) = lim ——— lim == = lim g(2) = g(0).
By (1), we get |f/(0)] = |g(0)] < 1 with equality if and only if g(z) = €. This shows that
f(z)=¢€". 2. O

9.2.1. Aut(D). The next goal is to apply Lemma 9.6 to understand the group Aut(D).

Examples 9.7. We list out some basic elements in Aut(D) as examples.

e The rotation: z — €% - z.
e Given o € D, we define
oa—z
Ya(z) :
then 1, € Aut(ID). One can verify some properties such as 1,(0) = «, ¥, (a) =0,
and 12 = 1, 01 = idp (i.e. Y51 = Yq).

The following fundamental theorem dictates that the second example above almost rep-
resents all elements in Aut(D) (up to some rotation).

l—-@- 2’
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Theorem 9.8 (The Fundamental Theorem on Aut(D)). For any f € Aut(D), there are
some 0 € R and o € D such that

f(z) =€

Proof. For f € Aut(D), there is a unique o = f(0) such that g(z) := 1, o f(2) € Aut(D)
and g(0) = 0. Note that g : D — D is holomorphic and satisfies the condition of the
Schwarz Lemma (Lemma 9.6), for all z € D, |g(z)| < |2|. On the other hand, by Proposition
9.2, for each g € Aut(D), we have g~! € Aut(D) and g=*(0) = 0 as well. Again by
Schwarz, g~} (w)| < |w| for all |w| € D. Let w = g(z) and then |z| < |g(z)|. Hence
lg(z)| = |#| for any z € D. This means that the equality in Lemma 9.6 holds, or equivalently,
g(2) = €%z, denoted by ry(z), for some 6 € R. By definition, we get ¢, o f = 79 and then
f =15 org =1, ory by Example 9.7. Finally, by replacing o by a - e~%, we finish the

o Vz € D.

1—-az’

proof. O
9.2.2. Aut(H). Recall Example 9.5 (1) that H is conformally equivalent to D via
F:H-D, zm-—2,
1+ 2z

and hence we expect that Aut(H) can be expressed by Aut(D). Consider the composition
H—5Dp 245D ELH

S~ "

F~lopoF

We know that for each ¢ € Aut(D) (represented by Theorem 9.8), F induces an isomorphism
T'r: Aut(D) — Aut(H)
p+— FlopoF
whose image are given by conjugations of F.
Exercise 9.9. Fix ¢ € Aut(D). Show that I'r(y) defined as above is of the form
az+b a b
()

where v € SLo(R), the special linear group over R (i.e. ad —bc =1 and a,b, ¢, d € R).

Z .z =

Starting from this point of view, we define the fractional linear transformation as

fur(z) = —Ziz = (“ Z) € SLa(R).

Theorem 9.10. A map g € Aut(H) if and only if g = far for some M € SLy(R).

Remark 9.11. Note that fa; = f_pr for any M € SLy(R). By defining the equivalence
relation ~ by identifying M and —M, we see

Aut(H) ~ PSLo(R) := SLo(R)/ ~,
which is the so-called projective special linear group.

At the end of this part, we will introduce a generalized version of the Schwarz Lemma
9.6 which drops the condition f(0) = 0.

Proposition 9.12 (Schwarz-Pick Lemma). Suppose f : D — D is holomorphic. Then for
any z € D,
/
rEl

L—f(z)]* = 122
with equality at some zo € D if and only if f € Aut(D).
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Proof. Fix z € D and consider the composition
F:0—2=g(0)— f(z) = 0="n(f(2))

where g(€) := (£+2)/(142€) and h(€) = (£ — f(2))/(1 = f(2)€). Then F = hofog:D — D
with g, h € Aut(D) such that F(0) = 0. Now applying Lemma 9.6 to F', we get

— |2l

[F'(0) = [I'(f(2)) - f'(2) - g’ (0)] = |f( )|2|f( )| <
with equality if and only if F' is a rotation, i.e.,
rel
1=f)P ~ 112
with equality at some zo € D if and only if f € Aut(D). O

9.3. Hyperbolic Geometry on D. Recall the Cauchy-Riemann equation is read as
0 _ 1o 0 0 10 0
0z 2 0z y 0z 2 0z oy

for dz = dx + idy and dZ = dx — idy. For a smooth function f, we see
f of .. _0f of ,

df = = ——dz = —dz

A P S M v
If f is holomorphic, then df (z) = f (z)dz by definition.
Definition 9.13 (Kéhler Metric). Let 2 C C be an open set. Suppose g(z) > 0 is a smooth
function on z € Q. A Kdhler Metric on Q is defined to be

ds?(2) = g(2) - |d2|?,

where |dz|? = (dz)? + (dy)?.
Definition 9.14 (Pull-back of Kéahler Metric). Let 21,02 C C be open sets. Suppose
dsd, (z) = g(z)|dz|* is a metric on Qy and f : Q; — Qs is a holomorphic map. We define
the pull-back of dsg, (z) along f as

fr(dsd,) = f*(gldzl*) = (go f) - |df|* = (g0 f) - |f () *|dz|*.

Example 9.15 (Poincaré Metric on D). By taking g(z) = 4/(1 — |2|?)? in a Kiihler metric,
we get the Poincaré metric on D:

4|dz|? 2|dz|
20y . _
PO =T T
As for the pull-backs, we take f € Hol(D,D) = {f : D — D holomorphic}. Then
N 4
frds(z) = ' (2)*]d=]*.

1 =1f'(z)?)?
Through the holomorphic function f, (D,ds%) is sent to (D, ds3) as well. By cancelling the
|dz|? term and applying the Schwarz-Pick lemma (Proposition 9.12), we see

frdsp(z) < dsp(z)
with equality holds at some zy € D if and only if f € Aut(D). Note that the inequality
above is equivalent to the previous Schwarz lemma (Lemma 9.6).

Remark 9.16. One can check that the curvature of (D, ds3) is a negative constant. The neg-
ativity here is often regarded as some “hyperbolic property” in complex geometry. Denote

Iso(D,ds%) = {f : D — D holomorphic with f*ds3 = dsb}
as the isometric group on (D, ds%). Then the Schwarz-Pick shows that Aut(D) = Iso(D).
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Example 9.17. Recall Example 9.5 (1) that for H, we have the conformal equivalence
zZ—1
z+1i

p:H—-D; 2z~

Then the pull-back of ds% along ¢ is readily read as

4|d90(z)|2 4 4 2 1 2
*ds?(z) = = : . dz|? = =|d
P = e T o= e T el

where y = §(2). Then (D,ds3(z)) ~ (H, |dz|?/|S(z)[?). In this sense, we see the geometry
on D is the same as that on H.

9.3.1. Poincaré Length. Let ' C D be a (piecewise smooth) curve in D joining two fixed
points a,b € D. Assume I' has a parametrization z(t) = z(t) + iy(¢) : [0,1] — D with
2(0) = a and z(1) = b. Then the Poincaré length of I with respect to ds3(z) is given by

1
2
L) = [ dsn(elt) = [l
r o L—1[z(t)?
that is independent of the choice of the parametrization of I'. Note that dz(t) = (2/(¢t) +
iy' (t))dt and then |dz(t)| = (2'(t) + ¢/ (t)%)'/2dt, we see

Lol (1) +y' ()2
dsp(z(t)) = / dt.
JLasron= [ 3T e
Example 9.18. Consider I'; : z(t) =t with 0 < ¢ < a. Then

a9 a1 1 1+a
Lo = —Zdt={ (— + —)at=1 .
() /0 1- 12 /0(1—t+1+t) ®1 4

Note that as a — 1, we have L(I'1) — oo, which does not coincide with the intuition for
classical Eulerian geometry.

Now consider I'y : z(t) = x(t) + iy(t) with 0 < ¢ < 1 such that z(0) = 0 and 2z(1) = a. Then

B 1 2(1"(t>2 +y/(t>2)1/2
wr = [

1 / 1
2/ 2|2/ (t)] dt}/ 2dx(t)
o 1-22 "7 Jy Toa@p
@ 2ds 1+a
= :1 :LF .
/0 1-s2 BT g4 ()

From this, we know that with respect to ds%, the line segment I'; from 0 to a is actually
the shortest path.

Definition 9.19 (Poincaré Distance). For a,b € D we define the Poincaré distance from a
to b as
distp(a,b) := irrlf L),
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where I' runs through all curves joining a and b.
Then for 0 < a < 1 we have distp(0,a) = log((1 +a)/(1 — a)).

