
2023 Winter – Seminar on Formal and Rigid Geometry

Talk 5

AFFINOID FUNCTIONS (I)

This is the live-TeXed notes by Wenhan Dai for this seminar. The note-taker claims no
originality and takes full responsibility for all errors made therein.

• Talk 5 (Affinoid functions I): Cover [Bos14, pp.65–76]. Describe presheaf OX

and stalks OX,x. Prove §4.1 Proposition 2 and Proposition 6. Then discuss locally
closed immersion and Runge immersion. Finally, state extension Lemma 9 for the
preparation of next talk.

• Talk 6 (Affinoid functions II): Cover [Bos14, pp.76–91]. Understand Gerritzen-
Grauert theorem (§4.2, Theorem 10) and sketch the proof. Understand the Tate’s
acyclic theorem (§4.3, Theorem 1) and sketch the proof. If time permits, discuss the
generalized version of Tate’s acyclic theorem (Theorem 10, Corollary 11) (For more
details, see [BRG84, Chap.8]).

Readme. Talk 6 follows the book [Bos14] very closely so we only build the notes for Talk 5.

Recap. Before talking about affinoid functions we first recall some basic notions. Let K be
a complete non-archimedean valuation field. The Tate algebra over K is Tn = K〈ζ1, . . . , ζn〉
and the affinoid K-algebra A is defined as the datum of a quotient of Tn together with a
morphism Tn ↠ A in the category of affinoid K-algebras. We have also defined (c.f. Talk
3–4) affinoid K-spaces via X = Sp(A), which is set-theoretically the collection of maximal
ideals of A.

1. Germs of affinoid functions

Let X be an affinoid K-space and U ⊂ X an affinoid subdomain. We are to consider the
functor

OX : {U ⊂ X affinoid subdomains} Ring

U OX(U).

This OX(−) gives a presheaf of affinoid functions on X, which is compatible with subset
restrictions: for V ⊂ U we can take f → f |V naturally. This OX is called the presheaf of
affinoid functions on X. For x ∈ X, we define the stalk at x by

OX,x := lim−→
U∋x

OX(U),

where the injective limit runs over all affinoid subdomains U of X. An element fX ∈ OX,x is
called a germ of affinoid functions at x. As one would expect, given a morphism ϕ : X → Y

of affinoid spaces, there exists a natural induced morphism of stalks for each y ∈ Y , read as

ϕy : OX,ϕ(y) −→ OY,y.

Date: January 30, 2023.
1



2 AFFINOID FUNCTIONS (I)

Proposition 1.1 (Localization compatibility). Let X be an affinoid K-space, and x ∈ X,
a point corresponding to some maximal ideal m ⊂ OX(X). Then OX,x is a local ring with
maximal ideal mOX,x.

Proof. Consider U ∋ x an affinoid subdomain of X. Then by Talk 3–4, mOX(U) is a
maximal ideal of OX(U), and

OX(X)/m
∼−→ OX(U)/mOX(U).

We obtain an exact sequence

0 → mOX(U) → OX(U) → OX(U)/mOX(U) → 0.

In fact, for an exact sequence of inductive systems, taking injective limits preserve exactness.
So, on the level of stalks,

0 → mOX,x → OX,x → OX(X)/m → 0.

Then we see mOX,x is a maximal ideal of OX,x.
Now let fx ∈ OX,x, then whenever fx /∈ mOX,x, we expect fx to be a unit in OX,x.

To show this, we assume fx is represented by f ∈ OX(U). Then fx /∈ mOX,x. Thus,
f /∈ mOX(U), and hence f(x) ∕= 0. After multiplying a constant c ∈ K∗ if necessary, we
may assume |f(x)|  1. Then x ∈ U(f−1), a Laurent subdomain of U , and hence an affinoid
subdomain of X, in which f |U(f−1) is invertible. So fx must be invertible. □

Proposition 1.2. Let X = SpA be an affinoid K-space, and x ∈ X corresponding to some
maximal ideal m of A. Then the canonical map A → OX,x of affinoid K-algebras decomposes
as

A −→ Am −→ OX,x,

where the first map is the canonical map of localization at m, and the second map is injective.
Furthermore, these two maps induce isomorphisms

A/mn ∼−→ Am/m
nAm

∼−→ OX,x/m
nOX,x, ∀n ∈ N.

