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PELL EQUATIONS

1. An Introduction to Pell Equations

Definition 1 (Pell Equation). The equation of the form x2 −Dy2 = 1 with D ∈ Z\{0} is

called Pell equation.

The solutions of Pell equation strongly depends on the choice of D.

• When D < 0, all solutions for x2 −Dy2 = 1 must be trivial, i.e., (x, y) = (±1, 0).

• When D > 0 is a perfect square, all solutions for x2 −Dy2 = 1 must be trivial as

well.

Therefore, without loss of generality, we only study about the case where D > 0 and is not

a perfect square. It can be proved that in these nontrivial case, the Pell equation always

obtain at least one non-trivial integer solution (see, for example, [AG76]).

Definition 2 (Fundamental Solution). Among all solutions for x2 − Dy2 = 1, the funda-

mental solution or the minimal solution is a non-trivial pair (x0, y0) such that x0 +
√
Dy0

is minimal.

Proposition 3. Suppose (x0, y0) is the fundamental solution for x2 −Dy2 = 1. Then for

any integer solution (x, y), we have x 󰃍 x0 and y 󰃍 y0.

Proof. Assume x0 > x for some x. Then

x2
0 = Dy20 + 1 > x2 = Dy2 + 1

which implies y0 > y at once. This contradicts to the assumption that x0 +
√
Dy0 is the

minimal. □

It’s an essential step to find out the fundamental solution while solving the Pell equations.

There are two ways to do this:

(1) taking trials for y = 1, 2, . . . until 1 +Dy2 is a perfect square;

(2) using the continued fraction (c.f. [Sho67, p.204]).

Theorem 4. The Pell equation x2 −Dy2 has infinitely many solutions of positive integers

when D > 0 and D is a perfect square. All solutions of positive integers (xn, yn) with n ∈ N
can be represented by the fundamental solution (x0, y0), say

(∗) xn +
√
Dyn = (x0 +

√
Dy0)

n.

Proof. According to the binomial theorem, for
√
D ∈ R\Q and any n ∈ N, if (xn, yn) satisfies

(∗), we have

xn −
√
Dyn = (x0 −

√
Dy0)

n.

Multiplying with (∗),

x2
n −Dy2n = (x0 +

√
Dy0)

n(x0 −
√
Dy0)

n = (x2
0 −Dy20)

2 = 1,
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and hence (xn, yn) is a solution to x2−Dy2 = 1. Suppose there exists some (x, y) that cannot

be represented by (xk, yk), i.e., x +
√
Dy ∕= (x0 +

√
Dy0)

n for any n. As x0 +
√
Dy0 > 1,

there is a unique r ∈ N∗ such that

(x0 +
√
Dy0)

r < x+
√
Dy < (x0 +

√
Dy0)

r+1.

This is equivalent to

1 <
x+

√
Dy

(x0 +
√
Dy0)r

= (x+
√
Dy)(x0 −

√
Dy0)

r < x0 +
√
Dy0.

Here 1/(x0 +
√
Dy0)

r = (x0 −
√
Dy0)

r/(x2
0 +

√
Dy20)

r = (x0 −
√
Dy0)

r. On the other hand,

note that there are X,Y ∈ Z such that

(x+
√
Dy)(x0 −

√
Dy0)

r = X +
√
DY.

Thus,

X −DY 2 = (X +
√
DY )(X −

√
DY )

= (x+
√
Dy)(x0 −

√
Dy0)

r(x−
√
Dy)(x0 +

√
Dy0)

r

= (x2 −Dy2)(x2
0 −Dy20) = 1.

Therefore, (X,Y ) is a solution for the Pell equation, and then

1 < X +
√
DY < x0 +

√
Dy0 =⇒ 0 < X −

√
DY =

1

X +
√
DY

< 1

It boils down to verify that X,Y ∈ N∗. Consider

• (X +
√
DY ) + (X −

√
DY ) = 2X > 1 + 0 = 1, hence X > 0 and then X ∈ N∗;

•
√
DY > X − 1 󰃍 0, thus Y ∈ N∗ again.

Therefore, X −
√
DY < 1 < X +

√
DY < x0 +

√
Dy0 contradicts to the assumption that

(x0, y0) is the minimal solution. □

Example 5. Here comes an example to understand Theorem 4. Given (x0, y0), we have

(x0 ±
√
Dy0)

3 = x3
0 ± 3x2

0y0
√
D + 3x0Dy20 ±Dy30

√
D

= (x3
0 + 3x0Dy20󰁿 󰁾󰁽 󰂀

x3

)−
√
D(3x2

0y0 +Dy0󰁿 󰁾󰁽 󰂀
y3

).

Remarks 6. Here comes some properties on series {xn} and {yn}.
(1) From two equations in Theorem 4 (∗), we get

xn =
1

2
((x0 +

√
Dy0)

n + (x0 −
√
Dy0)

n),

yn =
1

2
√
D
((x0 +

√
Dy0)

n − (x0 −
√
Dy0)

n).

(2) By induction, for n 󰃍 2, we obtain recursive formulas read as

xn = 2x0xn−1 − xn−2,

yn = 2x0yn−1 − yn−2.

These equations are hard to deduce but relatively easy to verify.

Definition 7 (Pell Equation, Type II). The equation of the form x2 − Dy2 = −1 with

D ∈ Z\{0} is called Pell equation of type II.
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The Pell equations of type II are more difficult to understand. We list out the following

result without a proof.

Theorem 8. Let D ∈ N∗ be a non-perfect square integer. Suppose the equation x2−Dy2 =

−1 has a solution of positive integers. Then it has infinitely many solutions of positive

integers, and all of them can be represented by the fundamental solution as

xn +
√
Dyn = (x0 +

√
Dy0)

2n+1

for all n ∈ N.