Exercise 9.20. Calculate the Poincaré distance on I as follow.
(1) For any a € D, show that

1+ |al

i =1 .
distp(0,a) = log Tl

(Hint: consider a rotation ry such that r¢(a) = |a|.)
(2) For any a,b € D, show that

|1 —ab| + |a — b|

distp(a,b) =lo = .
p(a,b) =log ;7 — )

(Hint: consider h(¢) = (£—b)/(1—b¢) such that h(b) = 0 and h(a) = (a—b)/(1—ab),
and use the fact that the group action of Aut(D) preserves ds?.)

Theorem 9.21. For all a,b € D and f € Hol(D,D), we have

distp(f(a), f(b)) < distp(a,b).

Sketchy Idea for Proof. Use the definition of Poincaré distance and apply the Schwarz-Pick
Lemma (Proposition 9.12). O

9.3.2. Kobayashi Pseudo-Distance. Let 0 C C be an open connected set with x,y € €.
Consider a sequence of holomorphic maps f; : D — Q (¢ =1,2,...,m) and points p;,q; € D
satisfying the following Kobayashi condition:

(%) filpr) =2, fmlam) =y;  fi(@) = fis1(Pit1)-
Geometrically, this construction is nothing but a chain of discs connecting x and y.

Definition 9.22 (Kobayashi Hyperbolic). We define the Kobayashi pseudo-distance as

m
dg(z,y) == f-i;?fqv Zdistp(pi, i),
KRV RN 52 i:l

where the index runs over all such f; and p;, ¢; satisfying (). One can check that for any
x,Yy, 2 € Q,
dK(l’,’y) :dK(y,-T) 20» dK(‘T’Z) édK(ac,y)—i-dK(y,z)

Moreover, the region 2 is called Kobayashi hyperbolic if for all z,y € €2 such that x # y, we
always have dk (z,y) > 0.

We introduce the main result due to Kobayashi theory without proof (also leave as an
exercise).

Theorem 9.23. Consider dk(-,-) on D and C.

(1) For D, we have dx = distp, thus D is Kobayashi hyperbolic.
(2) For C, we have dx =0, thus C is not Kobayashi hyperbolic.
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9.4. The Riemann Mapping Theorem. The motivation of the Riemann mapping theo-
rem comes from the following natural question.

e Given an open set Q C C, is © conformally equivalent to D?
For this, we make two trivial observations. Firstly, Q # C by Liouville (Corollary 3.16)
because of the boundedness of D. Secondly, £2 must be simply connected since the biholo-
morphic functions preserves all topology information.

Surprisingly, the Riemann mapping theorem dictates that these two necessary conditions
are also sufficient to determine the conformal equivalence class of D.

Theorem 9.24 (Riemann Mapping Theorem). Let Q2 be a proper (i.e. Q # C) and simply
connected open set of C. Fix zy € Q. Then there exists a unique biholomorphic map
F :Q — D such that F(z9) =0 and F'(z) > 0.

Proof of the Uniqueness. We prove the uniqueness first. If there are F, G : Q ~ ID satisfying
that F(z9) = G(20) = 0 and F’(20),G'(20) > 0, then FoG~! € Aut(D) satisfies FoG~1(0) =
0. Thus, .
FoG™l(2)=¢" 2,
that is, F'o G~ is a rotation on D. However, the condition F’(zp),G’(2) > 0 shows that
(FoG™1(0)=¢"? >0

as a real number. Therefore, € =1 and F = G. (]
Corollary 9.25. Any two proper simply connected open sets of C are conformally equivalent.

The proof for existence is hard. We will consider the function space
§={f:Q—D| f is holomorphic and injective such that f(z¢) = 0}.

Some preparation work for this is in need.
9.4.1. Montel’s Theorem.

Theorem 9.26 (Montel). Let Q C C be an open set and § be a family of holomorphic
functions on Q. Assume that § is uniformly bounded on every compact set of Q, i.e., for
any compact subset K C Q, there is a constant B(K) > 0 such that for each f € §, we have
sup.cx |f(2)| < B(K). Then

(1) § is equicontinuous on every compact subset of Q, i.e., for any compact subset
K C Q, for all e > 0 there is 6(¢) > 0 such that for each f € F, |f(z) — f(w)| < e
whenever z,w € K and |z — w| < §(e);

(2) § is a normal family, i.e., each sequence in § has a subsequence that converges
uniformly on every compact subset of €2.

Sketchy Proof. (1) By Cauchy integral formula (Theorem 3.13), the condition that all f € §
are uniformly bounded on compact sets implies that § is equicontinuous on every compact
set.

(2) By (1), § is equicontinuous and uniformly bounded on every compact set. By Arzela-
Ascoli theorem, § is normal. [

Proposition 9.27. Let Q C C be open and connected. Suppose {fn}°2 is a series of
injective and holomorphic functions on . Assume f, — [ uniformly on every compact set
of Q, then f is also injective unless it is a constant.

Proof. We argue by contradiction and suppose that f is not injective, so there exist distinct
complex numbers z; and z in Q such that f(z1) = f(z2). Define a new sequence by
gn(2) = fu(2) — fa(z1), so that g, has no other zero besides z1, and the sequence {g,}
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converges uniformly on compact subsets of Q to g(z) = f(z) — f(z1). If g is not identically

zero, then zo is an isolated zero for g (because 2 is connected); therefore, by the argument
principle (Theorem 4.23),

_ 1 [g©

2mi J, 9(¢)

where v is a small circle centered at zo chosen so that g does not vanish on v or at any

point of its interior besides z3. Therefore, 1/g, converges uniformly to 1/g on ~, and since
g, — ¢’ uniformly on v we have

dg,

1 ! 1 !
2mi J gn(¢) 2mi J 9(C)
But this is a contradiction since g, has no zeros inside =, and hence
1 /
2mi J, gn(Q)
for all n. This shows that ¢ = 0 and f must be a constant. (]

9.4.2. Proof of the Riemann Mapping Theorem. The proof are listed in 3 steps.
e Step 1. Let 2 C C be a simply connected open set.
Claim: 2 is biholomorphic to an open set of D containing 0.

Proof of Claim. By translations and rescalings, it is enough to prove that 2 is conformally
equivalent to a bounded open set of C. Since (2 is proper and simply connected, there
exists a ¢ Q such that z — « # 0 for any 2 € Q. Consequently,

f(z) :=logq(z — a)
is well-defined and holomorphic, and e/(*) = z — a. Pick w € Q then

f(2) # f(w) + 2mi

for any z € om. To see this, the case where z = w is obvious. For z # w, if f(z) =
f(w) + 2mi then

z—a=eP =e/W=y_a = z=w,

which leads to a contradiction. Moreover, there is an open disc D centered at f(w) + 27
such that DNf(Q) = ). Otherwise there is a series {2, } C Q such that f(z,) — f(w)+2mi,
and hence ef(*n) — e/(W)+27i (1o 2 — ). Thus we have f(z,)] — f(w), which is a
contradiction. We then consider

1
7 — (F(w) + 270)°
As f is injective, for a fixed w, F is injective as well. Hence F : Q — F() is biholomor-
phic. On the other hand, there is some C' > 0 such that for all z € Q, |F(z)| < C. These

proves the claim.
e Step 2. By Step 1, we can assume 0 € Q C D. Consider the following family

F:={f:Q—D| f is holomorphic and injective such that f(0) = 0}.

Since f(z) = z € § we know at least § # (0. Also, § is uniformly bounded. Let s =
sup ez [f/(0)] then s > 1 since f(z) = z € §. Moreover, one can prove that s < co. This
is because

1 f(&)

f’(O):% . £—2d§ = |f(0)] <

F(z)=

S | =
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by higher Cauchy integral formula (Theorem 3.14). Choose a sequence {f,} C § such
that |f/(0)] — s. By applying Montel theorem (Theorem 9.26) to {f,}, we see there
exists a subsequence of {f,} that converges to f uniformly on every compact subset.

(i) By definition, f,, are all injective and s > 1. Hence f is injective as well.

(ii) Since |fn| < 1 in Q, we have |f| < 1 in Q. Applying the maximum principle
(Proposition 4.27) to f on the open connected region 2, we have |f| < 1 in Q.
Therefore, the image of f is strictly contained in D.

(iii) Note that f(0) = 0.

From (i)-(iii) above, f readily lies in § and |f/(0)| = s.
e Step 3. Let f: Q2 — D be the map constructed in Step 2.
Claim: f is surjective, that is, f(2) = D; and therefore f is biholomorphic.
Proof of Claim. Otherwise there is some « € D such that for all z € Q, f(z) # a. Consider

f:wg(a)ogo¢aof
where 1,(2) = (a — 2)/(1 — @z) as in Example 9.7. Also, g : ¥, 0 f(2) — C is defined on
a simply connected region ¥, o f(Q2) by g(w) = Jw = exp((logw)/2), which is injective.
Then f € § where § is the same as in Step 2. By the definition of f,

f=®ofi=y; og oy of

P

where g~!(w) = w?. Thus, f'(0) = ®'(£(0)) - f'(0) = '(0) - f/(0). Note that & : D — D
satisfies ®(0) = 0 and @ is not injective. By the Schwarz lemma (Lemma 9.6), |®(0)| < 1
and |f"(0)] > |f’(0)|, which contradicts with the definition |f"(0)| = sup,¢z [h'(0)].

