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LIFTING-THE-EXPONENT LEMMA

1. Statements and proofs

We first introduce a lemma before proving the main result. Denote vp(n) the exponent
of prime divisor p of n ∈ N in its unique factorization.

Lemma 1. Let a, b ∈ Z, l ∈ N∗, and p be a prime number. Then

pl | (a− b) =⇒ pl+1 | (ap − bp).

Proof. To show the idea of the proof we only do for l = 1, and the general case requires a
similar argument only. Note that

ap = (a− b+ b)p

= (a− b)p + p(a− b)p−1b+
p(p− 1)

2
(a− b)p−2b2 + · · ·+ p(a− b)bp−1

󰁿 󰁾󰁽 󰂀
divided by p2

+bp.

Since p | (a− b), we have p2 | (ap − bp). □

Theorem 2. Let a, b ∈ Z and p be a prime number. For any c ∈ N, we have

vp(a
c − bc) 󰃍 vp(a− b) + vp(c),

or alternatively,

vp

󰀕
ac − bc

a− b

󰀖
󰃍 vp(c).

Proof. Denote k = vp(c) and l = vp(a − b). It suffices to prove pl+k | (ac − bc). We have
pl | a− b. By the lemma, we have pl+1 | ap − bp. Apply the lemma iteratively, we have

pl | a− b =⇒ pl+1 | ap − bp =⇒ pl+2 | ap
2

− bp
2

=⇒ pl+k | ap
k

− bp
k

.

Since pk | c, we have (ap
k − bp

k

) | (ac − bc). It follows that pl+k | (ac − bc), which is as
desired. □

Problem 3. Let n ∈ N∗ and a, b ∈ Z be distinct integers. Assume n | (an − bn). Prove that
n divides (an − bn)/(a− b).

Proof. It suffices to show that for any prime divisor p of n, we have

vp

󰀕
an − bn

a− b

󰀖
󰃍 vp(n).

If p | (a− b), this is given by Theorem 2. Otherwise (p, a− b) = 1, and hence

vp

󰀕
an − bn

a− b

󰀖
= vp(a

n − bn) 󰃍 vp(n).

□
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Theorem 4 (Lifting-the-exponent lemma for p odd). Let p be an odd prime and a, b ∈ Z
coprime to p. Assume p | (a− b). Then for each n ∈ N we have

vp(a
n − bn) = vp(n) + vp(a− b).

Proof. We first prove that if m,n ∈ N satisfy the LTE lemma then so also does mn. For
this, we note that

vp(a
mn − bmn) = vp((a

m)n − (bm)n)

= vp(a
m − bm) + vp(n)

= vp(a− b) + vp(m) + vp(n)

= vp(a− b) + vp(mn).

Then it suffices to replace n by any prime number q. Whenever q ∕= p, it is enough to show
that

aq − bq

a− b
= aq−1 + aq−2b+ · · ·+ bq−1

is not divisible by p. By assumption we have a ≡ b mod p. And p ∤ a implies p ∤ qa. Then

aq − bq

a− b
≡ qaq−1 ∕≡ 0 mod p.

In this case q satisfies the LTE lemma. We are remained to consider q = p. Let a = b+ pkc

with (p, c) = 1, that is, such that vp(a− b) = k. Then

aq − bq = (b+ pkc)p − bp = pbp−1pkc+

󰀕
2

p

󰀖
bp−2p2kc2 + · · ·+ pkpcp.

Since p > 2, we have vp(
󰀃
2
p

󰀄
bp−2p2kc2 + · · ·+ pkpcp) > k + 1, and hence1

vp(a
q − bq) = vp(pb

p−1pkc) = k + 1 = vp(a− b) + vp(q)

with q = p, because of (p, bc) = 1. This completes the proof. □

Theorem 5 (Lifting-the-exponent lemma for p = 2). Let x, y ∈ Z be odd integers and
2 | n ∈ N. Then

v2(x
n − yn) = v2(x

2 − y2) + v2(n)− 1.

Proof. Denote n = 2ka for k ∈ N and a odd. Then

xn − yn = (xa)2
k

− (ya)2
k

= (x2k−1

a+ y2
k−1

a)(x2k−2

a+ y2
k−2

a) · · · (x2a + y2a)(xa + ya)(xa − ya).

Since x, y are odd, we have x2 + y2 ≡ 2 mod 4 and hence v2(x
2 + y2) = 1. Using the same

identity, it follows that

v2(x
n − yn) = v2((x

2k−1

a+ y2
k−1

a)(x2k−2

a+ y2
k−2

a) · · · (x2a + y2a)) + v2(x
2a − y2a)

= k − 1 + v2(x
2a − y2a).

Then
x2a − y2a

x2 − y2
= x2(a−1) + · · ·+ y2(a−1),

1In the context of algebraic number theory this is due to the strong triangle inequality of p-adic valuations.
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which is the sum of a odd integers, where a is odd. Hence

v2

󰀕
x2a − y2a

x2 − y2

󰀖
= 0,

and therefore v2(x2a−y2a) = v2(x
2−y2). It follows that v2(xn−yn) = v2(x

2−y2)+v2(n)−1

as desired. □

Theorem 6. Let x, y be odd integers and n is positive and odd. Then

v2(x
n − yn) = v2(x− y).

