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1. Overview

The so-called “complex analysis” is the theory of complex numbers C. Many modern
mathematical subjects are based on the language of complex analysis. The fundamental
notion here is called holomorphicity, which is regarded as analogous to the differentiability
over R. The holomorphic functions with a single variable strongly relate to Riemann surfaces.

The global version of complex analysis is applied in geometry and topology, i.e., the
research on Riemann surfaces, particularly complex algebraic curves of dimension 1. More
generally, the complex geometry and even algebraic geometry over C take care of those
geometric objects of higher dimensions by considering holomorphic functions with several
variables. The most basic tool we use in geometry is called multi-variable complex analysis.

Riemann zeta functions, as well as L-functions, are key objects in analytic number theory,
whose properties are probed by complex analysis as well. As for (homogeneous) dynamic
systems, analysts are interested in Teichmuller spaces as an advanced topic in modern
complex analysis.

This note is intended to be written for the PhD Entrance and Qualifying Examination
at the Beijing International Center of Mathematical Research in 2022. The first previous
chapters do follow [SS10] loosely so that I claim no originality. Another standard reference
for these notes is [Lan03]. The outline is as follows.

(I) Holomorphic Functions.
• Cauchy-Riemann Equations (Subsection 2.2.2).
• Cauchy Theorem of local and global versions (Corollary 3.5, Theorem 3.10): the
existence of primitives.

• Cauchy Integral Formula (Theorem 3.13).
• Holomorphicity is equivalent to analyticity (Theorem 3.20).
• The existence of complex logarithm on simply connected regions (Theorem 4.34).
• Liouville Theorem (Corollary 3.16): the rigidity of entire functions.
• Montel Theorem (Theorem 9.26).
• The Mean-Value Property (Section 5.1).
• The Maximum Principle (Proposition 4.27).
• Open Mapping Theorem (Proposition 4.26).

(II) Meromorphic Functions.
• Zeros and poles, local expansion near zeros and poles (Theorem 4.5).
• The Residue Formula (Corollary 4.9).
• Application I: evaluation of integrals (Example 4.10 & 4.11, etc.).
• Application II: the argument principle (Theorem 4.23).
• Rouché Theorem (Corollary 4.25).

(III) On Fourier Transform.
• Poisson Summation Formula (Theorem 5.9).
• Paley-Wiener Theorem (Theorem 5.12).

(IV) Entire Functions.
• Jensen’s Formula (Theorem 6.1, 6.2).
• Weierstrass infinite products (Theorem 6.10).
• Hadamard Factorization Theorem (Theorem 6.13).
• Basics of Nevanlinna Theory (Theorem 6.24 & 6.26).

(V) Special Functions.
• Analytic continuation of Γ(s) (Proposition 7.1, Theorem 7.3).
• Symmetry of Γ(s) (Theorem 7.6).
• Properties of 1/Γ(s) (Theorem 7.8, 7.9).
• Zeta function and Xi function.
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(VI) The Prime Number Theory.
• Euler Identity (Proposition 7.18).
• Locations of Zeros of ζ(s) (Theorem 8.3).
• The Prime Number Theorem (Theorem 8.8).

(VII) Geometric Theory of Holomorphic Functions.
• Conformal/biholomorphic maps.
• The unit disc D is conformally equivalent to the upper-half plane H (Example
9.5).

• Schwarz Lemma (Lemma 9.6): to compute Aut(D) and Aut(H).
• D is a hyperbolic space (Theorem 9.23).
• The Riemann Mapping Theorem (Theorem 9.24).
• Boundary correspondences (Theorem 9.32) and the construction of a modular
function (Subsection 9.6.2).

(VIII) Ellptic Functions.
• Weierstrass ℘ function on lattices and the elliptic curve.
• Fourier transform and q-expansion (Subsection 10.2.2).
• The SL2(Z)-action and its fundamental domain (Proposition 10.18, Theorem
10.19).

(IX) The Theta Function.
• The Triple-Product Formula (Theorem 11.2).
• Applications to combinatorics and number theory (Subsection 11.3.1 & 11.3.2).

2. Preliminaries

2.1. Complex Numbers and Complex Plane. The complex field C : {z = x+iy | x, y ∈
R} with i2 = −1 is canonically isomorphic to R2 as R-vector spaces, where the isomorphism
sends x+ iy to (x, y). The real part and the imaginary part of z ∈ C is defined by

ℜ(z) := x, ℑ(z) := y.

Given this, the geometry of C is called the complex plane.

2.1.1. Algebraic Properties of C. Say C can be endowed with two operations +, · via the
following way. For any z1 = x1 + iy1, z2 = x2 + iy2 ∈ C,

+ : C× C −→ C
(z1, z2) 󰀁−→ z1 + z2,

and
· : C× C −→ C
(z1, z2) 󰀁−→ z1 · z2,

where z1 + z2 = (x1 + x2) + i(y1 + y2) and z1 · z2 = (x1 + iy1)(x2 + iy2) = x1x2 + y1y2 +
i(x1y2 + x2y1). These can be viewed as actions of C on C itself, and then + is induced by
(R2,+) directly and · is induced by GL2(R) (recall that C ∼= R2 canonically). It is easy to
verify the following properties

• (Commutativity) z1 + z2 = z2 + z1, z1 · z2 = z2 · z1.
• (Associativity) (z1 + z2) + z3 = z1 + (z2 + z3), (z1 · z2) · z3 = z1 · (z2 · z3).
• (Distributivity) z1 · (z2 + z3) = z1 · z2 + z1 · z3.
• (Additive & Multiplicative Identity) z + 0 = z, z · 1 = z.
• (Additive Inverse) z + (−z) = 0.
• (Multiplicative Inverse) For all z ∈ C\{0}, there is w ∈ C such that z · w = 1.

It turns out that (C,+, ·) is a field and is morally algebraically closed.
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2.1.2. Geometric Properties of C. Induced from the inner product on R2, the absolute value
on C is defined by

| · | : C −→ R2 −→ R
that sends z = x + iy ∈ C to |z| =

󰁳
x2 + y2 ∈ R. In fact, it satisfies the following norm

properties:

• (Triangle Inequality) For all z, w ∈ C, |z + w| 󰃑 |z|+ |w|.
• (Homogeneity) For any a ∈ C (as a scalar) and z ∈ C (as a vector), |a · z| = |a||z|.
• (Positivity) For all z ∈ C, we have |z| 󰃍 0 with the equality holds if and only if
z = 0.

This shows that the absolute value we have defined is a norm on C, and then (C, | · |) is a
normed space.

Definition 2.1. Let {zn}∞n=1 = {z1, z2, . . .} be a sequence in C, we call {zn}∞n=1 is convergent
if there exists w ∈ C such that

lim
n→∞

|zn − w| = 0.

This is denoted by zn → w.

Definition 2.2 (Cauchy Sequence). A sequence {zn}∞n=1 is called Cauchy if for all ε > 0,
there is some N ∈ N such that whenever m,n 󰃍 N , |zm − zn| < ε is valid.

Theorem 2.3. (C, | · |) is complete, i.e., any Cauchy sequence {zn}∞n=1 is convergent in C.
Hence (C, | · |) is a Banach space, i.e., a complete normed space.

Proof. Let zn = xn+ iyn with {xn}∞n=1 and {yn}∞n=1 being two real sequences. Since {zn} is
Cauchy, the completeness of (R, | · |) shows that {xn} and {yn} are convergent in R. Hence
{zn} is convergent. The ingredient is that finite copies of Banach spaces is still Banach. □

Let’s point out that the multiplication of complex numbers has a geometric interpretation.
For any z ∕= 0, it can be rewritten as the following polar coordinates:

z = reiθ = (r cos θ + ir sin θ),

where θ is called the argument of z, denoted by arg(z). Note that arg(z) is not unique for
given z, but is unique modulo 2πZ. In the sense of GL2(R), if z1 = r1e

iθ1 and z2 = r1e
iθ1 ,

then z1z2 is nothing but the image of z2 under the multiplication homomorphism by z1, and
multz1 is represented by

󰀕
r1

r1

󰀖󰀕
cos θ1 sin θ1
− sin θ1 cos θ1

󰀖
∈ GL2(R).

2.1.3. Topological Properties of C. Loosely speaking, the topological information on C is
totally induced by that on R2. We begin with some notations. Given z0 ∈ C and r > 0, one
can define:

(1) the open disc of radius r centred at z0:

Dr(z0) = {z ∈ C | |z − z0| < r};
also, the unit disc is denoted by D = D1(0);

(2) the closed disc of radius r centred at z0:

Dr(z0) = {z ∈ C | |z − z0| 󰃑 r};
(3) the circle of radius r centred at z0:

Cr(z0) = {z ∈ C | |z − z0| = r} = ∂Dr(z0) = ∂Dr(z0).

Jargon Watch: suppose a subset Ω ⊂ C is given.
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(1) A point z ∈ Ω is called an interior point if there is some r > 0 such that Dr(z) ⊂ Ω.
Denote the interior of Ω by

Int(Ω) = {interior points of Ω}.
(2) The subset Ω is called open if Ω = Int(Ω). For example, Dr(z0) is open whereas

Dr(z0) is not.
(3) A point z is a limit point of Ω if there exists a sequence {zn}∞n=1 in Ω such that

z /∈ {zn} but zn → z as n → ∞. The closure of Ω is

Ω := Ω ∪ {limit points of Ω}.

(4) The subset Ω is closed if Ω = Ω. For example, Dr(z0) is closed whereas Dr(z0) is
not, and C = D∞(0) is open and closed.

(5) The boundary of Ω is defined as

∂Ω = Ω− Int(Ω).

For example, ∂Dr(z0) = ∂Dr(z0) = Cr(z0).
(6) The subset Ω is bounded if there is a sufficiently large r ≫ 0 such that Ω ⊂ Dr(z0).

Exercise 2.4. Show that Ω is closed if and only if its complement Ωc = C− Ω is open.

In the upcoming context, we will discuss the notion of compactness, which is the most
important topological property of the complex plane in the analysis theory.

Definition 2.5 (Compactness). An open covering of Ω is a family of open sets {Vα}α∈I

such that Ω ⊂
󰁖

α∈I Vα. A subset Ω ⊂ C is called compact if every open covering of Ω has
a finite subcovering.

Theorem 2.6. Any subset in the vector space Rn with n < ∞ is compact if and only if it
is closed and bounded. In particular, Ω ⊂ C ∼= R2 is compact if and only if Ω is closed and
bounded. Even equivalently, say every sequence {zn} in Ω has a convergent subsequence.

Let’s consider the decreasing chain property of non-empty compact subsets. Define the
diameter of Ω as

diamΩ = sup
z,w∈Ω

|z − w|.

Proposition 2.7. Let Ω1 ⊃ Ω2 ⊃ · · ·Ωn ⊃ · · · be a sequence of non-empty compact subsets
of C satisfying diamΩn → 0 as n → ∞. Then there is a unique w ∈ C such that w ∈ Ωn

for any n, or equivalently, 󰁟

n󰃍1

Ωn = {w}.

Proof. Since Ωn ∕= ∅, we can take zn ∈ Ωn to form a sequence {zn}∞n=1. Because of
diamΩn → 0, we see {zn} is a Cauchy sequence. Thus zn → w for some w ∈ C by
the completeness of (C, | · |). Again by the definition of compactness, w ∈ Ωn for any n 󰃍 1
since Ωn is compact. □
Definition 2.8 (Region). The subset Ω ⊂ C is called connected if Ω cannot be the union
of two disjoint non-empty open sets. A connected open set is called a region.

Example 2.9. C, Dr(z0), and Dr(z0) are all connected as regions.

In summary, do remember the following:

(1) (C,+, ·) is an algebraically closed field.
(2) (C, | · |) is a complete normed space, namely a Banach space.
(3) The topology on C is induced by that on R2.
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2.2. Holomorphic Functions. Let Ω ⊂ C be an open set and let f : Ω → C be a complex
valued function.

Definition 2.10. Let z0 ∈ Ω, f is called holomorphic at z0 if the following limit exists:

f ′(z0) := lim
h→0,h∈C

f(z0 + h)− f(z0)

h
.

Note that z0 can be attained from any direction by h here.

2.2.1. The Ring of Holomorphic Functions. In fact, f is holomorphic at z0 if and only if

f(z0 + h)− f(z0) = ah+ hϕ(h),

where a ∈ C and ϕ(h) → 0 as h → 0. The notation is

O(Ω) = {holomorphic functions on Ω}.

Then O(Ω) is non-empty, for example, all constant function and f(z) = z are holomorphic.
In the latter case, just note that f ′(z0) = 1 for all z0 ∈ C.

Proposition 2.11. O(Ω) has a structure of ring. In particular, if f, g ∈ O(Ω), then

• f + g ∈ O(Ω) and (f + g)′ = f ′ + g′,
• f · g ∈ O(Ω) and (f · g)′ = f ′g + fg′, and
• if g(z0) ∕= 0, then f/g is holomorphic at z0, and (f/g)′ = (f ′g − fg′)/g2.

Moreover, the O(Ω) admits the chain rule, i.e., for any holomorphic f and g, we have

(g ◦ f)′(z) = g′(f(z)) · f ′(z).

Remark 2.12. As rings of functions,

{polynomials in z} ⊂ {convergent series in z} ⊂ O(Ω).

Note that any f : Ω → C can always be factored through an embedding Ω ⊂ C and then
can be translated to another map

F : Ω −→ R2

󰀕
x
y

󰀖
󰀁−→

󰀕
u(x, y)
v(x, y)

󰀖

such that f(x+ iy) = u(x, y) + iv(x, y). The keynote question is that is there any property
of F corresponding to holomorphicity of f?

Exercise 2.13. Prove that f is holomorphic on Ω if and only if F is differentiable on Ω.

2.2.2. Cauchy-Riemann Equation. Let’s suppose f : Ω → C is holomorphic, hence

f ′(z) = lim
h∈C,h→0

f(z + h)− f(z)

h

exists by definition. Consider taking different values of h → 0 and say h = h1 + ih2.

(i) If h = h1, then

f ′(z) = f ′(x, y) = lim
h1→0

f(x+ h1, y)− f(x, y)

h1
=

∂f

∂x
(z).

(ii) If h = ih2, then

f ′(z) = f ′(x, y) = lim
h2→0

f(x, y + h2)− f(x, y)

ih2
= −i

∂f

∂y
(z).



8 WENHAN DAI

By the uniqueness of f ′(z) for fixed z, we obtain

∂f

∂x
= −i

∂f

∂y
.

By writing f(z) = u(x, y) + iv(x, y), this equation is equivalent to

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x
,

which is called the Cauchy-Riemann equations.
The claim is that by introducing the notations

∂

∂z
=

1

2
(
∂

∂x
+ i

∂

∂y
),

∂

∂z
=

1

2
(
∂

∂x
− i

∂

∂y
),

holomorphicity of f implies that

∂f

∂z
= 0,

∂f

∂z
= f ′(z).

Here the former equality is nothing but the Cauchy-Riemann equation.
On the other hand, it turns out that the Cauchy-Riemann equation implies holomorphic-

ity as well.

Theorem 2.14. Suppose f = u + iv with u and v being differentiable. If f satisfies the
Cauchy-Riemann equation, then f is holomorphic.

Proof. Since u and v are differentiable, we get

u(x+ h1, y + h2)− u(x, y) =
∂u

∂x
h1 +

∂u

∂y
h2 + |h|ϕ1(h),

v(x+ h1, y + h2)− v(x, y) =
∂v

∂x
h1 +

∂v

∂y
h2 + |h|ϕ2(h).

Using Cauchy-Riemann, it follows that

f(z + h)− f(z) = (
∂u

∂x
− i

∂u

∂y
)h+ |h|(ϕ1(h) + iϕ2(h)).

Hence f ′(z) exists, and moreover

f ′(z) = 2
∂u

∂z
=

∂f

∂z
.

This completes the proof. □
Remark 2.15. Some interpretation on derivatives towards z and z.

(1) For f : Ω ⊂ C → C, we obtain

df =
∂f

∂x
dx+

∂f

∂y
dy.

Denote dz = d(x+ iy) = dx+ idy, and dz = d(x− iy) = dx− idy, and then

df =
∂f

∂z
dz +

∂f

∂z
dz

which is equivalent to the above equality. From this, we see given f : Ω → C
differentiable, then f is holomorphic if and only if df = (∂f/∂z)dz.

(2) For f : Ω → C, there is a bijection between (x, y) and (z, z). Note that the chain
rule with respect to (z, z) yields to the second relation in (1).

(3) In the sense of probability over R2, one can regard f : Ω → C as a distribution
function. Then ∂f/∂z = 0 leads to holomorphicity of f via the regularity of ∂/∂z
(as a functor). In particular, f is differentiable under this condition.
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2.3. Power Series. In this section we use C as (C, |·|). A power series is an expansion of the
form

󰁓∞
n=0 anz

n for an ∈ C. One can define the convergent (resp. divergent) series easily,
and then the definition of absolute convergent series follows: say

󰁓∞
n=0 |an||z|n converges

as a real series.

2.3.1. Radius of Convergence.

Theorem 2.16. Given a power series
󰁓∞

n=0 anz
n, there exists 0 󰃑 R 󰃑 ∞ such that

(1) if |z| < R, the series is absolutely convergent. The disc of convergence is given by

{z ∈ C | |z| < R};
(2) if |z| > R, the series is divergent.

Moreover, R has a explicit expression read as

1

R
= lim sup

n→∞
|an|1/n.

Proof. It’s the same as the real case. The idea is to compare with the geometric series. □

Examples 2.17. Some calculation on radius of convergence.

(1) The power series
󰁓∞

n=0 z
n has a partial sum

󰁓N
n=0 z

n = (zN+1 − 1)/(z − 1). When
N → ∞, the convergence condition is given by |z| < 1. On the other hand, Theorem
2.16 leads to R = 1 since an = 1 for all n 󰃍 0.

(2) Consider the exponential function

ez =

∞󰁛

n=0

zn

n!
.

By Theorem 2.16, the radius is given by

lim sup
n→∞

(
1

n!
)1/n = 0,

hence R = ∞, i.e., ez convergent for every z ∈ C. In this case we say ez is well-
defined on C.

(3) Consider the trigonometric functions

cos z :=
eiz + e−iz

2
=

∞󰁛

n=0

(−1)n
z2n

(2n)!
,

sin z :=
eiz − e−iz

2i
=

∞󰁛

n=0

(−1)n
z2n+1

(2n+ 1)!
.

Note that their sum is given by

eiz = cos z + i sin z,

which is the same as the Euler formula on complex rotations.

Theorem 2.18. The series f(z) =
󰁓∞

n=0 anz
n is always holomorphic in the disc of con-

vergence. Moreover, f ′(z) =
󰁓∞

n=0 nanz
n−1 in the disc of convergence, and f ′(z) has the

same radius of convergence as that of f(z).

Proof. Note that n1/n → 1 as n → ∞. Consequently,

lim sup
n→∞

|an|1/n = lim sup
n→∞

|nan|1/n,

which gives the same radius. □
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2.3.2. Complex Derivative of Power Series. Let R be the radius of convergence of f . Taking
z0 ∈ DR(0) = {z ∈ C | |z| < R}, we aim to compute f ′(z0). Let’s first write

f(z) = SN (z) + EN (z) =
󰁛

k󰃑N

akz
k +

󰁛

k>N

akz
k.

Assume there is some r such that |z0| < r < R. By taking sufficiently small h ∈ C such that
|z0 + h| < r, one can rewrite the derivative as

f(z0 + h)− f(z0)

h
=

SN (z0 + h)− SN (z0)

h
− S′

N (z0)
󰁿 󰁾󰁽 󰂀

I

+S′
N (z0)󰁿 󰁾󰁽 󰂀
II

+
EN (z0 + h)− EN (z0)

h󰁿 󰁾󰁽 󰂀
III

.

Watch the following observations:

• For N ≫ 0, since S′
N is the partial sum of f ′, |S′

N (z0)− f ′(z0)| < ε for any ε > 0.
• If |h| ≪ 1, then |I| < ε for any ε > 0.
• In part III, using the equality (z0+h)k − zk0 = h((z0+h)k−1+(z0+h)k−2z0+ · · ·+
zk−1
0 ), we see

III =
1

h
EN (z0 + h)− EN (z0) =

󰁛

k>N

ak((z0 + h)k − zk0 )

=
󰁛

k>N

ak((z0 + h)k−1 + (z0 + h)k−2z0 + · · ·+ zk−1
0 )

󰃑
󰁛

k>N

|ak||(z0 + h)k−1 + (z0 + h)k−2z0 + · · ·+ zk−1
0 |

󰃑
󰁛

k>N

|ak|
k󰁛

j=1

|(z0 + h)k−jzj−1
0 |

󰃑
󰁛

k>N

k|ak|rk−1 → 0

as N → ∞. The last inequality uses |z0| < r < R and |z0+h| < r < R. Again, note
that f ′(z) =

󰁓
k󰃍1 kakz

k−1 is absolutely convergent in DR(0), and then for N ≫ 0,

|III| < ε for any ε > 0.

In summary, if f is a power series with radius of convergence R, whenever h → 0,

f(z0 + h)− f(z0)

h
→ S′

∞(z0).

Namely, we have checked that the common real derivative algorithm of power series can be
realized over C as expected.

Corollary 2.19. A power series
󰁓∞

n=0 an(z − z0)
n is ∞-complex differentiable in the disc

of convergence DR(z0).

Definition 2.20 (Analyticity). A function f : Ω → C is called analytic in Ω if for all z0 ∈ Ω,
f(z) can be realized as a power series expansion towards z0, say

f(z) =

∞󰁛

n=0

an(z − z0)
n

with disc of convergence DR(z0) for R > 0.

Note that analyticity implies holomorphicity. We will prove the converse implication by
using the Cauchy integral formula later (see Subsection 3.6.2).
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2.4. Integration along Curves.

Definition 2.21. A parametrized curve is a map z : [a, b] → C defined over an real interval.
It is called smooth if z′(t) exists and is continuous on [a, b] as a complex function (i.e.,
[a, b] ⊂ R ⊂ C → C), where

z′(a) = lim
h→0+

z(a+ h)− z(a)

h
, z′(b) = lim

h→0−

z(b+ h)− z(b)

h
.

Definitions 2.22. A parametrized curve is called piecewise-smooth if z : [a, b] → C is
continuous and there are points a0, a1, . . . , aN such that a = a0 < a1 < · · · < aN = b and
z|[ai,ai+1] is smooth for any 0 󰃑 i 󰃑 N − 1. Moreover, z is called closed if z(a) = z(b); z is
called simple if z(t) ∕= z(s) unless t = s or t = a, s = b.

Example 2.23. For t ∈ [0, 2π] and fixed z0, z(t) = z0 + Reit and z(t) = z0 + Re−it are
closed and simple parametrized curves. Whereas z(t) = z0 +Re2it is closed but not simple,
since it forms a 2-covering of a circle centred at z0 with radius R.

Definition 2.24. Two parametrizations z : [a, b] → C and w : [c, d] → C are called
equivalent if there is a continuous differentiable bijection t : [a, b] → [c, d] such that t′(s) > 0
(namely, t preserves the orientation) and z = w ◦ t.

In the upcoming context, our convention dictates that a “curve” is always a piecewise-
smooth curve. Let Γ ⊂ C be a curve with a parametrization z : [a, b] → C. Let f be a
continuous function on Γ. We define the integral along the curve by the following complex-
valued integral, say

󰁝

Γ

f(z)dz :=

󰁝 b

a

f(z(t))z′(t)dt.

Due to the chain rule, we point out that this integral is well-defined, i.e., it is independent
of the choice of equivalent parametrization of Γ.

Proposition 2.25. Given Γ parametrized by z : [a, b] → C.
(1) The integration along z has linearity, i.e.,

󰁝

Γ

(af(z) + bg(z))dz = a

󰁝

Γ

f(z)dz + b

󰁝

Γ

g(z)dz.

(2) Suppose Γ− is defined by 󰁨z : [a, b] → C via 󰁨z(t) = z(a+ b− t). Then
󰁝

Γ

f(z)dz = −
󰁝

Γ−
f(z)dz.

(3) The integration is bounded from above as follows
󰀏󰀏󰀏󰀏
󰁝

Γ

f(z)dz

󰀏󰀏󰀏󰀏 󰃑 length(Γ) · sup
z∈Γ

|f(z)|,

where length(Γ) =
󰁕 b

a
|z′(t)|dt.

Proof. (3) Compute by definition

󰀏󰀏󰀏󰀏
󰁝

Γ

f(z)dz

󰀏󰀏󰀏󰀏 =

󰀏󰀏󰀏󰀏󰀏

󰁝 b

a

f(z(t))z′(t)dt

󰀏󰀏󰀏󰀏󰀏 󰃑
󰁝 b

a

|f(z(t))z′(t)|dt 󰃑 sup
z∈Γ

|f(z)|
󰁝 b

a

|z′(t)|dt.

And (1) (2) are apparent. □
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3. Cauchy Theorem and Its Applications

3.1. Motivation from Stokes Formula.

Theorem 3.1. Let f : Ω → C be continuous. Assume there is a holomorphic function
F : Ω → C such that F ′ = f (here F is called a primitive of f). If Γ ⊂ C is a curve that
begins at w1 and ends at w2, then󰁝

Γ

f(z)dz = F (w2)− F (w1).

In particular, if Γ is closed, then
󰁕
Γ
f(z)dz = 0.

Proof. First assume Γ is smooth with a parametrization z : [a, b] → C. By definition,
󰁝

Γ

f(z)dz =

󰁝 b

a

f(z(t))z′(t)dt =

󰁝 b

a

F ′(z(t))z′(t)dt.

In the sense of Cauchy-Riemann equation, we consider F = F (z, z). Then

d

dt
F (z(t)) =

∂F

∂z

dz(t)

dt
+

∂F

∂z

dz(t)

dt
=

∂F

∂z
z′(t) = F ′(z(t))z′(t)

because of holomorphicity of F . Thus, the original integral becomes
󰁝 b

a

F ′(z(t))z′(t)dt =

󰁝 b

a

d

dt
F (z(t))dt = F (z(b))− F (z(a)) = F (w2)− F (w1).

In the case where Γ is piecewise-smooth, the argument is similar. □
Example 3.2. The following function does not have any primitives, so that Theorem 3.1
fails to be true. Consider

f : C\{0} −→ C
z 󰀁−→ 1/z.

Define Γ = {z | |z| = 1} as the unit circle which is parametrized by z(t) = eit for t ∈ [0, 2π].
Then 󰁝

Γ

1

z
dz =

󰁝 2π

0

1

eit
ieitdt = 2πi ∕= 0.

The emphasis lies on that f(x) = 1/x for f : R\{0} → R has log |x| as a primitive on R\{0}.
So the primitive condition is more subtle over C.

Notice that Theorem 3.1 is a particular version of Stokes formula. Recall that in the real
case, for f : [a, b] → R that admits a permitive, if dF/dt = f (i.e., dF = fdt), then

󰁝 b

a

f(t)dt =

󰁝 b

a

dF = F (b)− F (a).

We can translate this Newton-Leibniz-type statement as
󰁝 b

a

dF =

󰁝

I

dF = F (b)− F (a) =

󰁝

∂I

F,

where I = [a, b] and ∂I = {b} − {a} (as a formal sum of points). Again, Theorem 3.1 can
be interpreted as 󰁝

Γ

dF =

󰁝

∂Γ

F = F (w2)− F (w1)

for ∂Γ = {w2}−{w1}. More generally, the Stokes formula states that for a given manifold
M and a differential form ϕ, one obtain

󰁝

M

dϕ =

󰁝

∂M

ϕ.
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3.2. Local Cauchy Theorem. The motivation of the Cauchy theorem is seeking the ex-
istence of primitives over C. Say given a real continuous function f : [a, b] → R, then

F (x) :=

󰁝 x

a

f(t)dt =

󰁝

Γx

f(t)dt

is naturally the primitive of f . The second equality is given by canonically defining Γx =
[a, x]. For an analogy, if f : Ω → C is given, is there any complex primitive of f? Consider
z0 ∈ Ω and

F (z) :=

󰁝 z

z0

f(w)dw =

󰁝

Γ

f(w)dw

where Γ is a connected path from z0 to z in Ω. The question is whether F is independent
of the choice of Γ.

3.2.1. Goursat’s Theorem. Let’s say f : D → C where D is a unit disc. For z ∈ D, we define
Γz as the line segment from 0 to z. We need to verify that

F (z) :=

󰁝

Γz

f(w)dw

is a primitive of f . Consider

F (z + h)− F (z) =

󰁝

Γz+h

f(w)dw −
󰁝

Γz

f(w)dw.

Recall that if F is a primitive, then for any closed curve Γ in D,
󰁕
Γ
f(w)dw = 0. In particular,

this can be divided as
󰁝

Γz+h

f(w)dw +

󰁝

γ

f(w)dw +

󰁝

Γ−
z

f(w)dw = 0

in which γ is defined as the oriented line segment from z + h to z. We can rewrite the
equality above as 󰁝

Γz+h

f(w)dw −
󰁝

Γz

f(w)dw =

󰁝

󰁨γ
f(w)dw.

This observation is the so-called Goursat’s theorem as follows.

Theorem 3.3 (Goursat). Suppose f : Ω → C is holomorphic and T ⊂ Ω is a triangle with
Int(T ) ⊂ Ω. Then 󰁝

T

f(z)dz = 0.

Proof. Step 1: Triangulate Partition.

T
(1)
2

T
(1)
1

T
(1)
4T

(1)
3

󰁿 󰁾󰁽 󰂀
T (0) = T
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In the picture above, the triangle T = T (0) is divided in to 4 parts, say T
(1)
j with 1 󰃑 j 󰃑 4.

These triangular bounds (as piecewise-smooth curves) are parametrized anticlockwise. It’s
easy to prove that

󰁝

T

f(z)dz =

󰁝

T (0)

f(z)dz =

4󰁛

j=1

󰁝

T
(1)
j

f(z)dz,

and therefore 󰀏󰀏󰀏󰀏
󰁝

T

f(z)dz

󰀏󰀏󰀏󰀏 󰃑 4

󰀏󰀏󰀏󰀏
󰁝

T
(1)
n

f(z)dz

󰀏󰀏󰀏󰀏

for some n. Let’s denote T (1) = T
(1)
n .

Step 2: Iteration. The construction of T (1) from T (0) can be reused to arise T (i+1)

from T (i). Hence we get an inequality as in Step 1 of a higher order:
󰀏󰀏󰀏󰀏
󰁝

T

f(z)dz

󰀏󰀏󰀏󰀏 󰃑 4n
󰀏󰀏󰀏󰀏
󰁝

T (n)

f(z)dz

󰀏󰀏󰀏󰀏 .

Step 3: Estimates. Denote T (n) for the solid triangle that is enclosed by T (n). In the
remaining proof, we introduce the following notations, say

d(n) := diamT (n) = 2−nd(0),

p(n) := perimeter of T (n) = 2−np(0).

Note that there is a sequence of compact sets

T (0) ⊃ T (1) ⊃ · · · ⊃ T (n) ⊃ · · ·
with diamT (n) → 0 as n → ∞. Thus there is a unique w ∈ T (n) for any n due to compactness
and Proposition 2.7. Since f is holomorphic at w, by definition,

f(z) = f(w) + f ′(w)(z − w)󰁿 󰁾󰁽 󰂀
f0(z)

+ψ(z)(z − w),

where ψ(z) → 0 as z → w. One can observe that f0(z) has a primitive in Ω, and then
󰁝

T (n)

f(z)dz =

󰁝

T (n)

f0(z)dz

󰁿 󰁾󰁽 󰂀
0

+

󰁝

T (n)

ψ(z)(z − w)dz =

󰁝

T (n)

ψ(z)(z − w)dz.

Then (3) of Proposition 2.25 is applied for
󰀏󰀏󰀏󰀏
󰁝

T (n)

f(z)dz

󰀏󰀏󰀏󰀏 󰃑 p(n) sup
z∈T (n)

|ψ(z)| sup
z∈T (n)

|z − w| 󰃑 p(n)d(n) sup
z∈T (n)

|ψ(z)|.

Accordingly, this implies that
󰀏󰀏󰀏󰀏
󰁝

T

f(z)dz

󰀏󰀏󰀏󰀏 󰃑 4np(n)d(n) sup
z∈T (n)

|ψ(z)| = p(0)d(0) sup
z∈T (n)

|ψ(z)|.

However, supz∈T (n) |ψ(z)| → 0 as n → ∞ so that
󰀏󰀏󰁕

T
f(z)dz

󰀏󰀏 = 0. □
3.2.2. Local Existence of Primitives.

Theorem 3.4. Let D ⊂ C be an open disc. Then any f ∈ O(D) has a primitive in D.

Proof. Define F (z) =
󰁕
Γz

f(w)dw with Γz being the oriented line segment from z0 to z,

where z0 is the center of D. The claim followed is that F ′(z) = f(z) for all z ∈ D. This is
valid because by Goursat’s theorem,

F (z + h)− F (z)

h
=

1

h

󰁝

γ

f(w)dw.
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Again, γ is the oriented segment from z to z + h here whose parametrization is, say,

w : [0, |h|] −→ C
t 󰀁−→ z + ht/|h|.

Now one can calculate the integral as

󰁝

γ

f(w)dw =

󰁝 |h|

0

f(w(t))
h

|h|dt.

Finally, it yields to that

lim
h→0,h∈C

F (z + h)− F (z)

h
= f(w(0)) = f(z).

The last step is not so obvious and is left as an exercise. □

Corollary 3.5 (Local Cauchy Theorem). Let D ⊂ C be an open disc and let Γ ⊂ D be an
arbitrary closed curve. Then for any f ∈ O(D),

󰁝

Γ

f(z)dz = 0.

Remark 3.6. Given a region Ω ⊂ C, recall that for z ∈ Ω and f ∈ O(Ω), f has a primitive
in disc D centred at z whenever D ⊂ Ω. For another point w ∈ Ω, we can still make a
“parallel moving” of D at z to w (may need diamD to be sufficiently small).

3.3. Global Cauchy Theorem.

Definition 3.7. Let Γ0,Γ1 ⊂ Ω be two curves with common endpoints, say α and β. Let
γ0, γ1 : [a, b] → Ω be parametrizations of them. We call Γ0 and Γ1 homotopic in Ω if for all
0 󰃑 s 󰃑 1, there is a curve Γs whose parametrization is given by γs : [a, b] → Ω such that
γs(a) = α, γs(b) = β, and

γs|s=0 = γ0, γs|s=1 = γ1,

and γs(t) is jointly continuous with respect to s ∈ [0, 1] and t ∈ [a, b].

One can quickly check that the homotopic relation is an equivalence relation. In a topo-
logical sense, homotopicity means a continuous deformation between two given curves.

Theorem 3.8 (Homotopy Principle). Suppose Γ0,Γ1 ⊂ Ω with Γ0 ∼ Γ1 homotopically. For
any f ∈ O(Ω),

󰁝

Γ0

f(z)dz =

󰁝

Γ1

f(z)dz.