The whole proof for Theorem 9.24 is accomplished.

Example 9.28 (Topological Comb). We consider a classical example in topology that is
(globally) path-connected but not locally path-connected. Say

o0

11 n-1
_ . e _ - = ;
Q={seC:0<R(s) <1,0<3(s) <1} nL:JI[n,n " i.
il 1+
|
0 1

That is the open set by removing a series of the “comb intervals” from the interior of the
square with vertices 0, 1,4, 14 i. Note that € is simply connected and open with 9Q = Q\Q
being the union of the comb space and the edges of the square. By Riemann mapping
theorem (Theorem 9.24), there is a conformal map F : Q — D.

Remark 9.29. The conformal equivalence relation implies the topological homeomorphism.
For (the most important) example, suppose €1,y C C are two simply connected open sets
that are conformally equivalent, then £ ~ )5 as a topological homeomorphism. However,
given a map that preserves all local angles, it need not be a homeomorphism unless it is
bijective.
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9.5. Correspondence of Boundaries.

Definition 9.30 (Regularity). Let 2 C C be a bounded region. A point zy € 0S92 is called
regular if there exists 7(zp) > 0 such that for all 0 < r < r(z) we have

QN{zeC:|z—2|=r}={20+7re" :0,(r) <0 < s(r)}

for some constants with 6;(r) < 62(r), which are continuous with respect to 7.

If every point of 0f2 is regular, then we say €2 is regular.

Example 9.31. If 9Q is C! with some corners, then  is regular. In particular, if 9Q is
piecewise smooth, then € is regular.

Theorem 9.32 (Boundary Correspondence). Let Q C C be an open set that is bounded,
simply connected, and regular. Then any conformal map F': Q0 — D extends to a continuous
bijection F : Q — ID. In particular, F induces a homeomorphism from 0) to OD.

Upshot for Proof: we need to verify lim,_,, .cq F(z) exists for any zo € 0.

We take a lemma as the preparation work. For each 0 < r < r(z) we denote C, = {z €
C : |z — 29| = r}. For any given two points z,, z. € QN C,, let p(r) := |F(z,) — F(z)|. This
statement essentially uses the regularity assumption.

Cy

Lemma 9.33. We have liminf,_,q p(r) = 0.

Proof. We take « as the arc on C, from z, to z.. Note that F' is holomorphic, and hence
F(:0) = F(ar) = [ P60
&3

If lim sup,._,o p(r) > 0, i.e., there is some C' > 0 together with 0 < R < 1 such that p(r) > C
for any 0 < r < R. On the other hand,

02(r)

p(r>=|/F’<£)d§|</0() |F'(€)|rdf

ba(r) / 2 1/2 #a(r) 1/2
<[ iR ran ([ raoy

1(r) 61(r)

< (2mr)V3( /
61(r)

Here the second inequality is the Cauchy-Schwarz. This is equivalent to

2 02(r)
Py 271'/ F/(€)[2 - rdf.
0

r 1(r)

92(7‘

)
(&) - rdo)'/?.
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After taking the integral for 0 < r < R, we have

R 2 R 02(r)
/ P 4y < om / / |F/(€)] - rdodr
0 r 0 JO1(r)

<o / F(€) 2dudy
Q

= 27r/ dxdy = 27r/ dedy = 272,
F(Q) D

However, as p(r) > C from the assumption,

This leads to a contradiction. Thus, liminf, ¢ p(r) = 0. O

Exercise 9.34. In the proof of Lemma 9.33 above, we have used the following fact. Let
f:U — f(U) be a conformal map. Prove that

"(2)|Pdady = dxdy.
/U|f<z>| vy /m wdy

Proof for Theorem 9.32. We first prove lim,_, ., .cq F(z) exists. Otherwise, there are two
sequences {z1, z2,...} and {2{,25,...} in Q with z; — 2o and z, — 2o but F(z) — &,
F(z;,) — & such that £ # £’. Note that {,£ € 9D as F : Q — D is a conformal equivalence.
This contradicts with Lemma 9.33.

Now define F(zp) = lim,_, .cq F(2) for zp € 9Q. Then F : Q — D is continuous
by Lemma 9.33 again. Applying similar argument to F~! : D — Q, we get a continuous
extension F~!: D — Q. It can be verified that

FoF '=idg, F 'oF =idg.
Therefore, F' is a continuous bijection. (]

Remarks 9.35. We have some comments on the boundary correspondence and the Riemann
mapping theorem.

(1) For the uniqueness in the Riemann mapping theorem (Theorem 9.24), we have the
following. Let € C C be a proper and simply connected region with 0f2 being a closed
piecewise smooth curve. Take three distinct points 2z, 29,23 € 0. For arbitrary
and distinct a, b, ¢ € 9D, there exists a unique conformal map F': Q — D such that
the homeomorphic extension F :  — D maps 21, 20, 23 to a, b, ¢, respectively.

(2) The boundary correspondence (Theorem 9.32) also holds for domains in the ex-
tended complex plane C = C U {co}. Here {co} (as a point or a region) is called
regular if {0} is regular in 9Q~! :=9{z7' : 2 € Q}.

Theorem 9.36 (Extended Riemann Mapping Theorem and Boundary Correspondence).
Suppose Q C C is a simply connected open subset that is proper (i.e., Q@ # C or C). Then

(1) there is a conformal map F : Q — D;
(2) furthermore, if Q is also regular, we have the correspondences of boundaries as in
Theorem 9.32.

9.6. Applications of Riemann Mapping Theorem. This part refers to [Kod07, pp.
224-241]. We will introduce two types of applications about reflections and modular func-
tions respectively.
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9.6.1. The Principle of Reflection. Recall the Schwarz reflection principle (Proposition 3.30)
which deduces the following theorem.

Theorem 9.37. Suppose ), D are open subsets of the upper-half plane H whose boundaries
intersect R with at least an interval. Assume (a,b) is part of boundary of Q and («, B) is
part of boundary of D on R. If F': Q — D is a conformal map extending homeomorphically
such that F : QU (a,b) - DU («, ), then we can extend F to a conformal map as follows:

F:QU(a,b)UQ* — DU (a, B) UD*

ZH%{H@,zeQumwﬁ
F(z), zeQ*~

Here Q* and D* denote the reflection image of Q and D with respect to the real axis,
respectively. Or equivalently, Q* :={z € C:z € Q} and D* :={z € C:Z € D}.

Now we are to study reflections with respect to a line or a circle. Consider the equation
AMw) :== (e1 — co)w + ¢o. If w € R, then A(w) = 0 is the equation of ¢ that passes through
co,c1 € C. If w € C, then \(:) : C — C is a conformal equivalence and maps R U {co} onto
2U {oo}; and such that A(0) = ¢g, A(1) = ¢1, and A(o0) = oo.

g

o0

S e
—_

'Y
1
I
|
1
:
®

w* =w

Exercise 9.38. Denote z* the image of z € C under the reflection by ¢.
(1) Let z = A(w). Show that z* = \(w).
(2) If w is another linear fractional transform, i.e.,

az+b a b
u(z):cz—i—d’ (c d)EGLQ(C).

which maps R U {oo} to £U {oo}. Prove that z = pu(w) implies z* = u(w).

Remark 9.39. Suppose a,b,c,d € C with ad — bc # 0. Then

Note that ¢(c0) = a/c and p(—d/c) = 0o. So

p:C\oo, -2} =\~ = T {0, 2} = C\(%).
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Now let C be a circle on C and ¢y, ¢1, coo be three distinct points on C. Set A(-) : C — C
by
)\(w) _ (CO_COO)(COO _Cl)
(c1 — co)w + (coo — 1)
It can be verified that A(0) = ¢o, A(1) = ¢1, and A(00) = ¢oo.

+ Coo-

Coo
02"
C c1
o w

I
R ® . i 00

0 1 !
o W=

The idea to deal with the reflections with respect to a circle is to regard a line £ as a circle

with infinite radius, say {z € £ : |z+ 00| = co}. Then the linear fractional transforms always
map a circle to another circle. In particular, A maps R U {co} onto C.

