Lecture Notes for International Mathematical Olympiad

LIFTING-THE-EXPONENT LEMMA

1. STATEMENTS AND PROOFS

We first introduce a lemma before proving the main result. Denote $v_p(n)$ the exponent of prime divisor p of $n \in \mathbb{N}$ in its unique factorization.

Lemma 1. Let $a, b \in \mathbb{Z}$, $l \in \mathbb{N}^*$, and p be a prime number. Then

$$p^l \mid (a-b) \implies p^{l+1} \mid (a^p - b^p).$$

Proof. To show the idea of the proof we only do for l = 1, and the general case requires a similar argument only. Note that

$$a^{p} = (a - b + b)^{p}$$

= $\underbrace{(a - b)^{p} + p(a - b)^{p-1}b + \frac{p(p-1)}{2}(a - b)^{p-2}b^{2} + \dots + p(a - b)b^{p-1}}_{\text{divided by } p^{2}} + b^{p}.$

Since $p \mid (a - b)$, we have $p^2 \mid (a^p - b^p)$.

Theorem 2. Let $a, b \in \mathbb{Z}$ and p be a prime number. For any $c \in \mathbb{N}$, we have

$$v_p(a^c - b^c) \ge v_p(a - b) + v_p(c),$$

or alternatively,

$$v_p\left(\frac{a^c-b^c}{a-b}\right) \ge v_p(c).$$

Proof. Denote $k = v_p(c)$ and $l = v_p(a - b)$. It suffices to prove $p^{l+k} \mid (a^c - b^c)$. We have $p^l \mid a - b$. By the lemma, we have $p^{l+1} \mid a^p - b^p$. Apply the lemma iteratively, we have

$$p^{l} \mid a - b \implies p^{l+1} \mid a^{p} - b^{p} \implies p^{l+2} \mid a^{p^{2}} - b^{p^{2}} \implies p^{l+k} \mid a^{p^{k}} - b^{p^{k}}$$

Since $p^k \mid c$, we have $(a^{p^k} - b^{p^k}) \mid (a^c - b^c)$. It follows that $p^{l+k} \mid (a^c - b^c)$, which is as desired.

Problem 3. Let $n \in \mathbb{N}^*$ and $a, b \in \mathbb{Z}$ be distinct integers. Assume $n \mid (a^n - b^n)$. Prove that $n \text{ divides } (a^n - b^n)/(a - b)$.

Proof. It suffices to show that for any prime divisor p of n, we have

$$v_p\left(\frac{a^n-b^n}{a-b}\right) \geqslant v_p(n).$$

If $p \mid (a - b)$, this is given by Theorem 2. Otherwise (p, a - b) = 1, and hence

$$v_p\left(\frac{a^n-b^n}{a-b}\right) = v_p(a^n-b^n) \ge v_p(n).$$

Date: August 30, 2022.

LTE LEMMA

Theorem 4 (Lifting-the-exponent lemma for p odd). Let p be an odd prime and $a, b \in \mathbb{Z}$ coprime to p. Assume $p \mid (a - b)$. Then for each $n \in \mathbb{N}$ we have

$$v_p(a^n - b^n) = v_p(n) + v_p(a - b)$$

Proof. We first prove that if $m, n \in \mathbb{N}$ satisfy the LTE lemma then so also does mn. For this, we note that

$$\begin{aligned} v_p(a^{mn} - b^{mn}) &= v_p((a^m)^n - (b^m)^n) \\ &= v_p(a^m - b^m) + v_p(n) \\ &= v_p(a - b) + v_p(m) + v_p(n) \\ &= v_p(a - b) + v_p(mn). \end{aligned}$$

Then it suffices to replace n by any prime number q. Whenever $q \neq p$, it is enough to show that

$$\frac{a^q - b^q}{a - b} = a^{q-1} + a^{q-2}b + \dots + b^{q-1}$$

is not divisible by p. By assumption we have $a \equiv b \mod p$. And $p \nmid a$ implies $p \nmid qa$. Then

$$\frac{a^q - b^q}{a - b} \equiv q a^{q - 1} \not\equiv 0 \bmod p.$$

In this case q satisfies the LTE lemma. We are remained to consider q = p. Let $a = b + p^k c$ with (p, c) = 1, that is, such that $v_p(a - b) = k$. Then

$$a^{q} - b^{q} = (b + p^{k}c)^{p} - b^{p} = pb^{p-1}p^{k}c + \binom{2}{p}b^{p-2}p^{2k}c^{2} + \dots + p^{kp}c^{p}$$

Since p > 2, we have $v_p(\binom{2}{p}b^{p-2}p^{2k}c^2 + \dots + p^{kp}c^p) > k+1$, and hence¹

$$v_p(a^q - b^q) = v_p(pb^{p-1}p^kc) = k + 1 = v_p(a - b) + v_p(q)$$

with q = p, because of (p, bc) = 1. This completes the proof.