Proof. Step 1: Local Equality. The claim is that if s1, s2 ∈ [0, 1] are close enough, then
󰁝

Γs1

f(z)dz =

󰁝

Γs2

f(z)dz.

To prove this, assume Γs1 and Γs2 are parametrized by z, w : [a, b] → C, respectively. Taking
a partition on [a, b] as a = x0 < x1 < · · · < xn < xn+1 = b and denote zi = z(xi) ∈ Γs1 ,
wi = w(xi) ∈ Γs2 for 0 󰃑 i 󰃑 n + 1. There are a sequence of discs {Di}ni=0 such that
{zi, wi, zi+1, wi+1} ∈ Di. See the picture below.
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w0

z0

wn+1

zn+1

D0
D1 D2

Dn

w1
w2 w3

z1
z2 z3

zn

wn

Γs1

Γs2

Now by local Cauchy theorem (see Corollary 3.5), for each Di, there is a primitive Fi on Di

of f , i.e., F ′
i (z) = f(z) for all z ∈ Di. On the intersection Di ∩Di+1, we see

(Fi − Fi+1)
′ = 0,

which implies that Fi − Fi+1 ≡ const, say Ci. Thus we obtain

Fi+1(zi+1)− Fi+1(wi+1) = Fi(zi+1)− Fi(wi+1).

Taking integrals, leads to
󰁝

Γs1

f(z)dz −
󰁝

Γs2

f(z)dz =

n󰁛

i=0

[Fi(zi+1)− Fi(zi)]−
n󰁛

i=0

[Fi(wi+1)− Fi(wi)]

= (Fn(zn+1)− Fn(wn+1))− (F0(z0)− F0(w0))

= (Fn(β)− Fn(β))− (F0(α)− F0(α)) = 0.

Step 2: Iteration. Using the compactness of [0, 1], we can divide [0, 1] into subintervals
[si, si+1] with |si − si+1| ≪ 1. Hence by Step 1, for all t, s ∈ [si, si+1], f(z) has the same
integral along Γt and Γs. To sum up,

󰁝

Γ0

f(z)dz =

󰁝

Γ1

f(z)dz.

This completes the proof. □

Definition 3.9. A region Ω ⊂ C is called simply connected if any two curves in Ω with
common endpoints are homotopic.

Theorem 3.10 (Global Cauchy Theorem). If Ω ⊂ C is simply connected, then all f ∈ O(Ω)
has a primitive.

Proof. Fix a point z0 ∈ Ω. For any curve from z0 to z, we define

F (z) :=

󰁝

Γz

f(w)dw.

This is well-defined (i.e., independent of the choice of Γz) when Ω is simply connected. It’s
easy to check F ′(z) = f(z). □

Alternative Proof. One may also fix Γz and define Γz+h as the combination of Γz and the
segment from z to z + h. Thus,

F (z + h)− F (z)

h
=

1

h

󰁝

γ

f(w)dw.

Taking h → 0, we set F ′(z) = f(z) again. □

Remark 3.11. Do remember the Global Cauchy (Theorem 3.10) implies that all holomorphic
integrals along closed curves in a simply connected region vanish.



NOTES ON COMPLEX ANALYSIS 17

The general philosophy of the Cauchy theorem lies in translating topological information
(such as simply connected) on the complex plane into analytic information. Conversely,
given a connected open subset Ω ⊂ C, the question is to determine whether Ω is simply
connected or not whenever we assume for all f ∈ O(Ω) and any closed curve Γ ⊂ Ω, f has
zero integral along Γ.

3.4. The First Application: Evaluation of Some Integrals (I). Our Cauchy theorem
can be used to compute several types of real and complex integrals. Also, we will see more
approaches to calculating, such as the residue formula (see Section 4.2), which is another
corollary of the Cauchy theorem.

Example 3.12. Using the Cauchy theorem, we will calculate the Fourier transform of e−πx2

.
Note that in Fourier analysis, for any f : R → R, one can define its Fourier transformation
as

󰁥f(ξ) :=
󰁝 ∞

−∞
f(x)e−2πixξdx.

The aim is to prove for any ξ ∈ R,
󰁝 ∞

−∞
e−πx2

e−2πixξdx = e−πξ2 .

Namely, the Fourier transformation of f(x) = e−πx2

is nothing but itself.

Proof. It is equivalent to prove
󰁝 ∞

−∞
e−π(x+iξ)2dx = 1.

Notice that for ξ = 0, the formula is well-known as
󰁝 ∞

−∞
e−πx2

dx = 1.

Let’s prove for ξ > 0, and the remaining case ξ < 0 follows similarly. Consider the complex-

variable function f(z) = e−πz2

. Recall that in Example 2.17, we have seen that exponential
functions are well-defined over C, and hence f ∈ O(C). Then define the curve ΓR for
R ∈ R>0 as the clockwise oriented rectangle, which is shown in the following picture.

x

y

O−R R

−R+ iξ R+ iξ

IR

IIIR

IIRIVR

Thus the integral can be divided into
󰁝

ΓR

f(z)dz =

󰁝 R

−R

e−πx2

dx

󰁿 󰁾󰁽 󰂀
IR

+

󰁝 ξ

0

e−π(R+it)2dt

󰁿 󰁾󰁽 󰂀
IIR

+

󰁝 −R

R

e−π(x+iξ)2dx

󰁿 󰁾󰁽 󰂀
IIIR

+

󰁝 0

ξ

e−π(−R+it)2dt

󰁿 󰁾󰁽 󰂀
IVR

.

As R → ∞, we have

IR →
󰁝 ∞

−∞
e−πx2

dx = 1.
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As for part II, say

IIR =

󰁝 ξ

0

e−π(R2+2Rit−t2)dt =

󰁝 ξ

0

e−πR2

e−2πRiteπt
2

dt.

Therefore, it is bounded as

|IIR| 󰃑
󰁝 ξ

0

e−πR2

eπt
2

dt 󰃑 (eπξ
2

e−πR2

).

Since e−πR2 → 0 as R → ∞, we get IIR → 0. Similarly, IVR → 0 by symmetry (caution:
IIIR does not tend to 1). On the other hand, apply the Cauchy theorem to the piecewise-
smooth closed curve ΓR defined on C, which is simply connected, the integral of f along
with ΓR vanishes. That is,

lim
R→∞

󰁝

ΓR

f(z)dz = 0 = IR + IIIR,

or equivalently, 󰁝 ∞

−∞
e−π(x+iξ)2dx =

󰁝 ∞

−∞
e−πx2

dx = 1, ξ > 0.

Again, the same argument for ξ < 0 completes the proof. □
3.5. The Second Application: Cauchy Integral Formula. It turns out that under
some nice topological circumstances, the value of a holomorphic function at some point can
be determined by an average of the boundary points of some neighbourhood.

Theorem 3.13 (Cauchy Integral Formula). Given an open subset Ω ⊂ C and an open disc
D ⊂ C with ∂D ⊂ Ω, assume f ∈ O(Ω). Then for all z ∈ D, we have

f(z) =
1

2πi

󰁝

∂D

f(ξ)

ξ − z
dξ.

Proof. Consider the function F (ξ) = f(ξ)/(ξ − z) for fixed z ∈ D. Define the curve

Cε = {w | |w − z| = ε}.
Notice that F is holomorphic near z and ∂D is homotopic to Cε. In the Homotopy Principle
(Theorem 3.8), taking Ω to be the punctured disc centred at z with radius ε, and then

󰁝

∂D

F (ξ)dξ =

󰁝

Cε

F (ξ)dξ.

Furthermore, one can compute
󰁝

Cε

F (ξ)dξ =

󰁝

Cε

f(ξ)

ξ − z
dξ =

󰁝

Cε

f(ξ)− f(z)

ξ − z󰁿 󰁾󰁽 󰂀
∼f ′(z)

dξ +

󰁝

Cε

f(z)

ξ − z
dξ.

The punchline of this trick is read as follows. The first item has the same order as the
integral of f ′(z). However, f ′(z) is bounded near z by holomorphicity of f . Hence the
former term in the equality above tends to be 0 as ε → 0.

Now, since Cε has a parametrization z(t) = z + εeiθ for θ ∈ [0, frm−epi], we see
󰁝

Cε

f(z)

ξ − z
dξ = f(z)

󰁝 2π

0

1

εeiθ
ieiθdθ = 2πif(z).

Therefore, after taking ε → 0, we have

f(z) =
1

2πi

󰁝

∂D

f(ξ

ξ − z
dξ.

This is the Cauchy integral formula. □
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3.5.1. Applications of Cauchy Integral Formula. The following more general version of Theo-
rem 3.13 is given as an application. A quick observation of its proof shows that it contains no
more information than the classical formula. However, it would be instrumental in proving
the residue formula (see Theorem 4.8).

Theorem 3.14 (Higher Cauchy Integral Formula). With the same statement as in Theorem
3.13, f has infinitely many complex derivatives in Ω. Moreover,

f (n)(z) =
n!

2πi

󰁝

∂D

f(ξ)

(ξ − z)n+1
dξ.

Proof. It suffice to prove for n 󰃍 1. We first consider n = 1. Using the classical Cauchy
integral formula

f(z) =
1

2πi

󰁝

∂D

f(ξ)

ξ − z
dξ,

we have

lim
h→0,h∈C

f(z + h)− f(z)

h
= lim

h→0

1

2πi

1

h

󰁝

∂D

f(ξ)

ξ − z − h
− f(ξ)

ξ − z
dξ.

Note that
1

ξ − z − h
− 1

ξ − z
=

h

(ξ − z − h)(ξ − z)
,

and the equality becomes

f ′(z) =
1

2πi

󰁝

∂D

f(ξ)

(ξ − z)2
dξ.

Accordingly, one can apply this process inductively to tackle general n 󰃍 2. □

3.5.2. Remarks on the Proof of Cauchy Integral Formula. Recall that the homotopy principle
(Theorem 3.8) tells us that if Γ0,Γ1 ⊂ Ω are two closed curves which are homotopic. Then
for all f ∈ O(Ω), we have

󰁕
Γ0

f(z)dz =
󰁕
Γ1

f(z)dz.

More generally, assume Γ0,Γ1 : [0, 1] → C are two curves in Ω such that

Γ0(0) = α0, Γ0(1) = β0, Γ1(0) = α1, Γ1(1) = β1

that are homotopic, i.e., for all t ∈ [0, 1] there exists F (s, t) : [0, 1]× [0, 1] → Ω such that

F (0, t) = Γ0(t), F (1, t) = Γ1(t).

Claim: for all f ∈ O(Ω),
󰁝

Γ0

f(z)dz =

󰁝

Γ1

f(z)dz +

󰁝

I0

f(z)dz +

󰁝

I1

f(z)dz,

where I0 (resp. I1) is an arbitrary oriented curves from α0 to α1 (resp. from β1 to β0).

Proof of the Claim. It suffices to check that the curves Γ0 and I0 + Γ1 + I1 are homotopic.
We define the following map

H(s, t) =

󰀻
󰁁󰀿

󰁁󰀽

F ((1 + 2s)t, 0), 0 󰃑 t 󰃑 s/(1 + 2s);

F (s, (1 + 2s)t− s), s/(1 + 2s) 󰃑 t 󰃑 (s+ 1)/(1 + 2s);

F (−(1 + 2s)t+ 1 + 2s, 1), (s+ 1)/(1 + 2s) 󰃑 t 󰃑 1.

In particular, for fixed s, H(s, t) is the intermediate curve between Γ0(t) and Γ1(t). More-
over, H(s, t) is continuous with respect to (s, t). The feature in need is the homotopy
equivalence

H(0, t) = Γ0(t) ∼ H(1, t) = I0 + Γ1 + I1.
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From what we have proved for homotopy with common fixed endpoints,

󰁝

Γ0

f(z)dz =

󰁝

I0+Γ1+I1

f(z)dz =

󰁝

Γ1

f(z)dz +

󰁝

I0

f(z)dz +

󰁝

I1

f(z)dz.

In particular, consider the special case where α0 = β0 and α1 = β1. Then Γ0 and Γ1 are
closed curves such that 󰁝

I0

f(z)dz +

󰁝

I1

f(z)dz = 0

by taking I1 = I−0 . Hence for all f ∈ O(Ω),

󰁝

Γ0

f(z)dz =

󰁝

Γ1

f(z)dz.

Note that this proof gives a slightly more robust relationship between the two integrals. □

Now we focus on another proof of the Cauchy integral formula (Theorem 3.13) using only
the global Cauchy (Theorem 3.10) rather than the homotopy principle.

Alternative Proof. Keep the notation as in the original proof of Theorem 3.13. For any
closed circle D ⊂ Ω that contains Cε and any δ > 0, define the piecewise-smooth closed
curve Γδ as shown in the following.

(∂D)δ
Cε

z
}δ

D

I2

I1

For Γδ = (∂D)δ + I1 + Cε + I2, by Cauchy theorem,

󰁝

Γδ

f(ξ)

ξ − z
dξ =

󰁝

(∂D)δ

f(ξ)

ξ − z
dξ +

󰁝

I1

f(ξ)

ξ − z
dξ +

󰁝

I2

f(ξ)

ξ − z
dξ

󰁿 󰁾󰁽 󰂀
0

+

󰁝

C−
ε

f(ξ)

ξ − z
dξ = 0.

Letting δ → 0, we get
󰁝

∂D

f(ξ)

ξ − z
dξ +

󰁝

C−
ε

f(ξ)

ξ − z
dξ = 0,

which implies that

󰁝

∂D

f(ξ)

ξ − z
dξ =

󰁝

Cε

f(ξ)

ξ − z
dξ = 2πif(z) + o(ε).

This proves the Cauchy integral formula whenever ε → 0. □
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3.6. More Corollaries of Cauchy Integral Formula. The direct corollaries of the Cauchy
theorem involve several outstanding results that we will introduce.

Proposition 3.15 (Cauchy Inequalities). Under the same statement as before, for all f ∈
O(Ω) and DR(z0) ⊂ DR(z0) ⊂ Ω, we have

|f (n)(z0)| 󰃑
n!

Rn
󰀂f󰀂∂DR

, ∀n 󰃍 0,

where 󰀂f󰀂∂DR
= maxz∈∂DR

|f(z)|.

Proof. Using Higher Cauchy integral formula (see Theorem 3.14),

f (n)(z) =
n!

2πi

󰁝

∂D

f(ξ)

(ξ − z)n+1
dξ =

n!

2πi

󰁝 2π

0

f(z(t))

Rn+1ei(n+1)θ
iReiθdθ

since we can parametrize ∂DR via z(t) = z0 +Reiθ for θ ∈ [0, 2π]. Hence

|f (n)(z0)| 󰃑
n!

2π

󰁝 2π

0

|f(z(t))|
Rn

dθ 󰃑 n!

Rn
max

z∈∂DR

|f(z)|

as desired. This completes the proof. □

3.6.1. Liouville Theorem and Its Application.

Corollary 3.16 (Liouville). Let f ∈ O(C) (say f is an entire function). If f is bounded,
i.e., |f | 󰃑 M < ∞ on C, then f is a constant function.

Proof. Using the first-order Cauchy inequality,

|f ′(z0)| 󰃑
1

R
󰀂f󰀂∂DR

󰃑 M

R

for any disc DR with R > 0. The entire condition f ∈ O(C) guarantees that R can be any
positive number. Making R → ∞ to get f ′(z0) = 0 for arbitrary z0 ∈ C. Hence f(z) is a
constant function. □

Exercise 3.17. Show that for f ∈ O(C), if there is some constant C < ∞ such that
|f(z)| 󰃑 CRd for any |z| 󰃑 R together with some d (i.e., f has at most polynomial growth),
then f must be a polynomial of degree at most d.

Here comes one of several approaches to prove the fundamental theorem of algebra using
complex analysis.

Theorem 3.18 (Fundamental Theorem of Algebra). Every non-constant polynomial p(z) =󰁓d
k=0 akz

k with ak ∈ C has a root in C.

Proof. If for all z ∈ C we have p(z) ∕= 0, then the rational function 1/p(z) ∈ O(C). In
particular, 1/p(z) is a bounded entire function as p(z) is a polynomial that is nowhere
vanishing. Applying Liouville Theorem (Corollary 3.16), 1/p(z) is a constant, which yields
to a contradiction. □

Corollary 3.19. Every polynomial p(z) = adz
d + · · ·+ a1z + a0 with ad ∕= 0 has exactly d

roots in C, counted with multiplicity.

Proof. Theorem 3.18 shows that there is w1 ∈ C such that p(w1) = 0. Making a change of
variable, say z = (z − w1) + w1, we obtain

p(z) =

d󰁛

k=1

bk(z − w1)
k + b0.
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A simple comparison shows that b0 = 0. Hence (z−w1) | p(z) and then p(z) = (z−w1)q(z)
for another polynomial q with degree d− 1. Using induction on the degree of polynomials,
one finally gets

p(z) =

d󰁜

k=1

(z − wk)

for some w1, w2, . . . , wk ∈ C. □

3.6.2. Holomorphicity Implies Analyticity. Given Definition 2.20 of analyticity, we have al-
ready seen it implies holomorphicity. The following context shows the converse via the
Cauchy integral formula.

Theorem 3.20. Given DR(z0) ⊂ DR(z0) ⊂ Ω, any f ∈ O(Ω) has a power series expansion
in DR(z0). That is, for all z ∈ DR(z0),

f(z) =

∞󰁛

n=0

an(z − z0)
n =

∞󰁛

n=0

f (n)(z0)

n!
(z − z0)

n.

Proof. Fix z ∈ DR(z0). By Cauchy integral formula (Theorem 3.13),

f(z) =
1

2πi

󰁝

∂DR

f(ξ)

ξ − z
dξ.

Let’s write
1

ξ − z
=

1

(ξ − z0)− (z − z0)
=

1

ξ − z0
· 1

1− z−z0
ξ−z0

,

where | z−z0
ξ−z0

| 󰃑 r < 1 for some r > 0. Thus it admits a power expansion

1

ξ − z
=

∞󰁛

n=0

z − z0
ξ − z0

n

=

∞󰁛

n=0

1

(ξ − z0)n+1
(z − z0)

n.

Therefore,

f(z) =
1

2πi

󰁝

∂DR

f(ξ)

∞󰁛

n=0

1

(ξ − z)n+1
(z − z0)

ndξ

=

∞󰁛

n=0

1

2πi

󰁝

∂DR

f(ξ)

(ξ − z)n+1
dξ(z − z0)

n

=

∞󰁛

n=0

an(z − z0)
n

for any z ∈ DR(z0). Note that
󰁓∞

n=0
1

(ξ−z)n+1 is uniformly convergent in z ∈ DR(z0) just

so the second equality holds. □

Remark 3.21. From a topological aspect of view, (Q, | · |), the rational numbers equipped
with a usual absolute value, is not complete. There is a completion (R, | · |) that is not
algebraically closed. This phenomenon gives a motivation to consider field extensions

(Q, | · |) ⊂ (R, | · |) ⊂ (C = Ralg, | · |).
The complex analysis theory primarily focuses on analytic functions (or, equivalently, holo-
morphic functions) on C. However, the completion of Q is not unique whenever we replace
the usual absolute value with other values. Given a prime p, the p-adic norm | · |p is defined
by

∀x =
par

s
∈ Q, |x|p := p−a
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where p neither divides r nor s for r, s ∈ Z. Similarly, we obtain field extensions

(Q, | · |p) ⊂ (Qp, | · |p) ⊂ (Qalg
p , | · |p) ⊂ (Cp, | · |p).

Here the first completion Qp is called the p-adic rational number field, which is not alge-
braically closed. Also, Qalg

p is algebraically closed but not complete. To resolve this, taking
Cp is enough. The theory to understand analytic functions defined on Cp is the so-called
p-adic analysis.

3.6.3. Analytic Continuation. Thanks to Theorem 3.20, the holomorphic functions are an-
alytic. From this, we wish to control all properties of an analytic function by a sequence
of points. The following theorem makes the expectation morally valid. Note that the only
subtlety here is the requirement that the limit point of this sequence must lie in the region.

Theorem 3.22 (Analytic Continuation). Let Ω ⊂ C be an open connected region and
f ∈ O(Ω). Assume there is a sequence {zn}∞n=1 ⊂ Ω with zn ∕= w whereas zn → w ∈ Ω,
satisfying f(zn) = 0 for any n ∈ N. Then f ≡ 0 in Ω.

Proof. Define the set of zeroes of f as follows (which is precisely open by definition):

S = Int{z ∈ Ω | f(z) = 0}.

Claim: as a non-empty open subset, S is also closed in Ω, i.e., S ∩ Ω = S.
Proof of the Claim. To prove this claim, we fix w ∈ S and verify that there is a (non-empty)
open set V around w such that f = 0 in V . Once this is valid, we are able to take any limit
sequence {ξk}∞k=0 ⊂ S that converges to some point ξ ∈ S ∩Ω ⊂ Ω, and a similar argument
shows that ξ ∈ S as well. Using holomorphicity (hence analyticity) of f , we write

f(z) =

∞󰁛

n=0

an(z − w)n

for z lying near w. If f does not vanish constantly near w, then there exists m 󰃍 0 such
that am ∕= 0. This deduces to

f(z) = am(z − w)m + am+1(z − w)m+1 + · · ·
= am(z − w)m(1 + am+1(z − w) + · · · )
= am(z − w)m(1 + g(z))

for some g such that g(w) = 0, since 1 + am+1(z − w) + · · · is convergent. Now consider to
apply the condition zn → w with f(zn) = 0. We obtain

f(zk) = am(zk − w)(1 + g(zk)) ∕= 0,

which leads to a contradiction. So we have proved the claim.
Using the claim, we can easily get Ω ⊂ S. Consequently, f vanishes everywhere in Ω. □

Corollary 3.23. Let f, g ∈ O(Ω) for an open connected region Ω. Assume f = g in some
non-empty open set V ⊂ Ω, then f = g in Ω.

3.7. Further Applications.

3.7.1. Morera’s Theorem. The following theorem is the converse of Goursat’s (Theorem 3.3).

Theorem 3.24 (Morera). Suppose f is a continuous function in some open disc D, and
󰁝

T

f(z)dz = 0

for any triangle T in D. Then f ∈ O(D).
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Proof. Consider the primitive of f in Ω, say

F (z) :=

󰁝

Γz

f(z)dz

for some fixed z0 and a curve Γz from z0 to z. The condition implies that F is independent of
the choice of Γz since any curve can be approximated by a piecewise-linear curve (where the
triangle division applies). In particular F ∈ O(Ω) since F ′(z) = f(z), and thus F is analytic
by Theorem 3.20. Again, f = F ′ is also analytic, which is equivalent to holomorphic. □

Exercise 3.25. Check that circles can replace the triangles in Theorem 3.24.

Theorem 3.26 (Holomorphic Approximation). Let {fn}∞n=0 ⊂ O(Ω). Assume fn → f
converges uniformly on every compact subset of Ω, denoted by fn → f in C0

loc(Ω). Then
f ∈ O(Ω).

Proof. For any triangle T ⊂ Ω, since fn → f in C0
loc(Ω),󰁝

T

f(z)dz = lim
n→∞

󰁝

T

fn(z)dz = 0

because of fn ∈ O(Ω). By Morera Theorem, f ∈ O(Ω). □

Remark 3.27. Theorem 3.26 is not true in the real case.

Theorem 3.28 (Higher Local Convergence). Let {fn}∞n=0 ⊂ O(Ω). Assume fn → f in

C0
loc(Ω). Then f

(k)
n → f (k) in C0

loc(Ω) for any k 󰃍 1. Or equivalently, fn → f in C∞
loc(Ω).

Proof. We only need to verify f ′
n → f ′ uniformly on every compact set of Ω. And by

inductive arguments, this is equivalent to fn → f in C∞
loc(Ω). It suffices to verify that

f ′
n → f ′ uniformly on every Ωδ = {z ∈ Ω | Dδ(z) ⊂ Ω}.

Ω

Dδ(z)

Ω2δ

Using the Cauchy integral formula, for all z ∈ Ω2δ, we have

(f ′
n − f ′)(z) =

1

2πi

󰁝

∂Dδ(z)

(fn − f)(ξ)

(ξ − z)d
dξ.

Therefore,

|f ′
n − f ′|(z) 󰃑 1

2π

󰁝 2π

0

|fn − f |(z)
δ2

δdθ 󰃑 1

δ
sup
ξ∈Ωδ

|fn − f |(ξ)
󰁿 󰁾󰁽 󰂀

→0

.

Hence f ′
n → f ′ uniformly in Ω2δ. □

Theorem 3.29. Given an open subset Ω ⊂ C (not necessarily connected), we define a
function F (z, s) on Ω× [0, 1]. Assume that

(1) F (z, s) is holomorphic with respect to z for any fixed s, and
(2) F is continuous with respect to (z, s).



NOTES ON COMPLEX ANALYSIS 25

Then the function

f(z) =

󰁝 1

0

F (z, s)ds

is holomorphic for z.

Proof. On condition (1), consider the Riemann sum

fn(z) :=
1

n

n󰁛

k=1

F (z,
k

n
) ∈ O(Ω)

for any n 󰃍 1. We are going to prove that fn → f uniformly on every compact set K of Ω, or
namely, in C0

loc(Ω). Once this is valid, we obtain f ∈ O(Ω) by holomorphic approximation
(Theorem 3.26).

The condition (2) implies that F is uniformly continuous on K × [0, 1]. Hence

sup
z∈K

|F (z, s1)− F (z, s2)| < ε

whenever |s1 − s2| < δ ≪ 1. Furthermore,

|fn − f |(z) =

󰀏󰀏󰀏󰀏󰀏

n󰁛

k=1

󰁝 k
n

k−1
n

(F (z,
k

n
)− F (z, s))ds

󰀏󰀏󰀏󰀏󰀏

󰃑
n󰁛

k=1

󰁝 k
n

k−1
n

|F (z,
k

n
)− F (z, s)|ds

󰃑
n󰁛

k=1

1

n
ε = ε

whenever 1/n < δ. □
3.7.2. Schwarz Reflection Principle. Here comes another direct application of Morera’s The-
orem on symmetric regions.

Proposition 3.30 (Schwarz Reflection Principle). Let Ω be an open set that is symmetric
with respect to the real axis, i.e., for any z ∈ Ω, z ∈ Ω as well. Denote

Ω+ = Ω ∩ {ℑ(z) > 0}, Ω− = Ω ∩ {ℑ(z) < 0}.

Ω+

Ω−

I ℜ(z)

Suppose f± ∈ O(Ω±) satisfy f+(x) = f−(x) for all x ∈ I = Ω ∩ R, and f± extend
continuously to I. Then the function as follows is holomorphic in Ω.

f(z) :=

󰀻
󰁁󰀿

󰁁󰀽

f+(z), z ∈ Ω+;

f+(z) = f−(z) z ∈ I;

f−(z), z ∈ Ω−.

Exercise 3.31. Prove Proposition 3.30. (Hint: Consider applying Morera theorem to verify
that for any triangle T ⊂ Ω, the integral of f along T is zero, whether T intersects with I
or not.)
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Corollary 3.32. Let Ω be as above. Assume f ∈ O(Ω+) extends continuously on I and
f(x) ∈ R for x ∈ I. Then there is F ∈ O(Ω) such that F |Ω+ = f .

Proof. Define F as follows: for all z ∈ Ω−, let F (z) := f(z). Then F ∈ O(Ω−) and
F (x) = f(x) for x ∈ R. Applying Proposition 3.30 to F may complete the proof. □

3.8. A Geometric Point of View. The final remark on a geometric point-view towards
the Cauchy theorem and Cauchy integral formula comes. We introduce the wedge product of
differential forms. Given two differential 1-forms dx, dy, we define their linear wedge product
as dx ∧ dy such that

dx ∧ dy = −dy ∧ dx, dx ∧ dx = dy ∧ dy = 0.

Applying this to dz = dx+ idy and dz = dx− idy, one deduce that

i

2
dz ∧ dz =

i

2
(dx+ idy) ∧ (dx− idy) = dx ∧ dy.

3.8.1. Remarks on Cauchy Theorem. In the context of (local) Cauchy theorem (see Corollary
3.5), we consider f ∈ O(Ω) and two closed curves in Ω, say Γ1 and Γ2, with two opposite
orientations. In particular, by focusing only on the local case (recall that under the global
situation, the region must be simply connected), assume Ω is an annulus as follows such
that ∂Ω = Γ1 + Γ2.

Γ1Γ2

Ω

Punchline: using the language of wedge products, we can show that the local Cauchy is
exactly implied by Stokes formula and Cauchy-Riemann equation.

Let’s check this explicitly by hand. Now the statement of local Cauchy is
󰁝

Γ1

f(z)dz =

󰁝

Γ−
2

f(z)dz ⇐⇒
󰁝

∂Ω

f(z)dz = 0,

which is also equivalent to
󰁝

Ω

d(f(z)dz) =

󰁝

∂Ω

f(z)dz = 0

by Stokes formula. Here the differential form on Ω is defined as

d(f(z)dz) := df(z) ∧ dz

via the wedge product. On the other hand, this can be computed explicitly via

df(z) ∧ dz = (
∂f

∂z
dz +

∂f

∂z
dz) ∧ dz =

∂f

∂z
dz ∧ dz󰁿 󰁾󰁽 󰂀

0

+
∂f

∂z󰁿󰁾󰁽󰂀
0

dz ∧ dz = 0.

Recall that the second item vanishes because of the holomorphicity of f by the Cauchy-
Riemann equation.
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3.8.2. Remarks on Cauchy Integral Formula. One can apply a similar interpretation to prove
Cauchy integral formula. Say f ∈ O(Ω) and then

f(z0) =
1

2πi

󰁝

∂Ω

f(ξ)

ξ − z0
dξ =

1

2πi

󰁝

Ω

d(
f(ξ)

ξ − z0
dξ)

by Stokes formula. On the other hand, by definition again,

d(
f(ξ)

ξ − z0
dξ) =

∂

∂ξ
(
f(ξ)

ξ − z0
) dξ ∧ dξ󰁿 󰁾󰁽 󰂀

0

+
∂

∂ξ
(
f(ξ)

ξ − z0
)dξ ∧ dξ

= f(ξ)
∂

∂ξ
(

1

ξ − z0
)dξ ∧ dξ.

Therefore, we get

f(z0) =
1

2πi

󰁝

Ω

f(ξ)
∂

∂ξ
(

1

ξ − z0
)dξ ∧ dξ.

In a physical sense, the integral term

∂

∂ξ
(

1

ξ − z0
) = cδz0

for some physical constant c. Here δz0 is called the Dirac measure at z0 (corresponding to
f(ξ)/(ξ − z0) as in the classical Cauchy integral formula).

4. Meromorphic Functions

In the previous chapter, based on holomorphicity, we begin with polynomials in a sin-
gle complex variable, which yields definitions of rational and analytic functions. On the
Cauchy integral formula, some local analysis induces the equivalence relation between holo-
morphicity and analyticity of complex functions defined on nice topological subspaces of
the complex plane. Meromorphicity can be loosely understood as “weak holomorphicity
with some singular points”. We begin with discussions about special points defined by an
arbitrary function in a single complex variable.

4.1. Zeros and Poles. Consider the following 3 examples that corresponds to some essen-
tial notions which will be defined later.

(1) (Removable Singularity) f(z) = z at z = 0: f is well-defined (thus bounded) near
z = 0;

(2) (Pole) f(z) = 1/z at z → 0: we have |f(z)| → ∞.
(3) (Essential Singularity) f(z) = e1/z at z → 0: there are many different cases, such as

(i) whenever z → 0+ for z ∈ R, |f(z)| → ∞;
(ii) whenever z → 0− for z ∈ R, |f(z)| → 0;
(iii) if z = ix with x ∈ R, then x → 0 leads to z → 0 from the positive imaginary

axis – in this case,

f(ix) = e−i/x = cos(− 1

x
) + i sin(− 1

x
)

that oscillates rapidly.

Definition 4.1 (Zero). For f ∈ O(Ω), a point z0 ∈ Ω is called a zero if f(z0) = 0.

In fact, if f(z0) = 0 then there exists a sufficiently small open neighborhood V ⊂ Ω of z0
such that f(z) ∕= 0 for any z ∈ V \{z0} unless f ≡ 0 as a constant near z0. In particular,
the zeros of a non-constant holomorphic function are isolated.
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Theorem 4.2 (Order of Zero). Given an open connected region Ω with z0 ∈ Ω, assume that
f(z0) = 0 and f ∕≡ 0 in Ω. Then there is a sufficiently small open neighborhood V ⊂ Ω of
z0 and a non-vanishing holomorphic function g ∈ O(V ) together with a unique m ∈ N such
that

f(z) = (z − z0)
mg(z), ∀z ∈ V.

Proof. Using f ∈ O(Ω), it is analytic in Ω by Theorem 3.20. In particular, it is analytic
near z0 ∈ Ω. To be precise,

f(z) =

∞󰁛

n=0

an(z − z0)
n

for z lying near z0. Since f is not constantly vanishing, there is some m < ∞ such that
am ∕= 0. Finally, note that such smallest m does work. □
Notation 4.3. The unique integer in Theorem 4.2 is denoted by m := ordz0(f) and is called
the order of f at z0.

Definition 4.4 (Pole). For f ∈ O(Ω\{z0}), call z0 a pole of f if 1/f has a zero at z0.

It turns out that if f has a pole at z0 ∈ Ω, then there is a sufficiently small open set V
of z0 such that

f(z) = (z − z0)
−mg(z), ∀z ∈ V,

where g(z) ∕= 0 for any z ∈ V . Similarly, m here is called the order of the pole z0, and it
keeps the same notation. Furthermore, if the order of a zero (resp. pole) z0 is exactly 1, we
call z0 a simple zero (resp. pole).

Theorem 4.5. If f has a pole z0 of order m, then near z0, we have

f(z) =
a−m

(z − z0)m
+

a−(m−1)

(z − z0)m−1
+ · · ·+ a−1

z − z0
+G(z)

where a−m ∕= 0 and G(z) is holomorphic near z0.

Proof. The condition forces f to be

f(z) = (z − z0)
−m

∞󰁛

k=0

bk(z − z0)
k =

b0
(z − z0)m

+
b1

(z − z0)m−1
+ · · ·+ bm−1

z − z0
+ bm.

Letting bi = ai−m gives the result in need. □
Definitions 4.6. The last coefficient a−1 in Theorem 4.5 is called the residue of f at the
pole z0 and is denoted by

resz0(f) = a−1.

Also, the function f(z)−G(z) is called the principal part of f at the pole z0.

Remark 4.7. Some unusual approaches to attain the order of zeros or poles.

(1) if z0 is a simple pole, then

resz0(f) = lim
z→z0

(z − z0)f(z).

More generally, if z0 is a pole of order m, then

resz0(f) = lim
z→z0

1

(m− 1)!

dm−1

dzm−1
((z − z0)

mf(z)).

(2) If Ω is connected, then the poles and zeros of f in Ω are isolated whenever f is not
a constant.

(3) If z0 is a zero of f , then

ordz0(f) = max{k ∈ N | f (k)(z0) ∕= 0}.
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4.2. Residue Formula: Evaluation of Some Integrals (II). In Section 3.4, we have
given an approach to calculating some integral via the Cauchy theorem. Here comes another
corollary of Theorem 3.8.

