Lecture Notes for International Mathematical Olympiad

ON MINIMAL PRIME DIVISORS

1. INTRODUCTION

We introduce two tricks on divisor analysis:

- Assume $n \ge 2$. It will be convenient to let p be the minimal prime divisor of n, which is particularly useful while considering the condition $n \mid (a^n b^n)$. (c.f. Lifting-the-exponent lemma.)
- Suppose n is a compositum number. Then we can take p to be the minimal prime divisor of n, and write n = pm for $2 \leq p \leq m$.

2. Basic examples

Problem 1. Suppose $n \in \mathbb{Z}$ and n > 1. Show that $n \nmid 2^n - 1$.

Proof. Let p be the minimal prime divisor of n > 1. Assume $p \mid n \mid 2^n - 1$ for the sake of contradiction. Since $2^n - 1$ is odd we have $2 \nmid p$, and by Fermat's little theorem,

$$2^{p-1} \equiv 1 \bmod p.$$

Then we have

$$p \mid (2^n - 1, 2^{p-1} - 1) = 2^{(n, p-1)} - 1.^1$$

But p is the minimal divisor of n, which forces (n, p - 1) = 1. This leads to a contradiction because $p \mid 2^1 - 1 = 1$.

Problem 2. Determine all positive odd integers, say n's, such that $n \mid 3^n + 1$.

Solution. It is clear that n = 1 is a solution. When n > 1 we take $2 \nmid p$ to be the minimal prime divisor of n. Note that $3 \nmid 3^n + 1$, and hence (3, p) = 1. By Fermat's little theorem $p \mid 3^{p-1} - 1$. On the other hand,

$$p \mid 3^n + 1 \implies p \mid (3^n + 1)(3^n - 1) = 3^{2n} - 1.$$

Combining these we get

$$p \mid (3^{2n} - 1, 3^{p-1} - 1) = 3^{(2n, p-1)} - 1.$$

But p-1 does not contain any divisor of n and $p-1 \neq 2$. We get (2n, p-1) = 1, and therefore $p \mid 2$, which leads to a contradiction. To conclude, n = 1 is the only solution. \Box

Problem 3. Determine all pairs (n, a), such that $n \in \mathbb{N}^*$, $a \in \mathbb{Z}$, and $n \mid (a+1)^n - a^n$.

Date: August 28, 2022.

¹Recall that for $a, b, m, n \in \mathbb{N}^*$ with (a, b) = 1, we have

 $⁽a^m - b^m, a^n - b^n) = a^{(m,n)} - b^{(m,n)}.$

Solution. Note that n = 1 satisfies the condition for all $a \in \mathbb{Z}$. Assume n > 1 with p its minimal prime divisor. Then $p \mid (a+1)^n - a^n$. It follows that $p \nmid a$ and $p \nmid a+1$. By Fermat's little theorem,

$$a^{p-1} \equiv 1 \mod p$$
, $(a+1)^{p-1} \equiv 1 \mod p$,

and hence

$$p \mid (a+1)^{p-1} - a^{p-1}.$$

Combining this with the given condition we see

$$p \mid ((a+1)^{p-1} - a^{p-1}, (a+1)^n - a^n) = (a+1)^{(p-1,n)} - a^{(p-1,n)}.$$

However, we have (p-1, n) = 1 as before, and hence the contradiction arises when we deduce $p \mid 1$. So the only solution is n = 1 with $a \in \mathbb{Z}$.

3. Advanced problems

Problem 4 (IMO, 2020). We are given a deck of n > 1 cards in which each card is assigned with a positive integer. This deck of cards obtains the following property. The arithmetic mean of numbers on any two distinct cards equals a geometric mean of numbers on some collection of one or more cards.

Determine those n such that this property implies that all cards are assigned with the same positive integer.

Solution. Suppose the *n* cards are assigned with positive integers a_1, \ldots, a_n and satisfy the given property. We prove firstly that $a_1/d, \ldots, a_n/d$ also satisfy the given property, where $d = \gcd(a_1, \ldots, a_n)$. Denote $a_i = db_i$ with $\gcd(b_1, \ldots, b_n) = 1$. Then

$$\frac{a_1 + a_2}{2} = \sqrt[k]{a_{i_1} \cdots a_{i_k}} \iff \frac{d(b_1 + b_2)}{2} = \sqrt[k]{d^k b_{i_1} \cdots b_{i_k}} = d\sqrt[k]{b_{i_1} \cdots b_{i_k}}$$
$$\iff \frac{b_1 + b_2}{2} = \sqrt[k]{b_{i_1} \cdots b_{i_k}}.$$