So, via taking projective limits of m-adic completions, we obtain isomorphisms

A ∼−→ Am
∼−→ OX,x.

Proof. The decomposition comes from that A/m
∼−→ OX,x/mOX,x, and OX,x is local. Fox

x ∈ U ⊂ X an affinoid subdomain, let A′ = OX(U). Then there exists an isomorphism
A/mn ∼−→ A′/mnA′. Consider the exact sequence of inductive systems

0 → {mnA′} → {A} → {A′/mnA′} → 0.

Passing to injective limits, we have an exact sequence

0 → mnOX,x → OX,x → A/mn → 0.

So we see that the natural map A/mn → OX,x/m
nOX,x is an isomorphism. Consequently,

A/mn ∼−→ Am/m
nAm

∼−→ OX,x/m
nOX,x

are isomorphisms. Dually, by passing to projective limits, we have

A ∼−→ Am
∼−→ OX,x.
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Finally, to show Am → OX,x is injective, we consider the commutative diagram

Am OX,x

Am
OX,x.

∼

Since Am is a noetherian local ring, by Krull’s intersection theorem,


n m
nAm = 0, and

hence Am → Am is injective. It follows that Am → OX,x is injective. □

We want to derive some direct consequence of the injectivity of map Am → OX,x in
Proposition 1.2.

Corollary 1.3. An affinoid function f on some affinoid K-space X is trivial if and only if
its germ fx ∈ OX,x is trivial at any x ∈ X.

Proof. Write X = SpA. The assertion is clear via

A ↩→


m∈X

Am ↩→


x∈X

OX,x.

□

Corollary 1.4. Let X be an affinoid K-space equipped with a covering X =


i∈I Ui by
affinoid subdomains. Then the restriction maps OX(X) → OX(Ui) define an injection

OX(X) ↩→


i∈I

OX(Ui).

Corollary 1.5. For any affinoid subdomain X ′ = SpA′ of some affinoid K-space X = SpA,
the map A → A′ of K-algebras is flat.

Proof. It suffices to show for any x ∈ X ′ corresponding to m ∈ MaxA, the map

f : Am → A′
m′

is flat, where m′ = mA′. Consider the commutative diagram

Am A′
m

Am
A′

m′

f

g

where the vertical maps are injective and faithfully flat. By Proposition 1.2, we obtain an
isomorphism Am

∼−→ A′
m′ . So the composition g ◦ f is flat. However, g itself is faithfully

flat, and hence f must be flat. □

Proposition 1.6. Let X be an affinoid K-space. For any point x ∈ X, the stalk OX,x is
noetherian.
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Proof. Let X = SpA and m be the maximal ideal of A corresponding to x. Then we claim
that OX,x is m-adically separated, i.e.

∞

n=1

mnOX,x = 0.

To prove this, take fx ∈
∞

n=1 m
nOX,x. Then fx is represented by f ∈ OX(U) for some

x ∈ U ⊂ X, where U is an affinoid subdomain of X. From Proposition 1.2, we have an
isomorphism

OX(U)/mnOX(U)
∼−→ OX,x/m

nOX,x.

Therefore, we see f ∈
∞

n=1 m
nOX(U). Passing to the level of local rings, we deduce fx = 0.