Theorem 4.8 (Single Residue Formula). For f ∈ O(Ω\{z0}) with z0 being a pole of f , let
D ⊂ Ω be an open disc containing z0. Then

resz0(f) =
1

2πi

󰁝

∂D

f(z)dz.

Proof. Using the Cauchy theorem (or homotopy principle), for the circle with radius ε
centred at z0 󰁝

∂D

f(z)dz =

󰁝

Cε

f(z)dz.

Since z0 is a pole of f , we can write

f(z) =
a−m

(z − z0)m
+

a−(m−1)

(z − z0)m−1
+ · · ·+ a−1

z − z0
+G(z)

and hence󰁝

∂D

f(z)dz =

󰁝

Cε

a−m

(z − z0)m
dz + · · ·+

󰁝

Cε

a−2

(z − z0)2
dz

󰁿 󰁾󰁽 󰂀
0

+

󰁝

Cε

a−1

z − z0
dz

󰁿 󰁾󰁽 󰂀
2πia−1

+

󰁝

Cε

G(z)dz

󰁿 󰁾󰁽 󰂀
0

.

The first part vanishes by applying the higher Cauchy integral formula (Theorem 3.14)
to constant functions. The second part is valued by the classical Cauchy integral formula
(Theorem 3.13), and the last part vanishes because G(z) is holomorphic near z0. As a result,

resz0(f) = a−1 =
1

2πi

󰁝

∂D

f(z)dz

that gives the residue formula. □

The following corollary is given by applying Theorem 4.8 iteratively for generalizing it to
more points.

Corollary 4.9 (Residue Formula). Suppose f ∈ O(Ω\{z1, z2, . . . , zn}) with z1, z2, . . . , zn
being poles of f . Let Γ ⊂ Ω be the closed curve encompassing {z1, z2, . . . , zn}. Then

1

2πi

󰁝

Γ

f(z)dz =

n󰁛

k=1

reszk(f).

Now we move to apply the residue formula in the evaluation of integrals.

Example 4.10. For 0 < a < 1, we are going to compute the real integral
󰁝 ∞

−∞

eax

1 + ex
dx.

Set f(z) = eaz/(1 + ez) as a complex function, then f has a pole at z = πi with

lim
z→πi

(z − πi)
eaz

1 + ez
= −eaπi.

In particular, z = πi is a simple pole of f . Hence

a−1 = resπi(f) = −eaπi.

Now consider the following clockwise oriented triangle ΓR whose intersection with ℑ(z)-axis
is 2πi, the period of 1 + ez.



30 WENHAN DAI

x

y

O−R R

−R+ 2πi R+ 2πi

πi

2πi

IR

IIIR

IIRIVR

Using residue formula to ΓR:󰁝

ΓR

f(z)dz = 2πi resπi(f) = −2πieaπi.

On the other hand, we do the calculation as
󰁝

ΓR

f(z)dz =

󰁝 R

−R

f(x)dx

󰁿 󰁾󰁽 󰂀
IR

+

󰁝 2π

0

f(R+ it)dt

󰁿 󰁾󰁽 󰂀
IIR

+

󰁝 −R

R

f(x+ 2πi)dx

󰁿 󰁾󰁽 󰂀
IIIR

+

󰁝 0

2π

f(−R+ it)dt

󰁿 󰁾󰁽 󰂀
IVR

.

For part II, we get

|IIR| =
󰀏󰀏󰀏󰀏
󰁝 2π

0

ea(R+it)

1 + eR+it
dt

󰀏󰀏󰀏󰀏 󰃑
󰁝 2π

0

eaR

|1 + eR · eit|dt.

Since eR − 1 󰃑 |1 + eR · eit| 󰃑 eR + 1, the inequality further becomes
󰁝 2π

0

eaR

|1 + eR · eit|dt 󰃑
󰁝 2π

0

eaR

eR − 1
dt 󰃑 Ce(a−1)R

as R → ∞ for 0 < a < 1. Similarly, |IVR| → 0 as well. Also,

IIIR = −
󰁝 R

−R

ea(x+2πi)

1 + ex+2πi
dx

= −
󰁝 R

−R

e2aπi · eax
1 + ex

dx

= −e2aπi
󰁝 R

−R

eax

1 + ex
dx = −e2aπiIR.

Letting R → ∞ and summing all pieces listed above, we see

−2πieaπi = I∞ − e2aπiI∞.

Therefore, the desired integral is
󰁝 ∞

−∞

eax

1 + ex
dx = I∞ = − 2πieaπi

1− e2aπi
=

π

sinπa
.

Example 4.11. In this example, we aim to calculate the following integral as a Fourier
transformation (see Example 3.12) of 1/(coshπx), say

󰁝 ∞

−∞

e−2πixξ

coshπx
dx,

where cosh z = (ez + e−z)/2. Consider the function f(z) = e−2πizξ/ coshπz, then f(z) has
poles at eπz = −e−πz. Equivalently, the poles are given by ki+ i/2 with k ∈ Z. Recall that
coshπz is a periodic function with coshπ(z + 2i) = coshπz.
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x

y

O−R R

−R+ 2i R+ 2i

i/2

3i/2

2i

IR

IIIR

IIRIVR

We define ΓR similarly as in Example 4.10. In a single period, i/2 and 3i/2 are only poles.
Note that

resi/2(f) = lim
z→i/2

(z − i

2
)f(z) =

eπξ

πi
,

res3i/2(f) = lim
z→3i/2

(z − 3i

2
)f(z) =

e3πξ

πi
.

Hence by residue formula,
󰁝

ΓR

f(z)dz = 2πi(resi/2(f) + res3i/2(f)) = 2πi · e
πξ − e3πξ

πi
.

On the other hand, we do the calculation as
󰁝

ΓR

f(z)dz =

󰁝 R

−R

f(x)dx

󰁿 󰁾󰁽 󰂀
IR

+

󰁝 2

0

f(R+ it)dt

󰁿 󰁾󰁽 󰂀
IIR

+

󰁝 −R

R

f(x+ 2i)dx

󰁿 󰁾󰁽 󰂀
IIIR

+

󰁝 0

2

f(−R+ it)dt

󰁿 󰁾󰁽 󰂀
IVR

.

Again, we do similar operations to these parts. Firstly,

|IIR| =
󰁝 2

0

e−2πi(R+it)ξ

(eπ(R+it) + e−π(R+it))/2
dt

󰃑 2

󰁝 2

0

e2πtξ

eπR |eπit + e−2πR−πit|󰁿 󰁾󰁽 󰂀
<∞

dt

󰃑 C
2e4πξ

eπR
→ 0

as R → ∞. Similarly, |IVR| → 0 as well. As for another part,

IIIR = −
󰁝 R

−R

e−2πi(x+2i)ξ

coshπ(x+ 2i)
dx = −e4πξ

󰁝 R

−R

e−2πixξ

coshπx
dx = −e4πξIR.

Thus, letting R → ∞, we get

(1− e4πξ)I∞ = 2(eπξ − e3πξ).

Therefore, the result is given by
󰁝 ∞

−∞

e−2πixξ

coshπx
dx = I∞ =

2(eπξ − e3πξ)

1− e4πξ
=

1

coshπξ
.

This result dictates that the Fourier transform of 1/(coshπx) is itself.

4.3. Meromorphicity on Singularities.
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4.3.1. Removable Singularities.

Theorem 4.12 (Riemann Extension Theorem). For all f ∈ O(Ω\{z0}), f is bounded near
z0 if and only if z0 is a removable singularity, i.e., f extends to a holomorphic function in
Ω. In particular, f(z0) is well-defined whenever f is bounded near z0.

Proof. It is clear that f is bounded near z0 whenever z0 is removable. Conversely, choose
a sufficiently small open disc DR(z0) ⊂ Ω such that f is bounded in DR(z0). For all
z ∈ DR(z0), we define

g(z) :=
1

2πi

󰁝

∂D

f(ξ)

ξ − z
dξ.

Notice that f(ξ)/(ξ− z) is continuous with respect to (ξ, z) and is holomorphic in z. Hence
g(z) is holomorphic on DR(z0).

In the following context, we will verify that g(z) is the desired extension of f , i.e., g(z) =
f(z) away from z0. Applying Cauchy integral formula to f on Ω\{z0}, then

g(z) =
1

2πi

󰁝

∂D

f(ξ)

ξ − z
dξ =

1

2πi

󰁝

Γε

f(ξ)

ξ − z
dξ

󰁿 󰁾󰁽 󰂀
Iε

+
1

2πi

󰁝

󰁨Γε

f(ξ)

ξ − z
dξ

󰁿 󰁾󰁽 󰂀
f(z)

,

where Γε and 󰁨Γε are the circles centred at z0 and z with a uniform radius ε, respectively.
On right hand side of the equality above the second term is exactly f(z) by Cauchy integral
formula again. Also, f(ξ) is bounded above by assumption, and ξ − z is bounded below.
Say |f(ξ)/(ξ − z)| 󰃑 M for some sufficiently large constant M < ∞. Accordingly,

|Iε| 󰃑
1

2π

󰁝 2π

0

εMdθ 󰃑 Cε → 0

as ε → 0. Since ε > 0, we get g(z) = f(z) for z ∕= z0. □
Corollary 4.13. Let f ∈ O(Ω\{z0}). Then z0 is a pole of f if and only if |f(z)| → ∞ as
z → z0 (i.e., f is unbounded near z0).

Proof. Suppose |f(z)| → ∞ as z → z0. Then 1/f is bounded near z0. By Theorem 4.12, it
turns out that 1/f ∈ O(Ω) and (1/f)(z0) = 0. Thus z0 is a pole. The converse direction is
clear. □
4.3.2. Essential Singularities.

Definition 4.14 (Essential Singularity). Let f ∈ O(Ω\{z0}). The point z0 is called an
essential singularity of f if z0 is neither a pole nor a removable singularity.

Example 4.15. As what we have seen in the beginning of Section 4.1, f(z) = e1/z has an
essential singularity z = 0. We have seen the phenomenon that a function may have various
values at an essential singularity attained from various directions.

Theorem 4.16 (Casorati-Weierstrass). Assume f ∈ O(Dr(z0)\{z0}) is defined over the
punctured disc, where z0 is an essential singularity. Then

f(Dr(z0)\{z0}) = C.
Namely, the image of f is dense in C.

Proof. Otherwise, there is some w ∈ C − Dr(z0)\{z0}. Then there exists δ > 0 such that
|f(z) − w| 󰃍 δ for any z ∈ Dr(z0)\{z0}. In particular, we consider g(z) := 1/(f(z) − w),
then |g| 󰃑 1/δ on Dr(z0)\{z0}. In other words, g is bounded near z0 and is holomorphic on
the small punctured region around z0. From Riemann Extension Theorem 4.12, this implies
that z0 is a removable singularity of g. Here comes two cases:
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• g(z0) = 0, then f(z)− w has a pole at z0;
• g(z0) ∕= 0, then f(z0) is well-defined and z0 is a removable singularity of f .

Neither the first nor the second case admits the assumption. So we get a contradiction. □

The following theorem shows the extreme complexity of essential singularities. Even the
holomorphic ones have wild manifestations near this kind of singularity.

Theorem 4.17 (Big Picard Theorem). Assume f ∈ O(Dr(z0)\{z0}) has an essential sin-
gularity at z0, then with at most one exception w0 ∈ C,

∀w ∈ C\{w0}, #{f−1(w)} = ∞.

4.3.3. Meromorphicity Versus Rationality.

Definition 4.18 (Meromorphicity). A function f : Ω → C is called meromorphic if there
is a sequence of points {zn}∞n=1 ⊂ Ω without any limit points in Ω such that

(i) f ∈ O(Ω\{zn}∞n=1), and
(ii) f has poles at {zn}∞n=1.

Recall from topology that the extended complex plane is the one-point compactification

C = C ∪ {∞} = S2 ⊂ R3

of C (as a Riemann surface). Note that the punctured 2-dimensional sphere is homeomorphic
to C itself. If f is holomorphic in the set {z ∈ C | |z| > R} then we define

F (z) := f(
1

z
),

which is holomorphic in D1/R(0)\{0}. In convention, f is called to have a pole (resp. remov-
able singularity or essential singularity) at ∞ if F has a pole (resp. removable singularity
or essential singularity) at 0.

Definition 4.19. A meromorphic function on C which is either holomorphic at ∞ or has
a pole at ∞ is called a meromorphic function on C.

Theorem 4.20 (Rationality). Every meromorphic function on C is a rational function,
i.e., the quotient of a polynomial by another polynomial (of any degree).

Proof. Let f be a meromorphic function on C, then by definition f(1/z) is either holomorphic
or has a pole at z = 0. Thus f has only finite poles at C, denoted by z1, . . . , zn ∈ C, since
the zeros of f(1/(z−w)) must be isolated by Remark 4.7 for some fixed w ∈ C. Assume the
principal parts of f at z1, . . . , zn are P1, . . . , Pn for which Pk is a polynomial in 1/(z − zk)
(recall Definition 4.6). For z lying sufficiently close to zk, one may write

f(z) = Pk(z) + hk(z)

for some holomorphic function hk defined near zk. If ∞ is a pole of f then

f(
1

z
) = 󰁨P∞(z) + 󰁨h∞(z),

where 󰁨P∞(z) is a polynomial in 1/z and 󰁨h∞(z) is holomorphic near z = 0. Denote P∞(z) =
󰁨P∞(1/z), which is a polynomial in z. Consider

H(z) = f(z)− P∞(z)−
n󰁛

k=1

Pk(z),
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then z1, . . . , zn are removable singularities of H. Thus H ∈ O(C) that is also bounded in C.
By Liouville (Corollary 3.16), H is a constant, say C. Therefore,

f(z) = C + P∞(z) +

n󰁛

k=1

Pk(z),

which is a rational function as required. □
In fact, Theorem 4.20 displays a phenomenon of “GAGA,” which is the abbreviation of

Géométrie Algébrique et Géométrie Analytique in French. The GAGA-type conclusions are
about some hidden connection between analytic geometry and algebraic geometry.

Examples 4.21. Here comes some meromorphic functions on extended complex plane.

(1) f(z) = z is holomorphic on C but with a pole at ∞ (since F (z) := f(1/z) = 1/z
has a pole at 0).

(2) f(z) = 1/z has a pole at 0 and a zero at ∞.
(3) f(z) =

󰁓∞
k=0 akz

k has n zeros in C and a pole at ∞ of order n.

Corollary 4.22. Any holomorphic function defined on C (i.e., meromorphic function on C
without poles) is a constant.

4.4. The Argument Principle and Rouché Theorem. Here are some observations:

• if f is holomorphic and has a zero z0 of order n, then f(z) = (z − z0)
ng(z) with

g(z) ∕= 0 near z0. Thus

f ′

f
(z) =

n

z − z0
+G(z),

where G = g′/g is also holomorphic near z0. Here z0 is the simple pole with residue
n.

• if f is holomorphic in Ω\{z0} and has a pole z0 of order n, then f(z) = (z−z0)
−ng(z)

again. Thus
f ′

f
(z) =

−n

z − z0
+G(z).

Here z0 is the simple pole with residue −n.

From these, if f is meromorphic, then f ′/f will have simple poles with residues given by
the orders. These two extreme cases take care of the numbers of zeros and poles of a given
meromorphic function. More generally, we obtain the following result.

Theorem 4.23 (Argument Principle). Assume f is meromorphic in some open set con-
taining an open disc D, and f has no zeros and poles at ∂D. Then

1

2πi

󰁝

∂D

f ′

f
(z)dz = #{zeros of f in D}−#{poles of f in D}.

Here the sizes on the right-hand side are counted with multiplicities.

Remark 4.24. Even without a suitably rigorous definition, one can formally write f ′/f =
(log f)′, where

log f(z) = log(|f(z)|ei arg f(z)) = log |f(z)|+ i arg f(z).

Consequently, we have
f ′

f
=

d

dz
log |f(z)|+ i

d

dz
arg f(z).

And then 󰁝

∂D

f ′

f
(z)dz =

󰁝

f(∂D)

1

w
dw
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by replacing w = f(z).

As a typical application of the argument principle, the following result is widely used in
counting zeros of holomorphic functions.

Corollary 4.25 (Rouché Theorem). Let f, g ∈ O(D) and |f(z)| > |g(z)| on ∂D. Then
f + g and f have the same number of zeros in D.

Proof. Consider the function

ft(z) = f(z) + tg(z), t ∈ [0, 1].

Then f0 = f and f1 = f + g. Also note that |ft| ∕= 0 on ∂D since

|ft(z)| 󰃍 ||f(z)|− t|g(z)|| > 0

by assumption. Since f and g as well as ft are holomorphic, the number of poles of ft is
forced to be 0. From the argument principle (Theorem 4.23), we see

1

2πi

󰁝

∂D

f ′
t

ft
(z)dz = nt := #{zeros of ft in D}.

Note that as a function in t, the left-hand side above is continuous with respect to t, whereas
the right-hand side only takes values in N through a discontinuous way. This forces nt to
be a constant for any t. In particular, n0 = n1 just so f and f + g have the same number
of zeros in D. □

The following result is a further application of the Rouché theorem.

Proposition 4.26 (Open Mapping Theorem). If f : Ω → C is a non-constant holomorphic
function defined on an open connected region Ω, then f maps open sets to open sets. Namely,
f is open as a map.

Proof. Assume w0 = f(z0) for any fixed z0 ∈ Ω. We need to verify if w ∈ C is close to w0,
then w also lands in the image of f . Denote

g(z) = f(z)− w = (f(z)− w0)󰁿 󰁾󰁽 󰂀
F (z)

+(w0 − w)󰁿 󰁾󰁽 󰂀
G(z)

.

Here G(z) is a constant function in z. Choose 0 < δ ≪ 1 such that {|z − z0| 󰃑 δ} ⊂ Ω and
|f(z) − w0| 󰃍 ε for sufficiently small ε > 0 on the circle Cδ(z0). The latter condition can
be valid as z0 is an isolated zero of the non-constant holomorphic function f(z)−w0. Once
we are given |w−w0| < ε, by Rouché Theorem (Corollary 4.25), F (z) and (F +G)(z) have
the same number of zeros in Cδ(z0). As a result, there is z ∈ Ω such that f(z) = w because
F (z) is already known to have a zero z0. □
Proposition 4.27 (Maximum Principle). Let Ω be an open connected region and let f ∈
O(Ω). Then f cannot obtain a maximum in Ω unless f is a constant.

Proof. Otherwise, there is z0 ∈ Ω such that |f(z0)| is maximal. By the open mapping
theorem (Proposition 4.26), f maps a small disc around z0 to an open set of f(z0). This
leads to a contradiction. □
Corollary 4.28. Continuing on Proposition 4.27, assume moreover that Ω is bounded and
f is continuous in Ω. Then

sup
z∈Ω

|f(z)| 󰃑 sup
z∈∂Ω

|f(z)|.

Proof. Since Ω is bounded in C ∼= R2, we see Ω is compact. The assumption on f deduces
that f attains a maximum in Ω. Consequently, the maximum principle shows that if f is
not a constant, this maximum must lie on ∂Ω. □
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Remark 4.29. The bounded requirement for Ω is essential in Corollary 4.28. For example,

consider F (z) = e−iz2

defined on Ω = {z = x+ iy | x, y 󰃍 0}; here |F (z)| = 1 on ∂Ω but F
is clearly unbounded in Ω.

As for unbounded sets, the Phragmén-Lindelöf theorem (Theorem 4.30) can be regarded
as a various version of the maximum principle. We will use it to prove the Paley-Wiener
theorem later (see Theorem 5.12).

Theorem 4.30 (Phragmén-Lindelöf). Suppose Dα ⊂ C is an angular region of opening
π/α with α > 1/2, say,

Dα = {z = reiθ | |θ| < π

2α
, r > 0}.

Let f ∈ O(Dα) satisfy the following conditions:

(1) |f(z)| 󰃑 M on ∂Dα;
(2) there is 0 < β < α such that |f(reiθ)| 󰃑 Cerβ as r → ∞.

Then |f(z)| 󰃑 M for all z ∈ Dα.

Proof. Fix γ > 0 such that β < γ < α and define

Fε(z) = e−εzγ

f(z)

for ε > 0. We obtain

|Fε(Reiθ)| = e−εRγ cos(γθ)|f(Reiθ)| 󰃑 |f(Reiθ)|

since γ < α implies |γθ| < πγ/(2α), and then cos γθ > 0. Therefore,

|Fε(z)| 󰃑 M, ∀z ∈ ∂Dα.

Applying condition (2), since γ > β,

|Fε(Reiθ)| 󰃑 e−εRγ cos(γπ/(2α)) · CeR
β

→ 0

as R → ∞ for some constant C < ∞. By the maximum principle, |Fε(z)| 󰃑 M for z ∈ Dα,R

whenever R ≫ 1. Here Dα,R = Dα ∩ {|z| < R} is defined as follows.

x

y

Dα

Dα,R

Letting R → ∞ and we attain that |Fε| 󰃑 M in Dα. Finally, letting ε → 0 to get |f(z)| 󰃑 M
in Dα. □

Through the similar idea as in Theorem 4.30, we also have the result on a doubly infinite
strip given as follows.

Theorem 4.31. Let S ⊂ C be a doubly infinite strip, i.e., S = {z ∈ C | −1 󰃑 ℜ(z) 󰃑 1}.
Let f ∈ O(S) with |f(z)| 󰃑 M for z ∈ ∂S. Assume f is bounded in S. Then |f(z)| 󰃑 M
for all z ∈ S. Namely, the bound of f on ∂S extends to the interior region.
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Proof. Consider the function Fε(z) = eεz
2

f(z) with ε > 0. Then

|Fε(x+ iy)| = eε(x
2−y2)|f(x+ iy)|.

Since f is bounded on ∂S by M , for T ≫ 1, one obtain

|Fε(x± iT )| 󰃑 eε(x−T 2)|f(x± iT )| 󰃑 M.

Then |F (z)| 󰃑 M for z ∈ ∂ST , where ST = z = x+ iy ∈ C | −1 󰃑 x 󰃑 1,−T 󰃑 y 󰃑 T .
Applying maximum principle (Proposition 4.27) to Fε on ST , we get |Fε(z)| 󰃑 M in ST .
Finally, letting T → ∞ and ε → 0 gives |f(z)| 󰃑 M in S. □

4.5. The Complex Logarithm. The discussion on complex logarithms refers to a subtle
phenomenon that the local complex geometry may not be compatible with that globally,
even when we care only about the complex plane, which is the simplest geometric object
over C. Consider z = reiθ with r > 0. Due to the experience in computing real logarithms,
one can formally write

log z := log r + iθ.

However, the first problem is that θ is not uniquely determined as different θ’s can lead to
the same value of z up to 2πZ. Let’s make the following observations.

(1) If for some z0 ∕= 0, log z0 is defined, then log z is well-defined for z lying close to z0
via the definition above.

(2) log z can be defined on C\[0,∞). Moreover,

z = reiθ, 0 < θ < 2π =⇒ log z = log r + iθ.

(3) log z can be defined on C\i(−∞, 0]. Moreover,

z = reiθ, −π

2
< θ <

3π

2
=⇒ log z = log r + iθ.

(4) log z cannot be well-defined on C\{0}.
To sum these observations up, the complex logarithm can be well-defined in some special
(simply connected) regions that are not the whole complex plane. The admissible region
must be truncated to a single period 2π in θ such that one cannot vary the argument
continuously.

Theorem 4.32. Assume Ω ⊂ C is simply connected such that 0 /∈ Ω and 1 ∈ Ω. Then there
exists a well-defined holomorphic function

F (z) := logΩ(z) ∈ O(Ω)

such that eF (z) = z for all z ∈ Ω; and for r > 0 close to 1, we have F (r) = log r.

Proof. The idea is naive: to construct F (z) as a primitive of 1/z. Since 0 /∈ Ω, we see
f(z) = 1/z ∈ O(Ω). By the global Cauchy (Theorem 3.10), its primitive F (z) is well-
defined on the simply connected region, and moreover,

F (z) =

󰁝

Γz

f(w)dw

that is independent of the choice of the path Γz from 1 to z in Ω. Taking z = 1, we see
F (z) = F (1) = 0 simply by definition of F . On the other hand, we note that

d

dz
(e−F (z)z) = −F ′(z)e−F (z)z + e−F (z) = 0,

and then e−F (z)z is a constant function e−F (1) = 1. Hence

eF (z) = z, F (r) =

󰁝 r

1

1

x
dx = log r.
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□
Remark 4.33. If log z is well-defined in Ω, then for all α ∈ C, zα is also well-defined via
zα := eα log z. Simultaneously, even if log z is well-defined in Ω,

log(z1z2) ∕= log z1 + log z2

in general. A counterexample is easy to find: say

log z = log r + iθ, z ∈ C\(−∞, 0], −π < θ < π

and take z1 = z2 = e2πi/3. Then z1z2 = e4πi/3 = ei(−2π/3). In this case,

log(z1z2) = −2πi

3
, log z1 + log z2 =

4πi

3
.

The following theorem generates Theorem 4.32 about the existence of complex logarithms.
The log function is well-defined for an everywhere non-vanishing holomorphic function in a
simply connected region.

Theorem 4.34. Let Ω ⊂ C be simply connected. Assume f ∈ O(Ω) doesn’t vanish anywhere
in Ω. Then there is g ∈ O(Ω) such that f(z) = eg(z) for all z ∈ Ω. We denote g(z) =
logΩ f(z).

Proof. Through a similar idea, let’s construct g as a primitive of f ′/f . Fix z0 ∈ Ω and
define

g(z) :=

󰁝

Γz

f ′(w)

f(w)
dw + C

where Γz is a path from z0 to z and C is a constant such that eC = f(z0) (or formally,
C = log f(z0)). Again, g(z) is well-defined and g ∈ O(Ω) with g′(z) = f ′(z)/f(z). Then

d

dz
(f(z)e−g(z)) = 0

and f(z)e−g(z) is a constant function. Take z = z0 to deduce that eg(z) = f(z). □

5. Fourier Analysis and Complex Analysis

In this chapter, we shall describe some interesting connections between complex function
theory and Fourier analysis on the real line. The motivation for this study comes in part
from the simple and direct relation between Fourier series on the circle and power series
expansions of holomorphic functions in the disc, which we now investigate.

5.1. Motivation: Mean-value Property. Recall Cauchy integral formula (Theorem 3.13

and 3.14) as follows. For f ∈ O(Ω) and DR(z0) ⊂ Ω, we obtain

f (n)(z0) =
n!

2πi

󰁝

∂DR(z0)

f(z)

(z − z0)n+1
dz.

Now parametrize ∂DR(z0) via z0 +Reiθ and we get

(1) (Mean-value Property) For n = 0,

f(z0) =
1

2πi

󰁝 2π

0

f(z0 +Reiθ)

Reiθ
Rieiθdθ

=
1

2π

󰁝 2π

0

f(z0 +Reiθ)dθ.

(2) More generally, for n > 0,

f (n)(z0) =
n!

2πRn

󰁝 2π

0

f(z0 +Reiθ)e−inθdθ.
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Remark 5.1. As for the case n < 0, note that f(z)/(z − z0)
n+1 is holomorphic in Ω so its

integral along ∂DR(z0) vanishes. Hence
󰁝 2π

0

f(z0 +Reiθ)e−inθdθ = 0, n < 0.

Recall that holomorphicity is equivalent to analyticity. Then the (higher) mean-value
equations above exactly reveal the coefficients of the analytic expansion at some z0. Notice
that these equations have to do with Fourier transformations on R. To be more precise, the
result above can be interpreted as a discrete version of the Fourier transform.

Here comes a quick review of Fourier transforms defined over R. Let f be a nice function
on R (with some decay condition or integrable condition satisfied, say). Its Fourier transform
is defined as

󰁥f(ξ) :=
󰁝 ∞

−∞
f(x)e−2πiξxdx, ξ ∈ R.

Goal: in the present context, we aim to prove the following correspondence relation. Say the
possibility of extending f to a holomorphic function is equivalent to some decay condition

of 󰁥f at ∞. In other words, holomorphicity of a complex-valued function is determined
(whereas not over-determined) by its restriction on R as well as the manifestation of its
Fourier transformation at ∞.

Before the theoretical introduction, recall the following basic fact on the Fourier trans-
form. It shows that the inversion of Fourier transformation only drops information on a
zero-measure subset of R.

Theorem 5.2 (Fourier Inversion on R). If f ∈ L1(R) and 󰁥f ∈ L1(R), then
󰁝 ∞

−∞
󰁥f(ξ)e2πiξxdξ = f(x) a.e. in R.

5.2. The Class F. Now we introduce a class of functions that are particularly suited to
our goal: proving theorems about the Fourier transform using complex analysis. Moreover,
this class will be large enough to contain many essential applications.

Definition 5.3 (Moderate Decay). Let f be a function on R. We call f have moderate
decay if

|f(x)| 󰃑 A

1 + x2

for all x ∈ R. In particular, for f continuous and of moderate decay,
󰁝 ∞

−∞
|f(x)|dx < ∞.

Definition 5.4 (The Class F). For a > 0, denote the class Fa to the functions f satisfying
the following conditions:

(i) f ∈ O(Sa), where Sa = {z ∈ C | |ℑz| < a};
(ii) there is a constant A > 0 such that |f(x+ iy)| 󰃑 A

1+x2 for all x ∈ R and |y| < a.

And we define the class F =
󰁖

a>0 Fa.

Examples 5.5. One must intuitively note that the class F collects elements that behave
well in a sufficiently narrow strip containing R.

(1) f(z) = e−πz2 ∈ Fa for any a > 0.
(2) For any 0 < a < c with fixed constant c > 0,

f(z) =
c

c2 + z2
∈ Fa.
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(3) For any 0 < a < 1/2,

f(z) =
1

coshπz
=

2

eπz + e−πz
∈ Fa.

Exercise 5.6. Show that for all f ∈ Fa and for any 0 < b < a, we have f (n) ∈ Fb. (Hint:
using Cauchy integral formula.)

5.2.1. Exponential Control for F. The following theorem is in preparation for the result by
Paley-Wiener in 1934 (Theorem 5.12), which will be useful in finding the support of Fourier
transforms.

Theorem 5.7. If f ∈ Fa then | 󰁥f(ξ)| 󰃑 Be−2πb|ξ| for any ξ ∈ R and 0 󰃑 b < a.

Proof. For any ξ ∈ R we obtain by definition that

󰁥f(ξ) =
󰁝 ∞

−∞
f(x)e−2πixξdx.

Consequently, it is bounded as

| 󰁥f(ξ)| 󰃑
󰁝 ∞

−∞
|f(x)|dx 󰃑

󰁝 ∞

−∞

A

1 + x2
dx 󰃑 C

for all ξ ∈ R and some constants A,C < ∞. So the result is true for b = 0. Let 0 < b < a
and denote g(z) = f(z)e−2πizξ. It suffices to consider the case where ξ > 0, and the situation
for ξ 󰃑 0 must be similar. The idea is the same as what we have used twice in Example
4.10 and 4.11 before. Suppose ΓR is the piecewise-linear closed curve defined as follows.

x

y
O R−R

−R− bi R− bi

−bi

−ai

IR

IIIR

IIRIVR

Note that g(z) is holomorphic in Sa by assumption. Now we obtain

0 =

󰁝

ΓR

g(z)dz =

󰁝 R

−R

g(x)dx

󰁿 󰁾󰁽 󰂀
IR

+

󰁝 −b

0

g(R+ it)dt

󰁿 󰁾󰁽 󰂀
IIR

+

󰁝 −R

R

g(x− ib)dx

󰁿 󰁾󰁽 󰂀
IIIR

+

󰁝 0

−b

g(−R+ it)dt

󰁿 󰁾󰁽 󰂀
IVR

from the Cauchy integral formula (Theorem 3.13). Firstly, we obtain

|IIR| 󰃑
󰁝 −b

0

A

1 +R2
e−2πi(R+it)ξdξ ∼ C

1 +R2
→ 0

for some constants A,C < ∞ as R → ∞. Similarly, |IVR| → 0 as well. Hence the equality
above becomes

0 = IR + IIIR = 󰁥f(ξ) +
󰁝 −∞

∞
f(x− ib)e−2πi(x−ib)ξdx.
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And therefore,

| 󰁥f(ξ)| =
󰀏󰀏󰀏󰀏
󰁝 ∞

−∞
f(x− ib)e−2πi(x−ib)ξdx

󰀏󰀏󰀏󰀏

󰃑
󰁝 ∞

−∞
|f(x− ib)|e−2πbξdx

󰃑 e−2πbξ

󰁝 ∞

−∞

A

1 + x2
dx = Be−2πbξ.

The remaining proof tackles the case ξ 󰃑 0. From this, we get

󰁥f(ξ) =
󰁝 ∞

−∞
f(x+ ib)e−2πi(x+ib)ξdx.

Then the same inequality accomplishes the proof. □

The key ingredient in the proof of Theorem 5.7 above lies in the expression of Fourier
transformation for f ∈ Fa through a complex integral along some line y = b. This idea
together with the Fubini theorem in real analysis deduce the following Fourier inversion.
Proposition 5.8 is a modified version of Theorem 5.2 in complex analysis, which drops the
“almost everywhere” condition.

5.2.2. Fourier Inversion for F.

Proposition 5.8 (Complex Fourier Inversion). Given f ∈ Fa, then

∀x ∈ R, f(x) =

󰁝 ∞

−∞
󰁥f(ξ)e2πiξxdξ.

Proof. Recall that we can rewrite the Fourier transform as

󰁥f(ξ) =
󰁝 ∞

−∞
f(x− ib)e−2πi(x−ib)ξdx.

Let’s first consider the integral along the positive-half part. For 0 < b < a, we obtain
󰁝 ∞

0

󰁥f(ξ)e2πiξxdξ =

󰁝 ∞

0

󰀕󰁝 ∞

−∞
f(u)e−2πuξdu

󰀖
e2πixξdξ

=

󰁝 ∞

0

󰀕󰁝 ∞

−∞
f(u− ib)e−2π(u−ib)ξdu

󰀖
e2πixξdξ

=

󰁝 ∞

−∞
f(u− ib)

󰁝 ∞

0

e−(2πb+2π(u−x)i)ξdξdu

=

󰁝 ∞

−∞
f(u− ib) · 1

2πb+ 2πi(u− x)
du

=
1

2πi

󰁝 ∞

−∞

f(u− ib)

(u− ib)− x
du

=
1

2πi

󰁝

L1

f(ξ)

ξ − x
dξ.

In the last row, the line L1 = R− ib. Similarly, for L2 = R+ ib, we also have

󰁝 0

−∞
󰁥f(ξ)e2πiξxdξ =

1

2πi

󰁝

L2

f(ξ)

ξ − x
dξ.
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To sum these up, we get
󰁝 ∞

−∞
󰁥f(ξ)e2πiξxdξ =

󰁝 ∞

0

󰁥f(ξ)e2πiξxdξ +
󰁝 0

−∞
󰁥f(ξ)e2πiξxdξ

=
1

2πi

󰁝

L1+L2

f(ξ)

ξ − x
dξ.