Remarks 9. We list out some remarks to understand Theorem 8.

(1) The equation x2 − Dy2 = −1 of type II does not necessarily have a solution even

for those nice D ∈ Z. However, the equation x2 −Dy2 = 1 of type I always has a

solution under the same circumstance.

(2) The definition for a fundamental solution (x0, y0) of x
2 −Dy2 = −1 is the same as

before, i.e., the non-trivial solution such that x+
√
Dy is the minimal.

(3) It’s a tricky and verbose problem on algebraic number theory to find out for which

D the Pell equation of type II has a solution.

2. Problems and Examples

Problem 10. For n ∈ N, it is called a triangular number if there exists some k ∈ N such

that n = 1+2+ · · ·+ k. Find out a triangular number N of 4 digits such that it is a perfect

square as well.

Solution. Suppose N = m2 = k(k + 1)/2. This is equivalent to

(2k + 1)2 − 2(2m)2 = x2 − 2y2 = 1, x = 2k + 1, y = 2m.

Note that the fundamental solution for x2 − 2y2 = 1 is (x0, y0) = (3, 2). On the other hand,

as m2 has 4 digits, we see 32 󰃑 m 󰃑 99 and then 64 󰃑 y 󰃑 198. By Theorem 4,

x2 +
√
Dy2 = (3 + 2

√
2)2 = 17 + 2

√
2 =⇒ x2 = 17, y2 = 12.

Again, by Remarks 6 (2), we have the recursive formula yn = 2x0yn−1−yn−2 = 6yn−1−yn−2.

Given (x1, y1) = (x0, y0) = (3, 2), we compute

y3 = 70 > 64, y4 = 408 > 198.

Therefore, the only solution in need is m = 70/2 = 35 with N = m2 = 1225. □

Problem 11. Find out the minimal positive integer n > 1 such that the arithmetic average

of 12, 22, . . . , n2 is a perfect square.

Solution. The condition is read as

12 + 22 + · · ·+ n2

n
=

(n+ 1)(2n+ 1)

6
= m2,

which is equivalent to 16n2 + 24n+ 8 = 3(4m)2. Thus,

(4n+ 3)2 − 3(4m)2 = x2 − 3y2 = 1, x = 4n+ 3, y = 4m.
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Its fundamental solution is given by (x0, y0) = (x1, y1) = (2, 1). Hence

xk = 4xk−1 − xk−2, x1 = 2;

yk = 4yk−1 − yk−2, y1 = 1.

From this, we see a necessary condition xk ≡ −xk−2 mod 4 and yk ≡ −yk−2 mod 4. On

the other hand, it is readily true that x ≡ 3 mod 4 and y ≡ 0 mod 4. The solution on k is

k ≡ 2 mod 4.

• If k = 2, then x2 = 7 = 4n+ 3 with n = 1, which contradicts to n > 1.

• If k = 6, we compute

x6 = 4x5 − x4 = 4(4x4 − x3)− x4 = 15x4 − 4x3

= 15(4x3 − x2)− 4x3 = 56x3 − 15x2 = 56(4x2 − x1)− 15x2

= 209x2 − 56x1 = 1351,

which implies that 4n+ 3 = 1351 and then n = 337 > 1.

Therefore, the anwser is n = 337. □

Problem 12 (IMO 2001 Shortlist). Consider the equation set
󰀫
x+ y = z + u,

2xy = zu.

Seek for the maximum of the real constant m such that for any solution (x, y, z, u) of positive

integers for the equation set, x 󰃍 y always implies m 󰃑 x/y.

Solution. We are to find out the lower bound of x/y. Firstly,

(x+ y)2 − 4 · 2xy = (z + u)2 − 4 · zu =⇒ x2 − 6xy + y2 = (z − u)2.

We can rewrite this formula in a homogeneous way, say
󰀕
x

y

󰀖2

− 6

󰀕
x

y

󰀖
+ 1 =

󰀕
z − u

y

󰀖2

󰃍 0 =⇒ x

y
󰃍 3 + 2

√
2.

(Comment: note that 3 + 2
√
2 /∈ Q but x/y ∈ Q; therefore, consider to prove validity of

the lower bound.) Suppose p is a prime divisor for (z, u) := gcd(z, u). Then p | x and

p | y simultaneously. Without loss of generality, keeping the equation set invariant, we may

suppose (z, u) = 1. Here comes

(x+ y)2 − 2 · 2xy = (z + u)2 − 2 · zu =⇒ (x− y)2 = z2 + u2.

As (z, u) = 1, it is clear that (z, u, x − y) is a primary pythagorean triple. This means the

existence of a parametrization (again, may assume 2 | u):

u = 2ab, z = a2 − b2, x− y = a2 + b2, (a, b) = 1.

Also, x+y = z+u = a2+2ab− b2, and hence x = a2+ab = a(a+ b), y = ab− b2 = b(a− b).

Moreover,

z − u = a2 − b2 − 2ab = (a− b)2 − 2b2.

The most important step is to set z − u = 1 to make (z − u)/y to be minimal. In case

z − u = 1 is satisfied, the solution a− b = 3 with b = 2 admit a Pell equation, say

(a− b)2 − 2b2 = 1.
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According to Theorem 4, it has infinitely many solutions of positive integers so that a − b

and b can be sufficiently large as required. Consequently, y can be sufficiently large just so

y → ∞ is possible. It renders that

z − u

y
→ 0 =⇒ x

y
→ 3 + 2

√
2.

Hence we have proved that m = 3 + 2
√
2 is the infimum for x/y. □
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