Definition 9.40. For z = A(w) with X\ defined as above, the reflection of z with respect to
the circle C is defined by

* _ \(T) = (co — cc)(Co0 — 1)
=N )_(Cl—CO)WﬂL(Coo—Cl)

+ Coo-

Remark 9.41. It can be checked that the definition of z — z* is independent of the choice
of A, or equivalently, independent of the choice of points cg, ¢1, ¢o. For any linear fractional
transformation ¢ € GLg(C) which maps R U {co} onto C, we have z = p(w) implying
z* = p(w) = \w).

Note that whether A\ preserves the direction of R from —oo to oo or not leads to two

different cases.
A
H /

( ) ‘Coo
R —e—>——>—
0o 1 \\

H* A (Case 2) ‘ Coo

In Case 1 above, A maps H conformally to the interior of C'; but in Case 2, it maps H* to
the interior of C. One can prove that in any case, A(-) can be written as

Case 1

for some 0 € R, where ¢ € C and R > 0 denotes the center and the radius of C, respectively.
The point wy is chosen to be on H in Case 1, and on H* in Case 2. Therefore, z = A(w) has
its reflection with respect to C' given by

2* = \W) = ¢+ Re'
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By an easy comparison on expressions of z = A(w) and z* = A(w), we get the Circle-Power
Theorem in Euclid geometry:
(z—¢) - (z* —¢) = R%.
There is a consequence of this result at once, say for » > 0 and ¢ € R,
, R? .
z—c=re¥ <— z'—c=—¢".
r
As expected, note that the reflection map with respect to C' is an involution (that is, (2*)* =
z) and preserves the circle. According to the convention, write ¢* = oo and oo* = ¢ for the
center ¢ of C. Finally, proof of the following proposition is left as an exercise.

Proposition 9.42. Reflections with respect to a line or a circle are invariant under linear
fractional transforms. In other words, the reflections commute with the action of GLa(C).
To be more precise, if C is a line or a circle and p € GLy(C), then

*

n(z") = (=)
On the right hand side, u(z) — u(z)* is a reflection with respect to u(C).

Theorem 9.43 (The Principle of Reflection). We make the following statements.
o C is a circle in C with center c.
e () is a connected open subset contained in the interior of C or the exterior of C,
satisfying c ¢ Q. B
e v C C is a part of the boundary of Q, i.e., v C 00 = Q\Q.
e D C H is a connected open subset with a real interval (o, §) as a part of OD.
If the conformal map f : Q — D extends to a homeomorphism f: QU~ — DU («a, ), then
f extends to a conformal map
g: QUAUQ" - DU (a, B) UD™,
which is defined by
flz), zeQuUn;
f(z%), zeQ~
Note that Theorem 9.43 generalizes Theorem 9.37 but preserves all essential ingredients.

In short, the result dictates that if a conformal map extends to some boundary of the
reflection axis (which is a circle or a line), then it extends to the reflection image as well.

Proof. Assume 2 is in the interior of C' with ¢ ¢ Q. Recall that for some 0 € R,
Mw) = ¢+ Re® . Lﬁ.
w — Wo
We can choose some 6 such that A\(c0) € C\7. Set wy = A7!(c). Note that X\ : C\{wg} ~
C\{A(c0)} is conformal. Conversely,
A7HC\{A(00)} = C\{wo}

is conformal. Since ¢ ¢ Q, we have oo ¢ Q*. Hence Q U~ U Q* C C\{A(c0)}. Applying the
Schwarz reflection principle (Proposition 3.30) to go A™!, we get the result. The case where
Q lies in the exterior of C' is similar. (]

Remark 9.44. The same result as in Theorem 9.43 also Eolds when C'is a line in C if € is
on one side of C and v C C' is a segment such that v C Q\Q.

Moreover, in case Q is a simply connected open set of C such that QUC = 0, v C 99,
and v C C, where C is a circle or a line. By the Riemann mapping theorem (Theorem 9.24),
we have the following result.
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Theorem 9.45. A conformal map f : Q@ — H whose extension maps v to a segment
(o, B) C OH can extend to a conformal map

g:QUAUQ* = HU (o, B) UH".

9.6.2. Construction of a Modular Function. Let’s recall Theorem 9.23 that D is (Kobayashi)
hyperbolic. Let C = 0D = {z € C : |z| = 1} with distinct points (co,c1,¢0) € C. The
partition of D is given as follows.

V22

2 4]

C1 = V2
Step 0. As D is simply connected, by Riemann mapping theorem and boundary correspon-
dence (Theorem 9.36), there exists a unique conformal map f : D — H whose extension
f:D—-H=HURU {cc}
is a homeomorphism satisfying flop : 0D — R U {oo} with f(co) = 0, f(c1) = 1, and
f(exo) = 00. Then the correspondence is read as
fn) =(1,00),  f(12) = (=00,0), f(y3) =(0,1).
Step 1. Reflections with respect to v; (j =1,2,3).

Proposition 9.46. Let C' be a line or a circle and let ¢ be the center of C if C' is a circle.

(1) Let T'1,Ty be smooth curves in C intersecting at a # ¢, let 6 be the angle between
I',Ty at a. IfI'7, 15, a* are the reflection images with respect to C, then the angle
between I'7, I'5 is —0.

(2) The reflection z — z* with respect to C maps circles (resp. lines) onto circles (resp.
lines).

Proof. Note that (1)(2) hold for C = RU{oo}. For the general case, apply a linear fractional
transform A : RU {c0} — C to complete the proof. O

Applying Proposition 9.46 to our setting, we get the following result.
e The reflections with respect to v; map 0D to JD.

e The reflections with respect to v; map the intersection angle (with 0D) /2 to m/2.
e The reflections with respect to v; map D to the interior of ID.
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By the principle of reflections (Theorem 9.43) applying to the reflection with respect to
1, we extend f to a conformal map

~

fi:DUymUD* — HU(1,00) UH".

Here f1(D*) = H* and f1(71) = (1,00). It is also such that f1(y21) = (—00,0) and f1(y31) =
(0,1). Similarly, we have maps fo and f3. Denote

SN = DU~ Uy Uz U Dy UDyU Ds.
Define g; : S — C as

a(z) = f(2), zeDU~y; (j=1,2,3);
fj(Z), z € Dj (] = 1,2,3)

Then g; : S — C\{0,1} is a holomorphic map.
Step 2. Reflections with respect to v;; (4,7 =1,2,3).
By the similar construction as in Step 1, we get another holomorphic map

g2: S@ = C\{0,1}.
Again, using the induction, we have for all n € N that
gn : S — C\{0,1}.
Here D ¢ S ¢ 8@ ¢ ... ¢ $™ and U, S = D. Gluing these up, we get a

holomorphic map
g: D — C\{0,1},
which is the so-called modular function on D.
As for some application, the following result is a corollary for the existence of g.

Proposition 9.47 (Little Picard Theorem). If f : C — C\{0,1} is a holomorphic function,
then f is a constant.

Proof. From the existence of the modular function g, we obtain a commutative diagram

D

/ Jg
c—1 L c\do1}

such that f has a holomorphic lifting fsuch that g o f = f. But by Liouville (Corollary
3.16), f must be a constant as it is bounded and holomorphic on C. Then f is a constant
as well. 0

Note that Proposition 9.47 also holds for those functions to the punctured complex plane
with exactly two points missed, i.e., for f: C — C\{co,c1} with ¢g # ¢ € C.

10. AN INTRODUCTION TO ELLIPTIC FUNCTIONS

In short, elliptic functions are meromorphic functions defined on C/L, where L is a lattice
of C. These functions are called “elliptic” because the domain C/L ~ C/Z? can be not only
interpreted as a torus but also an elliptic curve.
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10.1. Basics on Elliptic Functions.

Definition 10.1 (Lattice). A lattice L of C is a subgroup of (C,+) which is generated by
wy,ws € C over Z such that wy,ws generates C over R. That is,

L = {mw;y + nwy : m,n € Z}.
Without loss of generality, we assume (w; /wa) > 0.

Definition 10.2 (Elliptic Function). An elliptic function f with respect to a lattice L of
C is a non-constant meromorphic function on C which is L-periodic, i.e.,

flz+w)=f(z), VzeC, we L.
Or equivalently, for all z € C,

f(2) = fz+w) = f(z +w2).

Remark 10.3. For the second condition on L-periodicity above, let wi,ws € C be arbitrary.
If wi/we € Q then f is periodic with a single period. If wy/wy € R\Q, then f must be a
constant.

Proposition 10.4. An elliptic function which is entire is a constant function.

Proof. An elliptic function descends to a function on the torus C/L, which is compact. The
equivalence relation in C/L is given by

z1=zmod L <= 2z — 25 = mw; + nws for some (m,n) € Z2.

If the function is entire, then it is bounded. By Liouville (Corollary 3.16), it must be a
constant. O

Definition 10.5 (Fundamental Parallelogram). Let L = [wi,ws]| be a lattice of C and
suppose a € C. Then the set

P={O¢+t1w1 +towe : 0Kt < 1,0t < 1}
is called a fundamental parallelogram of L.
It’s not hard to see that if f is elliptic, then f is determined by its behavior in P.