On the other hand, from the Cauchy integral formula (Theorem 3.13),

f(x) =
1

2πi

󰁝

ΓR

f(ξ)

ξ − x
dξ = IR + IIR + IIIR + IVR,

where ΓR is defined as in the picture. It suffices to show that |IIR|, |IVR| → 0 as R → ∞.

x

y

O

bi

−bi

R−R

L2

L1
IR

IIIR
IIR

IVR

The result in need is deduced from the typical argument. Say

|IIR| =

󰀏󰀏󰀏󰀏󰀏
1

2πi

󰁝 b

−b

f(R+ it)

R+ it− x
dt

󰀏󰀏󰀏󰀏󰀏 󰃑
1

2π

󰁝 b

−b

A

1 +R2
· 1

|R− x|dt 󰃑
C

R3
→ 0

for some constant A,C < ∞ as R → ∞. Similarly, |IVR| → 0 as well. Therefore,

f(x) = lim
R→∞

1

2πi

󰁝

ΓR

f(ξ)

ξ − x
dξ =

1

2πi

󰁝

L1+L2

f(ξ)

ξ − x
dξ =

󰁝 ∞

−∞
󰁥f(ξ)e2πixξdξ.

This completes the proof. □
5.2.3. Poisson Summation Formula for F.

Theorem 5.9 (Complex Poisson Summation Formula). Given f ∈ Fa, we have
󰁛

n∈Z
f(n) =

󰁛

n∈Z

󰁥f(n).

Proof. Consider the function f(z)/(e2πiz − 1), it has simple poles at every n ∈ Z with

resn
f(z)

e2πiz − 1
= lim

z∈n
(z − n)

f(z)

e2πiz − 1
=

f(n)

2πi
.

Now we fix N ∈ N and apply the residue formula on ΓN . Here we keep the statement as in
the proof of Proposition 5.8: ΓN is defined by the picture above with R = N + 1/2. Hence

󰁝

ΓN

f(z)

e2πiz − 1
dz = 2πi

󰁛

pole x∈ΓN

resx
f(z)

e2πiz − 1
=

󰁛

|n|󰃑N

f(n).

Claim: the integrals on the vertical segments tends to 0 as N → ∞.
To show this claim, letting N → ∞, we get

lim
N→∞

󰁝

ΓN

f(z)

e2πiz − 1
dz = lim

N→∞

󰁛

|n|󰃑N

f(n) =
󰁛

n∈Z
f(n).



NOTES ON COMPLEX ANALYSIS 43

Apply the same argument as in Proposition 5.8, this leads to

󰁛

n∈Z
f(n) =

󰁝

L1

f(z)

e2πiz − 1
dz +

󰁝

L2

f(z)

e2πiz − 1
dz.

We have some observations as follows.

• on L1 = R − ib, we see e2πiz = e2πi(x−ib) = e2πbe2πix, thus |e2πiz| = e2πb > 1.
Therefore,

1

e2πiz − 1
= e−2πiz 1

1− e−2πiz
= e−2πiz

∞󰁛

n=0

e−2πinz =

∞󰁛

n=0

e−2πi(n+1)z.

• on L2 = R+ ib, similarly, |e2πiz| = e−2πb < 1. Therefore,

1

e2πiz − 1
= − 1

1− e2πiz
= −

∞󰁛

n=0

e2πinz.

So our calculation can be done:

󰁛

n∈Z
f(n) =

󰁝

L1

f(z)

∞󰁛

n=0

e−2πi(n+1)zdz −
󰁝

L2

f(z)

∞󰁛

n=0

e2πinzdz

=

∞󰁛

n=0

󰁝 ∞

−∞
f(x− ib)e−2πi(n+1)(x−ib)dx+

∞󰁛

n=0

󰁝 ∞

−∞
f(x+ ib)e−2πi(−n)(x+ib)dx

=

∞󰁛

n=0

󰁥f(n+ 1) +

∞󰁛

n=0

󰁥f(−n) =
󰁛

n∈Z
f(n).

This proves the Poisson summation formula. □

There are two precise applications of Theorem 5.9. It is used to deduce more formulas.

Example 5.10 (Functional Equation). Recall that for f(x) = e−πx2

, its Fourier transform
is itself (Example 3.12):

󰁥f(ξ) =
󰁝 ∞

−∞
e−πx2

e−2πxξdx = e−πξ2 .

Thus, for F (x) = e−πt(x+a)2 with t > 0 and a ∈ R, we have

󰁥F (ξ) =

󰁝 ∞

−∞
F (x)e−2πixξdx = t−1/2e2πiaξe−πξ2/t

The Poisson summation formula deduces that
󰁛

n∈Z
e−πt(n+a)2 = t−1/2

󰁛

n∈Z
e−πn2/t · e2πian.

In particular, letting a = 0 and denoting θ(t) =
󰁓

n∈Z e
−πtn2

for t > 0, we get

θ(t) = t−1/2θ(
1

t
).

This is an important functional equation in analytic number theory, which is relevant to the
Riemann hypothesis.

Example 5.11. Recall Example 4.11 in which we have shown that f(x) = 1/ coshπx takes
itself as its Fourier transform. One can also show that

F (x) =
e−2πiax

cosh(πx/t)
, 󰁥F (ξ) =

t

cosh(π(ξ + a)t)
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for all t > 0 and a ∈ R. Again, by Poisson summation formula, one deduces that

󰁛

n∈Z

e−2πian

cosh(πn/t)
=

󰁛

n∈Z

t

cosh(π(n+ a)t)
.

5.3. Paley-Wiener Theorem.

Theorem 5.12 (Paley-Wiener, 1934). Suppose f : C → C is continuous and of moderate
decay on R, i.e., for all x ∈ R, |f(x)| 󰃑 A/(1 + x2). Then the following are equivalent:

(1) f has an extension to a holomorphic function on C with |f(z)| 󰃑 Ae2πM |z| for some
constants A,M > 0, and for all z ∈ C.

(2) 󰁥f is supported on [−M,M ], i.e., 󰁥f(ξ) = 0 for any |ξ| > M .

Proof. The converse direction (2) ⇒ (1) is relatively easy. Suppose 󰁥f is supported on
[−M,M ], then f is of moderate decay implies that the Fourier inversion for F (Proposition
5.8) holds for f . In particular,

∀x ∈ R, f(x) =

󰁝 ∞

−∞
󰁥f(ξ)e2πixξdξ =

󰁝 M

−M

󰁥f(ξ)e2πixξdξ.

Let’s define the complex-valued function

g(z) :=

󰁝 M

−M

󰁥f(ξ)e2πizξdξ.

Then g ∈ O(C) and g(x) = f(x) over R. Moreover, for any z = x+ iy, we obtain

|g(z)| =

󰀏󰀏󰀏󰀏󰀏

󰁝 M

−M

󰁥f(ξ)e2πizξdξ

󰀏󰀏󰀏󰀏󰀏 󰃑
󰁝 M

−M

| 󰁥f(ξ)|e−2πyξdξ 󰃑 Ae2πM |z|

for some constant A. The last inequality above is given the exponential control (Theorem
5.7). Now we prove (1) ⇒ (2) step by step.
Step 1: Stronger Growth Condition.

Assume f ∈ O(C) is controlled by a stronger growth condition, say

|f(x+ iy)| 󰃑 A′ e
2πM |y|

1 + x2

for some A′ > 0. The claim is that 󰁥f(ξ) = 0 whenever |ξ| > M .

(i) ξ > M : a similar computation through the Cauchy integral formula as if in the
proof of Theorem 5.7 deduces that

󰁥f(ξ) =
󰁝 ∞

−∞
f(x)e−2πixξdx =

󰁝 ∞

−∞
f(x− iy)e−2πi(x−iy)ξdx

for all y > 0. Applying the stronger growth condition, we attain that

| 󰁥f(ξ)| 󰃑
󰁝 ∞

−∞

A′

1 + x2
e2πMy−2πyξdx =

󰁝 ∞

−∞

A′

1 + x2
dxe2πy(M−ξ) → 0

as y → ∞, because of y > 0 and M − ξ < 0. Thus for ξ > M , | 󰁥f(ξ)| = 0.
(ii) ξ < −M : same as in (i). One can compute

󰁥f(ξ) =
󰁝 ∞

−∞
f(x)e−2πixξdx =

󰁝 ∞

−∞
f(x+ iy)e−2πi(x+iy)ξdx

for all y > 0 again. It can be verified that

| 󰁥f(ξ)| 󰃑 Ce2πy(ξ+M) → 0

for some constant C as y → ∞. Thus for ξ < −M , | 󰁥f(ξ)| = 0.



NOTES ON COMPLEX ANALYSIS 45

Step 2: Relaxing the Growth Condition.

Take f ∈ O(C) such that |f(x + iy)| 󰃑 Ae2πM |y|. The claim is that 󰁥f(ξ) = 0 for all
|ξ| > M as well.

(i) ξ > M : consider for ε > 0 that

fε(z) :=
f(z)

(1 + iεz)2
.

It suffices to verify the following two facts. Firstly, the function fε satisfies the
stronger growth condition in Step 1. That is,

|fε(x+ iy)| 󰃑 D
e2πM |y|

1 + x2

for another constant D. Applying the argument that we have used, we can immedi-

ately get 󰁥fε(ξ) = 0 for |ξ| > M . Secondly, check that 󰁥fε(ξ) → 󰁥f(ξ) as ε → 0. These
are relatively easy to do (so we choose to omit the details).

(ii) ξ < −M : consider for ε > 0 that

fε(z) :=
f(z)

(1− iεz)2
.

One can verify the conditions as in (i) again.

Step 3: Applying Phragmén-Lindelöf Maximum Principle.
We aim to prove that if |f(x)| 󰃑 1 for x ∈ R and |f(z)| 󰃑 e2πM |z| for all z ∈ C, then

|f(x+ iy)| 󰃑 e2πM |y|.

For this, we consider the function

F (z) := f(z)e2πiMz.

On Q1 = {(x, y) ∈ R2 | x, y 󰃍 0}, we have

|F (x)| = |f(x)| 󰃑 1, |F (iy)| = |f(iy)e−2πMy| 󰃑 1.

Hence |F (z)| 󰃑 1 for all z ∈ ∂Q1. Also, the condition |f(z)| 󰃑 e2πM |z| yields that

|F (z)| 󰃑 e4πM |z|

for all z ∈ Q1. Now by the Phragmén-Lindelöf maximum principle (Theorem 4.30),

∀z ∈ Q1, |F (z)| 󰃑 1.

Hence |f(z)| 󰃑 e−2πMy for all z ∈ Q1. Applying the same argument to other quadrant
closure Q2, Q3, and Q4, we finally have |f(z)| 󰃑 e−2πMy for all z ∈ C. Furthermore, note
that the condition |f(x)| 󰃑 1 can be dropped without changing anything essentially. The
result is naturally generated to

|f(z)| 󰃑 e−2πM |z|

for all z ∈ C as desired. □

Remark 5.13. The moderate decay condition for f in Theorem 5.12 can be replaced by some
integrable property of f to attain a more general version.
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6. Entire Function

Recall in Corollary 3.16 that f is called entire if f ∈ O(C). In Subsection 4.3.2 and 4.3.3,
we have seen the complexity of the manifestation of the meromorphics at the infinity. In
this chapter we are going to construct the hidden connection between the growth of f at
∞ and the zeros of f on C. Morally, the intuition which will be proved is that the faster it
growths at ∞, the more zeros it contains (Theorem 6.7). This result is compatible with the
fundamental theorem of algebra (Theorem 3.18).

Also, it turns out that if an entire function has a finite (exponential) order of growth,
then it can be specified by its zeros up to multiplication by a simple factor. The precise
version of this assertion is the Hadamard factorization theorem (Theorem 6.13). It may be
viewed as another instance of the general rule that was formulated before: under appropriate
conditions, a holomorphic function is essentially determined by its zeros (Theorem 6.10).

6.1. Jensen’s Formula. Jensen’s formula, central to much of the theory developed in this
section, exhibits a deep connection between the number of zeros of a function in a disc and
the (logarithmic) average of the function over the circle. In fact, Jensens formula not only
constitutes a natural starting point for us, but also leads to the fruitful theory of value
distributions, also called Nevanlinna theory.

The following result says that for a well-behaved holomorphic function on a disc, its
central logarithmic value is and its logarithmic average along the boundary circle are almost
mutually determined, where the difference is given by some information about zeros.

Theorem 6.1 (Jensen). Let Ω ⊂ C be an open subset and let DR := DR(0) ⊂ Ω. Suppose
f ∈ O(Ω) satisfies f(0) ∕= 0 and is nonzero along ∂DR. Assume z1, . . . , zN are the zeros of
f in DR counted with multiplicities. Then

log |f(0)| =
N󰁛

k=1

log |zk
R
|+ 1

2π

󰁝 2π

0

log |f(Reiθ)|dθ.

Proof. Note that the formula is stable under additive. That is, if the result holds for f1 and
f2 simultaneously, then it holds for f1 · f2 as well. Denote

g(z) =
f(z)

󰁔N
k=1(z − zk)

,

then every zk is a removable singularity of g. Thus g ∈ OO(DR) and g ∕= 0 inDR everywhere.
Hence we may write

f(z) = g(z) ·
N󰁜

k=1

(z − zk).

It suffices to verify the formula for g without zeros, that is, to show

log |g(0)| = 1

2π

󰁝 2π

0

log |g(Reiθ)|dθ.

If g ∕= 0 in DR, then log |g(z)| is harmonic in DR and we can apply the mean-value property
for harmonic functions. Furthermore, suppose DR is simply connected and then h = log g
is well-defined in DR with eh = g by Theorem 4.32. Hence

log |g(z)| = ℜ|h(z)|.

This suggests us to apply the mean-value property to h and to take real parts. As a result,
the Jensen’s formula is valid for g(z). On the other hand, let’s check for the function z−w,
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where w ∈ DR. One may need to prove

log |w| = log
|w|
R

+
1

2π

󰁝 2π

0

log |Reiθ − w|dθ.

This is equivalent to say 󰁝 2π

0

log |eiθ − w

R
|dθ = 0.

Claim: for all |a| < 1 we have
󰁝 2π

0

log |eiθ − a|dθ = 0 ⇐⇒
󰁝 2π

0

log |1− aeiθ|dθ = 0.

Proof of the Claim. For this, consider the function F (z) = 1− az. Then F ∕= 0 in the unit
disc D. Hence there is some G being holomorphic in D such that eG = F by Theorem 4.32
again. Thus,

log |F | = log |1− az| = ℜG(z).

Finally, applying the mean-value property to G, we get

0 = log |F (0)| = 1

2π

󰁝 2π

0

log |F (eiθ)|dθ =
1

2π

󰁝 2π

0

log |1− aeiθ|dθ.

This is enough to complete the proof by taking some sufficiently large R. □

In fact, the holomorphicity assumption in Theorem 6.1 can be dropped to deduce a general
version of Jensen’s formula.

Theorem 6.2 (General Jensen’s Formula). Let Ω ⊂ C be an open subset and DR :=
DR(0) ⊂ Ω. Let f be a meromorphic function in Ω. Counting with multiplicities, assume
a1, . . . , aN are zeros and b1, . . . , bN are poles of f in DR, respectively. Then for all z ∈ DR

with f(z) ∕= 0 and f(z) ∕= ∞, we have

log |f(z)| = 1

2π

󰁝 2π

0

log |f(Reiθ)| · R2 − |z|2
|Reiθ − z|2 dθ

−
N󰁛

i=1

log

󰀏󰀏󰀏󰀏
R2 − aiz

R(z − ai)

󰀏󰀏󰀏󰀏+
M󰁛

j=1

log

󰀏󰀏󰀏󰀏
R2 − bjz

R(z − bj)

󰀏󰀏󰀏󰀏 .

Exercise 6.3. Prove Theorem 6.2 with a similar approach as in the proof of classical
Jensen’s formula. Consider the function

ψα(z) :=
R2 − αz

R(z − α)
, α ∈ DR.

First prove the result for f(z) ·
󰁔N

i=1 ψai
(z) · (

󰁔M
j=1 ψbj (z))

−1.

6.2. Zeros and the Order of Growth. In the present context, we are doing some prepa-
ration works for the ultimate goal of this section: to construct the connection between zeros
and the speed of growth at the infinity. Given f ∈ O(DR), we denote

nf (r) := #{z ∈ Dr | f(z) = 0} = #(f−1(0) ∩Dr),

counted with multiplicities.

Proposition 6.4. Keep the same statement of Theorem 6.1 on f and Ω. Then
󰁝 R

0

nf (r)
dr

r
=

1

2π

󰁝 2π

0

log |f(Reiθ)|dθ − log |f(0)|.
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Proof. By Jensen’s formula, we only need to verify

󰁝 R

0

nf (r)
dr

r
=

N󰁛

k=1

log
R

|zk|
,

where z1, . . . , zN are zeros of f in DR. Let’s define

ηk(r) =

󰀫
1, |zk| < r;

0, |zk| 󰃍 r.

Thus nf (r) =
󰁓N

k=1 ηk(r). On the other hand, we obtain

󰁝 R

0

ηk(r)
dr

r
=

󰁝 R

|zk|

dr

r
= log

R

|zk|
.

Therefore,

󰁝 R

0

nf (r)
dr

r
=

󰁝 R

0

N󰁛

k=1

ηk(r)
dr

r
=

N󰁛

k=1

󰁝 R

0

ηk(r)
dr

r
=

N󰁛

k=1

log
R

|zk|
.

Note that the key point of this proof lies in the case of a single zero. □

Now we are defining the order of growth, which is to be applied at the infinity later.

Definition 6.5 (Order of Growth). Given f ∈ O(C), if there exists some ρ > 0 and
constants A,B > 0 such that |f(z)| 󰃑 AeB|z|ρ for any z ∈ C, i.e., log |f(z)| 󰃑 B|z|ρ + O(1)
where O(1) denotes a bounded term, then we call f has order of growth at most ρ. Then
take ρf := inf ρ for all such ρ. And ρf is called the order of growth of f .

Examples 6.6. The subtlety in Definition 6.5 is that the order of growth is possibly not
precise. For example, if f is a polynomial in z, then ρf = 0 whereas |f(z)| cannot be
bounded by AeB < ∞. Similarly, one can show that if f(z) = exp ez, then ρf = ∞. For a
more prototypical example, consider f(z) = ez whose ρf = 1.

Theorem 6.7. Let f ∈ O(C) with order of growth ρf 󰃑 ρ. Then

(1) nf (r) 󰃑 Crρ for some C > 0 and r ≫ 1;
(2) if {zn}∞n=1 are zeros of f with zk ∕= 0 for any k, then for all s > ρ we have

∞󰁛

k=1

1

|zk|s
< ∞.

Proof. If f(0) = 0 then consider f(z)/zm, where m = ord0(f). So we may assume f(0) ∕= 0
for convenience and by Proposition 6.4,

󰁝 R

0

nf (r)
dr

r
=

1

2π

󰁝 2π

0

log |f(Reiθ)|dθ − log |f(0)| 󰃑 Arρ

for some constant A > 0 by assumption. Let R = 2r and note that

nf (r) log 2 = nf (r)

󰁝 2r

r

ds

s
󰃑

󰁝 2r

r

nf (s)
ds

s
󰃑

󰁝 R

0

nf (s)
ds

s
.
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So there exists another constant C > 0 such that nf (r) 󰃑 Crρ for r ≫ 1. This gives (1) as
required. As for (2), we obtain

󰁛

|zk|󰃍1

|zk|−s =

∞󰁛

j=0

󰁛

2j󰃑|zk|<2j+1

|zk|−s 󰃑
∞󰁛

j=0

2−jsnf (2
j+1)

󰃑 C ·
∞󰁛

j=0

2−js2(j+1)ρ 󰃑 C1 ·
∞󰁛

j=0

(2ρ−s)j < ∞.

The last inequality in the first and the second row above respectively uses (1) and ρ < s. □
6.3. Infinite Product. A natural question is whether or not, given any sequence of com-
plex numbers {zn}∞n=1, there exists an entire function f with zeros precisely at the points of
this sequence. A necessary condition is that {zn}∞n=1 do not accumulate, in other words we
must have limk→∞ |zk| = ∞, otherwise f would vanish identically by the analytic continu-
ation (Theorem 3.22). Weierstrass proved that this condition is also sufficient by explicitly
constructing a function with these prescribed zeros. A first guess is of course the product

∞󰁜

n=1

(z − zn)

when the sequence of zeros is finite. In general, Weierstrass inserted factors in this product
so that the convergence is guaranteed, yet no new zeros are introduced.

Before coming to the general construction, we review infinite products and study a basic

example. Given {an}∞n=1 ⊂ C, say the product converges if the limit limN→∞
󰁔N

n=1(1+ an)
exists.

Proposition 6.8. Whenever
󰁓∞

n=1 |an| < ∞, the product
󰁔N

n=1(1 + an) converges and
vanishes if and only if some factor 1 + ak = 0.

Proof. For |z| < 1 we have the logarithmic expansion

log(1 + z) = −
∞󰁛

k=1

zk

k
.

Suppose
󰁓∞

n=1 |an| < ∞ and then |an| < 1/2 for n 󰃍 N0 ≫ 0. Consequently, log(1 + an) is

well-defined with elog(1+an) = 1 + an. Then we do calculation as

∞󰁜

n=1

(1 + an) =

N0󰁜

n=1

(1 + an) ·
∞󰁜

n=N0+1

(1 + an)

=

N0󰁜

n=1

(1 + an) ·
∞󰁜

n=N0+1

exp(log(1 + an))

=

N0󰁜

n=1

(1 + an) · exp(
∞󰁛

n=N0+1

log(1 + an)).

Note that | log(1 + z)| 󰃑 2|z| for |z| < 1/2. So there exists some constant B such that
∞󰁛

n=N0+1

| log(1 + an)| 󰃑
∞󰁛

n=N0+1

2|an| → B < ∞

by assumption. Hence the infinite product factors through a finite product as

∞󰁜

n=1

(1 + an) =

N0󰁜

n=1

(1 + an) · eB
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and the product is zero if and only if one of these factors is 0. □
Proposition 6.9. Let Ω ⊂ C be an open subset and Fn ∈ O(Ω). Assume there are cn > 0
such that

󰁓∞
n=1 cn < ∞ and |Fn(z)− 1| 󰃑 cn for all z ∈ Ω. Then

(1)
󰁔∞

n=1 Fn(z) → F (z) uniformly (with respect to z) on Ω for some F ∈ O(Ω).
(2) If Fn ∕= 0 for every n 󰃍 1 then for any z ∈ Ω,

F ′

F
(z) =

∞󰁛

n=1

F ′
n

Fn
(z).

Proof. For (1), we can write
󰁔∞

n=1 Fn(z) =
󰁔∞

n=1 1 + (Fn(z)− 1). And for (2), just use the
formula

(f · g)′
f · g =

f ′

f
+

g′

g
.

The undisclosed details are left to readers. □
Let’s introduce the main theorem by Weierstrass, which dictates the existence of an entire

function that vanishes at a given infinite sequence exactly. Moreover, such entire function
is unique up to an exponential factor.

Theorem 6.10 (Weierstrass Infinite Product). Given {an}∞n=1 ⊂ C with |an| → ∞ as
n → ∞. Then there exists some f ∈ O(C) with the zeros exactly at z = an. Any other such
entire function is of the form f(z)eg(z), where g ∈ O(C).

Before proving this, a lemma at work about canonical factors is in display.

Definition 6.11. For k 󰃍 0 we define the canonical factors as

E0(z) = 1− z, Ek(z) = (1− z) exp(

k󰁛

n=1

zn

n
).

Lemma 6.12. If |z| 󰃑 1/2, then

|1− Ek(z)| 󰃑 c|z|k+1

for some c > 0 that is independent of k.

Proof. Whenever |z| 󰃑 1/2, we have 1− z = exp(log(1− z)) where

log(1− z) = −
∞󰁛

n=1

zn

n
.

Thus we can write for all k 󰃍 1 that

Ek(z) = exp(log(1− z) +

k󰁛

n=1

zn

n
) = exp(−

󰁛

n󰃍k+1

zn

n
) = ew(z).

Here |w(z)| is bounded as follows:

|w(z)| 󰃑 |z|k+1
󰁛

n󰃍k+1

|z|n−k+1

n
󰃑 |z|k+1

∞󰁛

j=0

(
1

2
)j = 2|z|k+1

because of |z| 󰃑 1/2. In particular, |w(z)| 󰃑 1. Therefore,

|1− Ek(z)| = |1− ew(z)| 󰃑 e|w| 󰃑 2e|z|k+1.

For the middle inequality above, recall that ew =
󰁓∞

n=0 w
n/n!, and then

|ew − 1| 󰃑 |w|
∞󰁛

n=1

|w|n−1

n!
󰃑 |w|

∞󰁛

n=1

1

n!
= e|w|.
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Taking c = 2e does finish the proof. □

Now we move to the construction by Weierstrass.

Proof of Theorem 6.10. Step 1: Existence.
The most naive idea is to consider the infinite product

∞󰁜

n=1

(1− z

an
).

However, this product does not converge in general. Fortunately, the result is differed from
this by another exponential factor. Obtaining the canonical factors (Definition 6.11), we
move to

f(z) := zm
∞󰁜

n=1

En(
z

an
) = zm

∞󰁜

n=1

(1− z

an
) exp(

n󰁛

k=1

(z/an)
k

k
), m 󰃍 0.

Claim: f ∈ O(C) has a zero at z = 0 of order m and zeros at each an, but nowhere else.
Proof of the Claim. For this, we first check that f is holomorphic in every disc DR(0) for
R > 0. Write

∞󰁜

n=1

En(
z

an
) =

󰁜

|an|󰃑2R

En(
z

an
)

󰁜

|an|>2R

En(
z

an
).

The motivation to consider this truncated product is that as |an| → ∞, the finite part
vanishes at z = an for |an| < R in DR(0), and the infinite part is convergent. Now for
z ∈ DR and |an| > 2R, we have |z/an| < 1/2. Thus,

|1− En(
z

an
)| 󰃑 c| z

an
|n+1 󰃑 c(

1

2
)n+1

by Lemma 6.12. Now by Proposition 6.9, the infinite part
󰁔

|an|>2R En(z/an) converges

uniformly to some holomorphic function in DR(0). Letting R → ∞ finishes the proof of
existence.
Step 2: Uniqueness.

This is relatively easy. If f1 and f2 are two such functions, then f1/f2 is holomorphic
in C and f1/f2 ∕= 0. Since C is simply connected, there exists some g ∈ O(C) such that
f1/f2 = eg by Theorem 4.32. □

6.4. Hadamard Factorization Theorem. The main result: if an entire function has a
finite (exponential) order of growth, then it can be specified by its zeros.

Recall Definition 6.5 that if f ∈ O(C) has finite order of growth, denoted by ρf , then for
any ε > 0,

log |f(z)| 󰃑 Aε|z|ρf+ε +O(1)

as |z| → ∞. In fact, if the sequence of zeros is given, say {an}∞n=1 = f−1(0), then

󰁛

an ∕=0

1

|an|ρf+ε
< ∞.

Theorem 6.13 (Hadamard Factorization). Let f ∈ O(C) has a growth order ρf < ∞ and
take k = [ρf ] as the integer part of ρf . If {an}∞n=0 are the zeros of f that are away from 0,
then

f(z) = eP (z)zm
∞󰁜

n=1

Ek(
z

an
)

where P is a polynomial of degree at most k, and m = ord0(f).
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Proof. For z ∈ DR(0) we write
∞󰁜

n=1

Ek(
z

an
) =

󰁜

|an|󰃑2R

Ek(
z

an
) ·

󰁜

|an|>2R

Ek(
z

an
).

On the right hand side, the first term is a product of finite terms with zeros z = an for
|an| < R in the disc DR. Moreover, there is a constant C such that the second term satisfies

󰁜

|an|>2R

Ek(
z

an
) 󰃑 C| z

an
|k+1 󰃑 CRk+1 1

|an|k+1

by Lemma 6.12 (because of |z/an| < 1/2 for z ∈ DR). By Theorem 6.7 (2),
󰁛

n󰃍1

1

|an|k+1
< ∞,

which implies that
󰁔∞

n=1 Ek(z/an) is holomorphic in DR. Letting R → ∞, we define

E(z) = zm
∞󰁜

n=1

Ek(
z

an
) ∈ O(C).

Note that this function has the same zeros as f(z). Therefore, the function f(z)/E(z) ∈
O(C) vanishes nowhere, that is, there is some g(z) ∈ O(C) such that f(z)/E(z) = eg(z). So

f(z) = eg(z)zm
∞󰁜

n=1

Ek(
z

an
).

Now it suffices to control g(z) by a polynomial of degree at most k.
Claim: if f has the growth order ρf , then for all s > ρf , there is a constant C such that

∞󰁜

n=1

Ek(
z

an
) 󰃍 exp(−C|z|s)

on |z| = rm → ∞ as m → ∞.
Assuming the claim, we get on |z| = rm → ∞ that

|eg(z)| = eℜ(g) = | f(z)
E(z)

| 󰃑 A exp(B|z|s)
exp(−C|z|s)

for some constants A,B. So ℜ(g)(z) 󰃑 C|z|s on |z| = rm → ∞. Using this condition, it can
be shown that g(z) is a polynomial of degree 󰃑 s (as an exercise). Let s → ρf , we get g(z)
is a polynomial of degree 󰃑 k = [ρf ]. The proof of claim is omitted for convenience. □
Examples 6.14. There are some basic examples as applications of Theorem 6.13.

(1) f(z) = ez − 1.
It is an entire function with ρf = 1 and m = ord0(z) = 1 with zeros at z = 2πin for
all n ∈ Z. Applying Hadamard factorization, we obtain

ez − 1 = eaz+bz
󰁜

n∈Z\{0}

(1− z

2πin
) exp(

z

2πin
) = eaz+bz

∞󰁜

n=1

(1 +
z2

4π2n2

for some a, b ∈ C. We use the following recipe to determine these constants:

lim
z→0

ez − 1

z
= 1 =⇒ b = 0;

also, the infinite product is an even function with respect to z, which means that

ez − 1

eaz · z =
e−z − 1

e−az · (−z)
=⇒ a =

1

2
.
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Therefore, the factorization of f(z) is read as

ez − 1 = ez/2z

∞󰁜

n=1

(1 +
z2

4π2n2
).

(2) f(z) = sin(πz).
It is apparent that ρf = 0 and m = ord0(z) = 1 with zeros at z = n for all n ∈ Z.
Consequently,

sin(πz) = eaz
󰁜

n∈Z\{0}

(1− z

n
) = eaz

∞󰁜

n=1

(1− z2

n2
)

for some constant a ∈ C. Similarly, by considering

lim
z→0

sin(πz)

z
= π = ea,

we get the desired factorization.

6.5. Divisors. Let f ∈ O(C) be a nonzero function. We define the divisor of f to describe
its zeros and poles.

Definition 6.15 (Zero Divisor). The following formal sum of points in C is called the zero
divisor associated to f , say

Z(f) :=
󰁛

f(a)=0

orda(f) · a.

Here the sum runs through all points a ∈ C such that f(a) = 0.

Comparing with Theorem 6.10, we have the following neat result.

Theorem 6.16. Given a discrete set {an}∞n=1 ⊂ C, there is an entire function f ∈ O(C)
such that {an}∞n=1 are exactly all the zeros of f (counted with multiplicity).

Collecting the information in {an}∞n=1 as a formal sum of points in C, say
∞󰁛

k=1

mk · Pk, mk ∈ N,

then the theorem implies that this formal sum can be realized as Z(f) for some f ∈ O(C).

Definitions 6.17 (Divisors). A Z-coefficient divisor in C is a formal sum

D =

∞󰁛

k=1

mk · Pk

with mk ∈ Z, where the set {Pk}∞k=1 ⊂ C is discrete. A divisor is effective if all mk 󰃍 0.
Let f be a meromorphic function in C. Then the divisor associated to f is defined to be

(f) = Z(f) + P (f) =
󰁛

f(a)=0

orda(f) · a+
󰁛

f(a)=∞

orda(f) · a.

The following theorem shows that divisors with Z-coefficients in C are in a one-to-one
correspondence with meromorphic functions on C.

Theorem 6.18. For any divisor D with Z-coefficients in C, there exists a meromorphic
function f on C such that D = (f).
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6.6. Nevanlinna Theory. Recall that Jensen’s formula reveals a hidden connection be-
tween the number of zeros of a function in a disc and the (logarithmic) average of the
function over the circle. Starting from the following Poisson-Jensen formula, which is a
variant of Jensen’s formula, we construct the theory developed by Nevanlinna in 1925.

Let f be a meromorphic function in DR, then for z ∈ DR with f(z) ∕= 0 and f(z) = ∞,
we have

log |f(z)| = 1

2π

󰁝 2π

0

log |f(Reiθ)|ℜ(Reiθ + z

Reiθ − z
)dθ −

󰁛

a∈DR

orda(f) log |BR,a(z)|,

where BR,a(z) = (R2 − az)/R(z − a). In particular, if z = 0 is neither a zero nor a pole,
i.e., it satisfies f(0) ∕= 0 and f(0) ∕= ∞, then

log |f(0)| = 1

2π

󰁝 2π

0

log |f(Reiθ)|dθ −
󰁛

a∈DR

orda(f) log |
R

a
|.

In general, if for those z landing near z = 0 we have an expansion f(z) = cfz
m + · · · with

cf ∕= 0, then by applying the equation above to f(z)/zm we get

(∗) log |cf | =
1

2π

󰁝 2π

0

log |f(Reiθ)|dθ −
󰁛

0 ∕=a∈DR

orda(f) log |
R

a
|−m logR.

We now introduce the number of poles of f in Dr (counted with multiplicity), say

nf (r) = nf (r,∞) := #(f−1(∞) ∩Dr).

For a ∈ C, we also define the number of solutions of f(z) = a in Dr (counted with multi-
plicity) by

nf (r, a) := n 1
f−a

(r,∞).

In particular, nf (0, 0)− nf (0,∞) = m = ord0(f) is the difference of zeros and poles of f at
z = 0. Using these sense, we are clear for the motivation of Nevanlinna’s definition for the
counting function.

Definition 6.19 (Nevanlinna Counting Function). For r > 0 we define (for the second and
the third terms in (∗)) that

Nf (r) = Nf (r,∞) :=
󰁛

0 ∕=a∈Dr,f(a)=∞

(− orda(f)) · log |
r

a
|+ nf (0,∞) log r,

and

Nf (r, 0) :=
󰁛

0 ∕=a∈Dr,f(a)=0

orda(f) · log |
r

a
|+ nf (0, 0) log r.

Using the expressions of Nf (r,∞) and Nf (r, 0), Jensen’s formula (∗) can be written as

(∗∗) log |cf |+Nf (R, 0) =
1

2π

󰁝 2π

0

log |f(Reiθ)|dθ +Nf (R,∞).

In fact, there is an explicit expression of Nf (r) whose proof is leave as an exercise.

