Rigid Analytification

Recall X be a proj variety/C, X^{em} its conductification.
F.gbe c coherent sheet on X. Then X(C)
(a)
$$H^{i}(X, \mathcal{F}) \cong H^{i}(X^{cm}, \mathcal{F}^{cm});$$
 $f: X^{cm} \to X$
(b) Hom $(\mathcal{F}, \mathcal{G}) \cong Hom(\mathcal{F}^{cm}, \mathcal{G}^{cm});$ $f: X^{cm} \to X$
(c) Any coherent sheet on X^{em} is the analysification of
a coherent sheet on X.
Goal X locally of finite type over K, construst $X^{rid} \to X$,
which gives GAGA functor: Sch_K \to And_{F_K}, $X \mapsto X^{rid}$.
Example $\mathbb{P}_{K}^{n,rid} = U_{i} \operatorname{Sp} K(\frac{x_{i}}{x_{i}}, \dots, \frac{x_{i}}{x_{i}}) \xrightarrow{y=No/N}, \quad y_{i} \equiv 1$
 $(H, Ic)^{i} \equiv T_{N}^{ij}$

Det (2. Ozr scheme of locally finite type over K. A rigid emalytification of (2. Oz) is a rigid K-space (Z^{rig} , $O_{Z^{rig}}$), with a norphism of locally G-ringed K-space $U:(Z^{Vig}, O_{Z^{rig}}) \rightarrow (Z, O_2)$ sotistying: given rigid K-space (Y, O_Y) and norphism of locally G-ringed K-space $(Y, O_Y) \rightarrow (Z, O_2)$, the latter factors through V via a unique morphism of rigid K-space $(Y, O_Y) \rightarrow UZ^{Vig}, O_{Z^{rig}}$ i.e. The functor Ansp_K \rightarrow Lets, $(Y, O_Y) \rightarrow$ blom $(V, O_Y), (Z, O_2)$ is representable in Ausp_K.

Proper Rigid analytification exists for schemes locally of finite type
over
$$K_{ij}$$
 Moreover, the underlying map of sets of $U = Z^{i,j} \rightarrow Z$
identifies points of $Z^{i,j}$ with closed points Z.
Inf. WMA Z is affine by glueing. Write $Z = \text{Spec Kix}_{in}, x_n V_I$.
(i) First construct $Z^{i,j}$. Note
 $T_n^{(o)}/I_1 \leftarrow T_n^{(i)}/(I_1) \leftarrow T_n^{(i)}/(I_1) \leftarrow \dots \leftarrow KLX1/I$
 $\sim \text{Max} T_n^{(i)}/(I_1) \leftarrow Max T_n^{(i)}/(I_1) \leftarrow \dots \leftarrow KLX1/I$
 $\leq \text{Max} T_n^{(i)}/(I_1) \leftarrow Max T_n^{(i)}/(I_1) \leftarrow \dots \leftarrow KLX1/I$
Set $Z^{i,j} = \text{Ui } \text{Sp} T_n^{(i)}/I_1$.
 $\left[\frac{\text{Lem}}{I_1} Y \text{ rigid } H \text{ spece, } Z \text{ affine } H \text{ scheme, then} \\ \frac{1}{I_1}, (Q_1) \rightarrow (Z, (Q_2)) \\ \leftarrow \frac{2}{V_2(Z_1)} \rightarrow (Q_1(Y_1)) \\ \frac{\text{Lem}}{V_1} L: (Z^{i,j}, (Q_{Z^{i,j}}) \rightarrow (Z, (Q_2)).$

Now for a $(Y, O_Y) \rightarrow (Z, O_Z)$, when Y affinoid, then the map correspond to a K-morphism $B: KIZI/I \rightarrow B=O_Y(Y)$. It then suffices to show, for i >>0, G factor through $T_n^{(i)}/(I)$ for a unique $T_n^{(i)}/(I) \rightarrow B$. For this,

Choose i sto. $\overline{X}_i \in K[\underline{X}]/I$ satisfy $|6C\overline{X}_i|_{sup} \leq |C|^i$ in B. Then $\widehat{\sigma}: K[\underline{X}] \rightarrow B$ extends uniquely to T_n^{ui} , and σ factor though

$T_n^{(i)}/I$, uniquely. (ii) Remain to show Max KI_{2}/I = U; Max $T_n^{(i)}/I$. WMA I=0.

Then the result follons from: <u>(a)</u> Let MCK(3> nox'l ideal. Then M'= MNK[3] is a movil

ideal in KIX] satisfying m=m'K(x)

(b) Given a new i ideal M' c K 2 &], there is an index io st. m' K < c⁻ⁱ x > is max'l in T⁽ⁱ⁾_n for all i = io. <u>Inf of (a)</u> K [x] → K < 2> I I = m' new i K I × Vm' → K < 2>/m finite extin of K

as KTXJ is dense K(X), and fin. dim. Verespi ever couplete horizontal maps are surjective. Combined with above, we see $KTXJ/m' \rightarrow KXXJ/m$ is bijective. Hence so is $KTXJ/m' \rightarrow KXXJ/m' KXX, there fore <math>KXXJ/mKXXJ \rightarrow KXXJ/m$ Inf of (b). Consider a max/l m'c KTXJ/m' is a finite extension of K. Choose is $st.dtZj \in KTXJ/m'$ have absolute value $TZ_{j1} \in ICI^{i0}$, thus $KTXJ \rightarrow KTXJ/m'$ factors uniquely through $T_{n}^{ii} = K(c^{-i}X)$ for $i \ge i_0$.

Cor Rigid analytification defines a funtor from the category
of K-schemed locally of finite type to the category of rigit
K-space. This is the so called GAGA-functor.
This functor is faithful but not fullyfaithful.
$$f_i: Y \rightarrow Z \longrightarrow f_i^{om}: Y^{om} \rightarrow Z^{om}$$
, $f_i^{om} = f_2^{om}$
 $\Gamma_{f_i}^{om} = (\Gamma_{f_i})^{om}$ $O_{Z^{ig}, Z} \cong O_{Z, Z}^{2}$
 $(\Gamma_{f_i})^{om} = (\Gamma_{f_i})^{om} \implies \Gamma_{f_i} = \Gamma_{f_i} = \int_{I} =$

is en admissible affinoist coverig.

$$A_{k}^{(n)} - h_{0}^{(n)} = \bigcup_{i \in \mathbb{Z}_{n}} R^{(i)}.$$

Now assume K is algebraically closed, but not spherically closed. $e \cdot g$. $\Box p$. $\exists D_0 \supset D_1 \supset \dots of D(a,r) in K$ $g \cdot g \cdot f$. $f : D_i = g \cdot g \cdot g$. $r \in IKI$

Now $B' = SpT_1$ as writ disk, WMA all Di are inside B'. Then $IB' = U_i(IB' - D_i)$, which is not admissible. And we have $K = U_i(IB' - D_i) \cup \bigcup_{i > 1} R^{(i)}$.