Elementary Number Theory

PROBLEM SET 1

WENHAN DAI

Problem 1. Let a, b be positive integers with gcd(a, b) = 1.

- (a) Prove that ab a b cannot be written as ax + by where x, y are non-negative integers.
- (b) Prove that for any integer n > ab a b, there exist non-negative integers x, y such that n = ax + by.

Problem 2. Let $\mathbb{Z}_{\geq 0}$ denote the set of non-negative integers. Let $f : \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} \to \mathbb{Z}_{\geq 0}$ be a function such that

$$f(b,a) = f(a,b) = f(b-a,a)$$

for any integers $0 \leq a \leq b$. Prove that

$$f(a,b) = f(\gcd(a,b),0)$$

for any $a, b, \in \mathbb{Z}_{\geq 0}$.

Problem 3. Let a, m, n be positive integers. Prove that

$$gcd(a^m - 1, a^n - 1) = a^{gcd(m,n)} - 1.$$

Problem 4. Let x, y, z be positive integers such that gcd(x, y, z) = 1 and

$$\frac{1}{x} + \frac{1}{y} = \frac{1}{z}.$$

Prove that x + y is a perfect square.

Problem 5. Let a_1, a_2, a_3, \ldots be a sequence of positive integers such that

$$gcd(a_m, a_n) = gcd(m, n)$$

for any $m, n \in \mathbb{N}$ that are distinct. Prove that $a_m = m$ for any $m \in \mathbb{N}$.

School of Mathematical Sciences, Peking University, 100871, Beijing, China *Email address*: daiwenhan@pku.edu.cn