Proposition 6.20. We have the equality

Nf (r) =

󰁝 r

0

nf (t)− nf (0)

t
dt+ nf (0) log r.
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Definition 6.21 (Proximity Function). Let f be a meromorphic function in DR. Then for
0 < r < R, we define

mf (r) = mf (r,∞) =
1

2π

󰁝 2π

0

log+ |f(reiθ)|dθ.

Here log+ α := max(0, logα) for α > 0. Also, for a ∈ C, we define

mf (r, a) =
1

2π

󰁝 2π

0

log+
1

|f(reiθ)− a|dθ.

Remark 6.22. Note that logα = log+ α− log+(1/α) and | logα| = log+ α+ log+(1/α).

Definition 6.23 (Nevanlinna Height Function). For r > 0 we define

Tf (r) = Tf (r,∞) := Nf (r,∞) +mf (r,∞).

Note that the height function is the “pole part” of the right hand side of (∗). Again, by
Jensen’s formula (∗∗),

log |cf |+Nf (R, 0) =
1

2π

󰁝 2π

0

log+ |f(Reiθ)|dθ − 1

2π

󰁝 2π

0

log+
1

|f(Reiθ)|dθ +Nf (R,∞)

= mf (R,∞)−m 1
f
(R,∞) +Nf (R,∞).

This is equivalent to

log |cf |+N 1
f
(R,∞) +m 1

f
(R,∞) = mf (R,∞) +Nf (R,∞).

Therefore,

(1) log |cf |+ T 1
f
(R) = Tf (R).

Now let a ∈ C. Applying Jensen’s formula to f(z)− a, we get

log |cf−a|+Nf−a(R, 0) =
1

2π

󰁝 2π

0

log |f(Reiθ)− a|dθ +Nf (R,∞)

= Nf (R,∞) +
1

2π

󰁝 2π

0

log+ |f(Reiθ)− a|dθ

− 1

2π

󰁝 2π

0

log+
1

|f(Reiθ)− a|dθ.

Consequently,

log |cf−a|+N 1
f−a

(R) +m 1
f−a

(R) = Nf (R) +
1

2π

󰁝 2π

0

log+ |f(Reiθ)− a|dθ.

Note that

log+(α1 + · · ·+ αn) 󰃑 max
1󰃑i󰃑n

(log+ αi) + log n 󰃑
n󰁛

i=1

log+ αi + log n.

In particular,

log+ |f − a| 󰃑 log+ |f |+ log+ |a|+ log 2,

log+ |f | 󰃑 log+ |f − a|+ log+ |a|+ log 2.

So we get

(2) Tf−a(R) = Tf (R) +Oa(1),

where Oa(1) denotes a bounded term depending on a.
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Theorem 6.24 (The First Main Theorem of Nevanlinna Theory). Let R > 0 and f be a
meromorphic function defined on DR. Then

(1) log |cf |+ T 1
f
(R) = Tf (R);

(2) Tf−a(R) = Tf (R) +Oa(1).

Theorem 6.25 (Cartan). Keep the same statement. We obtain

Tf (r) =
1

2π

󰁝 2π

0

Nf (r, e
iθ)dθ + C

=
1

2π

󰁝 2π

0

Nf (r, e
iθ)dθ +

󰀫
log+ |f(0)|, f(0) ∕= ∞,

log |cf |, f(0) = ∞.

Proof Idea. For example, if f(0) ∕= ∞, then apply Jensen’s formula to f(z) − eiθ and then
integrate with respect to θ. □

Recall the definitions of nf and Nf , we see they are increasing functions. Hence by
Theorem 6.25, Tf (r) is an increasing function with respect to r as well, and is convex with
respect to log r.

Theorem 6.26. Let f be a meromorphic function on C.
(1) If Tf (R) is bounded as R → ∞, then f is a constant.
(2) Tf (R) ∼ O(logR) as R → ∞ if and only if f is rational on C.

Let f ∈ O(Dr). Define Mf (r) := log 󰀂f󰀂r, where 󰀂f󰀂r = sup|z|󰃑r |f(z)| = sup|z|=r |f(z)|.
Then

mf (r) =
1

2π

󰁝 2π

0

log+ |f(reiθ)|dθ 󰃑 max(Mf (r), 0).

Lemma 6.27. Let f ∈ O(DR), then for 0 < r < R we have

Mf (r) 󰃑
R+ r

R− r
mf (R,∞)− R− r

R+ r
mf (R, 0) 󰃑 R+ r

R− r
mf (R).

Proof. Applying Jensen’s formula to f (which is holomorphic), we get

log |f(z)| = 1

2π

󰁝 2π

0

log |f(Reiθ)|ℜ(Reiθ + z

Reiθ − z
)dθ −

󰁛

a∈DR,orda(f)>0

orda(f) · log |BR,a(z)|

󰃑 1

2π

󰁝 2π

0

log |f(Reiθ)|ℜ(Reiθ + z

Reiθ − z
)dθ

for z with f(z) ∕= 0. Now for z = reiθ and r < R, we have

R− r

R+ r
󰃑 ℜ(Reiθ + z

Reiθ − z
) 󰃑 R+ r

R− r
.

We write log |f(Reiθ)| = log+ |f(Reiθ)|− log+ 1
|f(Reiθ)| . This completes the proof. □

Corollary 6.28. For f that is holomorphic in D2r, we have

Mf (r) 󰃑 3mf (2r,∞) = 3Tf (2r).

The latter equality holds because of the holomorphicity.

Proof Idea of Theorem 6.26. (1) Applying Liouville’s Theorem (Corollary 3.16) is enough.
(2) The direction ⇒ is easy by Cartan’s Theorem 6.25. As for ⇐, use the definitions of

Tf (R), Nf (R) and so on. □
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7. The Gamma and Zeta Functions

7.1. The Gamma Function. For s > 0 we define

Γ(s) :=

󰁝 ∞

0

e−tts−1dt.

7.1.1. Analytic Continuation.

Proposition 7.1. Γ(·) extends to a holomorphic function in the right-half plane ℜ(s) > 0
by replacing s by complex numbers.

Proof. For ε > 0 we define

Fε(s) =

󰁝 1
ε

ε

e−tts−1dt,

then Fε(·) is holomorphic with respect to s ∈ C.
Claim: on every strip Sδ,M = {s ∈ C : δ < ℜ(s) < M}, the series of functions Fε → Γ
converges uniformly as ε → 0.
Proof of Claim. Note that for t > 0 with any s ∈ C, we have ts = exp(s log t) = exp(ℜ(s) ·
log t) · exp(iℑ(s) log t). Hence |ts| = eℜ(s)·log t = tℜ(s). Now we denote σ = ℜ(s). Then

|Fε(s)− Γ(s)| = |
󰁝 ε

0

e−tts−1dt+

󰁝 ∞

1
ε

e−tts−1dt|

󰃑
󰁝 ε

0

e−ttσ−1dt+

󰁝 ∞

1
ε

e−ttσ−1dt

󰃑
󰁝 ε

0

tσ−1dt+

󰁝 ∞

1
ε

e−ttM−1dt

󰃑 εδ

δ
+

󰁝 ∞

1
ε

e−ttM−1dt → 0

as ε → 0. So we have proved the claim.
Now the claim implies that Γ is naturally a holomorphic function in Sδ,M . This completes

the proof. □
Proposition 7.2. For ℜ(s) > 0 we have Γ(s+1) = sΓ(s). In particular, Γ(n+1) = n! for
all n ∈ N.

Proof. Using the formula
󰁝 1

ε

ε

d

dt
(e−tts−1)dt = −

󰁝 1
ε

ε

e−ttsdt+ s

󰁝 1
ε

ε

e−tts−1dt

and letting ε → 0, we get
0 = −Γ(s+ 1) + s · Γ(s),

that is, Γ(s+ 1) = sΓ(s). In particular, since Γ(1) = 1, we get Γ(n+ 1) = n!. □
For ℜ(s) > 0, we have Γ(s) = Γ(s+1)/s by Proposition 7.1. And for ℜ(s) > −1 we have

ℜ(s+ 1) > 0, which deduces that Γ(s+ 1)/s is well-defined on ℜ(s) > −1. So we define

F1(s) :=
Γ(s+ 1)

s
, ℜ(s) > −1.

Then F1(·) is a meromorphic function on {s ∈ C : ℜ(s) > −1} with a simple pole at s = 0,
and

res0 F1 = lim
s→0

(s− 0)F1(s) = lim
s→0

Γ(s+ 1) = Γ(1) = 1.

Also, we note that F1(s) = Γ(s) when ℜ(s) > 0, i.e., F1 is an analytic extension of Γ.



58 WENHAN DAI

For ℜ(s) > −2, we also define

F2(s) :=
F1(s+ 1)

s
=

Γ(s+ 2)

(s+ 1)s
,

then F2(·) is meromorphic in {s ∈ C : ℜ(s) > −2} and F2(s) = Γ(s) for ℜ(s) > 0.
Now by induction, for ℜ(s) > −m where m ∈ N, we define

Fm(s) :=
Fm−1(s)

s
= · · · = Γ(s+m)

(s+m− 1)(s+m− 2) · · · s .

Then Fm(·) extends Γ(·) to a meromorphic function on ℜ(s) > −m, with simple poles at
δ = 0,−1, · · · ,−(m− 1). Moreover,

ress=−n Fm = lim
s→−n

(s+ n)Fm(s) =
(−1)n

n!
, 0 󰃑 n 󰃑 m− 1.

Therefore, we have proved the following theorem.

Theorem 7.3 (Analytic Continuation). The Gamma function Γ(·) that is initially holo-
morphically defined on {s ∈ C : ℜ(s) > 0} has an analytic continuation to a meromorphic
function on C (which we denote by Γ as well), whose only singularities are simple poles at
s = 0,−1, · · · ,−m, · · · with res−m Γ = (−1)m/m! for all m ∈ N.

Remark 7.4. The analytic continuation of Theorem 7.3 is unique, since C\{0,−1, · · · ,−m, · · · }
is topologically connected.

Morally, the Gamma function Γ(s) can be almost realized as a holomorphic function, and
the only problem lies in the neighborhood of s = 0.

Proposition 7.5. For s ∈ C such that ℜ(s) > 0, we have

Γ(s) =

∞󰁛

k=0

(−1)k

k!(s+ k)
+

󰁝 ∞

1

e−tts−1dt.

Proof. We do the computation directly. Fix some ε > 0,

Γ(s) =

󰁝 ∞

0

e−tts−1dt

=

󰁝 ε

0

e−tts−1dt+

󰁝 ∞

ε

e−tts−1dt

=

󰁝 ε

0

ts−1
∞󰁛

k=0

(−t)k

k!
dt+

󰁝 ∞

ε

e−tts−1dt

=

∞󰁛

k=0

(−1)k

k!

󰁝 ε

0

tk+s−1dt+

󰁝 ∞

ε

e−tts−1dt

=

∞󰁛

k=0

(−1)kεs+k

k!(s+ k)
󰁿 󰁾󰁽 󰂀

meromorphic

+

󰁝 ∞

ε

e−tts−1dt

󰁿 󰁾󰁽 󰂀
holomorphic

.

In particular, by taking ε = 1, we get the desired result. □
7.1.2. The Symmetry Property.

Theorem 7.6 (Gamma Symmetry). For all s ∈ C, we have

Γ(s) · Γ(1− s) =
π

sinπs
.

In particular, for s = 1/2, we get Γ(1/2) =
√
π.
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Proof. By analytic continuation (Theorem 7.3), we only need to check the formula on {s ∈
C : 0 < ℜ(s) < 1}. For 0 < ℜ(s) < 1, we have

Γ(s) · Γ(1− s) =

󰁝 ∞

0

e−tts−1dt ·
󰁝 ∞

0

e−uu−sdu

=

󰁝 ∞

0

e−tts−1(

󰁝 ∞

0

e−uu−sdu)dt

=

󰁝 ∞

0

e−tts−1(

󰁝 ∞

0

e−vt(vt)−stdu)dt

=

󰁝 ∞

0

󰁝 ∞

0

e−(1+v)tv−sdvdt

=

󰁝 ∞

0

v−s

1 + v
dv

=

󰁝 ∞

−∞

e(1−s)x

1 + ex
dx.

Here the change of variants are u = vt and v = ex with t > 0. Recall that in Example 4.10,
for 0 < a < 1,

󰁝 ∞

−∞

eax

1 + ex
dx =

π

sinπa
.

Therefore, the desired integral is

󰁝 ∞

−∞

e(1−s)x

1 + ex
dx =

π

sinπ(1− s)
=

π

sinπs
.

This completes the proof. □

Remark 7.7. Note that for all s ∈ C, we have Γ(s) ∕= 0.

7.1.3. The Growth of Gamma Functions.

Theorem 7.8. The function 1/Γ(·) enjoys the following properties.

(1) 1/Γ(·) ∈ O(C) has simple zeros at s = 0,−1, . . ., and it vanishes nowhere else.
(2) The order of growth of 1/Γ(·) is 1, and for all s ∈ C,

| 1

Γ(s)
| 󰃑 C1 exp(C2|s| log |s|)

for some constants C1 and C2.

Proof. (1) By Theorem 7.6, the symmetry of Γ shows that

1

Γ(s)
= Γ(1− s) · sinπs

π
,

where Γ(1− s) has simple poles at s = 1, 2, . . . and sinπs/π has simple zeros at s ∈ Z. Since
Γ(s) ∕= 0 for all s ∈ C, we see 1/Γ(·) is holomorphic in C with the only zeros at s = 0,−1, . . .,
which are all simple.
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(2) Again, by Theorem 7.6,

1

Γ(s)
= Γ(1− s) · sinπs

π

= (

󰁝 1

0

e−tt−sdt+

󰁝 ∞

1

e−tt−sdt) · sinπs
π

=
sinπs

π

∞󰁛

n=0

(−1)n

n!(n+ 1− s)
󰁿 󰁾󰁽 󰂀

I

+
sinπs

π

󰁝 ∞

1

e−tt−sdt

󰁿 󰁾󰁽 󰂀
II

For I, the trouble term is on

1

n+ 1− s
=

1

n+ 1−ℜ(s)− iℑ(s) .

If |ℑ(s)| > 1, then

|
∞󰁛

n=0

(−1)n

n!(n+ 1− s)
| 󰃑 C

for some constant C. Otherwise |ℑ(s)| 󰃑 1, in this case 1/(n+ 1− s) can be infinite when
s = n+1. For this, note that given any s, we have some k such that k−1/2 󰃑 ℜ(s) < k+1/2.
When k 󰃑 0,

|n+ 1− s| = |n+ 1−ℜ(s)− iℑ(s)| 󰃍 1

2
=⇒ |

∞󰁛

n=0

(−1)n

n!(n+ 1− s)
| 󰃑 C.

When k > 0, we have n − k + 1/2 󰃑 n + 1 − ℜ(s) 󰃑 n − k + 3/2. The case is valid for
n ∕= k − 1 because of |n+ 1−ℜ(s)| 󰃍 C for some C that is independent of k. It boils down
to tackle to the case where n = k − 1 > −1. We obtain

∞󰁛

n=0

(−1)n

n!(n+ 1− s)

sinπs

π
= (−1)k−1 sinπs

(k − 1)!(k − s)π󰁿 󰁾󰁽 󰂀
A

+
󰁛

n ∕=k−1

(−1)n

n!(n+ 1− s)

sinπs

π
󰁿 󰁾󰁽 󰂀

B

.

In fact, the part A is bounded from above because of

| sinπs
s− k

| = | sinπ(s− k)

s− k
| = | sinπξ

ξ
|

for ξ = s− k. This is bounded on ξ ∈ {s ∈ C : |ℜ(s)| 󰃑 1, |ℑ(s)| 󰃑 1}. On the other hand,
by Euler’s formula, we see

sinπs =
eiπs − e−iπs

2i
=⇒ | sinπs| 󰃑 eπ|s|.

Hence the part B is bounded by some Ceπ|s|. To sum up, |I| < ∞.
As for II, since

|
󰁝 ∞

1

e−tt−sdt| 󰃑
󰁝 ∞

1

e−ttℜ(s)dt 󰃑 exp((|ℜ(s)|+ 1) · log(|ℜ(s)|+ 1)),

there is a constant C ′ such that

|II| 󰃑 exp(C|s| log |s|) · exp(C|s|) 󰃑 exp(C ′|s| log |s|).
Consequently,

|I + II| 󰃑 C1 exp(C2|s| log |s|).
for some constants C1, C2 that are independent of s. □
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Starting with Theorem 7.8, the Hadamard factorization (Theorem 6.13) shows that

1

Γ(s)
= eAs+B · s ·

∞󰁜

n=1

(1 +
s

n
)e−s/n.

Here A,B are constants (to be determined). Note that

lim
s→0

Γ(s) · s = lim
s→0

Γ(s+ 1) = Γ(1) = 1 =⇒ 1 = lim
s→0

eAs+B
∞󰁜

n=1

(1 +
s

n
)e−s/n = eB .

Hence B = 0. Letting s = 1, the equation becomes

1 = eA
∞󰁜

n=1

(1 +
1

n
)e−1/n =⇒ e−A =

∞󰁜

n=1

(1 +
1

n
)e−1/n.

To compute A, we note that

∞󰁜

n=1

(1 +
1

n
)e−1/n = lim

N→∞

N󰁜

n=1

(1 +
1

n
)e−1/n = lim

N→∞
exp(

N󰁛

n=1

(log(1 +
1

n
)− 1

n
)).

Hence as N → ∞,

N󰁛

n=1

(log(1 +
1

n
)− 1

n
) = −

N󰁛

n=1

1

n
+ log

2

1
+ log

3

2
+ · · ·+ log

N

N − 1
+ log

N + 1

N

= − (

N󰁛

n=1

1

n
− logN)

󰁿 󰁾󰁽 󰂀
γ

+ log
N + 1

N󰁿 󰁾󰁽 󰂀
→0

→ −γ,

where γ is the Euler constant. So we have A = r. We have proved the following theorem.

Theorem 7.9. For all s ∈ C, we obtain

1

Γ(s)
= eγs · s ·

∞󰁜

n=1

(1 +
s

n
)e−s/n.

Here γ denotes the Euler constant.

7.2. Riemann Zeta Function. For s ∈ R satisfying s > 1, it is well-known that the series

ζ(s) :=

∞󰁛

n=1

1

ns

is convergent. By replacing the real number s by any s ∈ C, we get the definition of Riemann
Zeta Function.

Proposition 7.10. The Riemann zeta function ζ(s) converges on {s ∈ C : ℜ(s) > 1}
and converges uniformly on {s ∈ C : ℜ(s) 󰃍 1 + δ} for any δ > 0. In particular, ζ(s) is
holomorphic on {s ∈ C : ℜ(s) > 1}.

Proof. Write s = σ + it, then |1/ns| = 1/nσ. For σ 󰃍 1 + δ with δ > 0, we have

|
∞󰁛

n=1

1

ns
| 󰃑

∞󰁛

n=1

1

nσ
󰃑

∞󰁛

n=1

1

n1+δ

in which the right item is called convergent. □
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7.2.1. The Zeta, Gamma and Theta Functions.

Definition 7.11 (The Theta Function). For a real number t > 0 we define

Θ(t) :=

∞󰁛

n=−∞
e−πn2t.

We the list out some basic properties of Θ(t).

Proposition 7.12. For the real variable t > 0, we have:

(1) Θ(t) 󰃑 Ct−1/2 for some constant C > 0 as t → 0+.
(2) |Θ(t)− 1| 󰃑 Ce−πt for some constant C > 0 and any t 󰃍 1.

Proof. (1) Recall the Poisson summation formula (Theorem 5.9) dictates that
󰁛

n∈Z
f(n) =

󰁛

n∈Z

󰁥f(n),

where 󰁥f is the Fourier transform of f . Consider f(x) = exp(−πt(x + a)2) with t > 0 and
a ∈ R. Then we get

Θ(t) = t−1/2Θ(
1

t
), t > 0.

From this formula, Θ(t) 󰃑 Ct−1/2 is obvious.
(2) We write

Θ(t) = 1 + 2

∞󰁛

n=1

e−πn2t,

in which for t 󰃍 0,
∞󰁛

n=1

e−πn2t 󰃑
∞󰁛

n=1

e−πnt =

∞󰁛

n=1

(e−πt)n 󰃑 Ce−πt

if πt 󰃍 δ > 0 (in particular, this is valid for t 󰃍 1). Therefore, for t 󰃍 1 we have

0 󰃑 Θ(t)− 1 󰃑 Ce−πt.

This is exactly what we want. □
The following theorem reveals the hidden connection between the Zeta, Gamma and

Theta functions.

Theorem 7.13 (The Xi Identity). If ℜ(s) > 1 we have

π−s/2 · Γ(s
2
) · ζ(s) = 1

2

󰁝 ∞

0

us/2−1(Θ(u)− 1)du.

Proof. Beginning with the definition of Θ(·), we compute

1

2

󰁝 ∞

0

us/2−1(Θ(u)− 1)du =

󰁝 ∞

0

∞󰁛

n=1

us/2−1e−πn2udu

=

∞󰁛

n=1

󰁝 ∞

0

us/2−1e−πn2udu.

Here the second equality is because of Proposition 7.12. Letting t = πn2u, the right hand
side becomes

∞󰁛

n=1

π−s/2(

󰁝 ∞

0

e−t · ts/2−1dt)n−s = π−s/2 · Γ(s
2
) · ζ(s).

This completes the proof. □
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People are truly interested in the LHS in Theorem 7.13.

Definition 7.14 (Xi Function). For ℜ(s) > 1, we define

ξ(s) := π−s/2 · Γ(s
2
) · ζ(s).

Theorem 7.15. The Xi function enjoys the following properties.

(1) ξ(·) is holomorphic in {s ∈ C : ℜ(s) > 1}.
(2) ξ(·) has an analytic continuation to a meromorphic function on C with simple poles

only at s = 0, 1.
(3) ξ(s) = ξ(1− s) for any s ∈ C.

Proof. (1) is clear.
(2) By Theorem 7.13, for ℜ(s) > 1 we have

ξ(s) =
1

2

󰁝 ∞

0

us/2−1(Θ(u)− 1)du.

Denote ψ(u) = (Θ(u)− 1)/2, then by the identity Θ(t) = t−1/2Θ(1/t) we have

ψ(u) = u−1/2ψ(
1

u
) +

1

2u1/2
− 1

2
, u > 0.

Consequently,

ξ(s) =

󰁝 ∞

0

us/2−1 · ψ(u)du

=

󰁝 1

0

us/2−1 · ψ(u)du+

󰁝 ∞

1

us/2−1 · ψ(u)du

=
1

s− 1
− 1

s
+

󰁝 ∞

1

(us/2−1 + u−1/2−s/2)ψ(u)du,

where the last equality is given by the variable exchanging u 󰀁→ 1/u in the first integral.
Now for s ∈ C, we define

(∗) ξ(s) :=
1

s− 1
− 1

s
+

󰁝 ∞

1

(us/2−1 + u−1/2−s/2)ψ(u)du.

Then ξ(·) is a meromorphic function on C with simple poles at s = 0, 1.
(3) Using (∗) above, we directly get the result. □

Theorem 7.16 (Analytic Continuation). The Zeta function ζ(·) that is initially holomor-
phically defined on {s ∈ C : ℜ(s) > 1} has an analytic continuation to a meromorphic
function on C, whose singularity is a simple pole at s = 1.

Proof. Note that ζ(s) = πs/2 · ξ(s)/Γ(s/2) by Definition 7.14. Now Theorem 7.15 (2) shows
that ξ(s) has simple poles at s = 0, 1, and Theorem 7.8 (1) dictates that Γ(s) has simple
poles at s = 0,−2,−4, . . .. □

Remark 7.17. The continued definition of ζ(s) is given by

ζ(s) =

󰀫󰁓∞
n=1 n

−s, ℜ(s) > 1;

πs/2 · ξ(s)/Γ(s/2), ℜ(s) 󰃑 1.

Also note that ζ(s) has simple poles at s = −2,−4, . . ..
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7.2.2. Zeros of Riemann Zeta Function. We begin with the Euler identity without proof.

Proposition 7.18 (Euler Identity). For ℜ(s) > 1 we have

ζ(s) =

∞󰁛

n=1

1

ns
=

󰁜

p prime

1

1− p−s
.

Proof. Note that on the connected region {s ∈ C : ℜ(s) > 1},
󰁓

n−s and
󰁔
(1 − p−s)−1

are analytical functions with respect to s. Hence it suffices to check the equality for real
numbers s > 1, and then the equality extends continuously.

The fundamental theorem of arithmetic shows that for all n ∈ N, we have n = pk1
1 · · · pkm

m ,
where p1, . . . , pm are distinct primes. Then

N󰁛

n=1

1

ns
󰃑

󰁜

p󰃑N

(1 +
1

ps
+ · · ·+ 1

pMs
) 󰃑

󰁜

p󰃑N

1

1− p−s
, M ≫ 0.

The second inequality is because of

1

1− p−s
=

∞󰁛

k=0

p−ks = 1 +
1

ps
+

1

p2s
+ · · · .

By taking N → ∞, we have
∞󰁛

n=1

1

ns
󰃑

󰁜

p prime

1

1− p−s
.

Similarly, one may deduce the converse inequality. This completes the proof. □

The immediate corollary of Proposition 7.18 is for ℜ(s) > 1 we have ζ(s) ∕= 0. Recall
that ξ(s) = π−s/2Γ(s/2)ζ(s) and ξ(s) = ξ(1− s). Thus,

ζ(s) =
ξ(1− s)

π−s/2Γ(s/2)
= πs−1/2 · Γ((1− s)/2)

Γ(s/2)
· ζ(1− s).

For {s ∈ C : ℜ(s) < 0}, we have ζ(1 − s) ∕= 0 and Γ((1 − s)/2) ∕= 0 (since Γ(·) ∕= 0) on C.
Also, 1/Γ(s/2) = 0 exactly at s = −2,−4, . . . Hence all zeros of ζ(s) in {s ∈ C : ℜ(s) < 0}
are −2,−4, . . .

−2−4−6 1

ℜ(s) > 0

To sum up, we are to seek the zeros of ζ(·) in the critical strip {s ∈ C : 0 󰃑 ℜ(s) 󰃑 1}.

8. Riemann Zeta Function and Prime Number Theory

Euler found, through his product formula for the zeta function, a deep connection between
analytical methods and arithmetic properties of numbers, in particular primes. An easy
consequence of Eulers formula is that the sum of the reciprocals of all primes,

󰁓
p 1/p,

diverges, a result that quantifies the fact that there are infinitely many prime numbers.
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The natural problem then becomes that of understanding how these primes are distributed.
With this in mind, we consider the following function:

π(x) := #{primes 󰃑 x} =
󰁛

p󰃑x

1.

Then π(x) = π([x]) for any x 󰃍 0. A conjecture of Gauss made in 1792 (and independently,
of Legendre in 1808) says that

(∗) lim
x→∞

π(x)

x/ log x
= 1.

This is denoted as π(x) ∼ x/ log x as x → ∞. On the work of Dirichlet (1837), Chebychev
(1850s) and Riemann (1859), this conjecture is proved as the Prime Number Theorem.

Theorem 8.1 (Hadamard, de la Vallée Poussin, 1896). The conjecture (∗) is true.

8.1. The Riemann Memoir. 1 In this subsection we list out some basic and important
properties given by Riemann.

(A) The Zeta function ζ(s) =
󰁓∞

n=1 n
−s that is holomorphically defined in {s ∈ C : ℜ(s) >

1} has an analytic continuation to a meromorphic function in C with a simple pole at
s = 1.

(B) One can define ξ(s) = π−s/2Γ(s/2)ζ(s), then ξ(s) = ξ(1 − s) for any s ∈ C. Also, ξ(·)
is meromorphic on C with simple poles at s = 0, 1.

(C) The Zeta function ζ(·) has simple zeros at s = −2,−4, · · · (trivial zeros) and ζ(s) ∕= 0
for ℜ(s) > 1. There are infinitely many nontrivial zeros of the form ρ = σ + it for
0 󰃑 σ 󰃑 1 and t ∈ R (i.e., living in the critical strip). Moreover, let N(T ) = #{ρ =
σ + it : 0 󰃑 σ 󰃑 1, |t| 󰃑 T}, then

N(T ) =
T

2π
log

T

2π
− T

2π
+O(log T )

as T → ∞. This is proved by von-Mangoldt in 1895 and 1905.
(D) (The Product Formula) We have the following (to be proved as an exercise):

s(s− 1)π−s/2Γ(s/2)ζ(s) = e−Bs
󰁜

ζ(ρ)=0,
0󰃑ℜ(ρ)󰃑1

(1− s

ρ
)es/ρ

where B = 1 + γ/2 − log 2
√
π and γ denotes the Euler constant. This is proved by

Hadamard in 1893.
(E) (Riemann’s Explicit Formula) Denote

ψ(x) :=
󰁛

pm󰃑x,
p prime, n∈N

log p =
󰁛

n󰃑x

Λ(n), ψ#(x) :=
󰁛

n<x

Λ(n) +
1

2
Λ(x),

where

Λ(n) =

󰀫
log p, if n = pm for some prime p and m ∈ N;
0, otherwise.

Then the formula (proved by von-Mangoldt in 1895) is read as

ψ#(x) = x−
󰁛

ζ(ρ)=0,
0󰃑ℜ(ρ)󰃑1

xρ

ρ
− ζ ′(0)

ζ(0)
− 1

2
log(1− x−2), x 󰃍 2.

1Riemann (1859): Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse (English translation:
on the number of prime less than a given magnitude).
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This formula is powerful, whereas it is still very difficult to find out all zeros ρ lying in
the critical strip.

(F) (Riemann Hypothesis) Any nontrivial zeros of ζ(s) is on the line ℜ(s) = 1/2.

−2−4−6 1

ℜ(s) > 1/2ℜ(s) < 1/2

Remark 8.2 (RH implies PNT). Suppose the Riemann Hypothesis is true. Then (without
proof) as x → ∞, we have

ψ(x) =
󰁛

n󰃑x

Λ(n) ∼ x, ψ#(x) =
󰁛

n<x

Λ(n) +
1

2
Λ(x) ∼ x.

This is equivalent to

π(x) =
󰁛

p󰃑x

1 ∼ x

log x
,

which is nothing but the prime number theorem (PNT).

A Sketchy Proof for Riemann’s Explicit Formula. Recall that for ℜ(s) > 1 we have Euler
identity

ζ(s) =
󰁜

p prime

(1− 1

ps
)−1,

and it implies that

−ζ ′(s)

ζ(s)
= (− log ζ(s))′ =

󰁛

p prime

(log(1− 1

ps
))′

= (−
󰁛

p prime

∞󰁛

m=1

p−ms

m
)′ =

󰁛

p,m

(log p) · p−ms.

We use the following sublemma as a fact (whose proof is leave as an exercise). For y > 0
and for any fixed α > 0, we have

lim
T→∞

1

2πi

󰁝 α+iT

α−iT

ys

s
ds =

󰀻
󰁁󰀿

󰁁󰀽

0, if 0 < y < 1;

1/2, if y = 1;

1, if y > 1.

Obtaining this, we consider the following limit:

lim
T→∞

1

2πi

󰁝 α+iT

α−iT

ys

s
· −ζ ′(s)

ζ(s)
ds = lim

T→∞

1

2πi

󰁝 α+iT

α−iT

ys

s
·
󰁛

p,m

(log p) · p−msds

=
󰁛

p,m

(log p) · lim
T→∞

1

2πi

󰁝 α+iT

α−iT

(yp−m)s

s
ds

=
󰁛

pm<y

log p+
󰁛

pm=y

1

2
log p = ψ#(y).
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The last equality above takes the sublemma above at work. Next, we consider the function

F (s) = −ys

s
· ζ

′(s)

ζ(s)

and its integral along ΓC defined as follows, where α > 1 and C ≪ 0.

−2−4−6 1 α > 1

α+ iT

α− iT

C

C + iT

C − iT

ΓC

Applying the residue formula (Theorem 4.8 and Corollary 4.9), we get

1

2πi

󰁝

ΓC

F (s)ds =
󰁛

F (z)=∞

ress=z F (s).

To compute the right hand side, all poles of F are listed out below.

• s = 1 (simple pole):

ress=1 F = lim
s→1

(s− 1) · F (s) = lim
s→1

ys

s
· lim
s→1

(1− s)
ζ ′(s)

ζ(s)
= y.

• s = 0 (simple pole):

ress=0 F = − lim
s→0

s · y
s

s
· ζ

′(s)

ζ(s)
= −ζ ′(0)

ζ(0)
.

• s = ρ ∕= 0 with 0 󰃑 ℜ(ρ) 󰃑 1 and |ℑ(ρ)| 󰃑 T :

ress=ρ F = −yρ

ρ
, ζ(ρ) = 0.

• s = −2m with m ∈ N (simple poles):

ress=−2m F = −y−2m

2m
.

Finally, letting T → ∞ and C → −∞, we get

ψ#(y) = y − lim
T→∞

󰁛

ζ(ρ)=0,
0󰃑ℜ(ρ)󰃑1

yρ

ρ
− ζ ′(0)

ζ(0)
−

∞󰁛

m=1

y−2m

2m

= y − lim
T→∞

󰁛

ζ(ρ)=0,
0󰃑ℜ(ρ)󰃑1

yρ

ρ
− ζ ′(0)

ζ(0)
− 1

2
log(1− y−2).

This completes the proof. □
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8.2. The Prime Number Theorem. We have claimed in Remark 8.2 that Riemann hy-
pothesis implies the prime number theorem (PNT). This subsection is to make this explicit.
The essential property at work is the following corollary of Riemann hypothesis.

Theorem 8.3 (Non-degeneracy). ζ(s) ∕= 0 when ℜ(s) = 1.

To prove Theorem 8.3, we first introduce several lemmas as follows.

Lemma 8.4. If ℜ(s) > 1 then

log ζ(s) =
󰁛

p prime,
m󰃍1

p−ms

m
:=

∞󰁛

n=1

cnn
−s,

with the coefficients given by

cn =

󰀫
1/m, if n = pm;

0, otherwise.

Proof. By the Euler identity, for ℜ(s) > 1, we have

ζ(s) =
󰁜

p prime

(1− 1

ps
)−1.

So that for the real number s > 1, we have

log ζ(s) = log
󰁜

p prime

(1− 1

ps
)−1 = −

󰁛

p prime

log(1− 1

ps
)−1

=
󰁛

p prime

∞󰁛

m=1

p−ms

m
=

󰁛

p,m

p−ms

m
.

On the other hand, ζ(s) ∕= 0 for ℜ(s) > 1, which implies that log ζ(s) is a well-defined
holomorphic function. Accordingly,

󰁓
p−ms/m is also a holomorphic function in Ω = {s ∈

C : ℜ(s) > 1. However, we know that Ω is a connected region, so

log ζ(s) =
󰁛

p,m

p−ms

m

for any s such that ℜ(s) > 1. □
Lemma 8.5. For any θ ∈ R, we have 3 + 4 cos θ + cos 2θ 󰃍 0.