Theorem 5 (Lifting-the-exponent lemma for p = 2). Let $x, y \in \mathbb{Z}$ be odd integers and $2 \mid n \in \mathbb{N}$. Then

$$v_2(x^n - y^n) = v_2(x^2 - y^2) + v_2(n) - 1.$$

Proof. Denote $n = 2^k a$ for $k \in \mathbb{N}$ and a odd. Then

$$x^{n} - y^{n} = (x^{a})^{2^{k}} - (y^{a})^{2^{k}}$$

= $(x^{2^{k-1}}a + y^{2^{k-1}}a)(x^{2^{k-2}}a + y^{2^{k-2}}a)\cdots(x^{2^{k}} + y^{2^{k}})(x^{a} + y^{a})(x^{a} - y^{a})$

Since x, y are odd, we have $x^2 + y^2 \equiv 2 \mod 4$ and hence $v_2(x^2 + y^2) = 1$. Using the same identity, it follows that

$$v_2(x^n - y^n) = v_2((x^{2^{k-1}}a + y^{2^{k-1}}a)(x^{2^{k-2}}a + y^{2^{k-2}}a) \cdots (x^{2a} + y^{2a})) + v_2(x^{2a} - y^{2a})$$

= $k - 1 + v_2(x^{2a} - y^{2a}).$

Then

$$\frac{x^{2a} - y^{2a}}{x^2 - y^2} = x^{2(a-1)} + \dots + y^{2(a-1)},$$

¹In the context of algebraic number theory this is due to the strong triangle inequality of *p*-adic valuations.

which is the sum of a odd integers, where a is odd. Hence

$$v_2\left(\frac{x^{2a} - y^{2a}}{x^2 - y^2}\right) = 0,$$

and therefore $v_2(x^{2a}-y^{2a}) = v_2(x^2-y^2)$. It follows that $v_2(x^n-y^n) = v_2(x^2-y^2)+v_2(n)-1$ as desired.

Theorem 6. Let x, y be odd integers and n is positive and odd. Then

$$v_2(x^n - y^n) = v_2(x - y).$$

Proof. We compute that

$$\frac{x^n - y^n}{x - y} = x^{n-1} + \dots + y^{n-1} \equiv 1 \mod 2.$$

Then

$$v_2\left(\frac{x^n-y^n}{x-y}\right) = 0 \implies v_2(x^n-y^n) = v_2(x-y).$$

2. Typical applications

Problem 7 (Chinese Girl's Mathematical Olympiad, 2017). Determine all possible positive integer n satisfying that for any positive odd integer a, we have $2^{2017} | a^n - 1$.

Solution. We are to satisfy $v_2(a^n - 1) \ge 2017$. If we take a = 3, then $3^n \equiv 1 \mod 2^{2017}$, and hence $3^n \equiv 1 \mod 4$. So $(-1)^n \equiv 1 \mod 4$, which indicates that n is even. By Theorem 5, we have

$$v_2(3^n - 1) = v_2(3^2 - 1) + v_2(n) - 1 = 2 + v_2(n).$$

This requires $v_2(n) \ge 2015$. Also,

$$2 \nmid a \implies a^2 \equiv 1 \mod 8 \implies 8 \mid a^2 - 1 \implies v_2(a^2 - 1) \ge 3$$

On the other hand, we may check that

$$v_2(a^n - 1) = v_2(a^2 - 1) + v_2(n) - 1 \ge 3 + 2015 - 1 = 2017.$$

To conclude, $n = 2^{2015}m$ for $m \in \mathbb{N}$.

Problem 8. In a sequence of integers $\{a_n\}_{n \in \mathbb{N}}$, we assume $a_1 = 2018$ and $a_n = 2018^{a_{n-1}}$ for $n \ge 2$. Find out $v_{2017}(a_{2018} - a_{2017})$.

