
2023 Winter – Seminar on Formal and Rigid Geometry

Talk 1-2

TATE ALGEBRAS

This is the live-TeXed notes by Wenhan Dai for this seminar. The note-taker claims no
originality and takes full responsibility for all errors made therein.

• Talk 1 (Tate Algebra I): Cover [Bos14, pp. 9-20] (until Corollary 13). Discuss the
definition of restricted power series Tn and relevant properties. In particular, prove
the maximum principle (Proposition 5), and then prove the theorem of Weierstrass
Division (Theorem 8) and discuss its several corollaries (Corollary 9-13).

• Talk 2 (Tate Algebra II): Cover [Bos14, pp. 20-29]. Finish §2.2 by deriving some
more standard properties of Tn. Then prove Corollary 7 to show that each ideal of
Tn is finite and complete (Corollary 8) and generalize this results to finite generated
Tn-modules (Corollary 10).

1. Non-archimedean absolute value

Definition 1.1. Let K be a field. A map | · | : K → R>0 is called a non-archimedean value
if for any a, b ∈ K, the following conditions are satisfied:

(1) |a| = 0 if and only if a = 0;
(2) |ab| = |a||b|;
(3) |a+ b| 󰃑 max{|a|, |b|}.

Correspondingly, there is another map v : K → R ∩ {∞} called the valuation on K,1 such
that for any a, b ∈ K,

(1) v(a) = ∞ if and only if a = 0;
(2) v(ab) = v(a) + v(b);
(3) v(a+ b) 󰃍 min{v(a), v(b)}.

A non-archimedean value | · | is called trivial if |x| = 1 for all x ∕= 0; also, it is called discrete
if |K∗| is discrete in R.

Due to the strong triangle inequality (3) above, we obtain some unusual properties on
the topology of K.

Proposition 1.2. If a, b ∈ K such that |a| ∕= |b| then

|a+ b| = max{|a|, |b|}.

Proof. May assume |a| > |b|. Then |a + b| 󰃑 max{|a|, |b|} = |a| by the strong triangle
inequality. On the other hand, |a| = |(a+ b)− b| 󰃑 max{|a+ b|, |b|} = |a+ b|. This proves
the equality. □

The following proposition shows that the property of Cauchy sequence in non-archimedean
fields is slightly stronger than that in archimedean fields.

Date: December 23, 2022.
1One can intuitively take v(a) = − log |a| for example.
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Proposition 1.3. Suppose aν ∈ K. The sequence {
󰁓N

ν=0 aν}∞N=0 is a Cauchy sequence if
and only if limν→∞ |aν | = 0.

The preceding considerations show another peculiarity of the topology of K.

Proposition 1.4. Fix a ∈ K and r ∈ R>0. Then all of the following regions

D−(a, r) = {x ∈ K | |x− a| < r},

D+(a, r) = {x ∈ K | |x− a| 󰃑 r},
∂D(a, r) = {x ∈ K | |x− a| = r},

are simultaneously open and closed.

In particular, the unit disc D+(0, 1) can be written as a disjoint union D−(0, 1)⊔∂D(0, 1)

of two open subsets. More generally, we have:

Proposition 1.5. The topology of K is totally disconnected, i.e. any subset in K consisting
of more than just one point is not connected.

The functions on the underlying topological space K itself infer some information on this
weird non-archimedean topology as well.

Example 1.6. Let f be a function on the open (and closed) ball D+(a, r) defined as

f(x) =

󰀫
0 x ∈ D−(a, r),

1 x ∈ ∂D(a, r).

Then f can never be continuous.

The basic principle of rigid analytic geometry is to require that analytic functions on
disks admit globally convergent power series expansions. We will discuss the details of the
precise definition in subsequent sections.

2. Restricted power series

In this section we set (K, | · |) a complete non-archimedean field with a non-trivial val-
uation. Denote K the algebraic closure of K. It turns out that if L/K is an algebraic
extension, then there is a unique way to extend | · | on K to (L, | · |′). In fact, one can take
for any α ∈ L that

|α|′ = |NmK(α)/K(α)|1/d, d = degα.