In the same way, one can show for any finitely generated ideal ax ⊂ OX,x that the
residue ring OX,x/ax is m-adically separated. Since ax is finitely generated, one may assume
the generators of ax are represented by affinoid functions fi ∈ OX(U) for some affinoid
subdomain x ∈ U ⊂ X. Now replacing X by U , we may assume fi ∈ A ≃ OX(X) and ax is
induced from some ideal a ⊂ A. Then turn to consider Y = Sp(A/a), with OY,y

∼= OX,x/ax.
Thus, OX,x/ax is m-adically separated.

Now consider an ascending sequence of finitely generated ideals of OX,x, say

a1 ⊂ a2 ⊂ · · · ⊂ ai ⊂ · · · ⊂ mOX,x.

Using the condition that OX,x
∼= Am is noetherian, we see the completion of this sequence

terminates, i.e. there exists some N ≫ 0 such that ai = ai+1 for all i > N .
Finally, by using the injectivity of OX,x/ai → OX,x/ai, the original sequence terminates

as well, i.e. for all i > N , ai+1 = ai. This shows that all ascending sequences in OX,x are
stable, and hence OX,x is noetherian. □

2. Locally closed immersions of affinoid spaces

2.1. Locally closed immersions.

Definition 2.1. A morphism of affinoid K-spaces ϕ : X ′ → X is called a closed immersion
if its corresponding morphism ϕ∗ : OX(X) → OX′(X ′) of affinoid K-algebras is surjective.

Furthermore, ϕ is called a locally closed immersion (resp. an open immersion) if it is
injective and for any x′ ∈ X ′ the induced morphism ϕ∗

x : OX,ϕ(x′) → OX′,x′ is surjective
(resp. bijective).

Here are some comments as well as examples to understand the given notion.

• For example, any morphism of affinoid K-spaces ϕ : X ′ → X defining X ′ as an
affinoid subdomain of X is an open immersion, due to the transitivity of affinoid
subdomains (c.f. Talk 4).

• Due to the previous statements, if ϕ is a closed immersion then ϕ is a locally closed
immersion.

• Furthermore, any composition of locally closed immersions (resp. closed immersions;
open immersions) is an immersion of the same type.
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Remark 2.2. Let ϕ : Y → X be a closed (resp. locally closed; open) immersion. Then for
any affinoid subdomain U of X, the induced morphism ϕU : ϕ−1(U) → U is an immersion
of the same type.

For this, we only check the case when ϕ is a closed immersion (since others are simple).
Let Y = SpB and X = SpA with ϕ∗ : A → B. Then ϕ∗ is injective. Let U = SpA′ ⊂ X

be the affinoid subdomain. Then ϕ−1(U) ∼= SpB′ for B′ = A′⊗̂AB. We obtain a Cartesian
diagram

A′ B′

A B.

Using Proposition 10 of [Bos14, Appendix B], we see A′ → B′ is surjective as ϕ∗ is.

Proposition 2.3. Let ϕ : X ′ → X be a locally closed immersion of affinoid K-spaces,
where the corresponding homomorphism of affinoid K-algebras is finite. Then ϕ is a closed
immersion.

Proof. Writing X ′ = SpA′ and X = SpA. The morphism ϕ induces for every x ∈ X ′ a
commutative diagram

A Amϕ(x)
OX,ϕ(x)

OX,ϕ(x)

A′ A′
mx

OX′,x
OX′,x.

ϕ∗
ϕ∗

mx ϕ∗
x

ϕ∗
x

Since ϕ is injective, mx ⊂ A′ is the only maximal ideal over mϕ(x) ⊂ A, and therefore we can
review A′

mx
as A′

mϕ(x)
. Since ϕ∗ is finite, we see ϕ∗

mx
is also finite. Consider A′

mx
/mϕ(x)A

′
mx

:
it is finite over k(ϕ(x)) = A/mϕ(x). Then the descending chain mn

x(A
′
mx

/mϕ(x)A
′
mx

) will be
stable for n ≫ 0. Again, by Krull’s intersection theorem,



n1

mn
x(A

′
mx

/mϕ(x)A
′
mx

) = 0.

