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FERMAT’S LITTLE THEOREM

1. STATEMENT AND PROOF

Theorem 1 (Fermat’s little theorem). Let p be a prime with a € Z. Then a? = a mod p.
Or equivalently, if (a,p) = 1, then a?~! =1 mod p.

It suffices to suppose (a,p) = 1 and prove a?~! = 1 mod p. We introduce a lemma.
Lemma 2. Let p be a prime, a € Z, and (a,p) = 1. Then
{a mod p,2a mod p,...,(p —1)amod p} = {0,1,...,p—1}.

Proof. Assume ia = jamod p for 1 <i < j<p—1. Then p | a(j —i). Since (a,p) = 1, we
see p | (j—1). On the other hand, 0 < j—i < p—1 < p, which contradiction to p | (j—i). O

Proof of Theorem 1. Granting the lemma, we see
a-2a---(p—1a=1-2---(p—1) mod p

and hence
a®1(p—-1)!=(p—1) mod p.
Note that p{ (p — 1)!, so we have a?~! = 1 mod p. O

Remark 3. The converse of Fermat’s little theorem is not valid, i.e. if we suppose a? =
a mod p, then p is not necessarily a prime. For a counter example, we seek for n such
that 2" = 2 mod n. But it turns out that 341 = 31 - 11 works. It suffices to check that
2341 = 2 mod 341. In fact,

2341 = (231)11 = 931 = (211)2. 99 = 92. 99 = 21 =92 mod 11,
and
2341 = (211)31 = 211 = 2048 = 2 mod 31.
2. PRIMARY APPLICATIONS
2.1. Find the remainder of a large number.
Problem 4. Compute 14589 + 32002 mod 13.

Solution. We have
145 = 2 mod 13 = 145% = 2% mod 13.

By Fermat’s little theorem with a = 2 and p = 13, 2! = 1 mod 13. So
289 = (21%)7. 25 = 2° = 6 mod 13.
Similarly we get 3'2 = 1 mod 13. Therefore,
32002 — (312166 . 310 — (33)3 . 3 — 3 104 13.
So 145% + 32902 = 6 + 3 = 9 mod 13. O
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2.2. Carmichael numbers.
Problem 5. Prove that there the set

Q ={neN:2" =2mod n}
has infinitely many elements.

Solution. The idea is to construct a function N — N such that, once some n € @ is given,
then f(n) € @ with f(n) > n. If so, we get infinitely many elements

n < f(n) < f(f(n)) <---

in Q. We use the fact that if 2" — 1 is a prime then so also is n itself. Let a, € @ and
denote a,+1 = 2% — 1. It follows that a,,1 is not a prime. We have

2" =2mod a, = an |2°" —2=ap41 — 1.
Write a1 — 1 = ka,, for some k € Z. Then
@ -1 @ -1 = @) - L

So 29»+1=1 = 1mod a,,1. It follows that 2%7+1 = 2mod a,,; and a,.; € Q. This
completes the proof. |

Exercise 6. Show that there are infinitely many n € N such that
n|(2"+2), (n—-1)](@2"+1).

Remark 7. In Problem 5, elements in set Q) are called quasi-prime integers. Furthermore,
if some non-prime n such that a” = a mod n for all a € Z uniformly, then n is called a
Carmichael number.

Proposition 8. Let n be a square-free composite integer satisfying (p—1) | (n—1) for each
prime divisor p of n. Then n is a Carmichael number.

Proof. By assumption we write n = p; - --pg the product of distinct primes. Then n is
Carmichael if and only if n is composite, and a™ = a mod n for all a € Z. So it suffices to
prove that ™ = amod p; fori=1,...,k.

Suppose p is any prime divisor of n. If p | a then there is nothing to prove. Assuming p 1 a,
then by Fermat’s little theorem, we have a?~* = 1 mod p. Also, the condition (p—1) | (n—1)
dictates that n — 1 = k(p — 1) for some k € Z. Then

a" = (@ H* =1modp = a" = a mod p.
This completes the proof. a

Remark 9. The converse of Proposition 8 is also valid. Namely, if n is Carmichael, then
it must be square-free and (p — 1) | (n — 1) for each prime divisor p | n. For example,
561 = 3 - 1117 is Carmichael whereas 341 = 31 - 11 is not.
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2.3. Division problems.
Problem 10. Given a prime p = 6k + 1 > 13 with k € N. Denote m = 2P — 1. Prove that
127m | (2™ —1).

Before proving this, recall that for a,b,m,n € Z~q with ab # 1 and (a,b) = 1, we have
(1) (@™ —=0b™) | (a™ — b™) if and only if m | n;
(2) (@™ +0™) | (a™ + ") if and only if m [ n and 21 *;
(3) (a™ — b, a" — b = qlmm) _ pimn).

Proof. By (3), we have
(127,m)=(2"—1,2? = 1) =2TP 1 =21 —1 =1,
On the one hand,
1271 (2" —1) = 2"-1)| 2™ =1) <<= T|(m—-1)=(2-2)
— 2 =2mod 7 — 2% =1mod 7

but this is implied by Fermat’s little theorem, as 26 = 1 mod 7. On the other hand, by a
similar argument,

m| (2™ —1) <= 27 =2mod p,

which is again a consequence of Fermat’s little theorem. O

3. MORE ADVANCED PROBLEMS

Problem 11. Let ay,...,ay,b1,...,bx € Z satisfies ai,...,a, > 1. Show that there are
infinitely many positive integers d’s such that for any 1 <1i < k,

S; = Si(d) :=al+---+al +b
is a composite number.

Proof. We run a similar argument as in the solution to Problem 5. Choose any d € N to
begin with. For convenience we may assume (aq,...,a,,b;) = 1 for each i. Also choose p;
to be a prime divisor of S; for each i. Construct

dj =d+jlp1—1)---(px — 1), J€Zso.
Then by Fermat’s little theorem, ajj = a¢ mod p; for each i as aP?i~! = a, mod p; for some
1 < r < n. It follows that
Si(dj) :afj 4ot ali 4 b =8 =al+ - +al +b; =0mod p;.
On the other hand, S;(d;) > S; > p;. So each S;(d;) for j € Z~¢ is a composite number.
This gives us infinitely many such d. O

Problem 12 (IMO, 2005). Determine all positive integers relatively prime to all the terms
of the infinite sequence

an=2"+3"+6" -1, n>1.



4 FERMAT’S LITTLE THEOREM

Solution. Equivalently, we are to show that for each prime p there exists some n such that
p | an. Namely, the prime divisors for {a,} runs through all prime integers. Since 2 | a2 and
3| az, we assume p > 5 at work. By Fermat’s little theorem,

2"l =2 modp, 3 '=3modp, 6°!=6modp.

Then
6a, o=3-2""142.3"1 46/ —6=3+2+1-6=0modp
and hence p | ap—2 for (6,p) = 1. This completes the proof. a
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