Given this construction, we observe that if f(x) = xn+· · ·+a0 is the minimal polynomial of α
over K, then |α|′ = |a0|1/n. In fact, if L/K is a finite extension, then (L, |·|) is automatically
complete. Conversely, for example, Qp is not complete as an infinite extension of Qp. So we

usually consider the topological ring Cp := 󰁥Qp instead. Denote

Bn(K) := {(x1, . . . , xn) ∈ K
n | |xi| 󰃑 1}

the closed unit ball.
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Lemma 2.1. Consider the formal power series

f =
󰁛

ν∈Nn

cνζ
ν =

󰁛

ν∈Nn

cν1...νnζ
ν1
1 . . . ζνn

n ∈ K[[ζ1, . . . , ζn]].

Then f converges on Bn(K) if and only if limν→∞ |cν | = 0.

Definition 2.2. Define the Tate algebra

Tn = K〈ζ1, . . . , ζn〉 := {f ∈ K[[ζ1, . . . , ζn]] | f converges on Bn(K)}

= {f =
󰁛

cνζ
ν ∈ K[[ζ1, . . . , ζn]] | |cν | → 0 as ν → ∞}.

Also define the Gauss norm | · | on Tn by

|f | := max |cν |, f =
󰁛

ν∈Nn

cνζ
ν ∈ Tn.

The following are some basic properties of the Gauss norm.

(1) |f | = 0 if and only if f = 0;
(2) |cf | = |c| · |f | for each c ∈ K;
(3) |fg| = |f | · |g|;
(4) |f + g| 󰃑 max{|f |, |g|}.

Here the properties (1)(2)(4) are obviously given by the non-archimedean nature of Tate
algebra. And (3) is an algebraic property. To prove (3), it suffices to check the equality for
f0 = f/|f | and g0 = g/|g| with |f0| = |g0| = 1. Let us introduce a valuation ring on K, say

R = {x ∈ K | |x| 󰃑 1}, m = {x ∈ K | |x| < 1}, k = R/m.

There is a natural algebra homomorphism

π : R〈ζ1, . . . , ζn〉 −→ k[ζ1, . . . , ζn], f =
󰁛

cνζ
ν 󰀁−→

󰁛
󰁨cνζν = 󰁨f.

Here as ν → ∞, |cν | → 0 and we take 󰁨cν = 0 correspondingly. Given |f0| = |g0| = 1 we infer
that π(f0) ∕= 0 and π(g0) ∕= 0. Hence π(f0g0) ∕= 0, which implies by definition |f0g0| = 1.

Proposition 2.3. The normed Tate algebra (Tn, | · |) is complete.

Proof. Given
󰁓∞

i=0 fi with fi =
󰁓

ciνζ
ν ∈ Tn such that limi→∞ |fi| = 0, we have for any ν

that limi→∞ |ciν | = 0. Take

cν =

∞󰁛

i=0

ciν , |cν | 󰃑 max{|ciν |},

so limν→∞ |cν | = 0. The limit point is defined by f =
󰁓

cνζ
ν =

󰁓∞
i=0 fi ∈ Tn. □

Corollary 2.4. Take f ∈ Tn such that |f | = 1. Then f is a unit in R〈ζ1, . . . , ζn〉 if and
only if 󰁨f is a unit in k[ζ1, . . . , ζn].

Proof. Following the algebra homomorphism π as above, we see (⇒) is apparent. As for
(⇐), if f =

󰁓
cνζ

ν and 󰁨f is a unit, then |f(0)| = |c0| = 1 and |cν | < 1 for ν ∕= 0. Without
loss of generality we can take c0 = 1 with g =

󰁓
ν ∕=0 cνζ

ν and |g| < 1. Take

h−1 := f = 1 + g = (1− g + g2 − · · · )−1,

and then fh = 1. This implies that f is a unit. □
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Theorem 2.5 (Maximum principle). For f ∈ Tn, we have

|f(x)| 󰃑 |f |, ∀x ∈ Bn(K),

and there exists a point x0 ∈ Bn(K) such that |f(x0)| = |f |.