Then for n ≫ 0, there must be mn
x ⊂ mϕ(x)A

′
mx

, i.e. the mx-adic topology and mϕ(x)-adic
topology on A′

mx
coincide. Then we have an isomorphism

A′
mx

∼= lim←−
n0

A′
mx

/mn
ϕ(x)A

′
mx

∼= A′
mx

⊗Amϕ(x)

Amϕ(x)
.

Since OX,ϕ(x) → OX′,x is surjective, so also is its projective limit OX,ϕ(x) → OX′,x. From
Proposition 1.2,

Amϕ(x)
−→ A′

mx
∼= A′

mx
⊗Amϕ(x)

Amϕ(x)

is surjective as well. Recall that Amϕ(x)
→ Amϕ(x)

is faithfully flat, so Amϕ(x)
→ A′

m is
surjective. By the correspondence of local rings and global rings, it follows that A → A′ is
surjective. □
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Proposition 2.4. Let ϕ : X ′ → X be a morphism of affinoid K-spaces that is an open and
closed immersion. Then the image of X ′ is Zariski open and closed in X; in particular, ϕ
defines a Weierstrass domain in X.

Proof. Resume on notation as in the preceding proof. Let ϕ∗ : A → A′ and ϕ∗
mx

: Amϕ(x)
→

A′
mϕ(x)

at a point x ∈ X ′ as above. Then ϕ∗
mx

is surjective, since ϕ∗ is surjective. In fact,
ϕ∗
mx

should be bijective. To verify this, we consider

Amϕ(x)
OX,ϕ(x)

A′
mx

OX′,x.

∼

Then we see ϕ∗
mx

is injective.
Now, since ϕ∗

mx
is bijective, there is an element f such that f(x) ∕= 0 and ϕ∗ induces an

isomorphism on A[f−1] → A′[f−1]. Thus, D(f) ⊂ ϕ(X ′), and ϕ(X ′) is Zariski open. On the
other hand it is also Zariski closed as ϕ is a closed immersion. Then there is a decomposition
of K-algebras such that A ≃ A1⊕A2 with kerϕ = A2 and A1 ≃ A′. So we have a unipotent
element e ∈ A2 with c ∈ K satisfying |c| > 1. It renders that X(e) = ϕ(X ′) and ϕ induces
the isomorphism X ′ ∼= X(ce). □

2.2. Runge immersions. Next we introduce a particular class of locally closed immersions.

Definition 2.5. A morphism of affinoid K-spaces ϕ : X ′ → X is called a Runge immersion
if it is the composition of a closed immersion X ′ → W and an open immersion W → X

defining W as a Weierstrass domain in X.

From Remark 2.2 we can immediately deduce:

Remark 2.6. Let ϕ : X ′ → X be a Runge immersion of affinoid K-spaces. Then, for any
affinoid subdomain U of X the induced morphism ϕU : ϕ−1(U) → U is a Runge immersion,
too.

If σ : A → A′ is a morphism of affinoid K-algebras, we call finitely many elements
h1, . . . , hn ∈ A′ a system of affinoid generators of A′ over A (with respect to σ) if σ extends
to an epimorphism

A〈ζ1, . . . , ζn〉 −→ A′, ζi −→ hi.

Of course, the hi ∈ A′ are then necessarily power bounded.

Proposition 2.7. For a morphism of affinoid K-algebras σ : A → A′ the following are
equivalent:

(i) The morphism of affinoid K-spaces ϕ : SpA′ → SpA associated to σ is a Runge
immersion.

(ii) σ(A) is dense in A′.
(iii) σ(A) contains a system of affinoid generators of A′ over A.

