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EULER’S THEOREM

1. Statement and proof

The following Euler’s theorem is usually viewed as a generalization of Fermat’s little
theorem.

Theorem 1 (Euler’s theorem). Let m ∈ N∗ and a ∈ Z such that (a,m) = 1. Then

aϕ(m) ≡ 1 mod m.

Here ϕ(m) is the Euler totient function of m.

Proof. Suppose {a1 mod m, . . . , aϕ(m) mod m} is a reduced residue system, i.e. a1, . . . , aϕ(m)

givens all elements that are coprime to m after modulo m. Since (a,m) = 1, we see
{aa1, . . . , aaϕ(m)} is a reduced residue system of m as well. Then

(aa1) · · · (aaϕ(m)) ≡ a1 · · · aϕ(m) mod m.

Then aϕ(m)a1 · · · aϕ(m) ≡ a1 · · · aϕ(m) mod m with (a1 · · · aϕ(m),m) = 1. Hence

aϕ(m) ≡ 1 mod m.

In particular, when m = p is prime, we have ϕ(p) = p− 1, and then ap−1 ≡ 1 mod p. □

2. Primary applications

Problem 2. Compute the last three digits of 20162017
2018

.

Solution. Denote A = 20162017
2018

. It suffices to find A mod 8 and A mod 125. It is clear
that 8 | A. Also,

A ≡ 162017
2018

mod 125, (16, 125) = 1.

Then
ϕ(125) = 125× 4

5
= 100, 16ϕ(125) = 16100 ≡ 1 mod 125.

This suggests us to find 20172018 mod 100. We have 20172018 ≡ 172018 mod 100, and
(17, 100) = 1 with ϕ(100) = 40. Hence

1740 ≡ 1 mod 100 =⇒ 172018 ≡ (1740)50 × 1718 ≡ 1718 mod 100.

For this, note that 1718 ≡ 118 = 1 mod 4, and

(17, 25) = 1 =⇒ 17ϕ(25) = 1720 ≡ 1 mod 25.

Then

1718 ≡ 1720

172
≡ 1

289
≡ 1

14
=

2

28
≡ 2

3
=

16

24
≡ 16

−1
= −16 ≡ 9 mod 25.

It follows that 1718 ≡ 9, 59 mod 100, and hence 172018 ≡ 9 mod 10. Denote 172018 = 100k+9

for some k ∈ Z. Then

A ≡ 16100k+9 ≡ (16100)k × 169 ≡ 169 ≡ (162)4 × 16 ≡ 64 × 16 ≡ 736 ≡ 111 mod 125.
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Therefore, A mod 1000 ∈ {111, 236, 486, 736, 986}. As 8 | A, we conclude that

A mod 1000 = 736.

□

Problem 3. Determine the last two digits of S = f(17) + f(18) + f(19) + f(20), where

f(x) = xxxx

.

Solution. Firstly, we have

f(17) = 117
1717

≡ 1 mod 4, f(19) ≡ (−1)19
1919

≡ −1 mod 4, f(18) ≡ f(20) ≡ 0 mod 4.

Then S ≡ 1 + 0 + (−1) + 0 ≡ 0 mod 4. On the other hand,

f(20) ≡ 0 mod 25, f(18) ≡ (−7)18
1818

≡ (−7)4k ≡ 1 mod 25

for some k ∈ Z, as 74 = 2401 ≡ 1 mod 25. Also, since (17, 25) = 1,

ϕ(25) = 20 =⇒ 1720 ≡ 1 mod 25.

To determine f(17) = 1717
1717

mod 25, we are to find y = 1717
17

mod 20. But y ≡ 1 mod 4

and
y ≡ 217

17

≡ 24k+1 ≡ (24)k × 2 ≡ 2 mod 5.

Then y = 20p+ 17 for p ∈ Z. So

f(17) ≡ 1720p+17 ≡ 1717 ≡ 1720 × 17−3 ≡ 17−3 mod 25.

We have 3× 17 ≡ 51 ≡ 1 mod 25. Thus,

1717 ≡ 1

3−3
≡ 27 ≡ 2 mod 25 =⇒ f(17) ≡ 2 mod 25.

It remains to compute f(19), which is given by z = 1919
19

mod 20. We obtain

z = (−1)19
19

≡ −1 mod 20 =⇒ z = 20h− 1, h ∈ Z.

Therefore,

f(19) = 1920h−1 ≡ (1920)h × 1

19
≡ 1

19
=

4

19× 4
≡ 4 mod 25.

To conclude, we have

S ≡ 0 + 1 + 2 + 4 ≡ 7 mod 25 =⇒ S ≡ 32 mod 100.

□

Problem 4. Prove that for any a 󰃍 2 and n 󰃍 1, we have

n | ϕ(an − 1).

Proof. We introduce a fact that for a, b,m, n ∈ N∗ with ab ∕= 1 and (a, b) = 1,

(am − bm) | (an − bn) ⇐⇒ m | n.

Since (a, an − 1) = (a,−1) = 1, by Euler’s theorem,

aϕ(an−1) ≡ 1 mod (an − 1).

This is equivalent to an − 1 | aϕ(an−1) − 1. By the fact, we get n | ϕ(an − 1). □
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Exercise 5. Prove that for any even number n > 0,

n2 − 1 | 2n! − 1.

(Hint: apply Euler’s theorem to n+1 and n−1 together with 2, respectively; also note that
ϕ(n± 1) 󰃑 n, and therefore ϕ(n± 1) | n!.)

Problem 6. Prove that there is some positive integer n divides infinitely many terms in the
series 1, 11, 111, . . ..