Proof. This follows from 3 + 4 cos θ + cos 2θ = 2(cos θ + 1)2 at once. □
Lemma 8.6. If σ > 1 and t ∈ R, then log |ζ(σ)3 · ζ(σ + it)4 · ζ(σ + 2it)| 󰃍 0.

Proof. We calculate directly, say

LHS = 3 log |ζ(σ)|+ 4 log |ζ(σ + it)|+ log |ζ(σ + 2it)|
= 3ℜ log ζ(σ) + 4ℜ log ζ(σ + it) + ℜ log ζ(σ + 2it)

= ℜ
∞󰁛

n=1

cn · 3n−σ + ℜ
∞󰁛

n=1

cn · 4n−σ−it + ℜ
∞󰁛

n=1

cn · n−σ−2it.

Here the last equality is deduced from Lemma 8.4. On the other hand,

ℜ
∞󰁛

n=1

cn · 3n−σ + ℜ
∞󰁛

n=1

cn · 4n−σ−it + ℜ
∞󰁛

n=1

cn · n−σ−2it

=

∞󰁛

n=1

cn · n−σ(3 + 4 cos(t log n) + cos(2t log n)) 󰃍 0.
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by Lemma 8.5. □
Proof of Theorem 8.3. Note that ζ(·) is a meromorphic function on C with a simple pole
at s = 1. Then ζ(s) ∕= 0 for those s that are landing close to 1. We need to verify that
ζ(1 + it) ∕= 0 for any t ∈ R. Suppose not for the sake of contradiction. Then there is some
t0 ∕= 0 such that ζ(1 + it0) = 0. Consequently,

|ζ(σ + it0)|4 󰃑 C(σ − 1)4

as σ → 1 for some constant C > 0. For other terms, Since s = 1 is a simple pole of ζ(·), we
see |ζ(σ)|3 ∼ C|σ − 1|−3 as σ → 1. Again, note that ζ(·) is holomorphic for s ∕= 1, we have
ζ(σ + 2it0) being bounded as σ → 1. Therefore,

|ζ(σ)3 · ζ(σ + it)4 · ζ(σ + 2it)| 󰃑 C|σ − 1|, σ → 1.

This is contradicting with Lemma 8.6. □
Remark 8.7. By the symmetry of ξ, we have ξ(s) = π−s/2 · Γ(s/2) · ζ(s) = ξ(1 − s), hence
ζ(s) ∕= 0 for ℜ(s) ∕= 0.

Theorem 8.8. Theorem 8.3 implies the following prime number theorem: as x → ∞,

π(x) =
󰁛

p󰃑x

1 ∼ x

log x
.

The proof of Theorem 8.8 follows the proof by Zagier in 1997, which is based on the proof
of Newman in 1980. It truly relies on the following result.

Theorem 8.9 (Tauberian Theorem). Let f be a bounded measurable function on [0,∞).
Assume the Laplace transform

g(z) =

󰁝 ∞

0

f(t)e−ztdt

that is a holomorphic function for ℜ(z) > 0 extends holomorphically in an open set contain-
ing {z ∈ C : ℜ(z) 󰃍 0}. Then the integral

󰁝 ∞

0

f(t)dt = lim
T→∞

󰁝 T

0

f(t)dt

converges and equals to g(0), which is the value of the extended g at z = 0.

In the upcoming context we are to use the language of Φ function and ϕ function.

Definitions 8.10. We define

Φ(s) :=
󰁛

p prime

log p

ps
, ϕ(s) :=

󰁛

p󰃑x

log p.

Lemma 8.11. Φ(s) is holomorphic for ℜ(s) > 1.

Lemma 8.12. Φ(s)− (s− 1)−1 extends holomorphically to an open set containing {s ∈ C :
ℜ(s) 󰃍 1}.

Proof. For ℜ(s) > 1, the Euler identity ζ(s) =
󰁔
(1− p−s)−1 dictates that

(− log ζ(s))′ = −ζ ′(s)

ζ(s)
= (−

󰁛

p prime

log
1

1− p−s
)′ =

󰁛

p prime

log p

ps − 1
.

Moreover, this can be written as
󰁛

p prime

log p

ps − 1
=

󰁛

p prime

(
log p

ps − 1
− log p

ps
) + Φ(s).
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Therefore,

Φ(s) = −ζ ′(s)

ζ(s)
−

󰁛

p prime

log p

p(ps − 1)
.

Note that the second term is holomorphic for ℜ(s) > 1/2. The first term is meromorphic
with poles at the pole s = 1 of ζ(·), as well as the zeros of ζ(·). This together with Theorem
8.3 that ζ(s) ∕= 0 for ℜ(s) = 1, we see ζ ′(s)/ζ(s) is holomorphic near {ℜ(s) = 1} (except a
pole at s = 1).

Recall for ℜ(s) > 0 that ζ(s) = (s− 1)−1 + (a holomorphic function). As the derivation
of analytic function is still analytic,

ζ ′(s)

ζ(s)
= − 1

s− 1
+ (a holomorphic function)

near s = 1. To sum these up, the function

Φ(s)− 1

s− 1

is holomorphically defined near {s ∈ C : ℜ(s) = 1}. □

Now we are ready to introduce the main theorem on PNT by using the function ϕ(·).

Theorem 8.13. As x → ∞, we have ϕ(x) ∼ x, i.e., limx→∞ ϕ(x)/x = 1. Furthermore,
this result implies PNT.

Proof. The proof for ϕ(x) ∼ x is relatively easy. We are to do the second part. Note that

ϕ(x) =
󰁛

p󰃑x

log p 󰃑
󰁛

p󰃑x

log x = π(x) · log x,

which immediately implies that

lim inf
x→∞

π(x)

x/ log x
󰃍 lim inf

x→∞

ϕ(x)

x
= 1.

On the other hand, for all ε > 0,

ϕ(x) 󰃍
󰁛

x1−ε<p󰃑x

log p 󰃍
󰁛

x1−ε<p󰃑x

log x

= (1− ε) · log x · (π(x)− π(x1−ε))

󰃍 (1− ε) · log x · (π(x)− x1−ε)

Here the equality is deduced from the definition of π(·). Therefore,

lim sup
x→∞

π(x)

x/ log x
󰃑 1

1− ε
.

By letting ε → 0+, we get

lim sup
x→∞

π(x)

x/ log x
󰃑 1.

This finally proves Theorem 8.8. □

Lemma 8.14. The following integral converges:
󰁝 ∞

1

ϕ(x)− x

x2
dx.
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Proof. Claim: For ℜ(s) > 1, by substituting x = et, we have

Φ(s) =
󰁛

p prime

log p

ps
= s

󰁝 ∞

1

ϕ(x)

xs+1
dx = s

󰁝 ∞

0

e−stϕ(et)dt.

Apply this claim without proof. Note that via x = et,
󰁝 ∞

1

ϕ(x)− x

x2
dx =

󰁝 ∞

0

(ϕ(et)e−t − 1)dt =

󰁝 ∞

0

f(t)dt,

where we denote f(t) := ϕ(et)e−t − 1. Then consider the Laplace transform

g(s) =

󰁝 ∞

0

f(t)e−stdt =

󰁝 ∞

0

(ϕ(et)e−t − 1)e−stdt

=

󰁝 ∞

0

e−(s+1)t · ϕ(et)dt
󰁿 󰁾󰁽 󰂀

Φ(s+1)/(s+1)

−
󰁝 ∞

0

e−stdt

󰁿 󰁾󰁽 󰂀
1/s

=
1

s+ 1
(Φ(s+ 1)− 1

s
− 1).

By Lemma 8.12, the function g(·) extends holomorphically to {s ∈ C : ℜ(s) 󰃍 0}. Now
apply Tauberian theorem (Theorem 8.9), we see the integral

g(0) =

󰁝 ∞

0

f(t)dt

converges. This completes the proof. □

At the end of this section, we are going to prove Theorem 8.9.

Proof of Theorem 8.9. The bounded condition for f is essential. Assume |f(t)| 󰃑 M for
t ∈ [0,∞). For T > 0 we define its truncated Laplace transform as

gT (z) :=

󰁝 T

0

f(t) · e−ztdt,

which is an entire function. We need to verify that

lim
T→∞

gT (0) = g(0).

R−δ

D+D−

Apply the Cauchy integral formula (Theorem 3.13) to

G(z) = (g(z)− gT (z)) · ezT · (1 + z2

R2
),

which is holomorphic in D = {|z| 󰃑 R,ℜ(z) 󰃍 −δ(R)}, we get

G(0) =
1

2πi

󰁝

∂D

G(z)

z
dz.
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Or equivalently,

g(0)− gT (0) =
1

2πi

󰁝

∂D

(g(z)− gT (z)) · ezT · (1 + z2

R2
) · 1

z
dz.

For convenience, we denote ∂D+ = ∂D ∩ {x > 0} and ∂D− = ∂D ∩ {x 󰃑 0}. On ∂D+, via
z = x+ iy,

|g(z)− gT (z)| = |
󰁝 ∞

T

f(t)e−ztdt| 󰃑 M ·
󰁝 ∞

T

e−xtdt =
Me−xT

x
.

On the other hand, for |z| = R,

|ezT · (1 + z2

R2
) · 1

z
| = exT · 2|x|

R2
.

Combining these, we see

| 1

2πi

󰁝

∂D+

(g(z)− gT (z)) · ezT · (1 + z2

R2
) · 1

z
dz| 󰃑 M

R
.

On ∂D−, we choose to estimate gT (z) and g(z) respectively. Say

|gT (z)| = |
󰁝 T

0

f(t)e−ztdy| 󰃑 M ·
󰁝 T

−∞
e−xtdt =

Me−xT

|x| .

Note that gT (z) is entire, hence

|
󰁝

∂D

(g(z)− gT (z)) · ezT · (1 + z2

R2
) · 1

z
dz|

󰃑
󰁝

Γ−

Me−xT

|x| · exT · 2|x|
R2

dz 󰃑 M

R

by local Cauchy theorem (Corollary 3.5). Here Γ− = {|z| = R,ℜ(z) 󰃑 0} denotes the
left semi-circle. For g(z), g(·) is holomorphic on ∂D−. Hence there exists some constant
K = K(R, δ) > 0 such that on ∂D−,

|g(z) · (1 + z2

R2
) · 1

z
| 󰃑 K(R, δ).

Note that ezT is bounded on ∂D− and ezT → 0 uniformly on every compact set of {z ∈ C :
ℜ(z) < 0}. Then

lim
T→∞

| 1

2πi

󰁝

∂D−

g(z) · (1 + z2

R2
) · ezT · 1

z
dz| = 0.

Therefore,

lim sup
T→∞

|g(0)− gT (0)| 󰃑 lim sup
T→∞

| 1

2πi

󰁝

∂D+

(g(z)− gT (z)) · ezT · (1 + z2

R2
) · 1

z
dz|

+ lim sup
T→∞

| 1

2πi

󰁝

∂D−

gT (z) · (1 +
z2

R2
) · ezT · 1

z
dz|

+ lim sup
T→∞

| 1

2πi

󰁝

∂D−

g(z) · (1 + z2

R2
) · ezT · 1

z
dz|

󰃑 2M

R
→ 0, R → ∞.

This shows that limT→∞ |g(0)− gT (0)| = 0. □
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Remarks 8.15 (Final Remarks on RH). Recall that ζ(·) has two types of zeros: the nontrivial
ones and the trivial ones. The trivial zeros are given by ζ(−2m) = 0 with m ∈ N. The
Riemann Hypothesis claims that all nontrivial zeros lie on the line ℜ(s) = 1/2, and in
particular, the known fact is that ζ(s) ∕= 0 for ℜ(s) = 1. By symmetry, ζ(s) ∕= 0 on
ℜ(s) = 0.

According to the known result by von-Mangoldt in 1905, as T → ∞, we obtain an
estimation for the number of zeros of ζ(·) in the critical strip. Say

N(T ) := #{s ∈ C : ζ(s) = 0, 0 < ℜ(s) < 1, |ℑ(s)| 󰃑 T}

=
T

2π
log

T

2π
− T

2π
+O(log T ), T → ∞.

To study the hypothesis, we denote

M(T ) := #{s ∈ C : ζ(s) = 0,ℜ(s) = 1/2, |ℑ(s)| 󰃑 T}.

In 1943, Selberg showed thatM(T ) 󰃍 A·T log T for some constant A > 0 that is independent
of T . In particular, this result implies

M(T )

N(T )
󰃍 C > 0.

Philosophically speaking, it shows that there are at least a certain proportion of zeros lie on
ℜ(s) = 1/2. In 1974, Levinson had shown that A 󰃍 1/3; in 1991, Conrey had shown that
A 󰃍 2/5.

9. Conformal Mappings: On Geometry of the Disc

We are to study the geometry of holomorphic functions. The problems and upshot ideas
we present in this chapter are more geometric in nature than the ones we have seen so far.
In fact, here we will be primarily interested in mapping properties of holomorphic functions.
In particular, most of our results will be “global,” as opposed to the more “local” analytical
results proved in the first three chapters. The motivation behind much of our presentation
lies in the following simple question:

• Given open sets U, V ⊂ C, does there exist a holomorphic bijection between them?

By a holomorphic bijection we simply mean a function that is both holomorphic and bijec-
tive. (It will turn out that the inverse map is then automatically holomorphic.) A solution
to this problem would permit a transfer of questions about analytic functions from one open
set with little geometric structure to another with possibly more useful properties. The
prime example consists in taking V = D the unit disc, where many ideas have been devel-
oped to study analytic functions. In fact, since the disc seems to be the most fruitful choice
for V we are led to a variant of the above question:

• Given an open subset Ω of C, what conditions on Ω guarantee that there exists a
holomorphic bijection from Ω to D?

• Given an open set Ω ⊂ C, what is the group of holomorphic automorphisms on Ω, i.e.,
how to find out Aut(Ω) := {f : Ω → Ω conformal map}?

9.1. Conformal Equivalence and Examples.

Definitions 9.1 (Conformality, Biholomorphicity).

(1) Let U, V ⊂ C be open sets and f : U → V be holomorphic. Then f is called a
conformal map or biholomorphic map if f is also bijective.

(2) If there exists a conformal map from U to V , then U, V are called conformally
equivalent or biholomorphically equivalent.
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Note that an equivalent definition of biholomorphicity is read as follows. There exists two
holomorphic maps F : U → V and G : V → U such that F ◦G = idV and G ◦ F = idU . In
some other materials, one may define conformal mapping as a map that preserves all local
angles. We will no longer follow this definition.

Proposition 9.2. If f : U → V is holomorphic and injective, then f ′(z) ∕= 0 for all z ∈ U .
In particular, f−1 : f(U) → U is also holomorphic.

Proof. If there is z0 ∈ U such that f ′(z0) = 0, then f(z) − f(z0) = a(z − z0)
k + G(z) for

those z lying near z0, where k ≥ 2, a ∕= 0, and ordz0 G 󰃍 k + 1. On the other hand, the
condition that f is injective implies that f is not a constant. Then z0 is an isolated zero of
f ′(z), i.e., f ′(z) ∕= 0 for z ∕= z0 that are close to z0. Hence the roots of f(z)− f(z0)−w are
distinct near z0 for some w ∕= 0. Write

f(z)− f(z0)− w = (a(z − z0)
k − w)󰁿 󰁾󰁽 󰂀

F (z)

+G(z).

Note that |F (z)| > |G(z)| on the circle |z − z0| = δ for 0 < δ ≪ 1. By Rouché Theorem
(Corollary 4.25), F (z) = a(z − z0)

k −w and F (z) +G(z) have the same number of zeros in
|z − z0| < δ. Therefore, f(z) − f(z0) − w has k ≥ 2 roots in |z − z0| < δ. This leads to a
contradiction as δ → 0.

Let g = f−1. For w = f(z) that is close to w0 = f(z0), we have

g(w)− g(w0)

w − w0
=

z − z0
f(z)− f(z0)

.

Consequently, g′(w0) = 1/f ′(g(w0)) ∕= 0. So f−1 is also holomorphic. □
Corollary 9.3. The inverse of a conformal map is holomorphic.

Remark 9.4. Here are some remarks for the sake of understanding Definitions 9.1.

(1) Suppose f : U → V is holomorphic and f ′(z) ∕= 0 for any z ∈ U . However, this does
not imply the injectivity of f . For a counterexample, on D∗ = {0 < |z| < 1},

f : D∗ → D∗; z 󰀁→ z2.

But f ′(z0) ∕= 0 locally implies that f is (locally) biholomorphic near z0.
(2) On the terminology “conformal”: let f : U → V be conformal. By Proposition 9.2,

f ′(z) ∕= 0 for any z ∈ U . We claim that f preserves angles. To be more explicit, let
Γ1 and Γ2 be two curves intersecting at z ∈ C with the intersection angle θ. Then
f(Γ1) and f(Γ2) intersect at f(z) with angle θ as well.

Examples 9.5. Here comes a series of examples on conformal maps. We are particularly
interested to focus on the conformal equivalence class of H.

(1) The upper-half plane H = {z ∈ C : ℑ(z) > 0} is conformally equivalent to the open
unit disc D = {z ∈ C : |z| < 1}, denoted as H ∼= D. Note that for any z ∈ H,

|F (z)| = |z − i|
|z + i| < 1.

Therefore, we get the holomorphic map F : H → D. Its inverse is given byG : D → H
with G(w) = i(1− w)/(1 + w).

i

−i

z
H D

F
∼

G

∼
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Then F ◦ G = idD and G ◦ F = idH. Focusing on the image of the real line R ⊂ C
under F , for z = x ∈ R,

i− x

i+ x
=

(i− x)2

1 + x2
=

1− x2

1 + x2
+ i

2x

1 + x2
= cos(2t) + i sin(2t).

by changing the variable x = tan t for t ∈ (−π/2,π/2). In particular, F (∞) =
F (−∞) = −1.

(2) We now define S = {z ∈ C : 0 < arg(z) < π/n}, and then S ∼= H via F : S → H
and G : H → S such that F (z) = zn and G(w) = w1/n.

π/n S H

F
∼

G

∼

Note that the proportion 1/n can be replaced by any irrational number α ∈ R.
(3) Using the similar idea as in (2), D is conformally equivalent to the upper-half unit

disc D+ = {z ∈ D : ℑ(z) > 0}, which is open as well. But the boundary behavior is
not the same. In fact, there is a conformal map

F : D+ → H; z 󰀁→ −1

2
(z +

1

z
).

To verify this, note that the equation F (z) = w ∈ H reduces to z2 + 2wz + 1 = 0
that has two distinct roots whenever w ∕= ±1.

(4) Again, the upper-half plane can be conformally equivalent to a strip. Define Ω =
{z ∈ C : 0 < ℑ(z) < π} and for z = reiθ ∈ H with θ ∈ [−π/2, 3π/2), we take
F : z 󰀁→ log z = log r + iθ to see the result. Its inverse is given by G : w 󰀁→ ew.

H Ω

πi

F
∼

G

∼

(5) We define the half-strip T = {z ∈ C : ℑ(z) > 0,−π/2 < ℜ(z) < π/2}. Note that
the map z 󰀁→ exp(iz) takes T to the right half-disc D′

+ := {|z| < 1,ℜ(z) > 0}. This
is immediate from the fact that if z = x+ iy, then eiz = eixe−y. Also, we have the
orientation given by multiplicating with i, say D′

+ → D+.

π/2−π/2
T H

D′
+ D+

z 󰀁→sin z

∼

∼z 󰀁→exp(iz)

z 󰀁→iz
∼

∼ z 󰀁→− z+1/z
2
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Combining these with the result of (3), we have a biholomorphic map T ∼= H. This
is nothing but sin z, because

sin z =
eiz − e−iz

2i
= −1

2
(iζ +

1

iζ
), ζ = eiz.

(6) For a non-example, we see D ∕∼= C∗ = C−{0}. Otherwise if there is some holomorphic
map f : C∗ → D, it must be bounded, and equivalently, f has a removable singularity
at 0 by the Riemann extension (Theorem 4.12). Moreover, it extends to some
holomorphic and bounded map g : C → D. From Liouville Theorem (Corollary
3.16), g must be a constant. This contradicts to the assumption.

(7) We claim D ∕∼= C. By Definitions 9.1, if U ∼= V then they have the same set of
holomorphic functions. Moreover, there exists a group homomorphism O(U) ≃
O(V ) by Proposition 9.2. The result is given by the fact that there is some bounded
non-constant holomorphic function on D, whereas by Liouville Theorem (Corollary
3.16), there is no such bounded and non-constant entire function on C.

9.2. The Schwarz Lemma. The statement and proof of the Schwarz lemma are both
simple, but the applications of this result are far-reaching.

Lemma 9.6 (Schwarz). Suppose f : D → D is holomorphic with f(0) = 0. Then

(1) |f(z)| 󰃑 |z| for all z ∈ D with equality at some z0 ∈ D if and only if f(z) = eiθ · z
(i.e., f is a rotation);

(2) |f ′(0)| 󰃑 1 with equality being valid if and only if f is a rotation.

Proof. (1) Consider the function g(z) = f(z)/z, then f(0) = 0 implies that z = 0 is a
removable singularity of g. If |z| = r < 1 then

max
|z|󰃑r

|g(z)| = max
|z|=r

|g(z)| = 1

r
max
|z|=r

|f(z)| 󰃑 1

r
.

Letting r → 1 from r > 0, we see for all z ∈ D that |g(z)| 󰃑 1. By the maximum principle
(Proposition 4.27) applying to g, the equality holds if and only if g(z) = C for some constant
C such that |C| = 1, that is, C = eiθ for some θ. Thus, f(z) = eiθ · z.

(2) We still consider g(z) = f(z)/z. Note that

f ′(0) = lim
z→0

f(z)− f(0)

z
= lim

z→0

f(z)

z
= lim

z→0
g(z) = g(0).

By (1), we get |f ′(0)| = |g(0)| 󰃑 1 with equality if and only if g(z) = eiθ. This shows that
f(z) = eiθ · z. □

9.2.1. Aut(D). The next goal is to apply Lemma 9.6 to understand the group Aut(D).

Examples 9.7. We list out some basic elements in Aut(D) as examples.

• The rotation: z 󰀁→ eiθ · z.
• Given α ∈ D, we define

ψα(z) :=
α− z

1− α · z ,

then ψα ∈ Aut(D). One can verify some properties such as ψα(0) = α, ψα(α) = 0,
and ψ2

α = ψα ◦ ψα = idD (i.e. ψ−1
α = ψα).

The following fundamental theorem dictates that the second example above almost rep-
resents all elements in Aut(D) (up to some rotation).
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Theorem 9.8 (The Fundamental Theorem on Aut(D)). For any f ∈ Aut(D), there are
some θ ∈ R and α ∈ D such that

f(z) = eiθ · α− z

1− αz
, ∀z ∈ D.

Proof. For f ∈ Aut(D), there is a unique α = f(0) such that g(z) := ψα ◦ f(z) ∈ Aut(D)
and g(0) = 0. Note that g : D → D is holomorphic and satisfies the condition of the
Schwarz Lemma (Lemma 9.6), for all z ∈ D, |g(z)| 󰃑 |z|. On the other hand, by Proposition
9.2, for each g ∈ Aut(D), we have g−1 ∈ Aut(D) and g−1(0) = 0 as well. Again by
Schwarz, |g−1(w)| 󰃑 |w| for all |w| ∈ D. Let w = g(z) and then |z| 󰃑 |g(z)|. Hence
|g(z)| = |z| for any z ∈ D. This means that the equality in Lemma 9.6 holds, or equivalently,
g(z) = eiθz, denoted by rθ(z), for some θ ∈ R. By definition, we get ψα ◦ f = rθ and then
f = ψ−1

α ◦ rθ = ψα ◦ rθ by Example 9.7. Finally, by replacing α by α · e−iθ, we finish the
proof. □
9.2.2. Aut(H). Recall Example 9.5 (1) that H is conformally equivalent to D via

F : H → D, z 󰀁→ i− z

i+ z
,

and hence we expect that Aut(H) can be expressed by Aut(D). Consider the composition

H D D HF

F−1◦ϕ◦F

ϕ F−1

We know that for each ϕ ∈ Aut(D) (represented by Theorem 9.8), F induces an isomorphism

ΓF : Aut(D) −→ Aut(H)

ϕ 󰀁−→ F−1 ◦ ϕ ◦ F
whose image are given by conjugations of F .

Exercise 9.9. Fix ϕ ∈ Aut(D). Show that ΓF (ϕ) defined as above is of the form

z 󰀁→ γ.z :=
az + b

cz + d
, γ =

󰀕
a b
c d

󰀖
,

where γ ∈ SL2(R), the special linear group over R (i.e. ad− bc = 1 and a, b, c, d ∈ R).

Starting from this point of view, we define the fractional linear transformation as

fM (z) =
az + b

cz + d
, M =

󰀕
a b
c d

󰀖
∈ SL2(R).

Theorem 9.10. A map g ∈ Aut(H) if and only if g = fM for some M ∈ SL2(R).

Remark 9.11. Note that fM = f−M for any M ∈ SL2(R). By defining the equivalence
relation ∼ by identifying M and −M , we see

Aut(H) ≃ PSL2(R) := SL2(R)/ ∼,

which is the so-called projective special linear group.

At the end of this part, we will introduce a generalized version of the Schwarz Lemma
9.6 which drops the condition f(0) = 0.

Proposition 9.12 (Schwarz-Pick Lemma). Suppose f : D → D is holomorphic. Then for
any z ∈ D,

|f ′(z)|
1− |f(z)|2 󰃑 1

1− |z|2
with equality at some z0 ∈ D if and only if f ∈ Aut(D).
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Proof. Fix z ∈ D and consider the composition

F : 0 󰀁→ z = g(0) 󰀁→ f(z) 󰀁→ 0 = h(f(z))

where g(ξ) := (ξ+z)/(1+zξ) and h(ξ) = (ξ−f(z))/(1−f(z)ξ). Then F = h◦f ◦g : D → D
with g, h ∈ Aut(D) such that F (0) = 0. Now applying Lemma 9.6 to F , we get

|F ′(0)| = |h′(f(z)) · f ′(z) · g′(0)| = 1− |z|2
1− |f(z)|2 |f

′(z)| 󰃑 1

with equality if and only if F is a rotation, i.e.,

|f ′(z)|
1− |f(z)|2 󰃑 1

1− |z|2

with equality at some z0 ∈ D if and only if f ∈ Aut(D). □
9.3. Hyperbolic Geometry on D. Recall the Cauchy-Riemann equation is read as

∂

∂z
=

1

2
(
∂

∂x
− i

∂

∂y
),

∂

∂z
=

1

2
(
∂

∂x
+ i

∂

∂y
)

for dz = dx+ idy and dz = dx− idy. For a smooth function f , we see

df =
∂f

∂z
dz +

∂f

∂z
dz =

∂f

∂x
dx+

∂f

∂y
dy.

If f is holomorphic, then df(z) = f ′(z)dz by definition.

Definition 9.13 (Kähler Metric). Let Ω ⊂ C be an open set. Suppose g(z) > 0 is a smooth
function on z ∈ Ω. A Kähler Metric on Ω is defined to be

ds2(z) = g(z) · |dz|2,
where |dz|2 = (dx)2 + (dy)2.

Definition 9.14 (Pull-back of Kähler Metric). Let Ω1,Ω2 ⊂ C be open sets. Suppose
ds2Ω2

(z) = g(z)|dz|2 is a metric on Ω2 and f : Ω1 → Ω2 is a holomorphic map. We define

the pull-back of ds2Ω2
(z) along f as

f∗(ds2Ω2
) := f∗(g|dz|2) = (g ◦ f) · |df |2 = (g ◦ f) · |f ′(z)|2|dz|2.

Example 9.15 (Poincaré Metric on D). By taking g(z) = 4/(1− |z|2)2 in a Kähler metric,
we get the Poincaré metric on D:

ds2P(z) :=
4|dz|2

(1− |z|2)2 , dsP =
2|dz|

1− |z|2 .

As for the pull-backs, we take f ∈ Hol(D,D) = {f : D → D holomorphic}. Then

f∗ds2P(z) =
4

(1− |f ′(z)|2)2 |f
′(z)|2|dz|2.

Through the holomorphic function f , (D, ds2P) is sent to (D, ds2P) as well. By cancelling the
|dz|2 term and applying the Schwarz-Pick lemma (Proposition 9.12), we see

f∗ds2P(z) 󰃑 ds2P(z)

with equality holds at some z0 ∈ D if and only if f ∈ Aut(D). Note that the inequality
above is equivalent to the previous Schwarz lemma (Lemma 9.6).

Remark 9.16. One can check that the curvature of (D, ds2P) is a negative constant. The neg-
ativity here is often regarded as some “hyperbolic property” in complex geometry. Denote

Iso(D, ds2P) = {f : D → D holomorphic with f∗ds2P = ds2P}
as the isometric group on (D, ds2P). Then the Schwarz-Pick shows that Aut(D) = Iso(D).
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Example 9.17. Recall Example 9.5 (1) that for H, we have the conformal equivalence

ϕ : H → D; z 󰀁→ z − i

z + i
.

Then the pull-back of ds2P along ϕ is readily read as

ϕ∗ds2P(z) =
4|dϕ(z)|2

(1− |ϕ(z)|2)2 =
4

(1− | z−i
z+i |2)2

· 4

|z + i|4 · |dz|2 =
1

y2
|dz|2

where y = ℑ(z). Then (D, ds2P(z)) ≃ (H, |dz|2/|ℑ(z)|2). In this sense, we see the geometry
on D is the same as that on H.

9.3.1. Poincaré Length. Let Γ ⊂ D be a (piecewise smooth) curve in D joining two fixed
points a, b ∈ D. Assume Γ has a parametrization z(t) = x(t) + iy(t) : [0, 1] → D with
z(0) = a and z(1) = b. Then the Poincaré length of Γ with respect to ds2P(z) is given by

L(Γ) :=

󰁝

Γ

dsP(z(t)) =

󰁝 1

0

2

1− |z(t)|2 |dz(t)|

that is independent of the choice of the parametrization of Γ. Note that dz(t) = (x′(t) +
iy′(t))dt and then |dz(t)| = (x′(t)2 + y′(t)2)1/2dt, we see

󰁝

Γ

dsP(z(t)) =

󰁝 1

0

2(x′(t)2 + y′(t)2)1/2

1− (x(t)2 + y(t)2)
dt.

Example 9.18. Consider Γ1 : z(t) = t with 0 󰃑 t 󰃑 a. Then

L(Γ1) =

󰁝 a

0

2

1− t2
dt =

󰁝 a

0

(
1

1− t
+

1

1 + t
)dt = log

1 + a

1− a
.

Note that as a → 1, we have L(Γ1) → ∞, which does not coincide with the intuition for
classical Eulerian geometry.

0 aΓ1

Γ2

D

Now consider Γ2 : z(t) = x(t) + iy(t) with 0 󰃑 t 󰃑 1 such that z(0) = 0 and z(1) = a. Then

L(Γ2) =

󰁝 1

0

2(x′(t)2 + y′(t)2)1/2

1− x(t)2 − y(t)2
dt

󰃍
󰁝 1

0

2|x′(t)|
1− x(t)2

dt 󰃍
󰁝 1

0

2dx(t)

1− x(t)2

=

󰁝 a

0

2ds

1− s2
= log

1 + a

1− a
= L(Γ1).

From this, we know that with respect to ds2P, the line segment Γ1 from 0 to a is actually
the shortest path.

Definition 9.19 (Poincaré Distance). For a, b ∈ D we define the Poincaré distance from a
to b as

distP(a, b) := inf
Γ

L(Γ),
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where Γ runs through all curves joining a and b.

Then for 0 < a < 1 we have distP(0, a) = log((1 + a)/(1− a)).

Exercise 9.20. Calculate the Poincaré distance on D as follow.

(1) For any a ∈ D, show that

distP(0, a) = log
1 + |a|
1− |a| .

(Hint: consider a rotation rθ such that rθ(a) = |a|.)
(2) For any a, b ∈ D, show that

distP(a, b) = log
|1− ab|+ |a− b|
|1− ab|− |a− b|

.

(Hint: consider h(ξ) = (ξ−b)/(1−bξ) such that h(b) = 0 and h(a) = (a−b)/(1−ab),
and use the fact that the group action of Aut(D) preserves ds2P.)

Theorem 9.21. For all a, b ∈ D and f ∈ Hol(D,D), we have

distP(f(a), f(b)) 󰃑 distP(a, b).

Sketchy Idea for Proof. Use the definition of Poincaré distance and apply the Schwarz-Pick
Lemma (Proposition 9.12). □

9.3.2. Kobayashi Pseudo-Distance. Let Ω ⊂ C be an open connected set with x, y ∈ Ω.
Consider a sequence of holomorphic maps fi : D → Ω (i = 1, 2, . . . ,m) and points pi, qi ∈ D
satisfying the following Kobayashi condition:

(∗) f1(p1) = x, fm(qm) = y; fi(qi) = fi+1(pi+1).

Geometrically, this construction is nothing but a chain of discs connecting x and y.

Definition 9.22 (Kobayashi Hyperbolic). We define the Kobayashi pseudo-distance as

dK(x, y) := inf
fi,pi,qi

m󰁛

i=1

distP(pi, qi),

where the index runs over all such fi and pi, qi satisfying (∗). One can check that for any
x, y, z ∈ Ω,

dK(x, y) = dK(y, x) 󰃍 0, dK(x, z) 󰃑 dK(x, y) + dK(y, z).

Moreover, the region Ω is called Kobayashi hyperbolic if for all x, y ∈ Ω such that x ∕= y, we
always have dK(x, y) > 0.

We introduce the main result due to Kobayashi theory without proof (also leave as an
exercise).

Theorem 9.23. Consider dK(·, ·) on D and C.

(1) For D, we have dK = distP, thus D is Kobayashi hyperbolic.
(2) For C, we have dK ≡ 0, thus C is not Kobayashi hyperbolic.
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9.4. The Riemann Mapping Theorem. The motivation of the Riemann mapping theo-
rem comes from the following natural question.

• Given an open set Ω ⊂ C, is Ω conformally equivalent to D?
For this, we make two trivial observations. Firstly, Ω ∕= C by Liouville (Corollary 3.16)
because of the boundedness of D. Secondly, Ω must be simply connected since the biholo-
morphic functions preserves all topology information.

Surprisingly, the Riemann mapping theorem dictates that these two necessary conditions
are also sufficient to determine the conformal equivalence class of D.

Theorem 9.24 (Riemann Mapping Theorem). Let Ω be a proper (i.e. Ω ∕= C) and simply
connected open set of C. Fix z0 ∈ Ω. Then there exists a unique biholomorphic map
F : Ω → D such that F (z0) = 0 and F ′(z0) > 0.

Proof of the Uniqueness. We prove the uniqueness first. If there are F,G : Ω ≃ D satisfying
that F (z0) = G(z0) = 0 and F ′(z0), G

′(z0) > 0, then F ◦G−1 ∈ Aut(D) satisfies F ◦G−1(0) =
0. Thus,

F ◦G−1(z) = eiθ · z,
that is, F ◦G−1 is a rotation on D. However, the condition F ′(z0), G

′(z0) > 0 shows that

(F ◦G−1)′(0) = eiθ > 0

as a real number. Therefore, eiθ = 1 and F = G. □

Corollary 9.25. Any two proper simply connected open sets of C are conformally equivalent.