Proof. If ϕ is a Runge immersion, ϕ(A) is dense in A′, since the corresponding fact is true
for closed immersions and for Weierstrass domains. Next, choose a system h′

1, . . . , h
′
n of
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affinoid generators of A′ over A. Then, if σ(A) is dense in A′, we can approximate each h′
i

by some hi ∈ σ(A) in such a way that, using Lemma 8 below, h1, . . . , hn will be a system
of affinoid generators of A′ over A. Finally, assume that h1, . . . , hn ∈ σ(A) is a system of
affinoid generators of A′ over A. Then σ decomposes into the maps

A −→ A〈h1, . . . , hn〉 −→ A′

where the first one corresponds to the inclusion of X(h1, . . . , hn) as a Weierstrass domain in
X = SpA and where the second is surjective and, hence, corresponds to a closed immersion
SpA′ → X(h1, . . . , hn). Thus, ϕ is a Runge immersion. □

As a consequence we see that the composition of finitely many Runge immersions or,
more specifically, closed immersions and inclusions of Weierstrass domains, yields a Runge
immersion again.

Lemma 2.8. Consider a morphism of affinoid K-algebras σ : A −→ A′ and a system
h′ = (h′

1, . . . , h
′
r) of affinoid generators of A′ over A. Fix a residue norm on A and consider

on A′ the residue norm via the epimorphism

π′ : A〈ζ〉 −→ A′, ζ −→ h′,

where we endow A〈ζ〉 = A 〈ζ1, . . . , ζn〉 with the Gauß norm derived from the given residue
norm on A. Then any system h = (h1, . . . , hn) in A′ such that |h′

i − hi| < 1 for all i, yields
a system of affinoid generators of A′ over A.

Proof. Since |h′
i|  1, due to our assumption, we have |hi|  1 for all i and therefore can

consider the morphism
π : A〈ζ〉 −→ A′, ζ −→ h.

Let ε = maxi=1,...,n |h′
i − hi| so that ε < 1. It is enough to show for any element g ∈ A′ =

imπ′ that there is some f ∈ A 〈ζ1, . . . , ζn〉 satisfying |f | = |g| and |π(f) − g|  ε|g|. Then
an iterative approximation argument shows that π is surjective.

Thus, start with an element g ∈ A′ and choose a π′-inverse f =


ν∈Nn aνζ
ν in A〈ζ〉 with

coefficients av ∈ A; we may assume |f | = |g| by [Bos14, Proposition 3.1.5] (c.f. Talk 3).
Then

|π(f)− g| =




ν∈Nn

avh
ν −



ν∈Nn

avh
′ν



=




ν∈Nn

aν (h
ν − h′ν)

  εmax
v∈Nn

|aν | = ε|g|,

as required. □

2.3. The extension lemma. Next, we want to derive a certain extension lemma for Runge
immersions. To do this, let Ka be an algebraic closure of K and write K∗

a for its multiplica-
tive group, as well as |K∗

a | for the corresponding value group. Then |K∗
a | consists of all real

numbers α > 0 such that there is some integer s > 0 satisfying αs ∈ K∗. Furthermore, let
X = SpA be an affinoid K-space and consider functions f1, . . . , fr, g ∈ A generating the
unit ideal. Then, for any ε ∈ |K∗

a |, we may consider the subset

Xε = {x ∈ X; |fj(x)|  ε|g(x)|, j = 1, . . . , r} ⊂ X.
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If εs = |c| for some c ∈ K∗, the set Xε is characterized by the estimates
fs

j (x)
  |cs(x)| , j = 1, . . . , r,

and therefore defines a rational subdomain in X. Given a morphism of affinoid K-spaces
ϕ : X ′ −→ X, we set X ′

ε = ϕ−1 (Xε) and consider the morphism ϕε : X ′
ε −→ Xε induced

by ϕ.

Theorem 2.9 (Extension lemma). Assume that the morphism ϕε0 : X ′
ε0 −→ Xε0 defined

as before is a Runge immersion for some ε0 ∈ |K∗
a |. Then there is an ε ∈ |K∗

a | , ε > ε0, such
that ϕε : X

′
ε −→ Xε is a Runge immersion as well.