Theorem 10.6. Let f be elliptic with respect to L and P be a fundamental parallelogram
for L. Assume f has no poles on OP. Then

Zreszf =0.

zeP

Proof. Suppose P has a vertex, say « as follows.
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By the residue formula (Theorem 4.8), we have

271 Z res, f = f( )dz

zEP
O¢+UJ2 a—+wiy +UJ2 a—+wiy o
= / z)dz + / z)dz + / f(z)dz+ / f(2)dz
« atws atwitws atwi
a+wz a+twi +wz a+twa atwitws
= / 2)dz + / 2)dz — / f(z)dz — / f(z)dz
« atwsa « atwsz
=0
by the double-periodicity. O

Corollary 10.7. The total number of poles (counted with multiplicities) of an elliptic func-
tion f in P is not less than 2.

Proof. If f has no poles on 9P, then the result follows from Theorem 10.6. Otherwise f has
poles on P, then consider a slight perturbation of P to P + h with |h| < 1. By applying
Theorem 10.6 to P + h again, we get the result. O

Theorem 10.8. Let P be a fundamental parallelogram and f be an elliptic function. Let
{a, }N_, be the collection of all zeros and poles of f in P with order ord,, f = m;, respec-
tively. (Recall that m; > 0 if a; is a zero and that m; < 0 if a; is a pole.) Then

N
i=1

Proof. Note that f'/f is elliptic as well as f since it is meromorphic. Therefore, by the
argument principle (Theorem 4.23), if f has no zeros or poles along P, then

RO
2" =50 ) T

i=1

N
dz=0

as f'/f is elliptic (c.f. the proof of Theorem 10.6 above). Again, if f has zeros or poles on
OP, then consider a slight perturbation P + h and apply the same argument. O

Exercise 10.9. Keeping the same hypothesis as in Theorem 10.8, prove that

N
Z m;a; =0 mod L,
i=1

ie. vazl mia; = kwi+lw; for some (k,¢) € Z*. (Hint: consider the integral [, ,(zf'(z)/f(z))dz
and apply the residue formlua (Theorem 4.8).)

10.2. Weierstrass o Function. Suppose [wy,ws] is a lattice of C and

L* = {mw; + nws : (m,n) € Z*\(0,0)} = L\{(0,0)}.
The Weierstrass o Function is defined over C but essentially depends on the choice of L.
Definition 10.10. The Weierstrass p function for L is defined as

wEL*
for all z € C.

Theorem 10.11. g is elliptic with respect to L.
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Proof. The first step is to verify that the sum in g converges uniformly on all compact sets
that include no lattice points. For |z| < oo staying away from L,

1 1 -2+ 22w ( 1
(z—w)?2  w?  w— 228 + w222 |w]|3

).

The following fact will be at work for this.
Fact: for A\ > 2, the infinite sum converges:

1 1
g;* ol <m,n>ezZZ\{<o,o>} R
Coming back to the proof, note that |w| = |[mwy + nwa| ~ |m| + |n| and hence
1 1
TP ™ (Iml+ n])*
To estimate the right hand side, for fixed n,

1 1
— +2 +2
nl® mZ (ml+ D> W 2 i

k>\n|+1

1 1
<—+2/ —dx
|

n| T

Using this property, we see

2 (Im] + Inl Z > (Im] + > Inl)

(m,n)€22\{(0,0)} mez, n;éO
< Z Z |n|/\ |n|A= 1>

< o0

as A > 2 due to the fact above. Therefore, g is a meromorphic function on C with a double
pole at each w € L. Furthermore, p is even, i.e. p(z) = p(—=z). Also note that

@-2% i
weL

and thus g’ is L-periodic and odd. It suffices to check whether p is L-periodic or not. As
for any z,

Plz+w)=¢'(2) = plz+tw)-—p) =c

for some constant ¢. The claim is that ¢ = 0. To see this, let z = —w; /2 and get
p(5)=p=5)te=p(5)+e = c=0.

Here the second equality holds because @(-) is even. Thus p(z + w1) = p(z) and similarly,

(2 +wa) = p(2). O

Note that the set of all elliptic functions (with respect to a fixed lattice L) forms a field,
denoted by m(C/L), which contains C as the constant field. Here m(C/L) is called the
function field of the torus C/L.
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Theorem 10.12. The field m(C/L) is generated by @ and ¢, i.e.,
m(C/L) = C(p, &)
Or equivalently, any elliptic function on C/L is a rational function of p and .

Proof. If f is elliptic, we write

oy = FOEICR) | S = 1)
even, elliptic odd, elliptic

If f is odd, then f -’ is even. We only need to prove that the field of even elliptic functions
is equal to C(p).
Fact. Let f be an even elliptic function, then:

e if f has a zero (resp. pole) of order m at some point u, then f has also a zero (resp.
pole) of order m at —u;

e if u = —umod L (or 2u = 0 mod L), then f has either a zero or a pole of even order
at u.

Using the fact in particular, f has a zero or a pole of even order at z = 0. Hence there exists
some m € Z such that f - o™ has no poles or zeros at z = 0 (thus at all points of L).

We now assume u # 0 mod L and let g(z) := p(z) — p(u). The result above shows that
g(z) has a zero of even order at u if 2u = 0 mod L, i.e., u = w1 /2,w2/2, (w1 +w2)/2 mod L.

By Theorem 10.8,
Z ord,(g) =0
zeP

so ord,(g9) = 2 if u = w1/2,ws/2, (w1 + w2)/2 mod L. Under the same assumption, g has
zeros at u and —u of order 1.

w1
w2 (wy +w2)/2
—w2 // ue -// w
‘///’ - ‘/3/’ -—%/cmii//’ 2

Without loss of generality, we can assume f has no zeros or poles at points of L. Let

U1, Usg, . .., U, be points in P where f has a zero or pole. Let
_ Jordy, /s if 2u; # 0 mod L;
"\ (ordy, £)/2, if 2u; =0 mod L.

Define G(z) := [[;_,(p(2) — p(u;))™, then G has the same order at u; as f does. Then
f(2)/G(2) is entire (and elliptic) so that f(z)/G(z) = C for some constant C' by Liouville
(Corollary 3.16). O

10.2.1. The Canonical Elliptic Curve. For the half-periods wy/2, ws/2, and (w; + w2)/2,
denote

W w2 w1 + w2
a=p(5) e=p(5) 5 )
Then the equation p(z) = e; (resp. e, e3) has a double root at wy (resp. wa/2, (w1 +ws)/2)
because of the fact in the proof of Theorem 10.12. Also, ey, e, e3 are distinct. Moreover,

/ﬂ _ /ﬂ _ /W1t W2 _
p () =¢(5)=¢(—5—)=0

ez = g
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and the order equals to 1 at every point. Then ¢'(2)? and (p(2) —e1)(p(2) — e2)(p(2) — e3)
have the same zeros and poles in P. So there is a constant C' such that

¢’ (2)? _
(p(2) — e1)(p(2) — e2)(p(2) — e3)
A natural question for this is to ask for the value of C'. Consider the power series of p and
©' near z = 0:

1 1 1
{Q(Z)—;+ Z(m—ﬁ)
weL*
1 1 1 1
2 +w;*(ﬁ' T sfa) &2
1 1 z z 1
= — .1+ Z Y2 02
St (G U+ o+ () + ) - )
weL*
-1 > i(2m+l) (Zyem. L
_22 weL* m=1 w w?

1 o0
=5+ omd",
# m=1
where ¢p, = > cp-(m + 1) /w™ 2. Denote

1
Em(L) = Em = § wm’
weL*

which is the Fisenstein series of order m. By this,

1

p(z) = =t 2_31(2" + 1) Eania(L) - 2"

1
:;+3E4-z2+5E6'z4+7E8-z6+~-,

and
2 = _
pla)=—-5+ Zl 2n(2n + 1) Bzpyo(L) - 27
n=—
2

:—§+6E4-z+20E6~z3+42E8-25+-'-,

Therefore, by a comparison on leading terms of these two equations, we have C = 4. In
other (geometric) words, the point (p(z2), ©'(z)) that is parametrized by z € C\L lies on the
cubic curve
{(z,y) € C?: y? =4(x —e1)(x — ez)(x — e3)} C C2.
Again, from the two equations above,
s 4 24E4

/ _
©'(2) =% 2 —80FE+ -+,
1 9E
3 _ 4
p(2)° = 5+ —5 +16Es +- -,
60E
60E40(2) = —— + 180222 + - - .