The proof for existence is hard. We will consider the function space

F = {f : Ω → D | f is holomorphic and injective such that f(z0) = 0}.
Some preparation work for this is in need.

9.4.1. Montel’s Theorem.

Theorem 9.26 (Montel). Let Ω ⊂ C be an open set and F be a family of holomorphic
functions on Ω. Assume that F is uniformly bounded on every compact set of Ω, i.e., for
any compact subset K ⊂ Ω, there is a constant B(K) > 0 such that for each f ∈ F, we have
supz∈K |f(z)| 󰃑 B(K). Then

(1) F is equicontinuous on every compact subset of Ω, i.e., for any compact subset
K ⊂ Ω, for all ε > 0 there is δ(ε) > 0 such that for each f ∈ F, |f(z) − f(w)| < ε
whenever z, w ∈ K and |z − w| < δ(ε);

(2) F is a normal family, i.e., each sequence in F has a subsequence that converges
uniformly on every compact subset of Ω.

Sketchy Proof. (1) By Cauchy integral formula (Theorem 3.13), the condition that all f ∈ F
are uniformly bounded on compact sets implies that F is equicontinuous on every compact
set.

(2) By (1), F is equicontinuous and uniformly bounded on every compact set. By Arzela-
Ascoli theorem, F is normal. □

Proposition 9.27. Let Ω ⊂ C be open and connected. Suppose {fn}∞n=1 is a series of
injective and holomorphic functions on Ω. Assume fn → f uniformly on every compact set
of Ω, then f is also injective unless it is a constant.

Proof. We argue by contradiction and suppose that f is not injective, so there exist distinct
complex numbers z1 and z2 in Ω such that f(z1) = f(z2). Define a new sequence by
gn(z) = fn(z) − fn(z1), so that gn has no other zero besides z1, and the sequence {gn}
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converges uniformly on compact subsets of Ω to g(z) = f(z)− f(z1). If g is not identically
zero, then z2 is an isolated zero for g (because Ω is connected); therefore, by the argument
principle (Theorem 4.23),

1 =
1

2πi

󰁝

γ

g′(ζ)

g(ζ)
dζ,

where γ is a small circle centered at z2 chosen so that g does not vanish on γ or at any
point of its interior besides z2. Therefore, 1/gn converges uniformly to 1/g on γ, and since
g′n → g′ uniformly on γ we have

1

2πi

󰁝

γ

g′n(ζ)

gn(ζ)
dζ → 1

2πi

󰁝

γ

g′(ζ)

g(ζ)
dζ

But this is a contradiction since gn has no zeros inside γ, and hence

1

2πi

󰁝

γ

g′n(ζ)

gn(ζ)
dζ = 0

for all n. This shows that g ≡ 0 and f must be a constant. □

9.4.2. Proof of the Riemann Mapping Theorem. The proof are listed in 3 steps.

• Step 1. Let Ω ⊊ C be a simply connected open set.

Claim: Ω is biholomorphic to an open set of D containing 0.

Proof of Claim. By translations and rescalings, it is enough to prove that Ω is conformally
equivalent to a bounded open set of C. Since Ω is proper and simply connected, there
exists α /∈ Ω such that z − α ∕= 0 for any z ∈ Ω. Consequently,

f(z) := logΩ(z − α)

is well-defined and holomorphic, and ef(z) = z − α. Pick w ∈ Ω then

f(z) ∕= f(w) + 2πi

for any z ∈ om. To see this, the case where z = w is obvious. For z ∕= w, if f(z) =
f(w) + 2πi then

z − α = ef(z) = ef(w) = w − α ⇒ z = w,

which leads to a contradiction. Moreover, there is an open disc D centered at f(w) + 2πi

such thatD∩f(Ω) = ∅. Otherwise there is a series {zn} ⊂ Ω such that f(zn) → f(w)+2πi,
and hence ef(zn) → ef(w)+2πi (i.e. zn → w). Thus we have f(zn)] → f(w), which is a
contradiction. We then consider

F (z) =
1

f(z)− (f(w) + 2πi)
.

As f is injective, for a fixed w, F is injective as well. Hence F : Ω → F (Ω) is biholomor-
phic. On the other hand, there is some C > 0 such that for all z ∈ Ω, |F (z)| 󰃑 C. These
proves the claim.

• Step 2. By Step 1, we can assume 0 ∈ Ω ⊂ D. Consider the following family

F := {f : Ω → D | f is holomorphic and injective such that f(0) = 0}.

Since f(z) = z ∈ F we know at least F ∕= ∅. Also, F is uniformly bounded. Let s =
supf∈F |f ′(0)| then s 󰃍 1 since f(z) = z ∈ F. Moreover, one can prove that s < ∞. This
is because

f ′(0) =
1

2πi

󰁝

|ξ|=r

f(ξ)

ξ2
dξ ⇒ |f ′(0)| 󰃑 1

r
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by higher Cauchy integral formula (Theorem 3.14). Choose a sequence {fn} ⊂ F such
that |f ′

n(0)| → s. By applying Montel theorem (Theorem 9.26) to {fn}, we see there
exists a subsequence of {fn} that converges to f uniformly on every compact subset.

(i) By definition, fn are all injective and s 󰃍 1. Hence f is injective as well.
(ii) Since |fn| 󰃑 1 in Ω, we have |f | 󰃑 1 in Ω. Applying the maximum principle

(Proposition 4.27) to f on the open connected region Ω, we have |f | < 1 in Ω.
Therefore, the image of f is strictly contained in D.

(iii) Note that f(0) = 0.
From (i)-(iii) above, f readily lies in F and |f ′(0)| = s.

• Step 3. Let f : Ω → D be the map constructed in Step 2.
Claim: f is surjective, that is, f(Ω) = D; and therefore f is biholomorphic.
Proof of Claim. Otherwise there is some α ∈ D such that for all z ∈ Ω, f(z) ∕= α. Consider

󰁨f = ψg(α) ◦ g ◦ ψα ◦ f
where ψα(z) = (α− z)/(1−αz) as in Example 9.7. Also, g : ψα ◦ f(Ω) → C is defined on
a simply connected region ψα ◦ f(Ω) by g(w) =

√
w = exp((logw)/2), which is injective.

Then 󰁨f ∈ F where F is the same as in Step 2. By the definition of 󰁨f ,

f = Φ ◦ 󰁨f := ψ−1
α ◦ g−1 ◦ ψ−1

g(α)󰁿 󰁾󰁽 󰂀
Φ

◦ 󰁨f

where g−1(w) = w2. Thus, f ′(0) = Φ′( 󰁨f(0)) · 󰁨f ′(0) = Φ′(0) · 󰁨f ′(0). Note that Φ : D → D
satisfies Φ(0) = 0 and Φ is not injective. By the Schwarz lemma (Lemma 9.6), |Φ′(0)| < 1

and | 󰁨f ′(0)| > |f ′(0)|, which contradicts with the definition |f ′(0)| = suph∈F |h′(0)|.
The whole proof for Theorem 9.24 is accomplished.

Example 9.28 (Topological Comb). We consider a classical example in topology that is
(globally) path-connected but not locally path-connected. Say

Ω = {s ∈ C : 0 < ℜ(s) < 1, 0 < ℑ(s) < 1}−
∞󰁞

n=1

[
1

n
,
1

n
+

n− 1

n
i].

0

1 + i

1

i

Ω

That is the open set by removing a series of the “comb intervals” from the interior of the
square with vertices 0, 1, i, 1+ i. Note that Ω is simply connected and open with ∂Ω = Ω\Ω
being the union of the comb space and the edges of the square. By Riemann mapping
theorem (Theorem 9.24), there is a conformal map F : Ω → D.

Remark 9.29. The conformal equivalence relation implies the topological homeomorphism.
For (the most important) example, suppose Ω1,Ω2 ⊊ C are two simply connected open sets
that are conformally equivalent, then Ω1 ≃ Ω2 as a topological homeomorphism. However,
given a map that preserves all local angles, it need not be a homeomorphism unless it is
bijective.
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9.5. Correspondence of Boundaries.

Definition 9.30 (Regularity). Let Ω ⊂ C be a bounded region. A point z0 ∈ ∂Ω is called
regular if there exists r(z0) > 0 such that for all 0 < r < r(z0) we have

Ω ∩ {z ∈ C : |z − z0| = r} = {z0 + reiθ : θ1(r) < θ < θ2(r)}
for some constants with θ1(r) < θ2(r), which are continuous with respect to r.

Ω z0

If every point of ∂Ω is regular, then we say Ω is regular.

Example 9.31. If ∂Ω is C1 with some corners, then Ω is regular. In particular, if ∂Ω is
piecewise smooth, then Ω is regular.

Theorem 9.32 (Boundary Correspondence). Let Ω ⊂ C be an open set that is bounded,
simply connected, and regular. Then any conformal map F : Ω → D extends to a continuous
bijection F : Ω → D. In particular, F induces a homeomorphism from ∂Ω to ∂D.

Upshot for Proof: we need to verify limz→z0,z∈Ω F (z) exists for any z0 ∈ ∂Ω.
We take a lemma as the preparation work. For each 0 < r < r(z0) we denote Cr = {z ∈

C : |z− z0| = r}. For any given two points zr, z
′
r ∈ Ω∩Cr, let ρ(r) := |F (zr)−F (z′r)|. This

statement essentially uses the regularity assumption.

Ω z0

zr

z′r Cr

α

Lemma 9.33. We have lim infr→0 ρ(r) = 0.

Proof. We take α as the arc on Cr from zr to z′r. Note that F is holomorphic, and hence

F (z′r)− F (zr) =

󰁝

α

F ′(ξ)dξ.

If lim supr→0 ρ(r) > 0, i.e., there is some C > 0 together with 0 < R ≪ 1 such that ρ(r) 󰃍 C
for any 0 < r < R. On the other hand,

ρ(r) = |
󰁝

α

F ′(ξ)dξ| 󰃑
󰁝 θ2(r)

θ1(r)

|F ′(ξ)|rdθ

󰃑 (

󰁝 θ2(r)

θ1(r)

|F ′(ξ)|2 · rdθ)1/2 · (
󰁝 θ2(r)

θ1(r)

rdθ)1/2

󰃑 (2πr)1/2(

󰁝 θ2(r)

θ1(r)

|F ′(ξ)|2 · rdθ)1/2.

Here the second inequality is the Cauchy-Schwarz. This is equivalent to

ρ(r)2

r
󰃑 2π

󰁝 θ2(r)

θ1(r)

|F ′(ξ)|2 · rdθ.
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After taking the integral for 0 < r < R, we have
󰁝 R

0

ρ(r)2

r
dr 󰃑 2π

󰁝 R

0

󰁝 θ2(r)

θ1(r)

|F ′(ξ)|2 · rdθdr

󰃑 2π

󰁝

Ω

|F ′(ξ)|2dxdy

= 2π

󰁝

F (Ω)

dxdy = 2π

󰁝

D
dxdy = 2π2.

However, as ρ(r) 󰃍 C from the assumption,
󰁝 R

0

ρ(r)2

r
dr 󰃍 C2

󰁝 R

0

dr

r
= ∞.

This leads to a contradiction. Thus, lim infr→0 ρ(r) = 0. □

Exercise 9.34. In the proof of Lemma 9.33 above, we have used the following fact. Let
f : U → f(U) be a conformal map. Prove that

󰁝

U

|f ′(z)|2dxdy =

󰁝

f(U)

dxdy.

Proof for Theorem 9.32. We first prove limz→z0,z∈Ω F (z) exists. Otherwise, there are two
sequences {z1, z2, . . .} and {z′1, z′2, . . .} in Ω with zk → z0 and z′k → z0 but F (zk) → ξ,
F (z′k) → ξ′ such that ξ ∕= ξ′. Note that ξ, ξ′ ∈ ∂D as F : Ω → D is a conformal equivalence.
This contradicts with Lemma 9.33.

Now define F (z0) = limz→z0,z∈Ω F (z) for z0 ∈ ∂Ω. Then F : Ω → D is continuous
by Lemma 9.33 again. Applying similar argument to F−1 : D → Ω, we get a continuous
extension F−1 : D → Ω. It can be verified that

F ◦ F−1 = idD, F−1 ◦ F = idΩ .

Therefore, F is a continuous bijection. □

Remarks 9.35. We have some comments on the boundary correspondence and the Riemann
mapping theorem.

(1) For the uniqueness in the Riemann mapping theorem (Theorem 9.24), we have the
following. Let Ω ⊂ C be a proper and simply connected region with ∂Ω being a closed
piecewise smooth curve. Take three distinct points z1, z2, z3 ∈ ∂Ω. For arbitrary
and distinct a, b, c ∈ ∂D, there exists a unique conformal map F : Ω → D such that
the homeomorphic extension F : Ω → D maps z1, z2, z3 to a, b, c, respectively.

(2) The boundary correspondence (Theorem 9.32) also holds for domains in the ex-
tended complex plane C = C ∪ {∞}. Here {∞} (as a point or a region) is called
regular if {0} is regular in ∂Ω−1 := ∂{z−1 : z ∈ Ω}.

Theorem 9.36 (Extended Riemann Mapping Theorem and Boundary Correspondence).
Suppose Ω ⊂ C is a simply connected open subset that is proper (i.e., Ω ∕= C or C). Then

(1) there is a conformal map F : Ω → D;
(2) furthermore, if Ω is also regular, we have the correspondences of boundaries as in

Theorem 9.32.

9.6. Applications of Riemann Mapping Theorem. This part refers to [Kod07, pp.
224-241]. We will introduce two types of applications about reflections and modular func-
tions respectively.
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9.6.1. The Principle of Reflection. Recall the Schwarz reflection principle (Proposition 3.30)
which deduces the following theorem.

Theorem 9.37. Suppose Ω, D are open subsets of the upper-half plane H whose boundaries
intersect R with at least an interval. Assume (a, b) is part of boundary of Ω and (α,β) is
part of boundary of D on R. If F : Ω → D is a conformal map extending homeomorphically
such that F : Ω ∪ (a, b) → D ∪ (α,β), then we can extend F to a conformal map as follows:

󰁨F : Ω ∪ (a, b) ∪ Ω∗ −→ D ∪ (α,β) ∪D∗

z 󰀁−→
󰀫
F (z), z ∈ Ω ∪ (a, b);

F (z), z ∈ Ω∗.

Here Ω∗ and D∗ denote the reflection image of Ω and D with respect to the real axis,
respectively. Or equivalently, Ω∗ := {z ∈ C : z ∈ Ω} and D∗ := {z ∈ C : z ∈ D}.

H

a b

Ω

Ω∗

H

α β

D

D∗

Now we are to study reflections with respect to a line or a circle. Consider the equation
λ(w) := (c1 − c0)w + c0. If w ∈ R, then λ(w) = 0 is the equation of ℓ that passes through
c0, c1 ∈ C. If w ∈ C, then λ(·) : C → C is a conformal equivalence and maps R ∪ {∞} onto
ℓ ∪ {∞}; and such that λ(0) = c0, λ(1) = c1, and λ(∞) = ∞.

∞

∞

R

ℓ

0 1

c0

c1

w

w∗ = w

z∗

z

Exercise 9.38. Denote z∗ the image of z ∈ C under the reflection by ℓ.

(1) Let z = λ(w). Show that z∗ = λ(w).
(2) If µ is another linear fractional transform, i.e.,

µ(z) =
az + b

cz + d
,

󰀕
a b
c d

󰀖
∈ GL2(C).

which maps R ∪ {∞} to ℓ ∪ {∞}. Prove that z = µ(w) implies z∗ = µ(w).

Remark 9.39. Suppose a, b, c, d ∈ C with ad− bc ∕= 0. Then

ϕ(z) =
az + b

cz + d
∈ Aut(C).

Note that ϕ(∞) = a/c and ϕ(−d/c) = ∞. So

ϕ : C\{∞,−d

c
} = C\{−d

c
} ≃ C\{∞,

a

c
} = C\{a

c
}.
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Now let C be a circle on C and c0, c1, c∞ be three distinct points on C. Set λ(·) : C → C
by

λ(w) =
(c0 − c∞)(c∞ − c1)

(c1 − c0)w + (c∞ − c1)
+ c∞.

It can be verified that λ(0) = c0, λ(1) = c1, and λ(∞) = c∞.

∞R
0 1

w

w∗ = w

C

z

z∗

c0

c1

c∞

The idea to deal with the reflections with respect to a circle is to regard a line ℓ as a circle
with infinite radius, say {z ∈ ℓ : |z+∞| = ∞}. Then the linear fractional transforms always
map a circle to another circle. In particular, λ maps R ∪ {∞} onto C.

Definition 9.40. For z = λ(w) with λ defined as above, the reflection of z with respect to
the circle C is defined by

z∗ = λ(w) =
(c0 − c∞)(c∞ − c1)

(c1 − c0)w + (c∞ − c1)
+ c∞.

Remark 9.41. It can be checked that the definition of z 󰀁→ z∗ is independent of the choice
of λ, or equivalently, independent of the choice of points c0, c1, c∞. For any linear fractional
transformation µ ∈ GL2(C) which maps R ∪ {∞} onto C, we have z = µ(w) implying
z∗ = µ(w) = λ(w).

Note that whether λ preserves the direction of R from −∞ to ∞ or not leads to two
different cases.

R ∞
0 1

λ

λ
(Case 1)

(Case 2)

c0 c∞

c0 c∞

c1

c1

H

H∗

In Case 1 above, λ maps H conformally to the interior of C; but in Case 2, it maps H∗ to
the interior of C. One can prove that in any case, λ(·) can be written as

z = λ(w) = c+Reiθ · w − w0

w − w0

for some θ ∈ R, where c ∈ C and R > 0 denotes the center and the radius of C, respectively.
The point w0 is chosen to be on H in Case 1, and on H∗ in Case 2. Therefore, z = λ(w) has
its reflection with respect to C given by

z∗ = λ(w) = c+Reiθ · w − w0

w − w0
.
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By an easy comparison on expressions of z = λ(w) and z∗ = λ(w), we get the Circle-Power
Theorem in Euclid geometry:

(z − c) · (z∗ − c) = R2.

There is a consequence of this result at once, say for r > 0 and ϕ ∈ R,

z − c = reiϕ ⇐⇒ z∗ − c =
R2

r
eiϕ.

As expected, note that the reflection map with respect to C is an involution (that is, (z∗)∗ =
z) and preserves the circle. According to the convention, write c∗ = ∞ and ∞∗ = c for the
center c of C. Finally, proof of the following proposition is left as an exercise.

Proposition 9.42. Reflections with respect to a line or a circle are invariant under linear
fractional transforms. In other words, the reflections commute with the action of GL2(C).
To be more precise, if C is a line or a circle and µ ∈ GL2(C), then

µ(z∗) = µ(z)∗.

On the right hand side, µ(z) 󰀁→ µ(z)∗ is a reflection with respect to µ(C).

Theorem 9.43 (The Principle of Reflection). We make the following statements.

• C is a circle in C with center c.
• Ω is a connected open subset contained in the interior of C or the exterior of C,
satisfying c /∈ Ω.

• γ ⊊ C is a part of the boundary of Ω, i.e., γ ⊂ ∂Ω = Ω\Ω.
• D ⊂ H is a connected open subset with a real interval (α,β) as a part of ∂D.

If the conformal map f : Ω → D extends to a homeomorphism f : Ω ∪ γ → D ∪ (α,β), then
f extends to a conformal map

g : Ω ∪ γ ∪ Ω∗ → D ∪ (α,β) ∪D∗,

which is defined by

g(z) =

󰀫
f(z), z ∈ Ω ∪ γ;

f(z∗), z ∈ Ω∗.

Note that Theorem 9.43 generalizes Theorem 9.37 but preserves all essential ingredients.
In short, the result dictates that if a conformal map extends to some boundary of the
reflection axis (which is a circle or a line), then it extends to the reflection image as well.

Proof. Assume Ω is in the interior of C with c /∈ Ω. Recall that for some θ ∈ R,

λ(w) = c+Reiθ · w − w0

w − w0
.

We can choose some θ such that λ(∞) ∈ C\γ. Set w0 = λ−1(c). Note that λ : C\{w0} ≃
C\{λ(∞)} is conformal. Conversely,

λ−1 : C\{λ(∞)} → C\{w0}
is conformal. Since c /∈ Ω, we have ∞ /∈ Ω∗. Hence Ω ∪ γ ∪ Ω∗ ⊂ C\{λ(∞)}. Applying the
Schwarz reflection principle (Proposition 3.30) to g ◦λ−1, we get the result. The case where
Ω lies in the exterior of C is similar. □
Remark 9.44. The same result as in Theorem 9.43 also holds when C is a line in C if Ω is
on one side of C and γ ⊂ C is a segment such that γ ⊂ Ω\Ω.

Moreover, in case Ω is a simply connected open set of C such that Ω ∪ C = ∅, γ ⊂ ∂Ω,
and γ ⊊ C, where C is a circle or a line. By the Riemann mapping theorem (Theorem 9.24),
we have the following result.
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Theorem 9.45. A conformal map f : Ω → H whose extension maps γ to a segment
(α,β) ⊂ ∂H can extend to a conformal map

g : Ω ∪ γ ∪ Ω∗ ∼−→ H ∪ (α,β) ∪H∗.

9.6.2. Construction of a Modular Function. Let’s recall Theorem 9.23 that D is (Kobayashi)
hyperbolic. Let C = ∂D = {z ∈ C : |z| = 1} with distinct points (c0, c1, c∞) ∈ C. The
partition of D is given as follows.

D

D3 D1

D2

γ1

γ3

γ2

c∞ = v3v1 = c0

c1 = v2

γ21

γ31

γ23

γ13

γ32 γ12

v22

v11v33

Step 0. As D is simply connected, by Riemann mapping theorem and boundary correspon-
dence (Theorem 9.36), there exists a unique conformal map f : D → H whose extension

f : D → H = H ∪ R ∪ {∞}
is a homeomorphism satisfying f |∂D : ∂D → R ∪ {∞} with f(c0) = 0, f(c1) = 1, and
f(c∞) = ∞. Then the correspondence is read as

f(γ1) = (1,∞), f(γ2) = (−∞, 0), f(γ3) = (0, 1).

Step 1. Reflections with respect to γj (j = 1, 2, 3).

Proposition 9.46. Let C be a line or a circle and let c be the center of C if C is a circle.

(1) Let Γ1,Γ2 be smooth curves in C intersecting at a ∕= c, let θ be the angle between
Γ1,Γ2 at a. If Γ∗

1,Γ
∗
2, a

∗ are the reflection images with respect to C, then the angle
between Γ∗

1,Γ
∗
2 is −θ.

(2) The reflection z 󰀁→ z∗ with respect to C maps circles (resp. lines) onto circles (resp.
lines).

C

Γ1 Γ2

Γ∗
1 Γ∗

2

a

a∗

θ

−θ

Proof. Note that (1)(2) hold for C = R∪{∞}. For the general case, apply a linear fractional
transform λ : R ∪ {∞} → C to complete the proof. □

Applying Proposition 9.46 to our setting, we get the following result.

• The reflections with respect to γj map ∂D to ∂D.
• The reflections with respect to γj map the intersection angle (with ∂D) π/2 to π/2.
• The reflections with respect to γj map D to the interior of D.
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By the principle of reflections (Theorem 9.43) applying to the reflection with respect to
γ1, we extend f to a conformal map

f1 : D ∪ γ1 ∪D∗ ∼−→ H ∪ (1,∞) ∪H∗.

Here f1(D
∗) = H∗ and f1(γ1) = (1,∞). It is also such that f1(γ21) = (−∞, 0) and f1(γ31) =

(0, 1). Similarly, we have maps f2 and f3. Denote

S(1) = D ∪ γ1 ∪ γ2 ∪ γ3 ∪D1 ∪D2 ∪D3.

Define g1 : S(1) → C as

g1(z) =

󰀫
f(z), z ∈ D ∪ γj (j = 1, 2, 3);

fj(z), z ∈ Dj (j = 1, 2, 3).

Then g1 : S(1) → C\{0, 1} is a holomorphic map.
Step 2. Reflections with respect to γij (i, j = 1, 2, 3).

By the similar construction as in Step 1, we get another holomorphic map

g2 : S(2) → C\{0, 1}.

Again, using the induction, we have for all n ∈ N that

gn : S(n) → C\{0, 1}.

Here D ⊂ S(1) ⊂ S(2) ⊂ · · · ⊂ S(n) and
󰁖∞

n=1 S
(n) = D. Gluing these up, we get a

holomorphic map

g : D → C\{0, 1},
which is the so-called modular function on D.

As for some application, the following result is a corollary for the existence of g.

Proposition 9.47 (Little Picard Theorem). If f : C → C\{0, 1} is a holomorphic function,
then f is a constant.

Proof. From the existence of the modular function g, we obtain a commutative diagram

D

C C\{0, 1}

g
󰁥f

f

such that f has a holomorphic lifting 󰁥f such that g ◦ 󰁥f = f . But by Liouville (Corollary

3.16), 󰁥f must be a constant as it is bounded and holomorphic on C. Then f is a constant
as well. □

Note that Proposition 9.47 also holds for those functions to the punctured complex plane
with exactly two points missed, i.e., for f : C → C\{c0, c1} with c0 ∕= c1 ∈ C.

10. An Introduction to Elliptic Functions

In short, elliptic functions are meromorphic functions defined on C/L, where L is a lattice
of C. These functions are called “elliptic” because the domain C/L ≃ C/Z2 can be not only
interpreted as a torus but also an elliptic curve.
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10.1. Basics on Elliptic Functions.

Definition 10.1 (Lattice). A lattice L of C is a subgroup of (C,+) which is generated by
ω1,ω2 ∈ C over Z such that ω1,ω2 generates C over R. That is,

L = {mω1 + nω2 : m,n ∈ Z}.

Without loss of generality, we assume ℑ(ω1/ω2) > 0.

Definition 10.2 (Elliptic Function). An elliptic function f with respect to a lattice L of
C is a non-constant meromorphic function on C which is L-periodic, i.e.,

f(z + ω) = f(z), ∀z ∈ C, ω ∈ L.

Or equivalently, for all z ∈ C,

f(z) = f(z + ω1) = f(z + ω2).

Remark 10.3. For the second condition on L-periodicity above, let ω1,ω2 ∈ C be arbitrary.
If ω1/ω2 ∈ Q then f is periodic with a single period. If ω1/ω2 ∈ R\Q, then f must be a
constant.

Proposition 10.4. An elliptic function which is entire is a constant function.

Proof. An elliptic function descends to a function on the torus C/L, which is compact. The
equivalence relation in C/L is given by

z1 ≡ z2 mod L ⇐⇒ z1 − z2 = mω1 + nω2 for some (m,n) ∈ Z2.

If the function is entire, then it is bounded. By Liouville (Corollary 3.16), it must be a
constant. □

Definition 10.5 (Fundamental Parallelogram). Let L = [ω1,ω2] be a lattice of C and
suppose α ∈ C. Then the set

P = {α+ t1ω1 + t2ω2 : 0 󰃑 t1 < 1, 0 󰃑 t2 < 1}

is called a fundamental parallelogram of L.

It’s not hard to see that if f is elliptic, then f is determined by its behavior in P .

Theorem 10.6. Let f be elliptic with respect to L and P be a fundamental parallelogram
for L. Assume f has no poles on ∂P . Then

󰁛

z∈P

resz f = 0.

Proof. Suppose P has a vertex, say α as follows.

P

α α+ ω2

α+ ω1 + ω2α+ ω1
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By the residue formula (Theorem 4.8), we have

2πi
󰁛

z∈P

resz f =

󰁝

∂P

f(z)dz

=

󰁝 α+ω2

α

f(z)dz +

󰁝 α+ω1+ω2

α+ω2

f(z)dz +

󰁝 α+ω1

α+ω1+ω2

f(z)dz +

󰁝 α

α+ω1

f(z)dz

=

󰁝 α+ω2

α

f(z)dz +

󰁝 α+ω1+ω2

α+ω2

f(z)dz −
󰁝 α+ω2

α

f(z)dz −
󰁝 α+ω1+ω2

α+ω2

f(z)dz

= 0

by the double-periodicity. □

Corollary 10.7. The total number of poles (counted with multiplicities) of an elliptic func-
tion f in P is not less than 2.

Proof. If f has no poles on ∂P , then the result follows from Theorem 10.6. Otherwise f has
poles on ∂P , then consider a slight perturbation of P to P + h with |h| ≪ 1. By applying
Theorem 10.6 to P + h again, we get the result. □

Theorem 10.8. Let P be a fundamental parallelogram and f be an elliptic function. Let
{an}Nn=1 be the collection of all zeros and poles of f in P with order ordai f = mi, respec-
tively. (Recall that mi > 0 if ai is a zero and that mi < 0 if ai is a pole.) Then

N󰁛

i=1

mi = 0.

Proof. Note that f ′/f is elliptic as well as f since it is meromorphic. Therefore, by the
argument principle (Theorem 4.23), if f has no zeros or poles along ∂P , then

N󰁛

i=1

mi =
1

2πi

󰁝

∂P

f ′(z)

f(z)
dz = 0

as f ′/f is elliptic (c.f. the proof of Theorem 10.6 above). Again, if f has zeros or poles on
∂P , then consider a slight perturbation P + h and apply the same argument. □

Exercise 10.9. Keeping the same hypothesis as in Theorem 10.8, prove that

N󰁛

i=1

miai ≡ 0 mod L,

i.e.
󰁓N

i=1 miai = kω1+ℓω2 for some (k, ℓ) ∈ Z2. (Hint: consider the integral
󰁕
∂P

(zf ′(z)/f(z))dz
and apply the residue formlua (Theorem 4.8).)

10.2. Weierstrass ℘ Function. Suppose [ω1,ω2] is a lattice of C and

L∗ := {mω1 + nω2 : (m,n) ∈ Z2\(0, 0)} = L\{(0, 0)}.
The Weierstrass ℘ Function is defined over C but essentially depends on the choice of L.

Definition 10.10. The Weierstrass ℘ function for L is defined as

℘(z) :=
1

z2
+

󰁛

ω∈L∗

(
1

(z − ω)2
− 1

ω2
)

for all z ∈ C.

Theorem 10.11. ℘ is elliptic with respect to L.
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Proof. The first step is to verify that the sum in ℘ converges uniformly on all compact sets
that include no lattice points. For |z| < ∞ staying away from L,

1

(z − ω)2
− 1

ω2
=

−z2 + 2zω

ω4 − 2zω3 + ω2z2
∼ O(

1

|ω|3 ).

The following fact will be at work for this.
Fact: for λ > 2, the infinite sum converges:

󰁛

ω∈L∗

1

|ω|λ =
󰁛

(m,n)∈Z2\{(0,0)}

1

|mω1 + nω2|λ
< ∞.

Coming back to the proof, note that |ω| = |mω1 + nω2| ∼ |m|+ |n| and hence

1

|ω|λ ∼ 1

(|m|+ |n|)λ .

To estimate the right hand side, for fixed n,

1

|n|λ + 2
󰁛

m󰃍1

1

(|m|+ |n|)λ =
1

|n|λ + 2
󰁛

k󰃍|n|+1

1

kλ

󰃑 1

|n|λ + 2

󰁝 ∞

|n|

1

xλ
dx

󰃑 1

|n|λ +
C

|n|λ−1
.

Using this property, we see

󰁛

(m,n)∈Z2\{(0,0)}

1

(|m|+ |n|)λ =
󰁛

m ∕=0

1

|m|λ +
󰁛

m∈Z,n ∕=0

1

(|m|+ |n|)λ

󰃑
󰁛

m ∕=0

1

|m|λ +
󰁛

n ∕=0

(
1

|n|λ +
C

|n|λ−1
)

< ∞

as λ > 2 due to the fact above. Therefore, ℘ is a meromorphic function on C with a double
pole at each ω ∈ L. Furthermore, ℘ is even, i.e. ℘(z) = ℘(−z). Also note that

℘′(z) = −2
󰁛

ω∈L

1

(z − ω)3

and thus ℘′ is L-periodic and odd. It suffices to check whether ℘ is L-periodic or not. As
for any z,

℘′(z + ω1) = ℘′(z) ⇒ ℘(z + ω1)− ℘(z) = c

for some constant c. The claim is that c = 0. To see this, let z = −ω1/2 and get

℘(
ω1

2
) = ℘(−ω1

2
) + c = ℘(

ω1

2
) + c ⇒ c = 0.

Here the second equality holds because ℘(·) is even. Thus ℘(z + ω1) = ℘(z) and similarly,
℘(z + ω2) = ℘(z). □

Note that the set of all elliptic functions (with respect to a fixed lattice L) forms a field,
denoted by m(C/L), which contains C as the constant field. Here m(C/L) is called the
function field of the torus C/L.
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Theorem 10.12. The field m(C/L) is generated by ℘ and ℘′, i.e.,

m(C/L) = C(℘,℘′).

Or equivalently, any elliptic function on C/L is a rational function of ℘ and ℘′.

Proof. If f is elliptic, we write

f(z) =
f(z) + f(−z)

2󰁿 󰁾󰁽 󰂀
even, elliptic

+
f(z)− f(−z)

2󰁿 󰁾󰁽 󰂀
odd, elliptic

.

If f is odd, then f ·℘′ is even. We only need to prove that the field of even elliptic functions
is equal to C(℘).
Fact. Let f be an even elliptic function, then:

• if f has a zero (resp. pole) of order m at some point u, then f has also a zero (resp.
pole) of order m at −u;

• if u ≡ −u mod L (or 2u ≡ 0 mod L), then f has either a zero or a pole of even order
at u.

Using the fact in particular, f has a zero or a pole of even order at z = 0. Hence there exists
some m ∈ Z such that f · ℘m has no poles or zeros at z = 0 (thus at all points of L).

We now assume u ∕≡ 0 mod L and let g(z) := ℘(z) − ℘(u). The result above shows that
g(z) has a zero of even order at u if 2u ≡ 0 mod L, i.e., u ≡ ω1/2,ω2/2, (ω1 + ω2)/2 mod L.
By Theorem 10.8, 󰁛

z∈P

ordz(g) = 0

so ordu(g) = 2 if u ≡ ω1/2,ω2/2, (ω1 + ω2)/2 mod L. Under the same assumption, g has
zeros at u and −u of order 1.

0

−ω1

ω1

ω2
−ω2

ω1/2

ω2/2

(ω1 + ω2)/2

−u

u

Without loss of generality, we can assume f has no zeros or poles at points of L. Let
u1, u2, . . . , ur be points in P where f has a zero or pole. Let

mi =

󰀫
ordui

f, if 2ui ∕≡ 0 mod L;

(ordui f)/2, if 2ui ≡ 0 mod L.

Define G(z) :=
󰁔r

i=1(℘(z) − ℘(ui))
mi , then G has the same order at ui as f does. Then

f(z)/G(z) is entire (and elliptic) so that f(z)/G(z) = C for some constant C by Liouville
(Corollary 3.16). □
10.2.1. The Canonical Elliptic Curve. For the half-periods ω1/2, ω2/2, and (ω1 + ω2)/2,
denote

e1 = ℘(
ω1

2
), e2 = ℘(

ω2

2
), e3 = ℘(

ω1 + ω2

2
).