Proof. Write X = SpA and X ′ = SpA′, as well as Xε = SpAε and X ′
ε = SpA′

ε for ε ∈ |K∗
a |.

Replacing X by Xε′ and X ′ by X ′
ε′ for some ε′ ∈ |K∗

a | , ε′ > ε0, we may assume that all Xε

and X ′
ε are Weierstraß domains in X and X ′, respectively. Then, for ε ∈ |K∗

a | , ε  ε0, we
have a canonical commutative diagram

A A′

Aε A′
ε

Aε0 A′
ε0

ϕ∗

ϕ∗
ε

ϕ∗
ε0

where the vertical maps all have dense images, since, on the level of affinoid spaces, they
correspond to inclusions of Weierstraß domains. Now let h′ = (h′

1, . . . , h
′
n) be a system of

affinoid generators of A′ over A. Then h′ gives rise to a system h′
ε of affinoid generators of

A′
ε over Aε, as well as to a system h′

ε0 of affinoid generators of A′
ε0 over Aε0 .

Let us restrict ourselves for a moment to values ε ∈ |K∗|. In particular, we assume
ε0 ∈ |K∗|. Fixing a residue norm on A, we consider on A′ the residue norm with respect to
the epimorphism

π : A 〈ζ1, . . . , ζn〉 −→ A′, ζi −→ h′
i,

and on each Aε the residue norm with respect to the epimorphism

pε : A

ε−1η1, . . . , ε

−1ηr

−→ Aε, ηj −→

fj
g
,

where, strictly speaking, the element ε in the expression ε−1ηj has to be replaced by a
constant c ∈ K with |c| = ε and where the elements ε−1ηj have to be viewed as variables.
Then we can introduce on any A′

ε the residue norm via the epimorphism

πε : Aε 〈ζ1, . . . , ζn〉 −→ A′
ε, ζi −→ h′

i.

The latter equals the residue norm that is derived from the one of A via the epimorphism

τε : A

ζ1, . . . , ζn, ε

−1η1, . . . , ε
−1ηr


−→ A′

ε, ζi −→ h′
i, ηj −→

fj
g

satisfying
ker τε = (kerπ, gη1 − f1, . . . , gηr − fr) .



AFFINOID FUNCTIONS (I) 9

Now choose a system h = (h1, . . . , hn) of elements in A′, having ϕ∗-inverses in A, and whose
images in A′

ε0 satisfy

(∗)
h′

i|X′
ε0

− hi|X′
ε0

 < 1, i = 1, . . . , n.

The latter is possible, since the image of A is dense in A′
ε0 , due to the fact that Xε0 is a

Weierstraß domain in X and ϕε0 : X ′
ε0 −→ Xε0 is a Runge immersion. Then it follows from

Lemma 2.8 that h gives rise to a system of affinoid generators of A′
ε0 over Aε0 .

In order to settle the assertion of the Extension Lemma, it is enough to show that, in
fact,

|h′
i|X′

ε
− hi|X′

ε
|< 1, i = 1, . . . , n,

for some ε > ε0. Then, using Lemma 2.8 again, h|X′
ε

is a system of affinoid generators of A′
ε

over Aε belonging to the image of Aε, and it follows from Proposition 2.7 that ϕε : X
′
ε −→ Xε

is a Runge immersion in this case.
To abbreviate, let dε = h′

i|X′
ε
− hi|X′

ε
∈ A′

ε for any i ∈ {1, . . . , n}. Furthermore, fix
ε1 ∈ |K∗| with ε1 > ε0 and choose an element gε1 ∈ A


ζ, ε−1

1 η


with τε1 (gε1) = dε1 where
ζ = (ζ1, . . . , ζn) and η = (η1, . . . , ηr). For ε  ε1, let gε be the image of gε1 in A