Proof. We obtain

$$a_{2018} - a_{2017} = 2018^{a_{2017}} - 2018^{a_{2016}} = 2016^{a_{2016}} (2018^{a_{2017} - a_{2016}} - 1).$$

Since $(2018^{a_{2016}}, 2017) = 1$, we have by LTE lemma that

$$v_{2017}(a_{2018} - a_{2017}) = v_{2017}(2018^{a_{2017} - a_{2016}} - 1)$$

= $v_{2017}(2018 - 1) + v_{2017}(a_{2017} - a_{2016})$
= $1 + v_{2017}(a_{2017} - a_{2016})$
= $2 + v_{2017}(a_{2016} - a_{2015})$
= \cdots
= $2016 + v_{2017}(a_2 - a_1).$

Using the LTE lemma again, the result turns out to be

$$2016 + v_{2017}(a_2 - a_1) = 2016 + v_{2017}(2018^{2017} - 1)$$

= 2016 + v_{2017}(2018 - 1) + v_{2017}(2017)
= 2016 + 1 + 1 = 2018.

Problem 9. Determine all $n \in \mathbb{N}$ such that $n^2 \mid 2^n + 1$.

Solution. It is clear that n = 1 is a solution. For n > 1, if p is the minimal prime divisor of n, then $p \mid 2^n + 1$ implies that p is an odd prime. By Fermat's little theorem, $p \mid 2^{p-1} - 1$. On the other hand, as $p \mid 2^n + 1$, we have $p \mid (2^n + 1)(2^n - 1) = 2^{2n} - 1$. From these, we see

$$p \mid (2^{p-1} - 1, 2^{2n} - 1) = 2^{(p-1,2n)} - 1 = 3$$

because (p-1, 2n) = 2. Hence p = 3. By assumption,

$$n^{2} | 2^{n} + 1 \implies 2v_{3}(n) \leq v_{3}(2^{n} + 1) = v_{2}(2 + 1) + v_{3}(n) = 1 + v_{3}(n) \implies v_{3}(n) \leq 1.$$

It is also clear that $v_3(n) \ge 1$, so $v_3(n) = 1$. Let n = 3m for some $3 \nmid m$. We claim that m = 1. If m > 1 then there is a smallest prime divisor q of m say, such that (q, 2) = 1. Then $q \mid 2^n + 1 = 8^m + 1$, and hence $q \mid (8^m + 1)(8^m - 1) = 8^{2m} - 1$. Also, by Fermat's little theorem, $q \mid 8^{q-1} - 1$. Hence $q \mid 8^{(2m,q-1)} - 1 = 63$. It forces q to be 7, so $7 \mid 8^m + 1$. However, $8^m + 1 \equiv 1 + 1 = 2 \mod 7$, which leads to a contradiction. This proves m = 1.

Therefore, n = 1, 3 are all the desired solutions. \Box

Problem 10 (Chinese Team Selection Test, 2009). Let $n \in N$ and a > b > 1 integers, such that b is odd and $b^n \mid a^n - 1$. Prove that

$$a^b > \frac{3^n}{n}$$

Proof. Take p > 2 to be any prime divisor of b. Then

$$b^n \mid a^n - 1 \implies p \mid a^n - 1 \implies p \nmid a^n \implies (a, p) = 1 \implies (a, b) = 1.$$

By Fermat's little theorem, we have $p \mid a^{p-1} - 1$. On the other hand, $a^n - 1 \mid (a^n)^{p-1} - 1 = (a^{p-1})^n - 1$. Then

$$n \leqslant v_p(b^n) \leqslant v_p(a^n - 1) \leqslant v_p((a^{p-1})^n - 1).$$

By LTE lemma, the RHS equals to

$$v_p((a^{p-1})^n - 1) = v_p(a^{p-1} - 1) + v_p(n).$$

Hence, by taking product on all prime divisors, we have

$$v_p(a^{p-1}-1) \ge n - v_p(n) \implies a^{p-1} - 1 \ge p^{n - v_p(n)}.$$

Finally, one can complete the proof by noting

$$a^{b} > a^{p-1} > a^{p-1} - 1 \ge p^{n-v_{p}(n)} = \frac{p^{n}}{p^{v_{p}(n)}} \ge \frac{p^{n}}{n} \ge \frac{3^{n}}{n}.$$

School of Mathematical Sciences, Peking University, 100871, Beijing, China *Email address*: daiwenhan@pku.edu.cn