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ORDER THEORY AND PRIMITIVE ROOT

1. Basic notions

By Euler’s theorem, whenever (a,m) = 1 and m > 1 we have aϕ(m) ≡ 1 mod m. Hence
there exists a minimal positive integer r  ϕ(m) such that ar ≡ 1 mod m.

Definition 1. Suppose (a,m) = 1 and m > 1. The order of a modulo m,1 denoted by
δm(a), is the minimal positive integer r such that ar ≡ 1 mod m.

Example 2. (1) Take a = 2 and m = 7. Then

21 ≡ 2 mod 7, 22 ≡ 4 mod 7, 23 ≡ 1 mod 7.

Hence δ7(2) = 3, whereas ϕ(7) = 6.
(2) Take a = 2 and m = 11. Then one can check that

n 1 2 3 4 5 6 7 8 9 10
2n mod 11 2 4 8 5 −1 −2 −4 −8 −5 1

Hence δ11(2) = 10 = ϕ(11).

Definition 3. If the order of a modulo m is exactly ϕ(m), i.e.,

δm(a) = ϕ(m),

then a is called a primitive root of m.

Remark 4. (1) Given a which is a primitive root of some m, we remark that m is not
necessarily prime. For example, take a = 5 and m = 6. Then δ6(5) = 2 = ϕ(6) but
m is not prime.

(2) For fixed m, the primitive root of m is not necessarily unique, even if m is prime.
For example, since ϕ(2) = 1 and 2k+1 ≡ 1 mod 2, we see δ2(2k+1) = ϕ(2); namely,
all odd integers are primitive roots of 2.

2. Basic features of primitive root and order

In the upcoming context, if we have defined δm(a) then supposedly (a,m) = 1, which will
be omitted as an indicated assumption.

Theorem 5. Suppose δ = δm(a). Then 1, a, . . . , aδ−1 have mutually distinct remainders
modulo m.

Proof. Assume there are k, l satisfying 0  k < l  δ − 1, such that ak ≡ al mod m. Since
(a,m) = 1, we have (ak,m) = 1. It follows that al−k ≡ 1 mod m with 0 < l − k < δ. This
contradicts to the assumption that δ = δm(a) by the minimality. □
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1Referring to some other materials, the order is also called the index of a modulo m.

1



2 ORDER THEORY AND PRIMITIVE ROOT

Theorem 6. If δ = δm(a), then

ar ≡ ar
′
mod m ⇐⇒ r ≡ r′ mod δ.

In particular, ar ≡ 1 mod m if and only if δ | r.

Proof. Write r = δq + r0 and r′ = δq′ + r′0 with 0  r0, r
′
0  δ − 1. We first tackle with the

“only if” part. For this,

aδ ≡ 1 mod m =⇒ ar = (aδ)q · ar0 ≡ ar0 mod m,

and similarly ar
′ ≡ ar

′
0 mod m. Also, as ar ≡ ar

′
mod m, we have ar0 ≡ ar

′
0 mod m. This

forces r0 to equal to r′0. Then r ≡ r′ mod δ.
Conversely, suppose r ≡ r′ mod δ, and hence r0 = r′0. Consequently,

ar = (aδ)q · ar0 ≡ ar0 ≡ ar
′
mod m

for the same reason. Hence we have finished the proof. In particular, ar ≡ 1 mod aδ mod m

if and only if δ | r − δ, or equivalently δ | r. □

From this we have a natural corollary:

Corollary 7. Suppose δm(a) = δ. Then δ | ϕ(m).

Theorem 8. Suppose a, b > 0. We have

δm(x) = ab =⇒ δm(xa) = b, δm(xb) = a.

Proof. Since (x,m) = 1 we see (xa,m) = 1. This implies the existence of δ := δm(xa). So
it suffices to show δ = b. On the one hand, (xa)δ ≡ 1 mod m renders xaδ ≡ 1 mod m. As
δm(x) = ab, by Theorem 6 above, ab | aδ, and then b | δ. On the other hand,

δm(x) = ab =⇒ xab ≡ 1 mod m =⇒ (xa)b ≡ 1 mod m.