Proof. May assume |f | = 1 and f =
󰁓

cνζ
ν . Then

|f(x)| = |
󰁛

cνx
ν | 󰃑 max{|cν |} = |f | = 1.

Again, we consider the algebra homomorphism

π : R〈ζ1, . . . , ζn〉 −→ k[ζ1, . . . , ζn], 󰁨f = π(f).

So |f | = 1 implies | 󰁨f | ∕= 0. There exists 󰁨x ∈ k
n

with k = R/m such that 󰁨f(󰁨x) ∕= 0. Define

R = {x ∈ K | |x| 󰃑 1}, m = {x ∈ K | |x| < 1}, k = R/m.

Then one can find a lifting x ∈ Bn(K) of 󰁨x. Consider the commutative diagram

R〈ζ1, . . . , ζn〉 k[ζ1, . . . , ζn]

R k

π

π1

where the first vertical map is evaluation at x and the second one evaluation at 󰁨x. Since
󰁨f(󰁨x) ∕= 0 we see π1(f(x)) ∕= 0. However, f(x) /∈ m, which deduces |f(x)| = 1. This completes
the proof. □

The Tate algebra Tn has many properties in common with the polynomial ring in n

variables over K, as we will see. The key tool for proving all these properties is Weierstrass
theory, which we will explain now and which is quite analogous to Weierstrass theory in
the classical complex case. In particular, we will establish Weierstrass division, a division
process similar to Euclid’s division on polynomial rings. In Weierstrass theory the role of
monic polynomials is taken over by so-called distinguished restricted power series, or later
by so-called Weierstrass polynomials.

Definition 2.6. A restricted power series g =
󰁓∞

ν=0 gνζ
ν
n ∈ Tn with coefficients gν ∈ Tn−1

is called ζn-distinguished of some order s ∈ N if the following hold:

(1) gs is a unit in Tn−1;
(2) |gs| = |g| and |gs| > |gv| for v > s.

The following lemma dictates that there exists an algorithm to convert non-ζn-distinguished
elements into ζn-distinguished elements.

Lemma 2.7. Given f1, . . . , fr ∈ Tn, there is a continuous automorphism

σ : Tn −→ Tn

such that σ(fi) is ζn-distinguished for each i. Furthermore, for all f ∈ Tn,

|σ(f)| = |f |.
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Theorem 2.8 (Weierstrass division). Let g ∈ Tn be a ζn-distinguished element of order s.
Then for any f ∈ Tn there exists a unique q ∈ Tn and r ∈ Tn−1[ζn] such that

f = qg + r, deg r < s.

Furthermore,
|f | = max{|qg|, |r|}.

Proof. Without loss of generality we assume |g| = 1. If |f | < max{|qg|, |r|} then |qg| = |r| >
|f |. Assume that 1 = |qg| = |r| > |f |. Consider

π : R〈ζ1, . . . , ζn〉 −→ k[ζ1, . . . , ζn].

Thus, π(qg + r) = 󰁨q󰁨g + 󰁨r = 󰁨f = 0 but 󰁨q, 󰁨g, 󰁨r ∕= 0. This leads to a contradiction. So
|f | = max{|qg|, |r|}. Moreover, if f = q1g + r1 = q2g + r1 then (q1 − q2)g + (r1 − r2) = 0,
which implies q1 = q2 and r1 = r2. This proves the uniqueness.

For the existence, may assume |f | = 1 and denote

ε = |g −
s󰁛

i=0

giζ
i
n| < 1.

We claim that there are q1, f1 ∈ Tn and r ∈ Tn−1[ζn] such that

f = qg + r + f1, deg r < s, |q|, |r| 󰃑 |f |, |f1| 󰃑 ε|f |.

• If f ∈ Tn−1[ζn], let g′ =
󰁓s

i=0 giζ
i
n with |g′| = 1. By the Euclidean division in

Tn−1[ζn] we have f = qg′ + r with deg r < s and |f | = max{|qg′|, |r|}. Therefore,

f = qg + r + (qg′ − qg), |qg′ − qg| = |q| · |g′ − g| 󰃑 ε|f |.

• If f /∈ Tn−1[ζn], then

f = lim
m→∞

fm, fm ∈ Tn−1[ζn].