Proof. It suffices to prove that there are infinitely many k ∈ N such that n divides (10k−1)/9.
This is implied by 9n | (10k − 1). But by Euler’s theorem, if (n, 10) = 1, then

10ϕ(9n) ≡ 1 mod 9n.

So we can take km = mϕ(9n) for some fixed m. Then n divides akm . □

3. Two difficult problems

Problem 7. Show that for any n ∈ N∗ and a ∈ Z, we have
󰁛

d|n

ϕ(d)a
n
d ≡ 0 mod n.

Proof. For convenience we denote xn(a) =
󰁓

d|n ϕ(d)a
n/d. Let P (n) be the proposition that

n | xn(a) for all a ∈ Z. We are to prove that if (m,n) = 1, then P (mn) holds if both P (m)

and P (n) are valid. That is, assuming P (m), P (n), we have

mn | xmn(a) =
󰁛

d|mn

ϕ(d)amn/d.

To prove this, by symmetry of m and n, it suffices to prove that m | xmn(a). Note that
(m,n) = 1 and ϕ is a multiplicative function, so

xmn(a) =
󰁛

d|mn

ϕ(d)amn/d

=
󰁛

e|m,f |n

ϕ(e)ϕ(f)a(m/e)·(n/f)

=
󰁛

f |n

ϕ(f)
󰁛

e|m

ϕ(e)(an/f )m/e

=
󰁛

f |n

ϕ(f)xm(an/f ).

Since p(m) is hold by the hypothesis, we see m | xm(an/f ), and m | xmn(a). This proves
the first assertion.

Now we apply the induction. Write n = pa1
1 · · · pak

k into arithmetic factorization into
distinct primes p1, . . . , pk. By Chinese remainder theorem, it suffices to prove that

󰁛

d|n

ϕ(d)an/d ≡ 0 mod pai
i , i = 1, . . . , k.
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Since pa1
1 , · · · , pak

k are mutually coprime, if we assumed

pai
i |

󰁛

d|pai
i

ϕ(d)ap
ai
i /d = xp

ai
i
(a), i = 1, . . . , k,

then the first assertion would render that

n = pa1
1 · · · pak

k |
󰁛

d|n

ϕ(d)an/d.

Therefore, we are remained to show pn | xpn(a) for each prime p and a ∈ Z. This is given
as follows:

xpn(a) =
󰁛

d|pn

ϕ(d)ap
n/d =

n󰁛

k=0

ϕ(pk)ap
n−k

=

n󰁛

k=0

(p− 1)pk−1ap
n−k

= ap
n

− ap
n−1

+ p(ap
n−1

+ (p− 1)ap
n−2

+ · · ·+ pn−2(p− 1)a

= ap
n

− ap
n−1

+ pxpn−1(a).

This suggests us to induct on n. When n = 1,

xp(a) = ap + (p− 1)a = ap + pa− a ≡ ap − a ≡ 0 mod p

by Fermat’s little theorem. Suppose pn−1 | xpn−1(a). Our goal is to show

xpn(a) ≡ ap
n

− ap
n−1

≡ 0 mod pn.

If p | a this is clear. Suppose p ∤ a and then by Euler’s theorem,

aϕ(pn) = a(p−1)pn−1

= ap
n−pn−1

≡ 1 mod pn.

This implies ap
n − ap

n−1 ≡ 0 mod pn by multiplying ap
n−1

on both sides. So we finally
accomplish the proof. □

Exercise 8. Using the argument that is similar to the proof of Problem 7, show that for
any positive integer n as well as any a ∈ Z,

n |
n󰁛

i=1

agcd(i,n).

Problem 9. Let n > 1 be an odd integer. Let a1, a2, . . . , aϕ(n) be all positive integers among
1, 2, . . . , n that are relatively prime to n. Prove that

󰀏󰀏󰀏󰀏󰀏󰀏

ϕ(n)󰁜

k=1

cos
akπ

n

󰀏󰀏󰀏󰀏󰀏󰀏
=

1

2ϕ(n)
.

Proof. Denote that

A =

󰀏󰀏󰀏󰀏󰀏󰀏

ϕ(n)󰁜

k=1

cos
akπ

n

󰀏󰀏󰀏󰀏󰀏󰀏
, B =

󰀏󰀏󰀏󰀏󰀏󰀏

ϕ(n)󰁜

k=1

sin
akπ

n

󰀏󰀏󰀏󰀏󰀏󰀏
.

Then we compute directly for

2ϕ(n)AB =

󰀏󰀏󰀏󰀏󰀏󰀏

ϕ(n)󰁜

k=1

2 sin
akπ

n
cos

akπ

n

󰀏󰀏󰀏󰀏󰀏󰀏
=

󰀏󰀏󰀏󰀏󰀏󰀏

ϕ(n)󰁜

k=1

sin
2akπ

n

󰀏󰀏󰀏󰀏󰀏󰀏
.
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Since 2 ∤ n, and {a1, . . . , aϕ(n)} is a reduced residue system modulo n, so also is {2a1, . . . , 2aϕ(n)}.
It follows that 󰀏󰀏󰀏󰀏󰀏󰀏

ϕ(n)󰁜

k=1

sin
2akπ

n

󰀏󰀏󰀏󰀏󰀏󰀏
=

󰀏󰀏󰀏󰀏󰀏󰀏

ϕ(n)󰁜

k=1

sin
akπ

n

󰀏󰀏󰀏󰀏󰀏󰀏
= B.

To check the identity above, note that
akπ

n
= mπ +

r

n
π =⇒

󰀏󰀏󰀏sin
akπ

n

󰀏󰀏󰀏 =
󰀏󰀏󰀏sin

rπ

n

󰀏󰀏󰀏 .

This completes the proof that 2ϕ(n)A = 1. □
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