Proof. We compute that
xn − yn

x− y
= xn−1 + · · ·+ yn−1 ≡ 1 mod 2.

Then
v2

󰀕
xn − yn

x− y

󰀖
= 0 =⇒ v2(x

n − yn) = v2(x− y).

□

2. Typical applications

Problem 7 (Chinese Girl’s Mathematical Olympiad, 2017). Determine all possible positive
integer n satisfying that for any positive odd integer a, we have 22017 | an − 1.

Solution. We are to satisfy v2(a
n− 1) 󰃍 2017. If we take a = 3, then 3n ≡ 1 mod 22017, and

hence 3n ≡ 1 mod 4. So (−1)n ≡ 1 mod 4, which indicates that n is even. By Theorem 5,
we have

v2(3
n − 1) = v2(3

2 − 1) + v2(n)− 1 = 2 + v2(n).

This requires v2(n) 󰃍 2015. Also,

2 ∤ a =⇒ a2 ≡ 1 mod 8 =⇒ 8 | a2 − 1 =⇒ v2(a
2 − 1) 󰃍 3.

On the other hand, we may check that

v2(a
n − 1) = v2(a

2 − 1) + v2(n)− 1 󰃍 3 + 2015− 1 = 2017.

To conclude, n = 22015m for m ∈ N. □

Problem 8. In a sequence of integers {an}n∈N, we assume a1 = 2018 and an = 2018an−1

for n 󰃍 2. Find out v2017(a2018 − a2017).

Proof. We obtain

a2018 − a2017 = 2018a2017 − 2018a2016 = 2016a2016(2018a2017−a2016 − 1).

Since (2018a2016 , 2017) = 1, we have by LTE lemma that

v2017(a2018 − a2017) = v2017(2018
a2017−a2016 − 1)

= v2017(2018− 1) + v2017(a2017 − a2016)

= 1 + v2017(a2017 − a2016)

= 2 + v2017(a2016 − a2015)

= · · ·
= 2016 + v2017(a2 − a1).
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Using the LTE lemma again, the result turns out to be

2016 + v2017(a2 − a1) = 2016 + v2017(2018
2017 − 1)

= 2016 + v2017(2018− 1) + v2017(2017)

= 2016 + 1 + 1 = 2018.

□

Problem 9. Determine all n ∈ N such that n2 | 2n + 1.

Solution. It is clear that n = 1 is a solution. For n > 1, if p is the minimal prime divisor of
n, then p | 2n + 1 implies that p is an odd prime. By Fermat’s little theorem, p | 2p−1 − 1.
On the other hand, as p | 2n +1, we have p | (2n +1)(2n − 1) = 22n − 1. From these, we see

p | (2p−1 − 1, 22n − 1) = 2(p−1,2n) − 1 = 3

because (p− 1, 2n) = 2. Hence p = 3. By assumption,

n2 | 2n + 1 =⇒ 2v3(n) 󰃑 v3(2
n + 1) = v2(2 + 1) + v3(n) = 1 + v3(n) =⇒ v3(n) 󰃑 1.

It is also clear that v3(n) 󰃍 1, so v3(n) = 1. Let n = 3m for some 3 ∤ m. We claim that
m = 1. If m > 1 then there is a smallest prime divisor q of m say, such that (q, 2) = 1.
Then q | 2n + 1 = 8m + 1, and hence q | (8m + 1)(8m − 1) = 82m − 1. Also, by Fermat’s
little theorem, q | 8q−1 − 1. Hence q | 8(2m,q−1) − 1 = 63. It forces q to be 7, so 7 | 8m + 1.
However, 8m + 1 ≡ 1 + 1 = 2 mod 7, which leads to a contradiction. This proves m = 1.

Therefore, n = 1, 3 are all the desired solutions. □

Problem 10 (Chinese Team Selection Test, 2009). Let n ∈ N and a > b > 1 integers, such
that b is odd and bn | an − 1. Prove that

ab >
3n

n
.

Proof. Take p > 2 to be any prime divisor of b. Then

bn | an − 1 =⇒ p | an − 1 =⇒ p ∤ an =⇒ (a, p) = 1 =⇒ (a, b) = 1.

By Fermat’s little theorem, we have p | ap−1 − 1. On the other hand, an − 1 | (an)p−1 − 1 =

(ap−1)n − 1. Then
n 󰃑 vp(b

n) 󰃑 vp(a
n − 1) 󰃑 vp((a

p−1)n − 1).

By LTE lemma, the RHS equals to

vp((a
p−1)n − 1) = vp(a

p−1 − 1) + vp(n).

Hence, by taking product on all prime divisors, we have

vp(a
p−1 − 1) 󰃍 n− vp(n) =⇒ ap−1 − 1 󰃍 pn−vp(n).

Finally, one can complete the proof by noting

ab > ap−1 > ap−1 − 1 󰃍 pn−vp(n) =
pn

pvp(n)
󰃍 pn

n
󰃍 3n

n
.

□
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