From the previous point we see fm = qmg′ + rm for each m. And

|fm+1 − fm| = |(qm+1 − qm)g′ + (rm+1 − rm)| → 0

as m → ∞. We infer that |qm+1 − qm| → 0 and |rm+1 − rm| → 0. One can take

q = lim
m→∞

qm, r = lim
m→∞

rm.

Then f = qg′ + r.

Now we apply the induction. Let f0 = f and suppose f0 = q0g+ r0+ f1, where |q0|, |r0| 󰃑 1

and |f1| 󰃑 ε < 1. Similarly, we have f1 = q1g + r1 + f2 where |q1|, |r1| 󰃑 ε and |f2| 󰃑 ε2.
Using this process, we get

f = g ·
∞󰁛

i=0

qi +

∞󰁛

i=0

ri.

This completes the proof of Weierstrass division. □

Corollary 2.9 (Weierstrass preparation theorem). Let g ∈ Tn be ζn-distinguished of order
s. Then there is a unique monic w ∈ Tn−1[ζn] with degw = s, such that g = e · w, where e

is a unit in Tn. Furthermore, |w| = 1 and w is ζn-distinguished.

Corollary 2.10. T1 = K〈ζ1〉 is a Euclidean domain.
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Corollary 2.11 (Noether normalization). For any proper ideal a ⊊ Tn, there is a K-
algebra monomorphism Td ↩→ Tn for some d ∈ N such that Td ↩→ Tn ↠ Tn/a is a finite
monomorphism.

Proof. Choose g ∈ a\{0}. Applying a suitable automorphism to Tn, we can assume g is
ζn-distinguished of order s by Lemma 2.7. Consider the natural homomorphism

Tn−1 ↩→ Tn → Tn/(g).

For ζn ∈ Tn, by Weierstrass division ζn = qg + r where deg r < 1. Hence r ∈ Tn−1. Also,
󰁨ζn = 󰁨r, so 󰁨ζn is integral over Tn−1. Hence Tn−1 → Tn/(g) is finite.

Now consider the post-composite

f : Tn−1 → Tn/(g) → Tn/a,

with a1 := ker f . If a1 = 0 we are done. Otherwise choose g1 ∈ a and repeat the operation
to a1 ⊆ Tn−1. After finitely many iterations there is a finite monomorphism Td → Tn/a for
some d. □

Corollary 2.12. Suppose m ⊆ Tn is a maximal ideal. Then Tn/m is finite field extension
over K.

Proof. Via the previous corollary Td ↩→ Tn/m is a finite monomorphism. Note that the
target Tn/m is a field, which implies that Td is a field as well. This forces d to be 0, i.e.
Td = T0 = K. □

Corollary 2.13. The map

Bn(K) −→ SpmTn, x 󰀁−→ mx = {f ∈ Tn | f(x) = 0}

is surjective. Here SpmTn denotes the set of maximal ideals in Tn.

Proof. If x = (x1, . . . , xn) ∈ Bn(K), then the evaluation map

Tn −→ K, x 󰀁−→ f(x)

induces an isomorphism Tn/mx ≃ K(x1, . . . , xn). The right hand side is a field and hence
mx is a maximal ideal. We are to prove the surjectivity. For any m ∈ SpmTn,

ϕ : Tn ↠ Tn/m ↩→ K

is a finite homomorphism. Let xi := ϕ(ζi) ∈ K. It turns out that m = m(x1,...,xn) and then
the surjectivity follows. □

Proposition 2.14. The Tate algebra Tn is noetherian.

