Elementary Number Theory

PROBLEM SET 2

WENHAN DAI

Problem 1. A positive integer is said to be square-free if it is not divisible by the square of any prime.

- (a) Prove that every positive integer can be written uniquely as st^2 where $s \in \mathbb{N}$ is square-free and $t \in \mathbb{N}$.
- (b) Use this (and not the prime number theorem) to prove that there is a constant C > 0 such that

$$\pi(x) \ge C \log x$$

for any real number $x \ge 2$.

Problem 2. Let p be a prime. For any positive integer n, we can express it in base p as $n = n_0 + n_1 p + \cdots + n_k p^k$ and write $s_p(n) = n_0 + n_1 + \cdots + n_k$. Prove that

$$v_p(n!) = \frac{n - s_p(n)}{p - 1}.$$

Problem 3. Suppose a, b, n are positive integers such that a!b! divides n!. Prove that

$$a+b \leqslant n+1+2\frac{\log n}{\log 2}.$$

Problem 4. Let m, n be positive integers such that $1 \leq m \leq n$. Prove that

$$m\binom{n}{m} \mid \operatorname{lcm}(1,\ldots,n)$$

Problem 5. Let n be a positive integer.

(a) Prove that it N is an integer such that $n\binom{2n+1}{n} \mid N$ and $(n+1)\binom{2n+1}{n+1} \mid N$, then

$$n(n+1)\binom{2n+1}{n} \mid N.$$

(b) Prove that

$$n4^n \leq \operatorname{lcm}(1,\ldots,2n+1).$$

(c) Prove that for any integer $m \ge 7$,

$$\operatorname{lcm}(1,\ldots,m) \geqslant 2^m.$$

It then follows that for any integer $x \ge 2$,

$$\pi(x) \geqslant \frac{x \log 2}{\log x}$$

by checking the smaller values directly.

School of Mathematical Sciences, Peking University, 100871, Beijing, China *Email address*: daiwenhan@pku.edu.cn