ζ, ε−1η



so that τε (gε) = dε for all ε  ε1. Now, by the choice of hi, we have |dε0 | < 1. Thus, using
[Bos14, Proposition 3.1.5] (c.f. Talk 3), there is an element

g0 ∈ ker τε0 = (kerπ, gη1 − f1, . . . , gηr − fr)A

ζ, ε−1

0 η


such that |gε0 + g0| < 1. Approximating functions in A

ζ, ε−1

0 η


by polynomials in A〈ζ〉

ε−1
0 η


,

we may assume that g0 is induced by an element

g1 ∈ ker τε1 = (kerπ, gη1 − f1, . . . , gηr − fr)A

ζ, ε−1

1 η


But then we may replace from the beginning gε1 by gε1 − g1 and thereby assume |gε0 | < 1.
Now let

gε1 =


µ∈Nn,ν∈Nr

aµνζ
µην ∈ A


ζ, ε−1

1 η


with coefficients aµν ∈ A. Since |gε0 < 1|, we get maxµ∈Nn,v∈Nr |aµν | ε|ν|0 < 1. Passing from
ε0 to a slightly bigger ε (not necessarily contained in |K∗| ), we still have

|gε| = max
µ∈Nn,ν∈Nr

|aµν | ε|ν| < 1

for ε > ε0 sufficiently close to ε0. Thus, if such ε exist in |K∗|, the series gε is a well-defined
element in A


ζ, ε−1η


satisfying |dε|  |gε| < 1 as required in (∗). This settles the assertion

of the Extension Lemma in the case where ε0 ∈ |K∗| and the valuation on K is non-discrete.
In the general case, we can always enlarge the value group |K∗| by passing to a suitable

finite algebraic extension L/K. This way, we can assume ε0 ∈ |L∗| and, in addition, that
the last step in the above argumentation works for some ε > ε0 contained in |L∗|. In other
words, the assertion of the Extension Lemma holds after replacing the base field K by a
suitable finite algebraic extension L in the sense that we apply to our situation the base
change functor

SpA −→ SpA⊗̂KL

where ⊗̂ is the completed tensor product of [Bos14, Appendix B]. Thus, it is enough to show
that a morphism of affinoid K-spaces X ′ −→ X is a Runge immersion if the corresponding
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morphism of affinoid L-spaces X ′⊗̂KL −→ X⊗̂KL has this property or, equivalently, that a
morphism of affinoid K-algebras A −→ A′ has dense image if the corresponding morphism of
affinoid L-algebras A⊗̂KL −→ A′⊗̂KL has dense image. However, the latter is easy to see.
Since the completed tensor product commutes with finite direct sums, see the discussion
following Proposition 2 of [Bos14, Appendix B], it follows that the canonical morphism
A⊗K L −→ A⊗̂KL is bijective for any affinoid K-algebra A and any finite extension L/K.
Now consider a morphism of affinoid K-algebras σ : A −→ A′, and let A′′ ⊂ A′ be the
closure of σ(A). Then the morphism σ ⊗K L : A ⊗K L −→ A′ ⊗K L factors through the
closed subalgebra A′′ ⊗K L ⊂ A′ ⊗K L. If σ ⊗K L has dense image, we see that A′′ ⊗K L

coincides with A′ ⊗K L and, hence, by descent, that the same is true for A′′ and A′. Thus,
we are done. □

References

[Bos14] Siegfried Bosch. Lectures on formal and rigid geometry, volume 2105 of Lecture Notes in Mathe-
matics. Springer, Cham, Switzerland, 2014.

[BRG84] S. Bosch, Reinhold Remmert, and U. Güntzer. Non-archimedean analysis: a systematic approach
to rigid analytic geometry, volume 261. Springer-Verlag, New York and Berlin, 1984.

School of Mathematical Sciences, Peking University, 100871, Beijing, China
Email address: daiwenhan@pku.edu.cn