As δm(xa) = δ, by Theorem 6 again, δ | b. To conclude, we have δ = b and similarly,
δm(xb) = a.2 □

Theorem 9. Suppose (a, b) = 1. Then

δm(x) = a, δm(y) = b =⇒ δm(xy) = ab.

Proof. Note that (xy,m) = 1 as (x,m) = (y,m) = 1. It suffices to show that δ := δm(xy) =

ab. We have

(xy)δ ≡ 1 mod m =⇒ (xy)δb ≡ 1 mod m =⇒ xδb · (yb)δ ≡ 1 mod m.

Since δm(y) = b, we see

yb ≡ 1 mod m =⇒ xbδ ≡ 1 mod m =⇒ a | bδ

because δm(x) = a by assumption. Also, (a, b) = 1 deduces a | δ. For the same reason,

(xy)δa ≡ 1 mod m =⇒ b | δ.

As (a, b) = 1, we have ab | δ as required. On the other hand,

(xy)ab ≡ (xa)b · (yb)a ≡ 1 mod m =⇒ δ | ab

2Be caution that the assumption a, b > 0 is finally applied. Because a | b and b | a implies only |a| = |b|.
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because of δm(xy) = δ. Therefore, δ = ab. □

The following is somehow the inverse of Theorem 9.

Proposition 10. We have

δm(x) = a, δm(y) = b, δm(xy) = ab =⇒ (a, b) = 1.

Proof. We have xa ≡ 1 mod m and yb ≡ 1 mod m. Then

x[a,b] ≡ y[a,b] ≡ 1 mod m.

So (xy)[a,b] ≡ 1 mod m, and ab | [a, b], which indicates that ab = [a, b] = ab/(a, b). So we
deduce (a, b) = 1. □

Theorem 11. Assume λ  1 and δm(a) = δ. Then

δm(aλ) =
δ

(λ, δ)
.

Proof. First check that (aλ,m) = 1 as (a,m) = 1. Hence we can denote ν = δm(aλ). Then
aλν ≡ 1 mod m. Since δm(a) = δ, we see

δ | λν =⇒ δ

(λ, δ)
| λ

(λ, δ)
· ν.

Moreover, 
δ

(λ, δ)
,

λ

(λ, δ)


= 1 =⇒ δ

(λ, δ)
| ν.

On the other hand,

(aλ)
δ

(λ,δ) = a
λδ

(λ,δ) = (aδ)
λ

(λ,δ) ≡ 1 mod m.

Again, because of δm(aλ) = ν by assumption, we have ν | δ
(λ,δ) . To sum up, we have proved

δ
(λ,δ) = ν. □

Here are some corollaries of Theorem 11.

Theorem 12. Let p be a prime. Suppose there exists a ∈ Z such that δp(a) = l. Then there
exist exactly ϕ(l) integers that are mutually distinct modulo p, such that all of them share
the same order l modulo p.

Proof. Since δp(a) = l, by Theorem 5, the set S = {a, a2, . . . , al} contains l different elements
modulo p. We are to prove that S is exactly the set of all solutions (up to modulo p) to

(∗) xl ≡ 1 mod p.

For any x ∈ S, there is 1  λ  l such that x = aλ. So xl = (aλ)l = (al)λ ≡ 1 mod p. Thus
we have checked that each element of S is a solution to (∗). By Lagrange’s theorem, there
are at most l solutions to (∗). This proves that S is exactly the set of all solutions to (∗).

Now due to Theorem 11, δp(aλ) = l if and only if (λ, l) = 1. Then there are exactly ϕ(l)

modulo-p-distinct integers with order l modulo p. □
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3. A crash application to Mersenne integers

Problem 13. Let p be an odd prime and q is a prime divisor of 2p − 1.3 Show that
q ≡ 1 mod 2p.

Proof. By assumption q | 2p − 1, and thus 2p ≡ 1 mod p. By the order theory we have
δq(2) | p (c.f. Theorem 6). But p is an odd prime, which forces δq(2) to be p.

On the other hand, by Fermat’s little theorem, 2q−1 ≡ 1 mod q. So by Theorem 6, the
given condition p | q − 1 is equivalent to q ≡ 1 mod p. This completes the proof because
(2, p) = 1 and q ≡ 1 mod 2. □
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3Recall that the integer of the form 2k − 1 is called a Mersenne integer.