May assume $b_1 \ge b_2 \ge \cdots \ge b_n$. Our goal is to show that they are all equal to 1. Assume $b_1 \ge 2$ with p its minimal prime divisor. Then, as $(b_1, \ldots, b_n) = 1$ by assumption, there exists a minimal index $m \in \{2, 3, \ldots, n\}$ such that $p \nmid b_m$. Again, by the given property,

$$\frac{b_1 + b_m}{2} = \sqrt[k]{b_{i_1} \cdots b_{i_k}}$$

for some i_1, \ldots, i_k . Note that in the above equality,

$$\frac{b_1 + b_m}{2} \in \mathbb{Q}, \quad \sqrt[k]{b_{i_1} \cdots b_{i_k}} \in \mathbb{N} \text{ or } \mathbb{R} \backslash \mathbb{Q}.$$

Consequently, the LHS and RHS are both the same positive integer. However,

$$b_1 > b_m \implies \frac{b_1 + b_m}{2} > b_m \implies \sqrt[k]{b_{i_1} \cdots b_{i_k}} > b_m,$$

and therefore, there is some $1 \leq r \leq k$ such that $b_{i_r} > b_m$. Recall that m is the minimal index such that $p \nmid b_m$. So, as $\sqrt[k]{b_{i_1} \cdots b_{i_k}} \in \mathbb{N}$,

$$p \mid b_{i_1}, \dots, b_{i_r} \implies p \mid \sqrt[k]{b_{i_1} \cdots b_{i_k}} \implies p \mid \frac{b_1 + b_m}{2}$$

On the other hand, we have $p \mid b_1$ and $p \nmid b_m$ by assumption, which leads to a contradiction because $p \nmid b_1 + b_m$. Therefore, we have proved that $b_1 = 1$, and hence $b_1 = \cdots = b_n = 1$.

To conclude, for any integer $n \ge 2$, the property implies that all numbers on all cards are the same.

Problem 5. Let p be a prime and r the remainder of p modulo 210. Suppose r is not a prime and has the form $a^2 + b^2$ for some $a, b \in \mathbb{N}^*$. Determine r.

Solution. Write p = 210n + r with 0 < r < 210. Let q be the minimal prime divisor of r and hence r = qm for $q \leq m \in \mathbb{N}^*$. Then we have

$$210 > r = qm \ge q^2 \implies q \le 13.$$

On the other hand, r cannot be divisible by either of 2, 3, 5, 7, which are prime divisors of 210; otherwise p must be a compositum number. This forces q to be either 11 or 13.

Let $r = a^2 + b^2$. If q = 11 then $11 \mid (a^2 + b^2)$. Note that for any $t \in \mathbb{N}$ we have $t^2 \equiv 0, 1, 4, 9, 5, 3 \mod 11$. It follows that $11 \mid a$ and $11 \mid b$. Then $r \ge 121 + 121 > 210$, which is impossible.

Now we have q = 13. Consequently,

$$m \leqslant \left[\frac{210}{13}\right] = 16.$$

If $m \in \{16, 15, 14\}$ then p is a multiple of 2, 3, 7 and p > 2, 3, 7, respectively. This implies that p is not prime, which is also impossible.

To conclude, m = 13 with $r = 169 = 5^2 + 12^2$ and p = 379, n = 1.

In the upcoming context we call d a proper divisor of $n \in \mathbb{N}^*$ if $d \mid n$ and 1 < d < n.

Problem 6. Let n be a composite number. For any proper divisor d of n, write on the blackboard the number d + 1. Find out all such integers n so that all the numbers on the blackboard are exactly all proper divisors of some other positive integer m.

Proof. Let p be the minimal prime divisor of n. Then p + 1 must be the minimal prime divisor of m, and hence p = 2 and $3 \mid m$. It follows that m is odd and all proper divisors of m are odd. Hence all proper divisors of n are even, and hence n obtains no odd prime divisors.

Write $n = 2^k$ for $k \ge 2$. Then the maximal proper divisor of n is 2^{k-1} .

- If $k \ge 4$ otherwise, then 2, 4, 8 are all proper divisors of n, and hence 3, 5, 9 are all proper divisors of m. Then 15 | m properly. It follows that 14 | n properly, which is impossible.
- If k = 2, then n = 4 and m = 9 satisfy the condition.
- If k = 3, then n = 8 and m = 15 is also a valid solution.

To sum up, we have n = 4 or 8.

Problem 7. Determine all positive integers n to satisfy the following conditions:

- (1) n has at least 4 positive divisors, and
- (2) for any pair of proper divisors a, b of n, we have $(b-a) \mid n$.

Proof. We first note that if $2 \nmid n$ then $2 \nmid a, b$ and hence $2 \mid (b-a) \mid n$, which is a contradiction. Hence $2 \mid n$. Take a = 2 and b = n/2 to obtain

$$\left(\frac{n}{2}-2\right) \mid n, \ \left(\frac{n}{2}-2\right) \mid (n-4)\left(\frac{n}{2}-2\right) \mid 4.$$

Then $n \in \{6, 8, 12\}$. It is easy to check that all these numbers are valid solutions.

School of Mathematical Sciences, Peking University, 100871, Beijing, China *Email address:* daiwenhan@pku.edu.cn