22

By comparison, we see the function '(2)? —4p(2)3 +60E,0(z) + 140F;g is holomorphic near
z = 0 and vanishes at z = 0. Then

¢ (2)? = 4p(2)® — 60E,0(2) — 140F.
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Denote go = 60F, and g3 = 140Es. Then ¢/ (2) = 4p(2)? — gop(2) — g3.

Proposition 10.13 (Weierstrass Canonical Form). For any z € C\L, the point (p(z), ¢’ (2))
is on the cubic curve defined by

Ac:y? =4z — e1)(x — e2)(x — e3) = 42> — gox — g3 C C* C P2.

This curve is called an elliptic curve of Weierstrass canonical form. Moreover, as ey, e, €3
are distinct, the discriminant of equation 4x® — gox — g3 = 0 is nonzero, say

A = g3 —27g3 #0.
Remark 10.14 (j-invariant). Continuing with Proposition 10.13, define the j-invariant by

3 3
95 . 92 6. 9392
J === =1728 - 2= =2°.3°. 2=,
A A A
Then J and j = 1728J are invariants of L. Also note that there is a (non-canonical)
isomorphism

(C/L)\{(0,0)} — Ac\{oc}
z— (1, 0(2), 9'(2)).

This isomorphism interprets why a complex torus can be regarded as an elliptic curve.

10.2.2. Fourier Fxpansion and q-Fxpansion. Keep the same assumption as before. By con-
sidering F'(z) := f(w2z), we see F is elliptic with respect to a new lattice [T = wq /w2, 1]
with 7 € H (recall that we have assumed $(wq/ws) > 0.

Definition 10.15. For 7 € H, we call L = [, 1] a normalized lattice of C.
As for the Eisenstein series

1
Em(7'> = Z m, mEQN, T e H.
(k,0)€Z2\{(0,0)}

For m > 2, E,,(7) is absolutely convergent. However, for m = 2, it is not absolutely
convergent but Y, >, (k7 + €)% is convergent i.e., we can define

By(r)i= ) +ZZ kr+€

k:o,eGZ\{O} k#0 eez

The remaining task of this part is to expand Faox (7). By Hadamard factorization theorem
(Theorem 6.13),

sm7r2—7rzH 1——

Using this, we have

I o, 1 1
A (log(sinmz)) = (log(mz H 1— =) ==+ Z( + ).
n=1

sinmz z z—n z4+n

Applying the Euler identity (Proposition 7.18), it turns out to be

CoS T2 (€i™* 4 e~im2) /2 q+1 . 2w
= - - = T =
sin 7z (eimz — =172 /24 g—1 g—1

where ¢ = g, = €?™* (for z € H we have |¢| < 1). Thus, whenever z € H,

o
m—i——z—m—Qqu
q_l v=0
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In conclusion, the formula we need is read as

1 &, 1 1 >
- = mi — 2mi v,
z+nz::1(z—n+z+n> o m;q
Taking derivatives with respect to z, it becomes
1 & 1 1 1
22 _nz_:l((z—n)2 + (z—i—n)2> __Zeg(z—n)2

= —2m Z vg"~ 27m
= —(2mi)? Z vq”.
v=0

One may repeat the same operation recursively, and by induction,

(+) (1 k-1 S ﬁ = =S @riy g, ke T,
nez v=1

Remark 10.16. The same result in () can be obtained by applying the Poisson summation
formula (Theorem 5.9) to f(z) = 1/(z + 7)k for 7 € H (see [SS10, Chapter 4, Exercise 7]).

Now we are ready to get the expansion for Fap(7):

1
Eor (1) = Z m: Z 2k+zz (mT +n)?

(m,n)#(0,0) m=0,n#0 m#0 neZ
=2((2k) +2
FEDS D o Ty
m=1n€Z
2m p2ktl
CEARED paici e
m=1v=1
27m p2ktl
2y 3 G
m=1v=1

where g, = €2™* and the second last equality is deduced from (x). This is the g-expansion

for Eisenstein series. Denote oi(n) = > dln d* in which the sum runs through all positive
divisors for n. Then the expansion formula can be rewritten as

(2mi)%F & ,
Eai(7) = 2C(2k) + 2 2k 1) ZU% 1(n)e*mnT

10.3. Arithmetic Properties of Elliptic Curves.

10.3.1. The Modular Function. Let’s begin with the setups. The modular group is a discrete
subgroup of SLa(R) defined by

I =SLy(Z) = {(i Z) cab,e,d € Z, ad—bc:l}.

Recall that SLo(R) has an action on H. More explicitly, for z € H and a € SLy(R), we

define
az+b (ad — bc)3(z) 3(z)

< = = .
cz+d’ Sa(2) lez + d|? lez + d|?

a(z) =
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Also recall that the automorphism group for the upper-half plane is
Aut(H) = PSLy(R) = SLo(R) /{£1}.

Definitions 10.17 (Fundamental Domain).

(1) An orbit of T is defined as I'.z = {a(z) : « € T'} for a fixed z € H.

(2) A subset D C H is called a fundamental domain for I' = SLo(Z) if every orbit of I’
has at least one element in D, and any two elements of D are in the same orbit if
and only if they lie on the boundary of D.

In short, a fundamental domain of H for I' can be regarded as a domain that generates
H via the action of T.

Proposition 10.18. The discrete modular group I' = SLo(Z) is generated by
11 0 -1
(o 1) s=00)

In other words, every o € SLo(Z) can be written as T™S™ or S™T™ for some (m,n) €
Z2. Furthermore, the following picture describes the action of T and S on H from the
fundamental domain D = I5.

T2 T-! I T T2

Theorem 10.19. The subset
D={zeH:|R(>)| <=,z =1}
is a fundamental domain for T'. Moreover, if z,2' € D are in the same orbit of T (i.e.,

2" = a(z) for some a € T'), then either a = T*! or a = S*L.

o For the case a = T*', the points z and 2’ are on the vertical lines of 0D. The
action is given by the horizontal translation

z+1
T(z) = =
() 0+1
e For the case o = ST, the points z and 2’ are on the base arc of OD. The action is
given by the reflection with respect to the vertical axis

S(z) = 0+(-1) 1

z+ 1.

z+0 z
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~1 -1/2 1/2 1

10.3.2. Automorphic Functions of Degree 2k. For a real number B > 0, we define the trun-
cated upper-half plane by

Hp ={2€C:¥(z) > B} C H.
The map z + €>™* = ¢, gives a holomorphic mapping from Hp to D*(0,e=2"8) := {z €
C:0 < |z| < e 2B}, Consider Hp/(T), the quotient space of Hp modulo translations by
integers, i.e., 21 ~ zo if 21 = 29 + m for some m € Z in Hp.

g, = eZm'z
I E—
—— ~

Remark 10.20. If a meromorphic function f on Hp has period 1, i.e., f(z + 1) = f(z) for
all z € Hp, then f descends to a function f* on D*(0,e~278), where f*(q.) := f(2).

Definition 10.21. The function f is called meromorphic (resp. holomorphic) at oo if f*
defined as in Remark 10.20 above is meromorphic (resp. holomorphic) at 0.

Definition 10.22 (The SLy(Z)-action). Let f be a meromorphic function on H and « €
I' = SLy(Z). For fixed integer k > 0, define

_ az+b _ b
(Ti(@)f)(2) = f(a(2) - (ez +d) ™ = f(p)ez + )7, a= (Z d>'

Definition 10.23 (Automorphic Forms). A function f € m(H) is called an automorphic
form of weight 2k with respect to T if

(1) for any o € T, we have Ty (a)f = f;

(2) f is meromorphic at co.
Example 10.24. There exists an one-to-one correspondence:

Functions G : L — C of lattices which

. Functions g : H — C satisfying that
are homogeneous with deg = —2k, ok ‘
= d 11 r
ie. GOAL) = A"2*G(L), A e C\{0} glalz)) = (ez+ d)7g(2) for all o €
G(L) 9(2) = G([z,1])
G((r. 1)) = 9(7) 4(2)

In particular, the Eisenstein series

weL*
gives an automorphic function.



100 WENHAN DAI

11. JAcOBI’S THETA FUNCTIONS

This section is devoted to a closer look at the theory of theta functions and some of its
applications to combinatorics and number theory. The theta function of Jacobi is given by

the series
Z|T e‘n‘zn T 27'r7,nz
n—Z—OO
which converges for all z € C and 7 € H.

A remarkable feature of the theta function is its dual nature. When viewed as a function
of z, we see it in the arena of elliptic functions, since © is periodic with period 1 and
“quasi-period” 7. When considered as a function of 7, © reveals its modular nature and
close connection with the partition function and the problem of representation of integers
as sums of squares.