Proof. We prove by using the induction. Note that T0 = K is noetherian. Assume now
Tn−1 is noetherian. For each a ⊊ Tn proper ideal, we can choose g ∈ a and assume g is
ζn-distinguished by Lemma 2.7. Consider the integral homomorphism Tn−1 → Tn/(g), and
we deduce that Tn/(g) is a noetherian Tn−1-module. Consequently, a/(g) is a noetherian
module as well. It follows that a/(g) is a finitely generated Tn−1-module, so that a is finitely
generated on Tn. Hence Tn is noetherian. □

Proposition 2.15. The Tate algebra Tn is a factorial integral domain (and hence normal,
i.e. integrally closed in its fractional field).
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Proof. Again we apply the induction. The case where T0 = K is clear. Assume Tn−1 is
factorial and so also is Tn−1[ζn]. For each f ∈ Tn, f is ζn-distinguished. By Weierstrass
preparation theorem (Corollary 2.9) f = e · w for some w ∈ Tn−1[ζn]. Moreover,

f = e · (w1 · · ·wr),

where each wi ∈ Tn−1[ζn] is a prime element. It suffices to show that each wi is prime in
Tn. This is clear since there is a natural isomorphism

Tn−1[ζn]/(w)
∼−→ Tn/(w).

The proof for normality is very similar to that Z is normal in Q, so we choose to omit it. □

Proposition 2.16. The Tate algebra Tn is Jacobson, i.e. for any a ⊊ Tn,
√
a =

󰁟

m∈MaxTn
a⊆m

m.2

Proof. We can reduce the problem to the case that a is a prime ideal. Whenever a = 0,
let f ∈

󰁗
m∈MaxTn

m. Then f(x) = 0 for each x ∈ Bn(K). It follows that f = 0. Assume
a ∕= 0. Consider the integral monomorphism Td ↩→ Tn/a given by Noether normalization
(Corollary 2.11). For each maximal ideal m ⊆ Td, there exists a maximal ideal m′ ⊆ Tn/a

such that m = m′ ∩ Td. If q =
󰁗

m∈MaxTn/a
m ⊆ Tn/a, then

q ∩ Td =
󰁟

m∈MaxTn/a

(m ∩ Td) =
󰁟

m′∈MaxTd

m′ = 0.

Therefore, q ∩ Td = 0. If q ∕= 0, there exists 0 ∕= f ∈ q integral over Td, with fr + a1f
r−1 +

· · ·+ ar = 0 with ai ∈ Td and ar ∕= 0. But

Td ∋ ar = −fr − a1f
r−1 − · · ·− ar−1f ∈ q, Td ∩ q = 0,

which leads to ar = 0, a contradiction. Hence f = 0 and q = 0. □

Proposition 2.17. For each maximal ideal m ⊆ Tn,

ht(m) = n.

And m is generated by n elements. In particular,

Krull dimTn = n.

3. Ideals in Tate algebras

The most important feature of ideals in Tn = K〈ζ1, . . . , ζn〉 is that all ideals in Tn are
closed with respect to the non-archimedean topology of K. In particular, all ideals in Tn

are completed.

Definition 3.1. Let R be a ring. A ring norm on R is a map | · | : R → R>0 such that

(1) |a| = 0 if and only if a = 0;
(2) |ab| 󰃑 |a| · |b|;
(3) |a+ b| 󰃑 max{|a|, |b|};
(4) |1| 󰃑 1.

2Recall that
√
a is the intersection of all prime ideals containing a.
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The ring norm is called multiplicative if

(2’) |ab| = |a| · |b|.

Note that in particular, a multiplicative norm is such that |1| = 1.

Definition 3.2. Let R be a ring equipped with a multiplicative ring norm | · |, such that
|a| 󰃑 1 for each a ∈ R.

(1) R is called a B-ring if

{a ∈ R | |a| = 1} ⊆ R∗.

Namely, all norm one elements of R are invertible.
(2) R is called bald if

sup{|a| : a ∈ R, |a| < 1} < 1.

We remark on the bald property that any element of R with norm 1 cannot be approxi-
mated by a family of elements in R with norm < 1.

Proposition 3.3. Let K be a field and R a valuation ring. Take a sequence {a0, a1, . . .} in
R such that limn→∞ an = 0. Then the smallest subring containing {an}∞n=0 is bald.

Proof. Consider the smallest subring of R, denoted by S. Then

S =

󰀫
Fp char(R) = p > 0,

Z char(R) = 0.

