Lecture Notes for International Mathematical Olympiad

ORDER THEORY AND PRIMITIVE ROOT

1. Basic notions

By Euler's theorem, whenever (a, m) = 1 and m > 1 we have $a^{\varphi(m)} \equiv 1 \mod m$. Hence there exists a minimal positive integer $r \leq \varphi(m)$ such that $a^r \equiv 1 \mod m$.

Definition 1. Suppose (a,m) = 1 and m > 1. The order of a modulo m,¹ denoted by $\delta_m(a)$, is the minimal positive integer r such that $a^r \equiv 1 \mod m$.

Example 2. (1) Take a = 2 and m = 7. Then

 $2^1 \equiv 2 \mod 7$, $2^2 \equiv 4 \mod 7$, $2^3 \equiv 1 \mod 7$.

Hence $\delta_7(2) = 3$, whereas $\varphi(7) = 6$.

(2) Take a = 2 and m = 11. Then one can check that

Definition 3. If the order of a modulo m is exactly $\varphi(m)$, i.e.,

$$\delta_m(a) = \varphi(m),$$

then a is called a *primitive root* of m.

- Remark 4. (1) Given a which is a primitive root of some m, we remark that m is not necessarily prime. For example, take a = 5 and m = 6. Then $\delta_6(5) = 2 = \varphi(6)$ but m is not prime.
 - (2) For fixed *m*, the primitive root of *m* is not necessarily unique, even if *m* is prime. For example, since $\varphi(2) = 1$ and $2k+1 \equiv 1 \mod 2$, we see $\delta_2(2k+1) = \varphi(2)$; namely, all odd integers are primitive roots of 2.

2. Basic features of primitive root and order

In the upcoming context, if we have defined $\delta_m(a)$ then supposedly (a, m) = 1, which will be omitted as an indicated assumption.

Theorem 5. Suppose $\delta = \delta_m(a)$. Then $1, a, \ldots, a^{\delta-1}$ have mutually distinct remainders modulo m.

Proof. Assume there are k, l satisfying $0 \le k < l \le \delta - 1$, such that $a^k \equiv a^l \mod m$. Since (a, m) = 1, we have $(a^k, m) = 1$. It follows that $a^{l-k} \equiv 1 \mod m$ with $0 < l-k < \delta$. This contradicts to the assumption that $\delta = \delta_m(a)$ by the minimality. \Box

Date: August 28, 2022.

¹Referring to some other materials, the order is also called the index of a modulo m.

Theorem 6. If $\delta = \delta_m(a)$, then

 $a^r \equiv a^{r'} \mod m \iff r \equiv r' \mod \delta.$

In particular, $a^r \equiv 1 \mod m$ if and only if $\delta \mid r$.

Proof. Write $r = \delta q + r_0$ and $r' = \delta q' + r'_0$ with $0 \leq r_0, r'_0 \leq \delta - 1$. We first tackle with the "only if" part. For this,

$$a^{\delta} \equiv 1 \mod m \implies a^r = (a^{\delta})^q \cdot a^{r_0} \equiv a^{r_0} \mod m,$$

and similarly $a^{r'} \equiv a^{r'_0} \mod m$. Also, as $a^r \equiv a^{r'} \mod m$, we have $a^{r_0} \equiv a^{r'_0} \mod m$. This forces r_0 to equal to r'_0 . Then $r \equiv r' \mod \delta$.

Conversely, suppose $r \equiv r' \mod \delta$, and hence $r_0 = r'_0$. Consequently,

$$a^r = (a^{\delta})^q \cdot a^{r_0} \equiv a^{r_0} \equiv a^{r'} \mod m$$

for the same reason. Hence we have finished the proof. In particular, $a^r \equiv 1 \mod a^{\delta} \mod m$ if and only if $\delta \mid r - \delta$, or equivalently $\delta \mid r$.

From this we have a natural corollary:

Corollary 7. Suppose $\delta_m(a) = \delta$. Then $\delta \mid \varphi(m)$.

Theorem 8. Suppose a, b > 0. We have

$$\delta_m(x) = ab \implies \delta_m(x^a) = b, \ \delta_m(x^b) = a.$$

Proof. Since (x, m) = 1 we see $(x^a, m) = 1$. This implies the existence of $\delta := \delta_m(x^a)$. So it suffices to show $\delta = b$. On the one hand, $(x^a)^{\delta} \equiv 1 \mod m$ renders $x^{a\delta} \equiv 1 \mod m$. As $\delta_m(x) = ab$, by Theorem 6 above, $ab \mid a\delta$, and then $b \mid \delta$. On the other hand,

 $\delta_m(x) = ab \implies x^{ab} \equiv 1 \bmod m \implies (x^a)^b \equiv 1 \bmod m.$

As $\delta_m(x^a) = \delta$, by Theorem 6 again, $\delta \mid b$. To conclude, we have $\delta = b$ and similarly, $\delta_m(x^b) = a^2$.