The two main tools allowing us to exploit these links are the triple-product for © and its
transformation law. Once we have proved these theorems, we give a brief introduction to
the connection with partitions, and then pass to proofs of the celebrated theorems about
representation of integers as sums of two or four squares.

11.1. The Triple-Product Formula. We begin our closer look at © as a function of z,
with 7 fixed, by recording its basic structural properties, which to a large extent characterize
it.

11.1.1. Basic Statements.

Proposition 11.1. The theta function O(z|7) = 5.7 eI Te2miNZ epioys the following

properties. T

(1) For 7 € H fized, O(z|T) is entire with respect to z; for z € C fized, ©(z|7) is

holomorphic with respect to T.
(2) O(:|r) is periodic with period 1, that is,
O(z+ 1|1) = O(z|7).
(3) O(:|7) is quasi-periodic with period T, that is,
Oz + 7|7) = O(2|) - e ™ . 72Tz,

(4) ©(z|T) =0 whenever z = (1 +7)/2+n+ m7 for m,n € Z.

Proof. (1) Assume (1) =t > tp > 0 and |z| < M. Then

|@(Z|T)| < Z| min’r 27rznz| 226771% to 2nM < o0,

nez n>0

2min(z+1) _ ,2winz

(2) This is obvious since e e

(3) We compute

Z + 7_|7_ § eﬂ'l’n T 271'1n (z+7)
ne”L

) .
— § ewz(n +2n)7—e27r'mz
nez
. 2 . R _ .
— E ewz(n+1) 7627r1(n+1)ze miT 27iz
nez
— @(z|7_) Lo T 6727”2.
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(4) By (2)(3), it boils down to verify ©(XT|r) = 0. This is given by

1+ 7' Z ewzn T 7r'm(1+7') — Z(_ )nCWi(n2+n)T.

nez nez

Note that for n > 0, n? +n = (—n— 1)+ (—n—1) and —n — 1 has the different parity from
that of n. Thus

S (=pyremirin = Y (—q) T temilCnmbTH D) — g,

neZ nez

Thus, O(z|7) = 0 whenever z = (1 +7)/2 4+ n + m7 for m,n € Z. O

Theorem 11.2 (Jacobi’s Triple-Product Formula, 1829). For z € C and 7 € H,
o0

an262ﬂinz _ H 1 _ q 1 + q2n 1627rzz)(1 + q2n 16—27rzz)

nez n=1
where ¢ = €. By defining the right hand side as I1(z|7), we write ©(z|7) = H(z|7).
Corollary 11.3. Set z =0 in the triple-product formula, we get

7)== 0(0)7) = H 1—¢*)(1+ ¢ )2
neEL n=1

In particular, ©(1) # 0 for any 7 € H (c.f. Definition 7.11).
Proposition 11.4. For any fized 7 € H, the function

O(2[m)®" (2|r) — ©'(2|7)°
O(z|7)

is an elliptic function with periods 1 and T and has double poles at z= (14 7)/24+ m+nr
form,n € Z.

(log ©(z|7))" =

Remark 11.5. There is indeed some constant ¢, such that
(log©(2|7))" = p(z — (L +7)/2;7) + ¢
Here p(z;7) denotes the Weierstrass p-function defined by the lattice [r, 1].

11.1.2. Proof of the Triple-Product Formula. The proof of Theorem 11.2 ramifies into the
following 3 steps.

e Step 1. We prove II(z|7) also satisfies properties (1)-(4) in Proposition 11.1.
(1) For 7 € H with S(7) > to > 0, we have

and
|(1 _ q2n)(1 + q2n—le27riz)(1 + q2n—le—27riz)| =14+ O(|q|2n—1627r|z|).

On the other hand, the series Y, ., |q[*"~! converges and hence II(z|7) satisfies (1).
(2) This is again obvious.
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(3) We compute

(1 o q2n)(1 + q2nfle27ri(z+'r))(1 + q2n~1e~2'n’i(z+r))

a3

Iz + 7|7) =

3
Il
=

(1 o q2n)(1 4 q2n+1627riz)(1 + q2n—36—27m'z)

I
2

n=1
0o ) 0
= H(l — ) H(1 § g2ntle2mizy H(l T )
n=1 n=1 n=1
1 _‘_qflef?ﬂiz
= MMGelr) - g

_ H(Z‘T) . q—l . e—27riz
_ H(Z‘T) . e—7ri‘r . e—27riz'
(4) Note that for 7 € H, |q|*™ # 1. Therefore, II(z|7) = 0 if and only if (1+¢*"~1e?™#)(1+
q?"~le=2m%) = ( for some n € Z. This is also equivalent to z = (1 +7)/2 +n + mr

for m,n € Z.
e Step 2. For 7 € H fixed, consider

O(z[7)
F(z) = .
& =G
Then F(z) is holomorphic and doubly-periodic with periods 1 and 7 by Step 1 (1)-(3).
By Liouville’s Theorem (Corollary 3.16),

F =c(1)

for some constant ¢(7) which is depending on 7.
e Step 3. We are to prove the claim that ¢(7) = 1 for any 7 € H. From Step 2, ©(z|7) =

e() - II(z|7).

Sublemma. ¢(7) = c(47).

Proof. Set z =1/21in O(z|7) = ¢(7) - II(2|7) to get

S0 =e(r) [JO - ¢ = H (1 - >

oo oo
=c(r) [T -a") H (1—¢*"h),

2

This shows that

—1)"g™
(1) = == Z"EZ( )" T

[l (1 =g —g*1)
Again, by setting z = 1/4, we can a similar process renders that
ofr) = — o Zmea(D"g™
T, (1 —gim)(1 — g8m—1)

A comparison is enough to show ¢(7) = ¢(47). O

By induction applying on the sublemma, we see for any k > 1, ¢(7) = c(4%7) for any
7 € H. On the other hand, as k — oo,

Qukr = T 50 = e(t)=1.
The proof for Theorem 11.2 is accomplished.
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11.2. Modular Character of ©. We still work on the modular group SLy(Z). Recall the
definition for theta functions that

oo

@(Z|T)= Z ewinz-re%rinz.

n=—oo

From this, the immediate consequence is

O(:|7 +2) = O(:|T2(r) = O(2]r), T = (é D ,

where T € SLa(Z) is the generator for horizontal translation. Again, by Proposition 10.18,

SLo(Z) is generated by
1 1 0 -1
(1) =0 )

The natural question is that under the action of S towards 7 € H, what property does the
theta function obtain.

Theorem 11.6. For 7 € H, we have

O(=|S(r)) = O(2| — 1) = \@eﬂ”zze(zw)

for all z € C, where /o = |a|'/? exp(i(arg o) /2) with 0 < arga < 7.

Proof. By the analytic continuation (Theorem 3.22), it suffices to check the identity for
z = € R and 7 = it with ¢ > 0. For this, we obtain

LHS = CCl - Z e /t Qﬂlnx
ne”Z
RHS = t1/26—7'rt12 Z e—TrnQ/te—27rtnx — t1/2 Z eﬂ'tht(m-}n)?.
neZ ne”Z

By applying the Poisson summation formula (Theorem 5.9) to f(y) = e~ ™(¥+2)” we get the
identity. (]

Recall Definition 7.11 that by letting z = 0,
O(r) :=0(0|r) = Z emin’T

nez

Corollary 11.7. For all T € H,

On the other hand, by definition again, note that
- 1
1+ ’r Z emin 2(147) _ Z(_ )newmi’r _ @(?T)
nez <yA

Corollary 11.8. For all 7 € H, as S(7) — oo,
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Proof. By the equality above, plugging in —1/7, we have
1 1 1
0(1—=-)=06(z]—-).

T 2 T

Using Theorem 11.6, we can compute

1 1 T T
031~ 1) = /T 0(F1r)

T . .2 .
— \/:ewrr/4 § :ew'm T oTInT
2

ne”L

_ \/Zzeﬂ'i(n+l/2)2-r
)

neZ
_ \/Z(2e7ri7'/4 + Z erri(n+1/2)27'>_
t n#0,—1
So it remains to estimate the second term. We obtain

| Z ewi(n+1/2)27| < 2Ze—w(k+1/2)2t ~ O
n#0,—1 E>1

Thus, the higher terms can be sufficiently small. O

11.3. Combinatoric Applications: Generating Functions. Given a sequence {F},}>2,
we have a generating function

n=0

The properties of this function correspond to the properties of the sequence {F,}32,, and
particularly, the generating function usually has combinatoric interpretations for various
sequences.