Let R′ = S[a0, a1, . . .]. We first observe that S is bald: if S = Fp then all valuations on
finite fields are trivial; if S = Z then {a ∈ Z : |a| < 1} is a principal ideal in Z, whose
generator has norm < 1. Also, suppose there exists ε ∈ R such that |an| 󰃑 ε < 1 for all
n ∈ N. Then R′ = S[a0, a1, . . .] is bald. Since {an}∞n=0 is a zero sequence, only finitely many
{ai}i∈I satisfy |ai| = 1. Alternatively, there is some ε ∈ R such that |an| 󰃑 ε < 1 for n /∈ I.
It boils down to show that if S1 ⊆ R is bald, then for any a ∈ R with |a| = 1, S[a] is bald
as well. Take

ε := sup{|a| : a ∈ S1, |a| < 1} < 1.

Without loss of generality assume S1 is a B-ring, i.e. {a ∈ S1 | |a| = 1} ⊆ S∗
1 . (If not,

can localize S1 towards the multiplicative subset {a ∈ S1 | |a| = 1} to get a B-ring.) Then
for m′ = {x ∈ S1 | |x| < 1}, we have a local ring (S1,m

′). Also, (R,m) is a local ring. So
m′ = m∩ S. As there is a monomorphism S1 ↩→ R, we have 󰁨S := S1/m

′ ↩→ R/m = k. Then
for a ∈ R with |a| = 1, we get 0 ∕= 󰁨a ∈ k. And 󰁨a is either transcendental or algebraic over 󰁨S.

• Suppose 󰁨a is transcendental over 󰁨S. For each p =
󰁓r

i=0 cia
i ∈ S1[a] with ci ∈ S, if

|p| < 1 then

󰁨p =

r󰁛

i=0

󰁨ci󰁨ai = 0, 󰁨ci ∈ 󰁨S.

This deduces 󰁨ci = 0, and hence |ci| < 1. Thus,

|p| 󰃑 max{|ci|} 󰃑 ε < 1.
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• Suppose 󰁨a is algebraic over 󰁨S. Choose

g(T ) = Tn + c1T
n−1 + · · ·+ cn ∈ S1[T ],

such that 󰁨g is the minimal polynomial of 󰁨a over 󰁨S. Then 󰁨g(󰁨a) = 0 implies |g(a)| < 1.
Let

ε0 := max{|g(a)|, ε} < 1.

For each f ∈ S1[T ] with |f(a)| < 1, we need to show that |f(a)| 󰃑 ε0 (and therefore
S1[a] is a bald ring). By Euclid division, f = qg + r with q, r ∈ S1[T ] and deg r <

deg g. In particular,
f(a) = q(a) · g(a) + r(a),

where
|f(a)| < 1, |q(a)| 󰃑 1, |g(a)| 󰃑 ε0.

If |f(a)| > ε0, then the only possibility is read as |f(a)| = |r(a)|. If |r| < 1 and
r =

󰁓∞
i=0 bix

i then |r(a)| = |
󰁓∞

i=0 bia
i| 󰃑 max{|bi|}. If |r| = 1 then 󰁨r ∕= 0. But

󰁨r(󰁨a) = 0, which implies a contradiction. Hence 󰁨g | 󰁨r.
This completes the proof. □

We summarize from the proof above that given a bald subring R′ ⊆ R, by localizing R′

with respect to the multiplicative subset {x ∈ R′ | |x| = 1}, we get a B-ring R′′ such that

R′ ⊆ R′′ ⊆ R.

Moreover, R′′ is bald as R′ is bald. If R is further complete, and if R′′ is a bald B-ring, then
so also is 󰁦R′′. We check the B-ring property. For each limit point x = (x1, x2, . . .) ∈ 󰁦R′′ with
|x| = 1, we have xi ∈ R′′. Assume |xi| = 1 for all i. Then one can take x−1 = (x−1

1 , x−1
2 , . . .)

as R′′ is a B-ring. The baldness follows a similar argument.

Definition 3.4. Let V be a K-vector space. A norm on V is a map | · | : V → R>0 such
that

(1) |x| = 0 if and only if x = 0;
(2) |x+ y| 󰃑 max{|x|, |y|};
(3) |cx| = |c| · |x| for c ∈ K.