Then the equation ℘(z) = e1 (resp. e2, e3) has a double root at ω1 (resp. ω2/2, (ω1+ω2)/2)
because of the fact in the proof of Theorem 10.12. Also, e1, e2, e3 are distinct. Moreover,

℘′(
ω1

2
) = ℘′(

ω2

2
) = ℘′(

ω1 + ω2

2
) = 0
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and the order equals to 1 at every point. Then ℘′(z)2 and (℘(z)− e1)(℘(z)− e2)(℘(z)− e3)
have the same zeros and poles in P . So there is a constant C such that

℘′(z)2

(℘(z)− e1)(℘(z)− e2)(℘(z)− e3)
= C.

A natural question for this is to ask for the value of C. Consider the power series of ℘ and
℘′ near z = 0:

℘(z) =
1

z2
+

󰁛

ω∈L∗

(
1

(z − ω)2
− 1

ω2
)

=
1

z2
+

󰁛

ω∈L∗

(
1

ω2
· 1

(1− z/ω)2
− 1

ω2
)

=
1

z2
+

󰁛

ω∈L∗

(
1

ω2
· (1 + z

ω
+ (

z

ω
)2 + · · · )2 − 1

ω2
)

=
1

z2
+

󰁛

ω∈L∗

∞󰁛

m=1

(2m+ 1) · ( z
ω
)2m · 1

ω2

=
1

z2
+

∞󰁛

m=1

cm · zm,

where cm =
󰁓

ω∈L∗(m+ 1)/ωm+2. Denote

Em(L) = Em :=
󰁛

ω∈L∗

1

ωm
,

which is the Eisenstein series of order m. By this,

℘(z) =
1

z2
+

∞󰁛

n=1

(2n+ 1)E2n+2(L) · z2n

=
1

z2
+ 3E4 · z2 + 5E6 · z4 + 7E8 · z6 + · · · ,

and

℘′(z) = − 2

z3
+

∞󰁛

n=1

2n(2n+ 1)E2n+2(L) · z2n−1

= − 2

z3
+ 6E4 · z + 20E6 · z3 + 42E8 · z5 + · · · ,

Therefore, by a comparison on leading terms of these two equations, we have C = 4. In
other (geometric) words, the point (℘(z),℘′(z)) that is parametrized by z ∈ C\L lies on the
cubic curve

{(x, y) ∈ C2 : y2 = 4(x− e1)(x− e2)(x− e3)} ⊂ C2.

Again, from the two equations above,

℘′(z)2 =
4

z6
− 24E4

z2
− 80E6 + · · · ,

℘(z)3 =
1

z6
+

9E4

z2
+ 15E6 + · · · ,

60E4℘(z) =
60E4

z2
+ 180E2

4z
2 + · · · .

By comparison, we see the function ℘′(z)2−4℘(z)3+60E4℘(z)+140E6 is holomorphic near
z = 0 and vanishes at z = 0. Then

℘′(z)2 = 4℘(z)3 − 60E4℘(z)− 140E6.
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Denote g2 = 60E4 and g3 = 140E6. Then ℘′(z) = 4℘(z)2 − g2℘(z)− g3.

Proposition 10.13 (Weierstrass Canonical Form). For any z ∈ C\L, the point (℘(z),℘′(z))
is on the cubic curve defined by

AC : y2 = 4(x− e1)(x− e2)(x− e3) = 4x3 − g2x− g3 ⊂ C2 ⊂ P2
C.

This curve is called an elliptic curve of Weierstrass canonical form. Moreover, as e1, e2, e3
are distinct, the discriminant of equation 4x3 − g2x− g3 = 0 is nonzero, say

∆ = g32 − 27g23 ∕= 0.

Remark 10.14 (j-invariant). Continuing with Proposition 10.13, define the j-invariant by

J =
g32
∆

, j = 1728 · g
3
2

∆
= 26 · 33 · g

3
2

∆
.

Then J and j = 1728J are invariants of L. Also note that there is a (non-canonical)
isomorphism

(C/L)\{(0, 0)} ∼−→ AC\{∞}
z 󰀁−→ (1,℘(z),℘′(z)).

This isomorphism interprets why a complex torus can be regarded as an elliptic curve.

10.2.2. Fourier Expansion and q-Expansion. Keep the same assumption as before. By con-
sidering F (z) := f(ω2z), we see F is elliptic with respect to a new lattice [τ = ω1/ω2, 1]
with τ ∈ H (recall that we have assumed ℑ(ω1/ω2) > 0.

Definition 10.15. For τ ∈ H, we call L = [τ, 1] a normalized lattice of C.

As for the Eisenstein series

Em(τ) =
󰁛

(k,ℓ)∈Z2\{(0,0)}

1

(kτ + ℓ)m
, m ∈ 2N, τ ∈ H.

For m > 2, Em(τ) is absolutely convergent. However, for m = 2, it is not absolutely
convergent but

󰁓
k

󰁓
ℓ(kτ + ℓ)−2 is convergent, i.e., we can define

E2(τ) :=
󰁛

k=0,ℓ∈Z\{0}

1

ℓ2
+

󰁛

k ∕=0

󰁛

ℓ∈Z

1

(kτ + ℓ)2
.

The remaining task of this part is to expand E2k(τ). By Hadamard factorization theorem
(Theorem 6.13),

sinπz = πz

∞󰁜

n=1

(1− z2

n2
).

Using this, we have

π
cosπz

sinπz
= (log(sinπz))′ = (log(πz

∞󰁜

n=1

(1− z2

n2
)))′ =

1

z
+

∞󰁛

n=1

(
1

z − n
+

1

z + n
).

Applying the Euler identity (Proposition 7.18), it turns out to be

π
cosπz

sinπz
= π

(eiπz + e−iπz)/2

(eiπz − e−iπz)/2i
= πi

q + 1

q − 1
= πi+

2πi

q − 1
,

where q = qz = e2πiz (for z ∈ H we have |q| < 1). Thus, whenever z ∈ H,

πi+
2πi

q − 1
= πi− 2πi

∞󰁛

ν=0

qν .
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In conclusion, the formula we need is read as

1

z
+

∞󰁛

n=1

(
1

z − n
+

1

z + n
) = πi− 2πi

∞󰁛

ν=0

qν .

Taking derivatives with respect to z, it becomes

− 1

z2
−

∞󰁛

n=1

(
1

(z − n)2
+

1

(z + n)2
) = −

󰁛

n∈Z

1

(z − n)2

= −2πi

∞󰁛

ν=0

νqν−1(2πi)q

= −(2πi)2
∞󰁛

ν=0

νqν .

One may repeat the same operation recursively, and by induction,

(∗) (−1)k−1 · (k − 1)! ·
󰁛

n∈Z

1

(τ − n)k
= −

∞󰁛

ν=1

(2πi)kνk−1qν , k ∈ Z>0.

Remark 10.16. The same result in (∗) can be obtained by applying the Poisson summation
formula (Theorem 5.9) to f(z) = 1/(z + τ)k for τ ∈ H (see [SS10, Chapter 4, Exercise 7]).

Now we are ready to get the expansion for E2k(τ):

E2k(τ) =
󰁛

(m,n) ∕=(0,0)

1

(mτ + n)2k
=

󰁛

m=0,n ∕=0

1

n2k
+

󰁛

m ∕=0

󰁛

n∈Z

1

(mτ + n)2k

= 2ζ(2k) + 2

∞󰁛

m=1

󰁛

n∈Z

1

(mτ + n)2k

= 2ζ(2k) + 2

∞󰁛

m=1

∞󰁛

ν=1

(2πi)2k · ν2k+1

(2k − 1)!
qνmτ

= 2ζ(2k) + 2

∞󰁛

m=1

∞󰁛

ν=1

(2πi)2k · ν2k+1

(2k − 1)!
qmν
τ ,

where qz = e2πiz and the second last equality is deduced from (∗). This is the q-expansion
for Eisenstein series. Denote σk(n) =

󰁓
d|n d

k in which the sum runs through all positive

divisors for n. Then the expansion formula can be rewritten as

E2k(τ) = 2ζ(2k) + 2
(2πi)2k

(2k − 1)!

∞󰁛

n=1

σ2k−1(n)e
2πinτ .

10.3. Arithmetic Properties of Elliptic Curves.

10.3.1. The Modular Function. Let’s begin with the setups. The modular group is a discrete
subgroup of SL2(R) defined by

Γ = SL2(Z) =
󰀝󰀕

a b
c d

󰀖
: a, b, c, d ∈ Z, ad− bc = 1

󰀞
.

Recall that SL2(R) has an action on H. More explicitly, for z ∈ H and α ∈ SL2(R), we
define

α(z) :=
az + b

cz + d
, ℑα(z) = (ad− bc)ℑ(z)

|cz + d|2 =
ℑ(z)

|cz + d|2 .
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Also recall that the automorphism group for the upper-half plane is

Aut(H) = PSL2(R) = SL2(R)/{±1}.

Definitions 10.17 (Fundamental Domain).

(1) An orbit of Γ is defined as Γ.z = {α(z) : α ∈ Γ} for a fixed z ∈ H.
(2) A subset D ⊂ H is called a fundamental domain for Γ = SL2(Z) if every orbit of Γ

has at least one element in D, and any two elements of D are in the same orbit if
and only if they lie on the boundary of D.

In short, a fundamental domain of H for Γ can be regarded as a domain that generates
H via the action of Γ.

Proposition 10.18. The discrete modular group Γ = SL2(Z) is generated by

T =

󰀕
1 1
0 1

󰀖
, S =

󰀕
0 −1
1 0

󰀖
.

In other words, every α ∈ SL2(Z) can be written as TmSn or SmTn for some (m,n) ∈
Z2. Furthermore, the following picture describes the action of T and S on H from the
fundamental domain D = I2.

I2 T T 2T−1T−2

TS T 2SST−1ST−2S

0 1 2−1−2

T−1STS T−1ST T 2STTST−1TSTST−1STS ST

Theorem 10.19. The subset

D = {z ∈ H : |ℜ(z)| 󰃑 1

2
, |z| 󰃍 1}

is a fundamental domain for Γ. Moreover, if z, z′ ∈ D are in the same orbit of Γ (i.e.,
z′ = α(z) for some α ∈ Γ), then either α = T±1 or α = S±1.

• For the case α = T±1, the points z and z′ are on the vertical lines of ∂D. The
action is given by the horizontal translation

T (z) =
z + 1

0 + 1
= z + 1.

• For the case α = S±1, the points z and z′ are on the base arc of ∂D. The action is
given by the reflection with respect to the vertical axis

S(z) =
0 + (−1)

z + 0
= −1

z
.
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1−1 1/2−1/2

z′z D

z′z

10.3.2. Automorphic Functions of Degree 2k. For a real number B > 0, we define the trun-
cated upper-half plane by

HB = {z ∈ C : ℑ(z) > B} ⊂ H.

The map z 󰀁→ e2πiz = qz gives a holomorphic mapping from HB to D∗(0, e−2πB) := {z ∈
C : 0 < |z| < e−2πB}. Consider HB/〈T 〉, the quotient space of HB modulo translations by
integers, i.e., z1 ∼ z2 if z1 = z2 +m for some m ∈ Z in HB .

iB 1 + iB
ℑ(z) = B

∼
qz = e2πiz

Remark 10.20. If a meromorphic function f on HB has period 1, i.e., f(z + 1) = f(z) for
all z ∈ HB , then f descends to a function f∗ on D∗(0, e−2πB), where f∗(qz) := f(z).

Definition 10.21. The function f is called meromorphic (resp. holomorphic) at ∞ if f∗

defined as in Remark 10.20 above is meromorphic (resp. holomorphic) at 0.

Definition 10.22 (The SL2(Z)-action). Let f be a meromorphic function on H and α ∈
Γ = SL2(Z). For fixed integer k 󰃍 0, define

(Tk(α)f)(z) := f(α(z)) · (cz + d)−2k = f(
az + b

cz + d
)(cz + d)−2k, α =

󰀕
a b
c d

󰀖
.

Definition 10.23 (Automorphic Forms). A function f ∈ m(H) is called an automorphic
form of weight 2k with respect to Γ if

(1) for any α ∈ Γ, we have Tk(α)f = f ;
(2) f is meromorphic at ∞.

Example 10.24. There exists an one-to-one correspondence:
󰀻
󰁁󰀿

󰁁󰀽

Functions G : L → C of lattices which

are homogeneous with deg = −2k,

i.e. G(λL) = λ−2kG(L), λ ∈ C\{0}

󰀼
󰁁󰁀

󰁁󰀾
←→

󰀫
Functions g : H → C satisfying that

g(α(z)) = (cz + d)2kg(z) for all α ∈ Γ

󰀬

G(L) g(z) := G([z, 1])

G([τ, 1]) = g(τ) g(z)

In particular, the Eisenstein series

E2k(L) =
󰁛

ω∈L∗

1

ω2k

gives an automorphic function.
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11. Jacobi’s Theta Functions

This section is devoted to a closer look at the theory of theta functions and some of its
applications to combinatorics and number theory. The theta function of Jacobi is given by
the series

Θ(z|τ) =
∞󰁛

n=−∞
eπin

2τe2πinz

which converges for all z ∈ C and τ ∈ H.
A remarkable feature of the theta function is its dual nature. When viewed as a function

of z, we see it in the arena of elliptic functions, since Θ is periodic with period 1 and
“quasi-period” τ . When considered as a function of τ , Θ reveals its modular nature and
close connection with the partition function and the problem of representation of integers
as sums of squares.

The two main tools allowing us to exploit these links are the triple-product for Θ and its
transformation law. Once we have proved these theorems, we give a brief introduction to
the connection with partitions, and then pass to proofs of the celebrated theorems about
representation of integers as sums of two or four squares.

11.1. The Triple-Product Formula. We begin our closer look at Θ as a function of z,
with τ fixed, by recording its basic structural properties, which to a large extent characterize
it.

11.1.1. Basic Statements.

Proposition 11.1. The theta function Θ(z|τ) =
󰁓∞

n=−∞ eπin
2τe2πinz enjoys the following

properties.

(1) For τ ∈ H fixed, Θ(z|τ) is entire with respect to z; for z ∈ C fixed, Θ(z|τ) is
holomorphic with respect to τ .

(2) Θ(·|τ) is periodic with period 1, that is,

Θ(z + 1|τ) = Θ(z|τ).

(3) Θ(·|τ) is quasi-periodic with period τ , that is,

Θ(z + τ |τ) = Θ(z|τ) · e−πiτ · e−2πiz.

(4) Θ(z|τ) = 0 whenever z = (1 + τ)/2 + n+mτ for m,n ∈ Z.

Proof. (1) Assume ℑ(τ) = t 󰃍 t0 > 0 and |z| 󰃑 M . Then

|Θ(z|τ)| 󰃑
󰁛

n∈Z
|eπin

2τe2πinz| 󰃑 2
󰁛

n󰃍0

e−πn2t0e2πnM < ∞.

(2) This is obvious since e2πin(z+1) = e2πinz.
(3) We compute

Θ(z + τ |τ) =
󰁛

n∈Z
eπin

2τe2πin(z+τ)

=
󰁛

n∈Z
eπi(n

2+2n)τe2πinz

=
󰁛

n∈Z
eπi(n+1)2τe2πi(n+1)ze−πiτe−2πiz

= Θ(z|τ) · e−πiτ · e−2πiz.



NOTES ON COMPLEX ANALYSIS 101

(4) By (2)(3), it boils down to verify Θ( 1+τ
2 |τ) = 0. This is given by

Θ(
1 + τ

2
|τ) =

󰁛

n∈Z
eπin

2τeπin(1+τ) =
󰁛

n∈Z
(−1)neπi(n

2+n)τ .

Note that for n 󰃍 0, n2+n = (−n−1)2+(−n−1) and −n−1 has the different parity from
that of n. Thus

󰁛

n∈Z
(−1)neπi(n

2+n) =
󰁛

n∈Z
(−1)−n−1eπi((−n−1)2+(−n−1)) = 0.

Thus, Θ(z|τ) = 0 whenever z = (1 + τ)/2 + n+mτ for m,n ∈ Z. □

Theorem 11.2 (Jacobi’s Triple-Product Formula, 1829). For z ∈ C and τ ∈ H,

󰁛

n∈Z
qn

2

e2πinz =

∞󰁜

n=1

(1− q2n)(1 + q2n−1e2πiz)(1 + q2n−1e−2πiz),

where q = eπiτ . By defining the right hand side as Π(z|τ), we write Θ(z|τ) = Π(z|τ).

Corollary 11.3. Set z = 0 in the triple-product formula, we get

Θ(τ) =
󰁛

n∈Z
eπin

2τ = Θ(0|τ) =
∞󰁜

n=1

(1− q2n)(1 + q2n−1)2.

In particular, Θ(τ) ∕= 0 for any τ ∈ H (c.f. Definition 7.11).

Proposition 11.4. For any fixed τ ∈ H, the function

(logΘ(z|τ))′′ = Θ(z|τ)Θ′′(z|τ)−Θ′(z|τ)2
Θ(z|τ)

is an elliptic function with periods 1 and τ and has double poles at z = (1 + τ)/2 +m+ nτ
for m,n ∈ Z.

Remark 11.5. There is indeed some constant cτ such that

(logΘ(z|τ))′′ = ℘(z − (1 + τ)/2; τ) + cτ .

Here ℘(z; τ) denotes the Weierstrass ℘-function defined by the lattice [τ, 1].

11.1.2. Proof of the Triple-Product Formula. The proof of Theorem 11.2 ramifies into the
following 3 steps.

• Step 1. We prove Π(z|τ) also satisfies properties (1)-(4) in Proposition 11.1.
(1) For τ ∈ H with ℑ(τ) 󰃍 t0 > 0, we have

|q| = e−πℑ(τ) 󰃑 e−πt0 < 1,

and

|(1− q2n)(1 + q2n−1e2πiz)(1 + q2n−1e−2πiz)| = 1 +O(|q|2n−1e2π|z|).

On the other hand, the series
󰁓

n∈Z |q|2n−1 converges and hence Π(z|τ) satisfies (1).
(2) This is again obvious.
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(3) We compute

Π(z + τ |τ) =
∞󰁜

n=1

(1− q2n)(1 + q2n−1e2πi(z+τ))(1 + q2n−1e−2πi(z+τ))

=

∞󰁜

n=1

(1− q2n)(1 + q2n+1e2πiz)(1 + q2n−3e−2πiz)

=

∞󰁜

n=1

(1− q2n) ·
∞󰁜

n=1

(1 + q2n+1e2πiz) ·
∞󰁜

n=1

(1 + q2n−3e−2πiz)

= Π(z|τ) · 1 + q−1e−2πiz

1 + qe2πiz

= Π(z|τ) · q−1 · e−2πiz

= Π(z|τ) · e−πiτ · e−2πiz.

(4) Note that for τ ∈ H, |q|2n ∕= 1. Therefore, Π(z|τ) = 0 if and only if (1+q2n−1e2πiz)(1+
q2n−1e−2πiz) = 0 for some n ∈ Z. This is also equivalent to z = (1 + τ)/2 + n +mτ
for m,n ∈ Z.

• Step 2. For τ ∈ H fixed, consider

F (z) =
Θ(z|τ)
Π(z|τ) .

Then F (z) is holomorphic and doubly-periodic with periods 1 and τ by Step 1 (1)-(3).
By Liouville’s Theorem (Corollary 3.16),

F = c(τ)

for some constant c(τ) which is depending on τ .
• Step 3. We are to prove the claim that c(τ) = 1 for any τ ∈ H. From Step 2, Θ(z|τ) =
c(τ) ·Π(z|τ).
Sublemma. c(τ) = c(4τ).

Proof. Set z = 1/2 in Θ(z|τ) = c(τ) ·Π(z|τ) to get

󰁛

n∈Z
(−1)nqn

2

= c(τ)

∞󰁜

n=1

(1− q2n)(1− q2n−1)(1− q2n−1)

= c(τ)

∞󰁜

n=1

(1− qn)

∞󰁜

n=1

(1− q2n−1),

This shows that

c(τ) =

󰁓
n∈Z(−1)nqn

2

󰁔∞
n=1(1− qn)(1− q2n−1)

.

Again, by setting z = 1/4, we can a similar process renders that

c(τ) =

󰁓
m∈Z(−1)mq4m

2

󰁔∞
m=1(1− q4m)(1− q8m−4)

.

A comparison is enough to show c(τ) = c(4τ). □
By induction applying on the sublemma, we see for any k 󰃍 1, c(τ) = c(4kτ) for any
τ ∈ H. On the other hand, as k → ∞,

q4kτ = eπi·4
kτ → 0 ⇒ c(τ) = 1.

The proof for Theorem 11.2 is accomplished.
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11.2. Modular Character of Θ. We still work on the modular group SL2(Z). Recall the
definition for theta functions that

Θ(z|τ) =
∞󰁛

n=−∞
eπin

2τe2πinz.

From this, the immediate consequence is

Θ(z|τ + 2) = Θ(z|T 2(τ)) = Θ(z|τ), T =

󰀕
1 1
0 1

󰀖
,

where T ∈ SL2(Z) is the generator for horizontal translation. Again, by Proposition 10.18,
SL2(Z) is generated by

T =

󰀕
1 1
0 1

󰀖
, S =

󰀕
0 −1
1 0

󰀖
.

The natural question is that under the action of S towards τ ∈ H, what property does the
theta function obtain.

Theorem 11.6. For τ ∈ H, we have

Θ(z|S(τ)) = Θ(z|− 1

τ
) =

󰁵
τ

i
eπiτz

2

Θ(zτ |τ)

for all z ∈ C, where
√
α = |α|1/2 exp(i(argα)/2) with 0 < argα < π.

Proof. By the analytic continuation (Theorem 3.22), it suffices to check the identity for
z = x ∈ R and τ = it with t > 0. For this, we obtain

LHS = Θ(x|− 1

it
) =

󰁛

n∈Z
e−πn2/te2πinx,

RHS = t1/2e−πtx2 󰁛

n∈Z
e−πn2/te−2πtnx = t1/2

󰁛

n∈Z
eπtht(x+n)2 .

By applying the Poisson summation formula (Theorem 5.9) to f(y) = e−πt(y+x)2 we get the
identity. □

Recall Definition 7.11 that by letting z = 0,

Θ(τ) := Θ(0|τ) =
󰁛

n∈Z
eπin

2τ .

Corollary 11.7. For all τ ∈ H,

Θ(−1

τ
) =

󰁵
τ

i
Θ(τ).

On the other hand, by definition again, note that

Θ(1 + τ) =
󰁛

n∈Z
eπin

2(1+τ) =
󰁛

n∈Z
(−1)neπin

2τ = Θ(
1

2
|τ).

Corollary 11.8. For all τ ∈ H, as ℑ(τ) → ∞,

Θ(1− 1

τ
) =

󰁵
τ

i
(2eπiτ/4 + · · · ) ∼

󰁵
τ

i
· 2eπiτ/4.
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Proof. By the equality above, plugging in −1/τ , we have

Θ(1− 1

τ
) = Θ(

1

2
|− 1

τ
).

Using Theorem 11.6, we can compute

Θ(
1

2
|− 1

τ
) =

󰁵
τ

i
eπiτ/4Θ(

τ

2
|τ)

=

󰁵
τ

i
eπiτ/4

󰁛

n∈Z
eπin

2τeπinτ

=

󰁵
τ

i

󰁛

n∈Z
eπi(n+1/2)2τ

=

󰁵
τ

i
(2eπiτ/4 +

󰁛

n ∕=0,−1

eπi(n+1/2)2τ ).

So it remains to estimate the second term. We obtain

|
󰁛

n ∕=0,−1

eπi(n+1/2)2τ | 󰃑 2
󰁛

k󰃍1

e−π(k+1/2)2t ∼ e−O(t).

Thus, the higher terms can be sufficiently small. □

11.3. Combinatoric Applications: Generating Functions. Given a sequence {Fn}∞n=0,
we have a generating function

F (x) =

∞󰁛

n=0

Fnx
n.

The properties of this function correspond to the properties of the sequence {Fn}∞n=0, and
particularly, the generating function usually has combinatoric interpretations for various
sequences.

11.3.1. Partition Function. Given n ∈ N, a partition of n is defined as a unordered series of
non-negative integers whose sum is exactly n. For example, by defining

P (n) := #{Partitions of n},

we have the following basic counting results.

n Partitions of n P (n)
1 1+0 1
2 1+1, 2+0 2
3 1+1+1, 2+1, 3+0 3
...

...
...

(1) (Euler Identity) The generating function for {P (n)} can be explicitly computed by the
Euler identity : for |x| < 1,

∞󰁛

n=0

P (n)xn =

∞󰁜

k=1

1

1− xk
.

To prove this, note first that

1

1− xk
=

∞󰁛

m=0

xkm = 1 +O(xk),
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thus the product
󰁔∞

k=1 1/(1− xk) converges. Moreover,

∞󰁜

k=1

1

1− xk
=

∞󰁜

k=1

∞󰁛

m=0

xkm

= (1 + x+ x2 + · · · )(1 + x2 + x4 + · · · )(1 + x3 + x6 + · · · ) · · ·

Focusing on the right hand side, we are to find out the coefficients of xn for all n 󰃍 0.
Since each monomial in each fact has coefficient 1, the coefficient of xn is nothing but
the number of partitions. Then

RHS =

∞󰁛

n=0

P (n)xn.

(2) (Odd Partitions Correspond to Unequal Partitions) Denote

Podd(n) = #{Partitions of n into odd integers},
Pun(n) = #{Partitions of n into unequal integers}.

The the claim is Podd(n) = Pun(n) for each n 󰃍 0. The observation based on under-
standing the Euler identity in (1) is useful:

∞󰁛

n=0

Podd(n)x
n =

∞󰁜

k=1

1

1− x2k−1
,

∞󰁛

n=0

Pun(n)x
n =

∞󰁜

k=1

(1 + xk).

To show these two products are the same, we say

∞󰁜

k=1

1

1− x2k−1
=

󰁔∞
k=1(1− xk)−1

󰁔∞
k=1(1− x2k)−1

=

󰁔∞
k=1(1− x2k)󰁔∞
k=1(1− xk)

=

󰁔∞
k=1(1− xk)

󰁔∞
k=1(1 + xk)󰁔∞

k=1(1− xk)

=

∞󰁜

k=1

(1 + xk).

(3) (Euler’s Pentagonal Counting) Denote

P even
un (n) = #{Partitions of n into an even number of unequal integers},
P odd
un (n) = #{Partitions of n into an odd number of unequal integers}.

The result for Euler concerns about their difference.

P even
un (n)− P odd

un (n) =

󰀫
(−1)k, if n = k(3k + 1)/2 for some k ∈ Z;
0, otherwise.

Here n = k(3k + 1)/2 is called a pentagonal number, which can be interpreted as the
number of small stones piled into a Pentagon with k as the side length. From the
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construction, we have
∞󰁛

n=0

P even
un (n)− P odd

un (n)xn =

∞󰁛

n=0

󰁛

n=n1+···+nr
n1,...,nr distinct

(−1)r · xn

=

∞󰁜

n=1

(1− xn).

To prove Euler’s result, we only need to verify the following:
∞󰁜

n=1

(1− xn) =
󰁛

k∈Z
(−1)kxk(3k+1)/2.

Let’s recall the triple-product formula (Theorem 11.2), say

󰁛

n∈Z
qn

2

e2πinz =

∞󰁜

n=1

(1− q2n)(1 + q2n−1e2πiz)(1 + q2n−1e−2πiz).

For convenience we set τ = 3u and z = (1 + u)/2. It turns out to be
󰁛

n∈Z
e3πin

2u · (−1)neπinu =
󰁛

n∈Z
(−1)neπin(3n+1)u

=

∞󰁜

n=1

(1− eπi(6n)u)(1− eπi(6n−2)u)(1− eπi(6n−4)u)

=

∞󰁜

n=1

(1− e2πinu).

The required result follows from simply replacing e2πiu by x.

11.3.2. Sums of Squares. The second example is about the famous problem on how to de-
compose an integer into the sum of two squares. This is an application of the theta function
on analytic number theory.

Given n ∈ N, denote

rk(n) := #{n : there exist x1, . . . , xk ∈ N such that n = x2
1 + · · ·+ x2

k}.
The most impressive result on counting the number of two-squares is as follows. Denote

d1(n) = #{Divisors of n of the form 4k + 1},
d3(n) = #{Divisors of n of the form 4k + 3}.

Theorem 11.9 (Two-Square Theorem).

r2(n) = 4(d1(n)− d3(n)).

Note that Θ(τ) = Θ(0|τ) =
󰁓

n∈Z e
πin2τ =

󰁓
n∈Z q

n2

. Then

Θ(τ)2 =
󰁛

n1∈Z
qn

2
1

󰁛

n2∈Z
qn

2
2 =

󰁛

(n1,n2)∈Z2

qn
2
1+n2

2 =

∞󰁛

n=0

r2(n)q
n.

Lemma 11.10. Theorem 11.9 is equivalent to the identities for τ ∈ H:

Θ(τ)2 = 2
󰁛

n∈Z

1

qn + q−n
= 1 + 4

∞󰁛

n=1

qn

1 + q2n
,

where q = qτ = eπiτ .
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Proof. The following equalities hold without any assumption:

1 + 4

∞󰁛

n=1

qn

1 + q2n
= 1 + 4

∞󰁛

n=1

qn(1− q2n)

1− q4n

= 1 + 4

∞󰁛

n=1

(
qn

1− q4n
− q3n

1− q4n
)

= 1 + 4

∞󰁛

n=1

(

∞󰁛

m=0

qn(4m+1) −
∞󰁛

m=0

qn(4m+3))

= 1 + 4

∞󰁛

k=1

(d1(k)− d3(k))q
k.

The last equality is valid because d1(k) and d3(k) count the number of divisors of k that
are of the forms 4m + 1 and 4m + 3, respectively; and therefore,

󰁓∞
n=1

󰁓∞
m=0 q

n(4m+1) =󰁓∞
k=1 d1(k)q

k and similarly for d3(k). Assuming Theorem 11.9, the right hand side above
is exactly Θ(τ)2. □

To prove the two-square theorem (Theorem 11.9), denote

C(τ) := 2
󰁛

n∈Z

1

qn + q−n
=

󰁛

n∈Z

1

cos(nπτ)
,

where q = eπiτ again, and the second equality is deduced from eπinτ + e−πinτ = 2 cos(nπτ).
We need to verify for τ ∈ H that Θ(τ)2 = C(τ).

Proposition 11.11. Denote G(τ) := Θ(τ)2 (or equivalently, G(τ) := C(τ)). Then

(1) G(τ + 2) = G(τ);
(2) G(τ) = (i/τ) ·G(−1/τ);
(3) G(τ) → 1 as ℑ(τ) → ∞;
(4) G(1− 1/τ) ∼ 4(τ/i) · eπiτ/2 as ℑ(τ) → ∞.

Proof. Note that (1)(3) follow from the definition of C(τ) at once. For (2)(4), note that

cosh(iz) = cos z =
eiz + e−iz

2
.

Recall that in Example ?? (c.f. Example 4.11), we have used the Poisson summation formula
(Theorem 5.9) to f(x) = e−2πixa/ cosh(πx/t) with a ∈ R and t > 0, in order to get

󰁛

n∈Z
f(n) =

󰁛

n∈Z

e−2πian

cosh(πn/t)
=

󰁛

n∈Z

t

cosh(π(n+ a)t)
=

󰁛

n∈Z

󰁥f(n).

In particular, if we set a = 0, then
󰁛

n∈Z

1

cosh(πn/t)
=

󰁛

n∈Z

t

cosh(πnt)
.

Therefore, via the variable change τ = it with t > 0,

C(τ) =
󰁛

n∈Z

1

cos(πnit)
=

󰁛

n∈Z

1

cosh(πnt)

= t−1
󰁛

n∈Z

1

cosh(πn/t)

=
i

it
C(− 1

it
) =

i

τ
C(−1

τ
).
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By the analytic continuation (Theorem 3.22), the formula in (2) holds for all τ ∈ H. Again,
by setting a = 1/2, we get (4) through the same argument. □
Proposition 11.12. Let f ∈ O(H) and assume that

• f(τ + 2) = f(τ) for all τ ∈ H;
• f(−1/τ) = f(τ) for all τ ∈ H;
• f(τ) is bounded.

Then f is a constant.

Proof. Assume f is not a constant for the sake of contradiction. Denote the basic actions
from SL2(Z) by

T2 : τ 󰀁→ τ + 2, S : τ 󰀁→ −1

τ
.

Consider G = 〈T2, S〉, the group generated by T2 and S.

Claim 1: when G acts on H,

F = {τ ∈ H : |ℜ(τ)| 󰃑 1, |τ | 󰃍 1}
is a fundamental domain.

Setting z = eπiτ , the function f1(z) := f(τ) is a well-defined holomorphic function on
D∗ = {z ∈ C : 0 < |z| < 1} as f(τ + 2) = f(τ). Moreover, f1 is bounded as well as f is.
Consequently, f1 extends holomorphically from D∗ to D, i.e. the limit

f1(0) = lim
z→0

f1(z) = lim
ℑ(τ)→∞

f(τ)

is well-defined. Applying the maximum principle (Proposition 4.27) to f1, on the open
connected region Ω = {z ∈ C : |ℜ(z)| < 1, |z| > 1}, we attain

lim
ℑ(τ)→∞

|f(τ)| < sup
τ∈F

|f(τ)|.

Claim 2: the limit limℑ(τ)→∞ f(1− 1/τ) exists and

lim
ℑ(τ)→∞

|f(1− 1

τ
)| < sup

τ∈F
|f(τ)|.

For the second claim, set F (τ) = f(1− 1
τ ), then F is periodic of period 1. Let

µ(τ) =
1

1− τ
, µ−1(τ) = 1− 1

τ
, T (τ) = τ + 1.

Then for any n ∈ Z,
f(µ−1 ◦ Tn ◦ µ(τ)) = f(τ).

Therefore, the function F (τ) = f(µ−1(τ)) satisfies

F (Tnτ) = F (τ)

for all n ∈ Z. In particular, F (τ + 1) = F (τ) and therefore

f2(z) := F (τ), z = e2πiτ

is a well-defined holomorphic function on D∗, which is bounded since f is bounded. Thus, f2
extends to D by Riemann extension (Theorem 4.12). Again, apply the maximum principle
(Proposition 4.27) to f2,

lim
ℑ(τ)→∞

|f(1− 1

τ
)| < sup

τ∈F
|f(τ)|.

Then f attains its maximum at some point z0 ∈ H, contradicting with the assumption that
f is not a constant. Therefore, f must be a constant. □

Now the proof of the two-square theorem is easy to catch.
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Proof of Theorem 11.9. By applying Proposition 11.12 to C(τ)/Θ(τ)2, it must be a con-
stant. The conditions of the proposition are satisfied by Proposition 11.11. Again, it can be
shown that the constant value is 1. □
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