Theorem 9. Suppose (a, b) = 1. Then

$$\delta_m(x) = a, \ \delta_m(y) = b \implies \delta_m(xy) = ab$$

Proof. Note that (xy, m) = 1 as (x, m) = (y, m) = 1. It suffices to show that $\delta := \delta_m(xy) = ab$. We have

$$(xy)^{\delta} \equiv 1 \mod m \implies (xy)^{\delta b} \equiv 1 \mod m \implies x^{\delta b} \cdot (y^b)^{\delta} \equiv 1 \mod m$$

Since $\delta_m(y) = b$, we see

$$y^b \equiv 1 \mod m \implies x^{b\delta} \equiv 1 \mod m \implies a \mid b\delta$$

because $\delta_m(x) = a$ by assumption. Also, (a, b) = 1 deduces $a \mid \delta$. For the same reason,

$$(xy)^{\delta a} \equiv 1 \mod m \implies b \mid \delta.$$

As (a, b) = 1, we have $ab \mid \delta$ as required. On the other hand,

$$(xy)^{ab} \equiv (x^a)^b \cdot (y^b)^a \equiv 1 \mod m \implies \delta \mid ab$$

²Be caution that the assumption a, b > 0 is finally applied. Because $a \mid b$ and $b \mid a$ implies only |a| = |b|.

because of $\delta_m(xy) = \delta$. Therefore, $\delta = ab$.

The following is somehow the inverse of Theorem 9.

Proposition 10. We have

$$\delta_m(x) = a, \ \delta_m(y) = b, \ \delta_m(xy) = ab \implies (a,b) = 1.$$

Proof. We have $x^a \equiv 1 \mod m$ and $y^b \equiv 1 \mod m$. Then

$$x^{[a,b]} \equiv y^{[a,b]} \equiv 1 \mod m.$$

So $(xy)^{[a,b]} \equiv 1 \mod m$, and $ab \mid [a,b]$, which indicates that ab = [a,b] = ab/(a,b). So we deduce (a,b) = 1.

Theorem 11. Assume $\lambda \ge 1$ and $\delta_m(a) = \delta$. Then

$$\delta_m(a^\lambda) = \frac{\delta}{(\lambda,\delta)}.$$

Proof. First check that $(a^{\lambda}, m) = 1$ as (a, m) = 1. Hence we can denote $\nu = \delta_m(a^{\lambda})$. Then $a^{\lambda\nu} \equiv 1 \mod m$. Since $\delta_m(a) = \delta$, we see

$$\delta \mid \lambda \nu \implies \frac{\delta}{(\lambda, \delta)} \mid \frac{\lambda}{(\lambda, \delta)} \cdot \nu.$$

Moreover,

$$\left(\frac{\delta}{(\lambda,\delta)},\frac{\lambda}{(\lambda,\delta)}\right) = 1 \implies \frac{\delta}{(\lambda,\delta)} \mid \nu.$$

On the other hand,

$$(a^{\lambda})^{\frac{\delta}{(\lambda,\delta)}} = a^{\frac{\lambda\delta}{(\lambda,\delta)}} = (a^{\delta})^{\frac{\lambda}{(\lambda,\delta)}} \equiv 1 \mod m.$$

Again, because of $\delta_m(a^{\lambda}) = \nu$ by assumption, we have $\nu \mid \frac{\delta}{(\lambda,\delta)}$. To sum up, we have proved $\frac{\delta}{(\lambda,\delta)} = \nu$.

Here are some corollaries of Theorem 11.

Theorem 12. Let p be a prime. Suppose there exists $a \in \mathbb{Z}$ such that $\delta_p(a) = l$. Then there exist exactly $\varphi(l)$ integers that are mutually distinct modulo p, such that all of them share the same order l modulo p.

Proof. Since $\delta_p(a) = l$, by Theorem 5, the set $S = \{a, a^2, \dots, a^l\}$ contains l different elements modulo p. We are to prove that S is exactly the set of all solutions (up to modulo p) to

$$(*) x^l \equiv 1 \bmod p.$$

For any $x \in S$, there is $1 \leq \lambda \leq l$ such that $x = a^{\lambda}$. So $x^{l} = (a^{\lambda})^{l} \equiv (a^{l})^{\lambda} \equiv 1 \mod p$. Thus we have checked that each element of S is a solution to (*). By Lagrange's theorem, there are at most l solutions to (*). This proves that S is exactly the set of all solutions to (*).

Now due to Theorem 11, $\delta_p(a^{\lambda}) = l$ if and only if $(\lambda, l) = 1$. Then there are exactly $\varphi(l)$ modulo-*p*-distinct integers with order *l* modulo *p*.

3. A CRASH APPLICATION TO MERSENNE INTEGERS

Problem 13. Let p be an odd prime and q is a prime divisor of $2^p - 1$.³ Show that $q \equiv 1 \mod 2p$.

Proof. By assumption $q \mid 2^p - 1$, and thus $2^p \equiv 1 \mod p$. By the order theory we have $\delta_q(2) \mid p$ (c.f. Theorem 6). But p is an odd prime, which forces $\delta_q(2)$ to be p.

On the other hand, by Fermat's little theorem, $2^{q-1} \equiv 1 \mod q$. So by Theorem 6, the given condition $p \mid q-1$ is equivalent to $q \equiv 1 \mod p$. This completes the proof because (2, p) = 1 and $q \equiv 1 \mod 2$.

School of Mathematical Sciences, Peking University, 100871, Beijing, China *Email address*: daiwenhan@pku.edu.cn

³Recall that the integer of the form $2^k - 1$ is called a Mersenne integer.