Let V be a complete normed K-vector space. A system {xν}ν∈N of elements in V , where
the index set N is either finite or countably infinite, is called a topological orthonormal basis
of V , if

(1) |xν | = 1 for all ν ∈ N ;
(2) each x ∈ V can be written as a convergent power series x =

󰁓
ν∈N cνxν with cν ∈ K;

(3) for x =
󰁓

ν∈N cνxν , we always have |x| = maxν∈N |cν |.

Example 3.5. We have a natural topological orthonormal basis {ζν}ν∈Nn ⊆ Tn, as each
f ∈ Tn can be written as f =

󰁓
ν∈Nn cνζ

ν .

We introduce two more notations for a K-vector space V that

V ◦ := {x ∈ V | |x| 󰃑 1},
󰁨V := V ◦/{x ∈ V | |x| < 1}.
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Theorem 3.6. Let K be a complete non-archimedean field with the residue field k, V a
complete normed K-vector space, and R a valuation ring on K. Let (xν)ν∈N be a topological
orthonormal basis on V . Take

yµ =
󰁛

ν∈N

cµνxν ∈ V ◦, µ ∈ M.

where the smallest subring of R containing {cµν} is bald. Then, if the residue classes 󰁩yµ ∈ 󰁨V
form a k-basis of 󰁨V , the elements {yµ}µ∈M form an orthonormal basis of V as well.

Proof. The systems (󰁨xv)v∈N and (󰁨yµ)µ∈M form a k-basis of 󰁨V . So M and N have the same
cardinality, and M is at most countable. In particular, (yµ)µ∈M is an orthonormal basis of a
subspace V ′ ⊂ V . Now let S be the smallest complete B-ring in R containing all coefficients
cµν . Then S is bald by our assumption; let ε = sup{|a| : a ∈ S, |a| < 1}. Setting

V ′
S =

󰁥󰁛

µ∈M

Syµ, VS =
󰁥󰁛

ν∈N

Sxν ,

where 󰁦󰁓 means the completion of the usual sum, we have V ′
S ⊆ VS , and we claim that, in

fact, V ′
S = VS . To verify this, let us first look at reductions. If m ⊆ S denotes the unique

maximal ideal, we set

󰁨S = S/m, V ′
󰁨S = V ′

S/mV ′
S , V󰁨S = VS/mVS .

Then 󰁨S is a subfield of the residue field k of R, and we have

󰁨V ′ = V ′
󰁨S ⊗󰁨S k, 󰁨V = V󰁨S ⊗󰁨S k.

From 󰁨V ′ = 󰁨V and V ′
󰁨S
⊆ V󰁨S we get V ′

󰁨S
= V󰁨S as fields extensions are faithfully flat. The latter

implies that, for any xν , there is an element zv ∈ V ′
S satisfying |xv − zv| 󰃑 ε. Then, more

generally, for any x ∈ VS , there is an element z ∈ V ′
S with |z| = |x| and |x− z| 󰃑 ε|x|. But

then, as V ′
S and VS are complete, we get V ′

S = VS by iteration. □

Now we want to apply Theorem 3.6 to Tate algebras with V = Tn.

Corollary 3.7. Let a ⊳ Tn be an ideal. Then there are generators a1, . . . , ar of a such that

(i) for each i, |ai| = 1, and
(ii) for each f ∈ a, there are f1, . . . , fr ∈ Tn such that f =

󰁓r
i=1 fiai with |fi| 󰃑 |f |.

Proof. Let 󰁨a be the reduction of a, i.e. the image of a ∩ R〈ζ〉 under the reduction map
R〈ζ〉 → k[ζ] where R is the valuation ring of K. Then 󰁨a is an ideal in the Noetherian ring
k[ζ] and, hence, finitely generated, say by the residue classes 󰁨a1, . . . ,󰁨ar of some elements
a1, . . . , ar ∈ a having norm equal to 1. As the elements ζv󰁨ai for ν ∈ Nn, i = 1, . . . , r,
generate 󰁨a as a k-vector space, we can find a system (yµ)µ∈M ′ of elements of type ζvai ∈ a

such that its residue classes form a k-basis of a. Adding monomials of type ζv for all v ∈ Nn,
we can enlarge the system to a system (yµ)µ∈M such that its residue classes form a k-basis
of k[ζ].

