Lecture Notes for International Mathematical Olympiad

ORDER THEORY AND PRIMITIVE ROOT

1. BASIC NOTIONS

By Euler’s theorem, whenever (a,m) = 1 and m > 1 we have a¥™) = 1 mod m. Hence
there exists a minimal positive integer r < ¢(m) such that a” = 1 mod m.

Definition 1. Suppose (a,m) = 1 and m > 1. The order of a modulo m,* denoted by
0m(a), is the minimal positive integer r such that " = 1 mod m.

Example 2. (1) Take a =2 and m = 7. Then
2'=2mod7, 22=4mod7, 2°=1modT7.

Hence 67(2) = 3, whereas ¢(7) = 6.
(2) Take a =2 and m = 11. Then one can check that
n 1234 5 6 7 8 9 10
2"mod11 |2 4 8 5 -1 -2 —4 -8 —5 1
Hence §11(2) = 10 = ¢(11).

Definition 3. If the order of a modulo m is exactly ¢(m), i.e.,

om(a) = p(m),

then a is called a primitive root of m.

Remark 4. (1) Given a which is a primitive root of some m, we remark that m is not
necessarily prime. For example, take a = 5 and m = 6. Then d5(5) = 2 = ¢(6) but
m is not prime.
(2) For fixed m, the primitive root of m is not necessarily unique, even if m is prime.
For example, since ¢(2) = 1 and 2k+1 = 1 mod 2, we see d2(2k+1) = ¢(2); namely,
all odd integers are primitive roots of 2.

2. BASIC FEATURES OF PRIMITIVE ROOT AND ORDER

In the upcoming context, if we have defined 6,,(a) then supposedly (a,m) = 1, which will
be omitted as an indicated assumption.

Theorem 5. Suppose § = 6,,(a). Then 1,a,...,a°" " have mutually distinct remainders
modulo m.

Proof. Assume there are k,[ satisfying 0 < k < [ < 6 — 1, such that a* = a' mod m. Since
(a,m) = 1, we have (a*,m) = 1. It follows that a'~* = 1 mod m with 0 < —k < §. This
contradicts to the assumption that 0 = d,,,(a) by the minimality. a
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1Referring to some other materials, the order is also called the index of a modulo m.
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Theorem 6. If 6 = 0,,(a), then
a" =a” modm < r=r modSé.
In particular, a” =1 mod m if and only if § | r.

Proof. Write r = dq + ro and 7" = §¢' + r{, with 0 < ro, 7 < 0 — 1. We first tackle with the
“only if” part. For this,

a®=1modm = a" = (a®)?-a"™ = a" mod m,
-

. . /7 /7 /7 .
and similarly a a™ mod m. Also, as a” = a” mod m, we have a™ = a" mod m. This

forces r¢ to equal to 7. Then r =’ mod .
Conversely, suppose r = 7/ mod §, and hence 1o = r{,. Consequently,

’
a" = (a®)?-a"™ = a™ = a” mod m

for the same reason. Hence we have finished the proof. In particular, a” = 1 mod a® mod m
if and only if § | » — §, or equivalently 0 | r. O

From this we have a natural corollary:
Corollary 7. Suppose 6,,(a) = 0. Then § | o(m).

Theorem 8. Suppose a,b > 0. We have
Om() = ab = §,,(z%) = b, 6,,(z°) = a.
Proof. Since (x,m) = 1 we see (x* m) = 1. This implies the existence of § := §,,(z*). So

it suffices to show § = b. On the one hand, (z%)? = 1 mod m renders % = 1 mod m. As
Om(2) = ab, by Theorem 6 above, ab | ad, and then b | 6. On the other hand,

dm(z) =ab = 2 =1 modm = (2%)® =1 mod m.
As 6, (z%) = §, by Theorem 6 again, 6 | b. To conclude, we have § = b and similarly,
S (2) = a.? O
Theorem 9. Suppose (a,b) = 1. Then
Om(z) =a, om(y) =b = dp(zy) = ab.

Proof. Note that (zy,m) =1 as (x,m) = (y,m) = 1. It suffices to show that 0 := d,,(zy) =
ab. We have

% =1modm = z° - (y°)° = 1 mod m.

(zy)’ =1 mod m = (xy)
Since 0, (y) = b, we see
y=1modm = 2% =1modm = a|bd
because d,,(x) = a by assumption. Also, (a,b) =1 deduces a | §. For the same reason,
(zy)°* =1mod m = b|é.
As (a,b) = 1, we have ab | ¢ as required. On the other hand,

(ary)‘“’ = (l“a)b . (yb)a =1modm = §|ab

2Be caution that the assumption a,b > 0 is finally applied. Because a | b and b | a implies only |a| = |b].
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because of d,,(xy) = 0. Therefore, 6 = ab. O
The following is somehow the inverse of Theorem 9.
Proposition 10. We have
Om(x) =a, 0m(y) =b, dp(zy) =ab = (a,b) = 1.
Proof. We have 2% = 1 mod m and 3® = 1 mod m. Then
zlot = ylotl = 1 mod m.

So (zy)[*? = 1 mod m, and ab | [a,b], which indicates that ab = [a,b] = ab/(a,b). So we
deduce (a,b) = 1. O
Theorem 11. Assume A > 1 and §,,(a) = 9. Then

s
(A 9)

Om(a?) =

Proof. First check that (a*,m) = 1 as (a,m) = 1. Hence we can denote v = §,,(a*). Then
a™” =1 mod m. Since d,,(a) = 0, we see

S| =

Moreover,

On the other hand,

Again, because of 6,,(a*) = v by assumption, we have v | ﬁ. To sum up, we have proved

[
o5 =V O

Here are some corollaries of Theorem 11.

Theorem 12. Let p be a prime. Suppose there exists a € Z such that §,(a) = 1. Then there
exist exactly (1) integers that are mutually distinct modulo p, such that all of them share
the same order | modulo p.

Proof. Since 6,(a) = [, by Theorem 5, the set S = {a,a?, ..., a'} contains [ different elements
modulo p. We are to prove that S is exactly the set of all solutions (up to modulo p) to

(*) z! =1 mod p.

For any x € S, there is 1 < A < such that 2 = a*. So 2! = (a*)! = (a/)* = 1 mod p. Thus
we have checked that each element of S is a solution to (x). By Lagrange’s theorem, there
are at most [ solutions to (x). This proves that S is exactly the set of all solutions to (x).
Now due to Theorem 11, 6,(a*) = [ if and only if (),1) = 1. Then there are exactly ¢(l)
modulo-p-distinct integers with order [ modulo p. O
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3. A CRASH APPLICATION TO MERSENNE INTEGERS

Problem 13. Let p be an odd prime and q is a prime divisor of 27 — 1.3 Show that
q =1 mod 2p.

Proof. By assumption ¢ | 2? — 1, and thus 2 = 1 mod p. By the order theory we have
04(2) | p (c.f. Theorem 6). But p is an odd prime, which forces d,(2) to be p.

On the other hand, by Fermat’s little theorem, 29~ = 1 mod ¢. So by Theorem 6, the
given condition p | ¢ — 1 is equivalent to ¢ = 1 mod p. This completes the proof because
(2,p) =1 and ¢ =1 mod 2. O
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3Recall that the integer of the form 2¥ — 1 is called a Mersenne integer.