11.3.1. Partition Function. Given n € N, a partition of n is defined as a unordered series of
non-negative integers whose sum is exactly n. For example, by defining

P(n) := #{Partitions of n},
we have the following basic counting results.

n | Partitionsof n  P(n)

1 110 1
2 141, 240 2
3

3| 14+1+1, 2+1, 3+0

(1) (Euler Identity) The generating function for {P(n)} can be explicitly computed by the
Euler identity: for |x| <1,

o0 (oo} 1

> Pma =] k

n=0 o 17
To prove this, note first that

1

o0
1—aF >t =1+0("),
m=0
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thus the product [[;=, 1/(1 — z*) converges. Moreover,

o0 1 oo oo
_ k

= =11 >«

k=1 k=1m=0
=(l+z+2*+-- )1+ +2* +- )M+ +a )

Focusing on the right hand side, we are to find out the coefficients of x™ for all n > 0.
Since each monomial in each fact has coefficient 1, the coefficient of x™ is nothing but
the number of partitions. Then

RHS = ) P(n)a".
n=0

(2) (Odd Partitions Correspond to Unequal Partitions) Denote

P,aa(n) = #{Partitions of n into odd integers},
P,y (n) = #{Partitions of n into unequal integers}.

The the claim is Poqq(n) = Pun(n) for each n > 0. The observation based on under-
standing the Euler identity in (1) is useful:

oo o0 1
> Poaama” = [T —=
n=0

k=1
o0
Z Pun(n)z™ =
n=0

To show these two products are the same, we say

(1+:pk).

3

k

1

b 1 g (1 —ak)=t
Hl _ I )

— p2k—1 Hzozl(l _ ka)—l

k=1
_ [T, (1 -2
[ (1 —a%)
_ [, (1 — a*) [, (1 + z¥)
[T, (1 — k)
= [+
k=1

(3) (Euler’s Pentagonal Counting) Denote
Py (n) = #{Partitions of n into an even number of unequal integers},

P34 () = #{Partitions of n into an odd number of unequal integers}.

The result for Euler concerns about their difference.

(=1)*, if n = k(3k + 1)/2 for some k € Z;

Fun™(n) - PSSd(n) - {0 otherwise

Here n = k(3k + 1)/2 is called a pentagonal number, which can be interpreted as the
number of small stones piled into a Pentagon with k£ as the side length. From the
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construction, we have

oo

Z Psr\;en( ) Podd Z Z (_1)7" g

n=0 n=0 n=ni+--+n,
ni,...,n, distinct

[ee]
H (1—2™)

To prove Euler’s result, we only need to verlfy the following:

oo

H<1 _ xn) — Z(—l)kwk(3k+l)/2.

n=1 keZ
Let’s recall the triple-product formula (Theorem 11.2), say

quﬂeZwinz _ H 1 _ q 1 + q2n—le27riz)(1 + q2n—1e—2ﬂ'iz).
nez n=1

For convenience we set 7 = 3u and z = (1 4+ w)/2. It turns out to be

Z e37'rin2u . (_1)neﬂ'inu — Z(_l)neﬂin(3n+1)u

ne”z nez

= ﬁ 1 — ™i(6n) u )1 — em‘(Gn—?)u)(l _ em‘(6n—4)u>

(1 _ e27rinu).

Il
,’:]8 I

Il
-

n

The required result follows from simply replacing e?™** by .

11.3.2. Sums of Squares. The second example is about the famous problem on how to de-
compose an integer into the sum of two squares. This is an application of the theta function
on analytic number theory.

Given n € N, denote

re(n) := #{n : there exist x1,..., 7, € N such that n = 27 +--- + z1}.

The most impressive result on counting the number of two-squares is as follows. Denote
dy(n) = #{Divisors of n of the form 4k + 1},
ds(n) = #{Divisors of n of the form 4k + 3}.

Theorem 11.9 (Two-Square Theorem).
ra(n) = 4(di(n) — ds(n)).
Note that ©(7) = ©(0|7) =3, ., emin’T — Y onez ¢"°. Then
=YY gi= Y it = irz(n)q"
ni€Z  nacZ (n1,n2)€Z2 n=0
Lemma 11.10. Theorem 11.9 is equivalent to the identities for T e H:

@(7)2:22(] + 1+4 Z _|_ 2n’

ne”z

where ¢ = q = ™.
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Proof. The following equalities hold without any assumption:

— " o ¢"(1—¢>")
144 =144y L)
e qn q3n
—1+4 -
;(1—(]4” 1_q4n)

oo

=14+ 42(% qn(4m+1) _ i qn(4m+3))
m=0

n=1 m=0

=144 (di(k) — ds(k))g".
k=1

The last equality is valid because d; (k) and d3(k) count the number of divisors of k that
are of the forms 4m + 1 and 4m + 3, respectively; and therefore, > 00 | Y% gnm+1) =
Sy d1(k)q" and similarly for d3(k). Assuming Theorem 11.9, the right hand side above
is exactly ©(7)2. O

To prove the two-square theorem (Theorem 11.9), denote

1 1
C(T) =2 —_— _
nzei q"+q " TLZG% cos(nmr)
where ¢ = €™ again, and the second equality is deduced from e™"" 4 e~™"7 = 2 cos(nnT).
We need to verify for 7 € H that O(7)% = C(7).

Proposition 11.11. Denote G(7) := O(7)? (or equivalently, G(r) := C(7)). Then
(1) G(r+2) =G(7);
(2) G(r) = (i/7)- G(=1/7);
(3) G(1) = 1 as (1) — oo;
(4) G(1 —1/7) ~4(1/i) - e™/? as (1) — 0.
Proof. Note that (1)(3) follow from the definition of C(7) at once. For (2)(4), note that
eiz + efiz
2

Recall that in Example ?? (c.f. Example 4.11), we have used the Poisson summation formula
(Theorem 5.9) to f(z) = e~ 2@/ cosh(rx/t) with a € R and ¢ > 0, in order to get

—2mian

e t ~
Z fn) = Z cosh(mn/t) - % cosh(m(n + a)t) - Z f(n).

ne”Z neZ ne”Z

cosh(iz) = cosz =

In particular, if we set a = 0, then

> o = 2 o
= cosh(mn /t) oyt cosh(mnt)

Therefore, via the variable change 7 = it with ¢t > 0,

1 1
clr) = nze:Z cos(mnit) - n%; cosh(mnt)

1
=1 Z - -
= cosh(mn/t)

= ic(_l) = ic(_l)_

it it T T
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By the analytic continuation (Theorem 3.22), the formula in (2) holds for all 7 € H. Again,
by setting a = 1/2, we get (4) through the same argument. O

Proposition 11.12. Let f € O(H) and assume that

o f(t+2)=f(r) for all T € H;
o f(=1/7)= f(7) for all T € H;
e f(7) is bounded.

Then f is a constant.

Proof. Assume f is not a constant for the sake of contradiction. Denote the basic actions
from SLs(Z) by

To:7—T7+2, S:Tl—)—%.
Consider G = (T3, S), the group generated by T and S.
Claim 1: when G acts on H,
F={reH:[R(r)| < L|r| > 1}
is a fundamental domain.

Setting z = €™7, the function fi(z) := f(7) is a well-defined holomorphic function on
D*={2€C:0<|z|] <1} as f(r +2) = f(r). Moreover, f; is bounded as well as f is.
Consequently, f; extends holomorphically from D* to D, i.e. the limit

f1(0) = lim f1(z) = 7)
is well-defined. Applying the maximum principle (Proposition 4.27) to fi, on the open
connected region Q2 = {z € C: |R(2)| < 1, |z| > 1}, we attain
lim [f(7)] < sup [f(7)].
TEF

S(T)—00

li
%(Tl)n—lmo f

Claim 2: the limit limg ;)0 f(1 —1/7) exists and

lim (1= 2] < sup| (7).

I(r)—ro0 TeF
For the second claim, set F(7) = f(1 — 1), then F is periodic of period 1. Let
1 1
p(r) = , o wH(n)=1-=, T(r)=1+1
1-—7 T

Then for any n € Z,
fu=toT™ o pu(r)) = f(7).
Therefore, the function F(7) = f(u~1(7)) satisfies

F(T"T)=F(7)
for all n € Z. In particular, F(7 + 1) = F(7) and therefore
f2(2) := F(1), z=¢&*™"

is a well-defined holomorphic function on D*, which is bounded since f is bounded. Thus, fo
extends to D by Riemann extension (Theorem 4.12). Again, apply the maximum principle
(Proposition 4.27) to fa,

tim|(1— 2| < sup (7))

F(1)—00 rEF
Then f attains its maximum at some point zg € H, contradicting with the assumption that
f is not a constant. Therefore, f must be a constant. O

Now the proof of the two-square theorem is easy to catch.
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Proof of Theorem 11.9. By applying Proposition 11.12 to C(7)/0(7)?, it must be a con-
stant. The conditions of the proposition are satisfied by Proposition 11.11. Again, it can be
shown that the constant value is 1. (]
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