On the other hand, let us consider the system (ζν)ν∈Nn of all monomials in Tn; it is an
orthonormal basis of Tn and its reduction forms a k-basis of k[ζ]. Now apply Proposition
3.3 and Theorem 3.6. To write the elements yµ as (converging) linear combinations of the
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ζν , we need only the coefficients of the series a1, . . . , ar. As these form a zero sequence, we
see that (yµ)µ∈M is an orthonormal basis, the same being true for (ζν)ν∈Nn .

We want to show that the elements a1, . . . , ar have the required properties. Choose f ∈ a.
Then, since (yµ)µ∈M is an orthonormal basis of Tn, there is an equation f =

󰁓
µ∈M cµyµ

with certain coefficients cµ ∈ K satisfying |cµ| 󰃑 |f |. Writing f ′ =
󰁓

µ∈M ′ cµyµ, the choice
of the elements yµ, µ ∈ M ′, implies that we can write f ′ =

󰁓r
i=1 fiai with certain elements

fi ∈ Tn satisfying |fi| 󰃑 |f |. In particular, f ′ ∈ a, and we are done if we can show f = f ′.
To justify the latter equality, we may replace f by

f − f ′ =
󰁛

µ∈M−M ′

cµyµ ∈ a

and thereby assume cµ = 0 for µ ∈ M ′. Then, if f ∕= 0, there is an index µ ∈ M −M ′ with
cµ ∕= 0. Assuming |f | = 1, we would get a non-trivial equation

󰁨f =
󰁛

µ∈M−M ′

󰁨cµ󰁨yµ

for the element 󰁨f ∈ 󰁨a, which however, contradicts the construction of the elements 󰁨yµ. □

This immediately implies the result we have mentioned at the beginning of this section.

Corollary 3.8. For any ideal a ⊳ Tn, a is complete, and hence closed in Tn.

Proof. Choose a1, . . . , ar as in the proof above. If f =
󰁓∞

λ=0 fλ ∈ Tn for fk ∈ a, then

fλ =

r󰁛

i=0

fλiai, |fλi| 󰃑 |fλ|.

Hence

f =

r󰁛

i=1

∞󰁛

λ=0

fλiai,

and in particular f ∈ a. This shows the completeness. □

Corollary 3.9. For each a ⊳ Tn, a is strictly closed, i.e. for each f ∈ Tn there exists a0 ∈ a

such that
|f − a0| = inf

a∈a
|f − a|.

Proof. Resume the notations before. Choose (yµ)µ∈M as above. Take

f =
󰁛

µ∈M

cµyµ, a0 =
󰁛

µ∈M ′

cµyµ.

For any a =
󰁓

µ∈M ′ dµyµ ∈ a say, and then

|f − a| =

󰀏󰀏󰀏󰀏󰀏󰀏

󰁛

µ∈M−M ′

cµdµ +
󰁛

µ∈M ′

(cµ − dµ)yµ

󰀏󰀏󰀏󰀏󰀏󰀏
= max

µ∈M−M ′

ν∈M ′

{|cµ|, |cν − dν |}

and
|f − a0| = max

µ∈M−M ′
{|cµ|}.

These deduce the desired result |f − a0| 󰃑 |f − a|. □
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We remark that the strict closedness is an analogue of the compact notion in the non-
archimedean topology.

Summary 3.10. Recall that elements in Tate algebra Tn can be regarded as continuous
functions from Bn(K) to K. Moreover, it satisfies the following properties.

(1) The maximum principle: for each f ∈ Tn and any x ∈ Bn(K) we have

|f(x)| 󰃑 |f | = |
󰁛

cνζ
ν | = max{|cν |}.

And there exists x0 such that |f(x0)| = |f |.
(2) There is a surjective map

ϕ : Bn(K) −→ MaxTn, x 󰀁−→ mx = {f ∈ Tn | f(x) = 0}.

(3) By Weierstrass division theory, we have some algebraic properties: Tn is noetherian,
Jacobson, factorial, and normal.

(4) All ideals in Tn are closed.
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